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Chapter 1

Introduction

1.1 Strongly correlated ultracold bosons

The experimental discovery of Bose-Einstein condensation (BEC) has opened

up the exploration of quantum phenomena in a qualitatively new regime [1.
Due to its universality, BEC has been regarded as a quantum simulator of
many-body quantum physics in the field of condensed matter physics, high
energy astrophysics, and quantum optics. Recent experimental progress in
controlling quantum optical and atomic systems @, ] has given rise to tunable
interactions, which allows to access the strongly interacting regime. Strongly
correlated quantum gases thus provide an excellent playground for studying
fundamental problems in many-body physics and, in particular, for entering
regimes and new quantum phases that have never been accessible in condensed
matter or nuclear physics, with an unprecedented level of precision and con-
trol M] This thesis focuses on strongly correlated ultracold bosonic gases
trapped in optical lattices. Our motivation is to understand strongly corre-
lated quantum phases and quantum magnetism of multi-component bosonic
gases in optical lattices. Indeed, mixtures of bosonic flavors, either from differ-
ent atomic species or different hyperfine states of a single species, give rise to a
very rich phase diagram. To describe this physics, the Bose-Hubbard model ﬂa],
which incorporates strong correlations of the many-body system and success-
fully captures the Mott transition, is utilized as a generic model for the many-
body system in an optical lattice. The Bose-Hubbard model is exactly solvable
in one dimension system using the Bethe ansatz for the wave function [@] For
higher dimensions, however, numerical approaches need to be applied to tackle
the many-body system. One of them is (real-space) bosonic dynamical mean
field theory (R)BDMET ﬂﬂ—lﬁ], which has been established as a nonpertur-
bative approach and provides a comprehensive, thermodynamically consistent
framework for the theoretical investigation of correlated lattice systems. The
main task in this thesis is to study the strongly interacting many-body system
captured by the Bose-Hubbard model, by means of BDMFT/RBDMFT.

1



2 Introduction

1.2 Why strongly correlated ultracold bosons?

Interactions lie at the heart of strongly correlated solid-state systems, such
as heavy fermions ﬂﬂ], high T, superconductivity and Mott-insulator Eﬂ] In
these systems, interactions drive an instability towards ordered ground states
which exhibit magnetism and superconductivity (especially those systems with
partially occupied d- or f-electrons) ﬂﬁ] Due to the high level of complexity
in solid-state materials, however, a quantitative comparison between theory
and experiment seems a very challenging task, if is even possible at all. There-
fore it is highly desirable to work with experimental systems which are able to
simulate the original solid-state many-body systems, but in a much more con-
trollable way. Over the past decade, considerable experimental and theoretical
efforts have been made in ultracold gases, which provide a clean, controllable
and tunable laboratory, to access the puzzling quantum phenomena of solid-
state systems. However, the interactions in dilute, ultracold gases are natu-
rally very weak, since particle distances are typically of order 10?> nm ﬂ] which
is usually larger than the length scales of atom-atom interactions, and in this
case the system can be well described by the Gross-Pitaevskii equation [@, ]
Therefore, we can ask how we can make the systems strongly correlated, and
whether we can provide new tools for the simulation of strongly correlated
solid-state systems? Fortunately, interactions between atoms can easily be
tuned experimentally to access the strongly interacting regime via Feshbach
resonances ﬂﬂ, , @ii or optical lattices E] Typically, correlations of atoms
in dilute ultracold gases are dominated by two-body interactions due to large
particle separations, and can be treated as a two-particle quantum scatter-
ing problem governed by relevant interatomic potentials. To gain insight into
properties of dilute quantum gases, therefore, it is important to understand
the scattering of atoms under the influence of an interatomic potential ]
Due to basic features of ultracold many-body systems, i.e. atoms with small
kinetic energy and short-ranged interactions, the scattering process between
two atoms can be considered in this low energy limit and, correspondingly,
the interactions between bosons are governed entirely by the s-wave scattering
length, which can be easily tuned in a wide range via Feshbach resonances due
to the spin-dependence of the interatomic interactions. The tunability of the
s-wave scattering length in ultracold gases provides the possibility to simulate
strongly correlated many-body systems in ultracold experiments with a high
degree of controllability and precision.

Long-range interactions are a further key ingredient for strongly correlated
systems and tend to stabilize further novel phases @, @] Long-range inter-
actions often occur in materials science and compete with short-range interac-
tions, which leads to spatially modulated phases M] Usually, there are two
ways to create ultracold many-body quantum systems with dominant long-
range interactions: one approach exploits dipolar forces in ultracold atoms
and molecules [23]; another one is based on atoms inside a high-finesse optical
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cavity, where the cavity field mediates infinitely long-range forces between all
atoms Recently, experimental realizations of a dipolar Bose-Einstein con-
densate Nﬁ polar molecules [@], and a Bose-Einstein condensate coupled to
an optical cav1ty | have opened the path towards studies of quantum gases
with long-range 1nteractions and given access to novel quantum phases with
intriguing properties.

1.3 Overview of ultracold gases

Let us consider two possible ways to observe coherence on the macroscopic
scale: lasing of light and Bose-Einstein condensation. Even though the first
successful optical laser was invented by T. H. Maiman in 1960 @], Bose-
Einstein condensation was not observed until 1995 due to large decoherence
effects and the requirement of very low temperature. Thanks to intense efforts
over many years on cooling and manipulating atoms (see Fig. [[]), as summa-
rized in the Nobel lectures given by W. D. Phillips, S. Chu and C. N. Cohen-
Tannoudji @—@ a Bose-Einstein condensate with macroscopic ground-state
occupation of particles with integer spin at low temperature and high density,
which was suggested by Einstein in 1925, was first observed experimentally in
a dilute weakly-interacting " Rb gas in 1995, as described in the Nobel lectures
of E. A. Cornell, C. E. Wieman and W. Ketterle @ . Since then, BEC has
been observed in several physical systems, including cold atomic gases |34, @],
solid-state quasi-particles ﬂ}é, @], and photons @], and the study of ultracold
Bose gases has become one of the most active areas in contemporary physics

; @] Ultracold fermions @], which consist of another main branch in ul-
tracold gases, were investigated as well after the first realization of quantum
degeneracy in Fermi gases @]

In the development of ultracold physics in recent years, a high degree of
attention has been paid to strongly correlated systems which comprise a large
variety of quantum many-body systems. Even though the interactions in di-
lute, ultracold gases are very weak, new experimental techniques have made
it possible to access the strongly interacting regime in which interactions be-
tween particles are much larger than their kinetic energies. One method of
reaching the strongly interacting regime in dilute, ultracold gases is via Fes-
hbach resonances, which allow the scattering length to be increased to values
beyond the average inter-particle spacing. Exploiting Feshbach resonances to
tune the interactions has made it possible to study new properties of bosonic
gases beyond the mean-field level ], such as the crossover from a molecular
Bose-Einstein condensate to BCS pairing |42], and ultracold polar molecules
ﬂﬂ], as summarized in the review papers E] Another method that can
access the strongly correlated regime is to reduce the kinetic energy of atoms
via ramping up optical lattices, which has opened up new possibility for ma-
nipulation and control, in many cases creating structures far beyond those cur-
rently achievable in typical condensed-matter physics systems ﬂﬁ] By loading
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Figure 1.1: A typical experiment to cool and trap alkali atoms (From Ref. @])
Sodium atoms, emerging from an oven at a temperature of ~ 600 K (a speed
of ~ 800 ms™1), pass through Zeeman slower with a reduced temperature of
~ 1 K (a speed of =~ 30 ms™!), and then captured by magneto-optical trap
(MOT) with a further cooled temperature of ~ 100 uK.

ultracold gases into optical lattices, experimentalists have realized the super-
fluid to Mott-insulator transition of single-component bosonic gases [E], and
formation of the Mott insulator of two-component fermionic gases in a three-
dimensional optical lattice ﬂﬁ, ] One of the ultimate goals of cold-atomic
gases in optical lattices is to include the spin degree of freedom and simulate
solid-state phenomena, such as high T, superconductivity whose mechanism
has so far remained elusive [@] However, the typical lowest temperatures
in current experiments are of the order of 0.17/Tr and 0.37/T, for fermions
and bosons, respectively [@] These experimental temperatures are too high
to realize quantum magnetic phases due to superexchange processes governed
by second-order tunneling , ] In other words, the temperature scale
for magnetic ordering, such as the anti-ferromagnetic phase, is still out of
reach, and the long-standing puzzle related to high T, superconductivity, so
far, remains unanswered experimentally. Recently, several cooling schemes
have been proposed to lower the temperature of the atomic system, and by
exploiting spin-gradient adiabatic demagnetization one has achieved a temper-
ature of 350 picokelvin @], which is the lowest value realized experimentally.
After achieving sufficiently low temperatures, these novel magnetic phases are
expected to be detected in the future by single-site addressing microscopy
d@], developed recently for quantum gases in optical lattices.

The realization of novel quantum phases of many-body systems is also
of large interest in the presence of long-range interactions. One method for
introducing long-range interactions is to induce a strong dipole-dipole coupling
between particles, which is long-range and anisotropic as opposed to the much
more highly localized contact interaction of ultracold atoms. The dipole-dipole
interactions as a result of, permanent or induced, magnetic or electric dipole
moment of the electron can be easily tuned from attractive to repulsive by
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an applied external electronic field. Within this framework, it offers a new
means for controlling and manipulating ultracold gases and gives access to
novel quantum states. Ultracold gases with strong dipolar interactions have
been experimentally realized in systems of chromium or dysprosium Bose-
Einstein condensates ﬂﬁ, 58], ultra-cold heteronuclear molecules [@] and BECs
with Rydberg excitations [59]. An alternative way to introduce long-range
interactions EE] is to couple the ultracold gas to a high-finesse optical cavity
where photons can make many round-trips between the mirrors before decaying
into the environment. High-finesse cavities have been widely used to study
single atom detection [@], few atom cooling [@@] and trapping @, @], due
to the strong-coupling induced light force felt by atoms in the cavity. Currently,
high-finesse cavities coupled to atomic many-body systems are attracting a
large amount of attention [@] In particular, a self-organized phase of atoms
due to coherent scattering between the pump laser and the cavity mode has
been predicted theoretically [@] and then further confirmed experimentally by
laser-cooled atoms in a transversally pumped cavity @] However, combining
a high-finesse cavity with ultracold gases in the strong-coupling regime has
only recently been achieved, and properties of the Bose-Einstein condensate
loaded into a cavity experimentally investigated @—@] The first realization
of the self-organized phase of an ultracold gas coupled to an optical cavity has
been achieved in T. Esslinger’s group [25], where a transition from a normal
to a self-organized phase has been observed, with a measured lifetime up to
10ms for the self-organized phase indicating a steady state. This novel many-
body state arises due to the small size of the cavity which makes the coupling
between atoms and photons very strong. In this case, the mechanical action of
the electromagnetic radiation field on the atoms should be considered, and, in
turn, the back action of the atom on the cavity mode can not be neglected, as
opposed to conventional laser fields where coupling between atoms and laser
fields is treated as an external potential acting on atoms. Hence, the dynamics
of atoms in the optical cavity can not be separated from that of the cavity
mode, i.e. all the atoms are coupled together by the cavity mode which gives
rise to cavity-mediated infinitely long-range interactions between atoms. If the
long-range interaction between the condensed atoms is sufficiently strong, it
will dominate the physical behavior of the system and provide access to novel
quantum phases.

1.4 Outline of the thesis

The goal of this thesis is to provide a further step towards a theoretical
understanding of the properties of strongly correlated ultracold bosonic gases in
optical lattices, including quantum magnetism, pair-superfluidity, many-body
cooling, new physics with long-range interactions, and excitational properties
of the systems. The theoretical challenge we face lies in the strong interactions
between atoms which invalidates perturbation theory that is well suited for
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weakly interacting many-body systems. The central issue of this thesis is how
interactions determine physical behaviors of many-body quantum systems.

In this chapter, we have introduced the motivation of this thesis and the
related scientific background. The following Chapters are arranged as follows:

First, we will investigate a two-component Bose gas in two-dimensional
(2D) and three-dimensional (3D) optical lattices. We investigate the homo-
geneous (untrapped) system for the special case of filling n = 1 and n = 2
per site by means of BDMFT ﬂﬂ@] and the harmonically trapped case by its
real-space generalization (RBDMFT) ﬂﬁ] Special emphasis will be put on the
magnetic phases for positive inter-species interactions, and the pair-superfluid
phase for negative inter-species interactions. We map out phase diagrams for
these two cases, which contain diverse quantum phases, such as superfluid and
pair-superfluid phases, an unordered Mott state, and anti-ferromagnetic and
XY-ferromagnetic ordering. In addition, we also study the effect of inhomo-
geneity which is connecting the work to the experimental situation. Then, we
will focus on thermodynamical properties of two component bosons in a 3D
optical lattices in the presence of an external trap, and investigate the validity
of spin-gradient demagnetization and Pomeranchuk cooling. We will also in-
vestigate the finite temperature phase diagram in a 3D cubic lattice, and the
entropy distribution in the trapped system. Our aim is to study the possibility
of achieving critical temperatures of quantum magnetic phases.

Second, we will study the effect of long-range interactions on properties
of the quantum many-body system. For a BEC coupled to an optical cav-
ity, we mainly investigate the influence of on-site particle-particle interactions
on the buildup of self-organized phases and identify the transition from a ho-
mogeneous superfluid to a self-organized phase. We also study the trapped
BEC-cavity system and determine the effect of inhomogeneity on the buildup
of self-organized phases. For dipolar systems, we mainly investigate the influ-
ence of dipole-dipole interactions on magnetic phases of Bose-Bose mixtures,
and map out the phase diagram of dipolar bosons in an optical lattice.

In the following chapter, we focus on the spectroscopy of strongly corre-
lated bosonic gases in an optical lattice. Our aim is to detect the Higgs-type
amplitude mode using Bragg spectroscopy in a strongly interacting conden-
sate of ultracold atoms in an optical lattice. This method allows for a clear
identification of the amplitude mode, with full momentum resolution by going
beyond the linear response regime. We will also make a quantitative compar-
ison between theoretical simulation and experimental observation.

Finally, we will present a summary of the thesis and give an outlook on
perspectives for future research arising from this work.



Chapter 2

Optical Lattice

In this chapter, we will explain how to create an optical lattice and how to
trap neutral particles by laser light. Optical lattices, artificial crystals of light
consisting of hundreds of thousands of optical microtraps, are routinely cre-
ated by interfering optical laser beams ﬂﬂ? They act as external potentials for
trapping ultracold quantum gases of bosons, fermions or their mixtures. Here,
the interfering laser beams form a crystal structure, and ultracold atoms in
the lattice play the part of electrons in an artificial solid. This realizes power-
ful models of quantum many-body systems in periodic potentials for probing
nonlinear wave dynamics and strongly correlated quantum phases, and fun-
damental properties of solid matter. The advantage of optical lattices is the
possibility of the full control of lattice geometry, lattice depth and interac-
tions. Ultracold gases in optical lattices represent a fast-paced modern and
interdisciplinary field of research.

2.1 The ac Stark effect

Even though neutral atoms do not have an electric dipole moment, an
applied electric field can induce a dipole moment which is known as the ac Stark
shift. Considering a two-level (non-degenerate) atom and far-detuned laser
light, the ac Stark effect on the atomic levels can be treated as a perturbation
up to second order of the electric field, i.e. linear in terms of the applied electric
field and the field intensity, which induces a shift of the atom’s energy in the
electric field. The energy shift of the atom can be given by time-independent
perturbation theory:

| J ’Hlnt‘ )
shlft - |H1nt| + Z E E ) (21)
JF#i
where I:Iint = —(F denotes the interactions between a single atom and laser
light with i = —er representing the electric dipole operator, and F;; are

energy levels of the free atom. Note that the linear Stark effect depends on
the degeneracy of the energy levels and thus alkali metal atoms do not exhibit
the linear Stark effect. Here we consider the ground state of the atoms which

7
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Figure 2.1: Left: Light shifts for a two-level atom (From Ref. M]) Right:
(a) Gaussian laser beam together with corresponding trapping potential for a
red detuned laser beam. (b) A red detuned laser beams leads to an attrac-
tive dipole potential, whereas a blue detuned laser beam leads to a repulsive
potential (c¢) (From Ref. @])

yields a total energy E; = nhw for the the whole system, where w denotes the
light frequency. When the atom is excited by absorbing a photon, the total
energy of the whole system becomes E; = fuwy + (n — 1)hw = —hA;; + nhw
with E; — E; = —hA;;. For a two-level atom, the energy shift is:

SN2
Enity, = i%@ﬁ (2.2)
for the ground state and excited states, respectively. The optically induced
energy shift of the ground state exactly corresponds to a conservative dipole
potential for the two-level atoms. The energy shift indicates a very interesting
fact: it is directly proportional to the time-averaged light intensity I(r) oc
(E*(r,t);). Therefore, we can use a spatially inhomogeneous light field to
generate different potential wells to trap atoms in the ground state at very low
temperatures, as shown in Fig 211
In the more general case, perturbation theory can be easily extended to
a multi-level system to clarify the role of hyperfine structure, magnetic sub-
structure and polarization of light. Based on this, one can derive a more general
formula for the energy shift which depends on the total angular momentum F',
magnetic quantum number mp and polarization of the light. A more detailed
discussion can be found in M]

2.2 Optical lattice potential

Optical lattices, i.e. artificial crystals of light, give rise to a spatially pe-
riodic potential acting on atoms due to the ac Stark effect. Such a system is
an analog to condensed matter systems and can be used to trap millions of
atoms for simulating electrons in solids. It is possible to generate potentials
which are periodic in one, two or three dimensions, by creating a standing-
wave field formed by overlapping two counterpropagating laser beams in the
corresponding direction.
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Figure 2.2: Optical lattices. (a) Two- and (b) three-dimensional optical lattice
potentials formed by superimposing two or three orthogonal standing waves
(From Ref. M])

First, let’s consider the interference between two counterpropagating laser
beams with frequency w; » and wavelength \; 5. For simplicity, we assume that
both beams are linearly polarized and the phase angles of the two beams are
zero. In this case, the electrical field along the z-direction is:

E, = Eicos(q1z — wit) + Eacos(qaz + wat) (2.3)

and the average of its square is thus:

(E%), = %Ef + % 2+ Ey - Egcos | (g1 — @)z — (w1 — wo)t]. (2.4)
Here we assume that the dynamical time scale is much larger than the inverse
laser frequency, and that the frequency difference of the two beams is small
compared with the average. As a result, the atoms effectively feel the time-
averaged potential V(2) o (E?);. From Eq. ([24]) one can see that the last
term corresponds to interference between the two beams, and it vanishes if
the polarizations of the two beams are orthogonal. In the most frequently
used case both beams are linearly polarized with the electric-field vector along
the same axis, and the same frequency w and wavelength \. In this case, the
time-averaged potential is

V(2) o (E?), = Ej(cos 2qz + 1). (2.5)
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A periodic potential in higher dimensions can be formed in the same way,
created by additional perpendicular laser beams with wavelength A. For rea-
sons of brevity, we only discuss a two-dimensional lattice in the following. The
potential created by this set-up is:

V(y, z) o< 2E3 | cos?(ky) + cos?(kz) + 2ey - ez cos ¢ cos (ky) cos (k2) |, (2.6)

where ¢ is the temporal phase between them, and e; and e; are the polariza-
tions for the two laser beams directed in y and z directions. The interference
term in (2.0) only arises if the two lasers are coherently coupled, which can be
avoided by choosing orthogonal polarization vectors and by using slightly dif-
ferent wavelengths for the standing wave. The orthogonal polarization is most
commonly used and leads to a spatial separation of standing waves, which turn
out to be a square lattice (see Fig. 22]). For three dimensions all polarizations
can be chosen orthogonal to one another, yielding a direct three-dimensional
realization of the cubic lattice (see Fig. 22). A further advantage of optical
lattice compared to conventional solid-state systems is the independent tun-
ability of the different components of the lattice with a high level of precision,
allowing the realization of effective lower-dimensional systems. If the lattice in
the z-direction is set sufficiently high, for example, tunneling in this direction
is suppressed and one creates an array of two-dimensional lattice plates. When
performing any measurement on the system, one measures the (classical) sta-
tistical average of the different two-dimensional subsystems of the respective
quantity. Note that the Gaussian beam profile of the laser beams has been
neglected when we derived the trapping potential, since the distance from the
trap center is normally smaller than the beam waist in the experiment.

2.3 Spin-dependent optical lattice

In the previous section 2.1l we have derived the optical potential for ultra-
cold atoms in the electromagnetic field based on a two-level approximation.
In real atoms, however, the two-level approximation is not accurate due to
the fine and hyperfine splitting, and a number of excited states of atoms. Ac-
tually, the spin-dependent potentials can be created via the more complex
system by using interactions between atoms and electromagnetic fields, in-
cluding effects from hyperfine splitting, Zeeman and ac Stark shifts. For large
detunings of the laser light compared to the fine-structure splitting Apg of a
typical alkali-metal atom, i.e. the fine-structure is not resolved, the resulting
optical lattice potentials are almost the same for all magnetic sublevels in the
ground-state manifold of the atom, and a two-level approximation is valid, as
given by Eq. (22). However, for more near-resonant light fields, more complex
potentials can be created, where different magnetic sublevels can be exposed
to vastly different optical potentials. Such spin-dependent lattice potentials
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can, for example, be created in a standing wave configuration formed by two
counterpropagating laser beams with linear polarization vectors enclosing an
angle. For a monochromatic laser field and an alkali atom with optical de-
tuning large compared to the excited-state hyperfine splitting Ajpg, & more
ﬁleral form for the ground state potential arising from the ac Stark effect is

,@]:

7T 2 1 1 1
Vir) = + I(r)+ grm — I,(r) |,
)= G (( At a ) e 3D alg - >>

g=—1,0,1

(2.7)
where c¢ is the speed of light, T' is the decay rate of the electric excited state,
wp is the angular frequency of the atomic transition, /, is the laser intensity
with polarization ¢ (I = > _ ,,,1;), and Az (Ayy2) is the detuning of
the laser frequency relative to the S — P3/9(S — Pi/9) transition (wy is the
angular frequency of the laser). A more detailed discussion can be found in
Ref. [74, [7d).

Spin-dependent lattices have been used to coherently move atoms across
lattices and realize quantum gates ﬂﬂ] They furthermore offer a convenient
way to tune interactions between two atoms in different spin states. By shifting
the spin-dependent lattices relative to each other, the overlap of the on-site
spatial wave function for two different spin states can be tuned, thus controlling
the interspecies interaction strength within a restricted range ﬂﬁ]

2.4 Interactions between atoms in optical lattices

The knowledge of interaction potentials between two atoms in an optical
lattice is crucial in order to determine properties of the strongly-correlated
many-body system. However, the situation is complicated, as a atom might
have a spin degree of freedom and atoms with different spins can interact with
each other. On the one hand, this property can be used to tune the interactions
between two atoms. On the other hand, it can lead to an unwanted loss of
trapped atoms. In this section we will discuss this issue in detail.

2.4.1 Contact interactions

Interactions play an important role in many-body systems. Unlike real
materials, the ultracold system in optical lattices can be tuned in a wide range
of parameters, including the interactions between two particles. The physical
origin of two-particle interactions is the short-ranged Van der Waals force,
which gives rise to a short-ranged potential and is often well described by
Lennard Jones potential @] which falls off as U(r —r") o< —5 on long-range
scales. For ultracold atoms, a scattering model is Wide{y used to describe
the interactions. At sufficiently low temperatures, as in the case of ultracold
atoms, scattering in states with [ # 0 (I denotes angular momentum in relative

motion) is frozen out due to the centrifugal barrier, and only s-wave channels
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Figure 2.3: The two-channel model for a Feshbach resonance. Atoms prepared
in the open channel, corresponding to the interaction potential V,(r) (in red),
undergo a collision at low incident energy. In the course of the collision the
open channel is coupled to the closed channel V(r) (in blue). When a bound
state of the closed channel has an energy close to zero, a scattering resonance
occurs. The position of the closed channel can be tuned with respect to the
open one e.g. by varying the magnetic field B (From Ref. M])

need to be considered for the scattering problem. In the s-wave and low-energy
limit, the exact shape of the short-ranged potential becomes irrelevant and the
interactions are completely described by the scattering length a4 as the single
parameter. One may use a short-ranged pseudopotential for the description of
two-body interactions:

Arh?a
2M,

where M, is reduced mass of the two particles. This pseudopotential ap-
proximation is valid in a wide range of situations, provided no longer-range
contributions come into play as, e.g., in the case of dipolar gases.

The s-wave scattering length plays a central role for the description of two-
particle interactions, since it is the only parameter to describe their strength.
In addition, the s-wave scattering can be tuned via Feshbach resonances. A
Feshbach resonance occurs in the elastic scattering process if the incoming
atoms in an open channel (scattering state) are close to the energy of a bound
state in a closed channel (see Fig. 23)). It is usually accessible in experiments,
since the true interaction potential has many bound states that can be shifted
near resonance by the use of a magnetic field. Phenomenologically, the scat-
tering length as a function of the magnetic field can be expressed as

04(B) = an <1 _ BfFBO) , (2.9)

Ulr—r") ~

o(r—r"), (2.8)
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Figure 2.4: Magnetic field dependence of the scattering length between the two
lowest magnetic sub-states of °Li with a Feshbach resonance at By = 834G
and a zero crossing at By + AB = 534 G. The background scattering length
ang = —1405 ap is exceptionally large in this case (ap being the Bohr radius)
(From Ref. [@])

where ayg is the off-resonance background scattering length, By is the magnetic
field at resonance and AT is the width of the resonance. In the Fig. 2.4l we plot
the scattering length as a function of the magnetic field. A detailed derivation
can be found in Ref. ]

2.4.2 Inelastic collisions in loss processes

The interactions discussed above correspond to elastic scattering processes,
where the atoms leave the collision region in the same state as they entered.
This type of interactions is the dominating one for fermions due to the Pauli
exclusion principle, as couplings between channels occur mostly at relatively
short-ranges. For bosons, however, inelastic collisions between atoms should be
carefully considered, especially in the larger scattering length regime. Hence,
the effective interaction between two particles should be more closely exam-

ined. Here, the potential takes the form [@, }:
V - Ef1m1 + Efgmg + ‘/el + ‘/587 (210)

where f; 9 and m; 5 are total angular momentum and magnetic quantum num-
bers, respectively. Here Eg, = 07 - 0] + peB - 0f — p1,B - 0} are the hyperfine
and Zeeman interactions for each of the atoms (i = 1,2), where « is the hy-
perfine constant, p. and p, are the electron and proton magnetic moments,
respectively, o; is the Pauli spin matrices, and B is the external magnetic field.
These terms are diagonal in the separate atom basis.

V.1 describes the electric interactions which are responsible for the elastic
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scattering and inelastic spin-exchange collisions. On the one hand, the spin-
exchange interaction couples the scattering states to other closed channels,
which gives rise to a broad scattering resonance. On the other hand, it can
transfer atoms to other hyperfine states, which leads to loss of atoms from
the trap if the final scattering states are not trapped. Vi represents magnetic
dipole-dipole interactions between two electron spins. On the one hand, the
dipole-dipole interaction gives rise to narrow scattering resonances. On the
other hand, it can change the initial spin states and release the Zeeman or
hyperfine energy to the kinetic energy of the trapped atoms. The loss processes
discussed above are the major contribution to the two-body decay which can
be measured experimentally. For example, in a mixture of f = 1 and f = 2
hyperfine states of 8"Rb, the two body decay rate of the f = 2 state has been
measured to be 8.8(15) x 10~ 4cm? /s [81].

Another loss channel for trapped atoms is the three-body recombination
process. This process depends on the atomic density, since the probability
for three particles to collide is proportional to the cube of the atomic density.
The decay rate for the hyperfine state f = 1 of 8"Rb has been measured to be
5.8(1.9) x 107*%cm® /s ﬂéé]

2.5 Heating processes in optical lattices

Of greatest interest to manipulate ultracold gases as quantum simulators
is to engineer and understand complex many-body systems, such as Mott in-
sulator and high-temperature superconductivity [49]. The requirements to ob-
serve these novel quantum phases in ultracold gases are to achieve extremely
low temperature (entropy). For example, the anti-ferromagnetic phase has
been predicted to occur only for critical temperatures of 7, ~ 100 pK (en-
tropy per partice of s ~ 0.35kp @]) Due to heating processes in the present
cooling schemes, however, there is a predicted temperature limit in optical lat-
tices, which indicates that the temperature scale for magnetic ordering is still
out of reach. Experimentally, the lowest reported temperature for strongly-
interacting Bose gases in an optical lattice is around 350 pK, which is still
higher than the critical temperature of magnetic ordering. The competition
between cooling and heating makes it a big obstacle to simulate phases in con-
densed matter physics via ultracold gases. For this purpose, the interplay of
heating and cooling power should be better understood. In this section, we
will discuss it in further detail.

In this context, it is very important to be able to characterize and control
heating processes arising in experiments. The intrinsic heating in all optical
lattice experiments is mainly due to three contributions: incoherent scattering
arising from spontaneous emission of photons or from zero-point fluctuations
of the atomic electric dipole interacting with gradients in the standing-wave
electric field [@, 83185 , fluctuations of laser beams which gives rise to the min-
imum heating rates @], and collision losses of atoms [@] In recent performed
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Figure 2.5: Heating arising in an optical lattice from photon recoil (left) and
fluctuations in the atomic dipole (right). The minimum in the potential V
(black) occurs at a maximum in the laser intensity I (red) for a red-detuned
lattice (left). Heating arises from the random recoil (gray arrow) following
photon scattering events. In a blue-detuned lattice, the potential V follows
the optical intensity I (right). The gradient of the electric field E has a maxi-
mum at the minimum in the potential. The electromagnetic vacuum induces a
fluctuating atomic dipole, which then experiences a force (gray arrow), leading
to heating (From Ref. [50]).

experiments, incoherent scattering of light is expected to be dominant heating
mechanism [88] (see Fig.[Z0]). From a quantum point of view, the heating from
incoherent scattering of light is relevant to the transition to higher momentum
states in the lowest band or to higher bands. Up to now, most theoretical
studies only include inter-band transitions but atoms excited to higher bands
are artificially removed from the system. But it is still unclear whether it is
valid to neglect higher-band excitations, since decay rates from higher bands
are rapid in cubic lattices @] Further investigations based on a many-body
quantum description are required to study the interplay between the atomic
physics of heating processes and the many-body physics of quantum states.
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Chapter 3

Bose-Hubbard Model

Realizing and studying tunable models of many-body physics is one of the
major challenges with ultracold atoms since the advent of optical lattices M]
One widely used model for minimal descriptions of the physics of interacting
bosons on a lattice is the Bose-Hubbard model. It is a bosonic version of
the Hubbard model which originated in solid-state physics as an approximate
description of the motion of electrons in a crystalline solid. The Hubbard
model was independently proposed by J. Hubbard, M. C. Gutzwiller, and J.
Kanamori almost at the same time in the early sixties [@—@], and the corre-
sponding review can be found in @M} The Hubbard model describes the
interplay between kinetic energy and strong correlations between electrons, and
is suitable for materials with narrow energy bands. Historically, it is widely
used in the theory of high-temperature superconductivity, band magnetism
and metal-insulator transitions. The Hubbard model for bosonic systems was
introduced by M. P. A. Fisher et. al. in 1989 [B] to describe the destruction of
superfluidity due to strong interactions and disorder, and then suggested by
D. Jaksch et. al. @} to simulate this model using ultracold atoms in opti-
cal lattices, whose corresponding Mott transition was realized experimentally
in three dimensions by M. Greiner et. al. [E] and then subsequently in one
dimension and two dimensions @@] In this chapter, we will derive and
describe the Bose-Hubbard Hamiltonian for different bosonic many-body sys-
tems loaded into optical lattices, such as multi-component bosonic systems,
BEC-cavity system and ultracold dipolar bosonic gases.

3.1 Many-body system

“Many-body system” is a common expression describing a vast category of
physical systems, which are composed of a large number of interacting parti-
cles of the order of 10?®, such as solid and liquid systems. For these systems,
the physical principles that govern their collective motion can be very different
from the physical principles corresponding to a system of few particles. The
difference is a result of repeated, extremely unordered collisions between nu-
merous particles, which create correlations or entanglement. Correspondingly,
the wave function of the many-body system is usually a complicated object and

17
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consists of a large amount of information, leading to exact or analytical calcu-
lations impractical. Thus, many-body theoretical physics most often relies on
a set of approximations, and it has often been proven difficult to obtain the
underlying theory that yields an accurate description of the collective quantum
phenomena on the microscopic level @] At the heart of quantum many-body
system lies the concept of quantum field theory, which is intimately related to
the method of second quantization. The reason for introducing the language
of second quantization is that it turns out to be extremely convenient in the
formulation of a quantum theory for many interacting particles.

To tackle the many-body system, we should first construct a complete set
of basis states for the Fock space, and then introduce the creation and anni-
hilation operators @] After expressing the quantum mechanical operators,
such as kinetic energy, the external potential and the two-body interactions,
in the language of second quantization, the many-body Hamiltonian becomes:

=[xl (—Z—fwext(x)) b(x)
b5 [ax [ax@ el U - x)pE)E, (3D

where ®f(x) (®(x)) denotes the creation (annihilation) field operator at the
position x, Vit (x) the external potential, and U(x —x’) two-body interactions.
This many-body Hamiltonian can be easily generalized to multi-spin systems.

3.2 Standard Bose-Hubbard model

In a many-body system in periodic potential, the atoms can be delocalized
over the whole lattice or localized around a specific site, depending on the
interplay between kinetic energy and interactions between atoms. For the
former case, the Bloch functions, which are modulated plane waves and can
be delocalized over the whole system, are a good approximation for the single-
particle wave functions. Thus the field operator Cﬁ(r) can be expressed in the
following form:

(i)(r> = Z Dng(T)Cng, (3.2)

where ¢, 4(r) is the Bloch function for band n and quasimomentum ¢, and ¢, 4
is the annihilation operator for a single-particle Bloch state. If the particles
are localized around one site, an alternative single-particle basis of the so-
called Wannier states w, g(r), is more suitable for describing the behavior of
particles. They are connected with the Bloch functions by a Fourier transform

Gnq(r) = Z w, g (r)e R (3.3)
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The Wannier functions for all bands n and sites R form a complete basis,
and the field operator ®(r), which annihilates a particle at the position r, can
be expanded in the form:

b(r) = Z woR(0)DR s (3.4)

where b rn denotes the annihilation operator of an atom in the Wannier state
w, r(r) at site R.
3.2.1 Single-component Bose-Hubbard model

If the temperature and mean-interaction energies at a single site are much
smaller than the separation between the lowest and the first excited band,
the atoms only occupy the lowest n = 0 band of the lattice. As a result, the
Hamiltonian (3.1]) becomes:

- PP hA?
H = bl br. [ d . S v _
S ik, om0 (500 Vouls) ) o, 9

/\T /\T A~ ~
RR,R;R;/

/dr/dr’wS’Ri(r)waRi, (U —rwor, (rwor,(r). (3.5)

N — L
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Here, we define the on-site energy

n = [ druon, o (—h—N ; vext<r>) wom, (1), (3.6)

2m
the tunneling amplitudes between sites 7 and j

o, = = [ druon (0 (—h—AZ ; vext<r>) wom, (1), (3.7)

2m

and the interactions between the atoms
UR,R,R;R; = /dr/dr’wSyRi(r)waRﬂ(r’)U(r—r’)woij, (r')wor,(r). (3.8)

Next, we make a further assumption, namely tight-binding approximation,
to obtain the tunneling between different sites. For a deep lattice, the hopping
energy t; ; is exponentially suppressed for all sites |i — j| > 2, and it is a good
approximation to take only nearest-neighbor tunneling processes into account,
but neglecting all higher order matrix elements. Within the tight-binding ap-
proximation, the summation can be restricted to nearest neighbors only, where
the corresponding summation is denoted by Y and the nearest-neighbor

hopping amplitude is denoted by J = — [ drwo g, (r) —% + Vext (1) fwo r, (T).



20 Bose-Hubbard Model

Finally, we simplify interactions involving both on-site and off-site terms to
obtain space-averaged interaction parameters for practical purpose. For a mod-
erately strong lattice, the Wannier functions are well localized and a noticeable
contribution only occurs if the four different lattice site labels coincide. The
on-site Hubbard interaction U = % [ drwj g, (r)wg g, (r)wor, (r)wor, (r) in
the pseudopotential approximation (2.8]). Here we take only the dominant in-
teraction matrix elements into account, but it is sufficient to describe most
physical phenomena originating from this type of interactions.

t,U << hw \ 4
t

Figure 3.1: Sketch of the Bose-Hubbard model, where ¢ denotes the hopping
amplitude, U the interaction strength, and Aw the vibrational level spacing.

Taking all the assumptions into account, the Bose-Hubbard model is ob-
tained by writing the Hamiltonian in second quantization:

H= —JZ(szzsj +hc) +%Zm(m— 1) —l—Zen (3.9)
) g @

In addition to the optical-lattice potential, an external trap is always exist
in the experiments, which leads to a spatial inhomogeneity. The confining po-
tential is most often quadratic, and correspondingly, the Bose-Hubbard model
is expressed as

H=—-J Z(bj.bj +h.e)+ % Zn(n —1)+ Z(V; — ;. (3.10)
(6,3) @ @
Here V; = Vi r?, where V} is the strength of the external harmonic trap, and pu
is the global chemical potential which controls the total number of bosons.
The Bose-Hubbard model (see Fig. [3]) describes the competition between
the kinetic energy J, which is gained by delocalizing particles over the whole
lattice, and the repulsive on-site interaction U, which favors localization, but
disfavors having more than one particle at any given site. It is believed that the
Bose-Hubbard model is the simplest many-body model one can write down,
which can not be reduced to a single-particle theory. In addition, in an optical
lattice loaded with ultracold atoms, the ratio U/.J between these two energies
can be tuned by varying the dimensionless depth V; of the optical lattice, which
indicates the Bose-Hubbard model can be simulated experimentally in a wide
range of parameters via ultacold gases.
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3.2.2 Multi-component Bose-Hubbard model

In this section, we extend the description of the Bose-Hubbard model to
systems in which two or more quantum states (hyperfine states of atoms) are
macroscopically occupied. In ultracold gases, different hyperfine states are
related to different spins which can be described by spin operators that satisfy
an angular momentum algebra. And, correspondingly, these multi-component
systems are known as spinor condensates or mixtures of spins in the literature.
Experimental realizations of mixtures ﬂ@] and spinor condensates m -
have inspired the investigation of the corresponding many-body systems in
many different directions, some of which have been reviewed in Refs. ﬂ@—

[105).
Bose-Bose mixtures — For a mixture of two-component bosonic gases in
an optical lattice, which experimentally could consist of two different species,

e.g. 8"Rb and 41K as in Ref. M] or two different hyperfine states of a single
species, e.g. 8"Rb as in Refs. @ - the Hamiltonian takes the form:

]:I:/dx

& () (_’i‘g Vi >> b (x)

2m1

ng

¥ %(4”2)/ /dxqﬂ )1 ()1 ()1 (x)
1 (4”h2a22) / dx / dx' D} (x) D (x') Do (x') o (x)

' (47;::?212)/ /dx(pT (X)Da(x)1(x),  (3.11)

where ai1, ass and a;s denote the interactions between species 1, species 2,
and inter-species interactions, respectively. m; and msy denote the masses of
species 1 and 2, respectively, and m;5 denotes the reduced mass of the particle
1 and 2. Vi(x) and V5(x) denote the external trap potentials for species 1
and 2, respectively. ®;(x) (®!(x)) denotes the creation (annihilation) field
operator for species ¢ at position x. The field operator él(x) can be expanded
in terms of the Wannier functions, which form a complete basis set. In the
tight-binding approximation, the lowest-band Bose-Hubbard Hamiltonian for
Bose-Bose mixtures takes this form:

+dh(x) (—h—AQ + Va(x )) <i>2(x)]

_l_

~ PN 1 R .
H= — Z tl,(bjybjy + hC) + 5 Z UAynM(ni,, — 5,\1,)
Vgi)fd A
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In this Hamiltonian, (i, ) represent the nearest neighbor sites i,7, and we
denote the two bosonic species as b, d, which are labeled by the index A(v) =
b,d. The bosonic creation (annlhllatlon) operator for species v at site 7 is b
(bw) and the local density is n;, = b bw Due to possibly different masses or a
spin-dependent optical lattice, these two species in general hop with non-equal
amplitudes ¢, and t4. U,, denotes the inter- and intra-species interactions,
which can be tuned via a Feshbach resonance or by spin-dependent lattices.
(i, denotes the local chemical potential for species v. In the presence of an
external harmonic trap, p;, = u, — Vor?, where V; is the strength of the
external harmonic trap, and g, is the global chemical potential for species v.

Spinor bosonic gases — A spinor bosonic gas in an optical lattice is a mix-
ture of hyperfine states of the same isotope. They system can undergo transi-
tions between macroscopically occupied hyperfine states due to spin-exchange
collisions, but it as a whole is in the ground state. For a system of bosonic
gases with hyperfine spin f, for example, the spin-dependent interactions can
be written in the second-quantized form , @]

4#712 2

ZQFZ|F mp)(F,mp|d(x; — x3), (3.13)

V(Xl - X2

where |F, mp) is the total hyperfine spin state formed by two atoms each with
spin f, and ap is the s-wave scattering length in the channel of total spin
F'. The spin-dependent interactions can also be written in the form of spin
operators. For example, for a system of f = 1 bosons, it can be expressed as:

V(x1 — X3) = (co + 2 F1 - F2)d(x1 — x3), (3.14)

2 2 _ & . . . .
where ¢y = ﬁ%, Cy = %% and F; is spin operator for species i.

The derivation of the Bose-Hubbard Hamiltonian for ultracold spinor gases
is performed in the same way as in the scalar case. For example, the many-
body Hamiltonian for a system of f = 1 bosons takes the following form:

. / ixilx) (- ;Wwa(x)) B4 (x)
o9 [ [ axbl @l ()b (x)bux
+ 5 [ ax [ axBLe0BL (P Fupbo(x)0s(x), (315)

where cin,é(x) is the field annihilation operator for an atom in the hyperfine
state |1,«) at point x. And the corresponding Bose-Hubbard model can be
written as:

1 -~ R
Zt Jbiy +hee) + COZnZ n; 1)+5022(F?—2ni),(3.16)

(4,5 %
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where Z;m‘ annihilates a boson in the hyperfine state mp = o at site i, n; denotes
the total number of particles at site i, and F; = Y _, bLiTUU/b(,/i is the spin
operator at site i (T,, being the usual spin matrices for a spin-1 particle).

3.3 Bose-Hubbard model for ultracold gases in an
optical cavity

LLLLL LY

decay

Pump

Figure 3.2: Sketch of the setup of the BEC-cavity system.

Experimental realization of a high-finesse cavity coupled to atomic many-
body systems is of large interest in the past few years @] It bridges the gap
between quantum optics and many-body physics, and paves the way to a fasci-
nating area where both light and matter act as dynamical physical quantities.
Particularly, combining ultracold gases with a high-finesse cavity in the strong
coupling regime has been achieved recently ]. Properties of the strongly
coupled BEC-cavity system depend on its setup, where the pump laser can
be directly coupled to the cavity mode via a pump in the cavity direction, or
indirectly coupled through the atoms trapped in the cavity via a pump in the
transverse direction. Here we only consider the latter case, and the sketch of
the setup is given in Fig. B2 where all atoms in the high-finesse cavity are
strongly coupled to the cavity mode m, |E1|] In this case, the light force
strongly influences the motional degree of freedom of the atoms, and deter-
mines their distribution in the cavity. In turn, the atoms induce a phase shift
to the cavity mode, and give rise to a dynamical cavity field which depends on
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the spatial distribution of atoms. This implies that the cavity mode can not
be described by a classical, externally imposed field, but should be treated as a
quantized field and determined by the atom distribution. Usually, the descrip-
tion of this system is based on the Jaynes-Cummings model which captures
the strong coupling between the cavity mode and a single atom. The detailed
derivation of the Jaynes-Cummings model can be found in Appendix [Al

3.3.1 Many-body Hamiltonian

We consider N two-level atoms with the mass m and the transition fre-
quency w, interacting with a single cavity mode of the frequency w,. in the x
direction, and also a standing driving field (pump laser) with the frequency w,
in the z direction (the motion of atoms in the third direction is considered to
be frozen). The system can be described by an effective Hamiltonian, which
is derived from the Jaynes- Cummmgs Hamiltonian in a rotating frame and
dipole approximation ﬂ@

i G 2
H = /dX\IfT(X){ — %V + V,, cos®(kz)
— ha'a[A. — Uy cos®(kx)] + hneg cos(kx) cos(kz)(a + dT)}\IJ(X)
+ —/dx\IIT (x) U (x) 0 (x)¥(x), (3.17)

where A, = w, —w, and A, = w, —w, denote the atom-pump and cavity-pump
detunings, respectively. @ (a') describes the annihilation (creation) operator of
a cavity photon with frequency w,. ¥ (‘iﬁ) denotes the atomic field operator,
and U = 4ma,h?/m is the contact interaction strength with a, denoting the
s-wave scattering length. V, = th/ A, is the depth of the standing-wave
potential created by the pump laser in the z direction, where 2, denotes the
pump Rabi frequency. Uy = ¢2/A, is the light shift of a single maximally
coupled atom, and also the depth of the single-photon dipole potential of the
cavity mode, where go is the atom-cavity coupling strength. 7. = goQ0/A,
describes the scattering between the pump field and the cavity mode. The first
term on the right-hand side of Eq. B.I7 is the kinetic energy of the atoms in
the cavity, the second term is the potential of the standing wave formed by the
pump laser in the z direction, the third term is the cavity field with the shifted
cavity resonance due to the back action of the atoms in the cavity mode, the
fourth term describes the coherent scattering between the pump laser and the
cavity field, and the last term is the contact interactions between atoms. Here
the excited state is adiabatically eliminated, which is valid for large detuning
A, and low temperature T' ensuring negligible spontaneous emission.
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3.3.2 Extended Bose-Hubbard model

Following the standard procedures, the Hamiltonian ([BI7) can be rewritten
in the single-atom Wannier basis to obtain an extended Bose-Hubbard model
as developed in Refs. m, m] Expanding the atomic field operator in the
Wannier basis set W, (x) = Yon D l;nyiwn(x — x;), where b, ; (Z;ILZ) is the anni-
hilation (creation) operator and w,(x —x;) is the n-th band Wannier function
centered at x = x;, the Bose-Hubbard Hamiltonian with on-site interaction
has the following form (here only including the lowest band wg(x — x;)):

H = Z E; ;bib; +V, Z JEblb;
7] 7.7

— ha'a (Ac —Up Y Jb! @) + (@ + ') S JLbD,

0, V)
1 e
+ 5 2 Ugub[bjbid, (3.18)
ikl
where the coupling matrix elements are

hVv?
Ez',j = dx U)()(X — XZ')(——>U)0(X — Xj), (319)

2m
Jii= /dx wo(x — x;) cos? (kz)wo(x — x;), (3.20)
Ji; = /dx wo(x — ;) cos® (kx)wy(x — x;), (3.21)
Ji; = /dx wo(x — x;) cos(kx) cos(kz)wy(x — x;). (3.22)

We note that the introduced extended Bose-Hubbard Hamiltonian has two
major differences compared to the standard one: first, the hopping amplitudes
ij ; in the direction of the pump laser are different from the hopping amplitudes
J{; in the cavity direction; second, the hopping amplitudes J¢; in the cavity
direction depend on the photon number in the cavity mode. Hence, the on-
site and higher-order terms arising from the kinetic energy can not be simply
merged with the potential terms generated by the cavity mode, as opposed to
the standard Bose-Hubbard model (3.9).

In our calculations, we only keep hopping terms up to the nearest-neighbor
order, which is justified as long as the depth of the pump field and cavity
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mode are deep enough (tight binding approximation). Then, the effective
Hamiltonian can be written in a simplified form:

H = (By+V,J§)> blbi+ Y Joeblb;
— hata(A, — UpJg Z bbi) + hner J(a + a') > (—1)"1blb,

7

+ UZbTbTbb— > blb. (3.23)

Here Ey, J§, J§ and Jj are zeroth-order hopping amplitudes (the terms involv-
ing Ey and J{ can be absorbed in the chemical potential), and the first-order
hopping amplitude is J, = Fy(z) + hUpJata (J, = Ei(2) + V,J?) in the
x(z)-direction, where Fy, JV and J{ are the first-order hopping amplitudes for
nearest-neighbor sites (i, j) (the first-order hopping amplitudes can be differ-
ent in x and z directions). p is the global chemical potential. Note that an
external optical lattice can be added to the cavity direction to guarantee a
minimum potential in the case of zero cavity photons HE]

The system described by the effective Hamiltonian ([B.23)) is still compli-
cated for theoretical description due to the cavity mode-dependence of the
parameters of the Bose-Hubbard model, therefore we make a further simplifi-
cation by assuming that the cavity field is in a coherent state, which gives an
excellent agreement with experimental measurements ﬂﬁ] Under the coherent-
state approximation, the cavity mode can be described by a complex amplitude
«, and the parameters of the extended Bose-Hubbard model only depend on
the average photon numbers. We thus finally obtain the effective Hamiltonian
used in our calculations:

_ _ZJ \oib; + = UZbTbTbb

+2Re[a]hneﬂrJ6 D (=1l - Z bib;, (3.24)

)

where J, = —Fy (z) — AU J¢|af?, J. = —Ey(2) =V, JV and ji = p— (Eo+V,Jb +
WUy Jg|of?) with o = .7 z (—1)i*1(bib,) /(AL + ir) [116], where AL = A, —
Uo(J§ S0, (b)) + J¢ > i) (b1b,)), and & is the decay rate of the cavity mode. To
simplify Eq. (8:23)), all zeroth-order tunneling terms are absorbed in the global
chemical potential i (except the effective staggered potential due to induced
long-rang interactions). Alal?A. is also neglected in the Hamiltonian (B:24]),
since it only shifts the chemical potential of the system globally.

In the presence of an external harmonic trap, the Bose-Hubbard model is
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described by
. -1 s
_ o4 = ANy
H = — ; Ju(2)0lb; + QUZbibibzbl
1,7 4
+2Refal e Jy > (—=1)blb; + > (Vi — a)blbi.  (3.25)
Here V; = V12, where 1 is the strength of the external harmonic trap.

3.4 Bose-Hubbard model for dipolar bosonic gases

The design and realization of novel many-body quantum phases is of large
interest in recent years. The possibility for the realization of novel quantum
phases has been recently extended by a new ingredient: the system with dipolar
interactions, which provides the possibility of access to strongly correlated
quantum phases involving quantum magnetism, spontaneous spatial symmetry
breaking, and exotic superfluidity. In contrast to the contact interaction, it has
two new properties, namely the anisotropy and the long-range character. In
this section, we will derive the extended Bose-Hubbard model with long-range
dipole-dipole interactions by following Ref. ]

3.4.1 Dipole-dipole interaction

The long-range interaction potential between particle 1 and 2 is a result
of the dipole-dipole interaction, and, at a relative distance r and with dipole
moments along the unit vector e; and ey, is given by

Cya (€1 -€3)r> —3(e; -1)(ey) - 1

47 rd

where r = |r|, and the dipolar coupling constant Cyq is given by Cqq = pop?
for particles with a permanent magnetic dipole moment u, or Cqq = d?/eg
for particles with a permanent electric dipole moment d (the lattice constant
is set to unity). Here g is the vacuum permeability, and ¢ is the vacuum
permittivity.

Contrary to the typical van der Waals potential, we can see that the dipole-
dipole interaction has two typical characters, i.e. long-range since it decays as
Ugq o< 1/73, and anisotropic since it depends on the relative angles between the
dipoles. For polarized particles, i.e. all dipoles pointing in the same direction in
the presence of electric or magnetic field, the interaction (see Fig. B3]) reduces
to

Cyql —3cos®6

AT r3 ’

Uaa(r) = (3.27)

where 6 is the angle between the dipoles. For parallel dipoles with § = 7/2
the interaction is repulsive, while the interaction is attractive for 6 = 0.
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Figure 3.3: Sketch of dipole-dipole interaction between two polarized dipoles

(From Ref. ] ).

3.4.2 Dipolar bosonic gases in an optical lattice

In this part, we turn to discuss the physics of dipolar bosonic gases trapped
in an optical lattice with dipoles polarized along a certain direction. Qualita-
tively, there are two extreme scenarios depending on the shape of the confining
potential: (1) in a cigar-shaped trap, elongated along the z-axis and with a
strong confinement in radial direction, the dipole-dipole interaction is attrac-
tive, which can lead to an instability of the gas; (2) in a pancake-shaped trap,
with a strong confinement along the z-axis, the dipolar interaction is repulsive,
which leads to a stability of the gas. One can quantitatively include the con-
tribution from the dipole-dipole interactions in the Hamiltonian (B.1]), which
leads to the final Hamiltonian

H = / dr o' (r) (-h—AZ + Vext(r)) d(r)

2m
+ %/drl/drg Of (r1) DT (1)U (11 — 15) D (r2)D(ry)
+ %/drl/drg O (1) D (1) Uga(r1 — 1)@ (1) D(ry).  (3.28)

Following the standard process, we can expand field operators in terms
of Wannier functions, and keep terms only in the lowest Bloch band (single-
band picture). Within this approximation, one obtains the Bose-Hubbard
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Hamiltonian for dipolar bosonic gases. In addition to the normal hopping and
short-ranged interaction terms, the dipolar term leads to a further contribution

to the Hamiltonian dd

. v,
Hyg = g’“ blbtbyby, (3.29)
i3,k

where the matrix elements Vid,‘jl is written as

z]kl /dI‘l /dI‘QU) ry — ) (1'2 - Rj)Udd(rl - rQ)w(rl - Rk)w(rQ - Rl)
(3.30)

Usually, the Wannier functions are localized around the minima of the optical
lattice wells with a spatial broadening I'. For sufficiently deep optical lattices,
we can assume [’ to be much smaller than the optical lattice spacing a, i.e.
I' < a. In this limit, each function w(r — R;) is significantly centered around
R;, and, correspondingly, the integral ([3.30) is significantly non-zero for the
indices ¢ = k and j = [. Therefore, there are two main contributions to the
integral (B:30)): the off-site matrix element V;;‘f] corresponding to k =1 # j =,
and the on-site V{4 with k = i = j = [. In the following, we explain the

2111
physical meaning of these terms.

Off-site — For two particles localized at the different lattice sites ¢ and 7,
the dipolar potential Uyq(r; — ro) varies slowly on the scale of T', therefore one
may approximate its contribution by a constant Ugq(R; —R;) and then take it
out of the integration for off-site terms. Then one obtains a reduced integral

VA~ Uga(R, — R, )/drl\w r— R, /drzyw R (331)
which yields the off-site Hamiltonian
. ydd
Hgq ™' = Z 2] nifg, (3.32)

i#j
where Vdd Usa(R;—R;), and n; = IA)IZA)Z denotes the bosonic number operator
at site 1.

On-site — For two particles localized at the same lattice site ¢, the dipolar
potential varies very rapidly for |[r; — ro| ~ I', and diverges for |r; — ra| — 0.
The approximation used for off-site terms is thus not valid here, and the on-site
integral

Vi /dr1/dr2P r1)Uada(r1 —r2)p(ra), (3.33)

has to be calculated by taking into account the atomic spatial distribution at
site 4, where p(r) = |w(r)|* is the single particle density, and the corresponding
solution can be obtained by Fourier transforming,

Vitl = s [ Ik Uaa(k) 720, (331
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This term leads to the on-site dipolar contribution to the Hamiltonian

L Vi
H s = Z ;m (i — 1). (3.35)

i

Extended Bose-Hubbard model — Taking into account all the terms
contributed from dipolar interactions, the extended Bose-Hubbard Hamilto-
nian is given by

. e U X X yvad
Hepn = —JZ b;'[bj + 3 Zﬁz(nz —-1)— Z,umi + Z TJnZ nj.  (3.36)
(i7) i i i#]

Here the contact interaction U is modified, by taking into account the on-site
dipolar terms as an effective on-site interaction, and written as

U= g/dr|w(r)|4+ /dkﬁdg(k) p2(k), (3.37)

1
(2m)3
where g = % is given by Eq. ([Z8). We notice that the resulting on-site
interaction can be increased or decreased by changing the lattice confinement
depth.

In conclusion of this section, it should be mentioned that the phase diagram
of dipolar ultracold gases is very rich. Theoretical studies have shown that
there are self-organized vortex phases, charge-density waves and supersolid
phases in dipolar quantum gases. Experimentally, there are two possible ways
to achieve strong dipole-dipole interactions: one can use atoms with large
magnetic (N;_iﬁole moments ﬂl;j, @], or use molecules with large electric dipole

I

moments



Chapter 4

Theoretical Approaches

As discussed in the previous chapter, the Hubbard model for both bosonic
and fermionic systems is one of the most successful models of strongly cor-
related many-body systems, which effectively describes the interplay between
the kinetic energy J and interactions U. Due to its structural simplicity and its
wide range of applications, it represents the standard model for tackling strong
correlations. Despite its simplicity, the Hubbard model is not exactly solvable
for finite value of U/J except in one spatial dimension. Historically, analytical
and numerical methods, such as the decoupling method 118 EE], Bethe
ansatz approximation Eﬁ@] and perturbation theory ,M], have been
used to obtain rather unique insights into the physics of many-body systems.
However, the reliability of the methods discussed above is limited to special
coupling regimes or simplified versions of the Hubbard model. Therefore the
need for an alternative method, which can reliably describes a general many-
body system from weak to strong coupling, is inevitable.

One possible efficient way to study such a system is using quantum Monte
Carlo (QMC) simulations NE, @] But the disadvantage of this method
is that one can study only small systems and then extrapolate to the ther-
modynamical limit, which limits the effort to understand a wide range of
quantum systems. Another powerful technique is the dynamical mean field
theory (DMFT) [@@] which was proposed in the 1980s by M. Metzner,
D. Vollhardt, A. Georges, and G. Kotliar for investigations of strongly corre-
lated electron systems, and gives the exact solution in the limit of dimension
d= o0 [@] Recently, inspired by the case of fermions, dynamical mean field
theory for bosonic systems has been developed ﬂﬂ] and implemented ] to
give a non-perturbative description of zero- and finite-temperature properties
of the homogeneous Bose-Hubbard model. In this chapter, we first intro-
duce the basic descriptions of the macroscopical ground states of the many-
body system. Then, we introduce the Gutzwiller method and BDMF'T as its
higher-order extension. Finally, we extend BDMFT to a real-space BDMFT
(RBDMF'T) formalism [@] to account for the trapped system which is crucial
in the experiments.

31



32 Theoretical Approaches

4.1 Ground state of a quantum many-body system

Determining properties of the ground state of a quantum many-body sys-
tem is one of the most important problems in theoretical solid-state physics.
The basic feature of the ground state is that it can macroscopically exist with
all physical properties are essentially uniform, which is normally known as
phase. A system can be in different phases, which depend on the parameters
of the system. And the system can go through a macroscopic transition from
one phase to another driven by microscopic fluctuations, such as thermal or
quantum fluctuations, accompanied by a qualitative change of ground-state
correlations. In ultracold gases, quantum fluctuations usually dominate due
to the strong suppression of thermal fluctuations. In this section, we focus on
the phase transition driven by quantum fluctuations.

4.1.1 Quantum phase transition

Phase transition describes an abrupt change of the ground state due to ther-
mal or quantum fluctuations. Thermal phase transitions, which are caused by
a competition between the energy of system and the entropy of its thermal
fluctuations, are common in our daily life. The underlying physics is that the
system seeks to minimize the free energy F' = E —T'S in thermal equilibrium,
where E is energy, T temperature and S entropy. At T" = 0, classical systems
usually freeze into a fluctuationless ground state, since the corresponding phase
transition is solely driven by thermal fluctuations, which die out. In contrast,
quantum systems have fluctuations due to the Heisenberg uncertainty principle
even at T' = 0, since it is impossible to simultaneously specify both momen-
tum and position of the atoms. The interplay between kinetic energy and
interactions indicates that it is possible to have more than one ground states,
while thermodynamics tells us that the system should be in one of its possible
ground states. This is the physical mechanism of quantum phase transition,
driven by quantum fluctuations. In a more formal language, we consider a
Hamiltonian H (g) which varies as a function of parameter g. If one or more of
discrete characteristics is distinct between large and small g, distinct quantum
phases are realized in these limiting cases. This indicates that there is at least
one special value g = g., where the system can not be smoothly connected as
g is varied, and we treat the non-analytical point g. as a quantum phase tran-
sition ﬂm . A detailed discussion of quantum phase transition can be found
in Ref. ] At finite temperature, if quantum fluctuations with an energy
scale of hw are larger than thermal fluctuations with an energy scale of kg7,
quantum fluctuations dominate the properties of the many-body system. Due
to the impossibility of achieving absolute zero temperature, finite-temperature
systems with dominant quantum fluctuations have drawn much attention and
become a widespread topic in recent years. Now it is possible to cool a many-
body system down to low temperatures of the order of 107K in the laboratory,
which provides an ideal model system for understanding quantum phenomena
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resulting from many-body correlations. Due to the high degree of tunability of
ultracold gases, quantum phase transitions for bosonic B] and fermionic @, ]
lattice systems, which were predicted long ago by the Bose- and Fermi-Hubbard
model, have been observed experimentally. Specifically, the recently developed
quantum-gas microscopy E} provides a new tool to study the dynamics
of individual atoms and the transitions between different quantum phases in
real-times [@]

4.1.2 Symmetry breaking vs. phase transition

At zero temperature, as pointed out in the previous section, two or more
ground states of the Hamiltonian can appear in a many-body system. Due to
quantum fluctuations, the macroscopic system can evolve into one particular
ground state which does not possess the same symmetry as the Hamiltonian
(such as gauge symmetry, translational symmetry, rotational symmetry in real
space or in spin space). Tuning the parameters of the system, such as inter-
action, the system could undergo a phase transition from one ground state to
another, and this corresponding process usually relates to a concept, namely
symmetry breaking, which was introduced by Landau in the 1930’s as a mean
to describe the dramatic changes in properties of different phases. Landau’s
theory of phase transitions relates to the spontaneous development of an order
parameter which breaks the symmetry of the system. In a formal language,
the symmetry of the system can be described by the symmetry operator O. It

[0, H] =0, (4.1)

we say the Hamiltonian H has the O symmetry. For example, the conservation
of particle number guarantees the continuous U(1) symmetry (gauge symme-
try) of the Bose-Hubbard model in Eq. (33), i.e. the Hamiltonian is invariant
under a gauge transformations

b — e, (4.2)

where ¢ denotes the angle of phase shift. When the superfluid phase appears,
with the development of a finite value of superfluid order parameter (b), it
breaks the gauge symmetry of the Bose-Hubbard model.

For two-component bosonic systems in an optical lattice, the superfluid
phase spontaneously breaks the gauge symmetry; the anti-ferromagnetic phase
develops a checkerboard density wave pattern, and thereby breaks the transla-
tional symmetry of the system; the XY-ferromagnetic phase develops a finite
value of particle-hole correlation, characterized by a two-body correlator <l§aﬁ)
(b and d denotes the two species) and corresponding to a spin polarized in the
xy plane, and thus breaks the SU(2) symmetry (rotational symmetry for spin
1/2 Hamiltonian); the supersolid phase breaks both translational and gauge
symmetry. In the following chapters, we will employ different order parameters
for characterizing different phases.
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4.2 Mean-field approach
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Figure 4.1: Sketch of mean-field theory. The left box shows the real physical
system where the two-particle interaction leads to correlations between parti-
cles. The right box shows that the interactions felt by a particle (full circle)
are replaced by an average interaction due to the average density of the other
particles (indicated by open circles).

As pointed out in the previous chapter, the many-body problem is very
complicated since all the atoms are correlated due to the interactions between
atoms. To solve this problem, we need to make some approximations which
can partially take into account correlations and give a reliable physical pic-
ture ﬂﬁ] Mean-field theory is one of them, which is based on the replace-
ment of the interactions by an effective mean field and reduces the many-body
problem to a single-particle problem (see Fig. [41]). In quantum field theory, it
is equivalent to replacing the Hamiltonian by expanding in terms of fluctua-
tions around the average of the field. And correspondingly, mean-field theory
can be viewed as zero-order expansion of the total Hamiltonian. Mean-field
theory can be applied to a number of physical systems, and in this section we
will apply it to the Bose-Hubbard model in Eq. ([8.9). Within the framework
of mean-field theory, the creation operator can be separated into an average
value ¢ and a fluctuation term b:

bi = ¢; + b; (4.3)
and if neglecting the second-order fluctuation terms, it yields
blb; = (o7 +b))(d; +1))
1o + (b — 67) s + 07 (b — ¢5)
= Gib; +blo; — 070, (4.4)
Substituting Eq. ([@4]) into Eq. ([B.9) gives rise to

- (s (0 T\ U~ . .
(4,7) ' i

7
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where the sum is over all sites 7, and >’ denotes that the summation over j is
all the nearest neighbors for each site i.

We notice that the mean-field theory decouples the tunneling between
nearest-neighbor sites and reduces the original problem to a single-site prob-
lem. The method discussed above is known as site-decoupling mean-field
theory [@, ], which is actually equivalent to the Gutzwiller method (see
Appendix [B]). The Gutzwiller ansatz was originally used as an approxima-
tion method for fermionic models @, Jﬁi , and afterwards extended by
Rokhsar and Kotliar in 1991 to bosons on a lattice @] The Gutzwiller
method generally is based on the variational state:

&= T[> /0. (16)

i=1 n=0

where |n;) denotes the normalized state with n; bosons in the single-particle
ground state at site 7. We notice that this ansatz discards almost all spatial
correlations, but becomes exact in the limit of infinite dimensions and yields
reasonably good phase diagrams in two and three dimensions M] In the
next section, we will show that it is actually a coherent state description, which
is well suited for real experiments. The physical reason why the Gutzwiller
method works so well for the Bose-Hubbard model is that it is a successful
method to treat Hilbert space constraints due to strong particle correlations,
and that it includes the spontaneous symmetry breaking, namely a finite order
parameter (b), in contrast to fermions. Therefore, it can recover the limiting
cases: the limit U = 0 with the corresponding ground state of a pure BEC (su-
perfluid state), and the opposite limit U > J with the corresponding ground
state of a Mott insulator at integer filling (see Fig. [L.2]).

Figure 4.2: Sketch of superfluid state where atoms are delocalized (left), and
Mott-insulating state where atoms are localized (right).



36 Theoretical Approaches

4.2.1 Superfluid phase

Superfluidity, which occurs in a variety of systems with frictionless flow,
was first observed in “He in 1938 by two groups, Kapitza in Moscow @] and
Allen and Misener in Cambridge], and then explained in a quantitative
description by Landau in 1941 ] Since then, numerous work has been
devoted to this area and the corresponding physical concepts developed for
liquid He are widely used later in ultacold gases. In some sense, superfluidity
is a dynamical quantum phenomenon of the many-body system and usually
involves more than just the ground state. However, it usually occurs with the
condensation phenomena and properties of superfluidity can be understood
in terms of Bose-Einstein condensation }, even though a Bose-Einstein
condensate does not necessarily exhibit superfluidity, such as ideal bosonic
gases. For lattice bosonic systems, if the interactions U between particles are
much smaller than the kinetic energy J, the system will minimize its energy by
delocalizing particles. At sufficiently low temperature, the thermal de Broglie
wavelength is so long that all the particles are correlated. As a result, a large
fraction of atoms share the same single-particle ground state, i.e. collectively
condense into the lowest accessible quantum state, resulting in a new state of
matter, namely Bose-Einstein condensate. The Bose-Einstein condensate is
responsible for the phenomenon of superfluidity, and, by conversion, is usually
referred to as a superfluid. In the trivial U = 0 limit, the system of N particles
is a pure BEC with all particles in the ¢ = 0 Bloch state of the lowest band
(single-particle ground state in the homogeneous system). The corresponding
canonical condensate state of N particles on Nj, lattice sites is

I
oy = m(cb |O>

_ ﬁ(ﬁ;@) 0), (4.7)

which is equivalent to the coherent state

Oy = e/Na-VNeg)
= e_%eﬁélm)
1
= 6_%6\/ﬁﬁzlbl|0>

L
N 3t
= e 2V ) (4.8)
=1

in the thermodynamical limit, where 6;2 denotes the creation operator for the
single-particle state with quasimomentum k, and ZA); the one for a single-particle
state at site [. Both states give identical expectation values for number-
conserving operators M] Thus, the coherent state can be used to describe
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the physical state of real experiments (the physical state in the trap is typi-
cally a canonical state of fixed particle number), since the total particle number
is usually conserved on the experimental time-scale and the particle number
fluctuations for the coherent state are negligible in comparison to the mean
particle number in the thermodynamic limit. The coherent state description
is very convenient, due to its separation into an unentangled direct product
of local coherent states in real space. This many-body state can be directly
used in the mean-field description as a variational function, as discussed in the
previous section. It is worth noticing that multi-species BECs could macro-
scopically coexist with new physics appearing [@], if the spin degree of freedom
is included, and the coherent state described above can be easily extended to
the multi-species system.

4.2.2 Mott-insulating phase

Although the band-structure theory is successful in describing electronic
phases of crystalline materials such as metals, insulators and semiconductors,
there are numerous transition-metal oxides which are poor conductors and in-
deed often insulators, which was first reported by de Boer and Verwey in 1937
]. This type of insulators are known as Mott insulator, named after the
physicist Nevill Francis Mott ], who took the first important step to-
wards the understanding of the Mott-insulating state through including strong
correlations between electrons. Since then, a large amount of work has been
done on this topic, where the details can be found in Ref. @, @] Physi-
cally, the abnormality of this kind of insulators arises due to electron-electron
interactions, whereas the band insulator results from electron-ion interactions.

In ultracold gases, Mott phases have been observed experimentally in recent
years, both for bosons E, @] and fermions ﬂﬁ, ] To understand the
properties of these phases, we can first consider the case U > J. In this case,
the tunneling between nearest neighbors can be neglected and the ground state
can be written as a product over different sites:

L

oy =[]0, (49)

=1

where we assume one particle per lattice site. When finite hopping appears,
atoms can tunnel from one site to another. The system remains in the Mott
state as long as the gain in kinetic energy due to hopping is smaller than
U, and the system exists with an absence of off-diagonal long-range order.
The corresponding physical picture is that the system exhibits particle-hole
fluctuations around the pure ground state with J = 0. When the hopping
becomes of the order of U, however, the system will undergo a phase transition
from a Mott insulator to a superfluid phase, where the atoms are delocalized
over the whole lattice. The Mott-insulating phase can thus be regarded as a
state with a strong suppression of density fluctuations. When the spin degree
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of freedom is included, the Mott insulator would possess spin fluctuations
governed by another low-energy scale via second-order tunneling (compared
to particle-hole excitations), and the system could develop completing spin
ordering at sufficiently low temperature , ]

We notice that the Gutzwiller ansatz can recover the two limiting cases
of the Bose-Hubbard model both J > U and U > J, at least for the integer
filling. That is the reason why the Gutzwiller method is well suited for predict-
ing the superfluid to Mott insulator phase transition. Within the Gutzwiller
approximation, the critical value for the transition from a superfluid to a Mott
insulator phase is given by U/J = 5.8z for filling n = 1 and J/J = 4nz for
filling n > 1 ﬂﬁ, ﬂ, |, where z is the lattice coordination number.

4.3 Bosonic dynamical mean field theory

Whereas it is most often possible to write down effective Hamiltonians for
strongly correlated systems, it is more difficult to solve such model systems,
analytically or numerically, due to the existence of strong correlations which
invalidate perturbation theory. Strong correlation is a challenging fundamental
obstacle for the fully understanding of the physics of solid-state phenomena.
Even though static mean-field theory can be applied to qualitatively capture
the properties of spinless bosonic system, it can not resolve spin order as a
result of dynamical correlations for a multi-species system. Formerly, a theory
beyond static mean-field for the fermionic Hubbard model, namely dynami-
cal mean field theory MM] proposed in the late 1980s as a generalization
of Weiss mean-field theory and a development of previous works for lattice
models in high dimensions @@], has been applied as a non-perturbative
formalism to study strongly-correlated electronic systems. The key point of
dynamical mean field theory is to map the many-body lattice system to a
single-site problem, which is then solved self-consistently. The advantage of
dynamical mean field theory beyond static mean-field theory is that it includes
the local quantum fluctuations of the strongly correlated system. It has thus
led to considerable progress in our understanding in solid-state physics. Re-
cently, a bosonic version of dynamical mean field theory has been proposed to
tackle the strongly correlated bosonic system ﬂ], which includes condensed and
normal bosons consistently. It is also a non-perturbative formalism and hence
can be applied within the full range from small to large couplings, which be-
comes exact in infinite dimensions. Whereas the original version of BMDFT ﬂﬂ]
requires a different scaling of superfluid and normal parts of the action and is
constructed as a well-defined theory in strictly infinite dimensions, our deriva-
tion here is based on a uniform scaling of the bosonic hopping amplitude, i.e.
we treat condensed and normal bosons on equal footing as in Refs. &, H, @]
Specifically, we present the BDMFT equations as a systematic expansion up
to subleading order in the small parameter 1/z, where the control parameter
z is the lattice coordination number. To leading order, this yields Gutzwiller
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mean-field theory, while from the subleading terms of order 1/z we obtain
BDMFT equations. We thus regard BDMFT as an higher order expansion
around Gutzwiller theory. Note that the final equations in all proposals (for
finite dimensions) coincide.

4.3.1 BDMFT equations

Correlated lattice
bosons

ST 777
=y N
/7

/77 7

Boson reservoir (BEC)

; -
time

Figure 4.3: Bosonic dynamical mean-field theory (B-DMFT): Within BDMFT
the full many-body lattice problem is reduced to a single-site problem which
is coupled to two reservoirs corresponding to bosons in the Bose-Einstein con-
densate and in the normal state. This schematic picture visualizes the idea

of Dl\ﬂ%FT for lattice bosons in analogy to the fermionic counterpart (From
Ref. [7]).

As in fermionic dynamical mean field theory, the main idea of the BDMFT
approach is to map the quantum lattice problem with many degrees of freedom
onto a single site - “impurity site” - coupled self-consistently to a noninteracting
bath (see Fig. 3]). To derive self-consistency equations within BDMFT, we
use the “cavity method” [B, @] one considers a single site of the lattice and
integrates out the remaining degrees of freedom on all other sites (see Fig. {.4)).
The underlying physics is that, if the number of neighboring sites goes to
infinity, the central limit theorem holds so that the fluctuations from site-to-
site can be neglected. This indicates that this method is exact for infinite
dimensions, and is a reasonable approximation for high but finite dimensions,
with the influence from other sites being integrated out and replaced by an
effective bath. The dynamics at the impurity site can thus be thought of as
the interaction (hybridization) of this site with the bath. Therefore, properties
of the many-body system can be captured by a single impurity model, and
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gt

Figure 4.4: Illustration of the cavity method. Sites which are connected to
the impurity (coloured greenish) have one neighbor less once the impurity is
removed (From Ref. B])

that is the reason why we can return to the Anderson impurity Hamiltonian
representation, as will be discussed in the following.

Within the tight-binding approximation, bosonic gases in a strong optical
lattice can be described by the multi-species single-band Bose-Hubbard model
in Eq. 312). To derive the self-consistency relations within BDMFT, we
use the path integral formalism in the coherent state representation. Inspired
by the cavity derivation of fermionic DMFT equations ], we consider the
impurity site of the bosonic system and formally integrate out all the other
degrees of freedom. In this way we obtain the effective action of the impurity
site

Z
Zinp = 7 = / [[ v, Dby, e 5, (4.10)

where Z is the full partition function and Z(© is the partition function of the
cavity system without the impurity. The detailed derivation of the effective
action can be found in Appendix [Tl For brevity, we derive the self-consistency
loop within the framework of BDMFT for the case of a cubic lattice in this
section.

In deriving the effective impurity action, we consider the limit of a high but
finite dimensional optical lattice, and formally rescale all hopping parameters
as t, = t’/z with the coordmatlon number 2z being treated as a small param-
eter. Based on the linked cluster theorem, the action of the impurity site up
to subleading order in 1/z is then expressed in the standard way Lﬁﬁ as:

s () g (o) ’
Simp = —/Od’TdT Z <b8§(7)> QO&\V(T—T)( b () + /0 dr (4.11)
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Here we have defined the Weiss Green’s function,

Gop(T = 1) =~ (4.12)
(Or = pa)Ons + taty 3 Gy, (7, ) taty o GS,5(7, )
(04),403) (07),(03)
taty > Gg\u,ij (7', 7) (=07 — px)0xy +taty > G}\u,ij(T/?T) ’
(0i),(05) (07),(05)
and introduced
i () = (i (7))o (4.13)
as the superfluid order parameters, and
Gauig (T:7) = =(Bia ()05, (7))o + i (T)50(71), (4.14)
Gl (1, 7') = —=(bia(1)bjw (7))o + bi (T)dja(7') (4.15)

as the diagonal and off-diagonal parts of the connected Green’s functions, re-
spectively, where (...)o denotes the expectation value in the cavity system
(without the impurity site). We now check the order for different terms which
survive up to subleading order in the action (LII]). The terms for the Weiss
Green’s functions are of order O(1/z), since they come with two factors of
t, ~ 1/z and one factor of z arising from one summation over neighboring
sites. All the other terms are of order O(1). The last term, for example,
involves one factor of ¢, ~ 1/z and one factor of z arising from the summa-
tion over neighboring sites. The action ({II]) to leading order O(1) yields
Gutzwiller mean-field theory [@], while by including the subleading terms of
order O(1/z) we obtain the BDMFT equations. Hence we regard BDMFT as
an expansion in 1/z around Gutzwiller method. Another issue needed to be
addressed is that expectation values in the cavity system should be identical
to those on the impurity site, since in the original system they are independent
of the lattice position. Considering sites at the edge of the cavity with one
neighbor less compared to the impurity site (see Fig. [.4]), simply identifying
the expectation values yields an error of order 1/z. For the Green’s functions,
this process has no problem, because they already appear at subleading order
in the action, but it yields a relevant correction to the superfluid order param-
eter and turns out to be essential for quantitatively accurate predictions of the
phase boundary. Details regarding the implementation for the superfluid order
parameter are given in Appendix Note that the effective action (A1) for
finite z coincides with the previous proposal ﬂ] However, our derivation is
different from the original derivation, since we focus on finite dimensions and
our goal is to make direct predictions for the three-dimensional experimental
situation.

In the Matsubara frequency representation, the Weiss Green’s function has
the following form:

ga,}\u@wn) = (iwnaz + ,U)\)5)\u — t,\tyz Gij7)\y(7;wn), (4.16)

i?j
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where Y~ means summation only over the nearest neighbors of the “impurity”
site, n = 2n7 /[ are Matsubara frequencies, and

Giwn) = / 6d7‘eiw"TG(7)

0

B
G(iw,) = /0 dre™""G(T). (4.17)

To close the self-consistency loop, the next step is to express the Weiss
Green’s function by means of the Green’s function of the original lattice which
is given by

1
Guuliw,) = [ de- I 41
lt(zw ) / Elwn+ﬂ_€_2imp(lwn) ( 8)

where we make the approximation that the impurity self-energy 3., (iw,)
coincides with the lattice self-energy X.(iw,), and that it is a local (i.e.
momentum-independent) quantify which is exact in infinite dimensions. After
a few derivation steps ﬁﬁ, it yields the local Dyson equation

Gy = Simp(iw,) + Gl (iwy,). (4.19)

The self-consistency BDMFET loop is closed and has the following structure:
We start from an initial guess of the Weiss Green’s function. The effective
action of the model is then given by Eq. (LI1]), which allows us to calculate
all expectation values, including local Green’s functions and self-energies. And
then the new Weiss Green’s function can be obtained by using Eq. ([@I9) for
a general lattice. This procedure is repeated until convergence is reached.

4.3.2 Anderson impurity model

The most difficult step in the procedure discussed above is to find a solver
for the effective action. However, one cannot do this analytically. To obtain
BDMEFT equations, it is better to return back to the Hamiltonian representa-
tion. Thus one has to find a Hamiltonian which has the same effective action
as given by Eq. (£II). It is easy to notice that the corresponding Hamilto-
nian can not contain only on-site degrees of freedom, since then we would lose
retardation effects. The best way to express the effective action of Eq. ({11
is using the single impurity Anderson model.

The effective action ([II]) can be represented by an Anderson impurity
Hamiltonian

Hy= — Y at,(¢pb, +he) + % > Uiy, (fiy = 6a) = > iy
Av v

+ Y adja+y (VV,,a}i)V + Wb, + h.c.), (4.20)
l Ly
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where the chemical potential and interaction term are directly inherited from
the Hubbard Hamiltonian. The bath of condensed bosons is represented by the
Gutzwiller term with superfluid order parameters ¢, for each component. The
bath of normal bosons is described by a finite number of orbitals with creation
operators ELZT and energies ¢;, where these orbitals are coupled to the impurity
via normal-hopping amplitudes V,; and anomalous-hopping amplitudes W, ;.
The anomalous hopping terms are needed to generate the off-diagonal elements
of the hybridization function.

We now turn to the solution of the impurity model. The Anderson Hamil-
tonian can straightforwardly be implemented in the Fock basis, and the corre-
sponding solution can be achieved by exact diagonalization (ED) of fermionic
DMFT m @ After diagonalization, the local Green’s function, which in-
cludes all the information about the bath, can be obtained from the eigenstates
and eigenenergies in the Lehmann-representation

: e PEn _ o—BEm
Glmp)\u(zwn) = _Z m|b>\|n><n|b ’m>E E +zhwn

+ 6%@ (4.21)

i) = S (mlbalm) o my -
mp,AY 7 — E,—FE, +ihw,

+ Boadu. (4.22)

Integrating out the orbitals leads to the same effective action as in Eq. (4.11]),
if the following identification is made

A (iwn) = 0,3 G (iwn), (4.23)

.3

where we have defined the hybridization functions:

o ViV W,\,zWu,l
A)‘”(lwn) - Z ( zwn € + iwy, )
_ VW, W)\ Vi
A3 (iw,) = — Z ( o Mn) (4.24)

Hence, the Weiss Green’s function can be expressed by the hybridization func-
tions, and it reads

g;zzl (an) = (iwnaz + /-1/)\)6)\1/ - AA,,(Z@.%)
= Elmp Au(zwn) + G an). (425)

imp, )\1/(

The detailed derivation for the self-energy can be found in Appendix [El

We make the approximation that the lattice self-energy X, 1, coincides
with the impurity self-energy i, 1., that is, we neglect all non-local compo-
nents X;x; ~ 0 and approximate the on-site ones ¥;; ~ Yjn,. It immediately
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yields Giat yo = Gimp,av, and the self-consistency loop is then completed by the
conditions for lattice Green’s function

1
Gia (K, i) = - _ 4.26
. (K i) 1Wn0 s 4 iy — Bimp (W) — €x ( )

and for the superfluid order parameter

¢l/ - <ZA71/>07 (427)

where the notation (...)o means that the expectation value is calculated in
the cavity system. Equations (£25), ([A26) and (L27) thus consitute the set
of BDMFT self-consistency conditions. The self-consistency loop is solved as
follows: starting from an initial choice for the Anderson parameters and the
superfluid order parameter, the Anderson Hamiltonian is constructed in the
Fock basis and diagonalized to obtain the eigenstates and eigenenergies. The
eigenstates and energies allow us to calculate the superfluid order parameter
¢, = (b,)e7", the impurity Green’s functions and self-energies, and then ob-
tain the lattice Green’s functions via Eq. (£20). Subsequently, new Anderson
parameters are obtained, by fitting the Anderson hybridization functions from
Eq. (A24) to new hybridization functions obtained from the lattice Dyson equa-
tion, which is done by a conjugate gradient method. With this new Anderson
parameters, the procedure is iterated until convergence is reached.

It is worth noticing that the derivation described above is independent
of temperature. This indicates that we cannot only determine ground state
properties, but also obtain information about the thermodynamics of lattice
bosons, as we will show in the next chapter. Similar to fermionic DMFT,
another question is how well BDMFT deals with situations with broken sym-
metries, in which case Goldstone modes are present in the spectrum but ab-
sent from the DMFT spectrum @] However, since in three dimensions the
spectral weight of the Goldstone mode is finite and generally small, this ap-
proximation can be justified and does not prohibit excellent qualitative and
often even quantitative agreement between (B)DMFT results and more exact
methods (if available), even in symmetry-broken states [@] We also note that,
in dynamical mean field theory, all the spatial fluctuations of the self-energy
have been neglected, while the local quantum fluctuations are fully taken into
account. This is the reason why the theory is called ”dynamical”. Here the im-
purity model describes the local dynamics of the quantum many-body system.
Therefore, this quantum impurity model remains an interacting many-body
problem which requires reliable methods for calculating the local self-energy
of the impurity model. Moreover, recently improved versions of dynamical
mean field theory have been proposed to include the nonlocal correlations for
clusters in momentum space ﬂ%ﬂ% or in real space [@, @]
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4.4 Real-space bosonic dynamical mean field theory

BDMEFT, described in the previous section, is for homogeneous systems.
However, experimentally the spatial inhomogeneity due to the external trap
is always present, leading to a spatially varying density. For these trapped
systems, the concept of the long range order has to be modified and the de-
velopment of ordered phases on finite length scales should be also examined.
Therefore, it is inevitable to make a real-space extension of BDMFT for tack-
ling the inhomogeneity of trapped systems. Formerly, for the fermionic Hub-
bard model, a real-space generalization of DMFT has been developed and im-
plemented successfully to address inhomogeneous fermionic systems m, @]
In the spirit of the case of fermions, here we extend BDMFT to a real-space
BDMFT formalism [@] for inhomogeneous systems, as is relevant for most
experiments. Within the RBDMF'T, the self-energy is taken to be local, but
depends on the lattice site in an inhomogeneous system, i.e. X, = Ef\uéij,
where ¢;; is a Kronecker delta. RBDMFT is capable of providing an accurate
and non-perturbative description of the low-energy state of the inhomogeneous
Bose-Hubbard model.

In this section, we take the system, consisting of a two-component bosonic
gas in an optical lattice with either 2D square or 3D cubic geometry, as an
example to derive the real-space BDMFT formalism. Experimentally the Bose-
Bose mixture could consist of two different species, or two different hyperfine
states of a single species. In addition we include an external harmonic trapping
potential which gives rise to inhomogeneity. This system can be described by
a two-component inhomogeneous Bose-Hubbard model (B.12).

In a more formal language within RBDMFT, we first map the Hamiltonian
(BI12) onto a set of individual single-site problems, each of which is described
by a local effective action

) B . ) )
s = [arar 3 BEG (-7 B0 ()
0 Av={b,d}

B 4 )
" /0 dT{ AZ S0 () (n(r) ~ 62,

= Y a (oo + b)) } (4.28)
(ig).v

where 7 is the index of the lattice site. In this equation 7 is imaginary time
and the function gf{fm (1 —7') is a local non-interacting propagator interpreted
as a local dynamical Weiss mean-field which is determined in a self-consistent
manner. Here we use the Nambu notation by (1) = (b,(f) (1), b)) (7)*). More-
over the static bosonic mean-fields are defined in terms of the bosonic operator
b, as

() = (bjw)o- (4.29)
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The index 0 indicates that all averages are taken for the cavity system, i.e.
excluding the impurity site. Now each of the local actions can be treated as
an impurity in the presence of a bath (representing the influence of the rest
of the lattice) and therefore captured via an Anderson impurity Hamiltonian.
There are several technin% to solve the impurity model. Here we apply exact

[157).

diagonalization (ED) [@,

Dyson equation
Dyson equation

inversion of matrx

Figure 4.5: Schematic picture of the real-space bosonic dynamical mean field
theory loop.

In practice, we start with an initial set of local Weiss Green’s functions
and local bosonic superfluid order parameters ¢§ll)j(r) After solving the ac-
tion (4.28), we obtain a set of local self-energies ngg(zwn) with w,, being the
Matsubara frequency. Then we employ the Dyson equation in real-space rep-

resentation in order to compute the interacting lattice Green’s function
G (iwn) ! = Go(iw,) ™ — Z(iwy). (4.30)

The site-dependence of the Green’s functions is shown by boldface quantities
that denote a matrix form with site-indexed elements. Here Gg(iw,) ! stands
for the inverse non-interacting Green’s function

Go(iw,) ™' = (u +iw,)1 —t — V. (4.31)

In this expression, 1 is the unit matrix, the matrix elements ¢;; are hopping
amplitudes for a given lattice structure. The detailed derivation of the non-
interacting Green’s function can be found in Appendix [El The external har-
monic trapping potential is included via V;; = 6;;V; with V; = Vori2 and r;
being the distance from the trap center. Eventually the self-consistency loop
is closed by specifying the Weiss Green’s function via the local Dyson equation

(65 (ien)) " = (GW0iwn))  + S (ien) (432
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where the diagonal elements of the lattice Green’s function yield the interacting
local Green’s function Ggfg(zwn) = (G, (iwy))s;- This self-consistency loop is
repeated until the desired accuracy for superfluid order parameters and Weiss
Green functions is obtained. In Fig. L35 we schematically depict the R-DMFT
loop.

Complementary to RBDMFE'T, in this thesis we employ single-site BDMFT
combined with a local density approximation (LDA) to explore the physics
of the model (B12)), where we adjust the chemical potential on each lattice
site according to LDA as u,(r) = u2 — V(r) and treat the problem as locally
homogeneous. The advantage of this approach is that larger system sizes can
be treated. We validate it by comparison with the more rigorous RBDMFT
approach.
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Chapter 5

Quantum Magnetism and Pair
Superfluidity

In ultracold gases, properties of strongly correlated many-body systems are
mostly governed by contact interactions. They play an important role in de-
termining physical phenomena, especially in lattice systems, since the optical
lattice reduces the kinetic energy and makes interaction and kinetic energy
comparable. Due to interplay between the kinetic energy and contact interac-
tions, the system can be in different phases and go through phase transition
from one phase to another. As an important example, the phase transition
from the superfluid to the Mott-insulating phase has been realized experimen-
tally for single-component bosonic gases [3], based on loading them into an
optical lattice. We can now ask what will happen if the spin degree of freedom
is included in the many-body system, which can be easily achieved through
loading different hyperfine states of the same species or different species in
ultracold experiments. Theoretical studies indicate that multi-species bosonic
gases in an optical lattice have rich phase diagram, and the system can be
in different types of magnetic insulating states, depending on the interplay
between kinetic energy, contact interactions and spin fluctuations. Our goal
is to study strongly correlated multi-species bosonic gases, and to reveal the
underlying physics of magnetically ordered states and even d-wave superfluid
states (analog of superconducting states where the corresponding microscopic
picture is still unclear).

In this chapter, we focus on two-component bosonic gases in an optical lat-
tice, and answer two questions: which phases arise in this system and how to
cool the system to observe the corresponding phases. Firstly, we address mag-
netic ordering at zero and finite temperature both in homogeneous and trapped
Bose-Bose mixtures with repulsive interspecies interactions in optical lattices.
By using bosonic dynamical mean field theory, we obtain phase diagrams of
the homogeneous two-component Bose-Hubbard model in a three-dimensional
cubic lattice, which features competing magnetic order of XY-ferromagnetic
and anti-ferromagnetic type in addition to the Mott-insulating and superfluid
state. We show that these magnetic phases are stable even in the presence
of a harmonic trap. Then, we investigate finite-temperature thermodynamics

49
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and demagnetization cooling of Bose-Bose mixtures in a cubic optical lattice.
We calculate the finite-temperature phase diagram, and remarkably find that
the system can be heated from the superfluid into the Mott insulator at low
temperature, analogous to the Pomeranchuk effect in 3He. This provides a
promising many-body cooling technique. We examine the entropy distribu-
tion in the trapped system and discuss its dependence on temperature and
an applied magnetic field gradient. Our numerical simulations quantitatively
validate the spin-gradient demagnetization cooling scheme proposed in recent
experiments. Finally, we simulate the pair-superfluid phase of both homoge-
neous and trapped ultracold gases with attractive inter-species interaction in
an optical lattice. We obtain the phase diagram of a Bose-Bose mixture with
filling number n = 1 at zero and finite temperature in a three dimensional
cubic optical lattice, and confirm the stability of pair superfluidity for asym-
metric hopping of the two species. We calculate the critical temperature of
the pair-superfluid phase. In the presence of an external trap, we discuss the
effects of inhomogeneity. We also investigate the influence of population im-
balance of the two species on the pair-superfluid phase, and observe that it is
destroyed already by small population imbalance of the two species.

5.1 Quantum magnetism

5.1.1 Introduction

In this section, we will investigate quantum magnetism, which is one of
the most intriguing areas in condensed-matter physics. Even though many
theoretical and experimental efforts have been devoted to revealing the mech-
anisms behind magnetic ordering of solid-state systems @], a quantitative
comparison between theory and experiment seems a very challenging task due
to the high level of complexity. Therefore, it is highly desirable to find control-
lable quantum systems which are able to work as quantum simulator for the
original solid-state many-body systems, such as ultracold quantum gases in
optical lattices which provide an excellent laboratory for investigating many-
body quantum systems with an unprecedented level of precision and control.
In recent years, fundamental many-body phenomena of interacting bosons,
such as the superfluid to Mott-insulator transition [E], correlated atom tun-
neling @], and superexchange due to second-order atom tunneling @}, have
been observed. These studies involve the basic mechanisms leading to quan-
tum magnetism and pave the way to realize and detect magnetic long-range
ordering of spinful fermions or bosons, which may eventually give insight into
the mechanism of high-T,. superconductivity as well @]

Here, we theoretically investigate a two-component bosonic gas in 2D and
3D optical lattices, which is modeled by the single-band Bose-Hubbard model.
We investigate the homogeneous (untrapped) system by means of bosonic dy-
namical mean field theory ﬂﬂ] and the harmonically trapped case by its
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real-space generalization, which extends the original BDMFT formalism to
the study of inhomogeneous systems. We map out the phase diagram for the
low-filling case with n = 1 and n = 2 per site and obtain diverse phases such
as superfluid, unordered Mott state and XY-ferromagnetic order. In addi-
tion we turn to the inhomogeneous (trapped) Bose-Hubbard model which is
more closely related to the experimental situation. We include the effect of
the external confining potential by RBDMFT, which assumes site-dependent
self-energies. To our best knowledge, this is the first systematic and non-
perturbative study of the magnetic properties of a two-component inhomoge-
neous Bose-Hubbard model. It will bring more insight into ongoing experi-
ments on Bose-Bose mixtures in optical lattices.

5.1.2 Magnetic phases of a homogeneous Bose-Hubbard model

T=0 _ T = 0.001 Upg
0.5 0.5 F . Phase separation 4
Phase separation
< 04f Superfluid - 04 Superfluid
5 3 \\\
E 03} 3 03
0 I
R R
XY-ferro Phase separation Phase separation
0.1 0.1 F Unordered
Insulator
0 0
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6
QZtl,/Ubd Qth/UM
Figure 5.1:  Left panel: zero-temperature phase diagram for the two-

component Bose-Hubbard model in a 3D cubic lattice, as a function of hopping
parameters. The interaction values are U, = U; = 1.01 Uy and the total filling
is n = 1 with n, = ng = 0.5 (except in the phase separation regime). Right
panel: finite temperature phase diagram (7" = 0.001U,4). The energy scale of
the magnetic coupling 4t,t,/Upg is shown by the black dashed line.

We start by exploring the two-component Bose-Hubbard model in the ho-
mogeneous case. We consider a 3D cubic lattice and focus on the situation
of total filling n = ny + ng, i.e. n = 1 and n = 2 with balanced densities
n, = ng = 0.5 and n, = ng = 1 respectively. For each filling, we calculate
both zero and finite temperature phase diagrams. We focus on the interaction
regime where the inter-species interactions, Uy, = Uy, Ugq = Uy, and intra-
species interaction, Uy, are just slightly different, i.e. U, = Uy = 1.01 Upq.
This particular regime of interactions is accessible by Feshbach resonances, and
indeed our choice is motivated by a recent experiment at MIT M], where a
sample of 8" Rb atoms in hyperfine states |1, —1) and |2, —2) with nearly equal
inter- and intra-species interactions has been prepared. The selection of in-
teractions (Upq slightly smaller than U, 4) is due to a larger variety of novel
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Figure 5.2: Left panel: zero-temperature phase diagram for the two-

component Bose-Hubbard model in a 3D cubic lattice, as a function of hopping
parameters. The diagonal dotted line indicates t;, = t4. The interaction values
are U, = Uy = 1.01 Uy and the total filling is n = 2 with n, = ngy = 1. Right
panel: finite temperature phase diagram (7" = 0.0035Uq).

magnetic phases appearing in this regime @] In all our calculations we set
Upq = 1 as the unit of energy, and z is the coordination number.

Fig. 6.1 displays the zero and finite temperature phase diagrams of the
system with a total filling of one particle per site, n = 1. At T" = 0 (left
panel) we find three distinct phases which are characterized according to the
value of the superfluid order parameters ¢y, ¢4 and the two-body correlator
Ppa = (bd") — (b){d") > 0 which indicates the XY-ferromagnetic spin-ordering.
When both species have comparably large hopping, we find a superfluid phase
characterized by ¢4 # 0. Instead when the hopping amplitudes are very
anisotropic, the species with larger hopping is more easily delocalized and
therefore superfluid, while the other component favors a Mott insulating phase.
In this parameter regime, we do not find a homogeneous converged BDMFT
solution where each component has the same filling, which indicates phase
separation between the superfluid and the Mott insulator. We notice that the
phase diagram is symmetric upon species interchange and this symmetry is
also manifested in the Hamiltonian (3.12]). The third phase emerges when the
hopping amplitudes are small. This non-superfluid (i.e Mott insulating) phase
possesses an XY-ferromagnetic spin order and is characterized by ¢ 4 = 0 and

¢bd > 0.

We investigate also the effect of finite temperature on the phase diagram
as shown in the right panel of Fig. Bl We observe that the superfluid re-
mains robust against small finite 7". On the other hand, the XY-ferromagnetic
spin-ordered phase is sensitive to finite temperature since it is formed in the
low-hopping regime and therefore easily destroyed by thermal fluctuations. At
finite T', the parameter regimes of ordered phase is reduced in favor of devel-
oping a non-magnetically ordered Mott state which is characterized by ¢pq = 0
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Figure 5.3:  Zero-temperature phase diagram for a two-component Bose-
Hubbard model in a 3D cubic lattice, as a function of hopping parameters.
The interaction values are U, = U; = 12 Uy and the total filling is n = 1 with
Ny = nNg = 0.5.

and ¢pq = 0, and which we denote as “unordered insulator” in the follow-
ing. The black dashed line shows the energy scale of the magnetic coupling
Atyta/Ung [152).

Now we turn to the case when the total filling at each site is n = 2. Fig.
(left panel) shows the zero-temperature phase diagram for this case. The main
difference compared to n = 1 is the presence of a large unordered (Mott) in-
sulator regime at low hopping values. As for n = 1, here we also find a sizable
superfluid regime when both species have large hopping amplitudes. On the
other hand, when the hopping amplitude for one component is very small and
the other one very large, the system will be in a new phase with one compo-
nent being superfluid and the other one Mott insulating. This one-component
superflurd phase, e.g. for the d component, is defined by ¢, = 0 and ¢4 > 0.
There are also two Mott states: the XY-ferromagnet at intermediate hopping
and the unordered (Mott) insulator in the lower hopping regime. At finite
temperature (right panel) both superfluid phases remain robust and almost
unchanged. The main effect of finite T" is to reduce the XY-ferromagnetic
phase in favor of the unordered Mott insulator.

A further important spin-ordered state is the anti-ferromagnetic (AF) phase.
Its existence in the Mott domain has been shown in previous investigations
, ] In order to address this phase within our formalism, we adopt a set
of parameters in which the inter-species interactions U, 4 are much larger than
the intra-species one: U, = Uy = 12 Uy,. This specific choice is inspired by a
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Figure 5.4: t; dependence of order parameters (b), (d), and ¢, along the
diagonal black dotted line in the left panel of Fig. 52l The interaction regime
is set to U, = Uy = 1.01 Upy and the hopping amplitudes ¢, = t; with filling
factors ny, = ng = 1.

previous BDMFT study ﬂ§] in which the corresponding phase diagram was ob-
tained on the Bethe lattice. Here, we map out the phase diagram on a 3D cubic
lattice which is directly relevant for experimental studies. Fig. sketches the
phase diagram for this case with the total particle filling n = 1. In addition
to the two previously discussed phases, superfluid and XY-ferromagnet (see
Fig. Bl B.2), we find two other ordered states here: AF phase and super-
solid. For unequal hopping in the Mott domain, we identify a magnetically
ordered phase of AF type. This non-superfluid phase (i.e. ¢4 = 0) is charac-
terized by a finite value of the AF order parameter AXp = [0 — nyal > 0,
where v denotes the component and « is the sublattice index (@ = —«), to-
gether with vanishing X'Y-ferromagnetic order ¢p; = 0. Finally for a very large
difference in the hopping of the two species we observe a small window of a
super-solid phase with ¢, > 0,94 = 0 and Apr > 0 if t, > t4, and vice versa.

To investigate in detail the quantum phase transition into the ordered state,
for n = 2 and at T" = 0, in Fig. [5.4] we plot the dependence of the individual
superfluid order parameters and also the correlator ¢, along the line t, = ¢4
(the diagonal black dotted line shown in the left panel of Fig. [(.2)) on the
hopping. This indicates a second-order quantum phase transition from the
Mott state to the XY-ferromagnet and also a second-order phase transition
from the XY-ferromagnet to the superfluid.

One crucial question regarding the observation of AF and XY-ferromagnetic
order is how fragile they are against thermal fluctuations. To address this im-
portant issue, we compute the respective critical temperatures. Fig. shows
T, as a function of the hopping amplitude of species b while we keep the hop-
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Figure 5.5: Critical temperature of AF and XY-ferromagnetic order as a func-
tion of the hopping amplitude ¢, in a 3D homogeneous cubic lattice with total
filling n = 1. Left panel: AF phase with hopping amplitude ratio t, = 4t,4.
Inset: melting of the AF phase vs temperature with hopping amplitudes
2zt, = 0.6 Uy and 22ty = 0.15U,3. Right panel: XY-ferromagnetic phase
for equal hopping amplitudes ¢, = t4. Inset: melting of the XY-ferromagnetic
phase vs temperature with hopping amplitudes 2z2t, = 22t; = 0.1875 Upq.

ping ratio fixed as ty = 4t, for the AF phase (left panel) and as ¢, = ¢, for the
XY-ferromagnetic phase (right panel). We notice that T, rises as the hopping
amplitudes increase, due to the growing effective exchange couplings which
stabilize magnetic order. We also note that the zero-temperature phase dia-
gram on a 3D cubic lattice for filling n = 1, containing the AF phase (Fig.
B3), has the same structure as the corresponding one on the Bethe lattice B%
Therefore we anticipate that the finite-7T" counterpart of this phase diagram
should also be similar on both lattices, and therefore expect that there is a
region of unordered Mott insulator at low hopping. The inset of Fig. (left
panel) shows the temperature dependence of A% . It indicates a second-order
phase transition from the AF phase to the unordered Mott insulator. We
have also computed the order parameter ¢, for the XY-ferromagnetic phase
as shown in the right inset of Fig. which indicates a second order transition
from the XY-ferromagnetic phase to an unordered Mott insulator as well. The
critical temperatures of the magnetic phases shown here are notably smaller
than the lowest temperatures which have been measured in most experiments
until now, except in W. Ketterle’s group where temperatures as low as 350 pK
(= 0.01Upq) have been achieved which are estimated to be reasonably close to
magnetic ordering ﬂﬁ]

5.1.3 Spin-ordering for an inhomogeneous Bose-Hubbard model

In the previous section, we focused on homogeneous systems. However
all experiments with cold gases are carried out in the presence of an external
confining potential. Therefore we extend the BDMFT scheme to real-space
BDMFT to address the inhomogeneous system. In this section, using RB-
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Figure 5.6: Néel-type AF order in 2D at central filling n = 1 and T" = 0.
Left: particle densities of the two species as a function of radial distance
r. The interactions are set to U, = Uy; = 12U, the hopping amplitudes
22ty = 0.1 Upq and 22ty = 0.25 Upg and the harmonic trap Vy = 0.01 Upy. The
chemical potentials are u, = pg = 0.5U,g. Right: density distribution of the
d component in the lattice.

DMFT and LDA+BDMEFT, we will explore an inhomogeneous two-component
Bose-Hubbard model both in 2D and 3D.

2D trapped Bose gas — In this section we discuss the AF phase, the
XY-ferromagnet and the unordered Mott state in a 2D square lattice in the
presence of a harmonic trap. We first investigate AF ordering on a 31 x 31
lattice and then the XY-ferromagnetic phase and the unordered Mott state
on a 32 x 32 lattice. The choice of different lattice sizes is solely due to
computational convenience.

One of the most desirable goals in current experiments on cold atomic-
gases is to reach the regime of (Néel-type) AF ordering which is (for fermionic
systems) expected to be a key step towards realizing a d-wave superfluid phase
[49]. Here we investigate this phase for trapped two component bosons in an
optical lattice. At the beginning we focus on AF order at T" = 0. We choose
the interaction parameters as U, = Uy = 12 Uy with unequal hopping for the
two species fixed as 2zt, = 0.1 Upq and 2zt; = 0.25 Upy. We choose a maximum
local filling of n = 1 at the center of the trap. The left panel of Fig. shows
the RBDMF'T results for the particle densities as a function of radial distance
r from the trap center. The AF phase forms in the central area of the lattice as
a checker-board pattern and vanishes smoothly with increasing distance r from
the lattice center. This indicates that AF order is stable at the center of an
external trap. However, due to the unequal hopping, the lighter species (i.e.
the one with the larger hopping) explores the lattice more freely and forms
a superfluid ring around the central checker-board pattern. This behavior is
visible in the right panel of Fig. 5.6l To see how robust AF order is against
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Figure 5.7: Néel-type AF order in 2D at central filling n = 2 and T' = 0. Left:
particle densities of the two species versus radius, obtained by RBDMFT.
Interactions are set to U, = Uy = 48 Uy, the hopping amplitudes to 2zt, =
0.1 Upg and 22ty = 0.25 Uy, with a harmonic trap strength Vo = 0.01 Upg. The
chemical potentials are p, = pg = 1.5 Uy Right: density distribution of the
d component in the lattice.

changes of the total atom filling number, we increase the filling at the center of
the trap to n = 2, and observe that AF order now forms as a ring around the
center as shown in Fig. 5.7 We conclude that also in 2D and in the presence of
a trapping potential, AF order exists in regions of total filling n =1 at T' = 0.

As is evident in the phase diagrams of the homogeneous system (Figs. B
(2), a common magnetic phase which appears for both fillings n = 1 and
n = 2 is the XY-ferromagnet. Here we investigate the stability of the XY-
ferromagnetic phase in a trapped 2-component system on a 2D lattice of size
32 x 32 at T'= 0. We first focus on the case of equal hopping 2zt, = 2zt; =
0.175 Uypq for both species and choose the interactions as U, = Uy = 1.01Uy,.
In Fig. the atom densities, their corresponding superfluid order parame-
ters and the correlator ¢pq are shown, as determined by RBDMFET (left panel)
and LDA+BDMFT (right panel). At the center of the lattice, we have a total
filling of n = 2. We observe a finite value of the correlator ¢,y which implies a
stable XY-ferromagnetic phase in this inhomogeneous system. With increas-
ing distance from the trap center, we find non-zero values for the superfluid
order parameters with a maximum inside the atomic cloud, indicating super-
fluidity for both species. We can also see that the correlator ¢, remains finite
in the superfluid regime. Moving further towards the edge of the trap, the
XY-ferromagnetic phase with n = 1 appears and eventually a further super-
fluid domain. For comparison, we have computed the same quantities within
LDA+BDMFT, which are shown in the right panel of Fig. We find excel-
lent agreement between RBDMFT and LDA+BDMFT deep inside each phase,
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Figure 5.8: Left: RBDMEFT results on a 2D square lattice for atom den-
sities, superfluid order parameters and the XY-ferromagnetic correlator ¢pg
as a function of radial distance » at T = 0. Interactions are set to U, =
Uy = 1.01 Upg, with hopping amplitudes 2zt, = 22ty = 0.175 Uy and harmonic
trap Vo = 0.01Upg. The chemical potentials are pu, = pug = 1.5U,q. Right:
LDA+BDMFT results for the same parameters as the right panel.

but RBDMFET provides the more accurate description of the smooth transi-
tion between the different phases. Note that the second superfluid ring is very
narrow within RBDMFT which is most likely a finite-size effect.

We now consider the case of low hopping amplitudes. This situation cor-
responds to the regime of a large area of the unordered Mott state (without
symmetry breaking) in the homogeneous phase diagram (see Figs. b1, for
the 3D case). In Fig. we show results for the atomic densities, superfluid
order parameters, and the correlator ¢, for the case 2zt, = 22ty = 0.1 Uy at
T = 0. In the center of the lattice where we have filling n = 2, the low-energy
Hilbert space of each lattice site includes the three possible local spin states
IT1), [44) and |11), where T and | denote the two bosonic species. With the
choice of the interactions as Uy 4 > Upq, the third state has the lowest energy
and therefore we obtain a Mott state with ¢,y = 0 and no symmetry breaking.
For intermediate radii, where 1 < n < 2 and both species are superfluid, ¢uq
rises to a finite value and remains constant in the n = 1 region where the
XY-ferromagnet is stable.

3D trapped case — In this final part, we consider the experimentally most
interesting case of a 3D cubic optical lattice in the presence of an external har-
monic trap. Due to the computational limitations for RBDMFT, here we only

apply LDA+BDMFT which we previously benchmarked versus RBDMFT.
Throughout this section, we consider a lattice with 41 x 41 x 41 sites.

We begin the 3D trapped lattice analysis by investigating the stability of
the XY-ferromagnetic phase. We first choose intermediate hopping as 2zt, =
22ty = 0.195 Upgq and interactions U, = Uy; = 1.01U,4. This choice corresponds
to the XY-ferromagnet in the homogeneous phase diagrams (Fig. 11 B.2I).
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Figure 5.9: Unordered Mott state in 2D at n = 2 for weak hopping amplitudes
at T = 0, calculated by RBDMFT (left panel) and LDA+BDMFT (right
panel). The interactions and hopping amplitudes are U, = U; = 1.01 Uy and
22ty = 22ty = 0.1 Uy, with the harmonic trap strength V) = 0.01 Upy. The
chemical potentials are pp = g = 1.5 Upg.

We enforce filling n = 2 at the center of the lattice by adopting the proper
chemical potentials. In Fig. (left panel) we show the particle densities,
superfluid order parameters and the correlator ¢py at 7' = 0 (left panel) and
at finite 7' (right panel). For 7" = 0 we observe a wedding-cake structure of
the atomic densities, 7.e. two plateaus with n = 1 and n = 2 and intermediate
areas with non-integer filling. However we are more interested in the magnetic
properties which are revealed by the correlator ¢,q. We observe that in the
n = 2 domain, there is a XY-ferromagnetic phase, manifested by a finite
value of ¢4 and vanishing superfluid order parameters. In the intermediate
area 1 < n < 2, we obtain a superfluid phase with both (b) and (d) being
finite. Note that the onset of superfluidity leads to non-zero XY-ferromagnetic
correlations as well. By approaching the second Mott plateau with n = 1, the
superfluid order parameters vanish again and we obtain a non-zero value for
opq, indicating once again an insulating XY-ferromagnet. Finally for n < 1 we
find a further superfluid domain.

As in the previous section, we are interested in the effect of temperature
on magnetic order. Fig. (right panel) represents the correlator ¢,q for
different temperatures. First we notice that for all the temperatures considered
here, the correlator possesses a larger value at n = 2 compared ton = 1. In
other words, XY-ferromagnetic order is more pronounced for n = 2 compared
to n = 1 as long as all other parameters of the Bose-Hubbard model are
identical. To make this point clearer, we calculate the critical temperature
for ferromagnetic order for both n = 1 and n = 2, and find respectively
T. = 0.0018 Upg (=~ 70 pK) and T, = 0.0051 Upy (= 190 nK). We also calculate
the maximum value Tt 4, of the critical temperature for XY-ferromagnetic
order at filling n = 1 and n = 2, and find that 7, ,,,, is around 200 pK
and 230 pK, respectively, when the 3D cubic lattice is formed by laser beams



60 Quantum Magnetism and Pair Superfluidity

T=00 —@— |
0.0010 —S—
0.0015 —>¢— |
0.0025 ——
0.0040 —A—

0.0050 ——

®bd

Figure 5.10: Left: particle densities, superfluid order parameters and XY-
ferromagnetic correlator as a function of radius r on a 3D cubic lattice at
T = 0, calculated within LDA+BDMEFT. Interactions are set to U, = Uy =
1.01 Upq, hopping amplitudes are 2z2t, = 22ty = 0.195 Uy with a harmonic trap
Vo = 0.005Upg and Ny = 2.6 x 10*. Right: Temperature dependence of the
XY-ferromagnetic correlator for the same parameters as the top panel.

of wave-length 1064 nm and the scattering length is around 100a; (a; is the
Bohr radi% This fact could be significant for ongoing experiments, e.g. in
Refs. @, | where spin gradient thermometry has been used to measure
temperatures as low as 350 pK in a 3D optical lattice. Our calculation here
indicates that it is much easier to observe XY-ferromagnetism for higher filling
due to the enhanced critical temperature.

We now consider asymmetric values for the hopping amplitudes 2zt, =
0.15 Upg and 22t; = 0.225 Uyy. By adjusting the chemical potentials, we obtain
a globally almost balanced mixture with N, ~ Ny ~ (48% — 52%) Ny with
Niot = 2.6 x 10*. Fig. [E.11 shows the atomic densities and XY-ferromagnetic
spin-order for different temperatures (four panels). The most remarkable new
feature of the asymmetric hopping regime is the vanishing ferromagnetic order
in the n = 1 domain where ¢y = 0 even at "= 0. We also find that the total
density profile first becomes sharper and then smoother again with increase
of temperature. This is due to the higher spin entropy of the unordered two-
component Mott insulator. Details will be discussed in the section

It is visible in Fig. B ITlthat the lighter species (i.e. the one with larger hop-
ping) always dominates the density distribution in the superfluid area where
n # 1,2, since in this regime the particle mobility plays a more important role
than in the Mott domains. For the Mott state (n = 1,2) the situation differs.
In the spin model language , ], different hopping amplitudes lead to
the existence of an effective magnetic field 1,

2 2

ty —1
h=2z(25+1) bU oy — pg-
bd

where S = n/2. This effective magnetic field gives rise to an imbalance be-



5.1 Quantum magnetism 61

2 T nl i 2 .
T=0 np, 5
1.5} ng + 1 1.5 i
Pba —H—
1 i 1 !';V;V;';V;V;V;V;';V;V;V;V;';V;V;V;V;"? 7
)
05 L T 05 LT S i
R e
0 - 0 B
0 5 15 0 5) 0
r T

T = 0.008Up47p

(nnv.v.v.vmv.v.v.vmv.v.v.vmv.v.v.\"
N YR YYd

U i THHHHHE R o e e
LRy [T ITITING L AT

Figure 5.11: Particle densities and XY-ferromagnetic correlator vs. radial
distance r for asymmetric hopping amplitudes 2zt, = 0.15Uyy and 2zt; =
0.225Uyq on a 3D cubic lattice. Interactions are U, = U; = 1.01 Uy, the
trapping potential is Vy = 0.005 Upg and Ny = 2.6 x 10%.

tween n;, and ng which we quantify by the Z-magnetization S, = (n, — ng)/2.
At the Mott plateau with n = 1, the magnetization will shrink from 1/2 (max-
imum of Z-magnetization due to a large effective magnetic field) to zero with
increasing T due to thermal fluctuations. At the Mott plateau with n = 2,
the magnetization depends non-monotonically on temperature. In Fig. 512
we show the temperature dependence of the magnetization at the filling n = 2
plateau by focusing on the trap center and performing a finite-T" study with
a single-site BDMFT for the homogeneous model. This behavior can be un-
derstood if we notice that in the filling n = 2 region the system favors a state
with a small magnetization S, at zero temperature due to a non-zero effective
magnetic field. Once the temperature starts to increase from zero to a finite
value, thermal fluctuations will come into play and compete with quantum
fluctuations, which makes the imbalance reach a maximum at finite 7', since
both types of fluctuations can delocalize the atoms and smoothen the imbal-
ance between the two species. When the temperature increases even further,
the larger thermal fluctuations will simply smear out the imbalance.
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Figure 5.12: Z-magnetization (imbalance) S, vs temperature for the homo-
geneous system. Interactions are set to U, = Uy = 1.01 Uy with hopping
amplitudes 2zt;, = 0.15 Upy and 22ty = 0.225 Uy and total filling n = 2.

Finally, we also investigate the non-magnetic Mott state without symmetry
breaking which occurs at n = 2 for relatively low hopping amplitudes 2zt, =
22ty = 0.15 Upq (see also the homogeneous phase diagrams Fig. £.2). Fig.
shows the results for atomic densities, their superfluid order parameters and
the correlator ¢pq. At the center of the trap we indeed find a Mott state
without symmetry breaking similar to the 2D case (Fig. B.9]).

5.1.4 Summary

In conclusion, we have studied magnetic ordering of a two-component Bose
gas in 2D and 3D optical lattices. By using BDMFT we have calculated the
phase diagrams of the homogeneous Bose-Hubbard model in a 3D cubic lat-
tice with total particle filling n = 1 and n = 2, which feature superfluid
and Mott-insulating phases and also notably reveal ordered phases with XY-
ferromagnetism and Néel-antiferromagnetism in the Mott domain. We have
investigated the critical temperatures of these long-range ordered states. More-
over we have confirmed the stability of these magnetic phases in a trapped 2D
or 3D system. In the case of a 3D cubic lattice, we have in particular com-
puted XY-ferromagnetic ordering at finite temperatures which is relevant for
current experiments @, @] Another important issue is the detection of novel
magnetic phases with long-range spin order. For the anti-ferromagnetic phase,
spin-sensitive detection can be used to detect the Néel-type order, i.e. one spin
component can be detected after removing the other one using spin-selective
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Figure 5.13: Unordered Mott state at n = 2 for weak hopping amplitudes at
T = 0, calculated in 3D within LDA+BDMFT. Interactions are U, = Uy =
1.01 Upq, hopping amplitudes 2zt, = 2zt; = 0.15U,y, with a harmonic trap
‘/0 = 0.005 Ubd and Ntot = 2.6 X 104.

single-site addressing, as pointed recently ﬂ@, M] For the XY-ferromagnetic
phase, one could apply a 7/2 pulse with a position-dependent phase (linear
gradient), thus probing locally with different phases. For XY-ferromagnetic
long-range order one would thus observe stripes with regular spacing when the
phase matches and the 7/2 pulse transfers all atoms into one of the two spin
states .

Achieving the necessary ultra-low temperatures for detecting magnetic or-
dering of cold bosons in optical lattices has so far remained elusive. However,
it is anticipated that by further experimental advances this obstacle will be
overcome in the near future @] Our results provide theoretical benchmarks
which in the future will also be extended to other geometries such as triangular
or hexagonal lattices.

5.2 Pomeranchuk effect and spin-gradient cooling

5.2.1 Introduction

We have so far investigated novel quantum phases of two-component bosonic
gases in an optical lattice, and focused on their emergence at very low tem-
peratures of the order of 100 pK, which is governed by second-order tunneling
processes. At present, it is still challenging to observe these quantum phases
due to their low critical temperatures, and new cooling schemes are needed
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to achieve them. In this section, we will investigate new cooling schemes for
strongly correlated ultracold gases, and discuss the physical possibility to reach
the critical temperature of magnetic ordering. This study is related to the
thermodynamics of strongly correlated many-body systems. Exploring their
thermodynamical properties has been arguably one of the most important ex-
perimental achievements of ultracold atomic gases, whether solely trapped by
an external potential or loaded into an optical lattice. One of the goals of ex-
periments related to thermodynamics for ultracold lattice gases is to cool the
many-body systems for simulating solid-state phenomena, such as quantum
magnetic phases ﬂg, @, hﬁﬂ, |lDZ|, |L’il|, h.fzﬂ, hﬁﬂ] and high-temperature super-
conductivity whose underlying mechanism is still elusive @, ]. Different
cooling schemes have been proposed for lowering temperature, such as cooling
based on extracting entropy from the region or species of interests @, 168
]. Recently, a cooling approach using spin-gradient adiabatic demagnetiza-
tion was proposed in Ketterle’s group |, and based on it a temperature of
350 pK has been achieved for a two-component Mott insulator of ’Rb in a 3D
cubic lattice [@, ] However, this temperature is still higher than the crit-
ical temperature of the magnetic phase transition @, ] Another possible
cooling scheme is the Pomeranchuk effect, which is historically used to dis-
cover superfluid *He [@] And we found that the multi-species bosonic gases
can also be cooled by the Pomeranchuk effect, due to the spin physics NE]
In the ultracold gases, entropy is more suitable than temperature for charac-
terizing thermodynamical properties, due to isolation of the system from the
environment. Specifically, a crucial issue, related to cooling and needed to be
addressed, is how entropy is distributed in the strongly interacting many-body

systems in current experiments @, @, @, @]

In this section, we focus on thermodynamical properties of Bose-Bose mix-
tures in optical lattices in the presence of an external harmonic trap. While
the thermodynamics of strongly interacting two-component Fermi gases has
been investigated in detail | and the resulting critical entropy per par-
ticle s = kgIn2 at the fermionic Mott-insulator transition has been achieved
experimentally in a 3D cubic lattice ﬂﬁ, ], less attention has been paid
to the thermodynamics of two-component bosonic systems. In Ref. ], the
critical entropy for magnetic ordering of two-component hard-core bosons has
been investigated in a 3D homogeneous system, where a critical entropy per
particle of 0.35kp for the XY-ferromagnetic phase and 0.5kp for the Z-Néel
anti-ferromagnetic phase have been found. Here, we investigate the thermo-
dynamical properties of realistic two-component bosons in a 3D cubic optical
lattice in the presence of an external trap, and demonstrate the validity of
spin-gradient demagnetization cooling, which is in principle capable of cooling
the system down to the critical temperature of magnetic order. This system
can be approximately described by a single-band Bose-Hubbard model and is
investigated by bosonic dynamical mean field theory, both in combination with
a local density approximation and by its full real-space implementation.
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5.2.2 Model and method

In this section we will consider a mixture of two species of bosonic atoms
@] or, alternatively, atoms in two different hyperfine states @ - in an
optical lattice in the presence of an external harmonic trap and a magnetic
field gradient. Within the tight-binding picture, this system can be described
by a single-band Bose-Hubbard model:

. 1 A
H = — Z (b bjy—i—hC §;U,\V7’Li>\(nw —5>\V)
i R
+ Z (Vi — )i, — Z /’Ll”/nagB(xi)ﬁiV' (5.1)
i,v=b,d i,V

Moreover, we consider a linear position-dependence of the magnetic field in
x direction, that is, B(x;) = cx; where ¢ is the magnetic field gradient and
x; is the distance from the harmonic trap center, which describes the recent
experiment [@ This leads to

—_— v . N .
mag E ,meag l‘z nw - E ,meagCJ}Z Uz
= — E gra i My - (52)

In the Hamiltonian, (i, j) denotes the summation over nearest-neighbor sites
and the two species are labeled by the index A(v) = b,d. #, and ¢4 denote
hopping amplitudes for the two species. b (b ») denotes the bosonic creation
(annihilation) operator for species v at 51te i, and n;, = B;ryl;i,, represents the
local density operator. Uy, denotes the inter- and intra-species interactions,
which can be tuned via a Feshbach resonance [@] or by a spin-dependent
lattice @], u,, is the global chemical potential for species v, and V; = Vjr?
represents the harmonic trapping potential. .. denotes the magnetic mo-
ment of component v, and B(x;) is the magnetic field along the z axis.

In general, it is difficult to calculate the entropy within BDMFT or RB-
DMFT directly. But assuming that the strongly interacting many-body system

is in equilibrium, we can use the Maxwell relation gs = ‘9” to obtain the local

entropy [47] at temperature T and chemical potentlal ps (7 ) (o (1) +pa(r))/2:

#s(ro) On (1
stustro) ) = [ B ), (5:3)

where n(r) = ny, + ng is the local density (i.e., number of particles per lattice
site) at radius r. Note that formula (5.3) is only valid at fixed Ap(r) = pp(r) —
pa(r) for the two-component mixture. The density distribution obtained from
BDMFT and RBDMFT is accurate enough to yield precise results for the
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derivative g—;ﬁ. This relation will be used in the following to obtain the entropy
distribution.
In ongoing experiments, two hyperfine states of 8"Rb have been loaded

into optical lattices |78, @], with inter-species and intra-species interactions
in the regime U, ~ U; = U,. Considering the tunability of interactions
via Feshbach resonances | or state-dependent optical lattices [@], here

we choose U, = Uy = 1.01Uy,. In the following, we investigate the finite
temperature quantum phases of this system in a cubic optical lattice, as well
as the temperature dependence of the entropy distribution in the presence
of a harmonic trap. Finally, these thermodynamical properties are used to
quantitatively describe the adiabatic spin gradient cooling scheme of [@] In
all our calculations we choose U,y = 1 as the unit of energy, and set kg = 1.
z denotes the number of nearest neighbors for each lattice site. The lattice
constant is set to unity.

5.2.3 Pomeranchuk effect and phase diagram at finite T
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Figure 5.14: Finite temperature phase diagram of a two-component bosonic gas
in a cubic optical lattice with filling n, = ny = 0.5 (left) and n, = ng = 1.0
(right). The interactions are set to U, = Uy = 1.01U4, and the hopping
amplitudes are ¢, = t4. Inset (a): fluctuations of the total filling n = n, + ng
as a function of temperature along the vertical dotted line of the main figure.
Note the reduction of local number fluctuations by heating, analogous to the
Pomeranchuk effect. Inset (b): zoom of the main figure around the critical
point of magnetic order.

In this section, we explore the finite-temperature phase diagram of two-
component bosons in a homogeneous and infinite optical lattice. For strongly
interacting two-component Fermi gases, the critical parameters such as the
critical temperature and entropy for the transition to a superfluid state have
been determined experimentally NE] by considering entropy versus energy.
For one-component bosonic gases in an optical lattice, the finite-temperature
phase diagram has been studied experimentally in combination with Monte
Carlo simulations @] However, for two-component bosonic gases, the critical
behavior of the superfluid-normal phase transition has not been determined



5.2 Pomeranchuk effect and spin-gradient cooling 67

yet. In the section 5.1l phase diagrams at filling n = 1 and n = 2 for zero and
fixed finite temperature have been determined for the cubic lattice. But there
we mainly focused on the emergence of long-range magnetic order, which is
governed by second-order tunneling and only develops at very low tempera-
tures of the order of 100 pK. On the contrary, here we will investigate quantum
phase transition of the system at higher temperatures. We choose interactions
U, = Uy = 1.01U,q and hopping amplitudes ¢, = t4. Fig. B4 shows the
phase diagram of a Bose-Bose mixture in a cubic optical lattice with filling
ny, = ng = 0.5 (left) and ny, = ng = 1 (right). We observe four different
phases. When the interaction is weak, the atoms are delocalized and at low
temperature the system is in the superfluid phase (SF), characterized by a
finite value of the superfluid order parameter ¢, = (b,). When the temper-
ature is increased, thermal fluctuations destroy the coherence between atoms
and the system goes through a phase transition into the normal phase (N).
For sufficiently strong interactions, the atoms are localized and hopping pro-
cesses are strongly suppressed. The system is in the XY-ferromagnetic phase
(characterized by (bd') > 0 and ¢, = (b,) = 0) at low temperature, with mag-
netic long-range order governed by second-order tunneling processes. Since
the corresponding energy scale is very small, even weak thermal fluctuations
can destroy the long-range magnetic order, and the system will go through a
phase transition into a Mott insulator (MI). Upon further increase of temper-
ature, the Mott insulator melts into a normal phase which is characterized by
large density fluctuations A?(n) = ((n — (n))?) where the n is the total filling
per site. Compared to the single-component system in a cubic optical lattice,
new features of two-component bosons appear at low temperature. Near the
critical interaction strength of the zero-temperature MI-SF transition, with in-
creasing temperature, the system will first go through a phase transition from
superfluid to Mott-insulator, and then cross over to the normal phase. This
is because upon heating at low temperature, the system favors localization -
analogous to the Pomeranchuk effect in liquid *He ﬂﬂ, ] - since the Mott
insulating phase of spinful bosons carries more entropy in the spin degree of
freedom than the superfluid. Interestingly, the first-order phase transition from
superfluid to Mott-insulator occurs at a higher temperature for filling n = 2
(right plot in Fig. [5.14]) compared to n = 1, indicating that it is easier to ob-
serve the Pomeranchuk effect discussed above for higher filling. Note that the
XY-ferromagnetic phase at filling n = 2 only extends up to a finite maximum
value of U,q/2zt,, which is consistent with our previous work [@]

5.2.4 Entropy distribution in the trapped system with B =0

In the former section, we have studied the homogeneous system and mapped
out the finite-temperature phase diagram. We will now study the thermody-
namics of Bose-Bose mixtures in an optical lattice in the presence of a har-
monic trap. More specifically, we investigate the temperature dependence of
the entropy distribution, motivated by recent experiments @, @, @] Com-



68 Quantum Magnetism and Pair Superfluidity

- n(T = 0.04)
15 | pu(=009)
bu(= 0.04) o

- s/n(=0.045) —+—
s/n(= 0.040) —a—
| s/n(=0.035) ——
| s/n(=0.030)

(T 0.11

15 —

| s/n(=0.110

)

)

- s/n 0. 105)
) ——

| s/n(=0.115)

[y

05 |

=
S}
N
N}
=
~
=
o
=
© |

Lol oy |
0 5 10 15 20 0 2 4 6 8

Figure 5.15: Radial profile for the total local density (n = ny, + ng), parity
(py), local entropy per particle (s/n), and superfluid order parameter (¢, )
in a 3D cubic lattice obtained by BDMFT+LDA at different temperatures.
The interactions are set to U, = U; = 1.01Uyy, with hopping amplitudes
2z2t, = 22ty = 0.195U,4 and harmonic trap strength Vo = 0.005U4. The unit
of temperature is Upg.

parison between RBMDFT and BDMFT+LDA calculations has been made to
check the validity of LDA for determining the entropy. Only the results of
BDMFT+LDA are given here for the 3D case in a 51 x 51 x 51 cubic lattice.
Throughout this section, the interactions are set to U, = Uy = 1.01U,q with
a harmonic trap strength V5 = 0.005U,4 and a total filling n = 2 at the trap
center.

In the left panel of Fig. at high temperatures 7'/Uyy = 0.105, 0.11 and
0.115 (corresponding to the normal phase in Fig. B.I4]), the Mott-insulator
plateaux melt into a normal phase with entropy per site s > In3 around the
center of the harmonic trap and s > In2 at the second Mott-insulating ring.
Naturally, we can also identify the melting of the Mott insulator into the
normal phase from the density profile, i.e., the corresponding Mott-plateaux
at filling n = 2 and n = 1 have disappeared at this temperature. Due to the
insensitivity of the density profile to a small variation of temperature, only a
single density profile at temperature 7'/Uyy = 0.11 is shown here. There are
also two peaks of the entropy density in the normal shells surrounding the
Mott-insulating regions. Our simulations indicate that the transfer of entropy
from superfluid to Mott insulator due to the Pomeranchuk effect does not
occur in this high temperature region, since here the local entropy per particle
in the superfluid is higher than in the Mott-insulator. We observe that the
local entropy per particle is reduced when the temperature decreases, as shown
in the right panel of Fig. at low temperatures of 7'/U,; = 0.03, 0.035, 0.04
and 0.045 (corresponding to the Mott insulator region in Fig. [5.14]). Here the
system has a Mott-insulator core with filling n = 2 in the trap center and also
a Mott-insulating shell with filling n = 1. Correspondingly, the local entropy
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25

Figure 5.16: Validity of BDMFT+LDA benchmarked against RBDMFT. Den-
sity profile ny,; and entropy distribution s along the radial direction r at
temperature 7' = 0.1Uy,; (left) and T = 0.03U,, (right) obtained by RB-
DMFT (R) and BDMFT+LDA (L) for 2D case. The interactions are set to
U, = Uy = 1.01Uy,; and the hopping amplitudes are 2zt, = 22ty = 0.175U,
with harmonic trap Vi = 0.005U,.

per site of the Mott-insulator region is s =~ In 3 in the filling n = 2 region and
s ~ In2 in the n = 1 region, respectively, since there are three possible local
spin states [11), [{4) and |1}) for n = 2, and two possible spin states [1), |{)
for n = 1, where T and | denote the two bosonic species. Between the two
Mott-insulating regions, there is also a superfluid shell with non-zero value of
the superfluid order parameter. Interestingly, we observe a sudden drop of
the entropy density around the peak of the superfluid order parameter, which
indicates a fine structure in the density distribution of the phases with non-
integer filling (superfluid and normal phase). A similar structure is also found
for a one-component Bose gas in an optical lattice plus external harmonic trap

|. Physically, the sudden change of entropy in the superfluid region is
caused by the reduced number of many-body states of the system due to the
formation of a condensate. It is expected that, if the temperature is lowered
further, another superfluid domain forms in the region with filling n < 1.
We have also shown the parity profile p, = ((1 — €™)/2) for the individual
components in Fig. [5.15 which can be directly measured experimentally @,
]. Interestingly, the local parity for the individual components in the Mott-
insulating region with total filling n = 2 is finite.

In addition, we now observe (right plot of Fig. .13 that the local en-
tropy per particle in the first superfluid ring is smaller in some regions than
that in the Mott insulator with n = 2, which indicates that a transfer of
entropy from superfluid to Mott insulator can lower the temperature of the
system in this regime, which is consistent with the phase diagram for the ho-
mogeneous system in Fig. [5.14l This interaction-induced cooling mechanism
(Pomeranchuk effect) of two-component bosonic gases in an optical lattice is
expected to be visible experimentally @, @, m%], after further lowering the
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temperature. For example, in the experiment this effect could be observed
via ramping up the optical lattice, where the temperature should be decreased
beyond single-particle adiabatic cooling due to the Pomeranchuk effect, since
the Mott-insulating region increases.

To check the validity of BDMFT+LDA around quantum degeneracy, we
investigate the density and entropy distribution for the 2D case and test the
accuracy of BDMFT+LDA against RBDMFT, as shown in Fig. We
find excellent agreement deep inside each phase, while RBDMFT provides
the slightly more accurate description of the transition region. We therefore
expect that BDMFT+LDA will also give quantitatively reliable results for the
3D case.

5.2.5 Adiabatic cooling via entropy redistribution for B # 0
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Figure 5.17: Real-space profile (here in the x-y plane of the lattice) for the
local density n, magnetization m and entropy s along the z = 0 plane of a 3D
cubic lattice using BDMFT+LDA. From left to right, the temperatures are
T /Upq = 0.020, 0.040, 0.070 and 0.095, respectively. The interactions are set
to U, = Uy = 1.01U,y and the hopping amplitudes are 2zt, = 22t; = 0.12U,q,
with total particle number Ny, &~ 17000 in a harmonic trap Vy = 0.004Uq and
magnetic field gradient Vg, = 0.01034.

We have so far investigated thermodynamical properties for equal filling of
the two components. In this section, we will now study a scenario with the
two species separated by a magnetic field with constant gradient which can be
used experimentally to cool the system. Specifically, we simulate the adiabatic
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process of the spin-gradient cooling scheme proposed by Weld et. al. M] To
this end, we calculate the entropy distribution of the inhomogeneous system
in the presence of the field gradient, and the dependence of the entropy per
particle on temperature. To simplify the calculation, we assume that the
two components of the bosonic mixture have the same absolute value of the
magnetic moment.
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Figure 5.18: Domain-wall width d,, (in units of lattice constant) as a function
of superexchange coupling at different temperatures. The width is defined as
the distance from the trap center to the position where the magnetization is
half of the maximum value. The interactions are set to Uy, = U; = 1.01U,4 in a
harmonic trap Vy = 0.004U,; and a magnetic field gradient Vg, = 0.0005Up,.

Entropy distribution in the presence of field gradient — The two-
component bosonic mixture can be separated to opposite sides of the trap
by the magnetic field. At zero temperature, the two components are com-
pletely separated and a sharp domain wall forms in the trap center. At finite
temperature, spin excitations, such as a pair of opposite-spin atoms swapping
positions via second-order tunneling, will broaden the width of the domain wall
(the width is defined as the distance from the trap center to the position where
the magnetization is half of the maximum value). As pointed out in m, @]
the width of the domain wall depends in a simple way on the field gradient and
can be used as a thermometer in the zero-tunneling limit. Fig. 517 shows the
distribution of local density n, magnetization m = (n,—ngy)/2, and entropy s in
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Figure 5.19: Domain-wall width d,, (in units of lattice constant) as a function
of temperature at different hopping amplitudes. The width is defined as the
distance from the trap center to the position where the magnetization is half
of the maximum value. The interactions are set to U, = Uy = 1.01U,, in a
harmonic trap Vy = 0.004Us; and a magnetic field gradient Vg, = 0.0005Up,.

the z = 0 plane. Since the density and magnetization distributions depend on
the temperature, they can be used for thermometry via in situ measurements
with single-site resolution @, @] In particular, the magnetization distribu-
tion can be used as a thermometer at low temperatures down to the critical
temperature of magnetic phases. From the middle row of Fig. .17 we observe
that the narrow mixed region of the two components broadens with increasing
temperature, which is consistent with measurements where temperatures as
low as 350 pK have been measured [@, ] The bottom row of Fig. 517
shows the entropy distribution. The entropy is mainly carried by the spin
degree of freedom of particles around the trap center, and also by delocalized
particles near the edge of trap. When the temperature is lowered, the delo-
calized particles form a condensate. As a result, the entropy drops quickly as
a function of temperature in the superfluid ring. On the other hand, the spin
degree of freedom in the mixed region can still carry a large amount of entropy,
even at low temperature where the entropy of the single-component superfluid
becomes very small. Therefore, if one prepares the system in a state where
entropy is mainly carried by a single species ( i.e., if one initially separates the
two species by a field gradient) and then transfers the entropy from the single
species to the spin degree of freedom, the temperature of the system can be
lowered dramatically.

The domain-wall width can also be used as a tool to measure the strength
of the resulting superexchange interactions between the atoms. As shown
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in Fig. BI8(a) and BI8(b), when superexchange interactions dominate over
thermal fluctuations (4¢2/Uyy > T), we observe a linear dependence of the
domain-wall width on the strength of the superexchange in the Mott-insulating
regime. We also observe that the domain-wall width increases faster at larger
hopping parameters, since in that case the mixed region is in the superfluid
regime and the first-order tunneling dominates. When thermal fluctuations
dominate (4t2/U,q < T), as shown in Fig. B.I8(a)5I8(d), the increase of the
superexchange decreases the width of the domain wall due to minimizing the
energy of the spin-spin coupling. If the temperature is increased, the minimum
of the domain-wall width is shifted to higher hopping amplitudes, as shown in
Fig. 5I8(a) and BI8(b). We also observe that the linear dependence m, @]
of the domain-wall width d,, only holds for temperature above the critical
values T, for magnetic ordering (see Fig. 5.19]). The change of slope at T, is a
clear indication of the phase transition.
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Figure 5.20: Entropy per particle versus temperature in a cubic optical lat-
tice obtained by BDMFT-+LDA, compared with the analytical zero-tunneling
approximation @] The interactions are set to U, = U, = 1.01U,; and
the hopping amplitudes to 2zt, = 2zt; = 0.12U,4, with total particle number
Niot = 17000 in a harmonic trap of strength Vy = 0.004Upq.

Entropy per particle versus temperature — We now focus on the rela-
tion of entropy versus temperature, which gives insight how adiabatic changes
affect the temperature of the system. Fig. shows the entropy-temperature
curve for strongly interacting two-component bosons in an optical lattice in
the presence of the magnetic field, where the dashed lines are obtained by the
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zero-tunneling approximation @} Due to the deep optical lattice, our re-
sults obtained by BDMFT+LDA are in good agreement with the approximate
analytical results except at low and high temperatures. At high temperature,
thermal fluctuations will induce hopping of atoms. This effect is neglected
in the zero-tunneling approximation, which therefore gives a lower prediction
for the entropy. At low temperature, on the other hand, the entropy of the
motional degree of freedom drops quickly due to condensate formation in the
superfluid regime. This effect is neglected as well in the zero-tunneling ap-
proximation, which therefore gives a larger prediction for the entropy. We
note that quantum Monte Carlo simulations IE] also reveal the inadequacy
of the zero-tunneling approximation in the low temperature regime.

Adiabatic cooling via spin-gradient demagnetization — The spin-
gradient cooling scheme relies on the inhomogeneous entropy distribution of
the system. The main effect of the demagnetization process is to decrease the
local entropy per particle in the spin-mixed regions, which is essential for long-
range spin order. There are three different regions corresponding to different
phases of the system, namely the superfluid, spin-mixed and one-component
Mott-insulating region. Initially, the superfluid and spin-mixed region carry
almost all the entropy of the system, while the entropy in the one-component
Mott insulator is close to zero. When the magnetic field gradient is decreased,
the spin-mixed region expands, while the one-component Mott-insulating re-
gion shrinks, and the average entropy per particle in the spin mixed region is
decreased. At the same time, the temperature drops, since entropy carried by
hot mobile particles is drained into the expanding mixed region with a drop
of local entropy per particle. Here, we will quantitatively establish this sce-
nario by considering the spatial entropy distribution and entropy-temperature
relation. In the left panel of Fig. E21] the local entropy per particle s/n is
shown at different field gradient strengths for fixed total particle number and
entropy. We observe that s/n decreases in the central region as the field gra-
dient is adiabatically decreased. Since the number of spin excitations (with
respect to the ferromagnet at zero temperature and in the presence of the field
gradient) due to exchange of |1) and ||) particles between neighboring sites
is increased in the demagnetization process, the total energy of the system
decreases as well and, as a result, the temperature drops from 7'/Uy; = 0.065
to 0.035 when the field gradient adiabatically decreases from Vg, /Upq = 0.03
to 0.005. The resulting cooling efficiency is shown in the right panel of Fig.
(2T The demagnetization cooling curve obtained via BDMFET simulations is
in good agreement with results from the zero-tunneling limit ﬂﬁ], since here
we choose the optical lattice relatively deep which makes t¢,/Uyy very small.
In addition, the demagnetization cooling appears to be less efficient at larger
magnetic field gradients. This is because the strong field gradient repels par-
ticles to the outer regions of the trap, which makes the trap center superfluid
with enhanced entropy compared to the Mott insulator. This effect reduces
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the entropy capacity of the spin degree of freedom at high field gradients.

Vgra/Upa = 0.03 —x— | Stot/Ntot = 0.5 —o—
001 —— 0.04 (— analytical -
0-005 —— ~ Stot/Niot = 0.4 —x—
- il
& Gy 5 analytical .4y
\ — ',' ¢
n e
= 0.02 —
1] ol
0.001 0.01
x Vgra/Ubd

Figure 5.21: Left: Field-gradient dependence of local entropy per particle
s/n along the z direction on the y,z = 0 axis, for an entropy per particle
Stot/Niot = 0.7. The red, green and blue lines correspond to field gradients
of Viga/Upa = 0.03, 0.01 and 0.005, respectively. Right: Adiabatic cooling
due to spin-gradient demagnetization in a cubic lattice. Data are obtained
by BDMFT+LDA and compared to the analytical zero-tunneling approxima-
tion @] Interactions are set to U, = Uy = 1.01U,4, and the hopping ampli-
tudes are 2zt, = 2zt; = 0.12U,, for total particle number Ny ~ 17000 in a
harmonic trap Vo = 0.0025U44.

5.2.6 Summary

In conclusion, we have investigated the thermodynamics of a two-component
Bose gas loaded into an optical lattice in the presence of an external trap and
a magnetic field gradient, using BDMFT+LDA and the newly developed real-
space BDMFT. We obtain the finite-temperature phase diagram and find that
at low temperature, remarkably, the system can be heated into a Mott insula-
tor, analogous to the Pomeranchuk effect in 3He. By investigating the entropy
redistribution of the system during adiabatic spin-gradient demagnetization,
we observe efficient cooling due to entropy transfer from the mixed region to
the single-species Mott-insulating domains, and provide a quantitative the-
oretical validation of recent experiments @, lﬁ] We expect our work to
provide valuable insight for realizing quantum magnetic phases in upcoming
experiments.

5.3 Pair-superfluidity

5.3.1 Introduction

In the previous sections, we have presented results for ultracold gases with
repulsive inter-species interactions. In this section, we will study a Bose-Bose
mixture for attractive inter-species interactions in an optical lattice, where a
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pair-superfluid phase (PSF) could arise. This phase has been proposed and
investigated theoretically in several previous works [@@] However, it is
widely believed that the stability of the bosonic many-body system is ques-
tionable when the interactions between atoms are negative. Recently, it was
found that a three-body hard-core constraint can stabilize the system of single-
component bosons in an optical lattice with attractive two-body interactions
@], and afterwards numerical simulations have been performed to study pair
superfluidity in the system MM] For two-component bosons, stable het-
eronuclear ¥ Rb-"'K mixtures with negative inter-species interactions tuned
via Feshbach resonances ﬂ@], have been realized recently. Now the question
is how to theoretically understand the PSF of two-component bosonic gases.
Qualitatively, the PSF can be viewed as a bosonic pair condensate, where the
pair consists of different species or hyperfine states, and the pair condensate
is a result of second-order hopping of the pair but with a strongly suppressed
first-order tunneling of single atoms. It is apparent that the PSF can only exist
at very low temperature of the order of the critical temperature of quantum
magnetic phases which are also governed by second-order tunneling processes,
which have been clearly observed for a double-well system @, @]p At the
current stage, it is still challenging to achieve the critical temperatures of
the PSF and magnetic phases. After achieving these low temperatures, it is
expected that the corresponding phases can be detected by the momentum
correlations via time-of-flight expansion , IM] or by single-site-resolution
probing techniques @, @‘t];

Up to now, most of the studies on the PSF in a two or three dimensional
optical lattice consider the symmetric cases between the two species except in
Ref. [@, @, @], but there is still a lack of detailed theoretical simulations
of the PSF for the homogeneous system with asymmetric hopping amplitudes
of the two species at zero and finite temperature, and for the experimentally
relevant trapped system with balanced /imbalanced mixtures of the two species.
Here, we bridge this gap and study properties of the PSF of two-component
bosonic ultracold gases with attractive inter-species interaction both in a ho-
mogeneous and a trapped optical lattice. For the homogeneous model, we focus
on the phase diagram with filling number n = 1. In particular, we present a
phase diagram for the experimentally realized heteronuclear 8 Rb-*K mixture,
where double-species Bose-Einstein condensates with attractive inter-species
interactions have been observed M] For the trapped Bose-Bose mixtures,
we study the stability and coexistence of Mott insulator, superfluid and PSF.

5.3.2 Homogeneous Bose gases with attractive interactions

In this part, we investigate Bose-Bose mixtures with negative inter-species
interactions U < 0 in a 3D optical lattice. Generally, the system is unstable for
|U| > U,q, since the strongly attractive inter-species interaction between the
atoms can not be compensated by repulsive intra-species interactions. As a
result, it leads to a collapse of the systems. Here we will demonstrate the sta-
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Figure 5.22: Upper: zero- (left) and finite- (right) temperature phase diagram
for two-component bosons in a 3D cubic lattice vs. the hopping amplitudes.
Lower: local density-density correlator ¢® as a function of temperature for
different hopping amplitudes. Inset: zoom of main figure for ¢, = 0.04|U|
(v = b,d). The interactions are set to U, = Uy = 12|U| and the total filling is
n =1 with ny, = ngy = 0.5.

bility of the PSF of two-component mixtures when the interactions are set to
|U| < Upq. Specifically, we explore phase diagrams of two-component bosonic
gases in a 3D cubic lattice with total filling n = 1 (n, = ng = 0.5) for different
interactions, as shown in the upper left panel of Fig. at temperature 7' = 0.
We observe two different phases in the phase diagram: a PSF characterized by
(b) = (d) = 0 and (bd) # 0, and a superfluid phase (SF) with (b), (d) > 0. We
confirm the existence of the PSF of Bose-Bose mixtures with asymmetric hop-
ping amplitudes. In the lower hopping regime for both species, the first order
tunneling is suppressed by the strong interactions between atoms, but interest-
ingly formation of bosonic pairs between different species can be energetically
favored. At low temperatures the bosonic pairs can hop as a whole via second-
order tunneling and develop a long-range order, which typically compete with
single-species condensation. As a result, the PSF has a non-vanishing PSF
order parameter (bd) but vanishing superfluid order parameters (b) and (d).
On the contrary, when both species acquire large hopping, a superfluid phase
will appear with (b)) > 0 and (d) > 0. In addition, when the intra-species
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Figure 5.23: Critical temperature of the PSF as a function of hopping am-
plitudes t, = t; on a 3D homogeneous cubic lattice with total filling n = 1.
Inset: melting of the PSF vs. temperature along the vertical dashed line with
hopping amplitudes ¢, = t; = 0.04 |U].

interaction U, 4 decreases from U, = Uy = 12|U| to 2|U|, the PSF shrinks
due to the decrease of the effective pair-tunneling amplitudes. We also prove
that the phase transition from a PSF to a superfluid phase with symmetric
hopping amplitudes occurs at the same point as that from XY-ferromagnetic
to superfluid phase for Uy, > 0 and half filling. We study also the effect of
finite temperature on the phase diagram of two-component bosonic gases with
interactions U, = U,y = 12|U| and n, = ny = 0.5, as shown in the upper right
panel of Fig. .22 Generally, the PSF is sensitive to temperature, since the
pairs are formed in the lower hopping regime and their coherence can be easily
destroyed by thermal fluctuations, due to small effective tunneling of order
O(t?/|U]). At finite temperature, the PSF regime shrinks in favor of develop-
ing a new unordered phase with vanishing expectation values for (bd), (b) and
(d). To further understand this unordered phase which consists of either pairs
or single particles, we calculate the dependence of the local density-density
correlator ¢® = (nyng) — (my)(ng) on temperature, as shown in the lower
panel of Fig. 5221 We observe that ¢(?) starts to decrease noticeably only
above temperatures of the order of 107!|U|, which indicates the local pair of
different species still exists below this temperature. We therefore conclude
that the unordered phase, shown in the upper right panel of Fig. [5.22] consists
of non-coherent pairs of different species. In sufficiently deep optical lattices,
these particle-particle pairs are localized, while for larger hopping the pairs
delocalize over the whole lattice. As a result, the local density-density cor-
relator decreases as a function of ¢, (v = b,d), as shown in the lower panel
of Fig. Another interesting feature of the temperature dependence of
g is the increasing (non-monotonic) trend in low temperatures, since ther-
mal fluctuations first localize and then break the pairs. We remark here that
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the temperature regime of non-condensed pairs (= 0.1|U]|) is experimentally
accessible @], and could be detected via radio frequency spectroscopy .
Note that the unordered phase considered here is qualitatively different from
the one due to “melting” of the XY-ferromagnetic phase, and the unordered
phase due to melting of the PSF can also exist for non-integer filling. We also
observe that the superfluid phase is robust against small finite temperature
and remains almost unchanged for temperatures up to 7" = 0.001|U|.
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Figure 5.24: Left: Comparison of the zero-temperature phase diagram with
two-component hard-core bosons analyzed with the tensor-product-state ap-
proximation @] on a square lattice with completely symmetric parameters:
t =1t, =1tq, t = pp = pg. The red solid lines are phase boundaries obtained
by BDMFT for U, = U, = 200|U|, while the blue dashed lines are the results
of the tensor-product-state approximation. Right: Zero-temperature phase
diagram for two-component soft-core bosons with U, = U; = 2|U| obtained
via BDMFT.

One crucial question regarding the observation of PSF is how fragile it is
against finite-temperature effects. To address this issue, Fig. shows T,
as a function of the hopping amplitudes ¢, = ¢, at different interactions. We
notice that T, rises as the hopping amplitudes increases, due to the growing
second-order tunneling which stabilize long-range order. The inset of Fig.
shows the temperature dependence of (bd), which indicates a second-order
phase transition from the PSF to the unordered phase. We also find that the
critical temperatures for the long-range ordered phase shown here are of the
same order as for the XY-ferromagnetic phase ﬂﬁ] and notably smaller than
the coldest temperatures which have been measured in most experiments until
now, apart from W. Ketterle’s group where temperatures as low as 350 pK
(= 0.01Upq with t,/Upq =~ 0.029) have been achieved B]

To verify the validity of the BDMF'T results, comparison has been made
with a hard-core boson model analyzed within a tensor-product-state approxi-
mation @] Fig. shows the zero-temperature phase diagram of attractive
hard-core two-component bosons in a square lattice with completely symmet-
ric parameters: t = t, = tg, p = pp = pg. The solid lines are results of
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BDMFT with U, = U; = 200|U|, while the dashed lines are obtained for
hard-core bosons using a tensor-product-state approximation @] We find
excellent agreements between the two methods. We also plot the phase dia-
gram for soft-core bosons (U, = Uy = 2|U|), and observe that in this case the
phase boundary between the PSF and the superfluid phase is shifted to lower
hopping values.
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Figure 5.25: Phase diagram for a mixture of ¥Rb and *'K in a 3D cubic
lattice as a function of lattice depth V; and Rb-K scattering length (in units
of the background scattering length of ’Rb). The total filling is n = 1 with
ny = ng = 0.5.

Rubidium-potassium mixture — The phase diagrams obtained so far
focus on symmetric interactions with U, = Uy, which is a good approximation
for mixtures of hyperfine states of rubidium ﬂﬁ] However, this symmetry
is not present for mixtures of rubidium and potassium in the experiment, in
which a negative inter-species interaction has been achieved via a Feshbach
resonance Eﬁ] In this part, we focus on a mixture of Rb and *'K which
was loaded into a 3D cubic lattice with wavelength of A = 757 nm, which yields
equal dimensionless lattice strength V for the two species. Due to different
masses of the two species, the ratio of the intra-species interactions is then fixed
to Urp/Uk = mkagrp/mrpax =~ 0.72 and the ratio of the hopping amplitudes
trp/tx ~ 0.47. Here Eg is the recoil energy of rubidium.

Now we explore the phase diagram of 8’Rb and 'K mixtures in a 3D cubic
lattice and make predictions for ongoing experiments. Since the depth V of
the optical lattice and the inter-species scattering length agrpi is tunable with
high accuracy experimentally, we show the phase diagram in the agpk-Vs plane
for total filling n = 1 (ny, = ny). Fig. shows the phase diagram of a ' Rb
and YK mixture in a 3D lattice at zero and finite temperatures. At zero
temperature, there are two phases appearing: superfluid and PSF. When the
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scattering length agrpk is small, the system features a superfluid phase for a
shallow lattice. When the depth of the lattice is increased, the ratio of ¢, /U,
becomes smaller with a strong suppression of first-order tunneling, and atoms
of two different species form pairs and hop together with a development of
the PSF at sufficiently low temperature. At finite temperature, the PSF can
be easily destroyed by thermal fluctuations which induce a second-order phase
transition into an unordered phase with (bd) = 0. Since the PSF is formed via
a second-order tunneling process and the corresponding energy scale is very
small, for the parameters chosen here, this transition already occurs at a low
temperature 7" = 0.0005E%. On the other hand we observe that at the same
temperature the superfluid phase is very stable against low temperature and
the phase boundary between superfluid and PSF is almost unchanged.

5.3.3 Trapped Bose gases in 2D and 3D cases
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Figure 5.26: Density distributions n,, (black line), order parameter ¢, (green
line) and PSF correlator (bd) (red line) vs. radial distance r for different
hopping amplitudes at zero temperature. Left: Results are obtained within
RBDMET for a 2D square lattice. The interactions are U, = U, = 2|U],
hopping amplitudes ¢t = ¢, = t4 and harmonic trap V5 = 0.0002|U|. Right:
Results are obtained within BDMFT+LDA for a 3D cubic lattice. The in-
teractions are set to U, = Uy = 12|U|, hopping amplitudes ¢ = t;, = t; and
harmonic trap Vo = 0.0002|U |

In this section, we investigate the two-component bosonic system both in
2D and 3D optical lattices in the presence of a harmonic trap as relevant in
most experiments, and focus on the stability of the PSF in the trapped system.
Here we choose a 41 x 41 lattice for the 2D case and a 41 x 41 x 41 lattice in
3D. For the 2D case, we will apply both RBDMFT and BDMFT+LDA, while
we will only use BDMFT+LDA for the 3D case due to the large computational
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cost.

Balanced mixture — Fig. displays the density distribution n;, order
parameter ¢, and correlator (bd) for the PSF vs. radius r at different hop-
ping amplitudes in a trapped 2D square (left) and 3D cubic (right) lattice.
Since the PSF is stabilized only within a limited region for the symmetric
parameters ﬂ@], the harmonic trap should be very shallow and the hop-
ping amplitudes controlled in a narrow regime. Otherwise, the system will
go through a phase transition directly from a Mott insulator to a superfluid
phase. Here we choose completely symmetric parameters t = ¢, = ¢4 and
U, = U, with balanced filling for the two components. Hence, only one value
for ny 4 and ¢y, 4 respectively is shown in Fig. [5.261 We observe that a wedding-
cake structure appears in the trapped system, and that the coexistence of
different phases sensitively depends on the hopping amplitudes. In the left
panel, for example, there are only two states appearing at a lower hopping
amplitude of ¢ = 0.55|U]|, and the corresponding phase transition is from the
Mott insulator with total filling n = 2 to the PSF with total filling 0 < n < 2.
If the hopping amplitudes are increased, the tunneling of single atoms from
one site to another becomes easier, which implies that the system has large
density fluctuations and undergoes a phase transition from a PSF to a super-
fluid phase. We can observe this point from the left middle panel of Fig. [5.26]
where the superfluid phase starts to appear around the middle region of the
PSF. It is expected that the PSF will disappear with a further increase of the
tunneling amplitudes and the corresponding region will be occupied by the
superfluid phase, since the first-order tunneling increases quickly as a function
of the hopping amplitudes, as shown in the left lower panel of Fig. [5.26, where
the PSF completely disappears at a hopping amplitude of ¢ = 0.7|U|. Now
we turn to investigate the stability of the PSF in a 3D cubic lattice, as shown
in the right panel of Fig. Here we also choose complete symmetric pa-
rameters: ¢t = t, = tq and U, = Uy = 12|U| with balanced filling for the two
components. Compared with the trapped 2D case, we observe a similar trend
of phase coexistence in two-component bosonic gases in a 3D cubic lattice.

Fig. shows the comparison between the results of RBDMFT and those
of BDMFT+LDA for a 2D square lattice, and good agreements are obtained
between the two methods except in the phase-transition regime. In spite of the
sharp phase-transition feature of LDA, the results of BDMFT+LDA are still
reliable with a sufficient accuracy in the regime away from phase transition.
Therefore, we will apply BDMFT+LDA to tackle the 3D case due to the high
computational cost of RBDMFT in the 3D case.

We are also interested in the effect of temperature on the PSF. Fig.
shows the radial profile for correlator (bd) at different temperatures. We ob-
serve that the PSF is sensitive to finite 7. At finite 7", the PSF is reduced in
favor of developing a unordered phase which is characterized by (bd) = 0. We
remark here that the density distributions at finite but low 7" are similar to
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Figure 5.27: Comparison between results from RBDMFT (R) and those from
BDMFT+LDA (L) for a 2D square lattice. Density distributions n,, order
parameter ¢, and PSF correlator (bd) vs. radial distance r at zero temperature
in a 2D square lattice. The interactions are U, = U,y = 2|U| and the hopping
amplitudes t, = t; = 0.09|U| with a harmonic trap V5 = 0.0002|U]|.

(bd)

Figure 5.28: Temperature dependence of PSF correlator as a function of radius
r for a 3D cubic lattice obtained within BDMFT+LDA. The interactions are
set to U, = Uy = 12|U], the hopping amplitudes t, = t; = 0.045|U| and the
harmonic trap Vy = 0.0002|U|.
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zero temperature, as shown in the right panel of Fig. £.20
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Figure 5.29: Density distributions n, 4, order parameters (b), (d) and PSF
correlator (bd) vs. radius r for different Ay at zero temperature in a 2D cubic
lattice within BDMFT+LDA. Panel (d) shows filling difference (n, — ng) vs.
radius 7. The interactions are set to U, = Uy = 12|U|, hopping amplitudes
t, = tq = 0.05|U|, (mp + pta)/2 = 0.48 and harmonic trap Vy = 0.00015|U|.

Imbalanced mixture — As pointed out in the previous section £.3.2], the
PSF is stable for antitropic parameters for the two species. In this part, we
study the effects of imbalance between the two species on the stability of PSF,
where unequal filling between the species may hinder the formation of the pairs

|. The imbalance, N, # Ny, will be controlled by the nonzero chemical
potential difference Ay = up — pg which can be viewed as an effective mag-
netic field. Fig. shows density distributions, superfluid order parameters
and PSF order parameter vs. radius r in a 2D square lattice, obtained using
RBDMFT. Upon increasing the imbalance parameter Ay, the PSF ceases to
exist and goes through a phase transition from a PSF to a superfluid phase,
since Ap can finally exceed the pairing gap for the PSF, allowing unpaired
excess atoms to enter the PSF region. Surprisingly, the PSF is sensitive to
population imbalance, and even small population imbalance can destroy the
existence of the PSF in a trapped system, but with a formation of superfluid
order resulting from unpaired particles. As shown in Fig. 529 the density
distributions are almost unchanged even for large values of the imbalance pa-
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Figure 5.30: Density distributions n, 4, order parameters (b), (d) and PSF
correlator (bd) vs. radial distance r for different Au at zero temperature in a
3D cubic lattice obtained within BDMFT+LDA. Panel (d) shows the radial
profile for the filling difference (n, —ng4). The interactions are U, = Uy = 12|U],
hopping amplitudes ¢, = tq = 0.04|U|, (1 + p1a)/2 = 0.47 and harmonic trap
Vp = 0.0003|U].

rameter Apu. If increasing Ay further, the pairing gap breaks and superfluid
order develops. We do not find any phase separation regime in our study.

Next, we discuss the influence of the population difference on the PSF
in a trapped 3D cubic lattice using BDMFT+LDA. Fig. shows density
distributions, order parameter and PSF order parameter vs. radius r in a 3D
cubic lattice, obtained via BDMFT-+LDA. We observe that here the physics
is qualitatively similar to the 2D case, as shown in Fig. (.29

5.3.4 Summary

In conclusion, we have investigated low-temperature properties of Bose-
Bose mixtures with negative inter-species interactions both in 2D and 3D op-
tical lattices by means of BDMFT/RBDMFET. We obtained phase diagrams of
Bose-Bose mixtures with filling n = 1 at zero and finite temperature in a 3D
cubic optical lattice, and found that the PSF is stable also for asymmetric hop-
ping of the two species. We obtained critical temperatures of the PSF, which
we found to be of the order of XY-ferromagnetic phase of a Bose-Bose mix-
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ture with repulsive inter-species interaction. We have confirmed the stability
of the PSF in a balanced Bose-Bose-mixture in the presence of the harmonic
trap both in 2D and 3D. We have also investigated the influence of density
imbalance between the two species on the PSF, and found that it is destroyed
already by small population imbalance of the two species. This novel quantum
phase can be observed via the signatures of the pair condensate in the future
experiments, by detecting the momentum distribution of pairs @, @]



Chapter 6

Ultracold Bosonic (Gases with
Long-Range Interactions

In the previous chapter, we presented theoretical results for strongly corre-
lated systems with only contact interactions. In this chapter, we will investi-
gate novel quantum phases of strongly correlated bosonic gases in optical lat-
tices in the presence of long-range interactions. Usually, there are two common
ways to realize long-range interactions: either to use ultracold gases coupled
to a high-finesse optical cavity ], or dipolar gases with strong dipole-dipole
coupling, which is long-range and anisotropic as a result of permanent or in-
duced magnetic or electric dipole moment E, @@] If the long-range inter-
actions between the condensed atoms are sufficiently strong, they will govern
the physics of the many-body system and provide new access to novel quan-
tum phases. Our goal of this chapter is to investigate the underlying physics
of these novel quantum phases. Firstly, we simulate strongly correlated ultra-
cold bosons in a high-finesse optical cavity, and establish the phase diagram
which contains two novel self-organized quantum phases, namely supersolid
and checkerboard solid, in addition to conventional phases such as superfluid
and Mott insulator. In the presence of a harmonic trap, we discuss the effects
of inhomogeneity on the buildup of self-organized phases, as relevant to exper-
iments. Then, we study quantum phases of dipolar bosonic gases in an optical
lattice, which features charge-density-wave, anti-ferromagnetic, supersolid and
superfluid phases.

6.1 BEC-cavity system

6.1.1 Introduction

As opposed to ultracold gases loaded into conventional optical lattices,
novel quantum phases of BEC-cavity system arise, due to the strong coupling
between atomic gases and the cavity mode @ , @, @] Up to now,
however, there is still a lack of many-body simulations of strongly-correlated
bosons coupled to an optical cavity, even though an extended Bose-Hubbard
model has been derived , ] for studying ultracold gases trapped in a

87
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periodic optical potential, generated by a high-finesse cavity. In this section, we
will study a one-component ultracold Bose gas coupled to a single-mode cavity
field, pumped by a standing-wave laser beam in the transverse direction. Since
the cavity field mediates infinitely long-range forces between all atoms ﬂﬁ, ,

|, we investigate the system by means of real-space bosonic dynamical mean
field theory, which captures both strong correlations and spatial inhomogeneity
in a unified framework ﬂﬂ] For the homogeneous case, we mainly investigate
the influence of local two-particle interactions on the buildup of self-organized
phases and identify the transition from a normal to a self-organized phase.
We then focus on the trapped BEC-cavity system and study the effect of
inhomogeneity.

6.1.2 Setup of the BEC-cavity system

Motivated by a recent experiment @], we consider a system of 5"Rb
atoms with scattering length ay, = 5.77 nm and atomic transition wave length
A = 780.2 nm. This system is driven by a linearly polarized standing-wave laser
with a red-detuned wave length A, = 784.5 nm in the direction perpendicular
to the cavity axis. We fix the cavity decay rate as k = 300wg which is close to
the experimental value of k = 2m x 1.3 MHz ﬂﬁ], where wp is the frequency
corresponding to the recoil energy, i.e. Er = hwg = h?/(mA2)(~ 27 x 3.8 kHz).
We choose Uy = g3/A, = 0.1, which leads to an atom-cavity coupling strength
go two orders of magnitude larger than the cavity decay rate x and is in the
strong-coupling regime of cavity quantum electrodynamics M] The setup of
our simulation consists of a cavity in the z-direction, driven by a pump laser in
the z-direction, and a strong confinement freezing the motional degree of free-
dom of the atoms in the third direction m], as shown in Fig. To make the
tight-binding approximation valid, we add an external optical lattice in the cav-
ity direction with a depth of V. = 5ER. The hopping amplitudes for nearest
neighbors are given by J,./Er = (4/v/7)(Va./Eg)®® exp(—2+/V,../Er) and
the Hubbard interaction parameter is U/Ep = 4v/27(as/)\,)(V, V.V, E3) /4
@], where V, (V,,V,) is the standing-wave depth in the z (y,z) direction.
For the on-site coupling matrix elements J§ and .Jj), we use a Gaussian approx-
imation of the Wannier states. In all our calculations, we choose the recoil
energy Egr (wg) as the unit of energy, where we set h = 1 (Er = wg).

6.1.3 Quantum phases of a homogeneous Bose gas

In this part, we simulate a BEC-cavity system in a 2D homogeneous optical
cavity using RBDMFT. The influence of on-site interactions and temperature
on the buildup of self-organized states (supersolid and checkerboard solid) of
bosonic gases in an optical cavity will be investigated. We predict a phase tran-
sition from a superfluid to a supersolid phase of strongly interacting bosonic
gases due to cavity-mediated long-range interactions, and study the robustness
of the supersolid phase in an optical cavity. Here we consider a Ny, = 16 x 16
lattice.
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Phase diagram of the BEC-cavity system — A supersolid is a quan-
tum solid in which a fraction of the mass is superfluid ], which can be
realized with ultracold quantum gases in an optical lattice, such as Bose or
Fermi mixtures with contact interactions [, , or single-component Bose
gases with long-range interactions @, , |. Here, we investigate for
experimentally relevant parameters the robustness of the supersolid phase of
single-component bosonic gases with strong on-site and long-range interactions
in an optical cavity, and the phase transition from the homogeneous superfluid
phase to a supersolid phase. The supersolid phase can be characterized by

(i (=1)"*"bfby)
Sofm > 0 and
superfluid order ¢ = (b) > 0. There are two possible signs of @, i.e. the atoms

occupy even sites for ® > 0 or odd sites for ¢ < 0 ] Naively, if we set the
order parameter ® > 0, which implies a larger atom density at the even sites,
and at the same time choose a negative shifted cavity detuning A/ < 0, this
implies that the coherent scattering between the pump laser and cavity gener-
ates a potential with minima at the even sites, as indicated by the staggered
term in Eq. (3:24]). As a result, the corresponding potential will attract more
atoms towards even sites and the system self-organizes into a steady state. In
the following, we will confirm this general argument via numerical simulations

based on RBDMFT.

the coexistence of the staggered order parameter ® =
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Figure 6.1: Phase diagram at zero temperature with total particle number
Niot = 506. The observed phases here are the superfluid and supersolid phases,
respectively. The cavity decay rate is set to kK = 300Er and the light shift is
Uy = —0.1F}.

Fig. [6.1] shows the phase diagram of the system with scattering length
1.0a, and 1.25a, at zero temperature. There are two distinct phases which
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Figure 6.2: Phase diagram at finite temperature for total particle number
Niot = 506, decay rate k = 300ER, light shift Uy = —0.1F and scattering
length 1.0as. The phases shown here are conventional superfluid and supersolid
at T'= 0.01 F’g, while, at T' = 0.075ER, the phase transition is between normal
phases (¢ = 0). Inset: critical strength V¢ of the standing-wave pump laser
vs temperature for detuning A, = —1000Eg, where the grey curve shows the
disappearance of the superfluid order parameter ¢.

are characterized by ®. When the pump laser is weak, the system is in the
superfluid phase with homogeneous density distribution and ® = 0. In this
case, the mean photon number in the cavity is zero. On the other hand, when
the pump laser is strong enough, more photons will be scattered into the cavity
mode and the atoms will organize themselves into a checkerboard pattern
with |®| > 0. Our simulations confirm the existence of a supersolid phase
of single-component bosons with cavity-mediated long-range interactions plus
strong on-site interactions. In Fig. we observe that the trend of the phase
transition from the superfluid phase to the supersolid phase as a function of V,,
at fixed scattering length a, is consistent with experimental observations ﬂﬁ]
We also investigate the effect of on-site interactions on the phase transition
and notice that the phase boundary is considerably shifted upwards for larger
scattering length, which indicates that more pump laser power is needed to
drive the system into the self-organized phase. We also observe that on-site
interactions have a more pronounced effect on the buildup of the supersolid
phase for a stronger pump laser field. Generally, there is also an unstable state
for positive shifted cavity detuning A, > 0 , @], which is beyond the scope
of this work.
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We now turn to investigate the effect of finite temperature on the critical
pump strength. At a finite temperature, as shown in Fig. [6.2] the critical
pump strength is shifted as a result of the competition between thermal and
quantum fluctuations. From the inset of Fig. 6.2, We observe a minimum of
V7 at low but finite temperature, since thermal fluctuations excite the atoms
from ground state and thus reduce the energy gap between initial and self-
organized states. As a result, less power of the pump laser is needed to stabilize
the self-organized pattern. On the other hand, at high temperature, thermal
fluctuations tend to smear out the self-organized density pattern, and as a
result, more power is needed to stabilize it. To observe the supersolid phase,
however, the temperature should be low enough to maintain the off-diagonal
long-range order ¢, as shown by the grey line in the inset of Fig. [6.2] which
indicates a vanishing superfluid order parameter ¢ = 0. The phase transition
at a temperature of T' = 0.01 E' is between the superfluid and the supersolid
phase with ¢ > 0, while at T' = 0.75F it is between two normal phases with
¢ = 0. Note that the superfluid long-range order at T > 0 with ¢ # 0 in
two dimensions is a mean-field artifact in the thermodynamical limit, while in
reality, the system should exhibit a Kosterlitz-Thouless transition ]

Mott physics in BEC-cavity system — In the previous section, we have
found that on-site interactions strongly shift the phase boundary between the
superfluid and the supersolid phase. We will now investigate this effect in detail
at different fillings. We choose a cavity detuning A, = —500wg, a scattering
length of 2.5a5 and a lattice depth V, = 15ER of the standing-wave pump
laser. This choice of parameters is motivated by the recent experiment ]

Fig. shows the checkerboard order @ (blue line) as a function of filling,
where four possible phases of the BEC-cavity system are observed. Panels
(a)-(d) in Fig. show the density distribution in real space (left) and in
quasi-momentum space (right), a) superfluid phase (¢ # 0 and ® = 0) with
off-diagonal long-range order (phase coherence), b) supersolid (¢ # 0 and
® # 0) with diagonal long-range order (periodic density pattern) and off-
diagonal long-range order, ¢) Mott insulator (¢ = 0 and & = 0) and zero
mean-photon number in the cavity mode, and d) checkerboard solid (¢ = 0
and ® # 0) with diagonal long-range order with finite mean-photon number in
the cavity mode. Now the question is, how we understand the buildup of self-
organized phases of single-component bosonic gases with photon excitation in
the cavity mode. Generally, the excitation of the cavity mode is a collective
effect which is induced by all the atoms in the cavity and depends on the
total particle number, i.e. the more particles occupy the cavity, the more
photons will be coherently scattered into the cavity mode, and the easier the
checkerboard pattern of the density distribution can be formed. In the absence
of long-range interactions, there are two possible phases for strongly interacting
bosonic gases in an optical lattice, superfluid and Mott insulator. The lowest
excitation of superfluid phase is the sound mode which can be easily excited
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Figure 6.3: Left: Buildup of self-organized phases of strongly interacting
bosons in an optical cavity at T = 0. The blue line represents the order
parameter @, the green triangle the Mott insulator and the red triangle the
checkerboard solid. (a)-(d): sketches of superfluid, supersolid, Mott insulator
and checkerboard solid, respectively, with the density distribution in real space
(left) and in quasi-momentum space (right). Parameters are A, = —500FER,
k = 300ER, Uy = —0.1ER and V,, = 15Ep.

due to the lack of the energy gap @], while the lowest lying excitations of
the Mott-insulating phase are the creation of a particle-hole pairs, where an
energy up to the energy gap U is required B] Different excitation properties of
the system in these phases strongly influence the buildup of the self-organized
phase. We can see this trend from the blue line in Fig. [6.3t the order parameter
® becomes nonzero with the increase of the total particle number, and after a
certain value ® decreases to zero in the vicinity of the Mott insulator. With
further increase of the filling, the checkerboard supersolid phase appears again
in the BEC-cavity system. Interestingly, there is also a checkerboard solid
phase appearing at a filling of n = 1.5. Since more photons are scattered into
the cavity mode due to the large particle number, the standing wave in the
cavity direction suppresses the tunneling of atoms and supports the formation
of a superfluid. It is expected that the supersolid phase of the BEC-cavity
system will appear again with a further increase of the total particle number.

To better understand the novel quantum phases discussed above, panels
(a)-(d) in Fig. 63 show four sets of sketches for the real-space (left) and quasi-
momentum space (right) density distributions, respectively. The self-organized
phases are induced by a two-photon process between the cavity mode and the
pump field which effectively gives rise to cavity-mediated long-range interac-
tion. It can be described by the Dicke model, which is essentially an approxi-
mation of equation (B:24)) , , ] For the supersolid phase, besides the
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zero-momentum peak |0, 0) corresponding to the ground state of the ultracold
gases, we observe four additional peaks |+ hk, £hk) associated with the lowest
excited states of the BEC. This indicates that this phase has diagonal long-
range order (periodic density pattern) and off-diagonal long-range order (phase
coherence), as pointed out in Ref. ,@] Here |0,0) and | £+ hk, £hk) are
momentum eigenstates of atoms |p,, p,) where p,(p,) is momentum along the
x(z)-direction. In the checkerboard solid, however, the system only has diago-
nal long-range order, associate with the periodic density modulation. All four
phases can easily be detected experimentally by combining the time-of-flight
method with detection of photons which leak from the cavity.

Figure 6.4: Effects of temperature on the checkerboard order parameter &.
Parameters are A, = —500Eg, £ = 300Eg, Uy = —0.1ER and V, = 15Ek.
Inset: Melting of the self-organized phase as a function of temperature at
fixed filling Niot/Niay = 0.68, where the grey line indicates the disappearance
of superfluid order.

At zero temperature, the phase transition from conventional phases (su-
perfluid and Mott insulator) to self-organized phases (supersolid and checker-
board solid) is driven by quantum fluctuations. At finite temperature, ther-
mal fluctuations also play an important role, which can be understood from
a naive picture: thermal fluctuations excite particles from a site to its neigh-
bor and as a result smoothen the checkerboard pattern. The inset of Fig.
shows the order parameter ® as a function of temperature, which behaves
non-monotonically. This trend can be understood from the competition be-
tween quantum and thermal fluctuations, as explained in the previous section.
We can confirm this statement from the main panel of Fig. 6.4l We observe
that the order parameter ® at temperature T' = 0.05FER increases compared
to its zero-temperature value in some region, while ® decreases again and the
window of the self-organized phase shrinks at a temperature of T' = 0.095Fy.
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It is expected that the self-organized phase will disappear completely at even
higher temperatures due to thermal fluctuations. The grey curve in the inset
of Fig. shows the disappearance of the superfluid order parameter ¢ which
indicates that thermal fluctuations destroy off-diagonal long-range order. Cor-
respondingly, in the main plot of Fig. at temperature T' = 0.095F, the
supersolid phase only exists in the region 1.2 < n < 1.5, while for 0.6 < n < 0.8
the system shows a phase transition into a normal phase without off-diagonal
long-range order.

6.1.4 Quantum phases for an inhomogeneous system
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Figure 6.5: Density distribution n and superfluid order parameter ¢ versus
position on the square (32x32) lattice for different number of atoms N, = 139,
167, 184 and 220 in panels (a), (b), (c) and (d) respectively. Parameters are
A, = —=500ER, k = 300ER, Uy = —0.1ER, V,, = 15ER, with a harmonic trap
Vo = 0.003ER.

We have so far studied the homogeneous case, but in real experiments the
external trap gives rise to inhomogeneity in the system which stabilizes the
coexistence of superfluid phase, Mott insulator, supersolid and checkerboard
solid. In contrast to the case of contact interactions only, we find that the prop-
erties of the system in the optical cavity are strongly influenced by inhomo-
geneity, due to cavity-mediated long-range interactions which are determined
by the density distribution of the whole system. In this section, we will inves-
tigate the effect of the inhomogeneity on the buildup of self-organized phases
of the BEC-cavity system in the presence of a harmonic trap using RBDMFT.
Subsequently, we answer the question how the phases described in Fig. will
manifest themselves in the experiment. Observation of the different phases is
possible by using singe-site addressing techniques in an optical lattice based
on optical or electron microscopy @@] Here we choose a 32 x 32 lattice
with a harmonic trap V5 = 0.003Eg. All residual parameters are chosen as in
Fig. 63l
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Figure 6.6: Density distribution n; and superfluid order parameter ¢; along
the y axis through the center of the trap, where 7 is the lattice site index. Data
points are extracted from panel (b) of Fig. n? is the density distribution
without photons in the cavity mode but with the same total particle number.

Fig. 65 shows the density distributions (upper panels) and superfluid order
parameters (lower panels) in real space for four different total particle numbers
Niot = 139, 167, 184 and 220, respectively. Generally, the larger the total
particle number, the more photons are scattered into the cavity mode, and
thus the easier the system can form the self-organized phase. We observe that
at Nioy = 139, there is almost no checkerboard region, as shown in panel (a).
At Niot = 167, the supersolid phase can be clearly observed in the center of the
trap, since the superfluid core expands at the trap center and more photons are
scattered into the cavity mode. From Fig.[6.3] we expect that the self-organized
phase will disappear again when the number of particles increases to a value at
which a Mott gap arises in the center of the trap. This is clearly shown in panel
(c) at Ny = 184 with an almost vanishing checkerboard order. After further
increase of the particle number to Ny, = 220, the checkerboard order reappears
again. Moreover, we observe a checkerboard solid core with average filling
n = 0.5 building up, which only exists at filling n» = 1.5 in the homogeneous
case for the parameters of Fig. 6.3, i.e. we observe the checkerboard solid
for parameters where it was not yet visible in the homogeneous system, since
spatial inhomogeneity strongly enhances the scattering between pump laser
and cavity mode by modifying the amplitude of the cavity mode through the
density distribution in the presence of a harmonic trap.

To see the supersolid phase more clearly, in Fig. we plot a cut of the
density profile along the y-axis through the center of the harmonic trap. We
observe that the smooth density profile in a conventional optical lattice (green
line) has been strongly changed by the cavity-mediated long-range interaction
due to scattering processes between pump laser and cavity mode in the optical
cavity.
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6.1.5 Summary

In conclusion, we have investigated the self-organized phases (supersolid
and checkerboard solid) of both homogeneous and trapped ultracold Bose gases
coupled to a high-finesse optical cavity by means of RBDMFT, and found the
self-organized phases are robust against strong on-site interactions. At zero
temperature the self-organized phase transition is solely driven by quantum
fluctuations, while at finite temperature thermal fluctuations compete with
quantum fluctuations which enhances the buildup of self-organized phases at
finite but low temperature. In the presence of an external harmonic trap, the
coexistence of superfluid, Mott-insulating, supersolid and checkerboard solid
phases is observed. We found that the buildup of the self-organized phases
is strongly influenced by inhomogeneities in the presence of an external trap,
due to the density dependence of scattering between pump laser and cavity
mode via atoms in the cavity. In principle, these quantum phases in the
homogeneous system can be detected by combining the time-of-flight method
and detecting photons leaking from the cavity mode ﬂﬁ]7 while the coexistence
of different phases in the presence of an external trap can be directly observed
by single-site addressing microscopy [@@] Our results provide new insight
into the BEC-cavity system in the strong coupling regime, regarding emergent
crystallinity and experimental feasibility of observing novel quantum phases
using single-site-resolution probing techniques.

6.2 Strongly correlated dipolar bosonic gases

6.2.1 Introduction

In this section, we will investigate strongly correlated dipolar bosonic gases
in an optical lattice. Usually, interactions in ultracold gases are isotropic and
short ranged. However, dipolar gases have additional long-range anisotropic
interactions, which can give rise to new physics. Actually, numerous inter-
esting phenomena have already been studied by theoretical and experimental
investigations of ultracold dipolar gases m, ﬁ: @, @, @] The door
towards exploring the many-body physics originating from dipole-dipole inter-
actions in ultracold gases has thus been opened. Up to now, however, there is
still a lack of theoretical studies of the effect of strong dipole-dipole interac-
tions on quantum magnetic phases of two-component dipolar bosonic gases in
an optical lattice.

In this section, we investigate quantum phases of ultracold dipolar bosonic
gases in a 2D square optical lattice, by means of real-space bosonic dynamical
mean field theory. This section is organized as follows: firstly, we give a
description of the model and our approach. We then study the finite-size
effect on the phase diagram of a homogenous dipolar system, and discuss the
influence of dipole-dipole interactions on magnetic phases.
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6.2.2 Model and method

Expanding field operators in the basis of Wannier functions and keeping
terms only in the lowest band, one can obtain the extended Bose-Hubbard
Hamiltonian for dipolar bosonic gases, as shown in Eq. ([B306). For two-
component dipolar bosonic gases loaded into an optical lattice, the physics of
this system can be captured by an extended two-component Hubbard model

- —taz bJf bja—f—hC + = Uznm nw_(;aa’)

(3,9) ioo’

+ ) “’J" RigMjr + Z (Vi — 15 i (6.1)

i#j,00'

In this Hamiltonian, (i, j) represent the nearest neighbor sites 7, j. The bosonic
creation (annlhllatlon) operator for species o at site i is b} (b;, ), and the local
density is n;, = bT obis. t, denotes the hopping amphtude for species o, Uyyr
the inter- and intra-species interactions, u, the global chemical potential for
species o, and V; the harmonic trap. In the following we focus on a 2D square
lattice, and assume that the external electric field, which polarizes the dipole
moment in a certain direction, is oriented perpendicular to the optical lattice
plane, with V44 %o = Caa /A7|R; — R;|® where R; is the dimensionless position
vector of lattice site 7.

In this Hamiltonian, it is worth noticing that inter-site interactions only
contribute on the Hartree level in the high-dimensional limit, this motivates
us to keep only the Hartree contribution of the inter-site interaction in the
Hamiltonian as an approximation to the original one @, @]

V:iip ﬁiaﬁja/ V;iip ~ ~ 1 N
= D D 12 jo o’ — S \'lig’ y 2
2 Z R, — R,[3 Z R, — R,[? (fjo) | 7 2(” ) (6.2)
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where the strength of dipole-dipole interaction is Vi, = Cyq/4m. After taking
the Hartree approximation, we perform investigations of the strongly corre-
lated dipolar system with long-range interactions by using RBDMFT, which
is an extension of BDMFT and fully captures the spontaneous breaking of
translational symmetry of the lattice system.

6.2.3 Results

In this section, we consider a homogenous system in a 2D square lattice and
focus on the situation of total filling n = n, + ngy = 1 with balanced densities
ny, = ng = 0.5. We calculate gound-state phase diagrams of the dipolar bosonic
gases for different dipole strengths, and investigate the influence of dipole-
dipole interactions on magnetic phases. To study the anti-ferromagnetic phase,
we focus on a typical interaction regime with the interactions U, = Uy = 12U,
which can be accessible by Feshbach resonances. In all our calculations we set
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Figure 6.7: Zero-temperature phase diagram for a two-component dipolar gas
in a 2D square lattice (12 x 12) as a function of hopping parameters. The
interaction parameters are U, = U; = 12 Uy, the total filling is n = 1 with
ny = ng = 0.5, and the dipolar interaction strength Vg, /Upq = 0.0.

Upg = 1 as the unit of energy, and z is the number of nearest neighbors for
each site.

First, we study the phase diagram of Bose-Bose mixtures with dipolar
interaction strength Vg, = 0 and check the finite-size-effect on the phase
diagram. In Fig. 67, we obtain the zero-temperature phase diagram for a
2D lattice system, which is qualitatively similar to the 3D system, as shown
in Fig. B3l Here, we observe four distinct phases, i.e. superfluid (SF), XY-
ferromagnetic phase (XY), anti-ferromagnetic phase (AF), and supersolid (SS).
As discussed in subsection (5.I1.2]), superfluid phase is characterized by the su-
perfluid order parameter ¢, > 0, XY-ferromagnetic phase by the two-body
correlator ¢pg = (bd") — (b){d) > 0 with ¢, = 0, the anti-ferromagnetic phase
by A%p = [nya — nwal > 0, and the supersolid phase by both A%, > 0 and
o > 0,04 = 0 (if t, > t4), where v denotes the component and « is the
sublattice (&« = —«). As shown in Fig. [6.7] we find that the results obtained
from RBDMFT for a N, = 12 x 12 square lattice, are in a good agreement
with single-site BDMFT simulations. Therefore, we simulate a dipolar bosonic
system in a Np,, = 12 x 12 square lattice in the following of this section.

Next, we study the phase diagram of Bose-Bose mixtures, with a weak
dipolar interaction strength Vg, /Upq = 0.1 (Fig 6.8) and all the other param-
eters as in Fig Again, we observe four phases in the system, i.e. the
superfluid, supersolid, XY-ferromagnetic and anti-ferromagnetic phase. When
both species acquire large hopping amplitudes, we observe a superfluid phase
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Figure 6.8: Zero-temperature phase diagram for a two-component dipolar gas
in a 2D square lattice (12 x 12) as a function of hopping parameters. The
interaction parameters are U, = U; = 12 Uy, the total filling is n = 1 with
ny = ng = 0.5, and the dipolar interaction strength Vg, /Upq = 0.1.

with atoms delocalized over the whole lattice. In contrast, when the hopping
amplitudes of both species are relatively small, the system manifests itself as
a Mott insulator with magnetic ordering at sufficiently low temperature, i.e.
XY-ferromagnetic or anti-ferromagnetic phase. Another phase appears when
the hopping amplitudes are very anisotropic. The species with larger hopping
is more easily delocalized and develops a superfluid order along with a spatial
density wave pattern in real space, which corresponds to a supersolid phase.
Since the dipole-dipole interaction is weak, the whole structure of the phase
diagram is qualitatively similar to Fig. [6.7, but we observe that the Mott-
insulating region of the dipolar gas shrinks, since the long-range dipole-dipole
interactions effectively enhance the total interaction. This leads to the phase
transition from the Mott insulator to the superfluid phase occurring earlier
and correspondingly, the phase boundary shifts to lower hopping.

Finally, we investigate the phase diagram of Bose-Bose mixtures with a
strong dipolar interaction strength Vi, /Uy = 0.3. As before, we observe
four phases in the system but with new phases appearing, and the structure
of the phase diagram is strongly influenced by the long-range dipole-dipole
interactions. When both species have comparably small hopping, a charge-
density-wave (CDW) pattern emerges, characterized by a checkerboard density
distribution, i.e. a total filling n = 2 on one site but with vanishing density
on its neighbors, as shown in Fig. EI0. Upon increasing the hopping of one
species, the corresponding atoms tunnel to its neighbors to lower the energy of
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Figure 6.9: Zero-temperature phase diagram for a two-component dipolar gas
in a 2D square lattice (12 x 12) as a function of hopping parameters. The
interaction parameters are U, = U; = 12 Uy, the total filling is n = 1 with
ny = ng = 0.5, and the dipolar interaction strength Vg, /Upq = 0.3.

the system, which indicates that an anti-ferromagnetic phase can develop, as
shown in Fig[6.9 We find that the first-order transition region between CDW
and anti-ferromagnetic phase is connected by a small window of supersolid
phase rather than ordinary coexistence, due to the presence of the long-range
interactions ﬂ@] Increasing the hopping amplitude further on, the corre-
sponding atoms delocalize over the whole lattice and the system manifests
itself as a supersolid phase. We observe the small window of supersolid phase
for only contact interactions (see Fig. B3l B.7]) becomes larger, which indicates
the supersolid phase is more favorable in the system with long-range interac-
tions. When both of the species have comparably large hopping amplitudes,
the atoms are more easily delocalized and therefore superfluid.

To better understand the corresponding phases discussed in Fig. [6.9 we
plot four sets of density distributions n;, (upper panels) and n, (lower panels) in
real space in Fig. [0.I0 From the left to the right, the corresponding phases are
CDW, supersolid, anti-ferromagnetic and superfluid phase, respectively. For
the CDW phase, we observe a charge-density wave pattern with both species
sitting in the same sites, while for the anti-ferromagnetic phase, the system de-
velops anti-ferromagnetic order A% . In the supersolid phase, a checkerboard
pattern arises for the the light atoms (larger hopping) with non-integer filling
which indicates finite superfluid long-range order. Hence it has diagonal and
off-diagonal long-range order. This density profile could be detected via in situ
measurement with single-site addressability in optical lattices using electron
or optical microscopy @]
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Figure 6.10: Zero-temperature density profile for a two-component dipolar
gas in a 2D square lattice, with a dipolar interaction strength Vg, /Upq = 0.3.
From the left to the right: CDW, supersolid, anti-ferromagnetic, and superfluid
phase, respectively.
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6.2.4 Summary

In conclusion, in this section we have investigated the physics of strongly
correlated dipolar bosonic gases in optical lattices, and studied the influence
of long-range interactions on the magnetic phases. Due to the competition
between the on-site and long-range interactions, novel quantum phases ap-
pear, which feature charge-density and also notably ordered phases with anti-
ferromagnetism in the Mott domain. We have observed that the supersolid
phase is more favorable due to the presence of the long-range interactions.
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Chapter 7

Spectroscopy of Strongly Correlated
Ultracold Bosons

7.1 Introduction

The results presented in the previous chapters, are for ground-state proper-
ties or thermodynamics of ultracold gases in optical lattices. In this chapter, we
address the momentum-resolved excitational properties of strongly correlated
bosonic gases in an optical lattice via Bragg spectroscopy ﬂﬁ using the time-
dependent Gutzwiller method. In recent years, spectroscopic techmques have
been successfully applied to ultracold atoms, such as RF S troscopy ],
lattice shaking |96, |, and Bragg spectroscopy ﬂﬂ , which opens
up the possibility of studying excitations of strongly correlated model systems.
Up to now, these Bragg Sectroscoplc experiments mostly focused on weakly
interacting condensates ] or the Mott insulating |2 _ | regime. In this
chapter, we investigate the excitational properties of a strongly interacting
superfluid, and identify the recently described amplitude mode %
ﬁ] In the weakly interacting regime, the gapless sound mode, corresponding
to the collective mode of Bo ohubov excitations in a lattice has been inves-
tigated experimentally _ There exists a new type of excitation in
addition to the gapless sound mode for the strongly interacting superfluid,
namely the gapped amplitude mode. However, this strongly interacting sys-
tem cannot be described by linear response calculations in the perturbative
limit with Bragg spectroscopy ﬂﬁ] and there has been no clear observation of
the amplitude mode yet in previous experiments |2 _ To bridge the gap be-
tween existing idealized theory predictions and our experimental observations,
we present a number of important experimental effects of Bragg spectroscopy
and investigate the underlying physics of the gapped mode in this chapter.

)

7.2 Model and method

7.2.1 Model

We consider bosonic atoms in an optical lattice in the presence of external
Bragg lasers. At sufficiently high lattice depth and moderate filling, the system

103
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is well described by the single-band Bose-Hubbard model

Ho=—T> (bb, +hc)+ Y eblb; + ) > " 0lbibb; + Vira, (7.1)
@, i %

where b denotes the creation operator for an atom at lattice site 7, .JJ the tun-

neling between nearest neighboring sites, U the on-site interaction parameter,

and ¢; the local energy offset. V., denotes the effect of the Bragg beams on

the many-body system, which are used for probiniﬁ‘h%j% and momentum
: J.

resolved excitational structure of ultracold gases

Excited state

Energy

ho,

Momentum

Ps

Figure 7.1: Sketch of Bragg scattering, where Awp denotes the energy shift
and pp the momentum kick between the initial and final states.

Bragg Spectroscopy — We consider a single-component ultracold gas in
an optical lattice, exposed to a pulse of two intersecting laser beams, which has
a slight frequency detuning wy; — wy = Ep/h = wp and wavevector difference
pp = k1 — ko, where the two different lasers are at frequencies (wavevectors)
wy (k1) and ws (k2). When the condition for Bragg scattering becomes a res-
onance condition (the incident frequency and momentum differences matched
to a many-body excitation), atomic many-body states with the corresponding
momentum and energy difference are coupled, the condensate will be illumi-
nated and excited, and a fraction of the condensate atoms will be transferred
from the ground state to an excited state with finite momentum due to the
Bragg kick (see Fig. [[T]). Since all relevant atomic states correspond to the
same internal hyperfine atomic state and the Doppler-shift can be neglected
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in this regime, the effect of the Bragg lasers on a single atom can thus be
expressed by the Hermitian operator , ]

Vi

Vow =g [0 4 o) ]+ ) +pal (72

where V] = 2hwpg denotes the Bragg intensity (the Bragg lasers are described
by a classical field, via replacing the photon creation and destruction operators
with e-numbers, as long as the Bragg beams are sufficiently strong), where wg
denotes the two-photon Rabi frequency. The physical picture of this process
is: the two laser beams interfere to form a moving wave intensity modulation,
and, due to the ac Stark effect, atoms exposed to this intensity modulation
experience a conservative optical potential with a spatial modulation. At res-
onance, momentum and energy will be transferred from the two laser beams
to the condensate. Based on this, the excitation properties of the condensate
can be extracted via Bragg spectroscopy.

The question is how to express the Bragg operator ([L2) in the Wannier
basis in the Hamiltonian (ZI]). As we know, any operator can be expressed in
a complete basis set, such as localized Wannier functions in multiple bands.
Within a single band Gutzwiller calculation, the lowest-band approximation
entails neglecting all terms that do not couple states within the lowest band.
Within this approximation, any single particle operator can be written as

A= Ayblby. (7.3)

L

The Bragg operator can also be described in the Wannier basis. For the sake
of simplicity, here we assume the transfer of momentum (Bragg kick) along
one lattice axis only, which we will call the x-direction. The extension to other
directions is straightforward. The effect of the Bragg lasers on the atomic
system can be described by

Vora = > (€7 Ay + e A5 )b, by (7.4)

LU Ly le

We still need to derive a explicit formula for the Bragg operator for real
calculations. To proceed, Eq. ([C2) is written in another form:

. Vil .. T
Fira = (701 (0m) + "plpr) ). (75)

Here pf(pp) = > &;B 4 plp, Where af(a,) is the creation (annihilation) oper-

ator for an atom with momentum p. In a two-dimensional setup, where the
angle between momentum kick and the z-axis of the lattice is ¢, pl(pp, ¢) =

A

Dol cos 6.py-+pp sin ¢(lp- EIXpressing this single particle operator in the basis
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of two-dimensional single-band Wannier states yields the matrix elements of
the Bragg operator in factorized form

pA'(rlz,ly):(lx/ dyr) (p37 ¢) = eiapB (L cos oy sin @) (76)

T N(ps+pp cos ¢) N(pz)

[1 S gianalte—ty) oo k=K et cos ) (ao,k—K(pz))]
L

Pz

1 . , _ NN _

iapy(lz—1,) (c0,k=K(py+pp cos¢))* (ao,k=K(py))

. [Z > e ) Ny }
Pz

where cg\?&;gﬁ:K(p ) denotes an eigenvector of a single particle in an optical lattice

with momentum 2N (p)g, + k in the lowest band ag, where the indices are

defined as N(p) = [5-] and K(p) = p — a[5,] with ¢ being the wave vector

of the lattice laser. In free space, p'(pg) acts as a translation operator in
momentum space and simply transfers atoms into higher momentum states
pg, if energetically allowed. However, in the presence of an optical lattice,
multiple scattering processes are enhanced and may lead to the occupation of
a broad distribution of momentum components.

7.2.2 Method

For weakly interacting bosonic system, the Bose-Einstein condensate can
be described by the Gross-Pitaevskii equation. For strongly interacting bosons,
the time-dependent Gutzwiller mean-field theory ﬂﬁ] can be applied, where
the coupling between the lattice sites is treated in a mean-field approxima-
tion. Within this approximation, the total many-body wavefunction is given

~phym
by [¥) = T[>0, fi (bii! |0). In practice, the infinite sum over the particle
numbers n is truncated by introducting a cut-off N., depending on the inter-
action strength and the local density. The dénamics is then governed by the

finite set of coupled differential equations , ]
ifs = =Y (Va1 fin+ Vi, fi)
(ig)

+ (%n(n — 1) + Viwalt) + ei) o (7.7)

where ®; = (b)) = >, Vn(fr_1)" fr.

This time-dependent Gutzwiller method is a highly efficient method for
studying dynamics in higher dimensional lattices and it conserves particle num-
ber and energy exactly. The validity of the Gutzwiller approximation is justi-
fied by the fact that for small interactions it incorporates Gross-Pitaevskii dy-
namics ﬂﬁ] While for a strongly interacting condensate in the vicinity of the
Mott transition, it includes the physics of the effective theories @, E?_XZL ]
Therefore, it correctly recovers both the atomic limit U/J — oo and time-
dependent Gross-Pitaevskii theory within a coherent state description for weak
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interactions. However, the Gutzwiller approximation, described here, is re-
stricted to zero temperature, since it neglects phase fluctuations. Therefore,
we only consider T" = 0 here. In the following section of this chapter, the
ground state is first determined and subsequently time evolved in the presence
of the Bragg beams. The time evolution is determined by a set of effective
local Eqgs. (L), coupled non-linearly to the states at other sites.

7.3 Results

In this part, we will measure dispersion relations of a single-component ul-
tracold bosonic lattice system via Bragg spectroscopy, using the time-dependent
Gutzwiller method. Based on a classical treatment of the laser field, as long
as the Bragg beams are sufficiently strong, the effect of the time-dependent
Bragg field on the atomic system can be described by the single-particle op-
erator in Eq. (ZXH). In this section, the influence of on-site interactions on
the dispersion relation of strongly correlated ultracold bosonic systems in an
optical lattice will be investigated, and comparison between theoretical results
and experimental observations made. In all our calculations, we focus on the
physics within the lowest band, requiring all relevant energy scales to be lower
than the band gap. We choose the recoil energy F, as the unit of energy.

7.3.1 Bragg spectroscopy beyond perturbation theory

In this section, we investigate beyond perturbation theory the effect of fi-
nite Bragg laser intensity on the dispersion relations of the ultracold bosonic
gas in an optical lattice. Qualitatively, ultracold atoms exposed to the Bragg
lasers can be transferred between different quasi-momentum states such as
k=0— pp, while at the same time the ultracold gas will absorb energy from
the Bragg lasers, due to two-photon Raman processes. If the Bragg lasers are in
resonance, a large fraction of the ultracold gas is excited to a finite momentum
state, as shown in Fig. To obtain quantitative information about excited
states, the effect of the Bragg pulse shape and intensity on the response of the
ultracold gas should be investigated. In particular, a strong probing intensity
V1 is experimentally required for strongly correlated bosonic gases, considering
the exponentially growing time scale 1/.J versus lattice depth V; and the lim-
ited coherence time for the pulse. Correspondingly, the effect of the probing
beams should be treated beyond the linear response framework. Analyzing
the response of the ultracold gas, we can extract the dispersion relation of the
strongly correlated many-body system. For brevity, all dispersion relations and
results shown in the following are along the line, connecting the I' = (0,0, 0)
and M = (1,1,0) points in the first Brillouin zone.

The first effect on the response of ultracold gases needed to be addressed
in a realistic simulation of Bragg spectroscopy is the pulse shape of Bragg
beams. As we know from time-dependent perturbation theory, it leads to
the characteristic sinc? response in frequency space for a square pulse with
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Figure 7.2: Dispersion relation of strongly correlated single-component ultra-
cold gases in an optical lattice: Energy absorption (a) and quasi-momentum
density (b),(c) spectra for a square pulse at high intensity V7 = 0.1F, (insets:
weak intensity V1 = 0.005F,.) in the intermediate interaction V; = 9 regime and
for Bragg momentum |pg| = 7/a (From Ref. @]) The resonance frequen-
cies predicted from the maxima of the high intensity energy absorption spectra
(plotted as gray squares in (d)) contain a systematic uncertainty quantified by
the FWHM of the pulse after 10ms ~ 3.26/.J indicated by the error bars and
shaded region in (d). The comparison with the true quasiparticle energies
(dashed white lines in (a-c), black circles in (d)) reveals significant discrepan-
cies. For comparison in (d): The blue dotted line is the Bogoliubov result, the
green dashed lines are the results from Ref. ﬂﬁ} for the amplitude and sound

modes (w(k)=10v2Uney with 1)y determined by Gutzwiller method).

the Bragg intensity V; being constant over a fixed time interval ¢, as shown in
Fig. Another essential effect that has to be considered is the finite intensity
of the probing beam. The analysis of this effect requires a treatment beyond
the linear response of the system, as shown in the spectra of the full time-
dependent Gutzwiller calculation in Fig. While the response in the limit
of small probing intensity V;, shown in the insets of Fig. [[2(a)-(c), is given
by d-shaped peaks as expected, there is a drastic non-trivial broadening of the
different peaks for typical experimental probing intensities Vi ~ 0.1F,, shown
in the corresponding main figures, respectively. This indicates a breakdown of
the non-interacting quasiparticle picture of the many-body excitations, due to
the influence of the probing beams. Whereas the amplitude mode’s signature
is generally stronger in the energy- and n(k = 0) than in the n(k = pp) profile,
it indicates that the scaling of its spectral weight is nonlinear in the probing
intensity Vi, that is, it is beyond linear response in this large Vj - ¢ regime, as
shown in Figs. [[2)(a),(b).

In addition to the broadening of the spectra at high probing intensity Vi,
the supposed resonance frequencies of all modes (gray squares in Fig. [[2(d))
are systematically shifted to lower frequencies with respect to the true quasi-
particle energies (indicated by dashed white lines in Fig. [[.2(a)-(c) and circles
in d)), consistent with RPA ]), i.e. the quasiparticle energies are influ-
enced by probing Bragg beams. The error bars and shaded areas in Fig. [[.2(d)
indicate the FWHM of the energy absorption profile after ¢ = 10ms, quan-
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Figure 7.3: (a,b): Dispersion relations for the homogeneous system in the linear
response limit at n = 1 (a) and density-dependence at |k| = 7/a (b) in the
superfluid for weak (V; = 5, black circles) and strong (V; = 13, blue squares)
interactions (From Ref. ]). Corresponding Bogoliubov results ﬂiﬁ] are
shown as black dashed lines in (a). (c,d): Hlustration of the order parameter
for a coherent excitation of the phase (sound) mode (c) and the amplitude
mode (d) in a homogeneous condensate at k = (0.8/a,0,0) and V; = 13. The
projection of all v;’s in the complex plane is shown by the black ellipses: for
the sound mode (c), the oscillation is almost exclusively in the tangential, for
the amplitude mode (d) mainly in the radial (i.e. in the amplitude) direction.

tifying the systematic uncertainty in the resonance energies. To the best of
our knowledge, this has not been investigated in the analysis of experimental
data thus far. In addition, two further broadening effects accounted for in
our simulation are the frequency broadening due to the finite pulse time, as
well as the inhomogeneous trapping potential. A shallow trap and low filling
n < 1.05, due to the strong density dependence of the mode resonance fre-
quencies, are crucial for an unambiguous identification of the amplitude mode.
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After taking all these broadening effects into account, the good quantitative
agreement between theory and experiment in the spectra is achieved, as will
later be shown in Fig. [[4lb). In addition, at intermediate interactions V; =9
(U/J =~ 8.55) and density n = 1 shown in Fig. [[2[d), neither Bogoliubov
theory (dotted blue line), nor the theory for strongly correlated systems [@]
(dashed green lines) remains valid, while the dispersion relation obtained by
the dynamic Gutzwiller method (black circles in Fig. [[.2(d)) is valid and con-
tinuously connects these two limiting theories.

We now turn to address the dependence of quasiparticle energies of the
different modes on the density. To suppress the effect of Bragg lasers on
the dispersion relation, we apply weak Bragg beams to the strongly corre-
lated ultracold many-body system, i.e. linear response theory is valid. From
Fig. [[3(a), we observe that Bogoliubov theory is valid and gives reasonable
results in the weakly interacting limit. It is worth noticing that the depen-
dence is non-trivial for strongly interacting bosonic systems, even though for
the weakly interacting case, it depends approximately linearly on the density
(black dotted lines in Fig. [[3[(b)). The strong dependence can be understood
from the excitational particle and hole branches, which may cross each other
in the Mott insulator, i.e., crossing the phase transition into the superfluid, the
emerging condensate couples the particle/hole branches in the equations of mo-
tion, hybridizing these and leading to avoided mode crossings at the previous
intersection points, as is shown by the blue squares in Fig. [[.3[(b). We notice
that in the superfluid regime the sound (amplitude) mode remains the ener-
getically lowest (second lowest) lying mode. Experimentally, a probing beam
at resonance induces time- and position-dependent oscillations of the density
and the spatial order parameters ¢; = (b;). In the theoretical description,
these excitations correspond to coherent states of the respective quasiparticle,
as illustrated in Fig. [[3(c),(d): a gapless sound mode excitation leads to a
dominant spatial and temporal oscillation of the phase and a density wave,
whereas an excitation of the amplitude mode leads mainly to an oscillation
of the amplitude of v; and a strong suppression of the density modulation.
The oscillation of [¢);] at constant density can thus be understood as a local
periodic transfer of particles between the condensate and the non-condensate.

7.3.2 Comparison with experimental observation

In this part, we make comparisons between the numerical simulations and
experimental observations. In the experiment, a Bose-Einstein condensate of
8TRb atoms is loaded into the lowest band of a 3D cubic optical lattice with
a spacing of ¢ = 515nm and intensity of V; recoil energies FE,., as described in
details in Ref. M}, where the system is well described by the Bose-Hubbard
model. Subsequently, two Bragg laser beams with a slight frequency detuning
wp, but essentially the same wavelength A = 781.37nm (i.e. |wg| < ¢/)),
lying in the x-y-plane of the optical lattice at a coincident angle 65 = 45°,
are applied. This allows the ultracold atoms to undergo a two-photon Raman



7.3 Results 111

0.7
> 0.6}
E
5 | 5
2 0.5
< 04}

4

Uk
2 0.06F
(7))
5 3
o
>0.04}
5
G
80'02- 2
‘;’; (€)
_Q 0 1 1 1 1 1 1 1 1 1
© 0 200 400 600 800 1000

Bragg frequency wg/ 21 [HZ]

Figure 7.4: Comparison of the experimental visibility (a) and theoretically
predicted energy absorption (b) at |pg| = 7/a using a Blackman-Harris pulse
of 10ms in an optical lattice with Vi = 13 in a 3D trap (From Ref. ).
A maximum intensity V; = 0.27F, and the experimentally determined total
particle number N,,, = 510" 4 33% and w = 27 - (26,26,21) Hz trapping
frequency were used for (b), leading to a maximum central density n = 1.05.
The lower peak is the sound mode, mainly broadened by the high intensity of
the Bragg beam to lower frequencies. The upper peak at 650Hz is the gapped
amplitude mode, broadened mainly by the trap. Figures (c,d,e) show the theo-
retically predicted trap broadened logarithmic quasi-momentum distributions
in the first Brillouin zone at the frequencies marked by the green lines in (b).

process, in which the momentum kick an atom experiences is given by |pg| =
(4 /) sin(20p). This specific experimental setup allows the system to be
probed along the nodal direction. To minimize the oscillatory response due to
the restricted Bragg pulse time and pulse shape, a Blackman-Harris pulse [@]
is applied to obtain the main results shown in Fig. [Z.4], both in experiment and
theory.

The resonance frequency can be determined from the strongest loss in the
momentum component n(k = 0), gain in n(k = pg), energy absorption or
reduction in the condensate fraction, as shown in Fig. [[4l(a),(b), where the
theoretical simulation is in good agreement with the experimental observation.
The lower peak at ~200Hz in the spectra is the trap- and intensity-broadened
sound mode, whereas the higher peak at ~ 650Hz is the amplitude mode,
broadened mainly by the strong density dependence. Experimentally, an addi-
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tional complication arises due to the large depletion of the condensate at large
Vs. To avoid the noise, therefore, the lattice depth is ramped down linearly
over 10ms to Vi = 10 after exposure to the Bragg beams. Subsequently, the
visibility, shown in Fig.[[4a), is extracted from the time-of-flight image of the
equilibrated atoms and is monotonically related to the absorbed energy. De-
termining these resonance positions for a range of different momenta pp leads
to the dispersion relations for the Bogoliubov, amplitude and gapped modes.
We also notice that for the lattice system, with increasing U/.J, backscattering
transitions are enhanced and at longer times higher order transitions become
relevant. This can also be observed from the physical momentum distribution
n(p) = (ala,), which is directly related to the quasi-momentum distribution,
as shown in Fig. [.4)(c)-(e).

7.4 Summary

In conclusion, we have theoretically and experimentally observed the gapped
amplitude mode of a strongly correlated superfluid, by using Bragg spec-
troscopy. Good quantitative agreement between the experimental visibility
and the theoretical prediction of a time-dependent bosonic Gutzwiller calcu-
lation is found, after taking the full spatial trap profile, finite pulse time and
high intensity of the probing beam into account. This shows that Bragg spec-
troscopy is a suitable method for probing, not only the momentum-resolved
quasiparticle structure of Bogoliubov mode, but also the more exotic collec-
tive amplitude mode excitation. For a clear signal of the latter in a strongly
interacting superfluid, a shallow trap on the experimental side and a theoret-
ical treatment beyond the perturbative linear response regime are essential.
Whereas a finite Bragg beam intensity is vital for a clear spectroscopic re-
sponse of the amplitude mode, it leads to a renormalization of the sound-
and amplitude-mode resonance frequencies, which has to be accounted for in
a quantitative comparison of experiment and theory.



Chapter 8

Conclusions and Outlook

In this thesis, we have investigated strongly correlated bosonic gases in an
optical lattice, mostly based on a bosonic version of dynamical mean field the-
ory and its real-space extension. Emphasis is put on possible novel quantum
phenomena of these many-body systems and their corresponding underlying
physics, including quantum magnetism, pair-superfluidity, thermodynamics,
many-body cooling, new quantum phases in the presence of long-range in-
teractions, and excitational properties. Our motivation is to simulate many-
body phenomena relevant to strongly correlated materials with ultracold lat-
tice gases, which provide an excellent playground for investigating quantum
systems with an unprecedented level of precision and controllability. Due to
their high controllability, ultracold gases can be regarded as a quantum simula-
tor of many-body systems in solid-state physics, high energy astrophysics, and
quantum optics. In this thesis, specifically, we have explored possible novel
quantum phases, thermodynamic properties, many-body cooling schemes, and
the spectroscopy of strongly correlated many-body quantum systems. The
results presented in this thesis provide theoretical benchmarks for exploring
quantum magnetism in upcoming experiments, and an important step towards
studying quantum phenomena of ultracold gases in the presence of long-range
interactions. To take into account the strong correlations in lattice systems,
BDMFT/RBDMFT has been developed and implemented to provide a non-
perturbative description of zero- and finite-temperature properties of the ho-
mogeneous,/inhomogeneous Bose-Hubbard model including magnetic ordering,
which cannot be resolved within static mean-field methods.

BDMFT treats condensed and normal bosons on equal footing and is a non-
perturbative method, which describes bosonic gases in an optical lattice. It
can be regarded as an expansion in 1/z around the Gutzwiller method, where
z denotes lattice coordination number, and it captures the dynamical correla-
tions, which are crucial in particular for multispecies systems in optical lattices.
This method is well-controlled in the limit of high lattice coordination number
z and becomes exact in infinite dimensions. We derive the self-consistency
equations and present the BDMFT equations as a controlled 1/z expansion
up to subleading order, based on a uniform scaling ~ 1/z of the bosonic hop-
ping amplitude. To leading order, this yields Gutzwiller Mean-Field theory,
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while the natural extension to the subleading terms of order O(1/z) yields the
BDMFT equations. We then developed real-space bosonic dynamical mean-
field theory for describing systems in an inhomogeneous environment, e.g. in
an external harmonic trap. The crucial difference to the standard homoge-
neous BDMFT is that here we are going beyond a single-site approach and
taking into account that different sites are not equivalent to each other, thus
accounting for the inhomogeneity of the system.

With this newly developed BDMFT/RBDMFT, we have theoretically in-
vestigated Bose-Bose mixtures in 2D and 3D optical lattices. Due to the
inter-species interactions, the phase diagram is very rich. This system can be
effectively described by the Bose-Hubbard model. We have specifically con-
sidered the case of filling n = 1 and n = 2 per site. We have mapped out the
phase diagram and obtained diverse phases such as the superfluid, unordered
Mott state, XY-ferromagnet and anti-ferromagnet for positive inter-species
interactions, and the pair-superfluid phase for negative inter-species interac-
tions. In addition, we have investigated the inhomogeneous (trapped) bosonic
gases, which are more closely related to the experimental situation. We have
included the effect of the external confining potential via RBDMFT, which
assumes site-dependent self-energies. In parallel, we performed also a comple-
mentary calculation based on a Local Density Approximation (LDA) combined
with BDMFT which is computationally more affordable. Comparing results of
both methods, we examined the magnetic properties of the system for a wide
range of parameters. To the best of our knowledge, this is the first systematic
and non-perturbative study of the magnetic properties of a two-component
inhomogeneous Bose-Hubbard model. It will bring more insight into ongoing
experiments on Bose-Bose mixtures in optical lattices. However, at present,
it is still challenging to observe these quantum magnetic phases in an optical
lattice due to the very low critical temperatures resulting from second-order
tunneling processes, and new cooling schemes are needed to reach these tem-
peratures in experiment. Therefore, we subsequently explored the thermo-
dynamics of interacting many-body systems and investigated the validity of
spin-gradient demagnetization cooling, which is in principle capable of cool-
ing the system down to the critical temperature of magnetic order. We also
calculated the finite-temperature phase diagram and remarkably found that
the system can be heated from the superfluid into the Mott insulator at low
temperature, analogous to the Pomeranchuk effect in 3He. This provides a
promising many-body cooling technique.

We have also investigated the physics of strongly correlated ultracold bosonic
gases in optical lattices with long-range interactions. These systems realize
extended Bose-Hubbard models, and the physical properties of such gases are
dominated by long-range interactions. There are two possible ways to include
long-range interactions: coupling a Bose-Einstein condensate to a cavity, or
loading dipolar bosonic gases into an optical lattice. Due to the competition
between the on-site and long-range interactions, novel quantum phases appear.
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For a BEC coupled to an optical cavity, we have investigated self-organized
phases (supersolid and checkerboard solid) of both homogeneous and trapped
systems by means of RBDMFT. We have found that these self-organized phases
are robust against strong onsite interactions at zero temperature, where the
self-organized phase transition is solely driven by quantum fluctuations. In
the presence of an external harmonic trap, the coexistence of superfluid, Mott-
insulating, supersolid and checkerboard solid domains is observed. We find
the buildup of these self-organized phases to be strongly influenced by the in-
homogeneity induced by an external trap, due to the density dependence of
scattering between the pump laser and the cavity mode. Self-organized phases
could be detected by combining time-of-flight measurements and the detection
of photons leaking from the cavity, while the coexistence of different phases in
the presence of an external trap could be directly observed by quantum gas
microscopy with single-site resolution. For dipolar systems, we have investi-
gated the strongly correlated dipolar bosonic gases in optical lattices, based
on RBDMEF'T. Specifically, we considered the case of filling n = 1 per site at
zero temperature for different dipole-dipole interaction strengths. We have
mapped out phase diagrams, which contains novel quantum phases, due to
the competition between on-site and long-range interactions. We expect that
these novel quantum phases would be observed experimentally in the future,
through including the strong dipole-dipole interactions as a result of, perma-
nent or induced, magnetic or electric dipole moment, which can be tuned by
an applied external magnetic or electronic field.

Finally, we investigated the spectroscopy of strongly correlated bosonic
gases in an optical lattice, based on the time-dependent Gutzwiller method,
which can efficiently describe the strongly interacting system. We observed two
collective modes: the sound mode and the amplitude mode. Both modes have
been detected using Bragg spectroscopy in a strongly interacting condensate of
ultracold atoms in an optical lattice. This shows that Bragg spectroscopy is a
suitable method for probing not only the quasiparticle structure of Bogoliubov
mode with full momentum resolution, but also of the more exotic collective
amplitude mode excitation by going beyond the linear response regime. For
a clear signal of the amplitude mode in a strongly interacting superfluid, a
shallow trap on the experimental side and a theoretical treatment beyond the
perturbative linear response regime are essential. Whereas a finite Bragg beam
intensity is vital for a clear spectroscopic response of the amplitude mode, it
leads to a renormalization of the sound- and amplitude-mode resonance ener-
gies, which has to be accounted for in a quantitative comparison of experiment
and theory. After taking the full spatial trap profile, finite pulse time, and fi-
nite intensity of the probing beam into account, Good quantitative agreement
between the experimental visibility and the theoretically predicted results from
a time-dependent bosonic Gutzwiller calculation is found.

There are still several open questions which should be investigated in fur-
ther studies. A first important issue is the detection of novel magnetic phases
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with long-range spin order, after achieving the necessary ultra-low tempera-
tures for ultracold bosons in optical lattices. This will be the first step towards
achieving d-wave superfluidity, and will give us more insight into the underly-
ing physics of high-temperature superconductivity. A second important issue
is the stability of the supersolid phase, which is predicted to exist in dipolar
bosonic gases, as well as the robustness of the checkerboard phase in the BEC-
cavity systems. Further studies, based on BDMFT/RBDMFT, can also be
extended to include orbital degrees of freedom and study unconventional Bose-
Einstein condensates, such as by including spin-orbit coupling which produces
analogs of fractional quantum Hall states or topological insulators EZ’L_IL @],
and higher-orbital physics [@] These new quantum systems have drawn a
large amount of attention recently and are developing rapidly as a new frontier,
due to the high level controllability of optical lattices loaded with ultra-cold
bosons, and provide an intriguing opportunity to investigate both the meta-
stable states of bosons pumped into high orbital bands and spin-orbit coupled
system with synthetic magnetic fields in systems of neutral atoms. In addi-
tion, bosonic dynamical mean field theory can be improved and extended to
a cluster formalism for taking into account nonlocal correlations @@ or
to a nonequilibrium realm for studying dynamics of many-body systems E@]



Kapitel 9

Zusammenfassung und Ausblick

In dieser Arbeit haben wir die stark korrelierten bosonischen Gase in ei-
nem optischen Gitter, das meist auf einer bosonischen Version der dynami-
schen Molekularfeldtheorie und ihrer Ortsraum-Erweiterung basiert, unter-
sucht. Der Schwerpunkt liegt auf méglichen neuartigen Quantenphdnomenen
dieser Vielteilchensysteme und ihrer entsprechenden zugrunde liegenden Phy-
sik, einschliefllich Quantenmagnetismus, Paar-Suprafluiditdat, Thermodynamik,
Vielteilchen-Kiihlung des Korpers, neuer Art von Physik in der Gegenwart
weitreichender Wechselwirkungen und Anregungseigenschaften. Unsere Moti-
vation ist es, Vielkorper-Phdnomene relevant fiir stark korrelierte Materialien
mit ultrakalten Gasen im optischen Gitter, die einen hervorragenden Spielplatz
fiir die Untersuchung von Quanten-Systemen mit einem beispiellosen Mafl an
Prézision und Steuerbarkeit bieten, zu simulieren. Aufgrund ihrer hohen Steu-
erbarkeit konnen ultrakalte Gase als ein Quantensimulator von Vielteilchen-
systemen in der Festkorperphysik, Hochenergie-Astrophysik, und der Quan-
tenoptik betrachtet werden. In dieser Arbeit haben wir speziell mogliche neue
Quanten-Phasen, thermodynamische Eigenschaften, Vielkorper-Kiihlsysteme
und die Spektroskopie von stark korrelierten Vielteilchen-Quantensystemen
untersucht. Die Ergebnisse dieser Arbeit sorgen fiir theoretische Benchmarks
bei der Untersuchung von Quantenmagnetismus in kommenden Experimen-
ten und sind ein wichtiger Schritt zum Studieren von Quantenphénomenen
von ultrakalten Gasen in Gegenwart von weitreichenden Wechselwirkungen.
Unter Beriicksichtigung der starken Korrelationen in Gitter-Systemen wurden
BDMFT (RBDMFT) entwickelt und umgesetzt, um eine nicht-perturbative
Beschreibung der Eigenschaften des homogenen und inhomogenen Bose-Hubba-
rd-Modells einschliellich magnetischer Ordnung am absoluten Nullpunkt und
bei endlichen Temperaturen zu erhalten, die mit statischen Molekularfeldme-
thoden nicht berechnet werden konnen.

BDMFT behandelt kondensierte und normale Bosonen gleichberechtigt
und ist eine nicht-perturbative Methode, die die bosonischen Gase in einem
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optischen Gitter beschreibt. Sie kann als eine Erweiterung der Gutzwiller-
Methode um 1/z angesehen werden, in der z als Gitter-Koordinationszahl
bezeichnet wird, und sie erfasst die dynamischen Korrelationen, die vor al-
lem fiir Multispezies-Systeme in optischen Gittern entscheidend sind. Diese
Methode ist gut steuerbar im Grenzfall hoher Gitter-Koordinationszahlen z
und wird in unendlichen Dimensionen exakt. Wir leiten die Selbst-Konsistenz-
Gleichungen her und préasentieren die BDMFT Gleichungen als eine kontrollier-
te 1/z-Erweiterung bis zu néchstfiihrender Ordnung, basierend auf einer ein-
heitlichen Skalierung 1/z des bosonischen Amplituden-Hopping. In fithrender
Ordnung ergibt sich die Gutzwiller Molekularfeldtheorie, wéhrend die natiirliche
Erweiterung fiir die néchstfithrenden Terme der Ordnung O(1/z) die BDMFT-
Gleichungen ergibt. Wir haben dann Ortsraum-Bosonen-Dynamische-Molekula-
rfeldtheorie fiir die beschriebenen Systeme in einem inhomogenen Umfeld ent-
wickelt, z. B. in einer externen harmonischen Falle. Der entscheidende Unter-
schied zur {iblichen homogenen BDMF'T ist, dass wir iiber einen Ein-Gitterplatz-
Ansatz hinaus gehen und beriicksichtigen, dass verschiedene Gitterpliatze nicht
dquivalent zueinander sind, was zu der Inhomogenitéit des Systems fiihrt.

Mit diesen neu entwickelten BDMFT/RBDMFT haben wir theoretische
Bose-Bose-Mischungen in 2D und 3D optischen Gittern untersucht. Aufgrund
der Inter-Spezies-Wechselwirkungen ist das Phasendiagramm sehr vielfiltig.
Dieses System kann effektiv durch das Bose-Hubbard-Modell beschrieben wer-
den. Wir haben den Fall von Fiillungen n = 1 und n = 2 pro Gitterplatz beson-
ders betrachtet. Wir haben das Phasendiagramm abgebildet und diverse Pha-
sen erhalten: Suprafluid, ungeordneter Mott-Zustand, XY-Ferromagnet und
Antiferromagnet fiir positive Inter-Spezies-Wechselwirkungen und die paarsu-
prafluide Phase fiir negative Wechselwirkungen zwischen den Arten. Dariiber
hinaus haben wir die inhomogenen (eingeschlossenen) bosonischen Gase, die
néher an der experimentellen Situation sind, untersucht. Wir haben die Wir-
kung des externen einengenden Potentials von RBDMFT, die von Gitterplatz-
abhéngigen Selbst-Energien ausgeht, berticksichtigt. Parallel dazu fiihrten wir
auch eine auf einer lokalen Dichtendherung (LDA) basierte und mit BDMFET
kombinierte ergénzende Berechnung durch, die rechnerisch giinstiger ist. Beim
Vergleich der Ergebnisse der beiden Methoden untersuchten wir die magneti-
schen Eigenschaften des Systems fiir eine Vielzahl von Parametern. Nach unse-
rem besten Wissen ist dies die erste systematische und nicht-perturbative Un-
tersuchung der magnetischen Eigenschaften eines inhomogenen Bose-Hubbard-
Modells mit zwei Komponenten. Es gibt mehr Einblick in laufende Experimen-
te zu Bose-Bose-Mischungen in optischen Gittern. Aufgrund der sehr niedrigen
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kritischen Temperaturen aus Tunnel-Prozessen zweiter Ordnung ist es im Au-
genblick noch schwierig, diese quantenmagnetischen Phasen in einem optischen
Gitter zu erreichen und es sind neuartige Kiihl-Systeme erforderlich, um diese
Temperaturen im Experiment zu erreichen. Deshalb haben wir anschlieflend die
Thermodynamik der wechselwirkenden Vielteilchensysteme und die Giiltigkeit
der Spin-Gradienten-Entmagnetisierungs-Kiihlung untersucht, die im Prinzip
in der Lage ist, das Systems bis auf die kritische Temperatur von magneti-
scher Ordnung zu kiihlen. Wir haben auch das Phasendiagramm fiir endliche
Temperaturen berechnet und bemerkenswert gefunden, dass das System bei
niedrigen Temperaturen aus dem Suprafluiden in den Mott-Isolator-Zustand
erhitzt werden kann, analog zum Pomeranchuk-Effekt in 3He. Dies stellt eine

vielversprechende Vielteilchen-Kiihltechnik dar.

Wir haben auch die Physik von stark korrelierten ultrakalten bosonischen
Gasen in optischen Gittern mit langreichweitigen Wechselwirkungen unter-
sucht. Diese Systeme realisieren erweiterte Bose-Hubbard-Modelle und die phy-
sikalischen Eigenschaften solcher Gase werden durch langreichweitigen Wech-
selwirkungen dominiert. Es gibt zwei mogliche Wege zur langreichweitigen
Wechselwirkungen: das Koppeln eines Bose-Einstein-Kondensat an einen Hohl-
raum oder das Laden eines dipolaren bosonischen Gases in ein optisches Gitter.
Aufgrund der Konkurrenz zwischen der lokalen-und langreichweitigen Wech-
selwirkungen erscheinen neue Quanten-Phasen. Fiir ein BEC, dass an einen
optischen Resonator, gekoppelt ist haben wir selbstorganisierende Phasen (su-
persolid und Schachbrettmuster Feststoff) sowohl von homogenen als auch ge-
speicherten ultrakalten Bose-Gasen, die an einen optischen Hohlraum hoher
Giite gekoppelt sind mit Hilfe von RBDMFT untersucht. Wir haben fest-
gestellt, dass diese selbst organisierten Phasen robust sind gegen starke lo-
kale Wechselwirkungen am absoluten Nullpunkt, wo der selbst organisierten
Phaseniibergang allein durch Quantenfluktuationen getrieben wird. Wir be-
obachten, dass thermische Fluktuationen den Aufbau von selbstorganisierten
Phasen bei endlichen, aber niedrigen Temperaturen verbessern kénnen. In An-
wesenheit von einem externen harmonischen Falle beobachten wir die Koexi-
stenz von suprafluiden, Mott-isolierenden, Supersolid und Schachbrettmuster
Soliden. Wir beobachten, dass der Aufbau dieser selbstorganisierten Phasen
stark von einem inhomogenen Fallenpotential beeinflusst wird, aufgrund der
Dichteabhéngigkeit der Streuung von Pumplaser und Hohlraum-Mode an Ato-
men im Hohlraum. Selbstorganisierte Phasen kénnen durch Kombination von
Flugzeit-Messungen und des Nachweises von Photonen die aus dem Hohlraum
austreten, detektiert werden, wahrend die Koexistenz verschiedener Phasen in



120 Zusammenfassung und Ausblick

Gegenwart eines externen Falle kdnnte direkt durch Quantengas Mikroskopie
mit Single-Site zu beachten Auflésung. Fiir dipolare Systeme haben wir die
Physik stark korrelierter dipolare bosonischen Gase in optischen Gittern auf
der Basis RBDMFT untersucht. Besondere Aufmerksamkeit wird dem Ein-
fluss der langreichweitigen Wechselwirkungen auf die magnetischen Phasen
von Zwei-Komponenten bosonischen Gasen in einem optischen Gitter gewid-
met, und unser Ziel ist es, das entsprechende Phasendiagramm zu kartieren.
Genauer gesagt, haben wir den Fall von Fiilling n = 1 pro Gitterplatz bei Tem-
peratur Null fiir verschiedene Dipol-Dipol-Wechselwirkungsstéirken betrachtet.
Aufgrund der Konkurrenz zwischen der lokalen und langreichweitige Wechsel-
wirkungen, erscheinen neue Quanten-Phasen in dem Vielteilchen-Sytem wie
die Ladungs-Dichte Phasen und vor allem auch geordnete Phasen mit Anti-
Ferromagnetismus in der Mott-Doméne. Wir haben beobachtet, dass die super-
solide Phase in einem breiten Regime stabil ist aufgrund der weitreichenden
Wechselwirkungen. Wir gehen davon aus, dass diese neuen Quanten-Phasen
experimentell in der Zukunft beobachtet werden, durch Abstimmen eines ange-
legten externen elektronischen Feldes, um die Dipol-Dipol-Wechselwirkungen
als Folge des permanenten oder induzierten magnetischen oder elektrischen

Dipolmoment der Elektronen zu variieren.

Schliefllich untersuchten wir die Spektroskopie von stark korrelierten boso-
nischen Gasen in einem optischen Gitter basierend auf der zeitabhéngigen Gut-
zwiller Methode, die die stark wechselwirkende Systeme effizient beschreibt.
Unser Ziel war es, die Anregungs-Eigenschaften stark korrelierter Vielteilchen-
systeme zu studieren. Wir beobachteten zwei kollektive Moden: die Sound-
Mode und die Amplituden-Mode. Beide Moden wurden mittels Bragg-Spektros-
kopie erkannt in einem stark wechselwirkenden Kondensat aus ultrakalten Ato-
men in einem optischen Gitter. Dies zeigt, dass Bragg-Spektroskopie eine ge-
eignete Methode zur Untersuchung nicht nur der Struktur der Quasiteilchen
Bogoliubov Mode mit voller Impuls Auflésung ist, sondern auch der eher exo-
tische kollektive Amplituden Mode indem man iiber das linear-response re-
gime hinausgeht. Wir beobachten eine systematische Verschiebung der Schall-
und Amplituden-Moden 'Resonanzfrequenzen aufgrund der endlichen Bragg
Strahlintensitét. Fiir ein klares Signal der letzteren in einem stark wechselwir-
kenden Suprafluid, sind ein flache Falle auf der experimentellen Seite und eine
theoretische Behandlung iiber ein perturbativen lineares Response Regime von
wesentlicher Bedeutung. Wéhrend eine endliche Bragg Strahlintensitét essen-
tiell fiir eine klare spektroskopische Response der Amplitude-Mode ist, fiihrt
dies zu einer Renormierung der Schall-und Amplituden-Resonanz Energien, die
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in einen quantitativen Vergleich von Experiment und Theorie beriicksichtigt
werden muss. Nach der Beriicksichtigung des vollen rdumlichen Fallem-Profils,
endliche Puls-Zeit und der Endlichkeit der Intensitidt des Sondierungs-Strahls,
erhalten wir eine gute quantitative Ubereinstimmung zwischen dem experi-
mentellen Sichtbarkeit und den theoretisch vorhergesagten Ergebnisse aus ei-
ner zeitabhéngigen bosonischen Gutzwiller Berechnung gefunden.

Es gibt immer noch einige offene Fragen, die in weiteren Studien unter-
sucht werden sollten. Ein erster wichtiger Punkt ist die Detektion von neuen
magnetischen Phasen mit einer Spin-Ordnung grofler Reichweite, nachdem die
erforderlichen extrem niedrigen Temperaturen fiir ultrakalte Bosonen in op-
tischen Gittern erreicht ist. Dies wird der erste Schritt zur Erreichung der d-
Wellen Suprafluiditét sein, und gibt uns mehr Einblick in die zugrunde liegende
Physik der Hochtemperatur-Supraleitung. Ein zweiter wichtiger Punkt ist die
Stabilitat der Supersolid-Phase, die Vorhersagen zufolge in dipolaren bosoni-
schen Gasen bestehen soll, sowie die Robustheit des Schachbrett-Phase in den
BEC-Resonator-Systemen. Weitere auf BDMFT/RBDMFET basierte Studien,
konnen auch erweitert werden, um orbitalen Freiheitsgrade unkonventionelle
Bose-Einstein-Kondensate, wie auch durch die Spin-Bahn-Kopplung, die Ana-
loga der fraktionierten Quanten-Hall-Zustdnde oder topologischen Isolatoren
produziert, und Physik hoherer Orbitale. Diese neuen Quanten-Systeme ha-
ben vor kurzem eine grofle Menge Aufmerksamkeit erreicht und entwickeln
sich rasch als ein neues Frontgebiet, wegen der hohen Kontrollierbarkeit der
optischen mit ultrakalten Bosonen geladenen Gittern, und bieten eine faszi-
nierende Moglichkeit, sowohl die meta-stabilen Zustédnde von in hohere orbita-
le gepumpten Bosonen und Spin-Bahn-gekoppelten System mit synthetischen
Magnetfelder in Systemen mit neutralen Atomen zu untersuchten. Dariiber
hinaus kann die bosonische dynamische Mean-Field-Theorie verbessert und
zu einem Cluster Formalismus fiir die Beriicksichtigung der nichtlokalen Kor-
relationen, oder zu einem Nichtgleichgewichts-Bereich fiir das Studium der

Vielteilchendynamik erweitert werden.
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Appendix A

The Jaynes-Cummings Model

In this part, we derive the Jaynes-Cummings model, which describes a two-
level atom interacting with a single bosonic mode and provides an excellent
physical picture for optical caity in the context of cavity quantum electrody-
namics. If we consider only a two-level free atom, the Hamiltonian for the
internal degrees of freedom is given by

H, = hwoo'o™, (A1)
where wy = (E. — E,)/h is the atomic transition frequency, 6~ = |g)(e|, and
67 = |e){g|. Here we use the Pauli matrix algebra to simplify the notation,

with [g) (|e)) denoting the ground (excited) state with an energy E, (E.).
The single-mode cavity mode is given by

H, = hweata, (A.2)

where a'(a) denotes the creation (annihilation) operator of the cavity field.
In this reduced Hilbert space, the electric dipole operator is expressed as

~

d = dgle)(g| +dilg) (el
= d (6 +67), (A.3)

where the dipole matrix element de, = (e|d|g), which is defined to be real.
Within the dipole approximation, the interaction between the atom and the
cavity mode is described by

~

o = —d - E(r), (A.4)

where the electric field operator of the cavity mode at position r can be ex-
pressed in terms of the creation and annihilation operators as

A hw
=iy — o — af
E.=i 2Eovu(r)e[a a'l, (A.5)

where e is the polarization of the mode, €y is the vacuum permittivity, u(r)
is the mode function which is determined by the boundary condition of the
corresponding system, and V' is the cavity volume.
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In the rotating-wave approximation, the interaction term (A.4) takes the
following form:

H,. =ihg(r)(6Ta —o-al), (A.6)
where g(r) = —, /5% [deg - €[u(r).

Therefore, the total Hamiltonian of the system is written as:

~

HJC - Ha"f_]:—]c +]:Iac
= Twoo'6™ + hwea'a +ihg(r)(6ta — 6-al). (A7)



Appendix B

Gutzwiller vs. Mean-Field
Approximations

In this part, we will prove the equivalence of the bosonic Gutzwiller and
site-decoupling mean-field approximations for a homogeneous system. Here we
follow closely the derivation of ] In section ([A.2]) we present the Gutzwiller
wave function, which consists of a set of decoupled single-site coherent states
and is a efficient method for describing strongly correlated systems in higher
dimensional lattices. It provides the possibility to self-consistently determine
the Gutzwiller ground state by numerical minimization of the grand canonical
potential. Actually, the Gutzwiller ansatz is exactly identical to the mean-field
method, which provides a much easier self-consistency condition regrading to
only one mean-field parameter.

On the one hand, the modified single-site energy in the Gutzwiller approach
can given by:

oo oo U
Boa Bl -1 = Zo|fn|2<5n<n—1>—un—a)+a

2

S fifaavn+1| (B.1)

n=0

- JZ

where Z denotes the number of nearest neighbors, « is the Lagrange multiplier
for the normalization of the ground state, and all complex coefficients f,,(f)
can be varied independently. Taking the derivative with respect to f; yields
the conditions:

oE
0 = -«

0 [ & U
af af;<;|fn|2—1> an<§n(n—1)—,un—a> (B.2)

fn+1\/n+ 1anf:+1\/ n + 1 + fn—l\/ﬁz.f;fn-i-l\/ n+ 1
n=0 n=0

- JZ
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On the other hand, the ground-state energy of the single-site mean-field
Hamiltonian (4.5 can be written as:

o] oo U
E—a(d |df*=1) = > |d| <§n(n —1) — pun — a> +JZ|o)* + a
n=0 n=0

—JZ , (B.3)

¢ didnVn+¢* > didiaVn+ 1
n=0 n=0

where |®yp) = > "7, dn|n) which denotes the mean-field ground state.

As before, this ground-state eigenvalue depends on the coefficients d,,, and
a necessary condition for an energy minimum is a vanishing derivative with
respect to d

OF O [ ~=,, B U
JZ | pdp 11+ ¢ dp v+ 1
= 0. (B.4)

In addition, the order parameter ¢ is also determined by minimizing the
energy, that is, a necessary condition is

OF
Gy

= —JZ)Y didpVn+1++JZ¢
n=>0
= 0, (B.5)

which yields the order parameter
¢=(b)=> didpVn+1. (B.6)
n=0

Finally, one obtains a set of equations, which are the necessary condi-
tions (B.2) for the ground-state energy in the framework of Gutzwiller ap-
proximation, after plugging self-consistency Eq. (B.6) into the necessary con-
ditions (B.4)). Therefore, both methods lead to the same global minimum,
indicating the equivalence of the Gutzwiller and the mean-field ansatz.



Appendix C

Effective Action in BDMFT

In this part, we will derive the effective action for the Hamiltonian (B.12)
by following Ref. ], by using the path integral formalism in the conventional
coherent state representation. The partition function Z is written as

Z = /D[b*]D[b] exp (—S[b*, b]/h). (C.1)

Here the notation [ D[b*]D[b] = [T, , dbj,dbia, where b;, are complex-valued
fields. The action S[b*, b] is

hB t’
Sl b] = / Ar S U (00, — pabia = 30 & (b + )
0 (e

(ig),0
1 . §
+5 2;3 Ungbibia (b55bis — 5@} : (C.2)

where the hopping parameters have been rescaled as t, = t,/z, in order to
retain a finite kinetic energy in the limit z — oo.

Following the same “cavity” method as in deriving the fermionic DMFT
equations ﬁ%ﬂ}, we now consider a specific site which is denoted by the index
0, and the system with the site 0 excluded is called the cavity system. The
corresponding action can be separated into three terms: Sy, S and AS. S,
which contains the terms that are exclusively related to the site 0, is given by

hB 1
SO = / dr {Z bga(h@ - ,ua)b()a +§ Z UaﬁbgabOa(bgﬁbOB - 5a,8)} s (C3)
0 « a,fB

SO which contains the terms without the site 0, is given by

hB t
5O _ / d b (hO. — ti)bia — Yo (bt b + coc.
0 T Z za( ILL) Z Z(Za] +CC)

170, (i5)(0) o

1 . i}
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AS, which contains the terms coupling the site 0 to other sites, is given by

1 [he
AS = —= / dr >t (Babje + c.c.). (C.5)
0

z
(04),a

We now derive an effective action for the site 0, defined via

2ty = [ Dbl exp (~Slbi il /) = S (CO
Here
0 — / DO D@ b]exp (—SV[bj, bo) /), (C.7)

where the functional integral is performed in the cavity system and excludes
the fields at site 0, which is denoted by (0).
With this definition, we obtain:

Z = i | DIBIDIbalexp (= Salbi bol /1) (©8)

/D(O)[b*]D(O) Jexp (= {S@[b*,b] + AS[b*,b]} /h). (C.9)

Then it can be expanded in powers of AS:

k!hF
k=0
(C.10)
Considering the expectation value in the cavity system
()
)0 = 7@ /D Vb [bAe™ "7, (C.11)
this immediately leads to:
AS)*
7% = /D D[by] exp (—Sy[bs;, bol/h) Z#. (C.12)
- !

Since AS contains the small parameter 1/z, it motivates us to systemati-
cally expand the effective action up to a few lowest order in AS. Note that
((AS)F) o) indicates the expectation values of the cavity system, except the
site 0. Keeping terms up to the second order in AS, we arrive:

(AS)) = —é /0 hﬁdTZt’a <b8a(r)<bja(7')>(0)+c.c.), (C.13)

(0),cx
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1 hﬂ / ! 4/
((AS)2>(0) = ;/0 drdr Z Z tots

(04),0 (05"),8

{%a@»sﬁwﬂ<@aw»@%@w>w)+b&fﬂmmwﬂ<@a@v@¢@0>

(0)
 au D) (B (7)) |+ a5 (), -
By the linked-cluster theorem, it yields for the effective action:
1
Ser = So + (AS) o) — o (((AS)*) ) — (AS)Ty) » (C.14)

here, in deriving the effective action in terms of the expectation values in the
cavity system, we re-exponentiate the terms after the expectation value has
been taken. In the re-exponentiation, we include terms up to second order in
1/z. The average can be expressed by the connected Green’s function in the
cavity system:

G (7.1 G (7,1
GEZLBW’):( Gza;zﬂ((, ) G 7)) - (C.15)

bia(T) — (bia(T))(0) .
- <( bia(7) = Bia(M)0) ) 5a() = Bus(hio inlr) = sl o) 0
Due to the possible off-diagonal long-range superfluid order, the Green’s func-
tions have a matrix form in the Nambu space.
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Appendix D

Superfluid Order Parameter

In this part, we apply two methods to derive the superfluid order parameter
in the cavity system by following Ref. [H, @] Naively, expectation values
in the cavity system need to be identified with those on the impurity site,
and in particular equal to the one on site 0 which we have chosen as impurity
site: (bja) = (boa), since in the original homogeneous system the expectation
value is independent of the lattice position. In the self-consistent process in
the section 3] however, sites at the edge of the cavity have one neighbor
less compared to the impurity site, yielding an error of order 1/z. For the
Green’s functions this process has no problem, because they already appear at
subleading order in the effective action, but it leads to a relevant correction to
the superfluid order parameter and turns out to be essential for quantitatively
predictions for the phase boundary.

D.1 The first method: perturbation theory

~

Qualitatively, the sites j on which (b,) is calculated have one neighbor less
in the cavity system, because the impurity site has been taken out. Since this is
a correction of order O(1/z), this correction for higher dimensions can be imple-
mented by means of first-order perturbation theory in the missing neighbor in
1/z, which on the Bethe lattice gives rise to results for the superfluid-insulator
transition very close to the numerically exact solution B, |£§]

We first rewrite the hopping term in the Anderson Hamiltonian

~

Hy = —zto(bt +b)
—t*(bT + 1), (D.1)

where t* = zt.
The corresponding Hamiltonian in the cavity system

~

H = —(z=1to(b" +b)
. a 1 PR
= —t*¢(b' +b) + ;t*gb(bT +b)
— ﬁ0+]:[” (DZ)
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where H' = t*qb(l;T + Z;) Here, A = 1/z appears as the small parameter in the
BDMFT, therefore time-independent perturbation theory can used to obtain
the superfluid order parameter in the cavity system.

Gnew = (0[D]0) = (0| A e k\)( )\Zcoq|q)

k0 q#0

~ (0[p[0) = A eh (k[Bl0) — XD (0[blg)co,
k40 q#0
_ (0| |k) (k[b|0) 0Iblq (gl H'|0)
= (0Jb|0) — %  — 2 5 B,
q#0
_ . (0[b + 0T [k) (K[b]0) + (0[b]g)(g|b + b7|0)
= (0[b[0) = M*Goia 5 —E
k0

_ A Pod ?
— (OBI0) = 3= 50 (Ole) + (k10 ) D3

k0
Therefore, the superfluid order parameter in the thermodynamical limit is:

Gnews = —ZeﬁEn [ nlbln) — Eft %5 ((n\b[k)Jr (k|b\n>) ] (D.4)

k0

D.2 The second method

In this part, we will derive a closed formula without invoking the pertur-
bation theory. To derive the order parameter in the cavity system, we assume
that the bosonic fields at site j are to a source Jj,. The partition integral thus
depends on this source:

Jjao ]a

J J* /D b* S[b* b/h+fd7’{b JjaJrJ;-‘abja} (D5)

and the order parameter

(7)) = 7 T Tl 0.0

In order to derive Zeg[Jja, Jj,], We now present the cavity construction with
the sources present. Here we only calculate the superfluid order parameter,
and thus only keep the first order terms in the sources; if one calculates 1/z
corrections to the Green’s functions, one has to keep second order terms as

well.
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Defining the short-hand notation Sy = [ dr{b;,Jja + J;,bja}, it yields:

1 *
AUNAREE / D[b*| D[b]e~ 51" b/,

jas Yja
= %/D[b*}D[b]eé(S“Sm)) (1 - % (D.7)
+#(AS)2 +85 - SJHAS +) :
Integrating out the fields in the cavity and re-exponentiating, we obtain:
Zett[Tjr o) = / D[b] Dlbole™ (1 - <A‘Z><O> (D.8)
b8P )0 + (S0 - 0 1)

0
Sc

_ /D[bS]D[bg]e_ hﬂ+(5J><o)—%(<5JA5>(0>—<SJ>(0>(As)m))_ (D.9)

Here, the corresponding expectation values are given by:

(Sr)o = /dT{(bja>?0)Jja+Jfa<bja>(0)}7 (D.10)

t/
A = -> 2z / D.11
(SyAS) (o) 2 /deT{ ( )

Tiar) (B35(7) (i3 )bia (7)) 0 + boa (T35 (T ) +
Jial) (B0 (7) s (550701 + bos ()83 (1)) }

Combining this, the superfluid order parameter can be expressed as:

8 *
ja
L~ [
= (o)) + > ;/dT (D.13)
(0i).8

B} (i) — i) +
Bosl) (35 i) = BB }

Using the Green’s function, we obtain:
ba) = Galo— 3 3 2 [ar {0 n o m) +

(08),8

(bos() G2 (+, T)}. (D.14)
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The superfluid order parameter is independent of 7. Based on this, we can
perform the integral over 7/ and obtain:

<bja>=<bja><o>—2tz ((05) G 30 (wn = 0) + (o) GBls(wn = 0))
(04),8

which indeed yields a 1/z correction to (bja) o) with respect to (bjo). We finally
obtain

> (ko) = ta 34 (b +Z ( DG5.(0) + (bos) G191 (0))
(05) (05)

Oét o
— atuds o {G§g>]a<0)+c;§g3ja(0)} (D.15)
(0i),(05),8
= ztada + )¢5 {A05(0) + A%(0)} (D.16)
B
= 2ty gl, (D.17)

where ¢, = (bjn) (which we assumed to be real for the ground state) and
expressed it in terms of diagonal and off-diagonal elements of the hybridization
function at zero frequency. This constitutes the self-consistency equation for
the superfluid order parameter.



Appendix E

Self-Energy

In this part, we will derive the formula for the self-energy and hybridization
function for two-component lattice bosons, based on the equation of motion of
the Green’s function:

i, G a g (iwn) + Gz ap(iw,) = <[A, B]>. (E.1)

The Hamiltonian for the impurity Anderson model can be written as:

1
H = 5 ; U)\an(n)\ - 6)\1/) - ; Ny by — XV: Ztu(¢zbu + qub:r/)
-+ Z EICL}LCLI + Z (V,,l(alTb,, —+ bf,al) —+ Wyl<alby -+ bia})) . (E2)
l vl

First, let us derive the Green’s function G, ,+. To obtain it, we first derive
LAON

some commutation relations:

[H.b) = =Y (Viar+ Woal) + b, — > Un,bibobs + 2ty (E.3)
l A

[H,al] ==Y (Vub, + Wb} — eay, (E.4)

[H,af] =Y (Vb + Wiub,) + €a]. (E.5)

v

Using these commutation relations given above, we obtain

(iwn = )Gyt = > (VG i+ WuGip), (E.6)

v

(1w, + El)Gajz& = — Z(VuleLbJ)f\ + Wyleub;), (E.7)

v

(twn + /‘)Gb,,,lﬁA = ;(Vleahb; + WVlGa;b:r\) + ; UV/\’Gb;,bl,bA/,bi

—2t0,G 1 + O, (E8)

135



136 Self-Energy

Inserting Eqgs. (6) and (7) into (8), we then obtain

VVlVV’lG ol VVZWV’ZGT +
(an —|— /,L)Gbu’b-i)-\ frd — Z [( by 7b>\ _|_ bl/l7b>\)

€] — 1Wy, € — 1Wy,
V'l
WZ/ZVZ/IIGbi“b; WVZWV/leV/,b;
+ ; + ;
€ + 1wy, € + 1wy,

+ EA: UGyt 00— 200G T80 (E)

or rewrite it in an alternative form

. Vl/ Vl/’ Wz/ Wl/’
(an‘i‘/i)Gby,b;: - Z{( e Z)Gb/,bT

€ — MWy, € + 1w, 20N
V'l
vz/l Wz/’ l Wul Vz/ l
+ — + — |G
€ — 1MW, € + 1w, 2RO

- ; UinGyf s, — 400Gy + 00, (E-10)

(1) . ulV 7 Wl/lWy/l (2 ulW 7 WVZVL,/Z
where Aul/ = Zl € —iwn €+iwn and AI/ Zl € —1iwWn El+iwn
are hybridization functions.

Repeating the same process above, we obtain a similar equation for anoma-

lous Green’s function:

Vo, VoG VWG
(iwn + 1) Goypy, = — Z {( Al VAL " M)

Ul € = iy & = Wi
WVZVVIIGbi/vb/\ _'_ WVZWV/leV/7b/\
€ —+ an €1 + an
i Z UV)\,Gb;/bybk/,b)\ — 2t Ghp, (E.11)
A/

or rewrite it in an alternative form

V.V, W, W,
(iwn‘i‘ﬂ)Gbu,bA = — Z |:( ! ; l + l ; l>Gbuz,bA

€ — 1w, €+ 1w,
V'l

VW, WV,
( l.l+ Z.Z)beb}
€ — 1MWy, € + 1w, A0

+ Y Usw Gyl by, — 200Gy (E.12)
>\/

€ —1Wn €1+1Wn, € —1Wn €1 +1Wn

V| W, W, | WaV, e
where — ), ( S S ”’l> and — ), ( AL ”l.”’l) are hybridization

functions.
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We can also obtain the Green’s functions of G; by and Gi,r. In total,
v 17 A

we will have sixteen Green’s functions for the Bose-Bose mixtures. However,
only six of them are independent of each other. And we notice that it is very
convenient to write the sixteen functions in the form of a matrix:

(iwnaz Y- A(m,ﬁ) G (iwy) — [UF(mn) — G (iwy)| =1, (E.13)

AL AY
Ay (AL
Q() B (¢I/G1b; ¢1/G1,bA

Gb;,b,,bk/,b; Gb;,b,,bA/,bA

G

where A = ( , and

>7 UF = UV>\’
bl,blbysbY bl,blbys ba
G, = ’

. Then the impurity self-energy can be written as:
¢ZG1,b§ ¢:;G17bA

Y (iwy,) = [UG(iwn) — 2tpG1 (1w, | G~ (iw,). (E.14)

This method based on the equations of motion for the Green’s function
is an accurate way to determine the self-energy. There is also another way
to calculate the self energy, which is based on the local Dyson equation. In
that case, we can use the Weiss function to derive the self energy: first we
can determine the Weiss function from Anderson model; secondly, we can also
determine the Weiss function from lattice model using the Dyson equation
derived from effective action:

G ! =iw,o, +pu—A
= Bimp (i) + G (1w5,)
= Bt (iwy) + Gt (iwy,). (E.15)

Using the identity of the lattice self-energy and the impurity self-energy, the
latter has this form:

Simp (iwy,) = B (twy,) = tw,0, +p — A — Gi_nfp(iwn). (E.16)

In principle, we can use both methods to obtain the local self-energy after

diagnolization for the Anderson model. After convergence, these self-energies
obtained from the two methods should be the identical.
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Appendix F

Lattice Green’s Function

In this part, we will derive the non-interacting lattice Green’s function in
real space. For the non-interacting Bose-Hubbard model, the Hamiltonian is

given by:
H=- Z tij’yb;rybjl, — Z/Lﬁw (Fl)
<1,7>,V iV
We can use the equation of motion of the Green’s function to derive the formula
for the non-interacting case. Here we just derive the Green’s functions on
the diagonal (the diagonal terms are also a matrix formed by sixteen Green’s
functions at each site). Using the commutation relation

[H bi) = tijubi + pbis, (F.2)

<i,j>

the non-interacting Green’s function can be written as:

(1 +iwn)Gy i+ Y tipnGy =1 (F.3)

— i'vOin
<2,)>

By rewriting the Green’s functions in a matrix form with site-indexed elements,
we obtain

Gb_l,lbL = (p+iw,o,) + t, (F.4)

where t is a matrix arising from the hopping term. If we include periodic
boundary conditions, the matrix has four (six) more terms for 2D square (3D
cubic) optical lattice. Note that Gy, ;, and Gy bl should be equal to zero, since

[b,,,b,] = 0 or [bf,bi] =0
After obtaining the matrix of Green’s functions for each site, we can invert
the matrix and the elements on the diagonal yield the local non-interacting

Green’s functions for each site.
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