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1. Introduction

Since the middle of the past century, the theory of weak convergence in function spaces has be-
come an important concept in probability theory and its applications. Fundamental contributions
from various origins have been made by Kolmogorov [Kol31], Erdős and Kac [EK46], Doob
[Doo49] and Donsker [Don51], [Don52]. The theory has been established systematically as it is
known today by Prokhorov [Pro53], [Pro56] and Skorokhod [Sko56]. Relying on the latter works,
Billingsley offered an accessible account to the area in his book Convergence of Probability Mea-
sures in 1968. Undoubtedly, it is still the main reference for weak convergence on function or more
general metric spaces. Relying on the so-called contraction method, the present thesis is mainly
concerned with results that allow to deduce weak convergence in function spaces and applications
thereof.

1.1. The idea of contraction

The contraction method is an approach to distributional convergence for sequences of random
variables obeying certain recurrence relations on the level of distributions. It has become a pow-
erful tool in the probabilistic analysis of algorithms since its invention in the seminal paper on the
running time analysis of the well-known sorting algorithm Quicksort by Rösler [Rös91]. Often,
the analysis of divide and conquer algorithms leads to the following recursion for a sequence of
random variables (Yn)

Yn
d
=

K∑
r=1

Ar(n)Y
(r)

I
(n)
r

+ b(n), n ≥ n0, (1.1)

where d
= denotes that left and right hand side are identically distributed, and (Y

(r)
j )j≥0 have the

same distribution as (Yn)n≥0 for all r = 1, . . . ,K, where K ≥ 1 and n0 ≥ 0 are fixed inte-
gers. Moreover I(n) = (I

(n)
1 , . . . , I

(n)
K ) is a vector of random integers in {0, . . . , n}. The basic

independence assumption is that (Y
(1)
j )j≥0, . . . , (Y

(K)
j )j≥0 and (A1(n), . . . , AK(n), b(n), I(n))

are independent. This assumption also determines the law of the right hand side of (1.1). Depen-
dencies between the coefficients Ar(n), b(n) and the integers I(n)

r appear in various applications.
Apart from the probabilistic analysis of recursive algorithms, recurrences of the form (1.1) ap-
pear in several fields, e.g., in the study of random trees, in branching processes, in the context
of random fractals, in models from stochastic geometry and in information and coding theory.
For surveys of such occurrences see [NR04b] and [Nei04]. Mostly, (Yn) is a sequence of real-
valued random variables and Ar(n), b(n) are random coefficients also with values in R. However,
there is no harm in considering random variables with values in arbitrary vector spaces provided
Ar(n), r = 1, . . . ,K denote random linear operators and the right hand side of (1.1) remains a
well-defined random variable. Recurrences for Rd or Hilbert space valued random variables have
been treated in the literature and will be reviewed later. In the thesis we develop the contraction
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1. Introduction

method in separable Banach spaces, where we mainly focus on the case C[0, 1], the space of con-
tinuous functions on the unit interval endowed with uniform topology. We also give analogous
results forD[0, 1], the space of càdlàg functions, that is right-continuous functions with left limits,
equipped with Skorokhod topology.

In applications the quantities Yn grow large as n tends to infinity, an appropriate scaling is typically
obtained by centering Yn and normalizing by the order of the standard deviation. The scaling leads
to a recursion similar to (1.1) for the rescaled sequence (Xn):

Xn
d
=

K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n ≥ n0, (1.2)

with conditions on identical distributions and independence similar to recurrence (1.1). The coef-
ficients A(n)

r and b(n) in the modified recurrence (1.2) are typically directly computable from the
original coefficients Ar(n), b(n) and the scaling, see e.g., for the case of random vectors in Rd,
[NR04b, equations (4)].

The main idea: The rough idea of the contraction method is the following: First, it usually follows
directly from the coefficientsA(n)

r and the sequence b(n) that there exists random operatorsAr and
a random variable b such that

A(n)
r → Ar, b(n) → b, (1.3)

as n → ∞ in a suitable sense. If also I(n)
r grows large as n → ∞ for all r = 1, . . . ,K and it is

plausible that the quantities Xn converge, say to a random variable X , then, by letting formally
n→∞, equation (1.2) turns into

X
d
=

K∑
r=1

ArX
(r) + b, (1.4)

with X(1), . . . , X(K) distributed as X and X(1), . . . , X(K), (A1, . . . , Ak, b) independent. The
distributional fixed point equation (1.4) will then serve as a characterization of the limiting distri-
bution L(X). Here L(X) denotes the distribution of a random variable X . Solutions of (1.4) are
usually considered as fixed-points of the following map T which is at the heart of the contraction
method:

T :M(B)→M(B)

T (µ) = L

(
K∑
r=1

ArZ
(r) + b

)
, (1.5)

where (A1, . . . , AK , b), Z
(1), . . . , Z(K) are independent and Z(1), . . . , Z(K) have distribution µ.

HereM(B) denotes the set of probability distributions on the state spaceB, in which the sequence
of random variables (Yn) [hence also (Xn)] attains their values. Rösler’s approach to turn these
ideas into rigorous statements consists of the following two steps:

Step 1. Show existence and uniqueness of the solution of the fixed-point equation (1.4) in an
appropriate subspaceM′(B) of probability measures onM(B). To this end endowM′(B)

2



1.1. The idea of contraction

with a complete metric d that turns T into a contractive self-map on M′(B). In light of
Banach’s fixed point theorem one then obtains a unique fixed-point of T , hence a unique
solution of (1.4) inM′(B).

Step 2. Show convergence of Xn to this unique fixed-point in the metric d and infer weak con-
vergence (and possibly more). The proof of the convergence of Xn in the metric d usually
runs along similar lines as Step 1 by contraction arguments. It relies on the quality of con-
vergence of the coefficients in (1.3). The transition to weak convergence depends mainly on
properties of d and will turn out to be a hard task in our applications.

We shortly mention the classical case of Quicksort which will be used as a prototype example of
the real-valued case throughout the thesis.

Quicksort: Introduced in 1961 by Hoare [Hoa61, Hoa62], Quicksort has become one of the most
important sorting algorithms. Its median of three version serves as standard sorting routine in
Unix. It is well-known and easily seen that, given a list of n distinct elements from an ordered
set, the number of key comparisons Zn of the standard randomized Quicksort algorithm satisfies
a recursion of type (1.1). More precisely, it holds

Zn
d
= Z

(1)
In−1 + Z

(2)
n−In + n− 1, n ≥ 1, (1.6)

where In is uniformly distributed on {1, . . . , n}, Z0 = 1 and conditions of independence as for
(1.1). The mean number of comparisons is known explicitly, it holds E [Zn] = 2n log n + cn +

o(n) for some real constant c. From (1.6) and the scaling of the form n−1(Zn − E [Zn]), it is
plausible that a possible limit random variable Z satisfies the following fixed-point equation, that
is nowadays known as the Quicksort equation:

Z = UZ(1) + (1− U)Z(2) + 2U logU + 2(1− U) log(1− U) + 1. (1.7)

Here U denotes a random variable on [0, 1] with uniform distribution and conditions as in (1.4)
are satisfied. Rösler [Rös91] was able to carry out both Step 1 and Step 2 working on the
subspace of probability distributions with zero mean and finite variance. Subsequently, we de-
note this space by M2,0(R). Endowing M2,0(R) with the minimal `2 metric, see (2.8), he
proved that the map T in (1.5) has the Lipschitz property with Lipschitz constant bounded by√

E [U2] + E [(1− U)2] =
√

2/3. By the Theorem of Riesz-Fisher completeness of `2 is easily
checked and convergence of the rescaled sequence to the unique solution of (1.7) inM2,0(R) is
shown. One should not forget that the sequence (n + 1)−1(Zn − E [Zn]) was identified as an
L2-bounded martingale by Régnier [Rég89]. Hence, the convergence was already known at that
time.

The `2 approach: The approach has been established further and applied to a couple of examples
in Rösler [Rös92] and Rachev and Rüschendorf [RR95]. Later on general convergence theorems
have been derived stating conditions under which convergence of the coefficients of the form (1.3)
together with a contraction property of the map (1.5) implies convergence in distributionXn → X .
For random variables in R with the minimal `2 metric see Rösler [Rös01], and Neininger [Nei01]
for Rd with the same metric. In Rd note that the linear operators Ar(n) and A(n)

r coincide with
random d × d matrices. As a prototype result, we cite (a slightly modified and simplified version
of) Theorem 3 in [Rös01].

3



1. Introduction

Theorem 1.1. Let (Xn) be a sequence of real-valued random variables satisfying (1.2) with n0 =

1 such that for all r = 1, . . . ,K and n ≥ 1

0 ≤ I(n)
r ≤ n− 1, E [bn] = 0 and L(X0) ∈M2,0(R).

Then L(Xn) ∈M2,0(R) for all n. Assume further that

L :=
K∑
r=1

E
[
|Ar|2

]
< 1 (1.8)

and E [b] = 0,E
[
b2
]
< ∞. Then T is a contraction onM2,0(R) with Lipschitz constant at most√

L with respect to `2. Hence, it has a unique fixed-point µ inM2,0(R). Moreover, if

E
[
|A(n)

r |21{I(n)r ≤m}

]
→ 0,

for all r = 1, . . . ,K and m ∈ N and

(A
(n)
1 , . . . , A

(n)
K , b(n))

`2−→ (A1, . . . , AK , b),

then `2(Xn, X)→ 0, where X has distribution µ.

When applying this result, the scaling of Yn requires precise asymptotic information on the mean
E [Yn] in advance whereas the order of the standard deviation σn may be guessed. Typically, an
expansion of the form

E [Yn] = f(n) + o(σn)

turns out to be sufficient. The assertion of Theorem 1.1 can be stated similarly using `p metrics
with 0 < p ≤ 1 assuming only a finite absolute of order p by simply replacing 2 by p in every oc-
currence. In this case, no expansion of moments of Yn has to be available in advance. A survey on
the contraction method mostly in the context of `2 metrics including various applications mainly
from the area of random trees is given in [RR01].

Limitations of `p: The `p approach is restricted in two ways: First, for 0 < p ≤ 1 or p = 2, the
Lipschitz constant of T (restricted to suitable subspaces) is bounded by[

K∑
i=1

E [|Ai|p]

]min(1/p,1)

,

an analogous result can not be obtained for 1 < p ≤ 2 or p > 2 along the same lines. In general,

only a bound of the form E
[(∑K

i=1 |Ai|
)p]1/p

can be given easily. This term is clearly increasing
in p which is illustrated by the following example.
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1.1. The idea of contraction

Example: Consider the fixed-point equation

X
d
=
X +X ′√

2
, (1.9)

where X ′ is an independent copy of X . Assuming a finite second moment of X , it immediately
follows from the central limit theorem that X has normal distribution with zero mean. Histori-
cally, Pólya [Pól23] was the first to observe this in a remarkable paper from 1923. Later, based
on characteristic functions, Laha and Lukacs [LL65] removed the assumption on the finite second
moment, see also [KPS96] for a purely probabilistic proof. However, no metric of `p type seems
to provide the contraction property of T .

The second problem is concerned with the generalization of the approach to infinite dimensional
spaces. In separable Hilbert spaces, the bound (1.8) remains valid if we restrict to the zero mean
case. In [RR95] and [Rüs06], similar ideas are discussed also for 1 < p ≤ 2 in general Ba-
nach spaces. Arguments based on Woyczynski’s inequality, see [Woy80, Proposition 2.1], imply
a bound on the Lipschitz constant of the form cp

∑K
i=1 E [|Ai|p] with a positive constant cp only

depending on p which turns out to be too large for applications. Rüschendorf [Rüs06] showed
uniqueness of the fixed-point equation (under mean zero and finite p-th moment condition) if only
the more natural condition

∑K
i=1 E [|Ai|p] < 1 is satisfied. However, the result is given in the real-

valued case and the ideas only extend directly to Banach spaces of type 1 < p ≤ 2. In our main
application C[0, 1] endowed with the uniform topology, which is a Banach space only of trivial
type 1, we do not know of any useful generalizations of the `p approach for 1 < p ≤ 2.

The Zolotarev distances: In the context of the contraction method, various other probability
metrics, among them the class of ζs metrics that is also used in the present work, have been
mentioned first in [RR95], see in particular Proposition 1. ζs metrics are also used in [RR01,
Theorem 5]. The approach has been worked out to its full extent for random variables in Rd by
Neininger and Rüschendorf [NR04b]. The family of metrics of Zolotarev type which we study
intensively in Chapter 2 has proved to be more flexible than the classical `p metrics, the main
improvement being a reduction of the Lipschitz constant of T for arbitrary s > 1 to

K∑
i=1

E [|Ai|s] .

Note that Theorem 4.1 in [NR04b] naturally extends Theorem 1.1. Thus, various problems with
normal limit laws could be solved in [NR04b]. As it will turn out later, for s > 2, this approach
requires an exact scaling of Yn, in particular a first order expansion of the standard deviation has
to be known a priori. An important case is when A1(n) = . . . = AK(n) = 1 for all n in (1.1), see
[NR04b, Section 5] for many examples. Here, the ζs approach for s > 2 gives normal limit laws
for the rescaled quantity (Xn) if

E [Yn] = f(n) + o(g1/2(n)), Var [Yn] = g(n) + o(g(n)).

This results confirms a heuristic principle by Pittel [Pit99] where he proposes that the first two
moments accompanied by a linear recurrence might be sufficient to obtain normal limit laws. Note
that the contraction method relying on ζs with s > 2 yields normal limits in all applications known

5



1. Introduction

so far. Yet another indication for the flexibility of Zolotarev’s metrics is given in [NR04a] where
normal limit laws for sequences (Xn) satisfying recurrences leading to degenerate fixed-point

equations of type X d
= X under certain properties of the moments of Yn are given.

Recent results: An extension of the method and results in [NR04b] to continuous time, i.e., to pro-
cesses (Xt)t≥0 satisfying recurrences similar to (1.2) was given in Janson and Neininger [JN08].
For the case of random variables in a separable Hilbert space leading to functional limit laws gen-
eral limit theorems for recurrences (1.1) have been developed in Drmota, Janson and Neininger
[DJN08]. The main application there was a functional limit law for the profile of random trees
whose analysis was carried out by an encoding in the so-called profile-polynomial, a generating
function of finite degree. This approach led to random variables in the Bergman space of square-
integrable analytic functions on a domain in the complex plane. It is remarkable that this approach
combines two different methods of analyzing distributional recurrences, namely manipulations
with generating functions and the contraction method. In Eickmeyer and Rüschendorf [ER07]
general limit theorems for recurrences in D[0, 1] under the Lp-topology were developed. Note,
that the uniform topology for C[0, 1] and the Skorokhod topology for D[0, 1] considered in the
present work are considerably stronger than the Lp-topology. In C[0, 1], the uniform topology
provides more continuous functionals such as the supremum f 7→ supt∈[0,1] f(t) or projections
f 7→ f(s1, . . . , sk), for fixed s1, . . . , sk ∈ [0, 1], to which the continuous mapping theorem can
be applied. In D[0, 1] those functionals may also be applied once the limit random variable is
known to have continuous sample paths. Note that our approach in D[0, 1] is limited to sequences
of random functions with càdlàg paths whose limits have continuous sample paths.

All results based on ζs metrics in the context of the contraction method in Rd or in separable Hilbert
spaces rely on the fact that convergence in ζs implies weak convergence. However, for general
Banach spaces this is not true. Counterexamples have been reported in Bentkus and Rachkauskas
[BR85], we give explicit examples in Section 2.4. Furthermore, completeness of the ζs metrics on
appropriate subspaces ofM(B) is known only for separable Hilbert spaces, see [DJN08, Theorem
5.1]. Summarizing, we face the following major difficulties in the framework of the contraction
method using metrics of Zolotarev type in the case of continuous or càdlàg functions on the unit
interval.

P1. Distributional convergence can only be inferred by ζs convergence under further conditions.

P2. For s > 1, by the lack of completeness of ζs, a fixed-point of (1.4) has to be found by
different means.

P3a. For 1 < s < 2, the scaling and the convergence of coefficients (1.3) typically require the
convergence of E [Xn(t)] to E [X(t)] uniformly in t. Moreover, a rate of convergence is
needed to solve P1 which will later be clear.

P3b. When applying the contraction method with s > 2, exact scaling is required, i.e. the covari-
ance function of the sequence (Xn) has to be independent of the time parameter n.

Outline - Chapters 2 and 3: We investigate the family of ζs metrics in Chapter 2. In Sections 2.2
and 2.3 we give upper and lower bounds on the metrics in general Banach spaces in particular in
terms of the family of `p metrics that is also introduced here. We discuss counterexamples where
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convergence in ζs does not imply weak convergence in Section 2.4. An appropriate formulation
of the Zolotarev distance in non-separable spaces, in particular for D[0, 1], is given in Section
2.5. From Section 2.6 on, we concentrate on the cases of C[0, 1] and D[0, 1] where we provide
a solution to P1 by additional assumptions on the rate of convergence and on the regularity of
sample paths of the sequence (Xn). Here, the key ingredient is a result in Barbour [Bar90] in the
context of an extension of Stein’s method to càdlàg processes. We also prove that under the same
conditions on the rate of convergence and sample paths regularities, the sequence (‖Xn‖s)n≥0 is
uniformly integrable. This gives rise to moment convergence of the supremum, a very useful re-
sult in applications. Chapter 3 is devoted to the framework of the contraction method in separable
Banach spaces, our main result Theorem 3.6 in the case of C[0, 1] or D[0, 1] is to be compared
with Theorem 4.1 in [NR04b]. The rate of convergence in the Zolotarev metric needed to infer
weak convergence is guaranteed by a transfer theorem from the rate of convergence of the coef-
ficients (1.3). Here, convergence of the sequence of linear operators A(n)

r is with respect to the
operator norm. Finally, we point out that the use of ζs metrics in the càdlàg space requires the
limit to have continuous paths since we have no arguments to deduce distributional convergence
otherwise. Moreover note that we deal with the Skorokhod instead of the uniform topology on
D[0, 1] solely for reasons of measurability, see the beginning of Section 2.5.

The remaining problems P2, P3a and P3b will be discussed in the second part of the thesis, we
only mention P2 here. The obvious method for finding a solution of (1.4) is by considering the
infinite iteration of T . This approach is taken in Chapter 5, where the main difficulties are the
verification of continuity and integrability of the supremum of the limit. For s > 2, as in the
real-valued case, one may guess a solution. This is what we do in Chapter 4.

1.2. Applications

We present applications of the ideas and results of Chapter 3 for recurrences of type (1.1) both in
the case 1 < s ≤ 2 and s > 2 in the second part of this thesis. As a start, we provide a new and
considerably short proof of the classical invariance principle due to Donsker based on recursive
time-decompositions of Brownian motions and sums of independent random variables in Chapter
4. Here, the ζs approach is worked out in the case of s > 2, a way to surmount the difficulties in
P3b is given by using a piecewise linear interpolation of the Brownian motion.

In the other case, our main result is concerned with partial match queries in random quadtrees
and K-d trees. These tree models, introduced by Finkel and Bentley in [FB74], resp. Bentley
in [Ben75], serve as comparison-based data structures for multidimensional databases and may
be considered as multidimensional generalizations of binary search trees. Higher-dimensional
databases arise in various contexts such as computer graphics, computational geometry, geograph-
ical information systems and statistical analysis. Using bit representations for the data, digital
structures such as tries, digital search trees or patricia tries provide alternatives allowing efficient
solutions for retrieval problems. For a general account on multidimensional data structures and
their applications, we refer to the series of monographs by Samet [Sam90a, Sam90b, Sam06].
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1. Introduction

The Quadtree: The quadtree extends the comparison based construction of binary search trees
to higher dimensions. For d-dimensional data, the corresponding quadtree has branching number
at most 2d where each dimension causes a factor of 2. For convenience, we assume the data
field to be the unit cube [0, 1]d. For points p1, . . . , pn ∈ [0, 1]d the tree is constructed as follows:
The first point p1 is inserted at the root, it splits the unit cube into 2d subregions according to
its coordinates. Each subregion corresponds to one of its children. The construction then goes
on recursively: Having inserted i points in the tree, the unit cube is covered by 1 + i(2d − 1)

subregions each corresponding to an external node in the tree. Point pi+1 is then stored at the
node u that corresponds to the subregion in which it falls. Insertion divides this region into 2d new
subregions assigned to the children of u.

Figure 1.1.: A quadtree of size n = 6 with d = 2. External nodes are indicated by boxes which
correspond to regions in the partition on the right.

Searching: By far the most important property of binary search trees (and variants thereof) as data
structure is the fact that these trees are typically well-balanced under reasonable assumptions on
the data. Insertion, deletion, searching or retrieving specific data usually requires only logarithmic
time. The same is true in quadtrees if one aims at finding completely specified patterns. Under the
uniform model, that we will always assume throughout the thesis, the quadtree is generated by a
sequence of independent random variables uniformly distributed on the unit cube. For the insertion
depth Dn of the n-th node that measures the time for an unsuccessful search in the quadtree, we
have

E [Dn] ∼ 2

d
log n. (1.10)

This has been proved independently in [FGPR93] by means of generating functions and singularity
analysis and in [DL90] by probabilistic arguments. In [FL94], the order of the variance of Dn is
identified for all d ≥ 2 and asymptotic normality of Dn after normalization is shown. For the
height Hn of the tree that corresponds to worst case search times, it holds

E [Hn] ∼ c

d
log n, (1.11)

where c = 4.31107 . . . is the constant known from the height of random binary search trees sat-
isfying ce1/c = 2e. This result is due to Devroye [Dev87]. The behaviour of K-d trees, being
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1.2. Applications

introduced in Section 5.6, is included in these results choosing d = 1 in (1.10) and (1.11) since
they coincide with random binary search trees in distribution. It is worthwhile noting that an anal-
ogous result is not true for quadtrees: Here, insertion is not performed uniformly at random among
the available external nodes but nodes on lower levels are favoured.

Partial match retrieval: In partial match queries, one is interested in finding all data matching a
fixed pattern that only imposes some constraints on the data field. Such a query visits considerably
more nodes in the tree. The first investigations in partial match retrieval is due to Rivest [Riv76]
based on digital structures. For partial match queries with 1 < s < d specified components in a
quadtree of size n, Bentley and Stanat proposed n1−s/d as the order of magnitude for the cost of
the retrieval algorithm, i.e. the number of traversed nodes, see [BS75] (and [Ben75] for a similar
statement in the model of K-d trees). This claim was disproved by Flajolet et al. [FGPR93] in the
quadtree model (and in [FP86] for K-d trees). The main result in this paper states that

E
[
Cs,dn (ξ(s))

]
∼ γs,dnα−1 (1.12)

for some constant γs,d > 0 and α ∈ [1, 2] solving

αd−s(α+ 1)s = 2d. (1.13)

Here Cs,dn (x), x = (x1, . . . , xs) ∈ [0, 1]s, denotes the cost, i.e. the number of visited nodes, for
a partial match query with s specified components equalling x1, . . . , xs and ξ(s) is assumed to be
uniform on [0, 1]s, independent of the quadtree. Note that α > 2−s/d. We give a simple heuristic
argument for the occurrence of the constant α at the beginning of Chapter 5. The result (1.12) has
been strengthened by Chern and Hwang in [CH03] where the value of the leading constant γs,d
and rates of convergence are provided in all dimensions. Distributional limit laws and asymptotics
of the variance at a uniform query line have been studied by several authors; however, neglecting
subtle dependencies between the contributions of subtrees, the order of the variance, higher mo-
ments and a limit law have remained open and will be solved in this thesis for the case d = 2.
It is worthwhile noting that, concerning partial match retrieval, comparison-based structures are
outperformed by digital structures. In multidimensional tries, called K-d tries in [FP86] and also
quadtries in [DZC04], the order of the average cost, i.e. the number of bit comparisons, of partial
match retrieval is indeed n1−s/d, see [FP86].

The behaviour changes dramatically on the boundary where we enforce at least one coordinate to
be zero. A search for those lowest points in the tree visits considerably less nodes, we denote by
Rs,dn the cost of the retrieval algorithm if s components are chosen to be zero and d−s components
are left unspecified. Then Flajolet et al. [FGPR93] proved

E
[
Rd−1,d
n

]
∼ ηd−1,dn

α−1, α = 21/d,

for some constant ηd−1,d > 0, where η1,2 is explicitly known to be Γ(2α)/(αΓ3(α)). Here
Γ(x) =

∫∞
0 e−ttx−1dt denotes the Gamma function for x > 0. We do not know of any result

in the case of general s. Our heuristic approach at the beginning of 5 which can be worked out
analogously here, suggests that Rs,dn is of order nα with α = 21−s/d. For d = 2, a limit law for
R1,2
n based on fragmentation processes is given in [CJ11], a proof thereof could also be obtained

9



1. Introduction

by means of the contraction method based on the results in [FGPR93].

The two-dimensional case: In the thesis, we only treat two-dimensional quadtrees and 2-d trees.
The following observation is crucial for our approach: In a partial match query with fixed first
component s ∈ [0, 1], any node in the tree is visited if and only if the region it is inserted in is
intersected by the horizontal line x = s. Moreover this is the case if and only if the horizontal
line x = s crosses the vertical coming from the node. We abbreviate Cn(s) := C1,2

n (s) for the

Figure 1.2.: A partial match retrieval with fixed query line x = 0.2. Visited internal nodes are
marked red and so are external nodes that correspond to the four regions intersected
by the line.

number of vertical lines in the partition of the unit square governing the quadtree that intersect the
horizontal line at x = s. The constant γ1,2 was already known in [FGPR93], we will subsequently
denote it by κ. In the two-dimensional case Chern and Hwang [CH03] provide an expansion for
the mean of arbitrary order; for our purposes, it will be sufficient to use

E [Cn(ξ)] = κnβ − 1 +O(nβ−1), (1.14)

where

κ =
Γ(2β + 2)

2Γ3(β + 1)
, β =

√
17− 3

2
, (1.15)

ξ = ξ(1) and β = α − 1. Recently, Curien and Joseph [CJ11] were the first to give a result on
the mean of Cn(s) for a fixed query line x = s. Based on fragmentation processes, using (1.12)
and an ingenious coupling argument for Markov chains, they proved convergence of Cn(s)/nβ in
mean for fixed s. Based on fixed-point arguments for the limit, their main result states that

n−βE [Cn(s)] ∼ K1h(s), (1.16)

where

K1 =
Γ(2β + 2)Γ(β + 2)

2Γ3(β + 1)Γ2(β/2 + 1)
, h(s) = (s(1− s))β/2. (1.17)
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1.2. Applications

Note that we use a refinement of their method and result in our work.

Recursive decomposition and main results: Given the number of points in each of the four
regions (equivalently, nodes in the subtrees), those points are again independent and uniformly
distributed. Moreover, the behaviour within each subregion is independent of each other. A partial
match query with fixed first component x = s then searches in two of these subtrees, or equiva-
lently, certain horizontal lines are counted either in the first and second or in the third and fourth
subregion. Here we abbreviate the first subtree to correspond to the lower-left region, the second
to the upper-left, the third to the lower-right and the fourth to the upper-right. Note, that the query
line in the regions under investigation has to be considered relative to the x-component of the first
inserted node. Thus, a decomposition at the root gives the following fundamental distributional
recurrence

Cn(s)
d
= 1 + 1{s<U}

[
C

(1)

I
(n)
1

( s
U

)
+ C

(2)

I
(n)
2

( s
U

)]
+1{s≥U}

[
C

(3)

I
(n)
3

(
1− s
1− U

)
+ C

(4)

I
(n)
4

(
1− s
1− U

)]
. (1.18)

Here, U, V denote the components of the first inserted point, I(n)
1 , . . . , I

(n)
4 denote the number of

points in the subregions and (C
(1)
n ), . . . , (C

(4)
n ) are independent copies of (Cn), independent of(

U, V, I
(n)
1 , . . . , I

(n)
4

)
. Obviously, (1.18) can not be seen as a one-dimensional recurrence of type

(1.1) for fixed s. The crucial observation is that the recursive decomposition holds simultaneously
for an arbitrary finite number of coordinates s1, . . . , sk. Thus, partial match queries for differ-
ent values of s are coupled and considered in one and the same quadtree! Naturally, there exist
càdlàg versions of (Cn(s))s∈[0,1], hence (1.18) can be viewed as a recursion in the space of càdlàg
functions. Given (U, V ), we have

L
(
I

(n)
1 , . . . , I

(n)
4

)
= Mult(n− 1;UV,U(1− V ), (1− U)V, (1− U)(1− V )). (1.19)

Hence scaling by nβ suggests that any limit process Z of the scaled quantity n−βCn(s) satisfies

Z(s)
d
= 1{s<U}

[
(UV )βZ(1)

( s
U

)
+ (U(1− V ))βZ(2)

( s
U

)]
(1.20)

+1{s≥U}

[
((1− U)V )βZ(3)

(
1− s
1− U

)
+ ((1− U)(1− V ))βZ(4)

(
1− s
1− U

)]
.

Based on the contraction method, our main result of Chapter 5 states that the process n−βCn(s)

indeed converges in distribution in the space of càdlàg functions endowed with Skorokhod topol-
ogy to a continuous solution of (1.20) which is unique under the constraints that its mean at ξ
equals κ, see (1.15), and its supremum is square-integrable. For a simulation of the limit, see
Figure 1.3. A direct consequence of the result is a limit law for Cn(ξ) for uniform ξ, independent
of the quadtree and a first order expansion of the variance where we also identify the leading con-
stant. Our result also implies distributional convergence of the rescaled supremum of Cn(s) which
can be strengthened to convergence of all moments. This provides asymptotic information on the
worst-case behaviour of the algorithm and solves several long-open problems. Finally note that
the costs of partial match queries in quadtrees are not concentrated, typical fluctuations are of the
order of their mean. The behaviour in K-d tries is different. Here, under the symmetric Bernoulli
model, costs are extremely stable, see [DZC04]. For results on the variance and a normal limit law
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1. Introduction

(after normalization) for the costs in K-d tries see [Sch95, Sch00].

Outline - Chapters 4 and 5: In Section 4.1, we start with the proof of Donsker’s theorem relying
on the contraction method. It is based on a fixed-point characterization of the Wiener measure that
we strengthen in Section 4.2. We also provide convergence of moments of the supremum of the
rescaled random walk when assuming corresponding moments for the increments.
In Section 5.1 we collect all results for the retrieval problem on quadtrees, that is process conver-
gence of Cn after rescaling, convergence of the supremum in distribution and with all moments
and a characterization of all one-dimensional marginals of Z in terms of a single probability dis-
tribution on the real line. The proof of our main result is given in Section 5.2. Solutions for the
problems P2 and P3a are provided in Sections 5.3 resp. 5.4. In the latter section we also give
further illustrations for the occurrence of size-biasing effects that play a major role in this context.
In Section 5.6 we introduce 2-d trees and give analogous results for this class of two-dimensional
trees. Section 5.7 is devoted to further open problems in the partial match retrieval problem.
Finally, in Section 5.8, we present a problem left open in [CLG11] from the theory of random
recursive triangulations that exhibits similar behaviour as the problem of partial match queries.
Based on the methods we develop in this thesis, a proof thereof seems to be within reach.

Several parts of the Chapter 5 have recently been published as an extended abstract in [BNS12].

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 1.3.: Simulation of the limit process Z established by Nicolas Broutin.
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2. The Zolotarev metric

In his seminal work on probability metrics [Zol78], Zolotarev observes that “In probability theory
and its applications where there are especially many approximation problems, the use of metrics
[. . .] is also a common occurrence, although we must note that the arsenal employed in this con-
nection is not very large.” To this end, he justifies the use of metric distances by the following
three rules which we cite from [Zol76].

i) In approximation problems, a metric formulation of a problem is preferable to others equiv-
alent to it because it enables one to consider the question of obtaining quantitative estimates
for the approximations.

ii) In a metric formulation of a problem, a cardinal question is that of making a proper choice
of the metric used since the naturalness and completeness of a solution will depend on this
in many respects.

iii) If we have at our disposal a solution to an approximation problem in terms of some metric,
then going over to other metrics in the same problem can be accomplished by means of a
comparison of the metrics in the form of estimates for the metric with the help of others.

Based on these guidelines, Zolotarev introduces plenty of different metrics in his works in the
late seventies. Additionally, he finds relations between them and applications to justify each of
his rules. This method of metric distances was later investigated by various other researchers.
Zolotarev’ rules also play an important role throughout this thesis.
We start by introducing the class of Zolotarev metrics ζs which we use for the purpose of the
contraction method. It was invented by Zolotarev [Zol78, Zol76] 1. In [Zol77], he summarizes lots
of its properties and gives further results. From his remaining works in the context of probability
metrics we use results from [Zol79a, Zol79b] and the survey article [Zol84]. In the real-valued
case, one should also take into account the comprehensive book [Zol97]. Note that this class of
metrics is only one possible choice and it would be very enlightening to find other distances that
can serve in this area.

2.1. Definition and main properties

We aim at considering random variables taking their values in a real vector space B that can
be endowed with a complete norm ‖ · ‖ which turns (B, ‖ · ‖) in a Banach space. There are
several reasons why the concept of non-separable Banach spaces equipped with the usual Borel-
σ-algebra as state spaces for random variables is inappropriate, for more details see the beginning
of Section 2.5. There we will endow B with a considerably smaller σ-algebra. Henceforth, for

1Indeed, [Zol78] was his first work on probability metrics and had already appeared 1976 in Russian language in Mat.
Sb. (N.S.),101(143)(3):416–454, 1976.
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2. The Zolotarev metric

the current section and Sections 2.2 and 2.3, we will always assume (B, ‖ · ‖) to be a separable
Banach space equipped with Borel-σ-algebra B. Moreover, we will, here and in the case of non-
separable B, always endow Rd for d ≥ 1 with the usual Euclidean norm and Borel-σ-algebra.
We denote byM(B) the set of probability measures on B. For functions f : B → R which are
Fréchet differentiable we denote the derivative of f at a point x by Df(x). Observe that Df(x)

is an element of the topological dual L(B,R) of continuous linear forms on B. We also consider
higher order derivatives, where Dmf(x) denotes the mth derivative of f at point x and Dmf is
a continuous multilinear form on B. Note that the space of multilinear functions g : Bm → R is
equipped with the norm

‖g‖ = sup
‖h1‖≤1,...,‖hm‖≤1

‖g(h1, . . . , hm)‖.

For a comprehensive account on differentiability in Banach spaces we refer to book of Cartan
[Car71]. Subsequently, s > 0 is fixed and for m = dse − 1, α = s−m we define

Fs := {f : B → R : ‖Dmf(x)−Dmf(y)‖ ≤ ‖x− y‖α ∀ x, y ∈ B} (2.1)

Definition 2.1. Let s > 0 and m = dse− 1, α = s−m. For µ, ν ∈M(B) the Zolotarev distance
between µ and ν is defined by

ζs(µ, ν) = sup
f∈Fs

|E [f(X)− f(Y )] |, (2.2)

where X and Y are B-valued random variables with L(X) = µ,L(Y ) = ν. X .

A priori the expression (2.2) is not necessarily finite or well-defined. A simple application of
Taylor’s formula, see Lemma 2.9, shows that (2.2) is well-defined, if

Bs(µ, ν) :=

∫
‖x‖sdµ+

∫
‖x‖sdν <∞ (2.3)

and moreover finite if additionally∫
f(x, . . . , x)dµ =

∫
f(x, . . . , x)dν, (2.4)

for any continuous k-linear form on B and 1 ≤ k ≤ m.
Let µ, ν be probability measures on B satisfying condition (2.3) and f be a k-linear form on B
with k ≤ m such that ∫

f(x, . . . , x)dµ 6=
∫
f(x, . . . , x)dν.

Then, as the mth derivative of f is constant, the function Cf belongs to Fs for any C > 0. Thus,
we have

ζs(µ, ν) = sup
f∈Fs

|E [f(X)− f(Y )] | =∞.

As a consequence we can say that, for any probability measures µ, ν satisfying (2.3), finiteness
of ζs(µ, ν) is equivalent to condition (2.4). Moreover, for various Banach spaces, such as Hilbert
spaces or C[0, 1], we have the following: If µ, ν satisfy (2.3) then condition (2.4) can be replaced
by ∫

f1(x) · · · fk(x)dµ(x) =

∫
f1(x) · · · fk(x)dν(x), (2.5)

for all 1 ≤ k ≤ m and continuous linear forms f1, . . . , fk. We discuss this property in more detail
in Section 3.2 and only give a proof in the Hilbert space case here. Note that this equivalence does
not hold for arbitrary Banach spaces, see [JK].
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2.1. Definition and main properties

Lemma 2.2. Let B be a separable Hilbert space with scalar product < ·, · > and µ and ν be two
probability measures on B satisfying (2.3). Then, for any k ∈ N, the conditions (2.4) and (2.5)
are equivalent.

Proof. Let (ei)i≥1 be an orthonormal basis of B and f be a continuous bilinear form on B. Then,
using the Riesz representation theorem, we have

f(x, y) =< Ax, y >=
∑
i≥1

< Ax, ei >< y, ei >=
∑
i≥1

< x, vi >< y, ei >

for some continuous linear operator A and sequence (vi)i≥1 in B. The theorem of dominated
convergence in connection with Parseval’s identity and the Cauchy-Schwarz inequality implies∫

f(x, x)dµ(x) =
∑
i≥1

∫
< x, vi >< x, ei > dµ(x)

since
∫
‖x‖2dµ(x) < ∞. This shows the assertion for k = 2. The remaining cases follow

analogously.

For µ, ν satisfying (2.3), the definition of ζs(µ, ν) does not involve the common distribution of µ
and ν, hence we will use the abbreviation

ζs(X,Y ) := ζs(L(X),L(Y ))

for random variables X,Y in B with finite absolute moments of order s. Let Ms(B) be the
subset of M(B) of distributions µ such that

∫
‖x‖sdµ(x) < ∞. We fix a probability measure

ν ∈ Ms(B) and denote by Ms(ν) the set of all µ ∈ Ms(B) such that (2.3) and (2.4) are
satisfied. The first Lemma follows directly from the Definition.

Lemma 2.3. ζs is a pseudometric onMs(ν).

The next Lemma exhibits a very useful property of ζs for the purpose of recursive decompositions
of stochastic processes. It is Theorem 3 in [Zol77].

Lemma 2.4. Let B′ be a Banach space and g : B → B′ be a linear and continuous operator.
Then we have

ζs(g(X), g(Y )) ≤ ‖g‖sζs(X,Y ).

forL(X),L(Y ) ∈Ms(ν) where ‖g‖ denotes the operator norm of g, i.e. ‖g‖ = sup‖x‖≤1 ‖g(x)‖.

Proof. Note that g is bounded. It suffices to show that

{‖g‖−s f ◦ g : f ∈ F ′s} ⊆ Fs,

where F ′s is defined analogously to Fs inB′. Let f ∈ Fs and η := ‖g‖−s f ◦g. Then η ism-times
continuously differentiable and we haveDmη(x) = ‖g‖−s (Dm(f(g(x)))◦g⊗m for x ∈ B. Here,
g⊗m : Bm → (B′)m denotes the tensor product g⊗m(h1, . . . , hm) = (g(h1), . . . , g(hn)). This
implies

‖Dmη(x)−Dmη(y)‖ = ‖g‖−s ‖(Dmf(g(x))) ◦ g⊗m − (Dmf(g(y))) ◦ g⊗m‖
≤ ‖g‖−α ‖g(x)− g(y)‖α

= ‖g‖−α ‖g(x− y)‖α ≤ ‖x− y‖α.

The assertion follows.
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2. The Zolotarev metric

Another basic property is that ζs is (s,+) ideal. This is Lemma 3 in [Zol76].

Lemma 2.5. ζs is ideal of order s inMs(ν) for any ν ∈Ms(B), that is

ζs(cX, cY ) = |c|sζs(X,Y ),

ζs(X + Z, Y + Z) ≤ ζs(X,Y )

for c ∈ R\{0}, (X,Y ), Z independent, L(X),L(Y ) ∈Ms(ν) and L(Z) ∈Ms(B).

Proof. The map hc : B → B, hc(x) = cx is a linear and continuous operator for any c ∈ R.
Hence, by Lemma 2.4

ζs(cX, cY ) ≤ |c|sζs(X,Y ).

Applying the Lemma with h1/c gives the inequality in the other direction. For any z ∈ B, f ∈ Fs
the map gz : B → B, gz(x) = f(x + z) is also element of Fs. Conditioning on the value of Z
yields |E [f(X + Z)− f(Y + Z)] | ≤ ζs(X,Y ) for all f ∈ Fs which implies the second assertion
of the lemma.

The Lemma directly implies the following corollary by an adaption of the triangle inequality.

Corollary 2.6. LetL(X1),L(Y1) ∈Ms(ν1) andL(X2),L(Y2) ∈Ms(ν2) with arbitrary ν1, ν2 ∈
Ms(B) such that (X1, Y1) and (X2, Y2) are independent. Then

ζs(X1 +X2, Y1 + Y2) ≤ ζs(X1, Y1) + ζs(X2, Y2).

We want to give a result similar to Lemma 2.4 where the linear operator may also be random
itself. We focus on the case that B′ either equals B or R where an extension to Rd for d > 1

is straightforward. Let B∗ = L(B,R) be the topological dual of B and B̂ be the space of all
continuous linear functions from B to B (continuous endomorphisms). Endowed with the norms

‖a‖ = sup
x∈B,‖x‖≤1

|a(x)|, ‖b‖ = sup
x∈B,‖x‖≤1

‖b(x)‖,

for a ∈ B∗, b ∈ B̂ both spaces are Banach spaces. However, these spaces are typically non-
separable, hence not suitable for purposes of measurability. Therefore, we will equip them with
considerably smaller σ-algebras. We start with the dual space: Similarly to the weak-* topology,
we let B∗ be the σ-algebra on B∗ that is generated by all norm-continuous linear forms ϕ on B∗

[that is elements of the bidual B∗∗] of the form ϕ(a) = a(x) for some x ∈ B. Note that the
set of these continuous linear forms coincides with the bidual B∗∗ if and only if B is reflexive, a
property that is not satisfied in our applications. We move on to B̂ and define B̂ to be generated
by all norm-continuous linear functions ψ from B̂ to B of the form ψ(a) = a(x) for some x ∈ B.
By Pettis’ Theorem, we have B = σ(` ∈ B∗). Hence, if S ⊆ B∗ with B = σ(` ∈ S), then B̂ is
also generated by the continuous linear forms % on B̂ that can be written as %(a) = `(a(x)) for
` ∈ S and x ∈ B. Using the separability of B it is easy to see that the map a 7→ ‖a‖ is B∗−B(R)

measurable for a ∈ B∗. In the same way, one shows that b 7→ ‖b‖ is measurable with respect to
B̂ − B(R).

Definition 2.7. By random continuous linear form on B we denote any random variable with
values in (B∗,B∗). Analogously, random continuous linear operators on B are random variables
with values in (B̂, B̂).
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2.2. Upper bounds for ζs

To settle issues of measurability, note the following: For any a ∈ B∗, x ∈ B, random continuous
linear form A and random variable X in B, we have that a(X), A(x) and A(X) are again random
variables. The latter follows from measurability of the map (a, x) 7→ a(x) with respect to B∗ ⊗
B − B. This is due to the separability of B, we have

{(a, x) ∈ B∗ ×B : a(x) < r}
=
⋃
k≥1

⋃
m≥1

⋂
n≥m

⋃
i≥1
{a ∈ B∗ : a(ei) < r − 1/k} × {x ∈ B : ‖x− ei‖ < 1/n},

where {ei : i ≥ 1} denotes a dense subset of B. Exactly the same is true for b(x), A(x), A(X)

when b ∈ B̂, x ∈ B, A denotes a random continuous linear operator and X a random variable in
B. The following Lemma is immediate from Lemma 2.4 by conditioning.

Lemma 2.8. Let L(X),L(Y ) ∈ Ms(ν). Then, for any random linear continuous form or opera-
tor A with E [‖A‖s] <∞ independent of X and Y , we have

ζs(A(X), A(Y )) ≤ E [‖A‖s] ζs(X,Y ).

Note that the assumptions in Lemma 2.4, Lemma 2.5, Corollary 2.6 and Lemma 2.8 are sufficient
to guarantee finiteness of all ζs-distances in the statements.

We close this section with the simple observation that any relevant property of ζs is invariant under
isomorphisms. Indeed, if B′ denotes a Banach space and ϕ : B → B′ is isomorphic, then

ζs(ϕ(X), ϕ(Y )) ≤ ‖ϕ‖sζs(X,Y ) (2.6)

for L(X),L(Y ) ∈Ms(ν) by Lemma 2.4.

2.2. Upper bounds for ζs

In this section we give upper bounds for ζs, mainly for two reasons: First, we address the question
of finiteness of the distance and second to infer convergence in ζs from other types of convergence.
Zolotarev gave many upper (and lower) bounds for ζs, some of them being valid only if more
structure of B is assumed. The only upper bound we will use subsequently comes from Theorem
2.17 and therefore we include the short proof for the reader’s convenience. For any m times
continuously differentiable function f : B → R, we have by Taylor’s formula

f(x) =
m−1∑
i=0

f (i)(0)(x, . . . , x)

i!
+

∫ 1

0

(1− t)m−1

(m− 1)!
f (m)(tx)(x, . . . , x)dt.

Hence we let

gf (x) = f(x)−
m∑
i=0

f (i)(0)(x, . . . , x)

i!
=

∫ 1

0

(1− t)m−1

(m− 1)!
Q(tx)(x, . . . , x)dt (2.7)

be the remainder term in the Taylor expansion of orderm of f at point 0, whereQ(x) = f (m)(x)−
f (m)(0). For f ∈ Fs we have

‖Q(tx)(x, . . . , x)‖ ≤ tα‖x‖s

17



2. The Zolotarev metric

which gives E [|f(X)|] <∞ for f ∈ Fs,L(X) ∈Ms(B) and

|E [f(X)− f(Y )] | ≤ Γ(1 + α)

Γ(1 + s)
Bs(X,Y ),

for L(X),L(Y ) ∈ Ms(ν) where Bs(X,Y ) := Bs(L(X),L(Y )) and Bs(µ, ν) was defined in
(2.3). Since the right hand side does no longer depend on f this immediately implies the following
result which is Lemma 2 in [Zol76].

Lemma 2.9. If L(X),L(Y ) ∈Ms(ν) then

ζs(X,Y ) ≤ Γ(1 + α)

Γ(1 + s)
Bs(X,Y ).

For improved upper bounds we introduce other metrics on the space of probability measures. For
s > 0 and probability measures µ and ν, let

`s(µ, ν) := inf(E [‖X − Y ‖s])min(1/s,1), (2.8)

where the infimum is taken over all random variables (X,Y ) on the product space such that
L(X) = µ and L(Y ) = ν. For random variables X,Y with values in B, we set `s(X,Y ) =

`s(L(X),L(Y )). Note that `s(X,Y ) is finite if both ‖X‖ and ‖Y ‖ have finite s-th moment. By
the separability of B, it is not hard to see that the infimum in (2.8) is attained if both X and Y
have finite absolute moment of order s. The short proof is given in Lemma A.2 in the appendix.
The historical background of the metric is diverse, it seems that it first appeared in Gini’s work on
the Gini coefficient in 1914. There are several other terms for `s, among them Wasserstein and
Kantorovich metric. We list several of its properties here and include proofs in the appendix. For
more detailed information on `s we refer to [BF81] or the book of Rachev [Rac91]. The following
characterization of `s convergence can be found in both references [Lemma 8.3 in [BF81] and
Theorem 8.2.1 in [Rac91]]. A short proof is given in Lemma A.3 in the appendix.

Lemma 2.10. Let s > 0 and E [‖Xn‖s] ,E [‖X‖s] < ∞ for all n. Then `s(Xn, X) → 0 implies
Xn → X in distribution and E [‖Xn‖s]→ E [‖X‖s]. The converse is true as well.

A further quantity that serves in the context of bounding ζs from above is defined by

κs(X,Y ) = `1(X‖X‖s−1, Y ‖Y ‖s−1)

for B valued random variables X,Y . κs(X,Y ) is also called the difference pseudomoment of
order s. It is easy to see that `s and κs are not equivalent. However, there are close in the sense of
the following Lemma, whose proof is contained in Lemma A.4 in the appendix. Note that both `s
and κs are indeed metrics onMs(B), we refer to [BF81, Lemma 8.3] for a proof.

Lemma 2.11. For s > 0, the topologies induced by `s, κs onMs(B) are equal.

The quantities `1 and κs are constructed as minimal versions of E [‖g(X)− g(Y )‖] for a given
function g : B → B whereas ζs is defined as the supremum of |E [f(X)− f(Y )] | with certain
constraints on the function f . Both techniques are related by a classical Theorem of Kantorovich
and Rubinstein, see [KR58] (for B compact) and [Dud76] for the general case.
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2.2. Upper bounds for ζs

Theorem 2.12. Let (S, d) be a separable metric space and X,Y be S-valued random variables
such that E [d(x,X)] ,E [d(y, Y )] <∞ for some (hence all) x, y ∈ S. Then

inf E [d(X,Y )] = sup{|E [f(X)− f(Y )] | : f : S → R, |f(x)− f(y)| ≤ d(x, y)},

where the infimum is taken over all possible realizations of (X,Y ) in S2 with fixed marginals. The
supremum on the right hand side is attained for some 1-Lipschitz function f : S → R.

This leads to an alternative representation of κs. For B valued random variables X,Y with
E [‖X‖s], E [‖Y ‖s] <∞, we have

κs(X,Y ) = sup{|E [f(X)− f(Y )] | : f : B → R, |f(x)− f(y)| ≤ ‖x‖x‖s−1 − y‖y‖s−1‖}.

For s = 1, this immediately follows from Theorem 2.12. For general s, use the observation that
d(x, y) := ‖x‖x‖s−1 − y‖y‖s−1‖ is a metric on B that defines the same topology as ‖ · ‖. Note
that the direction ≥ of the latter expression is immediate from the definition of κs.

Example 2.13. Let us consider the case B = R. Here, both metrics `s and κs have nice rep-
resentations. Let U be uniform on the unit interval, X,Y real-valued random variables with
E [|X|] ,E [|Y |] <∞ and s ≥ 1. Then

`s(X,Y ) = ‖F−1
X (U)− F−1

Y (U)‖s =

(∫ 1

0
|F−1
X (u)− F−1

Y (u)|sdu
)1/s

, (2.9)

where F−1
X (u) = sup{x : FX(x) ≤ t} with FX(t) = P (X ≤ t) denotes the generalized inverse

of the distribution function of X [If `s(X,Y ) is infinite, then the same applies to the right hand
side of (2.9)]. This was first proved by Dall’Aglio [Dal56], see [Maj78] for a proof in English
language. For s = 1, a simple geometric argument shows that this representation is equivalent to

`1(X,Y ) =

∫ ∞
−∞
|FX(u)− FY (u)|du. (2.10)

Moreover, if E [|X|] ,E [|Y |] <∞ then ζ1(X,Y ) coincides with `1(X,Y ) and the right hand sides
of both (2.10) and (2.9) (with s = 1). We provide a short self-contained proof thereof not relying
on the Kantorovich-Rubinstein Theorem in Lemma A.5 in the appendix. A simple parameter
transformation leads from (2.10) to a similar representation of κs. We have

κs(X,Y ) = s

(∫ ∞
−∞
|u|s−1|FX(u)− FY (u)|du

)
. (2.11)

for all s > 0.

We move on comparing the metrics `s, κs with ζs. For s ≤ 1, the definition of Fs directly gives

ζs(X,Y ) ≤ `s(X,Y ) (2.12)

for E [‖X‖s] ,E [‖Y ‖s] <∞. Again, by Theorem 2.12, we have equality in (2.12) by the separa-
bility of B.

Corollary 2.14. Let s ≤ 1 and E [‖X‖s] ,E [‖Y ‖s] <∞. Then ζs(X,Y ) = `s(X,Y ).
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2. The Zolotarev metric

For applications with s > 1 we will use an upper bound for ζs in terms of `s which we state as
Theorem 2.17 at the end of this section. Zolotarev himself gave upper bounds in terms of κs in
[Zol76, Section 4]. Like Lemma 2.9, they are based on a Taylor expansion of functions from class
Fs.

Theorem 2.15. Let L(X),L(Y ) ∈Ms(ν) and bs = min(E [‖X‖s] ,E [‖Y ‖s]). Then, for s > 0,

ζs(X,Y ) ≤ Γ(1 + α)

Γ(1 + s)
(2mκs + (2κs)

αb1−αs ). (2.13)

Under the same conditions and for integer values of s, it holds

ζs(X,Y ) ≤ 2κs
Γ(s)

. (2.14)

If B is a Hilbert space both inequalities remain valid if we remove the 2’s on the right hand sides.
OnMs(ν), convergence in κs implies convergence in ζs.

Remark 2.16. Zolotarev emphasizes that, in general, the condition (2.3) would not be necessary
for finiteness of ζs(µ, ν). For s ≥ 1 integer, ζs(µ, ν) is well-defined and finite if only (2.4) and
κs(X,Y ) < ∞ where L(X) = µ,L(Y ) = ν hold true. In this case (2.14) remains valid. By
Theorem 4 in [Zol77] a similar statement is true for any s > 0 if νs(X,Y ) <∞ where νs(X,Y )

denotes the absolute pseudomoment of order s of X and Y . It is defined by

νs(X,Y ) =

∫
|u|sd|PX − PY |(u),

where |PX −PY | is the variation measure of the signed measure PX −PY . However, E [‖X‖s] =

∞,E [‖Y ‖s] =∞ may imply non-integrability of f(X) for certain functions of Fs. Thus, an ap-
propriate definition of ζs(µ, ν) involves a minimization over all possible random variables (X,Y )

on the product spaces with marginals µ and ν just as in the definition of `s. We do not want to deal
at all with this case.

We now state and prove the `s bound for s > 1. It is Lemma 5.7 in [DJN08].

Theorem 2.17. Let L(X),L(Y ) ∈Ms(ν) with s > 1. Then

ζs(X,Y ) ≤
[
(E [‖X‖s])1−1/s + (E [‖Y ‖s])1−1/s

]
`s(X,Y ).

In particular, `s convergence implies ζs convergence inMs(ν).

Proof. Recall the function gf from (2.7) for f ∈ Fs

gf (x) = f(x)− f(0)−
m∑
i=1

f (i)(0)(x, . . . , x)

i!
.

The i-th summand is i-linear in its argument hence it vanishes for x = 0 and its i-th derivative is
constant. This gives

gf (0) = Dgf (0) = · · · = Dmgf (0) = 0

and
‖Dmgf (x)−Dmgf (y)‖ = ‖Dmf(x)−Dmf(y)‖ ≤ ‖x− y‖α.
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2.3. Lower bounds on ζs

By the mean value theorem, for any x ∈ B it exists 0 ≤ θ ≤ 1 with

‖Dm−1gf (x)‖ = ‖Dmgf (θx)(x)‖ ≤ ‖x‖α+1

and by backward induction
‖Dkgf (x)‖ ≤ ‖x‖s−k,

for all 0 ≤ k ≤ m. Now, for x, y ∈ B, again using the mean value theorem, there exists 0 ≤ θ ≤ 1

such that

‖gf (y)− gf (x)‖ = ‖Dg(x+ θ(y − x))(y − x)‖ ≤ ‖(1− θ)x+ θy‖s−1‖y − x‖
≤ (‖x‖s−1 + ‖y‖s−1)‖y − x‖

using the triangle inequality and (1− θ)‖x‖+ θ‖y‖ ≤ max(‖x‖, ‖y‖) in the final step. Hölder’s
inequality now implies

|E [f(X)− f(Y )] | ≤ E [|g(X)− g(Y )|] ≤ E
[
(‖X‖s−1 + ‖Y ‖s−1)‖Y −X‖

]
≤

[
E [‖X‖s]1−1/s + E [‖Y ‖s]1−1/s

]
E [‖Y −X‖s]1/s .

Taking the supremum over f ∈ Fs and the infimum over realizations of L(X) and L(Y ) the
assertion follows.

2.3. Lower bounds on ζs

Upper bounds are of interest to prove convergence of a sequence of random variables (Xn) to
a random variable X in the ζs distance. Lower bounds however are of great importance aiming
to infer other modes of convergence, in particular weak convergence, from convergence in the
Zolotarev distance. In principle, lower bounds can be easily obtained by choosing arbitrary func-
tions f from Fs. Therefore, the richness of Fs plays a major role. Our main focus in the section
lies on the following two problems.

• Does ζs(µ, ν) = 0 imply µ = ν ?

• Does ζs(µn, µ)→ 0 imply µn → µ weakly for n→∞ ?

In general, only the first problem has a positive answer. However, we will give considerably weak
additional assumptions on (µn) and µ to obtain weak convergence for the cases of continuous or
càdlàg functions on the unit interval in Section 2.6. A simple, yet useful bound in the case of
real-valued random variables comes from by the observation that for all s > 0 integer, we have
C−1
s f ∈ Fs with

f(x) = xs, Cs = s!

This gives
|E [Xs]− E [Y s] | ≤ Csζs(X,Y ) (2.15)

for L(X),L(Y ) ∈ Ms(ν) and B = R. This result is rather simple, however, based on it as a
lower bound and on the upper bound given in Theorem 2.15, Neininger and Rüschendorf [NR02]
were able to prove that

ζ3(Z∗n, σ
−1Z) = Θ

(
log n

n

)
,
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2. The Zolotarev metric

where, as mentioned in the introduction,Z∗n = (Var [Zn])−1/2(Zn−E [Zn]) is the precise rescaled
version of Zn, the number of key comparisons in the randomized Quicksort algorithm, Z its weak
limit given by the solution of (1.7) and σ2 = Var [Z]. It is still an open problem to determine the
order of convergence in this problem for more common metrics, e.g. the Kolmogorov metric

%(X,Y ) = sup
x∈R
|P (X ≤ x)−P (Y ≤ x) |, (2.16)

or the Lévy-Prokhorov metric

π(X,Y ) = inf{ε > 0 : P (X ∈ C) ≤ P (Y ∈ Cε) + ε ∀ C closed}, (2.17)

where Cε = {x ∈ R : ‖x − y‖ < ε for some y ∈ C}. Bounds on the convergence rates in the
Quicksort problem in the Kolmogorov metric and the `p metrics for p > 1 have been obtained
in [FJ02]. Note that the Lévy-Prokhorov metric has an obvious extension to the case of arbitrary
metric spaces.

(2.15) naturally poses the question whether there exists constants C̄s such that C̄s‖x‖s ∈ Fs. In
general, this cannot be the case, since the norm function may not be differentiable, B = C[0, 1]

is one of these cases [see Lemma A.6 in the appendix for a proof]. Nevertheless, it is true in
Hilbert spaces. This is easy to show for integer values of s and more involved in the general case.
Zolotarev gives a proof containing a slight mistake in the last step in the case of 1 < s ≤ 2 [Zol76,
Theorem 6]. Based on his arguments, we give a proof covering all cases here.

Lemma 2.18. Let B be a Hilbert space, s > 0. Then, there exists a constant C̄s > 0 such that
C̄s‖x‖s ∈ Fs. Thus, for any L(X),L(Y ) ∈Ms(ν), we have

|E [‖X‖s]− E [‖Y ‖s] | ≤ C̄−1
s ζs(X,Y ).

Proof. Let ν(x) = ‖x‖ and νs(x) = ‖x‖s. Obviously, νs(x) ∈ Fs for s ≤ 1. For s ∈ 2N, it is
easy to see that ‖Dsνs(x)‖ is constant and equals s!. Hence C̄sνs(x) ∈ Fs where C̄s = (s!)−1.
For the remaining of the proof fix s ∈ R+\2N. Let x 6= 0. Then, it is not difficult to see that for
every k > 0

Dkνs(x)[h1, . . . , hk] =
∑

0≤`≤k,`=k mod 2

∑
∗
c`‖x‖s−k−`

∏̀
r=1

< x, hir >

(k−`)/2∏
r=1

< hjr , hpr >

where, for fixed `, the second sum ranges over all disjoint sets {i1, . . . , i`}, {j1, . . . , j(k−`)/2} and
{p1, . . . , p(k−`)/2} with 1 ≤ i1 < . . . < i` ≤ k, 1 ≤ j1 < . . . < j(k−`)/2 ≤ k, ji < pi for
i = 1, . . . , (k − `)/2 and c` = s(s− 2) · · · (s− (k + `) + 2). This representation is used also in
[Jam77, Lemma 1]. Thus, for y 6= 0, the term Dmνs(x)−Dmνs(y) consists of summands of the
form

c`

(
‖x‖α−`

∏̀
r=1

< x, hir > −‖y‖α−`
∏̀
r=1

< y, hir >

)
(m−`)/2∏
r=1

< hjr , hpr > (2.18)
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2.3. Lower bounds on ζs

For ` = 0, the norm of this term is bounded by c`|‖x‖α − ‖y‖α| ≤ c`‖x − y‖α. For 1 ≤ ` ≤ m,
we can express (2.18) as

∑
0≤t≤`−1

c`‖x‖α−`
t∏

r=1

< x, hir >< x− y, hit+1 >
∏̀
r=t+2

< y, hir >

(m−`)/2∏
r=1

< hjr , hpr >

(2.19)

+ c`(‖x‖α−` − ‖y‖α−`)
∏̀
r=1

< y, hir >

(m−`)/2∏
r=1

< hjr , hpr > (2.20)

Let ‖y‖ ≤ ‖x‖. Then, the norm of each of the summands in (2.19) is bounded by

c`‖x‖α−1‖x− y‖ ≤ c`
(
‖x− y‖
‖x‖

)1−α
‖x− y‖α ≤ c`21−α‖x− y‖α.

Additionally, the norm of the term (2.20) is bounded by c`β(`, ‖x‖, ‖y‖) where β(`, x, y) = yα−
y`xα−` for x, y ∈ R+ and ` ∈ N. It is easy to see that β(`, x, y) ≤ (`/α − 1)(xα − yα) for
x ≥ y > 0. Thus,

β(`, ‖x‖, ‖y‖) ≤ (`/α− 1)(‖x‖α − ‖y‖α) ≤ (`/α− 1)‖x− y‖α.

Overall, for ‖x‖ ≥ ‖y‖ > 0, the term ‖Dmνs(x)−Dmνs(y)‖/‖x− y‖α is bounded uniformly in
x, y. Finally, note that νs(0) = Dνs(0) = · · · = D(m)νs(0) = 0, so the case that y = 0 or / and
x = 0 can be handled with ease.

A useful concept in the issues of uniqueness and convergence of distributions is that of character-
istic functions (or Fourier transforms).

Definition 2.19. Let X be a B valued random variable. The function φX : L(B,R)→ C defined
by

φX(h) = E
[
eih(X)

]
is called characteristic function of X .

Obviously φX only depends on the distribution of X so the characteristic function is naturally
defined for measures, we omit this reformulation here. The theory of characteristic functions in
infinite dimensional spaces is considerably more involved than in Rd; nevertheless, our first result
resembles the corresponding statement in the multivariate real case and can actually be easily
proved relying on the latter. It was first noted by Kolmogorov [Kol35].

Theorem 2.20. The characteristic function uniquely determines the distribution, i.e. φX(h) =

φY (h) for all h ∈ L(B,R) implies L(X) = L(Y ).

The next Lemma which essentially coincides with Theorem 2 in [Zol77] allows the transition from
characteristic functions to functions from class Fs.

Lemma 2.21. Let h ∈ L(B,R) and e(x) = eih(x) for x ∈ B. Then e is smooth. Remembering
s = m+ α, we have 2α−1‖h‖−s sin(h(x)) ∈ Fs and 2α−1‖h‖−s cos(h(x)) ∈ Fs.
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2. The Zolotarev metric

Proof. The smoothness property is trivial since continuous linear forms are smooth and also x 7→
eix is. Observe that

e(m)(x)(u1, . . . , um) = ime(x)h(u1) · · ·h(um).

Using Lipschitz continuity of eix and min(2, x) ≤ 21−αxα for x > 0 we obtain

‖e(m)(x)− e(m)(y)‖ ≤ |e(x)− e(y)|‖h‖m

≤ ‖h‖m min(2, |h(x)− h(y)|) ≤ 21−α‖h‖s‖x− y‖α.

Since e(x) = cos(h(x)) + i sin(h(x)) the result now follows by linearity of the derivative.

The Lemma immediately implies

|φX(h)− φY (h)| ≤ 2 · 21−α‖h‖sζs(X,Y ) (2.21)

for all h. In particular we have φX = φY if ζs(X,Y ) = 0. Together with Theorem 2.20 this gives
the following theorem.

Theorem 2.22. Let L(X),L(Y ) ∈ Ms(ν). If ζs(X,Y ) = 0 then L(X) = L(Y ), in particular
ζs is a metric onMs(ν).

In his papers, Zolotarev defines the ζs distances using functions from B to the space of complex
numbers. This would allow to work directly with e(x) and save a factor of 2 in (2.21).
We now move on to the question whether convergence in the Zolotarev distance implies weak
convergence. As in Lemma 2.18, the smoothness of the norm function x 7→ ‖x‖ plays a crucial
role. That is one main reason why Hilbert spaces are much easier to handle than general Banach
spaces. There, one can only hope for good approximations of the norm by smoother functions. By
Theorem 2.12 and Lemma 2.10 ζs convergence implies weak convergence for 0 ≤ s ≤ 1. A direct
proof not relying on the Kantorovich-Rubinstein Theorem is contained in the proof of the classical
Portementeau Lemma [Bil68, Theorem 2.1, ii)⇒ iii)] together with Theorem 1.2 there. We will
make use of the latter theorem several times, so we state it as Lemma A.1 in the appendix.

Corollary 2.23. Let 0 ≤ s ≤ 1. Then ζs convergence implies weak convergence.

We now move on to the general case. Let L(Xn),L(X) ∈Ms(ν) for all n with ζs(Xn, X)→ 0.
According to (2.21), we have φXn(h) → φX(h) for every h ∈ L(B,R). This immediately
connects our question to Lévy’s continuity theorem and motivates the following definition.

Definition 2.24. A Banach space B has property PL if the following statements are equivalent:

i) Xn → X for n→∞ in distribution,

ii) φXn(h)→ φX(h) for every h ∈ L(B,R) as n→∞.

By definition (ii) follows from (i) so the interesting direction is ii)→ i). It is well-known that any
finite dimensional Banach space has property PL, thus ζs convergence implies weak convergence
in finite dimensional Banach spaces. However, it is easy to see that not every Banach space B has
property PL. The following example is taken from [Mou53].
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2.3. Lower bounds on ζs

Example 2.25. Let B be an infinite dimensional separable Hilbert space with a basis (ei)i∈N of
orthonormal vectors. Let (Xi)i∈N be a sequence of B-valued random variables with L(Xi) = δei .
Fix h ∈ L(B,R). By the Riesz representation theorem there exists yh ∈ B such that h(x) =

〈x, yh〉 for all x ∈ B. Furthermore if yh =
∑

i∈N αiei then αi → 0 since ‖yh‖ = ‖h‖ < ∞.
Therefore h(en) = αn → 0 which implies φXn(h) → 1. This means φXn(h) → φX(h) if X has
distribution δ0. But obviously Xn does not converge to X in distribution.

In fact, by results in [Bou73], no normed vector space of infinite dimension has property PL.
In their works on the central limit theorem in Hilbert spaces, Giné and León [GL80] proved the
following theorem, see also [DJN08, Theorem 5.1].

Theorem 2.26. Let B be a separable Hilbert space. Then ζs convergence implies weak conver-
gence.

In the general case, note that ζs convergence uniquely determines the possible limit in the weak
topology. Solely the question of tightness of (Xn) remains open. We summarize the relations
between `s, κs and ζs by combining the statements of Lemma 2.10, Theorem 2.17 and Lemma
2.18.

Corollary 2.27. Let L(Xn),L(X) ∈ Ms(B) for all n. Then, κs(Xn, X) → 0 if and only if
`s(Xn, X) → 0. Furthermore, if L(Xn),L(X) ∈ Ms(ν) for all n, then `s(Xn, X) → 0 implies
ζs(Xn, X) → 0. ζs(Xn, X) → 0 implies `s(Xn, X) → 0 if and only if ζs(Xn, X) → 0 implies
Xn → X in distribution. If B is a Hilbert space then ζs, κs and `s induce the same topology on
Ms(ν).

The proofs of Corollary 2.23 and Theorem 2.26 are straightforward in the sense that no other
metrics on the space of probability distributions are involved. For the remaining of this section we
discuss lower bounds on the Zolotarev metrics in terms of the Lévy-Prokhorov metric as defined
in (2.17). Bounds of this type have been proved by Zolotarev [Zol76], Jamukov [Jam77] and
Senatov [Sen84] (based on results in [Sen83]). We collect them in the following Theorem. Here,
for a subset A of the Borel sets in B, let

π(X,Y ;A) = inf {ε > 0 : P (X ∈ A) ≤ P (Y ∈ Aε) + ε,

P (Y ∈ A) ≤ P (X ∈ Aε) + ε ∀A ∈ A},

with Aε = {x ∈ B : ‖x − y‖ < ε for some y ∈ A}. Moreover, we abbreviate C for the set of
convex measurable subsets of B and S for the set of closed spheres.

Theorem 2.28. For all 0 < s ≤ 1 we have

π1+s(X,Y ) ≤ ζs(X,Y ). (2.22)

Let s > 0 and the norm function η(x) = ‖x‖ be m+ 1 times differentiable for all x 6= 0 such that
there exists constants A1, . . . , Am+1 with

‖η(k)(x)‖ ≤ Ak‖η1−k(x)‖ (2.23)

for all k = 1, . . . ,m+ 1. Then there exists a constant Cs = Cs(α,A1, . . . , Am+1) such that

π1+s(‖X‖, ‖Y ‖) ≤ Csζs(X,Y ). (2.24)

π1+s(X,Y ;S) ≤ Csζs(X,Y ). (2.25)
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Assumption (2.23) is satisfied in any Hilbert space. IfB is a Hilbert space then, for any 0 < s ≤ 2,

π1+s(X,Y ;C) ≤ Cζs(X,Y ) (2.26)

for some constant C > 0 which can chosen independently of s. Finally, if B = Rd, then

π1+s(X,Y ;C) ≤ Csd(s−1−α)/2ζs(X,Y ), s > 1, (2.27)

π1+s(X,Y ) ≤ Csd(s−α)/2ζs(X,Y ), s > 0. (2.28)

Here Cs denotes a constant which depends on s (but not on d).

The simplest bound (2.22) is mentioned in [Zol84] and [Sen83]. (2.24) is proved in [Zol76], (2.25)
can be deduced easily from (2.24) as indicated in [Zol79b]. The final three bounds (2.26), (2.27)
and (2.28) are obtained in [Sen84]; weaker versions of (2.28) have been proved in [Jam77]. We
only outline the proofs here: Let ε < π(X,Y ) and C be a closed set with

ε ≤ P (X ∈ C)−P (Y ∈ Cε) .

It is sufficient to find a real-valued function f (depending on s, ε and C on B) and a constant
c > 0 only depending on s such that ‖f‖ ≤ 1, f(x) = 1 for x ∈ C, f(x) = −1 for x /∈ Cε and
c εsf(x) ∈ Fs. Then, π1+s(X,Y ) ≤ 1/(2c)ζs(X,Y ) follows from the observation that

E [f(X)− f(Y )] ≥ 2(P (X ∈ B)−P (Y ∈ Bε)) ≥ 2ε.

For 0 < s ≤ 1, the existence of such a function f and constant c which can be chosen to be two is
guaranteed by Lemma A.1 in the appendix. This gives the bound (2.22).

2.4. ζs in type p Banach spaces

Bentkus and Rachkauskas [BR85] were the first to mention that ζs convergence does not always
imply weak convergence. Additionally, they claimed that any bound of the form πβ ≤ c ζs
with β, c > 0, s > 1 can not be valid for arbitrary Banach spaces (and not even for separable
Hilbert spaces). We discuss this by drawing attention to the central limit theorem and start with
the real-valued case. LetX1, X2, . . . be a sequence of independent and identically distributed real-
valued random variables with zero mean and finite variance σ2. The central limit theorem, short
CLT, states that S∗n = n−1/2

∑n
i=1Xi converges in distribution to a normally distributed random

variable N with zero mean and variance σ2. Additionally, if E
[
|X|3

]
is finite, the classical Berry-

Essen Theorem gives
%(S∗n, N) = O(n−1/2),

where % denotes the Kolmogorov distance defined in (2.16) and the rate is known to be of this
order. The bound is actually uniform for all distributions of X1 with fixed variance and bounded
absolute third moment but we do not emphasize this here. In the Lévy-Prokhorov distance, an
upper bound of the form

π(S∗n, N) = O(n−1/2)

is known as well [Yur75]. Let us now consider the Zolotarev distance. Assuming E [|X1|s] < ∞
for some s > 2, the ideal property of ζs and the convolution property of the normal distribution
directly imply

ζs(S
∗
n, N) = ζs(X1, N)n1−s/2. (2.29)
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Hence, for s = 3, we have the same order of convergence as in the Kolmogorov distance. Further-
more, assuming E

[
X3

1

]
= 0 and E [|X1|s] <∞ for some 3 < s ≤ 4, the ζs rate improves whereas

assuming higher moments does not improve the rate in the Kolmogorov distance in general. The
crucial observation is: The proof of (2.29) works analogously in any Banach space assuming that
X1, N both have mean zero [that is E [f(X)] = E [f(N)] = 0 for all f ∈ B∗], E [‖X1‖s] <∞ for
some 2 < s ≤ 3, N is normally distributed [that is f(N) is normally distributed for all f ∈ B∗]
and (2.4) is satisfied for k = 2. In fact, the behaviour of the distance between Sn and N in the
weak topology may change dramatically when the structure of B is decreased.

Hilbert space case: By the classical result of Varadhan [Var62] the CLT remains valid in Hilbert
spaces; that is X1 satisfies the CLT if X1 has mean zero [that is E [< X, v >] = 0 for all v ∈ B]
and E

[
‖X‖2

]
<∞. However, according to a result by Senatov [Sen81], there exists a symmetric

probability distribution µ concentrated on the unit sphere of `2 (such that
∫
‖x‖kdµ(x) < ∞ for

all k > 0) with the following property: If X1 has distribution µ then, for any ε > 0,

π(S∗n, N) = Ω(n−ε),

where N is normal with zero mean and the same covariance operator as µ [that is

E [< X, v >< X,w >] = E [< N, v >< N,w >]

for all v, w ∈ B]. Note that equality of the covariance operator ofX1 andN implies (2.4) for k = 2

by Lemma 2.2. This shows that any bound of the form πβ ≤ c ζs for β > 0, c > 0, 2 < s ≤ 3 is
false in `2.

Banach space case: The central limit theorem is considerably more involved in general Banach
spaces. As it turns out, square-integrability of the norm of the distribution is neither sufficient nor
necessary to imply the CLT. In the context of the CLT, the following properties of a Banach space
are of great interest.

Definition 2.29. A separable Banach space B is of type 1 ≤ p if for a sequence (Yn) of indepen-
dent and identically distributed random variables with P (Y1 = 1) = P (Y1 = −1) = 1/2 and
every finite sequence x1, . . . , xk from B, there exists a constant C > 0 such that

E

[∥∥∥∥∥
k∑
i=1

xiYi

∥∥∥∥∥
p]
≤ C

k∑
i=1

‖xi‖p.

Similarly, B is of cotype 1 ≤ q ≤ ∞ if

k∑
i=1

‖xi‖q ≤ C E

[∥∥∥∥∥
k∑
i=1

xiYi

∥∥∥∥∥
q]

under the same conditions. For q =∞, this reduces to

sup
i=1,...,k

‖xi‖ ≤ C E

[∥∥∥∥∥
k∑
i=1

xiYi

∥∥∥∥∥
]
.
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It is easily seen that the definition of type only makes sense for p ≤ 2 and that B has type p′ < p

if it has type p. In the same way, the cotype definition is meaningful only for q ≥ 2 and cotype q
implies cotype q′ for q′ > q. However, note that being of type p′ < p for all p′ < p does not imply
B to be of type p. The analogous result holds for the cotype. Every Banach space is of trivial type
1 and of trivial cotype∞. Type and cotype properties are related to the geometry of the space B,
we refer to [LT91] for a comprehensive discussion of this topic. Every Hilbert space is of type and
cotype 2 and a fundamental result by Kwapień [Kwa72] states the converse: Every Banach space
of type and cotype 2 is isomorphic to a Hilbert space. This generalizes Theorem 2.26 to Banach
spaces with this property. The following two Theorems are fundamental with the first dating back
to Hoffmann-Jørgensen and Pisier [HJP76] and the second to Jain [Jai77].

Theorem 2.30. Let X be a zero mean random variable with E
[
‖X‖2

]
< ∞ and B be of type

2. Then X satisfies the central limit theorem. Conversely, if every zero mean random variable X
with E

[
‖X‖2

]
<∞ satisfies the central limit theorem, then B is of type 2.

In general, a zero mean random variable X with E
[
‖X‖2

]
< ∞ (or at least well defined co-

variance operator E [f(X)g(X)] for all f, g ∈ B∗) may not satisfy the central limit theorem due
to two reasons: First, the corresponding normal distribution with the covariance operator given
by X does not exist on B. Second, and more important for us, X might be pregaussian, that is
of mean zero such that the corresponding normal distribution exists [i.e. N has zero mean and
E [f(N)g(N)] = E [f(X)g(X)] for all f, g ∈ B∗], but the sequence (S∗n) fails to be tight. Note
that the sequence L(S∗n)n≥0 can have at most one accumulation point in the weak topology which
is necessarily normal. The following result is the analogue to Theorem 2.30 in the case where the
first problem is ruled out.

Theorem 2.31. Let X be pregaussian and B be of cotype 2. Then X satisfies the central limit
theorem. Conversely, if every pregaussian random variable satisfies the central limit theorem, then
B is of cotype 2. Additionally, E

[
‖X‖2

]
<∞ for any pregaussian random variable X in a space

of cotype 2.

In general, nothing more can be said: First, for any q > 2 there exists a Banach space of type 2 and
cotype q where one finds pregaussian random variables not satisfying the CLT. Second, for any
p < 2 there exists a Banach space of type p and cotype 2 in which bounded random variables are
not necessarily pregaussian. Furthermore Ledoux [Led84] shows that there exists a Banach space
of type 2 − ε and cotype 2 + ε for any ε > 0 in which one finds bounded pregaussian random
variables not satisfying the CLT. Relating these results to the Zolotarev metrics, we can state the
following corollary.

Corollary 2.32. Let B be of cotype q > 2 such that there exists a zero mean pregaussian random
variable X with

• E [‖X‖s] <∞ for some 2 < s ≤ 3,

• X,N satisfy (2.4) for k = 2 where N is the corresponding normal distribution,

• X does not satisfy the CLT.

Then ζs(S∗n, N)→ 0 but S∗n does not converge to N in distribution.
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We present the following example in C[0, 1] which goes back to Strassen and Dudley [SD69]. Note
that C[0, 1] is of trivial type 1 and cotype∞.

Example 2.33. For n ≥ 1, j = 0, 1, . . . , n2 − 1, let

gnj(x) =


0 if x ∈ {0, 1},
1 if 6i+ 1 ≤ 6n(n!)2x ≤ 6i+ 2,

−1 if 6i+ 4 ≤ 6n(n!)2x ≤ 6i+ 5,

where i = j+ rn2, r = 0, 1 . . . , 6n−1((n−1)!)2−1 and linear on all remaining intervals on [0, 1]

where it is not defined otherwise. Let (pn) be a distribution on the natural numbers with pn ∼
n−5/4. Now, define the distribution of random variableX1 by P (X1 = gnj) = P (X1 = −gnj) =

pn/(2n
2) for all n ≥ 1 and j = 0, 1, . . . , n2−1. Dudley and Strassen show thatX1 is pregaussian

but (S∗n) is not tight. This, together with the obvious boundedness of X1 and the fact that (2.4) is
automatically satisfied in C[0, 1], see Section 2.6, shows that ζs(Sn, N)→ 0 whereas S∗n does not
converge in distribution.

Note that, if ζs convergence implies weak convergence in B, the same is true for any closed
subspace of B and any space B′ isomorphic to B as observed in (2.6). Hence, by the Theorem
of Banach-Mazur, if a sequence of probability measures (µn) converging in ζs but not converging
weakly can be found in some Banach space B, then it can also be found in C[0, 1].

2.5. The non-separable case and D[0, 1]

In this section we only treat cases of Banach spaces which are non-separable with respect to
their norm. The application we have in mind is the space of càdlàg functions. The concept of
Borel measurability is unsuitable for functions mapping from an underlying probability space
(Ω,A,P) to (B, ‖ · ‖). We can give several reasons here: First, a classical result (using the
continuum hypothesis) by Marczewiski and Sikorski [MS48] shows that any random variable with
values in a normed space equipped with Borel-σ-algebra has to be concentrated on a separable
subset. Second, it is a non-trivial result involving the axiom of choice that the sum of two Borel-
measurable functions in metric spaces is again Borel-measurable [For a counterexample in a non-
metrizable space see [Pac05]]. Finally, the random function X with values in D[0, 1] defined by

Xt = 1{t≥U}, t ∈ [0, 1],

where U has uniform distribution on the unit interval is not Borel-measurable in (D[0, 1], ‖ · ‖),
see [Bil68, Section 18]. One can find a certain number of alternative approaches to this problem in
the literature. ConcerningD[0, 1], the uniform topology is still appropriate if we assume the points
of discontinuities to attain values only in a countable set. In this case, it is sufficient to consider a
separable subset of (D[0, 1], ‖ · ‖). A more general approach is given by Dudley [Dud66, Dud67]
also with applications to the case D[0, 1]. He works with the σ-algebra B0 generated by the set of
open spheres in (B, ‖ · ‖). Obviously B0 ⊆ B, the inclusion can be strict as we will see in the case
of D[0, 1] later. However, B0 may also coincide with B in non-separable case as noted in [Tal78].
For a further approach to weak convergence in non-separable metric spaces see also [Pol79].
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2. The Zolotarev metric

The general setting: Subsequently, we will equip B with a σ-algebra B∗ that is smaller than the
Borel-σ-algebra generated by the norm which we will always denote by B. In other words B∗ ⊆ B.
We have to impose the following restrictions on the richness of B∗:

A1. For any c ∈ R and y ∈ B the functions x 7→ cx and x 7→ x + y from B to B are B∗ − B∗
measurable. Moreover, the function (x, y) 7→ x + y from B × B to B is B∗ ⊗ B∗ − B∗
measurable.

A2. The norm function x 7→ ‖x‖ is measurable with respect to B∗.

We make the following general abbreviation: In any definition, lemma, theorem and corollary in
the Sections 2.1, 2.2 and 2.3, assume the following:

R1. For any norm-continuous linear operator f : B → B′, additionally suppose that it is B∗−B∗
measurable if B′ equals B and B∗ − B(Rd) measurable if B′ = Rd for some d ≥ 1.

R2. For any norm-continuous multilinear from on B, additionally suppose that this function is
measurable with respect to the product-σ-algebra B⊗k∗ .

R3. The class of functions Fs used to define ζs in (2.2) is replaced by the subset of functions
from Fs that are additionally measurable with respect to B∗. We denote this set by F∗s .

To illustrate our approach, note that

• M(B) is the set of all probability distributions on (B,B∗),

• Ms(B) is the subset of all distributions µ fromM(B) with
∫
‖x‖sdµ(x) <∞ (remember

that x 7→ ‖x‖ is measurable by A2),

• for ν ∈ Ms(B),Ms(ν) is the set of all µ ∈ Ms(B) such that (2.4) is satisfied for norm-
continuous multilinear functions that are measurable with respect to B⊗k∗ .

The definition of Zolotarev distance remains as in the separable case under consideration of R3.
The quantities `s and κs are defined as in the separable case.

Using these abbreviations, the following results remain valid in the present case: Lemma 2.3,
Lemma 2.4 if B′ = B or B′ = Rd for some d ≥ 1, Lemma 2.5, Corollary 2.6, Lemma 2.9,
the direction ⇒ in Lemma 2.10, inequality (2.12), Theorems 2.15 and 2.17, Lemma 2.18 in the
Hilbert space case and Lemma 2.21 together with inequality (2.21) under the constraint that h is
additionally B∗ − B(R) measurable.
The converse direction in Lemma 2.10 relies on separability; however, it remains valid if we only
assume the limit X to be concentrated on a separable subset of B.

Assuming that B∗ is generated by a separable topology that is induced by a metric d, we restrict
the set of norm-continuous linear forms or operators in Definition 2.7 to those linear forms that
are additionally continuous with respect to d and those operators that are continuous as endomor-
phisms on (B, d). On these smaller state spaces the corresponding σ-algebras are generated by the
same set of functions as in the separable case and additionally also by the norm function. Then
Lemma 2.8 remains valid.
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In general, the characteristic function may not uniquely determine the law of a random variable,
whence we do not know whether ζs(µ, ν) = 0 implies µ = ν. There is one important exception:
The proof of Theorem 2.20 only relies on the fact that B is generated by the continuous linear
forms; whence, if B∗ is chosen to be generated by this class of functions, Theorem 2.20 remains
valid. In this case ζs is a metric onMs(ν). A discussion of weak convergence requires that B∗
is generated by a topology. Then, Corollary 2.23 remains valid, if this topology is induced by a
metric d such that d(x, y) ≤ C‖x− y‖ for some C > 0 and all x, y ∈ B.

The case D[0, 1]: The application we have in mind is the space of càdlàg functions. On D[0, 1],
there is a well-known topology Tsk introduced by Skorokhod [Sko56] which is induced by the so-
called Skorokhod metric dsk. All relevant properties of the metric [also its precise definition that is
not of interest here] can be found in [Bil68, Section 3]; (D[0, 1], dsk) is a complete, separable, i.e.
Polish space. Convergence dsk(xn, x) → 0 is equivalent to the existence of a sequence of mono-
tonically increasing bijections (λn) on the unit interval such that λn(t)→ t and xn(λn(t))→ x(t)

both uniformly on [0, 1]. Thus, we choose B∗ to be the σ-algebra generated by dsk and denote it
by Bsk. It is well known that Bsk is generated by the finite dimensional projections which shows
that the norm function is measurable with respect to Bsk. Note that these properties also imply that
Bsk coincides with B0, where B0 was introduced as the σ-algebra generated by the open spheres
in the uniform metric. This proves the conditions A1 and A2 to be satisfied. According to The-
orem 2 in [Pes95], any norm-continuous linear form on D[0, 1] is measurable with respect to the
Skorokhod topology. Moreover, these observations immediately imply that any norm-continuous
linear function from D[0, 1] to D[0, 1] is Bsk − Bsk measurable. Hence, the restriction R1 is
negligible. Moreover, according to the results in [JK], any norm-continuous k-linear form is mea-
surable with respect to B⊗ksk . Thus, restriction R2 is negligible as well. We do not know whether
the classes F∗s and Fs coincide, i.e. if every function from Fs is measurable with respect to Bsk.
However, it will turn out that this issue is not problematic. Lemma 2.8 is valid in the càdlàg case,
where one should keep in mind that we only allow random norm-continuous linear forms A that
are continuous with respect to dsk (or norm-continuous linear operators which are continuous as
endomorphisms on (D[0, 1], dsk) to (D[0, 1], dsk)) such that ‖A‖ is a real-valued random variable.
By our remarks on characteristic functions in the previous section, Theorems 2.20 and 2.22 remain
valid on (D[0, 1], dsk). Moreover, ζs convergence implies weak convergence for 0 < s ≤ 1 since
dsk(x, y) ≤ ‖x− y‖.

2.6. The Zolotarev distance on (C[0, 1], ‖ · ‖) and (D[0, 1], dsk)

In the following we consider the separable Banach space B = (C[0, 1], ‖ · ‖) and the Polish space
B = (D[0, 1], dsk) with the supremum norm ‖ · ‖ resp. the Skorokhod metric dsk. First note, for
random variables X , Y in (C[0, 1], ‖ · ‖) with ζs(X,Y ) <∞ we have

ζs((X(t1), . . . , X(tk)), (Y (t1), . . . , Y (tk)) ≤ ks/2ζs(X,Y ) (2.30)

for all 0 ≤ t1 ≤ . . . ≤ tk ≤ 1. This follows from Lemma 2.4 using the continuous and linear func-
tion g : C[0, 1]→ Rk, g(f) = (f(t1), . . . , f(tk)) and observing that ‖g‖ =

√
k [The more natural

bound ζs((X(t1), . . . , X(tk)), (Y (t1), . . . , Y (tk)) ≤ ζs(X,Y ) is obtained if Rk is endowed with
the max-norm. For the purpose of this thesis, this improvement is not essential] . Thus, we obtain
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for random variables Xn, X in (C[0, 1], ‖ · ‖), n ≥ 1, the implication

ζs(Xn, X)→ 0 ⇒ Xn
fdd−→ X. (2.31)

Here, fdd−→ denotes weak convergence of all finite dimensional marginals of the processes. Addi-
tionally, if Z is a random variable in [0, 1], independent of (Xn) and X then Lemma 2.8 implies

ζs(Xn(Z), X(Z)) ≤ E [Zs] ζs(Xn, X).

Finally, if (Xn), X are real-valued random variables, then ζs(Xn, X) → 0 also implies conver-
gence of absolute moments of order up to s by Lemma 2.18. In the càdlàg case, only inequality
(2.30) and the implication (2.31) remain valid, the additional statements are based on the continu-
ous linear form A(f) = f(t) for t ∈ [0, 1] which is not continuous with respect to the Skorokhod
topology. However, ζs convergence implies convergence of the characteristic function of Xn(t)

uniformly in t, hence we also have distributional convergence of Xn(Z). The same argument
works for the moments of Xn(Z). We summarize these properties in the following proposition.

Proposition 2.34. For random variables Xn, X in (C[0, 1], ‖ · ‖) or (D[0, 1], dsk), n ≥ 1, with
ζs(Xn, X)→ 0 for n→∞ we have

Xn
fdd−→ X.

In particular, L(X) is the only accumulation point of (L(Xn))n≥1 in the weak topology. For all
t ∈ [0, 1] we have

Xn(t)
d−→ X(t), E [|Xn(t)|s]→ E [|X(t)|s] .

For any random variable Z in [0, 1] independent of (Xn) and X we have

Xn(Z)
d−→ X(Z), E [|Xn(Z)|s]→ E [|X(Z)|s] .

To conclude from convergence in ζs to weak convergence on B = (C[0, 1], ‖ · ‖) further assump-
tions are needed. In view of Proposition 2.34 a tightness criterion is required. Let, for r > 0,

Cr[0, 1] := {f ∈ C[0, 1] | ∃ 0 = t1 < t2 < · · · < t` = 1 ∀ i = 1, . . . , ` :

|ti − ti−1| ≥ r, f |[ti−1,ti] is linear} (2.32)

denote the set of all continuous functions for which there is a decomposition of [0, 1] into intervals
of length at least rn such that the function is piecewise linear on those intervals. Analogously, we
define

Dr[0, 1] := {f ∈ D[0, 1] | ∃ 0 = t1 < t2 < · · · < t` = 1 ∀ i = 1, . . . , ` :

|ti − ti−1| ≥ r, f |[ti−1,ti) is constant, continuous in 1}. (2.33)

Note that for r > 0, the set Cr[0, 1] is Borel-measurable in C[0, 1] and Dr[0, 1] is measurable in
Bsk.

Theorem 2.35. Let (Xn)n≥0, X be C[0, 1] valued random variables and 0 < s ≤ 3. Suppose
Xn ∈ Crn [0, 1] for all n and

ζs(Xn, X) = o

(
log−m

(
1

rn

))
. (2.34)

Then Xn → X in distribution. The assertion remains valid if C[0, 1], Crn [0, 1] are replaced by
D[0, 1], Drn [0, 1] and X has continuous sample paths.
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As discussed in Section 2.4, ζs convergence does not imply weak convergence in the spaces C[0, 1]

and D[0, 1] without any further assumption such as (2.34). In the counterexample 2.33 presented
at the end of Section 2.4, the sequence S∗n converges to a Gaussian limit with respect to ζs for
2 < s ≤ 3 and is piecewise constant but the sequence rn can only be chosen of the order (roughly)
(cn)−2n for some c > 0. Thus, (2.34) is not satisfied.
In applications such as the proof of Donsker’s theorem or the application to the partial match
retrieval problem presented in Chapters 5 and 4 the rate of convergence will typically be of poly-
nomial order which is fairly sufficient. We postpone the proof of the theorem to the end of the
section and state two variants, where the first one, Corollary 2.36, contains a slight relaxation of
the assumptions that is useful in applications. The second one will be needed in the case s > 2,
see Subsection 4.

Corollary 2.36. Let (Xn)n≥0, X be C[0, 1] valued random variables and 0 < s ≤ 3. Suppose
Xn = Yn + hn with (Yn) being a sequence C[0, 1] valued random variables and hn ∈ C[0, 1] for
all n, such that ‖hn − h‖ → 0 for a continuous function h and

P (Yn /∈ Crn [0, 1])→ 0.

If

ζs(Xn, X) = o

(
log−m

(
1

rn

))
,

then we have
Xn

d→ X.

The statement remains true if C[0, 1] and Crn [0, 1] are replaced by D[0, 1] and Drn [0, 1] endowed
with Skorokhod topology respectively, X has continuous sample paths and h remains continuous.

Corollary 2.37. Let (Xn)n≥0, (Yn)n≥0, X be C[0, 1] valued random variables and 0 < s ≤ 3.
Suppose Xn ∈ Crn [0, 1] for all n and Yn → X in distribution. If

ζs(Xn, Yn) = o

(
log−m

(
1

rn

))
,

then
Xn → X

in distribution. The statement remains true if C[0, 1] and Crn [0, 1] are replaced by D[0, 1] and
Drn [0, 1] endowed with Skorokhod topology respectively and X has continuous sample paths.

In C[0, 1] (or D[0, 1] if the limit X has continuous paths), convergence in distribution implies
distributional convergence of the supremum norm ‖Xn‖ by the continuous mapping theorem. In
applications, one is also interested in convergence of moments of the supremum. For random
variables X in C[0, 1] or D[0, 1], we denote by

‖X‖s := (E [‖X‖s])(1/s)∧1

the Ls-norm of the supremum norm. For technical reasons, we have to restrict ourselves to integer
s ∈ {1, 2, 3} in the following theorem. Note that we then have m = s− 1 and α = 1.

Theorem 2.38. Let (Xn)n≥0, X be C[0, 1] valued random variables and s ∈ {1, 2, 3} with
‖Xn‖s, ‖X‖s <∞ for all n. Suppose one of the following assumptions is satisfied:
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i) Xn ∈ Crn [0, 1] for all n and

ζs(Xn, X) = o

(
log−m

(
1

rn

))
.

ii) Xn = Yn + hn with Yn, hn ∈ C[0, 1] for all n, ‖hn − h‖ → 0 for a continuous function h,

E
[
‖Xn‖s1{Yn /∈Crn [0,1]}

]
→ 0

and

ζs(Xn, X) = o

(
log−m

(
1

rn

))
.

iii) (Yn)n≥0 is a sequence of C[0, 1] valued random variables with |Yn| ≤ Z almost surely for
a C[0, 1] valued random variable Z with ‖Z‖s <∞, Xn ∈ Crn [0, 1] for all n and

ζs(Xn, Yn) = o

(
log−m

(
1

rn

))
.

Then (‖Xn‖s) is uniformly integrable. All statements remain true if C[0, 1], Crn [0, 1] are replaced
by D[0, 1],Drn [0, 1] endowed with Skorokhod topology and h in item ii) is continuous.

In applications of the contraction method one shows distributional convergence and convergence
of the s-th absolute moments with the help of the previous results. Convergence of higher moments
is a direct consequence of these considerations under mild additional assumptions.

Proposition 2.39. Let (Xn) be a sequence of B-valued random variables satisfying recursion
(1.2) where B is a separable Banach space or D[0, 1] endowed with the Skorokhod topology.
Suppose that, with k ≥ 1 integer,

i) E
[
‖Xn‖k

]
<∞ for all n and supn E

[
‖b(n)‖k

]
<∞,

ii) E
[
‖A(n)

r ‖k1{I(n)r =n}

]
→ 0 for r = 1, . . . ,K,

iii) we have

lim sup
n→∞

K∑
i=1

E
[
‖A(n)

r ‖k
]
< 1,

iv) for any k′ < k (or only k′ = k − 1), we have supn E
[
‖Xn‖k

′
]
<∞.

Then E
[
‖Xn‖k

]
is bounded in n. In particular, if Xn → X in distribution, items i) − iii) are

satisfied for all k > p and supn E [‖Xn‖p] <∞, then ‖X‖ has finite moments or arbitrary order
and E [‖Xn‖κ]→ E [‖X‖κ] for all κ > 0.

Proof. The recursion implies that, stochastically,

‖Xn‖ ≤
K∑
r=1

∥∥∥A(n)
r X

(r)

I
(n)
r

∥∥∥+ ‖b(n)‖.
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For simplicity, we assume I(n)
r < n for all r. Then, by the assumptions, conditioning on the

coefficients and Hölder’s inequality, there exists a constant C > 0 (independent of n) with

E
[
‖Xn‖k

]
≤

K∑
r=1

E
[∥∥∥A(n)

r X
(r)

I
(n)
r

∥∥∥k]+ C.

Choose 0 < q < 1, n1 ∈ N and C̄ > 0 such that E
[
‖Xi‖k

]
≤ C̄ for all i < n1 and∑K

i=1 E
[
‖A(n)

r ‖k
]
≤ 1− q for all n ≥ n1. This implies

E
[
‖Xn1‖k

]
≤ (1− q)C̄ + C

Further increasing C̄ yields E
[
‖Xn1‖k

]
≤ C̄, hence the desired uniform boundedness by induc-

tion.

Completeness: It is of interest whether the metric space (Ms(ν), ζs) is complete. This is true for
0 < s ≤ 1. Also, in the case that B is a separable Hilbert space, this holds true, see Theorem 5.1
in [DJN08]. Nevertheless, the problem remains open in the general case, in particular in the cases
C[0, 1] and D[0, 1] with s > 1. We can only state the following proposition.

Proposition 2.40. Let (µn)n≥0 be a sequence of probability measures on C[0, 1] or D[0, 1] that is
a Cauchy sequence with respect to the ζs metric for some s > 0. Then there exists a probability
measure µ on R[0,1] such that

µn
fdd−→ µ. (2.35)

Proof. According to (2.30), (Xn(t1), . . . , Xn(tk))n≥0 is a Cauchy sequence and hence it exists a
random variable Yt1,...,tk in Rk with

(Xn(t1), . . . , Xn(tk))
d−→ Yt1,...,tk .

The set of distributions of Yt1,...,tk for 0 ≤ t1 < . . . < tk ≤ 1 and k ∈ N is consistent so there
exists a process X on the product space R[0,1] satisfying (2.35). Note that condition (2.4) would
be satisfied for µn and a version of µ with continuous paths and finite absolute moment of order
s.

2.7. Proof of the main results of Section 2.6

We now come to the proofs of Theorem 2.35, its two corollaries and Theorem 2.38. The first
essentially coincides with Theorem 2 in [Bar90], see also [BJ09], and we present a version of the
proof given there so that we can deduce the variants and implications given in our other statements.
The basic tool is Corollary 2 in Section 2 of [Bil68]. We state it here as a Lemma.

Lemma 2.41. Let (µn)n≥0, µ be probability measures on a separable metric space (S, d). For
r > 0, x ∈ S let Br(x) = {y ∈ S : d(x, y) < r}. If for any x1, . . . , xk ∈ S, γ1, . . . , γk > 0 with
µ(∂Bγi(xi)) = 0 for i = 1, . . . , k it holds

µn

(⋂
i∈I

Bγi(xi)

)
→ µ

(⋂
i∈I

Bγi(xi)

)
,

where I = {1, . . . , k}, then µn → µ weakly.
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A main difficulty in deducing weak convergence from convergence in ζs compared to the Hilbert
space case is the non-differentiability of the norm function x 7→ ‖x‖. We will instead use the
smoother Lp-norm which approximates the supremum norm in the sense that

Lp(x)→ ‖x‖, (2.36)

for any fixed x ∈ C[0, 1] as p → ∞. For the remaining part of this section, p, for fixed values or
tending to infinity, is always understood as an even integer with p ≥ 4.

Lemma 2.42. For x, y ∈ C[0, 1] let

Lp(x) =

(∫ 1

0
[x(t)]pdt

)1/p

, ψp,y(x) = Lp

(
(1 + [x− y]2)1/2

)
.

Then Lp is smooth on C[0, 1]\{0} where 0 is the zero-function and ψp,y is smooth on C[0, 1] for
all y ∈ C[0, 1]. Furthermore for k ∈ {1, 2, 3}, we have

‖DkLp(x)‖ = O(pk−1L1−k
p (x)),

uniformly for p and x ∈ C[0, 1]\{0}. Moreover, again for k ∈ {1, 2, 3},

‖Dkψp,y(x)‖ = O
(
pk−1

)
(2.37)

uniformly for p and x, y ∈ C[0, 1]. All assertions remain valid when C[0, 1] is replaced by D[0, 1],
moreover both functions Lp and ψp,y are continuous with respect to the Skorokhod metric for all
p and y ∈ D[0, 1].

Proof. The smoothness properties are obvious. Differentiating Lp by the chain rule yields

DLp(x)[h] =

(∫ 1

0
[x(t)]pdt

)1/p−1 ∫ 1

0
[x(t)]p−1h(t)dt.

For h ∈ C[0, 1] with ‖h‖ ≤ 1 by Jensen’s inequality and Lp(h) ≤ ‖h‖ we obtain that the right
hand side of the latter display is uniformly bounded by 1. The bounds on the norms of the higher
order derivatives follow along the same lines. Using the same ideas, it is easy to see that

‖Dkψp,y(x)‖ = O

 k∑
j=1

pj−1L1−j
p (ωy(x))

 ,

uniformly in p and x, y ∈ C[0, 1] where ωy(x) = (1 + |x− y|2)1/2. This gives (2.37).

We stress that the convergence in (2.36) only holds pointwise, it is easy to construct a sequence of
continuous functions (xp)p≥0 such that Lp(xp) → 0 and ‖xp‖ → ∞ for p → ∞. Aside from the
obvious bound Lp(x) ≤ ‖x‖ we will need the following simple Lemma which contains sort of a
converse of this inequality.

Lemma 2.43. Let f ∈ Dr[0, 1] and denote by λ(·) the Lebesgue measure on the unit interval.
Then for any γ > 0 and 0 < θ < 1,

‖f‖ ≥ γ ⇒ λ ({t : |f(t)− g(t)| ≥ (1− θ)γ}) ≥ 1

2
r.
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2.7. Proof of the main results of Section 2.6

Moreover, for any g ∈ C[0, 1] it exists δ = δ(g, γ, θ) > 0 such that

‖f − g‖ ≥ γ ⇒ λ ({t : |f(t)− g(t)| ≥ (1− θ)γ}) ≥ 1

2
min (r, δ) .

Let f ∈ Cr[0, 1] and γ, θ as above. Then,

‖f‖ ≥ γ ⇒ λ ({t : |f(t)− g(t)| ≥ (1− θ)γ}) ≥ θ

8
r.

Moreover, for g ∈ C[0, 1] there exists δ = δ(g, γ, θ) > 0 with

‖f − g‖ ≥ γ ⇒ λ ({t : |f(t)− g(t)| ≥ (1− θ)γ}) ≥ θ

8
min (r, δ) .

We first give the proofs in the continuous case.

Proof. (Theorem 2.35) For r > 0, x ∈ C[0, 1] letBr(x) = {y ∈ C[0, 1] : ‖y−x‖ < r}. According
to Lemma 2.41, we need to verify that

P

(
Xn ∈

⋂
i∈I

Bγi(xi)

)
→ P

(
X ∈

⋂
i∈I

Bγi(xi)

)
, (2.38)

for I = {1, . . . , k} and x1, . . . , xk ∈ S, γ1, . . . , γk > 0 such that P (X ∈ (∂Bγi(xi))) = 0. The
lack of uniformity in (2.36) leads us to find lower and upper bounds for the desired quantity. We
will establish

lim sup
n→∞

P

(
Xn ∈

⋂
i∈I

Bγi(xi)

)
≤ P

(
X ∈

⋂
i∈I

Bγi(xi)

)
(2.39)

and

lim inf
n→∞

P

(
Xn ∈

⋂
i∈I

Bγi(xi)

)
≥ P

(
X ∈

⋂
i∈I

Bγi(xi)

)
(2.40)

separated from each other. To this end we construct functions gi,n, ḡi,n : C[0, 1]→ [0, 1] satisfying

ḡi,n(x) ≤ 1{Bγi (xi)}(x) ≤ gi,n(x), for all x ∈ Crn [0, 1], (2.41)

gi,n(x), ḡi,n(x)→ 1{Bγi (xi)}(x), for all x ∈ C[0, 1]\∂Bγi(xi), (2.42)

and such that an
∏
i∈I gi,n, ān

∏
i∈I ḡi,n ∈ Fs for appropriate constants an, ān > 0. Then we can

conclude

P

(
Xn ∈

⋂
i∈I

Bγi(xi)

)
≤ E

[∏
i∈I

gi,n(Xn)

]
≤ E

[∏
i∈I

gi,n(X)

]
+ a−1

n ζs(Xn, X) (2.43)

and

P

(
Xn ∈

⋂
i∈I

Bγi(xi)

)
≥ E

[∏
i∈I

ḡi,n(Xn)

]
≥ E

[∏
i∈I

ḡi,n(X)

]
− ā−1

n ζs(Xn, X). (2.44)

Now, if a−1
n ζs(Xn, X) for n → ∞ then (2.43) implies (2.39) and similarly (2.40) follows from

(2.44)) if ā−1
n ζs(Xn, X) as n→∞.
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Let us a give motivation of how to construct the functions gi,n. According to (2.42), asymptotically,
the functions gi,n have to separate points x ∈ C[0, 1] which are in Bγi(xi) from those which are
not. This is why we use the Lp norm. Consider ψp,xi as introduced in Lemma 2.42. If x ∈ Bγi(xi)
then ψp,xi(x) ≤ (1 + γ2

i )1/2 whereas if x /∈ Bγi(xi) then lim infp→∞ ψp,xi(x) > (1 + γ2
i )1/2.

Let ϕ : R → [0, 1] be a three times continuously differentiable function with ϕ(u) = 1 for
u ≤ 0 and ϕ(u) = 0 for u ≥ 1. For % ∈ R and η > 0 we denote ϕ%,η : R+ → [0, 1] by
ϕ%,η(u) = ϕ((u− %)/η).
Let gi(x) = ϕ(1+γ2i )1/2,η(ψp,xi(x)). Let gi,n = gi with η = ηn ↓ 0 and p = pn ↑ ∞. Then gi,n
has the properties in (2.41) and (2.42).
Now we construct ḡi,n. Let 0 < θ < 1 and x ∈ Crn [0, 1]. Since the family (xi)i∈I is uniformly
equicontinuous, by Lemma 2.43 we can find δ = δ(θ) (also depending on x1, . . . , xk, γ1, . . . , γk
which are kept fixed) with

{‖x− xi‖ ≥ γi} ⊆
{
λ({t : |x(t)− xi(t)| ≥ γi(1− θ)}) ≥

θ

8
min(rn, δ)

}
⊆

{
ψp,xi(x) ≥ (1 + γ2

i (1− θ)2)1/2

(
θ

8
min(rn, δ)

)1/p
}

⊆ {ḡi,n(x) = 0},

with ḡi,n(x) = ϕ(1+γ2i (1−θ)2)1/2(θmin(rn,δ)/8)1/p−η,η(ψp,xi(x)). This gives (2.41). ḡi,n does not
fulfill (2.42), but we have

ḡi,n(x)→ 1{Bγi(1−θ)(xi)}
(x)

for x ∈ C[0, 1]\∂Bγi(1−θ)(xi) and p = pn ↑ ∞, η = ηn ↓ 0 such that r1/pn
n → 1. This gives for

every 0 < θ < 1 with P
(
X ∈ ∂Bγi(1−θ)(xi)

)
= 0 for all i ∈ I

lim
n→∞

E

[∏
i∈I

ḡi,n(X)

]
= P

(
X ∈

⋂
i∈I

Bγi(1−θ)(xi)

)
.

Assuming that ān
∏
i∈I ḡi,n ∈ Fs and letting n tend to infinity (2.44) rewrites as

lim inf
n→∞

P

(
Xn ∈

⋂
i∈I

Bγi(xi)

)
≥ P

(
X ∈

⋂
i∈I

Bγi(1−θ)(xi)

)
− lim sup

n→∞
ā−1
n ζs(Xn, X), (2.45)

where ān may depend on θ and δ. Below, we will see that the error term on the right hand side of
(2.45) vanishes as n→∞ uniformly in θ, δ. So choosing θ ↓ 0 such that P

(
X ∈ ∂Bγi(1−θ)(xi)

)
=

0 for all i ∈ I the assertion

lim inf
n→∞

P

(
Xn ∈

⋂
i∈I

Bγi(xi)

)
≥ P

(
X ∈

⋂
i∈I

Bγi(xi)

)
follows.
It remains to show that the error terms vanish in the limit. By Lemma 2.42 g(x) = φ%,η(ψp,y(x))

and using the Mean Value theorem we achieve for m = 0, 1, 2

‖g(m)(x+ h)− g(m)(x)‖ ≤ Cmpmη−(m+1)‖h‖α

for p ≥ 4, η < 1 and some constantsCm > 0. It is easy to check that the same is valid for products
of functions of form g with different constants, independent of the parameters. It follows that both
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error terms in (2.43) and (2.45) are bounded by C ′mp
m
n η
−(m+1)
n ζs(Xn, X) for all n, uniformly in

θ, δ, where C ′m denotes a fixed constant for each m ∈ {0, 1, 2}. By (2.34) we can choose pn ↑ ∞
and ηn ↓ 0 such that both r1/pn

n → 1 and the error terms vanish in the limit.

Proof. (Corollary 2.36) Again, according to Lemma 2.41 we only have to verify (2.38), for which
we modify the proof of Theorem 2.35: First note that the assumption of piecewise linearity of Xn

and the convergence rate for ζs(Xn, X) are not necessary for the upper bound

lim sup
n→∞

P

(
Xn ∈

⋂
i∈I

Bγi(xi)

)
≤ P

(
X ∈

⋂
i∈I

Bγi(xi)

)
.

For the lower bound let ε > 0 and note that

P

(
Xn ∈

⋂
i∈I

Bγi(xi)

)
≥ P

(
Xn ∈

⋂
i∈I

Bγi(xi) ∩ {Yn ∈ Crn [0, 1]}

)

We modify the functions ḡi,n(x). Let 0 < γKi < γi such that

P

(
X ∈

⋂
i∈I

BγKi (xi)

)
≥ P

(
X ∈

⋂
i∈I

Bγi(xi)

)
− ε.

and P
(
X ∈ ∂BγKi (xi)

)
= 0 for all i. Let 0 < θ < 1 and n0 be large enough such that

%n = ‖hn − h‖ < mini(γKi(1 − θ) ∧ γ − γKi) and P (Yn /∈ Crn [0, 1]) < ε) for all n ≥ n0.
Then, since the functions (xi − h)i∈I are uniformly equicontinuous, by Lemma 2.43 there exists
δ = δ(θ) such that for y ∈ Crn [0, 1] with x = y + hn and n ≥ n0

{‖x− xi‖ ≥ γi} ⊆ {‖y + h− xi‖ ≥ γKi}

⊆
{
λ({t : |y(t) + h(t)− xi(t)| ≥ γKi(1− θ)}) ≥

θ

8
min(rn, δ)

}
⊆

{
λ({t : |x(t)− xi(t)| ≥ γKi(1− θ)− %n}) ≥

θ

8
min(rn, δ)

}
⊆

{
ψp,xi(x) ≥ (1 + (γKi(1− θ)− %n)2)1/2

(
θ

8
min(rn, δ)

)1/p
}

⊆ {ḡi,n(x) = 0},

with ḡi,n(x) = φ(1+(γKi (1−θ)−%n)2)1/2(θmin(rn,δ)/8)1/p−η,η(ψp,xi(x)). Hence,

P

(
Xn ∈

⋂
i∈I

Bγi(xi)

)
≥ E

[∏
i∈I

ḡi,n(Xn)1{Yn∈Crn [0,1]}

]

≥ E

[∏
i∈I

ḡi,n(Xn)

]
− ε

for n ≥ n0. The upper bound of the error term ā−1
n ζs(Xn, X) is a function of p and η so it is
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uniform in %n, θ, δ. Following the same lines as in the proof of Theorem 2.35 gives

lim inf
n→∞

P

(
Xn ∈

⋂
i∈I

Bγi(xi)

)
≥ P

(
X ∈

⋂
i∈I

BγKi (xi)

)
− ε

≥ P

(
X ∈

⋂
i∈I

Bγi(xi)

)
− 2ε.

Since ε > 0 was arbitrary, the result follows.

Proof. (Corollary 2.37) In the setting of the proof of Theorem 2.35, (2.43) rewrites as

P

(
Xn ∈

⋂
i∈I

Bγi(xi)

)
≤ E

[∏
i∈I

gi,n(Xn)

]
≤ E

[∏
i∈I

gi,n(Yn)

]
+ a−1

n ζs(Xn, Yn)

= E

[∏
i∈I

gi,n(Yn)

]
− E

[∏
i∈I

gi,n(X)

]

+E

[∏
i∈I

gi,n(X)

]
+ a−1

n ζs(Xn, Yn)

We may choose Yn → X almost surely. On the event {X ∈ Bγi(xi)} we have limn gi,n(Yn) =

limn gi,n(X) = 1 and on {X /∈ Bγi(xi)} we have limn gi,n(Yn) = limn gi,n(X) = 0. Since
P (X ∈ ∂Bγi(xi)) = 0 it follows∏

i∈I
gi,n(Yn)−

∏
i∈I

gi,n(X)→ 0

for n→∞ almost surely and dominated convergence yields

lim sup
n→∞

P

(
Xn ∈

⋂
i∈I

Bγi(xi)

)
≤ P

(
X ∈

⋂
i∈I

Bγi(xi)

)
,

just like in the proof of Theorem 2.35. The lower bound follows similarly.

We now head to the case of càdlàg functions. We only discuss the approach in the proof of Theo-
rem 2.35. Following exactly the same arguments as in the continuous case and using the additional
statements of Lemma 2.42 and Lemma 2.43, it is easy to see that we also obtain (2.38) if the balls
Bγi(xi) are defined with the uniform metric in D[0, 1]. Remember that we still have xi ∈ C[0, 1].
Note, that it is at the core of Skorokhod’s representation theorem [Bil99, Theorem 6.7] that, ifX is
continuous and (2.38) is satisfied, we can find versions Xn that converge almost surely to X in the
sense that ‖Xn −X‖ → 0 as n→∞. Here, we might have to change the underlying probability
space which is inessential. This implies dsk(Xn, X)→ 0 almost surely, hence the assertion.

The proof of Theorem 2.38 is close to the one of Lemma 5.3 in [DJN08]. The Lp approximation
of the supremum norm complicates the argument slightly. We only give the proof in the case of
C[0, 1], the modifications in the càdlàg case are obvious.
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Proof. (Theorem 2.38) Suppose s ∈ {1, 2, 3} and that the first assumption of Theorem 2.38 is
satisfied. Let κ : R+

0 → R+
0 be a smooth, monotonic function with κ(u) = 0 for 0 ≤ u ≤ 1

2

and κ(u) = us for u ≥ 1. We may as well assume that the interpolation for 1
2 ≤ u ≤ 1 is done

smoothly such that we have κ(u) ≤ us for 1
2 ≤ u ≤ 1, thus κ(u) ≤ us for all u ∈ R+. Let

f, f (p) : C[0, 1]→ R be given by

f(x) = κ(‖x‖),

f (p)(x) = κ(Lp(x)).

By Lemma 2.42, the restrictions of Lp and f (p) to C[0, 1]\{0} are smooth. Furthermore, all
derivatives of f (p) vanish for ‖x‖ < 1/2 which implies that f (p) is smooth on C[0, 1]. Again, by
Lemma 2.42 it is easy to check that for any k ∈ {1, . . . , s},

‖Dkf (p)(x)‖ = O(pk−1‖x‖s−k),

uniformly in p and x ∈ C[0, 1]. Hence, ‖Dsf (p)(z)‖ = O(pm) uniformly for all z, in particular
for the set [x, y] := {λx+ (1− λ)y |λ ∈ [0, 1]}, and by the mean value theorem

‖Dmf (p)(x)−Dmf (p)(y)‖ = O(pm‖x− y‖).

Hence, there is a constant c > 0 such that cp−mf (p) ∈ Fs for all p ≥ 4. We define, for r > 0,

fr(x) := crsf(x/r),

f (p)
r (x) := crsf (p)(x/r).

Then p−mf (p)
r ∈ Fs. Furthermore, fr(x) and f (p)

r (x) are bounded by c‖x‖s for all x ∈ C[0, 1],
uniformly in p. For any fixed x we have fr(x) → 0 and supp≥4 f

(p)
r (x) → 0 as r → ∞. Hence,

by E [‖X‖s] <∞ and dominated convergence this implies

E

[
sup
p≥4

f (p)
r (X)

]
→ 0, r →∞. (2.46)

By definition of ζs we have

E
[
f (p)
r (Xn)

]
≤ E

[
f (p)
r (X)

]
+ pmζs(Xn, X).

By definition of fr, for ‖x‖ > r we have ‖x‖s = c−1fr(x). Hence,

E
[
‖Xn‖s1{‖Xn‖≥2r}

]
= c−1E

[
fr(Xn)1{‖Xn‖≥2r}

]
≤ c−1E

[
f (p)
r (Xn)

]
+ c−1

(
E
[
(fr(Xn)− f (p)

r (Xn))1{‖Xn‖≥2r}

])
≤ c−1E

[
f (p)
r (X)

]
+ c−1pmζs(Xn, X)

+ c−1
(
E
[
(fr(Xn)− f (p)

r (Xn))1{‖Xn‖≥2r}

])
. (2.47)

Now, let ε > 0 be arbitrary. By (2.46) fix r > 0 such that E
[
f

(p)
r (X)

]
< ε for all p ≥ 4.

Additionally, by the given assumptions there exists a sequence pn ↑ ∞ such that

log rn
pn

→ 0, pmn ζs(Xn, X)→ 0, (n→∞).
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2. The Zolotarev metric

Therefore, letN0 be large enough such that pmn ζs(Xn, X) < ε for all n ≥ N0. It remains to bound
the third summand in (2.47). Using Lemma 2.43, piecewise linearity of Xn implies that for all
0 < θ < 1,

Lp(Xn) ≥ ‖Xn‖(1− θ)
(
θrn
8

)1/pn

.

In particular, we have Lp(Xn) ≥ ‖Xn‖2 for all n sufficiently large. For those n and ‖Xn‖ > 2r we

also have f (p)
r (Xn) = cLsp(Xn). This yields

E
[
(fr(Xn)− f (p)

r (Xn))1{‖Xn‖≥2r}

]
= cE

[
(‖Xn‖s − Lsp(Xn))1{‖Xn‖≥2r}

]
(2.48)

≤ c(1− 2−s)E
[
‖Xn‖s1{‖Xn‖≥2r}

]
. (2.49)

for all n sufficiently large. Increasing N0 if necessary, inserting (2.49) into (2.47) and rearranging
terms implies

E
[
‖Xn‖s1{‖Xn‖≥2r}

]
≤ 21+sc−1ε.

for all n ≥ N0. Since ε was arbitrary, the assertion follows.
Now, suppose the second assumption to be satisfied. Then, we have to modify the last part of the
proof. In (2.48) we can decompose

Lsp(Xn) = Lsp(Xn)1{Yn∈Crn [0,1]} + Lsp(Xn)1{Yn /∈Crn [0,1]}.

UsingLsp(Xn) ≤ ‖Xn‖s, the assumptions guarantee the expectation of the second term to be small
in the limit n → ∞. For the first one, using similar arguments as above, given {Yn ∈ Crn [0, 1]},
we find

Lp(Xn) ≥ ‖Xn‖
2
− 2%n

with %n = ‖hn−h‖ for all n sufficiently large. Proceeding as in the first part, we obtain the result.
Given the third assumption, it only remains to bound E

[
f

(p)
r (Yn)

]
which appears instead of

E
[
f

(p)
r (X)

]
by E

[
f

(p)
r (Z)

]
in (2.47).
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3. The contraction method

Originally, the contraction method for distributional recurrences (1.2) illustrated in the introduction
is based on a metric on the set of probability distributions satisfying the following three properties:

• The metric distance between L(Xn) and L(Xm) is finite for all n,m.

• Convergence in the given metric implies weak convergence.

• The metric is complete on appropriate subsets of the entire set of measures.

With respect to these main points the results of the last chapter are rather disappointing. First,
the restrictions imposed on distributions to have finite ζs distance are considerably strong; the
necessary scaling gives rise to the substantial problems P3a and P3b, which we will solve in our
applications in Chapters 5 and 4. Second, weak convergence can only be deduced after establish-
ing a rate of convergence with respect to ζs and regularity conditions on the paths of Xn. Again,
this causes problems that have to be addressed in detail.
Regarding the last point, note that, looking at Banach’s fixed-point theorem for complete metric
spaces, one usually puts most emphasis on the existence of a fixed-point for a given contractive
map. However, one should not forget that, once the fixed-point has been established by differ-
ent means, both the statement of uniqueness and the exponential speed of convergence for the
distance between the successive iteration started at a valid point and the fixed-point itself remain
valid independently of the completeness property. Throughout this chapter, we will be led by this
observation while developing the contraction method based on the class of ζs metrics.

3.1. The main result: A functional limit theorem

The contraction method is developed first for a general separable Banach space B and the space
(D[0, 1], dsk). Then the framework is specialized to the cases (C[0, 1], ‖ · ‖) and (D[0, 1], dsk).
For this section B will always denote a separable Banach space or (D[0, 1], dsk). We recall the
recursive equation (1.2). We have

Xn
d
=

K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n ≥ n0. (3.1)

where A(n)
1 , . . . , A

(n)
K are random continuous linear operators, b(n) is a B-valued random variable,

(X
(1)
n )n≥0, . . . , (X

(K)
n )n≥0 are distributed like (Xn)n≥0, and I(n) = (I

(n)
1 , . . . , I

(n)
K ) is a vector of

random integers in {0, . . . , n}. Moreover (A
(n)
1 , . . . , A

(n)
K , b(n), I(n)), (X

(1)
n )n≥0, . . . , (X

(K)
n )n≥0

are independent and n0 ∈ N.
Recall that in order to be a random continuous linear operator, A has to take values in the set of
continuous endomorphisms on C[0, 1] respectively the set of norm-continuous endomorphisms that
are continuous with respect to dsk on D[0, 1] such that A(x)(t) is a real-valued random variable
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3. The contraction method

for all x ∈ C[0, 1] respectively x ∈ D[0, 1] and t ∈ [0, 1]. In D[0, 1] we additionally have to
guarantee ‖A‖ to be a real-valued random variable.
Next, we make assumptions about the moments and the asymptotic behavior of the coefficients
A

(n)
1 , . . . , A

(n)
K , b(n). For a random continuous linear operator A and for random variable X with

values in B we write

‖A‖s := E [‖A‖s]1∧(1/s) .

We consider the following conditions with an s > 0:

C1. We have ‖X0‖s, . . . , ‖Xn0−1‖s, ‖A(n)
r ‖s, ‖b(n)‖s <∞ for all r = 1, . . . ,K and n ≥ 0 and

there exist random continuous linear operators A1, . . . , AK on B and a B-valued random
variable b such that, as n→∞,

γ(n) := ‖b(n) − b‖s +
K∑
r=1

(
‖A(n)

r −Ar‖s +
∥∥∥1{I(n)r ≤n0}

A(n)
r

∥∥∥
s

)
→ 0.

and for all ` ∈ N,

E
[
1{I(n)r ∈{0,...,`}∪{n}}

‖A(n)
r ‖s

]
→ 0.

C2. We have

L :=
K∑
r=1

E [‖Ar‖s] < 1.

The limits of the coefficients determine the limiting operator T from (1.5):

T :M(B)→M(B)

µ 7→ L

(
K∑
r=1

ArZ
(r) + b

)
(3.2)

where (A1, . . . , AK , b), Z(1), . . . , Z(K) are independent and Z(1), . . . , Z(K) have distribution µ.

C3. The map T has a fixed-point η ∈Ms(B), such that L(Xn) ∈Ms(η) for all n ≥ n0.

The existence of a fixed-point is not in general implied by contraction properties of T with respect
to a Zolotarev metric due to the lack of completeness of the metric on the space B. However, we
can argue that there is at most one fixed-point of T inMs(η):

Lemma 3.1. Assume the sequence (Xn)n≥0 satisfies (3.1). Under conditions C1–C3 we have
T (Ms(η)) ⊆Ms(η) and

ζs(T (µ), T (λ)) ≤ Lζs(µ, λ) for all µ, λ ∈Ms(η).

In particular, the restriction of T toMs(η) is a contraction and has the unique fixed-point η.
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Proof. Let µ ∈ Ms(η). Recall that we have s = m + α with m ∈ N0 and α ∈ (0, 1]. We
introduce an accompanying sequence

Qn :=

K∑
r=1

A(n)
r

(
1{

I
(n)
r <n0

}X(r)

I
(n)
r

+ 1{
I
(n)
r ≥n0

}Z(r)

)
+ b(n), n ≥ n0, (3.3)

where (A
(n)
1 , . . . , A

(n)
K , b(n)), Z(1), . . . , Z(K) are independent and Z(1), . . . , Z(K) have distribu-

tion η.
We first show that L(Qn) ∈Ms(η) for all n ≥ n0. Condition C1, conditioning on the coefficients
and Minkowski’s inequality imply E [‖Qn‖s] <∞ for all n. For s ≤ 1 we already obtainL(Qn) ∈
Ms(η).
For s > 1 we choose arbitrary 1 ≤ k ≤ m and multilinear and bounded f : Bk → R. We have

E [f(Z, . . . , Z)] = E [f(Xn, . . . , Xn)]

= E

[
f

(
K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), . . . ,

K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n)

)]
.

To show L(Qn) ∈ Ms(η) we need to verify that the latter display is equal to E [f(Qn, . . . , Qn)]:
Since f is multilinear, both terms can be expanded as a sum and it suffices to show that the
corresponding summands are equal:

E
[
f
(
C

(n)
j1
, . . . , C

(n)
jk

)]
= E

[
f
(
D

(n)
j1
, . . . , D

(n)
jk

)]
, (3.4)

where j1, . . . , jk ∈ {1, . . . ,K} and for each i ∈ {1, . . . , k} we either have

C
(n)
ji

= A
(n)
ji
X

(ji)

I
(n)
ji

and D
(n)
ji

= A
(n)
ji

(
1{

I
(n)
ji

<n0

}X(ji)

I
(n)
ji

+ 1{
I
(n)
ji
≥n0

}Z(ji)

)
(3.5)

or

C
(n)
ji

= b(n) and D
(n)
ji

= b(n). (3.6)

The equality in (3.4) is obvious for the case where we have (3.6) for all i = 1, . . . , k. For the other
cases we have (3.5) for at least 1 ≤ ` ≤ k arguments of f , say, for simplicity of presentation, for
the first ` with 1 ≤ `1 < · · · < `d = ` such that js = j`i for all s = `i−1 + 1, . . . , `i, i = 1, . . . , d

and j`i pairwise different for i = 1, . . . , d (by convention `0 := 0). The claim in (3.4) reduces to

E
[
f(C

(n)
j`1
, . . . , C

(n)
j`1
, C

(n)
j`2
, . . . , C

(n)
j`d
, b(n), . . . , b(n)

]
= E

[
f(D

(n)
j`1
, . . . , D

(n)
j`1
, D

(n)
j`2
, . . . , D

(n)
j`d
, b(n), . . . , b(n)

]
(3.7)

We will prove that, for each p ∈ {1, . . . , d},

E
[
f(C

(n)
j`1
, . . . , C

(n)
j`p−1

, C
(n)
j`p
, . . . , C

(n)
j`p
, D

(n)
j`p+1

, . . . , D
(n)
j`d
, b(n), . . . , b(n))

]
= E

[
f(C

(n)
j`1
, . . . , C

(n)
j`p−1

, D
(n)
j`p
, . . . , D

(n)
j`p
, D

(n)
j`p+1

, . . . , D
(n)
j`d
, b(n), . . . , b(n))

]
, (3.8)
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which in turn implies (3.7). Abbreviating Y (r)
i =

(
1{i<n0}X

(r)
i + 1{i≥n0}Z

(r)
)

and denoting by

Υ the joint distribution of
(
A

(n)
j`1
, . . . , A

(n)
j`d
, I

(n)
j`1
, . . . , I

(n)
j`d
, b(n)

)
we have

E
[
f(C

(n)
j`1
, . . . , C

(n)
j`i−1

, C
(n)
j`i
, . . . , C

(n)
j`i
, D

(n)
j`i+1

, . . . , D
(n)
j`d
, b(n), . . . , b(n)

]
=

∫
f (α1x1, . . . , αp−1xp−1, αpxp, . . . , αpxp, αp+1xp+1, . . . , αdxd, b, . . . , b)

dPXi1 (x1) · · · dPXip (xp)dPYip+1
(xp+1) · · · dPYid (xd)dΥ(α1, . . . , αd, i1, . . . , id, b)

=

∫
E
[
g(Xip , . . . , Xip)

]
dPXi1 · · · dPXip−1

dPYip+1
· · · dPYiddΥ,

where, for all fixed α1, . . . , αd, i1, . . . , id, b, x1, . . . , xp−1, xp+1, . . . , xd, we use the continuous
multilinear function g : B`p−`p−1 → R,

g(y1, . . . , y`p−`p−1)

:= f(α1x1, . . . , αp−1xp−1, αpy1, . . . , αpy`p−`p−1 , αp+1xp+1, . . . , αdxd, b, . . . , b).

Since L(Xm),L(Z) ∈Ms(η) for all m ≥ n0 we can replace Xip by Yip . This shows the equality
(3.8), hence (3.4). Altogether, we obtain L(Qn) ∈Ms(η) for all n ≥ n0.
Now, we show T (µ) ∈ Ms(η). Let W be a random variable with distribution T (µ). By C2,
in particular ‖Ar‖s < ∞ for r = 1, . . . ,K, by C1 we have ‖b‖s < ∞. Thus, as for Qn, from
Minkowski’s inequality we obtain E [‖W‖s] < ∞, hence T (µ) ∈ Ms(η) for s ≤ 1. For the case
s > 1 we consider again arbitrary 1 ≤ k ≤ m and multilinear and bounded f : Bk → R. It
suffices to show E [f(Qn, . . . , Qn)] = E [f(W, . . . ,W )] for some n ≥ n0. In fact, we will show
that limn→∞ E [f(Qn, . . . , Qn)] = E [f(W, . . . ,W )]. For this we expand

E [f(W, . . . ,W )] = E

[
f

(
K∑
r=1

ArZ
(r) + b, . . . ,

K∑
r=1

ArZ
(r) + b

)]

into summands corresponding to (3.4) and have to show that

lim
n→∞

E
[
f
(
D

(n)
j1
, . . . , D

(n)
jk

)]
= E [f(Ej1 , . . . , Ejk)] ,

where j1, . . . , jk ∈ {1, . . . ,K}. For each i ∈ {1, . . . , k} we have in case (3.5) that Eji =

AjiZ
(ji), in case (3.6) that Eji = b. We obtain, introducing a telescoping sum and using Hölder’s

inequality,∣∣∣E [f (D(n)
j1
, . . . , D

(n)
jk

)]
− E [f(Ej1 , . . . , Ejk)]

∣∣∣
=

∣∣∣∣∣∣
k∑
q=1

E
[
f
(
Ej1 , . . . , Ejq−1 , D

(n)
jq
, . . . , D

(n)
jk

)
− f

(
Ej1 , . . . , Ejq , D

(n)
jq+1

, . . . , D
(n)
jk

)]∣∣∣∣∣∣
≤

k∑
q=1

∣∣∣E [f (Ej1 , . . . , Ejq−1 , D
(n)
jq
− Ejq , D

(n)
jq+1

, . . . , D
(n)
jk

)]∣∣∣
≤

k∑
q=1

‖f‖‖D(n)
jq
− Ejq‖k

q−1∏
v=1

‖Ejv‖k
k∏

v=q+1

‖D(n)
jv
‖k.
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Note that the ‖Ejv‖k and ‖D(n)
jv
‖k are all uniformly bounded by independence, C1, and ‖X0‖s,

. . . , ‖Xn0−1‖s, ‖Z‖s <∞. Hence it suffices to show that ‖D(n)
jv
− Ejv‖k → 0 for all jv. In case

(3.6) this is ‖b(n) − b‖k → 0 by condition C1. In case (3.6) we have, abbreviating r = ji,∥∥∥∥A(n)
r

(
1{

I
(n)
r <n0

}X(r)

I
(n)
r

+ 1{
I
(n)
r ≥n0

}Z(r)

)
−ArZ(r)

∥∥∥∥
k

≤
∥∥∥(A(n)

r −Ar)Z(r)
∥∥∥
k

+

∥∥∥∥A(n)
r

(
1{

I
(n)
r <n0

} (X(r)

I
(n)
r

− Z(r)
))∥∥∥∥

k

The first summand of the latter display tends to zero by independence, ‖Z‖s < ∞ and condition
C1. The second summand tends to zero applying Hölder’s inequality, condition C1, which implies
that ‖A(n)

r ‖s in uniformly bounded, ‖X0‖s, . . . , ‖Xn0−1‖s, ‖Z‖s < ∞ and conditions C1 and
C3. Altogether we obtain T (µ) ∈Ms(η).
Let µ, λ ∈Ms(η). Using Lemma 2.4 and Corollary 2.6 it follows that

ζs(T (µ), T (λ)) ≤

(
K∑
r=1

E [‖Ar‖s]

)
ζs(µ, λ).

Thus, by condition C2, the restriction of T toMs(η) is a contraction with respect to ζs.
Assume, µ was a fixed-point of T as well. Then the contraction property implies

ζs(µ, η) = ζs(T (µ), T (η)) ≤ Lζs(µ, η),

hence ζs(µ, η) = 0. Since the ζs-distance is a metric onMs(η) it follows µ = η.

Aiming to prove convergence of Xn to a fixed-point of (3.2), the conditions C1, C2 and L(Xn) ∈
Ms(µ) for n ≥ n0, are natural in the context of contraction method. The existence of a solution of
the fixed-point equation in condition C3 is required since we miss knowledge about completeness
of the ζs metrics. If we only assume C1, C2 and L(Xn) ∈ Ms(µ) for n ≥ n0, then (Tn(µ))n≥0

is a Cauchy sequence with respect to ζs, a proof thereof runs along similar lines as for the previous
proposition. Thus, by Proposition 2.40, Tn(µ) converges in fdd−→ to some measure ν on R[0,1],
the natural candidate for a fixed-point of (3.2). Indeed, if η is such a fixed-point inMs(µ), then
ζs(T

n(µ), η)→ 0 exponentially fast and therefore η has to be a continuous version of ν.

The following proposition uses the ideas developed so far to infer convergence of Xn to X in the
ζs distance. The proof extends a similar proof for the case B = Rd, see [NR04b, Theorem 4.1].
We draw further implications from this proof, see Corollary 3.5.

Proposition 3.2. Let (Xn)n≥0 satisfy recurrence (3.1) with conditions C1 – C3. Then for the
fixed-point η = L(X) of T in (3.2) we have, as n→∞,

ζs(Xn, X)→ 0.

Proof. We use the accompanying sequence defined in (3.3). Throughout the proof let n ≥ n0.
Again since the ζs-distance is a metric we have

ζs(Xn, X) ≤ ζs(Xn, Qn) + ζs(Qn, X). (3.9)
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First, we consider the second term. By C1 and Minkowski’s inequality, absolute moments of order
s of the sequence (Qn)n≥n0 are bounded, hence using Theorem 2.17 it suffices to show

`s(Qn, X)→ 0.

Using the same set of independent random variables X(1), . . . , X(K) for Qn and in the recurrence
of X , we obtain

`s(Qn, X) ≤

∥∥∥∥∥
K∑
r=1

(
Ar − 1{

I
(n)
r ≥n0

}A(n)
r

)
X(r)

∥∥∥∥∥
s

+

∥∥∥∥∥
K∑
r=1

1{
I
(n)
r <n0

}A(n)
r X

(r)

I
(n)
r

∥∥∥∥∥
s

+ ‖b(n) − b‖s

≤
K∑
r=1

(∥∥∥Ar −A(n)
r

∥∥∥
s

+

∥∥∥∥1{I(n)r <n0

}‖A(n)
r ‖

∥∥∥∥
s

)
‖X‖s + ‖b(n) − b‖s

+

∥∥∥∥∥
K∑
r=1

1{
I
(n)
r <n0

}A(n)
r X

(r)

I
(n)
r

∥∥∥∥∥
s

By C1 the first two summands tend to zero. Also, the third one converges to zero using C1 and∥∥∥∥1{I(n)r <n0

}‖A(n)
r ‖X

(r)

I
(n)
r

∥∥∥∥
s

≤
∥∥∥∥1{I(n)r <n0

}‖A(n)
r ‖

∥∥∥∥
s

∥∥∥∥∥ sup
j<n0

‖Xj‖

∥∥∥∥∥
s

Furthermore, conditioning on the coefficients and using that ζs is (s,+) ideal and Lemma 2.4, it
is easy to see that

ζs(Qn, Xn) ≤ pnζs(Xn, X) + E

[
K∑
r=1

1{
n0≤I(n)r ≤n−1

}‖A(n)
r ‖sζs

(
X
I
(n)
r
, X
)]

(3.10)

≤ pnζs(Xn, X) +

(
K∑
r=1

E
[
‖A(n)

r ‖s
])

sup
n0≤i≤n−1

ζs(Xi, X), (3.11)

where

pn = E

[
K∑
r=1

1{
I
(n)
r =n

}‖A(n)
r ‖s

]
→ 0, n→∞.

Combining (3.9) and (3.11) implies

ζs(Xn, X) ≤ 1

1− pn

[
K∑
r=1

E
[
‖A(n)

r ‖s
]

sup
n0≤i≤n−1

ζs(Xi, X) + o(1)

]
.

From this it follows that ζs(Xn, X) is bounded. Let

η̄ := sup
n≥n0

ζs(Xn, X), η := lim sup
n→∞

ζs(Xn, X)

and ε > 0 arbitrary. Then, there exists ` > 0 with ζs(Xn, X) ≤ η + ε for all n ≥ `. Using (3.9),
(3.10) and splitting {n0 ≤ I

(n)
r ≤ n − 1} into {n0 ≤ I

(n)
r ≤ `} and {` < I

(n)
r ≤ n − 1}, we

obtain

ζs(Xn, X) ≤ η̄

1− pn
E

[
K∑
r=1

1{
n0≤I(n)r ≤`

}‖A(n)
r ‖s

]
+

η + ε

1− pn
E

[
K∑
r=1

‖A(n)
r ‖s

]
+ o(1)
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which, by C1, finally implies

η ≤ E

[
K∑
r=1

‖Ar‖s
]

(η + ε).

Since ε > 0 is arbitrary and by condition C2, we obtain η = 0.

Remark 3.3. As pointed out in [ER07] for a related convergence result, the statement of Proposi-
tion 3.2 remains true if condition C1 is weakened by replacing

K∑
r=1

∥∥∥A(n)
r −Ar

∥∥∥
s
→ 0

by
K∑
r=1

∥∥∥(A(n)
r −Ar)f

∥∥∥
s
→ 0

for all f ∈ C[0, 1] and uniform boundedness of ‖A(n)
r ‖s for all n ≥ 0 and all r = 1, . . . ,K. This

follows from the given independence structure and the dominated convergence Theorem.

Remark 3.4. The methodology developed in the present section covers sequences (Xn) with
jumps at random times. However, condition C1 essentially requires these times to be equal for all
n ≥ n0. In particular sequences of processes with jumps at random times that require a (uniformly
small) time scale deformation cannot be treated by our approach.

To be able to deduce weak convergence in the situation of Proposition 3.2 for the special cases
C[0, 1] and D[0, 1], rates of convergence for ζs are required. We impose a further assumption
on the convergence rate of the coefficients to establish a rate of convergence for the process that
strengthens condition C2.

C4. The sequence (γ(n))n≥n0 from condition C1 satisfies γ(n) = O(R(n)) as n → ∞ for
some positive sequence R(n) ↓ 0 such that

L∗ = lim sup
n→∞

E

[
K∑
r=1

‖A(n)
r ‖s

R(I
(n)
r )

R(n)

]
< 1.

Corollary 3.5. Let (Xn)n≥0 satisfy recurrence (3.1) with conditions C1, C3 and C4. Then for the
fixed-point η = L(X) of T in (3.2) we have, as n→∞,

ζs(Xn, X) = O(R(n)).

Proof. We consider the quantities introduced in the proof of Proposition 3.2 again. By condition
C4 we have ζs(Qn, X) ≤ CR(n) for some C > 0 and all n. Furthermore, we can choose γ > 0

and n1 > 0 such that

E

[
K∑
r=1

‖A(n)
r ‖s

R(I
(n)
r )

R(n)

]
≤ 1− γ, pn ≤

γ

2
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3. The contraction method

for n ≥ n1. Obviously, for any n2 ≥ n1, we can choose K ≥ 2C/γ such that d(n) :=

ζs(Xn, X) ≤ KR(n) for all n < n2. Using (3.10), this implies

d(n2) ≤ pn2d(n2) + E

[
K∑
r=1

1{
I
(n2)
r ≤n2−1

}‖A(n2)
r ‖sd(I(n2)

r )

]
+ CR(n2)

hence

d(n2) ≤ 1

1− pn2

(
E

[
K∑
r=1

‖A(n2)
r ‖sKR(I(n2)

r )

]
+ CR(n2)

)

=
1

1− pn2

(
KR(n2)E

[
K∑
r=1

‖A(n2)
r ‖sR(I

(n2)
r )

R(n2)

]
+ CR(n2)

)

≤ 1

1− pn2

((1− γ)K + C)R(n2) ≤ KR(n2).

Inductively, d(n) ≤ KR(n) for all n.

We now consider the special cases C[0, 1] and D[0, 1]. Related to Corollary 2.36 we consider
the following additional assumption, where the notations Cr[0, 1] defined in (2.32) and Dr[0, 1]

defined in (2.33) are used:

C5 Case (C[0, 1], ‖ · ‖): We have Xn = Yn + hn for all n ≥ 0, where ‖hn − h‖ → 0 with
hn, h ∈ C[0, 1], and there exists a positive sequence (rn)n≥0 such that

P (Yn /∈ Crn [0, 1])→ 0.

Case (D[0, 1], dsk): We have Xn = Yn + hn for all n ≥ 0, where ‖hn − h‖ → 0 with
hn ∈ D[0, 1], h ∈ C[0, 1], and there exists a positive sequence (rn)n≥0 such that

P (Yn /∈ Drn [0, 1])→ 0.

We now state the main theorem of this section. It follows immediately from Proposition 2.34,
Corollary 2.36, Proposition 3.2 and Corollary 3.5.

Theorem 3.6. Let (Xn)n≥0 be a sequence of random variables in (C[0, 1], ‖ · ‖) or (D[0, 1], dsk)

satisfying recurrence (3.1) with conditions C1, C2, C3 being satisfied. Then, for L(X) = η we
have for all t ∈ [0, 1]

Xn(t)
d−→ X(t), E [|Xn(t)|s]→ E [|X(t)|s] .

If Z is distributed on [0, 1] and independent of (Xn) and X then

Xn(Z)
d−→ X(Z), E [|Xn(Z)|s]→ E [|X(Z)|s] .

If moreover conditions C4 and C5 are satisfied, where R(n) in C4 and rn in C5 can be chosen
with

R(n) = o

(
1

logm(1/rn)

)
, n→∞, (3.12)

and X has continuous sample paths, then we have convergence in distribution:

Xn
d−→ X,
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3.2. The conditions on the moments

We comprehend our main result by convergence result for the moments of the norm based on
Theorem 2.38.

Corollary 3.7. Let (Xn)n≥0 be a sequence of random variables in (C[0, 1], ‖ · ‖) or (D[0, 1], dsk)

satisfying recurrence (3.1) with conditions C1–C5 with s ∈ {1, 2, 3} and such that also condition
(3.12) is fulfilled. If, in the continuous case,

E
[
‖Xn‖s1{Yn /∈Crn [0,1]}

]
→ 0,

where Yn is defined in C5, then

E [‖Xn‖s]→ E [‖X‖s] <∞.

The result remains valid in the càdlàg case, if Crn [0, 1] is replaced by Drn [0, 1] and X has contin-
uous sample paths.

Finally, we give sufficient criteria for the cases C[0, 1] and D[0, 1] to verify condition C3. Let
L(Y ) = ν be a probability distribution on C[0, 1] with E [‖Y ‖s] < ∞. Then for a probability
measure L(X) = µ on C[0, 1] to be in Ms(ν) we have the abstract defining properties in (2.3)
and (2.4). Note that the cases 0 < s ≤ 3 are of interest in our main result, Theorem 3.6, and that
µ ∈Ms(ν) implies ζs(µ, ν) <∞.

3.2. The conditions on the moments

In this section, we give a precise characterization of conditions (2.3) and (2.4) in the case of
continuous or càdlàg functions on the unit interval. Then we also discuss more general state
spaces.

Lemma 3.8. Let L(Y ) = L((Yt)t∈[0,1]) = ν and L(X) = L((Xt)t∈[0,1]) = µ be probability
measures on C[0, 1]. For 0 < s ≤ 1 we have µ ∈Ms(ν) if

E [‖X‖s] ,E [‖Y ‖s] <∞. (3.13)

For 1 < s ≤ 2 we obtain µ ∈Ms(ν) if we have condition (3.13) and

E [Xt] = E [Yt] for all 0 ≤ t ≤ 1. (3.14)

For 2 < s ≤ 3 we obtain µ ∈Ms(ν) if we have conditions (3.13), (3.14) and

Cov(Xt, Xu) = Cov(Yt, Yu) for all 0 ≤ t, u ≤ 1. (3.15)

For 0 < s ≤ 1 or 1 < s ≤ 2 the assertions remain true if C[0, 1] is replaced by D[0, 1].

Proof. The case 0 < s ≤ 1 follows directly from the definition of the space Ms(ν) for both,
C[0, 1] and D[0, 1].
We first consider B = C[0, 1] and start with the case 1 < s ≤ 2. By Riesz’ representation theorem
any linear and continuous function ϕ : C[0, 1]→ R can be written as

ϕ(f) =

∫
f(t)dµ(t)

51



3. The contraction method

where µ is a finite, signed measure on [0, 1]. Hence, (2.4) is satisfied if E [Xt] = E [Yt] for all
t ∈ [0, 1] and (2.3) is condition (3.13).
We move on to the case 2 < s ≤ 3. By the Grothendieck inequality [Gro53], see also [Pis11] for
a modern account, for any continuous bilinear form ϕ, there exist probability measures µ and ν on
the unit interval such that

|ϕ(f, g)| ≤ K‖ϕ‖
[∫ 1

0
f2(t)dµ(t)

∫ 1

0
g2(s)dν(s)

]1/2

.

for all f, g ∈ C[0, 1]. Here, K denotes a universal constant whose optimal value, called the
Grothendieck constant, is still unknown. Thus, denoting η = (µ + ν)/2 the mixture of the two
measures, it follows that ϕ is continuous on (C[0, 1])2 when the space C[0, 1] is endowed with the
L2(η) topology. The set C[0, 1] is dense in L2([0, 1],B([0, 1]), η), hence we can extend ϕ to a
continuous bilinear form on L2([0, 1],B([0, 1]), η). Being a Hilbert space, the claim follows from
Lemma 2.2 together with the Riesz representation theorem.
The description of the dual space ofD[0, 1] is slightly more complicated than in the case of C[0, 1],
in particular a continuous linear form onD[0, 1] is not uniquely determined by its values on C[0, 1].
Pestman [Pes95, Theorem 1] showed that any linear and bounded map ϕ : D[0, 1] → R is of the
form

ϕ(f) =

∫
f(t)dµ(t) +

∑
x∈[0,1]

(f(x)− f(x−))ψ(x), (3.16)

where µ is again a finite, signed measure on the unit interval, f(x−) := limh↓0 f(x−h), f(0−) :=

f(0) and ψ : [0, 1] → R takes values different from zero only on a countable subset F of [0, 1]

with
∑

x∈F |ψ(x)| < ∞. Note that the measure µ comes from the restriction of ϕ to C[0, 1].
Furthermore, the representation of ϕ in terms of µ and ψ is unique. Equation (3.16) implies that
µ ∈ Ms(ν) if E [X(t)] = E [Y (t)] for all t ∈ [0, 1] and E [‖X‖s] ,E [‖Y ‖s] < ∞ like in the
continuous case. Note that E [X(t−)] = E [Y (t−)] for all t ∈ [0, 1] follows from the latter by
dominated convergence.

Remark 3.9. Interpreting E [X] as Bochner-Integral in the continuous case, it is equivalent to say
E [X(t)] = E [Y (t)] for all t ∈ [0, 1] and E [X] = E [Y ]. This is simply due to the fact that E [X]

is a continuous function with E [X] (t) = E [X(t)] and ϕ(E [X]) = E [ϕ(X)] for all continuous
linear forms ϕ on C[0, 1]. Also the higher moments can be interpreted similarly as expectations of
tensor products, cf. [DJN08].

Remark 3.10. Note that condition (3.15) typically cannot be achieved for a sequence (Xn)n≥0

that arises as in (1.2) by an affine scaling from a sequence (Yn)n≥0 as in (1.1). This fundamental
problem for developing a functional contraction method on the basis of the Zolotarev metrics ζs
with 2 < s ≤ 3 was already mentioned in [DJN08, Remark 6.2]. We describe a way to circumvent
this problem in our application to Donsker’s invariance principle by a perturbation argument, see
Section 4.

Remark 3.11. Lemma 3.8 implies that condition (2.4) may be replaced by (2.5) in the case of
C[0, 1] for k = 1, 2 or D[0, 1] for k = 1. In fact, much more can be said. Janson and Kaijser [JK]
show that the equivalence of (2.4) and (2.5) holds true for any k ∈ N in separable Banach spaces
having the approximation property such as C[0, 1] or sequence spaces. In fact, it had been an open
problem to find Banach spaces without this property for many years, the first example was given
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3.2. The conditions on the moments

by Enflo in [Enf73]. Based on a Banach space without the approximation property, Janson and
Kaijser [JK] also give an example where the equivalence of (2.4) and (2.5) is false already in the
case k = 2.
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4. Donsker’s invariance principle

Let (Vn)n∈N be a sequence of independent, identically distributed real-valued random variables
with E [V1] = 0 and Var [V1] = 1. In Donsker’s theorem one considers the properly scaled and
linearly interpolated random walk Sn = (Snt )t∈[0,1], n ≥ 1, defined by

Snt =
1√
n

bntc∑
k=1

Vk + (nt− bntc)Vbntc+1

 , t ∈ [0, 1].

With W = (Wt)t∈[0,1] a standard Brownian motion, Donsker’s functional limit law states that
Sn → W in distribution on (C[0, 1], ‖ · ‖). Equivalently and more in the spirit of the time when
the result was formulated and proved, this means

f(Sn)
d−→ f(W ) (4.1)

for any continuous function f : C[0, 1]→ R.

The history started with the idea of Erdős and Kac [Kac46, EK46, EK47] to prove invariance prin-
ciples for f(Sn) by two steps: First, one provides distributional convergence of f(Sn) and notes
its limit to be invariant under the law of V1. Second, one determines the shape of the limit by
focussing on a convenient choice of L(V1) that allows one to compute the limit by means of direct
calculations. Applying this methodology, Erdős and Kac established (4.1) for certain functions f ,
e.g. f(x) = supt∈[0,1] x(t) and f(x) = supt∈[0,1] |x(t)|. A much earlier work by Kolmogorov
[Kol31] had already been in this spirit. In the works by Mark [Mar49] and Fortet [For49] the idea
of Erdős and Kac was extended to various other continuous functionals. The heuristic approach of
directly approximating the sequence of processes by its limit goes back to Doob [Doo49], where
he uses this idea in the related case of the rescaled empirical distribution function and its limit,
the Brownian bridge. As an outcome of his dissertation, Donsker [Don51] gave a rigorous proof
of (4.1) for all continuous functions f . The concept of tightness was developed shortly after by
Prokhorov [Pro53, Pro56] and the proofs of the invariance principle found in most textbooks in-
volve his arguments based on the theorem that is today named after him.

For the purpose of the contraction method it is necessary to assume an additional moment on V1.
Our aim of the next section is to prove the following theorem.

Theorem 4.1. Let E
[
|V1|2+ε

]
<∞ for some ε > 0. Then Sn d−→W as n→∞ in (C[0, 1], ‖·‖).
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4. Donsker’s invariance principle

4.1. A contraction proof

In this section we apply the general methodology of the Chapters 2 and 3 to give a short proof of
Theorem 4.1. For a recursive decomposition of Sn and W we define operators for β > 1,

ϕβ : C[0, 1]→ C[0, 1], ϕβ(f)(t) = 1{t≤1/β}f(βt) + 1{t>1/β}f(1),

ψβ : C[0, 1]→ C[0, 1], ψβ(f)(t) = 1{t≤1/β}f(0) + 1{t>1/β}f
(
βt−1
β−1

)
.

Note that both ϕβ and ψβ are linear, continuous and ‖ϕβ(f)‖ = ‖ψβ(f)‖ = ‖f‖ for all f ∈
C[0, 1], hence we have ‖ϕβ‖ = ‖ψβ‖ = 1. By construction we have

Sn
d
=

√
dn/2e
n

ϕ n
dn/2e

(
Sdn/2e

)
+

√
bn/2c
n

ψ n
dn/2e

(
Ŝbn/2c

)
, n ≥ 2, (4.2)

where d
= denotes equality in distribution, (S1, . . . , Sn) and (Ŝ1, . . . , Ŝn) are independent and Sj

and Ŝj are identically distributed for all j ≥ 1. Therefore (Sn)n≥1 satisfies recurrence (3.1)
choosing

K = 2, I
(n)
1 = dn/2e, I

(n)
2 = bn/2c, n0 = 2,

A
(n)
1 =

√
dn/2e
n

ϕ n
dn/2e

, A
(n)
2 =

√
bn/2c
n

ψ n
dn/2e

, b(n) = 0.

Moreover, as ϕβ, ψβ are deterministic, the operators A(n)
1 and A(n)

2 are random linear operators in
the sense of Definition 2.7; the same holds also for their limits as defined in (4.4). In the following
let Ŵ = (Ŵt)t∈[0,1] be a standard Brownian motion, independent of W . Properties of Brownian
motion imply

W
d
=

√
1

β
ϕβ(W ) +

√
β − 1

β
ψβ(Ŵ ), (4.3)

for any β > 1. Hence, the Wiener measure L(W ) is a fixed-point of the operator T in (3.2) with

K = 2, A1 =

√
1

β
ϕβ, A2 =

√
β − 1

β
ψβ, b = 0, (4.4)

an illustration thereof is given in the figures 4.1 and 4.2. For β = 2 the coefficients in (4.2)
converge to the ones in (4.3), i.e., as n→∞,√

dn/2e
n
→ 1√

2
,

√
bn/2c
n
→ 1√

2
,

but the coefficients A(n)
1 , A

(n)
2 only converge to A1, A2 in the operator norm for n even. Never-

theless, from the point of view of the contraction method this suggests weak convergence of Sn to
W .

56



4.1. A contraction proof

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 1

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 1

Figure 4.1.: Realizations of independent Brownian motions.
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Figure 4.2.: The concatenation in the sense of (4.3) for β = 2.

The operator T associated with the fixed-point equation (4.3), i.e., with the coefficients in (4.4),
satisfies condition C2 only with s > 2. In view of condition C3 and Lemma 3.8 we need to match
the mean and covariance structure. We have E [Snt ] = 0 for all 0 ≤ t ≤ 1 and a direct computation
yields

Cov(Sns , S
n
t ) =

{
s, for bnsc < bntc,

1
n

(
bnsc+ (ns− bnsc)(nt− bntc

)
, for bnsc = bntc.

(4.5)

Hence, we do not have finite ζ2+ε -distance between Sn and W since they do not share their
covariance functions. To surmount this problem we consider a suitable linear interpolation of the
Brownian motion W . For fixed n ∈ N we divide the unit interval into pieces of length 1/n and
interpolate W linearly between the points 0, 1/n, 2/n, . . . , (n− 1)/n, 1. The interpolated process
Wn = (Wn

t )t∈[0,1] is given by

Wn
t := W bntc

n

+ (nt− bntc)
(
W bntc+1

n

−W bntc
n

)
, t ∈ [0, 1].

We have E [Wn
t ] = 0 and Wn and Sn have the same covariance function (4.5) for all n ∈ N.

Furthermore Wn has the same distributional recursive decomposition (4.2) as Sn.
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Figure 4.3.: A Brownian motion W and its linearly interpolated version Wn for n = 10.

Note that the linearly interpolated version does not differ much from the original one:

Lemma 4.2. We have ‖Wn −W‖ → 0 as n→∞ almost surely.

Proof. This directly follows from the uniform continuity of W . For ε > 0 there exists a random
δ > 0 such that |W (t) −W (s)| < ε for any s, t ∈ [0, 1] with |t − s| < δ. An adaption of the
triangle inequality gives ‖Wn −W‖ < 2ε for any n > δ−1.

In view of Corollary 2.37 it suffices to prove that Sn and Wn are close with respect to ζ2+ε. The
proof of this runs along the same lines as the one for Proposition 3.2, resp. Corollary 3.5, in fact it
is much shorter due to the simple form of the recurrence:

Proposition 4.3. For any δ < ε/2 we have ζ2+ε(S
n,Wn) = O(n−δ) as n→∞.

Proof. We have

ζ2+ε(S
n,Wn) = ζ2+ε

(√
dn/2e
n

ϕ n
dn/2e

(
Sdn/2e

)
+

√
bn/2c
n

ψ n
dn/2e

(
S
bn/2c

)
,√

dn/2e
n

ϕ n
dn/2e

(
W dn/2e

)
+

√
bn/2c
n

ψ n
dn/2e

(
W
bn/2c

))

≤
(
dn/2e
n

)1+ε/2

ζ2+ε

(
Sdn/2e,W dn/2e

)
+

(
bn/2c
n

)1+ε/2

ζ2+ε

(
Sbn/2c,W bn/2c

)
.

We abbreviate

dn := ζ2+ε(S
n,Wn), an :=

(
dn/2e
n

)1+ε/2

, bn :=

(
bn/2c
n

)1+ε/2

and note that we have an + bn ≤ 2−ε/2 + C ′/n for some constant C ′ > 0 and all n ∈ N. For
arbitrary δ < ε/2 we prove the assertion by induction: Fix δ < δ′ < ε/2 and choose m0 ∈ N
such that bn/2c−δ ≤ (n/2)−δ2ε/2−δ

′
and 1 + 2ε/2C ′/n ≤ 2δ

′−δ for all n ≥ m0. Furthermore, let
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4.2. Characterizing the Wiener measure by a fixed-point property

C > 0 be large enough such that dn ≤ Cn−δ for all 1 ≤ n ≤ m0. Then, for n > m0, assuming
the claim to be verified for all smaller indices,

dn ≤ anddn/2e + bndbn/2c

≤ C
(
an(n/2)−δ + bn(n/2)−δ2ε/2−δ

′
)

≤ Cn−δ2δ2ε/2−δ
′
(an + bn)

≤ Cn−δ.

The assertion follows.

Now Donsker’s Theorem (Theorem 4.1) follows from Proposition 4.3, Lemma 4.2 and Corollary
2.37. Observe that we could have worked analogously in the framework of càdlàg functions by
choosing a constant interpolation between successive points of type i/n.

By Theorem 2.38 and Proposition 2.39 we directly obtain convergence of moments of the supre-
mum if we assume additional moments for the increments.

Corollary 4.4. Suppose E
[
|V1|k

]
< ∞ for an integer k ≥ 3. Then the first k absolute moments

of 1√
n

sup0≤k≤n Sk converge to the corresponding moments of ‖W‖.

4.2. Characterizing the Wiener measure by a fixed-point
property

We reconsider the map T corresponding to the fixed-point equation (4.3) for the case β = 2:

T :M(C[0, 1])→M(C[0, 1]) (4.6)

T (µ) = L
(

1√
2
ϕ2(Z) +

1√
2
ψ2(Z)

)
,

where Z, Z are independent with distribution L(Z) = L(Z) = µ. Our discussion above implies
that the Wiener measure L(W ) is the unique fixed-point of T restricted toM2+ε(L(W )) for any
ε > 0. Note that M2+ε(L(W )) is the space of the distributions of all continuous stochastic
processes V = (Vt)t∈[0,1] with E

[
|V |2+ε

]
< ∞, E [Vt] = 0 and Cov(Vt, Vu) = t ∧ u for all

0 ≤ t, u ≤ 1. Note that one easily verifies that T (M2+ε(L(W ))) ⊂ M2+ε(L(W )) and the last
part of the proof of Lemma 3.1 implies that T restricted toM2+ε(L(W )) is Lipschitz-continuous
with Lipschitz constant at most L = 2−ε/2 < 1, hence L(W ) is the unique fixed-point of T in
M2+ε(L(W )).
We now show that a more general statement is true, the Wiener measure is also, up to multiplicative
scaling, the unique fixed-point of T in the larger spaceM(C[0, 1]). For a related statement, see
also Aldous [Ald94, page 528]. The subsequent proof is based on the fact that the centered normal
distributions are the only solutions of the fixed-point equation

X
d
=
X +X√

2
(4.7)

where X,X are independent, identically distributed real-valued random variables as already dis-
cussed on page 5 in the introduction.
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4. Donsker’s invariance principle

Theorem 4.5. Let X = (Xt)t∈[0,1] be a continuous process with X0 = 0. Then L(X) is a
fixed-point of (4.6) if and only if either X = 0 a.s. or there exists a constant σ > 0, such that
(σ−1Xt)t∈[0,1] is a standard Brownian motion.

Proof. Let L(X) be a fixed-point of (4.6) andX = (Xt)t∈[0,1] be independent ofX with the same
distribution. The fixed-point property implies

X1
d
=
X1 +X1√

2
,

hence L(X1) = N (0, σ2) for some σ2 ≥ 0, where N (0, σ2) denotes the centered normal distri-
bution with variance σ2. This implies

X1/2
d
=
X1√

2
,

hence L(X1/2) = N (0, σ2/2). Let D = {m2−n : m,n ∈ N0,m ≤ 2n} by the set of dyadic
numbers in [0, 1]. By induction, we obtain L(Xt) = N (0, σ2t) for all t ∈ D . For the distribution
of the increments we first obtain

X1 −X1/2
d
=
X1√

2
,

hence L(X1−X1/2) = N (0, σ2/2). Again inductively, we obtain L(X1−Xt) = N (0, (1−t)σ2)

for all t ∈ D . Also by induction, it follows L(Xt −Xs) = N (0, (t− s)σ2) for all s, t ∈ D with
s < t. Finally, continuity of X implies the same property for all s, t ∈ [0, 1]. It remains to prove
independence of increments. Denoting by X(1), X(2), . . . independent distributional copies of X ,
we obtain from iterating the fixed-point property

(Xt)t∈[0,1]
d
=

(
2−n/2

2n∑
m=1

1{(m−1)2−n<t≤m2−n}X
(m)
2nt−m+1 + 1{m2−n<t}X

(m)
1

)
t∈[0,1]

for all n ∈ N. Hence, for any dyadic points 0 ≤ t1 < t2 < . . . < tk ≤ 1, choosing n large
enough, each Xti+1 − Xti can be expressed as a function of a subset of X(1), . . . , X(2n) these
subsets being pairwise disjoint for i = 0, . . . , n − 1. Since, D is dense in [0, 1], this shows that
X has independent increments. For σ = 0 we have X = 0 a.s., otherwise σ−1X is a standard
Brownian motion.
The converse direction of the Theorem is trivial.

Remark 4.6. Note that we cannot cancel the assumption on continuity of X without replacement,
e.g., the process

Yt =

{
Wt : t /∈ D

0 : t ∈ D

also solves (4.3) and is not a multiple of Brownian motion. However, it would be sufficient to
require càdlàg paths, so C[0, 1] could be replaced by D[0, 1] in our statement.

Remark 4.7. Our decomposition of Brownian motion in (4.3) is in time. However, equation (4.7)
suggests to also investigate a decomposition in space

(Xt)t∈[0,1]
d
=

(
Xt +Xt√

2

)
t∈[0,1]

(4.8)
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4.2. Characterizing the Wiener measure by a fixed-point property

where (Xt)t∈[0,1] and (Xt)t∈[0,1] are independent and identically distributed. Again, equation (4.8)
induces a map onM(C[0, 1]) that is a contraction in ζ2+ε on the subspaceM2+ε(L(W )), so the
Wiener measure is the only solution inM2+ε(L(W )). In this case, we cannot remove the moment
assumption as in Theorem 4.5 since any centered, continuous Gaussian process solves equation
(4.8). Using (4.7), it is not hard to see that there are no further solutions of (4.8).
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5. Analysis of partial match queries

To begin the chapter on partial match retrieval in random quadtrees, let us quickly recap the rele-
vant terms from the introduction. Cn(s) is the number of visited nodes of the retrieval algorithm
in the quadtree searching for all items whose first component equals s. Equivalently, we have seen
that the quantity coincides with the number of horizontal lines in the partition of the unit square
given by the points building up the tree which intersect the vertical line at s. We remember the
additive recursion (1.18) that is satisfied by (Cn(s))s∈[0,1] on the level of càdlàg functions.

Cn(s)
d
= 1 + 1{s<U}

[
C

(1)

I
(n)
1

( s
U

)
+ C

(2)

I
(n)
2

( s
U

)]
+1{s≥U}

[
C

(3)

I
(n)
3

(
1− s
1− U

)
+ C

(4)

I
(n)
4

(
1− s
1− U

)]
. (5.1)

Here, (U, V ) denote the components of the first inserted point, I(n)
1 , . . . , I

(n)
4 denote the number

of points in the subregions and (C
(1)
n ), . . . , (C

(4)
n ) are independent copies of (Cn), independent of(

U, V, I
(n)
1 , . . . , I

(n)
4

)
. The distribution of the number of points in the subquadrants is

L
(
I

(n)
1 , . . . , I

(n)
4

)
= Mult(n− 1;UV,U(1− V ), (1− U)V, (1− U)(1− V )). (5.2)

In their analysis of the complexity of partial match retrieval, or as they call it regionsearch, Bentley
and Stanat [BS75] use the idealized approach of perfect quadtrees in which all subtrees have
the same number of nodes. Stochastically, this basically coincides with the assumption that the
proportion of nodes in each of the four subtrees converges to 1/4 as the tree size grows to infinity.
By means of the distribution of the split random variable I(n) given in (5.2), we can immediately
discard this idea. Comparing their theoretical result with experimental data, the authors observe
that their approximation by a term of order

√
n underestimates the actual costs and give two

reasons for this phenomenon. First, based on arguments from [FB74] on the path length of the tree,
the number of visited nodes in the random quadtree is larger than in its idealized approximation.
Second, they point out that the partitioning of the search space is not well-balanced, or as they call
it “checkerboarding” [the distinction between these points is questionable as the first is a result of
the second]. However, they neglect the influence of the second point and emphasize the first.
In fact, the results by Flajolet et al. [FGPR93] reveal that it is just the other way around. First, the
path length is of the same asymptotic order as for perfect trees, i. e. Θ(n log n) and second, higher
order asymptotics for the costs are caused by the non-balanced partitioning of the state space.
We aim at giving a short heuristic argument for this here. Let ξ be uniform on the unit interval,
independent of the quadtree. The relative position of the line at ξ in the both relevant subquadrants
that appear by adding the first point in the unit square is again uniform at random. The width of
these regions is distributed like a uniform random variable on [0, 1] conditioned to be covered by
ξ which gives rise to a size-biased distribution. This implies

Cn(ξ)
d
= 1 + C

(1)

J
(n)
1

(ξ) + C
(2)

J
(n)
2

(ξ). (5.3)
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5. Analysis of partial match queries

Here, J (n)
1 , J

(n)
2 denote the number of points in the relevant subregions and (C

(1)
n ), C

(2)
n ) are

independent copies of (Cn), independent of
(
ξ, J

(n)
1 , J

(n)
2

)
. Moreover ξ and (J

(n)
1 , J

(n)
2 ) are

independent. The area of one of the two regions is distributed like a product of a uniform Y (for
the height) and an independent size-biased uniform

√
X (for the width). We thus have L(J

(n)
1 ) =

Bin(n−1,
√
XY ) whereX,Y are uniform on the unit interval and the same holds for J (n)

2 . Taking

                                      X                                2                   

        Y                                                       1
 

              ξ

√

Figure 5.1.: The first split in the quadtree with uniform query line ξ.

expectations in (5.3) and multiplying by n−γ with γ > 0 yields

n−γE [Cn(ξ)] = n−γ + 2E

(J (n)
1

n

)γ C(1)

J
(n)
1

(ξ)

(J
(n)
1 )γ

 .
Assuming that the left hand side of the latter expression converges as n → ∞ and pulling apart
the expectation of the product in a non-rigorous way gives

1 = lim
n→∞

2E

[(
J

(n)
1

n

)γ]
= 2E

[
(
√
XY )γ

]
=

4

(γ + 1)(γ + 2)
.

Thus, γ has to equal β as defined in (1.15). Note that the same heuristic approach may be applied
for the mean of partial match queries in dimension d when s components are fixed, explaining
(1.13).

In the first section, we collect all results on the asymptotic behaviour of the sequenceCn(s) we can
deduce by applying the contraction method as developed in the previous section. Subsequently,
for the remaining of this chapter, we abbreviate that additive recurrences such as (5.1) or fixed-
point equations such as (1.20) involving a parameter s ∈ [0, 1] are to be understood on the level of
càdlàg or continuous functions unless stated otherwise.

5.1. Main results and implications

Our main contribution is the following theorem whose proof is an application of Theorem 3.6.
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5.1. Main results and implications

Theorem 5.1. Let Cn(s) be the cost of a partial match query at a fixed line s in a random two-
dimensional quadtree. Then, there exists a random continuous function Z such that, as n→∞,(

Cn(s)

K1nβ

)
s∈[0,1]

d−→ (Z(s))s∈[0,1], (5.4)

where

K1 =
Γ(2β + 2)Γ(β + 2)

2Γ3(β + 1)Γ2(β/2 + 1)

is the constant appearing in (1.16). This convergence in distribution holds in the space (D[0, 1], dsk).
The distribution of the random function Z is a fixed point of the following functional fixed-point
equation

Z(s)
d
=1{s<U}

[
(UV )βZ(1)

( s
U

)
+ (U(1− V ))βZ(2)

( s
U

)]
+ 1{s≥U}

[
((1− U)V )βZ(3)

(
s− U
1− U

)
+ ((1− U)(1− V ))βZ(4)

(
s− U
1− U

)]
, (5.5)

where U and V are independent [0, 1]-uniform random variables and Z(i), i = 1, . . . , 4 are inde-
pendent copies of the process Z, which are also independent of U and V . Furthermore, Z in (5.4)
is the only solution of (5.5) such that E

[
‖Z‖2

]
<∞ and

E [Z(ξ)] = B(β/2 + 1, β/2 + 1)

where ξ is uniformly distributed on the unit interval and B(x, y) := Γ(x)Γ(y)/Γ(x+ y), x, y > 0

denotes the Beta function. Additionally, all moments of ‖Z‖ are finite.

For a simulation of a quadtree with corresponding process rescaled process Cn(s) see figure (5.2).

It turns out that we will make use of the ζs metric for s = 2; thus, our approach is strong enough to
guarantee convergence of the variance of the costs of partial match queries. This settles the open
question on the order of the variance for uniform queries.

Theorem 5.2. Let ξ be uniformly distributed on [0, 1], independent of (Cn) and Z, then

Cn(ξ)

K1nβ
d−→ Z(ξ),

in distribution with convergence of all moments. In particular

Var (Cn(ξ)) ∼ K4n
2β

where

K4 := K2
1 ·Var [Z(ξ)]

= K2
1

[
2(2β + 1)

3(1− β)
(B (β + 1, β + 1))2 −

(
B
(
β

2
+ 1,

β

2
+ 1

))2
]
.

Numerically,
K4 ≈ 0.447363034.
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Figure 5.2.: Quadtree for n = 500. The lower figure shows (K−1
1 n−βCn(s))s∈[0,1] and the limit

mean.

Concerning the worst-case behaviour, an adaption of Theorem 3.7 and Proposition 2.39 reveals all
moments of the supremum to be of the same order as for fixed query lines.

Theorem 5.3. Let Sn = sups∈[0,1]Cn(s). Then, as n→∞,

Sn
K1nβ

→ S := sup
s∈[0,1]

Z(s)

in distribution and with convergence of all moments. In particular, E [Sn] ∼ nβE [S] and Var [Sn] ∼
n2βVar [S]. The random variable S satisfies stochastically

S ≤
(

(UV )βS(1) + (U(1− V ))βS(2)
)
∨
(

((1− U)V )βS(3) + ((1− U)(1− V ))βS(4)
)
, (5.6)

where U and V are independent [0, 1]-uniform random variables and S(i), i = 1, . . . , 4 are inde-
pendent copies of S, which are also independent of U and V .
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5.2. Proof of the functional limit theorem

The leading constants in the expansion for the mean and the variance for the supremum, that
is E [S] and Var [S], remain open. The Lp-boundedness of n−βSn implies the corresponding
property for n−βCn(s) for fixed s, hence it implies convergence of all moments as stated in the
following theorem.

Theorem 5.4. For all s ∈ [0, 1], we have

E
[(

Cn(s)

K1nβ

)m]
→ E [Z(s)m] ,

for all m ∈ N as n → ∞ where cm is given in (5.38). Moreover, for any natural number ` > 0,
positions 0 ≤ s1 < . . . < s` ≤ 1, and k1, . . . , k` ∈ N one has

E
[
Ck1n (s1) · · ·Ck`n (s`)

]
∼ (K1n

β)
∑`
j=1 kj · E

[
Zk1(s1) · · ·Zk`(s`)

]
.

Finally we note that the one-dimension marginals of the limit process (Z(s), s ∈ [0, 1]) are all the
same up to a multiplicative constant.

Theorem 5.5. There is a random variable Z ≥ 0 such that for all s ∈ [0, 1],

Z(s)
d
= (s(1− s))β/2Z.

Z be the unique solution of the fixed-point equation

Z
d
= Uβ/2V βZ + Uβ/2(1− V )βZ ′,

with E [Z] = 1 and E
[
Z2
]
<∞, whereZ ′ is an independent copy ofZ and (Z,Z ′) is independent

of (U, V ).

We immediately proceed to the proof of our main result as an application of the contraction method
developed in the previous chapter.

5.2. Proof of the functional limit theorem

Theorem 5.1 can be considered a prototype application for the functional contraction method pre-
sented in the previous chapter. The verification of conditions C1 and C3 in Theorem 5.1 gives rise
to the problems P2 and P3a that have been mentioned in the introduction. We will deal with both
of them in subsequent sections and assume for a moment the following two propositions to hold
true.

Proposition 5.6. There exists a continuous solution Z of the fixed-point equation (5.5) with
E [Z(s)] = (s(1− s))β/2 and E

[
‖Z‖2

]
<∞. Moreover, all moments of ‖Z‖ are finite.

Proposition 5.7. There exists ε > 0 such that

sup
s∈[0,1]

|n−βE [Cn(s)]− µ̄(s)| = O(n−ε).

Here µ̄(s) = K1(s(1− s))β/2.
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5. Analysis of partial match queries

Following the heuristics in the introduction we scale the additive recurrence (1.18) by nβ . Let
Q0(t) := 0 and

Qn(t) =
Cn(t)

K1nβ
, n ≥ 1.

The recursive distributional equation then rewrites in terms of Qn as

(Qn(t))t∈[0,1]
d
=

(
1{t<U}

[(
I

(n)
1

n

)β
Q

(1)

I
(n)
1

(
t

U

)
+

(
I

(n)
2

n

)β
Q

(2)

I
(n)
2

(
t

U

)]

+ 1{t≥U}

[(
I

(n)
3

n

)β
Q

(3)

I
(n)
3

(
t− U
1− U

)
+

(
I

(n)
4

n

)β
Q

(4)

I
(n)
4

(
t− U
1− U

)]

+
1

K1nβ

)
t∈[0,1]

where U, I(n)
1 , . . . , I

(n)
4 are the quantities already introduced in the introduction and (Q

(1)
n )n≥0,

. . . , (Q
(4)
n )n≥0 are independent copies of (Qn)n≥0, independent of (U, V, I

(n)
1 , . . . , I

(n)
4 ). The

convergence of the coefficients (I
(n)
j /n)β suggests that a limit of Qn(t) satisfies the fixed-point

equation (5.5).

A modified recurrence: Remember from condition C3 that the rescaled sequence has to have
distributions satisfying (2.4) for n ≥ n0. As computed later in (5.9) the contraction property C2
is satisfied for s = 2 but not for s = 1. Hence, for C3 to be satisfied, we need to use a scaling
that leads to an expectation that is independent of n. This is not the case for Qn(t). Denoting
µn(t) = E [Cn(t)], we are naturally led to consider Y0(t) := 0 and

Yn(t) =
Cn(t)− µn(t)

K1nβ
= Qn(t)− h(t) +O(n−ε), n ≥ 1. (5.7)

where the error term is deterministic and uniform in t ∈ [0, 1] by Proposition 5.7. Remember that
h(t) was defined as (t(1− t))β/2. The distributional recursion in terms of Yn is

(Yn(t))t∈[0,1]
d
=

(
1{t<U}

[(
I

(n)
1

n

)β
Y

(1)

I
(n)
1

(
t

U

)
+

(
I

(n)
2

n

)β
Y

(2)

I
(n)
2

(
t

U

)]

+ 1{t≥U}

[(
I

(n)
3

n

)β
Y

(3)

I
(n)
3

(
t− U
1− U

)
+

(
I

(n)
4

n

)β
Y

(4)

I
(n)
4

(
t− U
1− U

)]

+ 1{t<U}

µI(n)1

(
t
U

)
+ µ

I
(n)
2

(
t
U

)
K1nβ


+ 1{t≥U}

µI(n)3

(
t−U
1−U

)
+ µ

I
(n)
4

(
t−U
1−U

)
K1nβ

+
1− µn(t)

K1nβ

)
t∈[0,1]

,

where (Y
(1)
n )n≥0, . . . , (Y

(4)
n )n≥0 are independent copies of (Yn)n≥0 which are also independent of

the vector (U, V, I
(n)
1 , . . . , I

(n)
4 ). Therefore, any possible limit Y of Yn should satisfy the following
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5.2. Proof of the functional limit theorem

distributional fixed-point equation

(Y (t))t∈[0,1]
d
=

(
1{t<U}

[
(UV )βY (1)

(
t

U

)
+ (U(1− V ))βY (2)

(
t

U

)]
+ 1{t≥U}

[
((1− U)V )βY (3)

(
t− U
1− U

)
+ ((1− U)(1− V ))βY (4)

(
t− U
1− U

)]
+ 1{t≥U}h

(
t− U
1− U

)(
((1− U)V )β + ((1− U)(1− V ))β

)
− h(t)

+ 1{t<U}h

(
t

U

)(
(UV )β + (U(1− V ))β

))
t∈[0,1]

. (5.8)

Having Theorem 3.6 in mind, we define (random) operators A(n)
r , r = 1, . . . , 4, by

A(n)
r (f)(t) =


1{t<U}

(
I

(n)
r

n

)β
f

(
t

U

)
if r = 1, 2

1{t≥U}

(
I

(n)
r

n

)β
f

(
t− U
1− U

)
if r = 3, 4.

Furthermore let b(n)(t) =
∑4

r=1 b
(n)
r (t) + (1− µn(t))/(K1n

β) with

b(n)
r (t) =


1{t<U} ·

µ
I
(n)
r

(
t
U

)
K1nβ

if r = 1, 2

1{t≥U} ·
µ
I
(n)
r

(
t−U
1−U

)
K1nβ

if r = 3, 4.

Then the finite-n version of the recurrence relation for (Yn)n≥0 is precisely of the form (1.2).
We define similarly the coefficients of the limit recursive equation (5.8). Based on the two proposi-
tions at the beginning of this section, we will then show that with these definitions, all assumptions
C1–C5 are satisfied. The operators A1, . . . , A4 are defined by

A1(f)(t)= 1{t<U} (UV )β f

(
t

U

)
A2(f)(t)= 1{t<U} (U(1− V ))β f

(
t

U

)
A3(f)(t)= 1{t≥U} ((1− U)V )β f

(
t− U
1− U

)
A4(f)(t)= 1{t≥U} ((1− U)(1− V ))β f

(
t

U

)
and b(t) =

∑4
r=1 br(t)− h(t) with

b1(t)= 1{t<U} (UV )β h

(
t

U

)
, b2(t)= 1{t<U} (U(1− V ))β h

(
t

U

)
b3(t)= 1{t≥U} ((1− U)V )β h

(
t− U
1− U

)
, b4(t)= 1{t≥U} ((1− U)(1− V ))β h

(
t

U

)
.

The operators A1, . . . , A4, A
(n)
1 , . . . , A

(n)
4 are linear for each n. Moreover, it is immediate to see

that they are bounded above by one which implies them to be continuous. Obviously, their norm
functions are real-valued random variables. In order to establish them to be random continuous
linear operators on (D[0, 1], dsk) it remains to check that they are continuous with respect to the
Skorokhod topology. To this end, it is sufficient to prove that

dsk(fn, f)→ 0⇒ dsk

(
1{t≤u}fn

(
t

u

)
,1{t≤u}f

(
t

u

))
→ 0
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5. Analysis of partial match queries

for any u ∈ [0, 1]. This follows easily since ‖fn(λn(t))− f(t)‖ → 0 with monotonically increas-
ing bijections λn on the unit interval such that ‖λn(t)−t‖ → 0 implies ‖(1{βn(t)≤u}fn(βn(t)/u)−
1{t≤u}f(t/u)‖ → 0 where βn(t) = u λn(t/u) for t ≤ u and βn(t) = t for t > u.
We are now ready to check that the conditions C1–C5 indeed hold.

C3 - Existence of a continuous solution. By Proposition 5.6 we have a continuous solution Z of
the fixed-point equation (5.5) with E

[
‖Z‖2

]
<∞ and E [Z(t)] = h(t) = (t(1− t))β/2. A proof

this the existence of such a process is given in Section 5.3. Hence the function Y (t) = Z(t)−h(t)

is a continuous solution of (5.8) with E [Y (t)] = 0 and E
[
‖Y ‖2

]
<∞.

C2 - Contraction. An easy computation shows that E
[
‖Ar‖2

]
= E

[
(UV )2β

]
= (2β + 1)−2.

Thus,

L =
4∑
r=1

E
[
‖Ar‖2

]
=

4

(2β + 1)2
< 1. (5.9)

In particular, Y is the unique solution of (5.8) with E [Y (t)] = 0 and E
[
‖Y ‖2

]
<∞.

C1 and C4 - Convergence of the coefficients. It suffices to focus on the terms

‖A(n)
1 −A1‖2 and ‖b(n)

1 − b1‖2,

the remaining terms can obviously be treated in the same way. Establishing the convergence only
boils down to verifying that a binomial random variable Bin(n, p) is properly approximated by np.
Using the Chernoff–Hoeffding inequality for the binomial distribution [Hoe63], one easily verifies
that for every α > 0,

E
[∣∣∣∣Bin(n, p)

n
− p
∣∣∣∣α] = O(n−α/2), (5.10)

uniformly in p ∈ [0, 1]. Thus, since |xβ − yβ| ≤ |x− y|β for any x, y ∈ [0, 1], we have

‖A(n)
1 −A1‖2 ≤

∥∥∥∥∥
(
I

(n)
r

n

)β
− (UV )β

∥∥∥∥∥
2

= O(n−1/2). (5.11)

By Proposition 5.7 we have µn(t) = K1h(t)nβ +O(nβ−ε) uniformly in t ∈ [0, 1]. Therefore

‖b(n)
1 − b1‖2 ≤

∥∥∥∥∥1{t<U}h
(
t

U

)((
I

(n)
r

n

)β
− (UV )β

)∥∥∥∥∥
2

+ C

∥∥∥∥∥(I
(n)
1 )β−ε

nβ

∥∥∥∥∥
2

,

for some constant C > 0. Since h is bounded, the first summand is O(n−1/2) just like in (5.11)
above. The second term is trivially bounded by Cn−ε. Overall, we have ‖b(n)

1 − b1‖2 = O(n−ε).
Hence, since the coefficients A(n)

r are bounded by one in the operator norm and by distributional
properties of I(n)

1 , . . . , I
(n)
4 , condition C1 is satisfied. Moreover, in C4, we may choose R(n) =

Cn−ε for a suitable constant C > 0 and ε > 0 as small as we want. By dominated convergence
we have

L∗ = lim sup
n→∞

E

[
4∑
r=1

‖A(n)
r ‖2

R(I
(n)
r )

R(n)

]
= 4E

[
(UV )2β(UV )−ε

]
=

4

(2β − ε+ 1)2
< 1,
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5.3. The limit process

for ε > 0 sufficiently small. This completes the verification of C4.

C5 and (3.12) - Rate of convergence. Note that Qn is piecewise constant: Qn(t) = Qn(s) for all
s, t if no x-coordinate of the first n points lies between s and t. There are n independent points, the
probability that there exists two lying within n−3 of each other is at most n−1. So C5 is satisfied
with rn = n−3 and Rn = o(log−2 n) = o(log−2(1/rn)) Therefore, the condition on the rate of
convergence is satisfied.

Conclusion: We have shown (Yn(s))s∈[0,1] → (Y (s))s∈[0,1] in distribution. By the very defi-
nition of Yn (5.7) and the relation Y (t) = Z(t) − h(t) this implies the functional limit law for
(Qn(s))s∈[0,1]. The remaining statements of Theorem 5.1 follow from Proposition 5.6 and the ob-
servation in [CJ11, Section 5] that the mean of any process satisfying (5.5) whose mean function
is integrable over [0, 1] has to be proportional to h(s). Theorem 5.2 also follows from Theorem
3.6 where the identification of the limit variance is worked out in Section 5.5. Mean convergence
of (‖Yn‖2)n≥1 follows from Corollary 3.7 by choosing rn = n−5. Proposition 2.39 implies ‖Y ‖
to have moments of arbitrary order and E [‖Yn‖κ] → E [‖Y ‖κ] for all κ > 0. As for the process
convergence, these results transfer to Qn and Z and prove Theorem 5.3. Theorem 5.4 follows
immediately.

5.3. The limit process

The aim of this section is to prove Proposition 5.6, i.e. the existence of a process Z on the unit
interval with continuous paths, that satisfies the distributional fixed point equation (5.5) whose
relevant moments match (asymptotically) with the corresponding ones of the rescaled version of
Cn(s).
As indicated in the introduction, we will find a representation of Z as an infinite series that con-
verges almost surely. The justification of the point-wise convergence is done by a martingale
argument. Showing that the convergence is almost surely uniform allows to deduce that Z has
continuous paths.
We identify the nodes of the infinite 4-ary tree with the set of finite words on the alphabet {1, 2, 3, 4},

T =
⋃
n≥0

{1, 2, 3, 4}n.

For a node u ∈ T , we write |u| for its depth, i.e.
the distance between u and the root ∅. The descendants of u ∈ T correspond to all the words in
T with prefix u; in particular, the children of u are u1, . . . , u4. Let {Uv, v ∈ T } and {Vv, v ∈ T }
be two independent families of i.i.d. [0, 1]-uniform random variables. By C0[0, 1] we denote the
set of continuous functions on the unit interval vanishing at the boundary, i.e. f(0) = f(1) = 0

for f ∈ C0[0, 1]. Define the continuous operator G : (0, 1)2 × C0[0, 1]4 → C0[0, 1] by

G(x, y, f1, f2, f3, f4)(s) =1{s<x}

[
(xy)βf1

( s
x

)
+ (x(1− y))βf2

( s
x

)]
(5.12)

+ 1{s≥x}

[
((1− x)y)βf3

(
s− x
1− x

)
+ ((1− x)(1− y))βf4

(
s− x
1− x

)]
.
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5. Analysis of partial match queries

For every node u ∈ T , let Zu0 = h where h(s) = (s(1 − s))β/2 as in (1.17). Then define
recursively

Zun+1 = G(Uu, Vu, Z
u1
n , Zu2

n , Zu3
n , Zu4

n ). (5.13)

Starting the iteration with the initial deterministic value h in all nodes at level n, let Zn = Z∅
n be

the value observed at the root of T . As it turns out, for every s ∈ [0, 1], the sequence (Zn(s))n≥0

is a non-negative discrete time martingale hence it converges to an integrable limiting random
variable almost surely.
It will be convenient to have an explicit representation for Zn. For s ∈ [0, 1], Zn(s) is the sum
of exactly 2n terms, each one being the contribution of one of the boxes at level n that is cut by
the line at s. Let {Qni (s), 1 ≤ i ≤ 2n} be the set of rectangles at level n whose first coordinate
intersect s. Suppose that the projection of Qni (s) on the first coordinate yields the interval [`ni , r

n
i ].

Then

Zn(s) =

2n∑
i=1

Leb(Qni (s))β · h
(
s− `ni
rni − `ni

)
, (5.14)

where Leb(Qni (s)) denotes the volume of the rectangle Qni (s). Here, we abbreviate h(s) = 0 for
s < 0 or s > 1. The difference between Zn and Zn+1 can easily be expressed in terms of then
changes in the boxes Qni (s): We have

Zn+1(s)− Zn(s) =
2n∑
i=1

Leb(Qni (s))β ·
[
G(U ′i , V

′
i , h, h, h, h)

(
s− `ni
rni − `ni

)
− h

(
s− `ni
rni − `ni

)]
,

(5.15)

where U ′i , V
′
i , 1 ≤ i ≤ 2n are i.i.d. [0, 1]-uniform random variables. In fact, U ′i and V ′i are some

of the variables Uu, Vu for nodes u at level n. Observe that, although Qni (s) is not a product
of n independent terms of the form UV because of size-biasing, but U ′i , V

′
i are in fact unbiased,

i.e. uniform. Let Fn denote the σ-algebra generated by {Uu, Vu : |u| < n}. Then the family
{U ′i , V ′i : 1 ≤ i ≤ 2n} is independent of Fn.
So, to prove that Zn(s) is a martingale, it suffices to prove that, for 1 ≤ i ≤ 2n,

E

[
G(U ′i , V

′
i , h, h, h, h)

(
s− `ni
rni − `ni

) ∣∣∣∣ Fn

]
= h

(
s− `ni
rni − `ni

)
.

Since U ′i , V
′
i , 1 ≤ i ≤ 2n are independent of Fn, this reduces to the following lemma.

Lemma 5.8. For the operator G defined in (5.12), two independent random variables U, V each
uniformly distributed on the unit interval, and any s ∈ [0, 1], we have

E [G(U, V, h, h, h, h)(s)] = h(s).

Proof. Since V and 1− V have the same distribution, we have

E [G(U, V, h, h, h, h)(s)] = 2E
[
1{s<U}(UV )βh

( s
U

)]
+ 2E

[
1{s≥U}((1− U)V )βh

(
1− s
1− U

)]
.

Similarly, since U and 1− U are both uniform, we clearly have

E [G(U, V, h, h, h, h)(s)] = f(s) + f(1− s),
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5.3. The limit process

where we wrote f(s) = 2E
[
1{s<U}(UV )βh(s/U)

]
. To complete the proof, it suffices to compute

f(s). We have

f(s) = 2E
[
1{s<U}(UV )βh

( s
U

)]
=

2

β + 1
E
[
1{s<U}U

β
( s
U

(
1− s

U

))β/2]
=

2

β + 1
E
[
1{s<U}s

β/2(U − s)β/2
]

=
2

β + 1
sβ/2

∫ 1

s
(x− s)β/2dx

=
4

(β + 1)(β + 2)
sβ/2(1− s)β/2+1

= (1− s)h(s),

where the last line follows since (β + 1)(β + 2) = 4 by definition of β. It then follows easily that

E [G(U, V, h, h, h, h)(s)] = (1− s)h(s) + sh(1− s) = h(s),

which completes the proof.

We could now use the martingale convergence theorem to define Z(s) as the limit of Zn(s) for s
fixed. However, since converges only holds almost surely and the unit interval is uncountable, it
is not clear that we would thus define a proper limit on a set of P measure 1. The next proposi-
tion which is our main result of the section is proved by means of concentration inequalities and
properties of random quadtrees. A simulation of the limit process is presented at the end of the
introduction in figure (1.3) on page 12.

Proposition 5.9. With probability one Zn converges uniformly to some continuous limit process
Z on [0, 1].

It is well-known that (Zn) has the Cauchy property in (C[0, 1], ‖ · ‖) almost surely if and only if
supm≥n ‖Zm − Zn‖ tends to zero in probability as n → ∞. The latter is immediate if we find
constants constants a, b ∈ (0, 1) and C > 0 such that

P

(
sup
s∈[0,1]

|Zn+1(s)− Zn(s)| ≥ an
)
≤ C · bn. (5.16)

Completeness of the state space implies the existence of a continuous process Z such that, almost
surely, Zn → Z uniformly [0, 1]. We now move on to showing that there exist constants a and b
such that (5.16) is satisfied. We start by a bound for a fixed value s ∈ [0, 1]. We will then handle
the supremum using a large enough number of fixed points in the unit interval and bounding the
variations in between. The following Lemma is a necessary tool for the remainder of this section.
Its proof relies on the standard Chernoff bound for the exponential distribution; for independent
random variables E1, . . . , En with exponential distribution of unit mean, we have

P

(
n∑
i=1

Ei ≥ tn

)
≤ e−n(t−log t−1) (5.17)

for t > 1. Analogously, for 0 < t < 1,

P

(
n∑
i=1

Ei ≤ tn

)
≤ e−n(t−log t−1) (5.18)
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5. Analysis of partial match queries

Lemma 5.10. Let Wn denote the maximum width of a cell at level n in the construction of the
process Zn. Then, for c < 1,

P (Wn ≥ cn) ≤ (4e log(1/c))n.

Proof. Let Ui, i ≥ 1 be a family of i.i.d.
[0, 1]-uniform random variables and Ei, i ≥ 1, be a family of i.i.d. exponential(1) random vari-
ables. Then, the union bound and the Chernoff bound (5.18) for the left tail yield

P (Wn ≥ cn) ≤ 4n ·P

(
n∏
i=1

Ui ≥ cn
)

= 4n ·P

(
n∑
i=1

Ei ≤ n log(1/c)

)
≤ 4n exp(−n(log(1/c)− 1− log log(1/c)))

≤ (4e log(1/c))n,

as desired.

Lemma 5.11. For every s ∈ [0, 1], any a ∈ (0, 1), and any integer n large enough, we have the
bound

P (|Zn+1(s)− Zn(s)| ≥ an) ≤ 4(16e log(1/a))n.

Proof. We use the representation (5.15). As we have already pointed out earlier in Lemma 5.8, for
every single rectangle Qni (s) at level n, we have

E

[
G(U ′i , V

′
i , h, h, h, h)

(
s− `ni
rni − `ni

)
− h

(
s− `ni
rni − `ni

) ∣∣∣∣ Fn

]
= 0.

Since h(x) ≤ 2−β for x ∈ (0, 1), conditional on Fn, Zn+1−Zn is a sum of 2n centered, bounded
and moreover independent terms (but not identically distributed). Moreover, conditional on Fn,
the term corresponding to Qni (s) in (5.15) is bounded by

Leb(Qni )β · ‖G(U ′i , V
′
i , h, h, h, h)− h‖ ≤ Leb(Qni )β2‖h‖

= Leb(Qni )β21−β. (5.19)

So when conditioning on Fn, one can bound the variations of Zn+1 − Zn using the Chernoff–
Hoeffding inequality [Hoe63]. We have

P (|Zn+1(s)− Zn(s)| > an) = E [P( |Zn+1(s)− Zn(s)| > an | Fn)]

≤ E

[
2 exp

(
− a2n∑2n

i=1 Leb(Qni (s))2β

)]

≤ 2 exp
(
−a−2n

)
+ 2P

(
2n∑
i=1

Leb(Qni (s))2β > a4n

)
, (5.20)

where the precise constant in the exponent in the second inequality can be taken to be one since
2/(21−β)2 > 1. Now, since 2β > 1 and all the volumes Leb(Qni (s)) are at most one, we have

P

(
2n∑
i=1

Leb(Qni (s))2β > a4n

)
≤ P

(
2n∑
i=1

Leb(Qni (s)) > a4n

)
≤ P

(
Wn > a4n

)
, (5.21)
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5.3. The limit process

where Wn denotes the maximum width of any of the 4n cells at level n. Indeed, the volume
covered by the union of all rectangles Qni (s), 1 ≤ i ≤ 2n is at most that of a vertical tube of width
Wn. Putting together (5.20) and (5.21) yields

P (|Zn+1(s)− Zn(s)| ≥ an) ≤ 2 exp(−a−2n) + 2P
(
Wn > a4n

)
≤ 2 exp(−a−2n) + 2(16e log(1/a))n

≤ 4(16e log(1/a))n,

for all n large enough using Lemma 5.10.

The previous lemma provides good control on pointwise variations of Zn+1−Zn and we move on
to the supremum on [0, 1] now. Let Vn be the set of x-coordinates of the vertical boundaries of all
the rectangles at level n and Ln = inf{|x − y| : x, y ∈ Vn}. Subsequently, we need a tail bound
for the quantity Ln. Its proof is concerned with the saturation level of a random quadtree. By
saturation level we denote the deepest level ` in the tree in which all 2` internal nodes are present.
The quantity is studied in [Dev87]; we use arguments resembling ideas from this work to deduce
a precise tail bound.

Lemma 5.12. Let Sk be the saturation level of a random quadtree of size k. Then, for every
positive integer x > 22, it exists an integer n0(x) with

P (Sxn < n) ≤ 4n+1x−n/100, n ≥ n0(x).

Proof. We consider the 4n possible nodes on level n. By symmetry each of them is occupied by
a key with the same probability. Looking at a specific one, e.g. the leftmost, it is obvious that
its subtree size is stochastically bounded by Bin(xn;U1V1 · · ·UnVn) − n where {Ui, i ≥ 1} and
{Vi, i ≥ 1} are independent families of i.i.d. [0, 1]-uniform random variables. Then by the union
bound applied to the 4n cells at level n, using Chernoff’s inequality, we have

P (Sxn < n) ≤ 4n ·P (Bin (xn;U1V1 · · ·UnVn) ≤ n)

≤ 4n · exp
(
−(1− n2−n)22n+1

)
+ 4nP

(
U1V1 · · ·UnVn ≤

(
2

x

)n)
. (5.22)

However, using once again the large deviations principle (5.17) for sums of i.i.d. exponential
random variables Ei, i ≥ 1,

P

(
U1V1 · · ·UnVn ≤

(
2

x

)n)
= P

(
2n∑
i=1

Ei ≥ n log(x/2)

)

≤ exp

(
−2n

(
log(x/2)

2
− 1− log

log(x/2)

2

))
≤ x−n/100, (5.23)

for all x > 22 since then e2

2 log2(x/2) ≤ x99/100. Combining (5.22) and (5.23), we obtain

P (Sxn < n) ≤ 4n exp
(
−2n−1

)
+ 4n · x−n/100 ≤ 4n+1x−n/100,

for x > 22 and n large enough.
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5. Analysis of partial match queries

Lemma 5.13. There exists 0 < γ0 < 1 such that any positive real number γ < γ0, there exists an
integer n1(γ) with

P (Ln < γn) ≤ 6n+1γn/201, n ≥ n1(γ).

Proof. The joint distribution of the x-coordinates of the vertical lines in the tree developed up to
level n is complex. In particular, it is not that of independent uniform points on [0, 1]. However,
we can use a simple coupling with a family of i.i.d. random points on [0, 1]2 that yields a good
enough lower bound on Ln.
Let ξi = (Ui, Vi), i ≥ 1 be i.i.d. uniform random points on [0, 1]2. Let Tk be the quadtree obtained
by inserting the random points ξi, 1 ≤ i ≤ k, in this order. We write Di for the depth at which
the point ξi is inserted where the root has depth zero. Let Kn be the first k for which the tree Tk
is complete up to level n, i.e. Tk has 4n cells at level n and Tk−1 has less on this level. Then,
by definition {ξi : i ≥ 1, Di < n} has the distribution of the set of points used to construct the
process Zn. Obviously, {ξi : i ≥ 1, Di < n} ⊆ {ξi : 1 ≤ i ≤ Kn} and for any integer x,

P (Ln < γn) ≤ P (∃i, j ≤ Kn : i 6= j, |Ui − Uj | < γn)

≤ P (∃i, j ≤ xn : i 6= j, |Ui − Uj | < γn) + P (Kn > xn)

≤ x2n · 2γn + P (Kn > xn) ,

by the union bound. The random variable Kn is related to the saturation level as introduced in the
previous Lemma. We obtain

P (Kn > xn) = P (Sxn < n) ≤ 4(4x−1/100)n,

as long as x > 22 and n ≥ n0(x), compare the conditions of the previous Lemma. It follows
readily that

P (Ln < γn) ≤ 2(x2γ)n + 4(4x−1/100)n

≤ 6n+1γn/201,

upon choosing x = d4100/201γ−100/201e [that is x2γ ≈ 4x−1/100] and γ < 4 · 22−2.01 =: γ0

which implies x > 22. This completes the proof.

We continue with the proof of (5.16). For technical reasons, suppose that 1/γ is an integer. Then,
we have

sup
s∈[0,1]

|Zn+1(s)− Zn(s)| ≤ sup
1≤i≤γ−(n+1)

sup
iγn+1≤s≤(i+1)γn+1

|Zn+1(s)− Zn(s)|

≤ sup
1≤i≤γ−(n+1)

|Zn+1(iγn+1)− Zn(iγn+1)|

+2 sup
m∈{n,n+1}

sup
|s−t|≤γn+1

|Zm(s)− Zm(t)|.

We first deal with the second term, and suppose that we are on the event that Ln+1 ≥ (4γ)n+1.
Observe that the sieve we used, γn+1, is much finer than the shortest length of a cell at level n+ 1

which is at least Ln+1. We use the representation in (5.14); for |t− s| ≤ γn+1, the two collections
{Qni (s), 1 ≤ i ≤ 2n} and {Qni (t), 1 ≤ i ≤ 2n} differ at most on one cell. We obtain, for any
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5.3. The limit process

|s− t| ≤ γn+1,

|Zn(s)− Zn(t)| ≤
2n∑
i=1

Leb(Qni (s))β ·
∣∣∣∣h( s− `ni

rni − `ni

)
− h

(
t− `ni
rni − `ni

)∣∣∣∣+ 2 max
i

Leb(Qni (s))β

≤
2n∑
i=1

Leb(Qni (s))β · 4−β(n+1) + 2 max
i

Leb(Qni (s))β

≤ 3W β
n .

Here, in second inequality follows from the fact that |h(t)− h(s)| ≤ |t− s|β for any s, t ∈ [0, 1]

and the fact that Ln ≥ (4γ)n+1. The same upper bounds holds for |Zn+1(s) − Zn+1(t)| on
‖s− t‖ ≤ γn+1. Thus, by the union bound, for any γ ∈ (0, 1),

P

(
sup
s∈[0,1]

|Zn+1(s)− Zn(s)| ≥ 2an

)
≤γ−n sup

s∈[0,1]
P (|Zn+1(s)− Zn(s)| ≥ an)

+ P
(
Ln+1 < (4γ)n+1

)
+ P

(
12W β

n > an
)
. (5.24)

We are now ready to complete the proof of Proposition 5.9. From (5.24) and Lemma 5.13,

P

(
sup
s∈[0,1]

|Zn+1(s)− Zn(s)| ≥ 2an

)
≤ 4(16eγ−1 log(1/a))n + 6 · 16nγn/201

+(4e log(121/n/a)/β)n,

for all γ < γ0/4 and n ≥ n0(γ, a). Now, first choose a < 1 sufficiently close to 1 such
that 16(e log(1/a))1/202 < 1/4 and then γ > 0 such that 1/γ is an integer and γ1/201 ≤
eγ−1 log(1/a). It follows that, for n sufficiently large,

P

(
sup
s∈[0,1]

|Zn+1(s)− Zn(s)| ≥ 2an

)
≤ 11 · 4−n.

Increasing a < 1 and C clearly ensures that (5.16) holds with b = 1/4 for all n ≥ 1.
The functions at the four children of the root, Z1

n, . . . , Z
4
n are distributed as Zn−1; they also con-

verge uniformly to continuous limits denotedZ(1), . . . , Z(4). The random functionsZ(1), . . . , Z(4)

are independent and distributed as Z. Equation (5.13) and independence imply

Z(s) =1{s<U}

[
(UV )βZ(1)

( s
U

)
+ (U(1− V ))βZ(2)

( s
U

)]
+ 1{s≥U}

[
((1− U)V )βZ(3)

(
s− U
1− U

)
+ ((1− U)(1− V ))βZ(4)

(
s− U
1− U

)]
,

almost surely, considered as random continuous paths. In particular, Z solves the distributional
fixed-point equation (5.5).
Finally, we look at the moments of ‖Zn‖ = sups∈[0,1] |Zn(s)| and ‖Z‖ = sups∈[0,1] |Z(s)|.

Proposition 5.14. For every p ≥ 1, we have E [‖Z‖p] <∞, and E [‖Zn − Z‖p]→ 0.

Proof. Let ∆n(x) = P (‖Zn+1 − Zn‖ ≥ x) and a < 1, C > 0 such that (5.16) is satisfied with
b = 1/4. Then, by (5.15) and the upper bound (5.19), we have

E [‖Zn+1 − Zn‖] =

∫ ∞
0

∆n(x)dx =

∫ an

0
∆n(x)dx+

∫ 2n+1

an
∆n(x)dx. (5.25)

77



5. Analysis of partial match queries

The first summand is at most an, the second one at most C · 2−(n−1) by (5.16). Altogether, there
exists R > 0 and 0 < q < 1 with

E [‖Zn+1 − Zn‖] ≤ Rqn

for all n. Furthermore, for any p ∈ N, our proof also provides (5.16) for a constant C > 0 and
b = 4−p by increasing the value of a. Therefore, replacing an and 2n+1 by anp resp. 2(n+1)p in
(5.25) shows that also the p-th moment of ‖Zn+1−Zn‖ is exponentially small in n for any p > 1.
Then, using Minkowski’s inequality

E [‖Zn‖p]1/p = E

∥∥∥∥∥∥
n∑
k≥0

(Zk − Zk−1) + h

∥∥∥∥∥∥
p1/p

≤ E

( n∑
k≥0

‖Zk − Zk−1‖+ ‖h‖

)p1/p

≤
n∑
k≥0

E [‖Zk − Zk−1‖p]1/p + E [‖h‖p]1/p ,

which is uniformly bounded in n. This implies finite moments of ‖Z‖ or arbitrary order. The Lp

convergence follows along similar lines.

Remark 5.15. It is worth mentioning that we can also consider Zn as a martingale sequence in
the space of continuous functions, that is E [Zn+1|Fn] = Zn almost surely. This immediately
follows from the fact that the relation E [Y ] (s) = E [Y (s)] for a continuous process Y extends
to conditional expectations, that is E [Y |F ] (s) = E [Y (s)|F ] for any sub-σ-algebra F . For
convergence results of martingale sequences in separable Banach spaces we refer to the book of
Neveu [Nev75]. It appears that results which provide uniform convergence given Lp boundedness
of the norm for some p > 1 extend only to reflexive Banach spaces or Hilbert spaces. Nevertheless,
we have the Doob representation Zn = E [Z|Fn]. We finally note that, in finding (and even more
classifying) fixed-points of the map T in 1.5 in the real-valued case, one main approach to construct
solutions as almost sure limits of martingales. These limits also provide series representations for
the fixed-points. For more detailed information we refer to [ABM12] and the references therein.

5.4. Uniform convergence of the mean

In this section we prove Proposition 5.7 to hold true. Note that, since Cn(s) is continuous at any
fixed s ∈ [0, 1] almost surely, the function s→ E [Cn(s)] is continuous for any n.
Following [CJ11], we first prove a poissonized version, the routine depoissonization arguments
yielding Proposition 5.7 are presented in Subsection 5.4.3. Consider a Poisson point process with
unit intensity on [0, 1]2 × [0,∞). The first two coordinates represent the location inside the unit
square, whereas the third one represents the time of arrival of the point. Let Pt(s) denote the
partial match cost for a query at x = s in the quadtree built from the points arrived by time t.

Proposition 5.16. There exists ε > 0 such that

sup
s∈[0,1]

|t−βE [Pt(s)]− µ̄(s)| = O(t−ε).
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5.4. Uniform convergence of the mean

The proof of Proposition 5.16 relies crucially on two main ingredients: First, a strengthening of
the arguments developed by Curien and Joseph [CJ11], and second, the asymptotic expansion of
E [Cn(ξ)] for a uniform query line ξ, see (1.14), by Chern and Hwang [CH03]. By symmetry, we
write for any δ ∈ (0, 1/2)

sup
s∈[0,1]

|t−βE [Pt(s)]− µ̄(s)| = sup
s∈[0,1/2]

∣∣t−βE [Pt(s)]− µ̄(s)
∣∣

≤ sup
s≤δ

∣∣t−βE [Pt(s)]− µ̄(s)
∣∣+ sup

s∈(δ,1/2]

∣∣t−βE [Pt(s)]− µ̄(s)
∣∣.

(5.26)

The two terms in the right hand side above are controlled by the following lemmas. Their proofs
are presented in the following two subsections.

Lemma 5.17. We have

sup
s≤δ

∣∣t−βE [Pt(s)]− µ̄(s)
∣∣ ≤ 2β sup

r≥t/2
r−βE [Pr(δ)] +K1δ

β/2.

Lemma 5.18. There exist constants C1, C2, η with 0 < η < β and γ ∈ (0, 1) such that, for any
integer k, and real number δ ∈ (0, 1/2) we have, for any real number t > 0,

sup
s∈[δ,1/2]

|t−βE [Pt(s)]− µ̄(s)| ≤ C1δ
−1(1− γ)k + C2k2k(β − η)−2kt−η.

Before proceeding with the proofs of the lemmas, we indicate how they imply Proposition 5.16.
By Lemmas 5.17 and 5.18, we have for any δ ∈ (0, 1/2) and natural number k ≥ 0

sup
s∈[0,1]

|t−βE [Pt(s)]− µ̄(s)| ≤ 3K1δ
β/2 + 3C1δ

−1(1− γ)k + 5C2kt
−η2k(β − η)−2k.

Choosing δ = t−ν and k = bα log tc for ν, α > 0 to be determined, we obtain

sup
s∈[0,1]

|t−βE [Pt(s)]− µ̄(s)| ≤ 3K1t
−νβ/2 + 3C1t

ν(1− γ)α log t−1

+5C2t
−η[2/(β − η)2]α log tα log t.

First pick α > 0 small enough that

α log

(
2

(β − η)2

)
< η.

This α being fixed, choose ν > 0 small enough that ν + α log(1− γ) < 0. The claim follows.

5.4.1. Behavior along the edge: proof of Lemma 5.17

The bound given by Lemma 5.18 blows up as δ approaches zero. However, as we have already
noted in the introduction, Cn(0) is asymptotically of smaller order than at any other fixed query
line 0 < s ≤ 1/2; the case s = 0 should therefore not cause any problems at all. This turns out
to be true and we will deal with the term involving the values of s ∈ [0, δ] by relating the value
E [Pt(s)] to E [Pt(δ)]. The term E [Pt(δ)] will then be shown to be small choosing δ sufficiently
small.
The limit first moment µ̄(s) = limt→∞ E [Pt(s)] is monotonic for s ∈ [0, 1/2]. It seems, at
least intuitively, that for any fixed real number t > 0, E [Pt(s)] should also be monotonic for
s ∈ [0, 1/2], but we were unable to prove it. The following weaker version will be sufficient for
our purpose.
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Proposition 5.19. For any s < 1/2 and ε ∈ [0, 1− 2s), we have

E [Pt(s)] ≤ E
[
Pt(1+ε)

(
s+ ε

1 + ε

)]
.

The idea underlying Proposition 5.19 requires to understand what happens to the quadtree by
considering a larger point set. For a finite point set P ⊂ [a, b]× [0, 1]× [0,∞), we let V (P) and
H(P) denote, respectively, the set of vertical and horizontal line segments of the quadtree built
from P .

Lemma 5.20. Let P = {p1, . . . , pn} be a set of points with pi = (xi, yi, ti) ∈ [a2, a3] × [0, 1] ×
[0,∞) ordered by their t coordinate, i.e. ti ≤ ti+1. Additionally we assume P to be in general
position, meaning that all x-coordinates are pairwise different and the same holds true for the y
and t coordinates. Furthermore let Q = {p′1, . . . , p′m} ⊆ [a1, a2] × [0, 1] × [0,∞) with p′i =

(x′i, y
′
i, t
′
i) again ordered according to their third coordinate such that P ∪Q ⊆ [a1, a3]× [0, 1]×

[0,∞) is again in general position. Then we have

H(P ∪Q) ⊃ H(P) and V (P ∪Q) ⊂ V (P).

Proof. We assume for a contradiction that the assertion is wrong and focus on the case that
H(P) 6⊂ H(P ∪ Q); the other case is handled analogously. Let i1 be the index of the “first”
point in P such that the horizontal line of pi1 is shorter (at least on the right or left side of the
point) in the quadtree built from P ∪ Q than it was in the one built from P . Here, first refers to
the time coordinate t. By construction, there must be an index i2 such that the vertical line of pi2
blocks the horizontal line of pi1 in P ∪Q but not in P . We again choose i2 such that ti2 is minimal
with this property, by construction ti2 < ti1 . Repeating the argument gives the existence of an
index i3 and a point pi3 whose horizontal line blocks the vertical line of pi2 in P ∪Q but not in P
with ti3 < ti2 . This obviously contradicts the choice of i1.

Proof of Proposition 5.19. Consider the unit square [0, 1]2 and the extended box [−ε, 1] × [0, 1],
and a single Poisson point process on [−ε, 1] × [0, 1] × [0, t] with unit intensity. Write P εt (s) for
the number of (horizontal) lines intersecting {x = s} in the quadtree formed by the all the points.
Similarly, let Pt(s) = P 0

t (s) be the corresponding quantity when the quadtree is formed using
only the points falling inside [0, 1]2. Then, for this coupling, we have by Lemma 5.20,

Pt(s) ≤ P εt (s)
d
= Pt(1+ε)

(
s+ ε

1 + ε

)
.

Taking expectations completes the proof.

Proof of Lemma 5.17. We use Proposition 5.19 to relate E [Pt(s)] to E [Pt′(δ)] for some t′. Choos-
ing ε = (δ − s)/(1 − δ) yields t′ = t(1 − s)/(1 − δ) ≤ t(1 − δ)−1. Thus, for any δ ∈ (0, 1/2)

and t > 0 we have

sup
s≤δ

∣∣t−βE [Pt(s)]− µ̄(s)
∣∣ ≤ sup

s≤δ
t−βE [Pt(s)] + µ̄(δ)

≤ sup
s≤δ

t−βE [Pt′(δ)] + µ̄(δ)

≤ t−βE
[
Pt/(1−δ)(δ)

]
+ µ̄(δ)

≤ (1− δ)−β sup
r≥t/2

r−βE [Pr(δ)] + µ̄(δ).

This completes the proof since δ ≤ 1
2 and µ̄(s) ≤ K1δ

β/2.
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5.4.2. Behavior away from the edge: proof of Lemma 5.18

The core of the work is to bound the second term in (5.26) involving s ∈ (δ, 1/2]. Our approach
relies on tightening the arguments developed in [CJ11]. We start by re-explaining their basic ideas.
Observe that most of the quantities defined in the remaining of the subsection will depend on s
which we will neglect in the notation for the sake of readability.
The first step is to unfold k levels of the fundamental recurrence (1.18) in the Poisson case. Let τ1

be the arrival time of the first point in the Poisson process and Q1 = Q1(s) be the lower of the two
rectangles that intersects the line {x = s} after inserting the first point. Inductively let τk = τk(s)

be the arrival time of the first point of the process in the region Qk−1 and Qk be the lower of the
two rectangles that hit the line {x = s} at time τk. For convenience, set Q0 = [0, 1]2. Finally,
let P̃t be an independent copy of the process Pt (set P̃t ≡ 0 for t < 0). At level one, using the
horizontal symmetry, we have

E [Pt(s)] = P (t ≥ τ1) + 2E
[
P̃Leb(Q1)(t−τ1)(ξ1)

]
,

where ξ1 = ξ1(s) ∈ [0, 1] denotes the location of the line {x = s} relative to the region Q1. If the
interval [`1, r1] denotes the projection of Q1 on the first axis, we have

ξ1(s) =
s− `1
r1 − `1

.

Write ξk = ξk(s) ∈ [0, 1] for the location of the line {x = s} relatively to the region Qk, and
Mk = Leb(Qk). Then, unfolding k levels, we obtain

E [Pt(s)] = gk(t) + 2kE
[
P̃Mk(t−τk)(ξk)

]
, (5.27)

where 0 ≤ gk(t) ≤ 2k− 1. Next, we introduce the inter-arrival times ζ ′k = τk− τk−1 with ζ ′0 := 0

Qk

s

Figure 5.3.: Unfolding k levels of the recursion. ζk(s) equals the quotient of the dashed red line
and the solid red line.

and their normalized versions ζk = ζ ′kMk−1 (again ζ0 := 0). Defining Fk = Mkτk, we can rewrite
(5.27) as

E [Pt(s)] = gk(t) + 2kE
[
P̃Mkt−Fk(ξk)

]
. (5.28)
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The sequence (ζk)k≥1 are i.i.d. exponential random variables with unit mean, also independent of
(ξk, Qk)k≥1. Note that, as we have already seen in Section 5.3, the region Qk, is not distributed
as a typical rectangle at level k; in particular Leb(Qk) is not distributed as X1Y1 · · ·XkYk, for
independent [0, 1]-uniform random variablesXi, Yi, i ≥ 1. Intuitively,Qk should be stochastically
larger than a typical cell, since it is conditioned to intersect the line {x = s}. This is verified by the
following lemma. We return to the effect of size-biasing and give more details on the distribution
of Mk in Subsection 5.4.4.

Lemma 5.21. For any s ∈ (0, 1), any integer k ≥ 0, and 1 ≤ i ≤ 2k, we have, stochastically,

Leb(Qk) = Mk ≥ X1Y1 · · ·XkYk,

where Xi, Yi, i ≥ 1 are independent random variables uniform on [0, 1].

Proof. Consider one split, at a point (X,Y ) uniform inside the unit square. The split creates four
new boxes, two of them being hit by s. Let L be the length of these two cells. Their height is
either Y or (1−Y ), which are both uniform. So it suffices to prove that L ≥ X stochastically. By
symmetry, it suffices to consider s ≤ 1/2. We have,

L = 1{s≤X}X + 1{s>X}(1−X).

Write FL(y) = P (L ≤ y) and FX(y) = P (X ≤ y) = y. It is then easy to see that

FL(y) = P (L ≤ y) =


0, y ≤ s
y − s, s ≤ y ≤ 1− s
2y − 1, y ≥ 1− s.

Hence, for all s ∈ (0, 1/2) and all y ∈ (0, 1) we have FL(y) ≤ y = FX(y). The result follows.

The second term will be treated using results for the case s = ξ, for a uniform random variable ξ
independent of everything else. For every k ≥ 1, the distribution of ξk depends on s thus we can
not use the result for a uniform query line directly. Curien and Joseph [CJ11] found a very clever
way to circumvent this problem. In their Proposition 4.1 they introduce a version of the homoge-
neous Markov chain (ξk,Mk)k≥1 whereMk := Mk/Mk−1 together with a random time T such
that for any k ∈ N, conditionally on {T ≤ k}, the random variable ξk is uniformly distributed
on [0, 1], independent of (M1, . . . ,Mk, T ). Choosing these random variables independent of the
process P̃t we will use them in the following without changing the notation (Fk can be constructed
using (M`)1≤`≤k and an additional set of i.i.d. exponential random variables with mean one).
The details of the definition of T are not important for us. The only crucial thing is that T has
exponential tails. Indeed, we have [CJ11, page 189]

E
[
1.15T

]
≤ C4(s ∧ (1− s))−1/2 ≤ C4δ

−1/2, (5.29)

for some constant C4 in the case of δ < s ≤ 1/2. Proceeding as in [CJ11] we do not establish
uniform convergence with a suitable rate directly but prove the sequence (t−βE [Pt(s)])t≥0 to be
Cauchy where we keep track of smaller order terms thoroughly. Using (5.28) and the triangle
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inequality, we obtain for any t and r such that r ≥ t,∣∣t−βE [Pt(s)]− r−βE [Pr(s)]
∣∣ (5.30)

≤ 2k
∣∣t−βE [P̃Mkt−Fk(ξk)

]
− r−βE

[
P̃Mkr−Fk(ξk)

] ∣∣+ 2k+1r−β

≤ 2k
∣∣t−βE [P̃Mkt−Fk(ξk)1{T≤k}

]
− r−βE

[
P̃Mkr−Fk(ξk)1{T≤k}

] ∣∣
+ 2k

∣∣t−βE [P̃Mkt−Fk(ξk)1{T>k}

]
− r−βE

[
P̃Mkr−Fk(ξk)1{T>k}

] ∣∣+ 2k+1r−β.

To complete the proof of Lemma 5.18, we formulate explicit bounds for the two main terms in
(5.30) where we distinguish the cases whether coupling has occurred by level k (i.e. T ≤ k) or
not.

i. No coupling by level k, T > k. In this case, we bound the terms roughly. We obtain

2k
∣∣∣t−βE [P̃Mkt−Fk(ξk)1{T>k}

]
− r−βE

[
P̃Mkr−Fk(ξk)1{T>k}

]∣∣∣
≤ 2k+1 sup

u≥t
u−βE

[
P̃Mku−Fk(ξk)1{T>k}

]
.

One then essentially uses the uniform bound sups supu u
−βE [Pu(s)] ≤ C5 (see (10) in [CJ11])

Hölder’s and Markov’s inequalities to make use of a bound that is based on the exponential tails
of T . For the details we refer to [CJ11, page 190]. For any u > 0 and s ∈ (δ, 1/2], one has

u−β2kE
[
P̃Mku−Fk(ξk)1{T>k}

]
≤ C52ks−1/p

(
2

(βp+ 1)(βp+ 2)

)(k−1)/p
(
E
[
1.15T

]
1.15k

)1−1/p

≤ C4C5δ
−1/2−1/(2p)

(
2

{
2

(βp+ 1)(βp+ 2)

}1/p

1.151/p−1

)k
,

by the upper bound in (5.29). Choosing p close enough to one that the term in the brackets above
is strictly less than one, we obtain for any s ∈ (δ, 1/2] and real numbers t, r > 0,

2k
∣∣t−βE [P̃Mkt−Fk(ξk)1{T>k}

]
− r−βE

[
P̃Mkr−Fk(ξk)1{T>k}

] ∣∣ ≤ 2C4C5δ
−1/2−1/(2p)(1− γ)k

≤ C1δ
−1(1− γ)k, (5.31)

where C1 denotes a constant and γ > 0.

ii. Coupling has occurred before level k, T ≤ k. In this case, more care has to be taken, we will
have to match the first order terms in the expansion (1.14). In what follows, we write x+ = x ∨ 0.
We start with

t−β2kE
[
P̃Mkt−Fk(ξk)1{T≤k}

]
= 2kE

[
1{T≤k}(Mk − t−1Fk)

β
+θ(Mkt− Fk)

]
,

where θ(x) = x−β+ E [Px(ξ)] with ξ a [0, 1]-uniform random variable independent of everything
else. The estimate in (1.14) is easily transferred to the poissonized version [the details are similar to
the depoissonization in the next subsection], and we have θ(x) = κ+O(x−η) for any 0 < η < β.

Therefore

2k
∣∣t−βE [P̃Mkt−Fk(ξk)1{T≤k}

]
− r−βE

[
P̃Mkr−Fk(ξk)1{T≤k}

] ∣∣
≤ 2k

∣∣E [1{T≤k}(Mk − t−1Fk)
β
+θ(Mkt− Fk)

]
− E

[
1{T≤k}(Mk − r−1Fk)

β
+θ(Mkr − Fk)

] ∣∣
≤ 2kE

[∣∣∣(Mk − t−1Fk)
β
+θ(Mkt− Fk)− (Mk − r−1Fk)

β
+θ(Mkr − Fk)

∣∣∣] . (5.32)
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Fix η < β. For x > 0, we have, as x→∞

(Mk − x−1Fk)
β
+ · θ(Mkx− Fk)

= Mβ
k (1−O(x−1FkM

−1
k ))(κ+O(M−ηk x−η))

= κMβ
k +O(FkM

β−1
k x−1) +O(Mβ−η

k x−η) +O(FkM
β−1−η
k x−1−η)

= κMβ
k +O(FkM

β−1
k x−1) +O(x−η) +O(FkM

β−1−η
k x−1−η),

since Mk ∈ (0, 1) and η < β, the O terms being deterministic and uniform in s ∈ [0, 1]. Going
back to (5.32), the terms κMβ

k coming from the two terms with t and r cancel out, and there exist
constants C7, C8 such that, for all t, r large enough such that moreover t ≤ r, we have

2k
∣∣t−βE [P̃Mkt−Fk(ξk)1{T≤k}

]
− r−βE

[
P̃Mkr−Fk(ξk)1{T≤k}

] ∣∣
≤ C72k

(
t−1E

[
FkM

β−1
k

]
+ t−η + t−1−ηE

[
FkM

β−1−η
k

])
≤ C82kt−ηE

[
FkM

β−1−η
k

]
.

Since it will be necessary to choose k tending to infinity with r to control the term in (5.31),
it remains to estimate E

[
FkM

β−1−η
k

]
. By definition of Fk = Mkτk, one immediately sees that

Fk ≤
∑k

`=1 ζ`, where the normalized inter-arrival times ζ` were defined right after equation (5.27).
This rough bound together with Lemma 5.21 implies

E
[
FkM

β−1−η
k

]
≤ kE

[
Mβ−1−η
k

]
≤ kE

[
Xβ−1−η

]2k
= k(β − η)−2k.

Here X denotes a uniform on [0, 1]. Note that an slightly improved upper bound for moments of
Mk is given in [CJ11, Section 4.2], the advance being inessential. We finally obtain

2k
∣∣t−βE [P̃Mkt−Fk(ξk)1{T≤k}

]
− r−βE

[
P̃Mkr−Fk(ξk)1{T≤k}

] ∣∣ ≤ C8kt
−η2k(β − η)−2k.

(5.33)

Putting (5.31) and (5.33) together with (5.30) yields, for any t, r > 0 such that t ≤ r∣∣t−βE [Pt(s)]− r−βE [Pr(s)]
∣∣ ≤ C1δ

−1(1− γ)k + C8k2k(β − η)−2kt−η + 2k+1t−β

≤ C1δ
−1(1− γ)k + C2k2k(β − η)−2kt−η.

for some constant C2. The statement in Lemma 5.18 follows readily from the triangle inequality.

5.4.3. Depoissonization

The depoissonization relies on standard arguments based on the concentration of Poisson random
variables and the monotonicity of E [Cn(s)] in n for each s ∈ (0, 1).
We first give a standard concentration bound for Poisson distribution that we will use.

Lemma 5.22. Let N be Poisson(t). Then, there exists δ0 > 0 such that for every δ ∈ (0, δ0) and
every t > 0

P(|N − t| ≥ tδ) ≤ 2e−tδ
2/3.
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Proof. The standard Chernoff bound for N is

P (N > t(1 + δ)) ≤ etδ−t(1+δ) log(1+δ), and P (N < t(1− δ)) ≤ e−tδ−t(1−δ) log(1−δ).

Using log(1 + x) = x − x2/2 + O(x3) for x → 0 shows that both tails are bounded by e−tδ
2/3

for sufficiently small δ. This gives the result.

Recall that we not only need to prove n−βE [Cn(s)] → µ̄(s), uniformly for s ∈ (0, 1), we also
want to conserve the polynomial error rate. We first focus on the upper bound. Write εn = n−1/3

and let N ∼ Poisson(n(1 + εn)) be independent of the process building up the discrete quadtree.

Then CN (s)
d
= Pn(1+εn)(s). By monotonicity, we have

E [Cn(s)] = E
[
Cn(s)1{N≥n}

]
+ E

[
Cn(s)1{N<n}

]
≤ E

[
CN (s)1{N≥n}

]
+ E

[
Cn(s)1{N<n}

]
≤ E [CN (s)] + E

[
Cn(s)1{N<n}

]
≤ E [CN (s)] + nP(N < n),

since Cn(s) ≤ n. For t = n(1 + εn) and δ = εn/2, we have t(1− δ) = n(1 + εn)(1− εn/2) =

n(1 + εn/2 + o(εn)) ≥ n, for all n large enough. It follows from Lemma 5.22, for all n large
enough,

E [Cn(s)] ≤ E [CN (s)] + ne−n(1+εn)ε2n/3

≤ E [CN (s)] + e−n
1/3/12.

Therefore, for any s ∈ [0, 1],

n−βE [Cn(s)]− µ̄(s) le n−βE [CN (s)]− µ̄(s) + n−βe−n
1/3/12

= (1 + εn)β[n(1 + εn)]−βE [CN (s)]− µ̄(s) + n−βe−n
1/3/12

≤ [n(1 + εn)]−βE [CN (s)]− µ̄(s)

+εn[n(1 + εn)]−βE [CN (s)] + n−βe−n
1/3/12. (5.34)

Similarly, we can obtain a lower bound using N ′ ∼ Poisson(n(1− εn)), again independent of the
discrete process. We obtain

E [Cn(s)] = E
[
Cn(s)1{N ′>n}

]
+ E

[
Cn(s)1{N ′≤n}

]
≥ E

[
CN ′(s)1{N ′≥n}

]
= E [CN ′(s)]− E

[
CN ′(s)1{N ′<n}

]
≥ E [CN ′(s)]− nP

(
N ′ < n

)
.

We again aim at using Lemma 5.22. Set t = n(1−εn) and δ = εn. Then t(1+δ) = n(1−ε2
n) ≤ n

so that

E [Cn(s)] ≥ E [CN ′(s)]− ne−n(1−εn)ε2n/3

≥ E [CN ′(s)]− e−n
1/3/12,
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for all n large enough. It follows that, for any s ∈ [0, 1],

n−βE [Cn(s)]− µ̄(s) ≥ (1− εn)[n(1− εn)]−βE [CN ′(s)]− µ̄(s)− n−βe−n1/3/12

≥ [n(1− εn)]−βE [CN ′(s)]− µ̄(s)− n−βe−n1/3/12. (5.35)

Finally, using CN (s)
d
= Pn(1+εn)(s), CN ′(s)

d
= Pn(1−εn)(s), putting (5.34) and (5.35) together,

and using Proposition 5.16, we obtain

sup
s∈[0,1]

∣∣n−βE [Cn(s)]− µ̄(s)
∣∣ = O(n−ε),

where ε is given in Proposition 5.16. Hence the proof of Proposition 5.7 is complete.

5.4.4. Extensions to the limit mean

The last subsection on the asymptotic behaviour of the mean of Cn(s) is dedicated to a better
understanding of Proposition 5.16 and its proof. A key ingredient is the concept of size-biasing as
already emphasized in Lemma 5.21. For simplicity, we fix s ∈ (0, 1) and do not face issues of uni-
formity. Summarizing the approach of Curien and Joseph [CJ11], they first show that t−βE [Pt(s)]

admits a finite limit µ̄(s) as t → ∞ by verifying the Cauchy property. To infer the shape of the
limit, they make use of a fixed-point characterization of µ̄(s), see [CJ11, page 191]. It is easy to
see that this equation is solved by any multiple of (s(1 − s))β/2. Finally, they are able to prove
that this fixed-point equation has at most one solution up to a normalization factor. In the last step,
using the results for the case of a uniform query line from [FGPR93], Curien and Joseph determine
the precise value of µ̄(s). Our result in this section extends their ideas to uniform convergence on
the unit interval. We attempt to give further insight for the occurrence of µ̄(s) here. Using Lemma
5.18 and the techniques of its proof, there exist constants C̄1, C̄2, C̄3 [which now may depend on
s] such that for any t > 0, k ∈ N

t−βE [Pt(s)] = f1(t) + κ2kE
[
Mβ
k

]
,

with
|f1(t)| ≤ C̄1t

−β2k + C̄2(1− γ)k + C̄3k2kt−η(β − η)−2k.

Hence the term which gives rise to the limit µ̄(s) is κ2kE
[
Mβ
k

]
; more precisely

|κ2kE
[
Mβ
k

]
− µ̄(s)| ≤ C̄3(1− γ)k and κ2kE

[
Mβ
k

]
→ µ̄(s),

as k → ∞. It is much easier to analyze the term Mk in the uniform case s = U . Then, using the
notation and the result of Proposition 1 in [CJ11], it holds Mk(U) = M1(U) · · ·Mk(U) where
(Mk(U))k≥1 are i.i.d. random variables with density 2(1 −m)1{m∈[0,1]}. This has already been
explained at the beginning of this chapter; the length of the interval covering U has size-biased
uniform distribution whereas the height is unbiased. Moreover, the product of two independent
random variables with uniform and size-biased uniform distribution on the unit interval has density
2(1−m)1{m∈[0,1]}. In particular, we have 2kE

[
Mβ
k (U)

]
= 1 according to the very definition of

β. Here we could also turn things around and use 2kE
[
Mβ
k (U)

]
= 1 as a heuristic for the precise

value of β.
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5.5. The marginals of the limit process

Let us return to the non-uniform case where s ∈ [0, 1] is fixed. Denoting Lk = Lk(s) the length
of the interval on the x-axis covering s after k iterations, we have Mk = Lk

∏k
i=1Xi where

X1, . . . , Xk are i.i.d. random variables with uniform distribution on [0, 1] and independent of Lk.
Therefore, the problem of analyzing the mean (or moments) of Mk is actually one-dimensional
and we could have focussed on the quantityLk instead ofMk throughout the proofs of the previous
subsections. However, we decided not to do so in order to apply the results from [CJ11] without
modifications.
The computation of the limit mean of Lk after rescaling can be worked out as in [CJ11, Section 5]
based on its distributional recurrence

(Lk(s))s∈[0,1]
d
=

(
1{s<X}XL

(1)
k−1

( s
X

)
+ 1{s≥X}(1−X)L

(2)
k−1

(
1− s
1−X

))
s∈[0,1]

,

where, L(1)
k−1, L

(2)
k−1 are independent copies of Lk−1, X is uniform on [0, 1] and independent of

(L
(1)
k−1, L

(2)
k−1). As a conclusion, we can say that the function (s(1− s))β/2 results from the differ-

ence between the size-biasing effects in Lk(s) and Lk(U), we have

lim
k→∞

E
[
Lβk(s)

]
E
[
Lβk(U)

] =
(s(1− s))β/2

B(β/2 + 1, β/2 + 1)
,

where one should keep in mind that E [Lk(U)] =
(

2
3

)k.

We finally face the scaling behaviour of Lk (or Mk) on the distributional level. Again, we start
with the case s = U where U is uniform and independent of the process. Being a product of
non-negative i.i.d. random variables with mean one yields(

3

2

)k
Lk(U)→ 0 (5.36)

almost surely as k → ∞. Choosing the right scaling of Lk(U) still leads to a degenerate limit
due to the lack of uniform integrability. To obtain a non-degenerate limit, on might instead con-
sider logLk(U). In distribution, − logLk(U) equals a sum of independent exponential random
variables with parameter 2. This implies

logLk(U)

k
→ −1

2

almost surely and
logLk(U) + k

2√
k/4

→ N(0, 1)

in distribution. The convergence in (5.36) carries over to the case of a fixed s ∈ (0, 1). By
independence of U and Lk, for almost every s ∈ (0, 1), we have

(
3
2

)k
Lk(s)→ 0 almost surely.

5.5. The marginals of the limit process

Our main result implies the convergence of the second moment of the discrete towards that of the
limit process. This section is devoted to identifying this limit, in particular it provides an explicit
expression for the limit variance. The following Proposition is a detailed version of Theorem 5.5
that also covers the additional statements on the variance in Theorem 5.2.
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5. Analysis of partial match queries

Proposition 5.23. Let Z(s) be the process constructed in Section 5.3 with mean h(s). Further-
more, let Z be the unique solution of the fixed-point equation

Z
d
= Uβ/2V βZ + Uβ/2(1− V )βZ ′,

with E [Z] = 1 and E
[
Z2
]
<∞, whereZ ′ is an independent copy ofZ and (Z,Z ′) is independent

of (U, V ). Then, for any s ∈ [0, 1],

Z(s)
d
= Z · (s(1− s))β/2. (5.37)

The sequence of moments cm = E [Zm] satisfies the recursion

cm =
βm+ 1

(m− 1)
(
m+ 1− 3

2βm
) m−1∑
`=1

(
m

`

)
B(β`+ 1, β(m− `) + 1)c`cm−`, (5.38)

for m ≥ 2 where c1 = 1. In particular,

Var (Z(s)) = K2h
2(s) =

[
2B (β + 1, β + 1)

2β + 1

3(1− β)
− 1

]
h2(s), (5.39)

and for ξ uniformly distributed on [0, 1], and independent of Z,

Var (Z(ξ)) = K3 :=
2(2β + 1)

3(1− β)
(B (β + 1, β + 1))2 −

(
B
(
β

2
+ 1,

β

2
+ 1

))2

. (5.40)

Remark 5.24. It’s worth noting that the random variable Z also appeared in [NR01] where the
false distributional limit law

Cn(ξ)

κnβ
→ Z

is stated. In fact, our result reveals that

Cn(ξ)

κnβ
→ Z

(ξ(1− ξ))β/2

B
(
β
2 + 1, β2 + 1

)
where ξ is uniform on the unit interval and independent of Z. Thus, compared to the former
incorrect result, the limit contains an additional independent multiplicative term h(ξ) scaled to
have unit mean.

Proof. The definition of the process Z(s) implies that the second moment µ2(s) = E
[
Z(s)2

]
satisfies an integral equation. We have

µ2(s) =E
[
Z(s)2

]
= 2E

[∫ 1

s
(xY )2βZ

( s
x

)2
dx

]
+ 2E

[∫ s

0
[(1− x)Y ]2βZ

(
1− s
1− x

)
dx

]
+ 2E

[∫ 1

s
x2β[Y (1− Y )]βZ(1)

( s
x

)
· Z(2)

( s
x

)
dx

]
+ 2E

[∫ s

0
(1− x)2β[Y (1− Y )]βZ(1)

(
1− s
1− x

)
Z(2)

(
1− x
1− x

)
dx

]
=2E

[
Y 2β

]{∫ 1

s
x2β · µ2

( s
x

)
dx+

∫ s

0
(1− x)2β · µ2

(
1− s
1− x

)
dx

}
+ 2E

[
[Y (1− Y )]β

]
·

{∫ 1

s
x2βh

( s
x

)2
dx+

∫ s

0
(1− x)2βh

(
1− s
1− x

)2

dx

}
.
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5.5. The marginals of the limit process

It now follows that µ2 satisfies the following integral equation

µ2(s) =
2

2β + 1

{∫ 1

s
x2βµ2

( s
x

)
dx+

∫ s

0
(1− x)2βµ2

(
1− s
1− x

)
dx

}
+2B (β + 1, β + 1) · h

2(s)

β + 1
.

One easily verifies that the function f given by f(s) = c2h
2(s) solves the above equation when

c2 satisfies

c2 =
2

(2β + 1)(β + 1)
c2 + 2

B (β + 1, β + 1)

β + 1
.

We obtain, after the simplification using β2 = 2− 3β,

c2 = 2B (β + 1, β + 1)
2β + 1

3(1− β)
. (5.41)

It now suffices to prove that the integral equation for µ2 admits a unique solution. To this end, we
show that the map K defined below is a contraction for the supremum norm:

Kf(s) =
2

2β + 1

{∫ 1

s
x2βf

( s
x

)
dx+

∫ s

0
(1− x)2βf

(
1− s
1− x

)
dx

}
+ 2B (β + 1, β + 1)

h2(s)

β + 1
. (5.42)

For any two functions f and g from C[0, 1], we have

‖Kf −Kg‖

≤ 2

2β + 1

(
sup
s∈[0,1]

{∫ 1

s
x2βdx

}
+ sup
s∈[0,1]

{∫ s

0
(1− x)2βdx

})
‖f − g‖

=
4

(2β + 1)2
‖f − g‖.

Since 2β + 1 > 2, the operator K is a contraction on C[0, 1] equipped with the supremum norm.
Banach fixed point theorem then ensures that the fixed point is unique, which shows that indeed

E
[
Z(s)2

]
= c2h

2(s).

Then, K2 = c2 − 1 and by integration

Var [Z(ξ)] = c2B (β + 1, β + 1)−
(

B
(
β

2
+ 1,

β

2
+ 1

))2

.

Analogously one shows that the m-th moment of Z(s) is of the form cmh
m(s) where cm solves

(5.38). The Lipschitz constant of the corresponding operator in (5.42) is 4/(βm + 1)2, hence
again smaller than one. This immediately implies that (cm)m≥1 are the moments of Z(s)/h(s),

independently of s.
It only remains to prove that there is only one distribution with these moments. We prove that
there exists A1 > 0 such that

cm ≤ Am1 mm, m ≥ 1, (5.43)
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5. Analysis of partial match queries

which completes the proof of the proposition by the Carleman condition [see, e.g. Fel71, page
228].
Suppose that (5.43) is satisfied for all m < m0. By Stirling’s formula, there exists a constant A2

such that for all m ≥ 1 and 1 ≤ ` < m(
m

`

)
B(β`+ 1, β(m− `) + 1) ≤ A2

m

(
``(m− `)m−`

mm

)β−1

.

Next, the prefactor in (5.38) is of order 1/m, hence bounded by A3/m for some A3 > 0 and all
m > 1. Using this, the induction hypothesis and xx(1 − x)1−x ≤ 1 for all x ∈ [0, 1], it follows
that

cm0 ≤
A2A3

m2
0

m0−1∑
`=1

(
``(m0 − `)m0−`

)β−1
m
m0(1−β)
0 c`cm0−`

≤ Am0
1 A2A3

m2
0

m0−1∑
`=1

mβm0
0 m

m0(1−β)
0

≤ Am0
1 mm0

0

if m0 is chosen large enough.

5.6. Partial match queries in random 2-d trees

The random 2-d tree was introduced by Bentley [Ben75] and is used to store two-dimensional data
just as the two-dimensional quadtree. It is also called two-dimensional binary search tree since it
is binary and mimics the construction rule of binary search tree for two-dimensional data. Our aim
in this section is to introduce 2-d trees, and extend to 2-d trees the results for partial match queries
in quadtrees we obtained in the previous sections. All the results such as process convergence,
convergence of all moments at one fixed or random point or at multiple points and distributional
and moment convergence of the supremum can be transferred. We will mainly state the forms of
the theorems for 2-d trees and focus on the points that deserve additional verifications.

5.6.1. Constructions and basic properties

Construction of 2-d trees. As in quadtrees, the data field is partitioned recursively, but the splits
are only binary; since the data is two-dimensional, one alternates between vertical and horizontal
splits, depending on the parity of the level in the tree. More precisely, consider a point sequence
p1, p2, . . . , pn ∈ [0, 1]2. Initially, the root is associated with the whole square [0, 1]2. The first
point p1 is stored at the root, and splits vertically the unit square in two rectangles, which are asso-
ciated with the two children of the root. More generally, when i points have already been inserted,
the tree has i internal nodes, and i + 1 (lower level) regions associated with the external nodes,
forming a partition of the unit square. When point pi+1 is stored in the node, say u, corresponding
to the region it falls in, it divides the region in two subrectangles that are associated to the two
children of u, which become external nodes. The last partition step depends on the parity of the
depth of u in the tree: If u has odd distance to the root we partition horizontally, otherwise verti-
cally. Equally likely, one could start at the root with a horizontal split. Then, splits are performed
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5.6. Partial match queries in random 2-d trees

Figure 5.4.: 2-d tree with n nodes and vertical split at the root.

horizontally on levels with even and vertically on levels with odd parity.

Unlike the case of quadtrees, K-d trees remain binary for higher dimensions d > 2. Then, during
the procedure of inserting a new item in the tree, one compares its s-th component with the corre-
sponding one in an internal node on level ` if ` = s+ kd where k ∈ N.

Partial match queries. From now on, we assume that the data consists of a set of independent
random points, uniformly distributed on the unit square. Unlike in the case of quadtrees, the
direction of a query line with respect to the direction of the root does matter. Let C=

n (t) and C⊥n (t)

denote the number of nodes visited by a partial match for a query at position t ∈ [0, 1] when
the directions of the split at the root and the query are parallel and perpendicular, respectively.
Subsequently, we will analyze both quantities synchronously as far as possible. We will always
consider directions with respect to the query line, and although some of the expressions (for the
sizes of the regions for instance) will be symmetric, we keep them distinct for the sake of clarity.
Without loss of generality we assume the query line to be vertical, and that the direction of the cut
at the root may change.
As in a quadtree, a node is visited by a partial match query if and only if it is inserted in a subregion
that intersects the query line. Unfortunately, these nodes are not easily identifiable after the inser-
tion of n points: the value of the quantity C=

n (s) is obtained by adding twice the number of lines
intersecting the query line at s to the number of boxes which are intersected by the query line and
about to be split perpendicular to the line in the next step [that is, the depth of the corresponding
external nodes in the tree has odd parity].

Recursive decompositions. Let (U, V ) be the first point which partitions the unit square. By
construction, since the directions of the partitioning lines alternate, both processes C=

n (t) and
C⊥n (t) are coupled. When the query line is perpendicular to the split direction, the recursive
search proceeds in both subregions whose sizes we denote by Nn and Dn, and we have

C⊥n (s)
d
= 1 + C

(=,1)
Nn

(s) + C
(=,2)
Sn

(s). (5.44)
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5. Analysis of partial match queries

When the query line and the first split at the root are parallel, only one of the subregions (of sizes
Ln and Rn) is relevant for the remainder of the retrieval algorithm and we have

C⊥n (s)
d
= 1 + 1{s<U}C

(=,1)
Ln

( s
U

)
+ 1{s≥U}C

(=,2)
Rn

(
s− U
1− U

)
. (5.45)

Here (C
(=,1)
n )n≥0, (C

(=,2)
n )n≥0 are independent copies of (C=

n )n≥0, independent of (Nn, Sn) in
(5.44) and (C

(⊥,1)
n )n≥0, (C(⊥,2))n≥0 are independent copies of (C⊥n )n≥0, independent of (Ln, Rn)

in (5.45). Moreover, here and in the following distributional recurrences and fixed-point equations
involving a parameter s ∈ [0, 1] are to be understood on the level of càdlàg or continuous functions
unless stated otherwise.
As in the case of partial match in random quadtrees, the expected value at a random uniform query
line ξ, independent of the tree, is of order nβ for the same constant β defined in (1.15), and we
have

E [C=
n (ξ)] ∼ κ=n

β, E
[
C⊥n (ξ)

]
∼ κ⊥nβ,

for some constants κ= > 0, κ⊥ > 0. This was first proved by Flajolet and Puech [FP86]. A more
detailed analysis by Chern and Hwang [CH06] shows that

E [C=
n (ξ)] = κ=n

β − 2 +O(nβ−1), κ= =
13(3− 5β)

4
· Γ(2β + 2))

Γ3(β + 1)
, (5.46)

E
[
C⊥n (ξ)

]
= κ⊥n

β − 3 +O(nβ−1), κ⊥ =
13(2β − 1)

2
· Γ(2β + 2))

Γ3(β + 1)
. (5.47)

Observe that κ= = 1
213(3 − 5β)κ and κ⊥ = 13(2β − 1)κ, where κ is the leading constant for

E [Cn(ξ)] in the case of quadtrees defined in (1.15). Note that both κ= and κ⊥ are larger than κ.

Two-step recursions and limit behaviour. For our purposes, and although yielding more complex
expressions, it is more convenient to expand the recursion one more level. Thus we obtain recursive
relations that only involve quantities of the same type, only (C=

n )n≥0 or only (C⊥n )n≥0. This
follows since in both cases each of the first two subregions at the root is eventually split, and this
gives rise two a partition into four regions at level two of the tree. Let (U`, V`) and (Ur, Vr) be
respectively the first points on each side (left and right) of the first cut, when it is parallel to the
query line. Let also (Uu, Vu) and (Ud, Vd) be the first points on each side of the cut (up and down)
when it is perpendicular to the query line. Note that U, V`, Vr are independent and uniform on
[0, 1], and so are V,Uu and Ud.
Let I(n)

=,1, . . . , I
(n)
=,4 and I(n)

⊥,1, . . . , I
(n)
⊥,4 denote the number of data points falling in these regions

when the root and the query line are parallel and perpendicular respectively. The distributions of
I

(n)
=,1, . . . , I

(n)
=,4 and I(n)

⊥,1, . . . , I
(n)
⊥,4 are slightly more involved than in the case of quadtrees. One has

e.g. given the values of U, V`, Vr

I
(n)
=,1

d
= Bin((Bin(n− 1;U)− 1)+, V`),

and given V,Ud, Uu
I

(n)
⊥,1

d
= Bin((Bin(n− 1;V )− 1)+, Ud),

where the inner and outer binomials are independent. Analogous expressions hold true for the
remaining quantities.
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Substituting (5.44) and (5.45) into each other gives

C=
n (s)

d
= 1 + 1{s<U}

[
1{Ln>0} + C

(=,1)

I
(n)
=,1

( s
U

)
+ C

(=,2)

I
(n)
=,2

( s
U

)]
+ 1{s≥U}

[
1{Rn>0} + C

(=,3)

I
(n)
=,3

(
s− U
1− U

)
+ C

(=,4)

I
(n)
=,4

(
s− U
1− U

)]
(5.48)

and

C⊥n (s)
d
= 1 + 1{Sn>0} + 1{Nn>0} + 1{s<Ud}C

(⊥,1)

I
(n)
⊥,1

(
s

Ud

)
+ 1{s<Uu}C

(⊥,2)

I
(n)
⊥,2

(
s

Uu

)
+ 1{s≥Ud}C

(⊥,3)

I
(n)
⊥,3

(
s− Ud
1− Ud

)
+ 1{s≥Uu}C

(⊥,4)

I
(n)
⊥,4

(
s− Uu
1− Uu

)
(5.49)

where (C
(=,i)
n )n≥0, i = 1, . . . , 4 are independent copies of (C=

n )n≥0, which are also indepen-
dent of the family (U, I

(n)
=,1, I

(n)
=,2, I

(n)
=,3, I

(n)
=,4) in (5.48), and (C

(⊥,i)
n )n≥0, i = 1, . . . , 4 are indepen-

dent copies of (C⊥n )n≥0, which are also independent of (Ud, Uu, I
(n)
⊥,1, I

(n)
⊥,2, I

(n)
⊥,3, I

(n)
⊥,4) in (5.49).

Asymptotically, any limit Z=(s) of n−βC=
n (s) should satisfy the following fixed-point equation

Z=(s)
d
=1{s<U}

[
(UV`)

βZ(=,1)
( s
U

)
+ (U(1− V`))βZ(=,2)

( s
U

)]
(5.50)

+ 1{s≥U}

[
((1− U)Vr)

βZ(=,3)

(
s− U
1− U

)
+ ((1− U)(1− Vr))βZ(=,4)

(
s− U
1− U

)]
,

where Z(=,i), i = 1, . . . , 4 are independent copies of Z=, independent of (U, V`, Vr). Note that,
even though (5.50) resembles very much the corresponding fixed-point equation for quadtrees, it
is different from (1.20). Likewise any limit of n−βC⊥n (s) should satisfy

Z⊥(s)
d
=1{s<Ud}(UdV )βZ(⊥,1)

(
s

Ud

)
+ 1{s<Uu}(Uu(1− V ))βZ(⊥,2)

(
s

Uu

)
+ 1{s≥Ud}((1− Ud)V )βZ(⊥,3)

(
s− Ud
1− Ud

)
+ 1{s≥Uu}((1− Uu)(1− V ))βZ(⊥,4)

(
s− Uu
1− Uu

)
, (5.51)

where Z(⊥,i), i = 1, . . . , 4 are independent copies of Z⊥, independent of (Ud, Uu, V ). Moreover,
according to (5.44) and (5.45), we expect a connection between these two limits. This will be
stated in the first result of the next section and always allows us to focus on C=

n (s) first. Results
for C⊥n (s) can then be deduced easily afterwards.

5.6.2. The conditions to use the contraction argument

Existence of continuous limit processes. The two main difficulties in proving the functional limit
theorem for partial match queries in quadtrees where the existence of a continuous limit process
and uniform convergence of the mean after rescaling. We address these issues in the present
subsection. The first results is the analogue of Proposition 5.6 for 2-d trees where we also include
the precise values for the limit variance.

Proposition 5.25. There exist two random continuous processes Z=, Z⊥ with E
[
‖Z=‖2

]
< ∞,

E
[
‖Z⊥‖2

]
< ∞ and E [Z=(ξ)] = E

[
Z⊥(ξ)

]
= B(β/2 + 1, β/2 + 1) such that Z= satisfies
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(5.50) and Z⊥ satisfies (5.51). The laws of Z= and Z⊥ are both unique under these constraints.
Moreover E [Z=(s)] = E

[
Z⊥(s)

]
= h(s) and the suprema of both processes have finite absolute

moments of all orders. Additionally,

• we have
2

β + 1
Z⊥(s)

d
= V βZ(=,1)(s) + (1− V )βZ(=,2)(s) (5.52)

and

β + 1

2
Z=(s)

d
= 1{s<U}U

βZ(⊥,1)
( s
U

)
+ 1{s≥U}(1− U)βZ(⊥,2)

(
s− U
1− U

)
, (5.53)

• for every fixed s ∈ [0, 1], Z=(s) is distributed like Z(s) where Z is the process constructed
in Section 5.3. In particular, Var [Z=(s)] is given in (5.39) and Var

[
Z⊥(s)

]
= K⊥2 h

2(s),
where

K⊥2 =

(
2c2

2β + 1

(
β + 1

2

)2

+ 2B (β + 1, β + 1)

(
β + 1

2

)2

− 1

)
, (5.54)

and c2 is defined in (5.41),

• if ξ is uniform on [0, 1] and independent of Z=, Z⊥, then Var [Z=(ξ)] is given by (5.40)
and

Var
[
Z⊥(ξ)

]
= K⊥3 =

(
2c2

2β + 1
+ 2B (β + 1, β + 1)

)(
β + 1

2

)2

B(β + 1, β + 1)

−
(

B
(
β

2
+ 1,

β

2
+ 1

))2

. (5.55)

Proof. The fixed-point equation (5.50) is very similar to that in (5.5), and we use the approach
that has proved fruitful in Section 5.3. Define the continuous operator G= : [0, 1]3 × C0[0, 1]4 →
C0[0, 1] by

G=(x, y, z, f1, f2, f3, f4)(s) = 1{s<x}

[
(xy)βf1

( s
x

)
+ (x(1− y))βf2

( s
x

)]
+1{s≥x}

[
((1− x)z)βf3

(
s− x
1− x

)]
+1{s≥x}

[
((1− x)(1− z))βf4

(
s− x
1− x

)]
.

Then let (as in Section 5.3)

Z=,u
n+1 = G=(Uu, Vu,Wu, Z

=,u1
n , Z=,u2

n , Z=,u3
n , Z=,u4

n ), Z=,u
0 = h(s),

for all u ∈ T , where {Uv, v ∈ T }, {Vv, v ∈ T } and {Wv, v ∈ T } are three independent fam-
ilies of i.i.d. [0, 1]-uniform random variables. Lemma 5.11 remains true for Z=

n := Z=,∅
n since

W=
n equals Wn in distribution where Wn appears in (5.21). Since also L=

n and Ln (appearing
in Lemma 5.13) coincide in distribution, (5.16) holds true for Z=

n and therefore Proposition 5.9
remains valid. The existence of all moments of ‖Z=‖ follows in the same way. Finally, note that
Z=
n (s) is distributed as Zn(s) for all fixed n, s, hence the one-dimensional distributions of Z=
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and Z coincide. It is now easy to see that Z⊥ defined by (5.52) solves (5.51). The uniqueness of
Z=(s) (resp. Z⊥(s)) follows by contraction with respect to the ζ2 metric when fixing the mean to
be h(s). The improvement of the uniqueness statement is obtained as in the quadtree case based
on the arguments in [CJ11, Section 5]. Finally, the variance of Z⊥(s) can be computed as in
Section 5.5 but it is much easier to use (5.52), we omit the calculations.

Uniform convergence of the mean. Comparing construction and recurrence for partial match
queries in 2-d trees and quadtrees it seems very likely that this quantities are not only of the same
asymptotic order in the case of a uniform query but also closely related for fixed s ∈ [0, 1] and
n ∈ N. This can be formalized by the following Lemma.

Lemma 5.26. For any s ∈ [0, 1] and n ∈ N we have

1

5
E [Cn(s)] ≤ E [C=

n (s)] ≤ 2E [Cn(s)] .

Proof. We prove both bounds by induction on n using the recursive decompositions (1.18), (5.48).
Both inequalities are obviously true for n = 0, 1. Assume that the assertions were true for all
m ≤ n− 1 and s ∈ [0, 1]. We start with the upper bound which is easier. By (5.48), we have

E [C=
n (s)] ≤ 2 + E

[
1{s<U}

[
C

(=,1)

I
(n)
=,1

( s
U

)
+ C

(=,2)

I
(n)
=,2

( s
U

)]]
+ E

[
1{s≥U}

[
C

(=,3)

I
(n)
=,3

(
s− U
1− U

)
+ C

(=,4)

I
(n)
=,4

(
s− U
1− U

)]]
.

Hence, it suffices to show that

E
[
1{s<U}C

(=,1)

I
(n)
=,1

( s
U

)]
≤ 2E

[
1{s<U}C

(1)

I
(n)
1

( s
U

)]
.

This can be done in two steps. First, by conditioning on I(n)
=,1 andU , using the induction hypothesis,

we have

E
[
1{s<U}C

(=,1)

I
(n)
=,1

( s
U

)]
≤ 2E

[
1{s<U}C

(1)

I
(n)
=,1

( s
U

)]
.

Finally, conditioning on U , I(n)
=,1 is stochastically smaller than I(n)

1 which gives

E
[
1{s<U}C

(1)

I
(n)
=,1

( s
U

)]
≤ 2E

[
1{s<U}C

(1)

I
(n)
1

( s
U

)]
.

by monotonicity of n→ E [Cn(s)]. For the lower bound, note that

E [C=
n (s)] ≥ 1 + E

[
1{s<U}

[
C

(=,1)

I
(n)
=,1

( s
U

)
+ C

(=,2)

I
(n)
=,2

( s
U

)]]
+ E

[
1{s≥U}

[
C

(=,3)

I
(n)
=,3

(
s− U
1− U

)
+ C

(=,4)

I
(n)
=,4

(
s− U
1− U

)]]
.

Therefore, it is enough to prove

E
[
1{s<U}C

(=,1)

I
(n)
=,1

( s
U

)]
≥ 1

5

(
E
[
1{s<U}C

(1)

I
(n)
1

( s
U

)]
− 1

)
.
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This can be done as for the upper bound. First, by the induction hypothesis, we have

E
[
1{s<U}C

(=,1)

I
(n)
=,1

( s
U

)]
≥ 1

5
E
[
1{s<U}C

(1)

I
(n)
=,1

( s
U

)]
.

The result follows as for the upper bound by the fact that I(n)
=,1 is stochastically larger than (I

(n)
1 −

1)+ and C(1)

(I
(n)
1 −1)+

≥ C(1)

I
(n)
1

− 1.

Recalling (5.46) and (5.47), it is natural to introduce the constants

K=
1 =

κ=

B
(β

2 + 1, β2 + 1
) , K⊥1 =

κ⊥

B
(β

2 + 1, β2 + 1
) with K⊥1 =

2

β + 1
K=

1 , (5.56)

and the functions µ̄⊥(s) = K⊥1 h(s), and µ̄=(s) = K=
1 h(s).

Proposition 5.27. There exists ε= > 0 such that

sup
s∈[0,1]

|n−βE [C=
n (s)]− µ̄=(s)| = O(n−ε=),

and the analogous result holds true for E
[
C⊥n (s)

]
.

We proceed as in Section 5.4 by considering the continuous-time process P=
t (s). Again the proof

runs along very similar lines as in the quadtree case. Thus we only give a brief sketch that focuses
on the few locations where the arguments need to be modified.

Sketch of proof. The first step is to prove pointwise convergence which is done as in [CJ11]. By
Lemma 5.26, using a Poisson(t) number of points, we have

1

5
E [Pt(s)] ≤ E [P=

t (s)] ≤ 2E [Pt(s)] . (5.57)

Let τ=
1 be the arrival time of the first point which gives rise to a horizontal partitioning line that

intersects the query line {x = s}, and let Q=
1 = Q=

1 (s) be the lower of the two rectangles created
by this cut. Let ξ=

1 := ξ=
1 (s) be the relative position of the query line s within the rectangle Q=

1

and M=
1 = Leb(Q=

1 ). Denoting τ the arrival time of the first point in the process, we have

E [P=
t (s)] = P (t ≥ τ) + P (t ≥ τ=

1 ) + 2E
[
P̃=
M=

1 (t−τ=1 )(ξ
=
1 )
]
,

where (P̃=(t))t≥0 denotes an independent copy of (P=(t))t≥0 and P̃=(t) = 0 for t < 0. Sim-
ilarly, let τ=

k be the arrival time of the first point which cuts Q=
k−1 perpendicularly to the query

line. Let Q=
k be the lower of the two rectangles created by this cut, and let ξ=

k be the position of
the query line s relative to the rectangle Q=

k . With this notation and M=
k = Leb(Q=

k ), we have

E [P=
t (s)] = g=

k (t) + 2kE
[
P̃=
M=
k (t−τ=k )(ξ

=
k )
]
,

where 0 ≤ g=
k (t) ≤ 2k+1.

We need to modify the inter-arrival times ζ ′=k = τ=
k − τ=

k−1. We can split ζ ′=k in the time it takes
for the first vertical point to fall in Q=

k−1 which we denote by ζ ′=,1k and the remaining time ζ ′=,2k .
The normalized versions of the inter-arrival times with unit mean are

ζ=,1
k = ζ ′

=,1
k ·M=

k−1,

ζ=,2
k =

(
ξ=
k

ξ=
k−1

1{ξ=k <ξ
=
k−1} +

ξ=
k−1

ξ=
k

1{ξ=k ≥ξ
=
k−1}

)
ζ ′

=,2
k ·M=

k−1 ≥ ζ ′
=,2
k ·M=

k−1.
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Write M=
k = M=

k /M
=
k−1. Observe that, given M=

0 , . . . ,M=
k , the random variable F=

k =

M=
k · τ=

k is not independent of (ξ=
` )0≤`≤k, a property which is used in [CJ11] and in the proof

of Lemma 5.18 in this thesis. However we can use the trivial lower bound 0 ≤ Fk and the upper
bound obtained by bounding ζ ′=,2k from above by ζ=,2

k /M=
k−1. Then, using almost sure mono-

tonicity of Pt(s) (in t) and (5.57) to transform bounds for the mean in the quadtree to bounds
in the 2-d tree (and vice versa), it is easy to see that the techniques of Section 4 in [CJ11] work
equally well in this case. The limit µ̄=(s) is identified as in Section 5 of [CJ11] since both limits
µ̄ and µ̄= satisfy the same fixed-point equation.
The generalization to uniform convergence with polynomial rate can be worked out as in Sec-
tion 5.4 using the modifications we have described above, e.g. the behaviour along the edge is
controlled by Lemma 5.17 and 5.26. The constants appearing in the course of Section 5.4 need to
be modified, but ε= may be chosen to equal the value of ε in Proposition 5.16. The depoissoniza-
tion of Subsection 5.4.3 goes through without any modification.
Finally, we indicate how to proceed with E

[
C⊥n (s)

]
. The arguments above can be used to treat

uniform convergence of n−βE
[
C⊥n (s)

]
on [0, 1]; we present a direct approach relying on (5.44).

We have

n−βE
[
C⊥n (s)

]
= n−β + 2n−βE

[
C=
Sn(s)

]
= n−β + 2

∫ 1

0

n−1∑
k=0

(
µ̄=(s) +O(k−ε=)

) kβ
nβ

P (Bin(n− 1, v) = k) dv

= n−β + 2µ̄=(s) ·
E
[
Bin(n− 1, V )β

]
nβ

+O(n−βE
[
Bin(n− 1, V )β−ε=

]
)

= µ̄⊥(s) +O(n−ε=),

uniformly in s ∈ [0, 1] using Minkowski’s inequality, the concentration result for the binomial
distribution in (5.10), (5.56) for the first term and Jensen’s inequality for the second.

5.6.3. Statement of the result

We are finally ready to state the version of our main result for 2-d trees. It is proved along the
same lines we used for the case of quadtrees, and we omit the details.

Theorem 5.28. Let Z= and Z⊥ be the processes in Proposition 5.25. Then(
C=
n (s)

K=
1 n

β

)
s∈[0,1]

→ (Z=(s))s∈[0,1] ,

(
C⊥n (s)

K⊥1 n
β

)
s∈[0,1]

→
(
Z⊥(s)

)
s∈[0,1]

,

in distribution in (D[0, 1], dsk). Here K=
1 and K⊥1 are defined in (5.56). Moreover

n−βE [C=
n (s)]→ K=

1 [s(1− s)]β/2, n−2βVar [C=
n (s)]→ (K=

1 )2K2[s(1− s)]β,

and

n−βE
[
C⊥n (s)

]
→ K⊥1 [s(1− s)]β/2, n−2βVar

[
C⊥n (s)

]
→ (K⊥1 )2K⊥2 [s(1− s)]β,

where K2 is in (5.39) and K⊥2 in (5.54). If ξ is uniformly distributed on [0, 1], independent of
(C=

n )n≥0, (C
⊥
n )n≥0 and Z=, Z⊥, then

C=
n (ξ)

K=
1 n

β

d−→ Z=(ξ),
C⊥n (ξ)

K⊥1 n
β

d−→ Z⊥(ξ),
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with convergence of the first two moments in both cases. In particular

Var [C=
n (ξ)] ∼ K=

4 n
2β, Var

[
C⊥n (ξ)

]
∼ K⊥4 n2β,

where
K=

4 = (K=
1 )2K3 ≈ 0.69848, K⊥4 = (K⊥1 )2KV

3 ≈ 0.77754,

with K3 in (5.40) and K⊥3 in (5.55).

For simulations of both versions of 2-d trees with corresponding C=
n and C⊥n see figure 5.5 and

5.6 on pages 103 resp. 104.

Note that since Z=(s) equals Z(s) in distribution for fixed s ∈ [0, 1], thus we can characterize
Z=(s) as in (5.37). (5.52) together with Proposition 5.25 implies that for fixed s ∈ [0, 1]

Z⊥(s)
d
= Z⊥ · (s(1− s))β/2,

with
Z⊥ =

β + 1

2

(
V βZ + (1− V )βZ ′

)
,

where Z ′ is an independent copy of Z, Z being defined in Proposition 5.23, and V is uniform on
[0, 1] and independent of (Z,Z ′). In particular, we have

E
[
(Z⊥)m

]
=

(
β + 1

2

)m m∑
`=0

(
m

`

)
B(β`+ 1, β(m− `) + 1)c`cm−`,

for m ≥ 2 where cm = E [Zm] satisfies recursion (5.38) and c0 = c1 = 1.
As in the quadtree case, it is possible to give convergence of mixed moments of arbitrary order,
compare Theorem 5.4. Distributional and moment convergence of the suprema of the processes
after rescaling follows similarly.

5.7. Open problems

We have given a functional limit law for the cost of the partial match retrieval problem in random
quadtrees and 2-d trees. Moreover, we obtained a description of the limiting distribution for fixed
s in terms of a single distribution whose moments can be computed recursively. Solving several
open problems, our results naturally give rise to further studies:

Covariances. Our results imply n−2βCov[Cn(t), Cn(s)] → Cov[Z(t), Z(s)]. Hence, the covari-
ance function of the process Z is of interest. We do not provide any information on this quantity
in the thesis.

Path properties. We know the paths of Z to be continuous. By construction, the paths of the
sequence Zn in Section 5.3, whose uniform limit is Z, are locally β′-Hölder continuous for any
β′ < β/2 and the same holds for the mean of Z. Hence, also in the context of a related result
obtained in [CLG11] that will be discussed in the next section, we conjecture that the sample paths
of Z are almost surely locally β′-Hölder continuous for any β′ < β/2.
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5.8. Random recursive triangulations

The supremum. Consider the limiting random variable S of the supremum in Theorem 5.3. Triv-
ially, S is non-negative and our techniques imply S to have moments of all orders. However, we
do not provide further information about S except for the distributional inequality (5.6) and the
trivial lower bound E [Sm] ≥ cm2−βm where cm is given in (5.38). In particular, E [S] is unknown
to us and we believe that this problem is hard. To this end, a comparison to the analogous question
for the FIND process, introduced by Grübel and Rösler [GR96], seems appropriate [see [Dev84]
and [Dev01] for further results on the worst-case of FIND].

Finally, one is immediately led to ask for similar results in higher dimensions. The results on mean
convergence for a uniform query line in [FGPR93], [CH03] in the case of quadtrees and [FP86]
and [CH06] for K-d trees for higher dimensions appear to be sufficiently strong for this purpose.
We believe that our method can be applied essentially in the same manner to the case where, in
trees of dimension d, d − 1 components are left open and only one component is fixed. Fixing
more, say s, parameters leads to considering functions from the unit cube [0, 1]s to R; thus, a
generalization of the contraction method to more intricate function spaces is necessary.

5.8. Random recursive triangulations

Curien and Le Gall [CLG11] consider a stochastic process in which chords (straight connections)
are inserted between points on the unit circle with circumference 2π. In each step, two points on
the circle are chosen uniformly at random and become connected by a chord if it does not intersect
any other existing one. In the case of a crossing with a present chord we reject the points and do not
insert anything. LetNn be the number of inserted chords at time n, i.e. after n drawings of uniform
point pairs where N0 = 0. By Ln we denote the union of all inserted chords by time n consid-
ered as a subset of the unit disk in the complex plane. The authors introduce L∞ =

⋃
n≥1 Ln as

an infinite geodesic lamination and investigate its Hausdorff dimension, various other geometric
properties and approximations by discrete triangulations of polygons. More interestingly in our
context, they also consider the random variableHn(x, y) which counts the number of intersections
of chords in Ln with the chord from x to y for fixed x, y on the sphere. Without loss of gener-
ality one may fix one point to be one and consider Hn(1, s) as a process where s ranges over all
points on the unit sphere. This immediately connects the problem with the partial match retrieval
algorithm in quadtrees. For the sake of convenience, we state the main result from [CLG11] on
Hn(1, x), Theorem 1, together with parts of Proposition 4.1. Subsequently, for the sake of com-
paring with the partial match problem, it is appropriate to identify the unit sphere with the unit
interval by x → e2iπx, x ∈ [0, 1]. We then let Hn(x) := Hn(0, x) where Hn(x) is extended to a
càdlàg function in those finitely many points where the quantity is not well-defined.

Theorem 5.29 (Theorem 1[CLG11]). • Almost surely,

n−1/2Nn →
√
π (5.58)

as n→∞.

• There exists a random process (M(s), s ∈ [0, 1]) which is (locally) β′-Hölder continuous
for every β′ < β such that for every s ∈ [0, 1],

n−β/2Hn(s)→M(s), (5.59)
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in probability. Moreover, E [M(s)] = CL(s(1− s))β for some CL > 0.

Proving only pointwise convergence, process convergence is conjectured in Section 4 of [CLG11].
The proof of their main result is based on fragmentation processes [for the convergence] and
suitable upper bounds on the moments [for the Hölder continuity via the Kolmogorov-Chentsov
theorem]. It is worthwhile noting that, since Nn is order

√
n, Hn(x) is of order Nβ

n which re-
sembles the behaviour in quadtrees [there, n points give rise to n horizontal and n vertical lines,
rejection does not take place; thusNn is to be identified with n]. Before discussing a strengthening
of (5.59) we mention a simple observation concerning the sequence (Nn) that allows a refinement
of (5.58) based on the work of Bai et al. [BHLT01].

Let U be the length of the arc connecting the first inserted point pair in an arbitrary direction. Then
(Nn)n≥0 satisfies the following recursion

Nn
d
= N

(1)

I
(n)
1

+N
(2)

I
(n)
2

+ 1, n ≥ 1,

where the random sequences (N
(1)
n )n≥0, (N

(2)
n )n≥0 are independent copies of (Nn)n≥0, and inde-

pendent of (I
(n)
1 , I

(n)
2 , I

(n)
3 ). Additionally, given U ,(

I
(n)
1 , I

(n)
2 , I

(n)
3

)
d
= Multi(n− 1;U2, (1− U)2, 2U(1− U)).

Note that Nn satisfies the same recursive decomposition as the number of maxima in the unit
triangle [that is the triangle with corners (0, 0), (0, 1) and (1, 0)]; thus both distributions are equal
for all n. In [BHLT01], the authors give exact formulas for the mean and the second moment
together with first order asymptotics of all higher moments which imply asymptotic normality of
Nn after rescaling. We quote their Theorem 3 here for the sake of completeness.

Theorem 5.30. Mean and Variance of Nn satisfy

E [Nn] =

√
πn!

Γ(n+ 1/2)
− 1 =

√
πn− 1 +O(n−1/2),

Var (Nn) = σ2√n− π

4
+O(n−1/2),

with σ2 =
√

(2 log 2− 1)
√
π. Nn satisfies asymptotic normality, i.e.

Nn −
√
πn

σn1/4

d−→ N(0, 1),

where the limit holds with convergence of all moments.

Remark 5.31. Using the asymptotics for mean and variance it is possible to give a considerably
shorter proof of the central limit theorem by the contraction method based on the ζ3 metric; the
details have been worked out in [NR04b].

It seems obvious from the recursive construction of the insertion process that Hn(s) satisfies an
additive recurrence. To this end, let 0 ≤ U1 ≤ U2 ≤ 1 be the values of the feet of the first
inserted chord, where we use the notation in [CLG11] and denote the points on the unit disk which
are connected by a chord by its feet. Let S+ be the arc connecting U1, U2 clockwise and S− be
the arc connecting them counterclockwise. Observe that (U1, U2) has density 21{0≤u1≤u2≤1} and
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1 − (U2 − U1), the length of S+ has size-biased uniform distribution which is the distribution of
U1/2 for a uniform U . Furthermore, let I+

n be the number of attempted insertions of chords in S+

and I−n the corresponding quantity in S−. By Fn we denote the number of unsuccessful insertions
of chords due to one foot falling in S+ and the other one in S−. Then, given (U1, U2),

(I+
n , I

−
n , Fn)

d
= Multi(n− 1;U, (1−

√
U)2, 2

√
U(1−

√
U)),

where U := (1 − (U2 − U1))2 is uniformly distributed on [0, 1]. The construction provides the
following recursive decomposition

Cn(s)
d
= 1{s≤U1}C

(1)

I+n

(
s

1− (U2 − U1)

)
+ 1{s>U2}C

(1)

I+n

(
s− (U2 − U1)

1− (U2 − U1)

)
+1{U1<s≤U2}

(
1 + C

(1)

I+n

(
U1

1− (U2 − U1)

)
+ C

(2)

I−n

(
s− U1

U2 − U1

))
, (5.60)

for s ∈ [0, 1]. For fixed n, we can consider (Cn(s))s∈[0,1] as a process with càdlàg paths and (5.60)
remains true on the level of càdlàg functions. LettingQn(s) := n−β/2Cn(s) and introducing linear
operators A(n)

1 and A(n)
2

A
(n)
1 f(s) =

(
I+
n

n

)β/2(
1{s≤U1}f

(
s

(1− (U2 − U1)

)
+ 1{s>U2}f

(
s− (U2 − U1)

(1− (U2 − U1)

)
+ 1{U1<s≤U2}f

(
U1

1− (U2 − U1)

))
,

A
(n)
2 f(s) = 1{U1<s≤U2}

(
I−n
n

)β/2
f

(
s− U1

U2 − U1

)
,

yields

Qn(s)
d
= A

(n)
1 Q

(1)

I+n
(s) +A

(n)
2 Q

(2)

I−n
(s) + b(n)(s)

with b(n)(s) = 1{U1<s≤U2}n
−β/2. This suggests that any limit Q(s) = limnQn(s) satisfies

Q(s)
d
= A1Q

(1)(s) +A2Q
(2)(s) (5.61)

as process in D[0, 1] with

A1f(s) = (1− (U2 − U1))β
(
1{s≤U1}f

(
s

1− (U2 − U1)

)
+ 1{s>U2}f

(
s− (U2 − U1)

1− (U2 − U1)

)
+ 1{U1<s≤U2}f

(
U1

1− (U2 − U1)

))
,

A1f(s) = 1{U1<s≤U2} (U2 − U1)β f

(
s− U1

U2 − U1

)
,

In Section 8, Curien and Le Gall observe that the limit process M satisfies fixed-point equation
(5.61); moreover they ask to what extent the distribution of M is characterized by (5.61). We lack
knowledge about the supremum of M . As in the partial match case, it is very likely that ‖M‖ has
(at least) finite second moment, which, by

E
[
‖A1‖2 + ‖A2‖2

]
= E

[
1− (U2 − U1)2β

]
+ E

[
(U2 − U1)2β

]
< 1,
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would imply M to be the only solution (modulo multiplicative constants) of (5.61) with continu-
ous (or only càdlàg) sample paths, square integrable norm and mean (s(1− s))β at point s.

As in the quadtree case, applying the contraction method, more precisely Theorem 3.6, to achieve
distributional convergence of (n−β/2Hn(s))s∈[0,1] boils down to establishing the following two
results: First, it is necessary to prove E

[
‖M‖2

]
< ∞; second, we need a uniform polynomial

rate of convergence for the mean of Hn(s) after rescaling. The similarities between the recursions
in the present and in the quadtree case propose that both problems could be solved by means of
our approach in Sections 5.3 and 5.4, where it seems that technicalities are more involved here.
Remembering that the rate of convergence for the mean in quadtrees has been transferred from the
analogous result at a uniform query line (1.14), the following theorem could play a major role. Its
proof is based on the use of generating functions as in [FGPR93] and [CH03]; it is not given here.

Theorem 5.32. Let ξ be independent of the process and uniformly distributed on [0, 1]. Let µn =

E [Hn(ξ)] , α = β/2 + 1 and ᾱ = −
√

17+1
4 . Then

µ(n) =

√
π

4

n∑
k=1

(
n

k

)
(−1)k+1 Γ(k − α+ 1)Γ(k − ᾱ+ 1)

k!Γ(k + 3/2)Γ(2− α)Γ(2− ᾱ)

= Cun
β/2 +O(1),

with

Cu =

√
πΓ(2α− 1/2)

2Γ(α)Γ2(α+ 1/2)
.

Remark 5.33. In [CLG11], the authors show

Hn(ξ)

nβ/2
→ T,

where T > 0 almost surely and convergence holds in mean and almost surely. Thus we have
identified the mean of T and moreover, we have also found the value of CL in Theorem 5.29,

CL =
Cu

B(β2 + 1, β2 + 1)
=

√
πΓ(β + 1)Γ(β + 3/2)

2Γ3(β/2 + 1)Γ2(β/2 + 3/2)
≈ 1.292574852.
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5.8. Random recursive triangulations
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Figure 5.5.: 2-d tree with vertical split at the root and n = 1000. The lower figure shows(
(K=

1 )−1n−βC=
n (s)

)
s∈[0,1]

and the limit mean.
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5. Analysis of partial match queries
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Figure 5.6.: 2-d tree with horizontal split at the root and n = 1000.The lower figure shows(
(K⊥1 )−1n−βC⊥n (s)

)
)s∈[0,1] and the limit mean.
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A. Appendix

The first Lemma is very elementary however practical and used several times throughout the thesis.
It is a slight generalization of Theorem 1.2 in [Bil68].

Lemma A.1. Let (S, d) be a metric space. For any 0 < s ≤ 1, closed set C and ε > 0, there
exists a real-valued function g : S → [0, 1] with g(x) = 1 for x ∈ C, g(x) = 0 for d(x,C) ≥ ε

and |g(x) − g(y)| ≤ ε−s‖x − y‖s for all x, y ∈ S. The function f : S → [−1, 1], f = 2g − 1

satisfies f(x) = 1 for x ∈ C and f(x) = −1 for d(x,C) ≥ ε and |f(x)− f(y)| ≤ 2ε−s‖x− y‖s.

Proof. The function g(x) = max
(

0, 1−
(
d(x,C)
ε

)s)
has the desired properties.

The following Lemmas A.2 to A.5 all concern properties of the metrics `s and κs. The statement
of Lemma A.2 may be found in several references, e. g. [BF81, Lemma 8.1]. Lemma A.3 is given
in the same paper, however the proof presented here is based on arguments from [DR85]. The idea
of the proof of Lemma A.5 is taken from [Dud76, Section 20].

Lemma A.2. Let B be separable and µ, ν be probability measures on B with finite absolute
moment of order s. Then there exists random variables X,Y with L(X) = µ,L(Y ) = ν and
`s(µ, ν) = ‖X − Y ‖s.

Proof. Let T be the set of probability measures on B2 with marginals µ and ν. Let ε > 0 be
arbitrary. Since µ and ν are tight, we can find compact sets K,L with µ(Kc), ν(Lc) < ε. Thus
%((K × L)c) < 2ε for any % ∈ T and T is tight. Any accumulation point of T in the weak
topology has to have marginals µ and ν which shows that T is closed. Prokhorov’s theorem
implies compactness of T . The map f : T → R+ : f(%) = ‖X − Y ‖s with L(X,Y ) = % is
continuous and therefore it attains its infimum on T .

Lemma A.3. Let B be separable, (Xn), X be B-valued random variables, s > 0 and E [‖Xn‖s],
E [‖X‖s] <∞ for all n. Then `s(Xn, X)→ 0 impliesXn → X in distribution and E [‖Xn‖s]→
E [‖X‖s]. The converse is true as well.

Proof. Assume `s(Xn, X)→ 0. Let ε > 0 andX(ε)
n , X(ε)(n) be random variables withL(X

(ε)
n ) =

L(Xn) and L(X(ε)(n)) = L(X) for all n such that

‖X(ε)
n −X(ε)(n)‖s ≤ ε

for all n ≥ N0 = N0(ε). As discussed right before Theorem 2.23, Lemma A.1 together with the
proof of the Portementeau Lemma implies that distributional convergence Xn → X is equivalent
to convergence of E [f(Xn)]→ E [f(X)] for all bounded s-Hölder continuous functions f : B →
R where s ∈ (0, 1] is fixed. Let s > 1 and f be bounded and K-Lipschitz continuous. Then

E
[
|f(X(ε)

n )− f(X(ε)(n))|
]
≤ KE

[
‖X(ε)

n −X(ε)(n)‖
]
≤ K‖X(ε)

n −X(ε)(n)‖s ≤ Kε

105



A. Appendix

for all n ≥ N0. By the triangle inequality, we have E [f(Xn)] → E [f(X)] hence Xn → X in
distribution. For s < 1 the proof runs along the same lines using bounded s-Hölder continuous
functions. Next, we have

‖Xn‖s ≤ ‖X(ε)
n −X(ε)(n)‖s + ‖X‖s ≤ ε+ ‖X‖s

and analogously, ‖X‖s ≤ ε+ ‖Xn‖s hence

|‖Xn‖s − ‖X‖s| < ε

for all n ≥ N0. This gives E [‖Xn‖s]→ E [‖X‖s] as n→∞.
Now, suppose Xn → X in distribution and E [‖Xn‖s] → E [‖X‖s]. By separability, using Sko-
rokhod’s representation theorem, we may choose (Xn), X such that Xn → X almost surely. Let
qs = max(1, 2s−1) and ∆n = ‖Xn −X‖. Then, for any 0 < ε < 1,

E [‖Xn −X‖s] ≤ εs + E
[
‖Xn −X‖s1{∆n>ε}

]
≤ εs + qs

(
E
[
(‖Xn‖s + ‖X‖s) 1{∆n>ε}

])
= εs + qs

(
E [‖Xn‖s − ‖X‖s] + 2E

[
‖X‖s1{∆n>ε}

]
− E

[
(‖Xn‖s − ‖X‖s)1{∆n≤ε}

])
. (A.1)

Then, the bounded convergence Theorem implies E
[
‖X‖s1{∆n>ε}

]
→ 0 and the term in (A.1) to

vanish as n→∞. This implies the assertion.

Lemma A.4. Let B be separable and s > 0. Then the topologies induced by `s, κs onMs(B)

are equal.

Proof. Let `s(Xn, X) → 0. Again, we may choose Xn → X almost surely. For s > 1 and
Hölder’s inequality gives

κs(Xn, X) ≤ E
[
‖X(‖Xn‖s−1 − ‖X‖s−1)‖

]
+ (E [‖Xn‖s])1−1/s(E [‖Xn −X‖s])1/s.

By Lemma A.3, we have E [‖Xn‖s] → E [‖X‖s]. Thus, by arguments as in the proof of Lemma
A.3, we see that κs(Xn, X) tends to zero as n→∞. For s ≤ 1, it is not hard to see that for there
exists a constant q̄ = q̄(s) such that for all x, y ∈ B,

‖x‖x‖s−1 − y‖y‖s−1‖ ≤ q̄‖x− y‖s.

A detailed proof of this inequality in contained in the proof of Lemma 2.18. This proves κs(Xn, X)→
in the case s < 1.
Conversely, let κs(Xn, X) → 0. By Lemma 2.10, Xn‖Xn‖s−1 → X‖X‖s−1 in distribution and
E [‖Xn‖s] → E [‖X‖s]. Let Yn, Y be random variables with L(Yn) = L(Xn‖Xn‖s−1),L(Y ) =

L(X‖X‖s−1) for all n and Yn → Y almost surely. Then Yn/‖Yn‖(s−1)/s → Y/‖Y ‖(s−1)/s al-
most surely, hence Xn → X in distribution. This shows `s(Xn, X) → 0 by Lemma 2.10 and
completes the proof.

Lemma A.5. Let X,Y be real-valued random variable with E [|X|] ,E [|Y |] <∞. Then

ζ1(X,Y ) = `1(X,Y ) =

∫ 1

0
|F−1
X (u)− F−1

Y (u)|du =

∫ ∞
−∞
|FX(u)− FY (u)|du.

106



Proof. By definition, we have ζ1(X,Y ) ≤ `1(X,Y ) ≤
∫ 1

0 |F
−1
X (u) − F−1

Y (u)|du. The last
equality in the assertion is easily seen by geometric arguments, hence it suffices to show that
ζ1(X,Y ) =

∫∞
−∞ |FX(u) − FY (u)|du. Let µ = PX − PY and F (u) = µ((−∞, u]) = FX(u) −

FY (u). Since µ has finite first moment, we have uFµ(u) → 0 for u → ±∞. For any 1-Lipschitz
function f , using partial integration, this yields

E [f(X)− f(Y )] =

∫
f(u)dµ(u) = −

∫
Fµ(u)f ′(u)du.

It is well-known that any function f on the real line is Lipschitz with constant K if and only if f
is differentiable almost everywhere with |f ′(u)| ≤ K for almost all u. Now, let h : R→ {−1, 1}
be defined by h(u) = 1 for FX(u) ≤ FY (u) and h(u) = −1 otherwise. Let f(x) =

∫ x
0 h(u)du.

Then, f is differentiable almost everywhere and |f ′(u)| = |h(u)| ≤ 1 for almost all u. Hence, f
is 1-Lipschitz and

E [f(X)− f(Y )] =

∫
|Fµ(u)|du.

This proves the assertion.

The last Lemmas is concerned with the geometry of C[0, 1].

Lemma A.6. The function ν : C[0, 1]→ R, ν(x) = ‖x‖ is nowhere differentiable.

Proof. The norm function is easily seen to be non-differentiable at zero in any Banach space.
Moreover, the relation ν(λx) = λν(x) for all λ > 0 implies that we may restrict ourselves to the
unit sphere. Let x ∈ C[0, 1] with ‖x‖ = 1 and (εn) be a sequence of real numbers with εn ↓ 0 as
n→∞. Suppose ν was differentiable at x. For any h ∈ C[0, 1], denote

∆(h) =
‖x+ h‖ − 1−Dν(x)(h)

‖h‖
.

By the Riesz representation theorem there exists a finite signed measure µ = µx on the unit interval
such that D(ν(x))(h) =

∫
h(t)dµ(t). We first assume that there exists t∗ > 0 with x(t∗) = 1.

Then it is possible to choose a < t∗ such that x|[a,t∗) > 0 and µ({a}) = 0. For all n large enough,
define hn ∈ C[0, 1] by hn(t) = εn for t ∈ [a, t∗], hn(t) = 0 for t ≤ a − εn or t > t∗ + εn and
linear in between. This implies

∆(hn) =
εn −

∫
[a−εn,a] hn(t)dµ(t)−

∫
(a,t∗] hn(t)dµ(t)−

∫
(t∗,t∗+εn] hn(t)dµ(t)

εn
.

By σ-continuity the first and third integrals are of order o(εn), hence ∆(hn)→ 0 implies µ([a, t∗]) =

1. The same arguments also imply µ([b, t∗]) = 1 for any a < b < t∗ with µ({b}) = 0, in particular
we have µ([a, b]) = 0 for these values of b which gives µ|[a,t∗] = δt∗ .
Next, choose a sequence (an) from [0, 1] with a < an < t∗ such that x|[an,t∗] ∈ [1−εn, 1]. Define
a sequence of continuous functions hn by hn(t) = 1−x(t)+εn for t ∈ [an, (an+t∗)/2], hn(t) = 0

for t ≤ a or t ≥ t∗ and linear in between. Then, for all n large enough, ‖x + hn‖ ≥ 1 + εn,
‖hn‖ ≤ 2εn and thus ∆(hn) ≥ 1/2 while hn → 0. This contradicts the differentiability of ν at x.
All remaining cases follow from two observations: First, any function f between two Banach
spaces with f(x) = f(−x) is differentiable at x if and only if it is at −x and second, any function
f : C[0, 1]→ R with f(x) = f(x̄), where x̄(t) = x(1− t), is differentiable at x if it is at x̄.
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[EK47] P. Erdős and M. Kac. On the number of positive sums of independent random variables.
Bull. Amer. Math. Soc., 53:1011–1020, 1947.

110



Bibliography

[Enf73] Per Enflo. A counterexample to the approximation problem in Banach spaces. Acta
Mathematica, 130:309–317, 1973.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit einer Verallgemeinerung der Kontraktionsmethode
auf Zufallsgrößen mit Werten in unendlichdimensionalen topologischen Vektorräumen. Dabei
liefert die Kontraktionsmethode einen Zugang um das asymptotische Verhalten von Folgen von
Zufallsvariablen zu analysieren, die einer Rekursion der folgenden Art unterliegen

Yn
d
=

K∑
r=1

Ar(n)Y
(r)

I
(n)
r

+ b(n), n ≥ n0. (A.2)

Hierbei sind einige Annahmen zu treffen: (Y
(r)
j )j≥0 für r = 1, . . . ,K sind unabhängige Kopien

der Folge (Yn)n≥0, K ≥ 1 und n0 ≥ 0 sind natürliche Zahlen, I(n) = (I
(n)
1 , . . . , I

(n)
K ) ist

zufälliger Vektor mit Werten in {0, . . . , n} und die zufälligen Folgen (Y
(1)
j )j≥0, . . . , (Y

(K)
j )j≥0

und (A1(n), . . . , AK(n), b(n), I(n)) sind stochastisch unabhängig. Für reellwertige Folgen von
Zufallsvariablen (Yn) findet sich in der Literatur eine Vielzahl von Beispielen für ebensolche
Rekursionen, die zumeist auf dem Gebiet der probabilistischen Analyse von Algorithmen oder im
Studium von zufälligen Bäumen auftreten. In dieser Arbeit betrachten wir Rekursionen vom Typ
(A.2) für Folgen (Yn) mit Werten in einem topologischen Vektorraum B, wobei wir hauptsächlich
an dem Fall C[0, 1], der stetigen Funktionen auf dem Einheitsintervall ausgestattet mit der Supre-
mumsnorm ‖f‖ = supx∈[0,1] |f(x)|, oder D[0, 1], der rechtsstetigen Funktionen mit linken Gren-
zwerten auf dem Einheitsintervall ausgestattet mit der Skorohod Topologie, interessiert sind. In
diesem Fall sindA1(n), . . . , AK(n) zufällige Endomorphismen auf dem ZustandsraumsB. In der
Regel geht man von der Folge (Yn) durch Zentrierung und Normierung auf eine skalierte Größe
Xn über, die nach Konstruktion eine ähnliche Rekursion erfüllt, welche sich typischerweise direkt
aus (A.2) bestimmen lässt.

Xn
d
=

K∑
r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n ≥ n0. (A.3)

Die Kontraktionsmethode stellt einen Zugang zur Verteilungskonvergenz von (Xn) dar. Sie wurde
in ihrer grundlegenden Form in der Pionierarbeit von Rösler [Rös91] über die Anzahl der Schlüssel-
vergleiche des randomisierten Quicksort-Algorithmus entwickelt. Die Methode beruht dabei maß-
geblich auf der Beobachtung, dass die modifizierten Koeffizienten in (A.3) resp. die Folge b(n) in
einem geeigneten Sinne gegen zufällige Operatoren konvergieren resp. eine Zufallsvariable kon-
vergieren,

A(n)
r → Ar, b(n) → b. (A.4)

Diese Erkenntnis lässt unmittelbar vermuten, dass ein möglicher Grenzwert X von (Xn) der
stochastischen Fixpunktgleichung

X
d
=

K∑
r=1

ArX
(r) + b (A.5)
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genügt. Im Kontext der Kontraktionsmethode wird der Gedankengang umgekehrt: Zunächst wird
die Existenz einer (unter Nebenbedingungen) eindeutigen Lösung der obigen Fixpunktgleichung
bewiesen und im zweiten Schritt Verteilungskonvergenz von Xn gegen eben diese Verteilung
gezeigt. Zu diesem Zweck betrachtet man Lösungen von (A.5) als Fixpunkte der folgenden Ab-
bildung

T :M(B)→M(B)

T (µ) = L

(
K∑
r=1

ArZ
(r) + b

)
, (A.6)

wobei (A1, . . . , AK , b), Z
(1), . . . , Z(K) unabhängig sind und Z(1), . . . , Z(K) Verteilung µ tragen.

MitM(B) wird dabei die Menge aller Wahrscheinlichkeitsmaße auf B bezeichnet. Die Umset-
zung dieser Heuristik basiert nun auf der Wahl eines passenden TeilraumsM′(B) vonM(B), auf
dem T zur Selbstabbildung wird, und einer geeigneten Metrik aufM′(B) vonM(B), bezüglich
der T eine kontrahierende Abbildung ist. Ist die Metrik vollständig auf dem betrachteten Teilraum,
so impliziert dies direkt die Existenz eines Fixpunkts von T nach dem Fixpunktsatz von Banach.
Bei ausreichender Güte der Konvergenz (A.4) lässt sich im nächsten Schritt mit ähnlichen Argu-
menten die Konvergenz der Verteilung vonXn in der gewählten Metrik gegen den Fixpunkt zeigen.
Impliziert die Konvergenz in der gewählten Metrik schwache Konvergenz, so ist die gewünschte
Verteilungskonvergenz von Xn nachgewiesen und ihr Grenzwert über (A.5) charakterisiert. An
dieser Stelle muss erwähnt werden, dass, abhängig von der jeweiligen Anwendung, asymptotische
Resultate über den Erwartungswert oder gar die Varianz von Yn a priori bekannt sein müssen um
die Kontraktionsmethode erfolgreich umzusetzen.
Die Kontraktionsmethode wurde zunächst hauptsächlich auf den minimalen `p Metriken basierend
entwickelt [Rös92, RR95, Rös01, RR01, Nei01] [für eine Definition dieser Metriken, siehe Seite
18]. In den letzten Jahren haben sich andere Metriken als vorteilhafter erwiesen, allen voran
die Klasse der idealen Metriken ζs, die Ende der siebziger Jahre in einer Reihe von Arbeiten von
Zolotarev [Zol76, Zol78] eingeführt wurde. In ihrem Zusammenhang spielt der Reichtum an reell-
wertigen Fréchet differenzierbaren Funktionen aufB eine entscheidende Rolle. Mit der Zerlegung
m = dse − 1, α = s−m, definiert man für separable Banachräume zunächst

Fs := {f : B → R : ‖Dmf(x)−Dmf(y)‖ ≤ ‖x− y‖α ∀ x, y ∈ B}

und setzt dann
ζs(µ, ν) = sup

f∈Fs
|E [f(X)− f(Y )] |,

für µ, ν ∈ M(B) wobei X und Y B-wertige Zufallsvariablen mit Verteilungen µ respektive ν
sind. ζs Metriken wurden im Kontext der Kontraktionsmethode bereits in [RR95, RR01] verwen-
det, ihre Nützlichkeit beruht dabei maßgeblich auf der Idealeigenschaft, cf. 2.5. Ein vollständiger
systematischer Zugang, der ihre Vorteile im Vergleich zu den minimalen `p Metriken hervorhebt,
wurde von Neininger und Rüschendorf [NR04b] bereitgestellt. In separablen Hilberträumen wurde
die Kontraktionsmethode auf ζs Metriken beruhend in [DJN08] eingeführt.

In dieser Arbeit wird die Kontraktionsmethode basierend auf den Zolotarev Metriken in erster
Linie für separable Banachräume entwickelt. Zudem beschreiben wir einen Zugang im Fall von
nicht-separablen Banachräumen, die mit einer kleineren σ-Algebra ausgestattet werden. In diesem
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Fall sind wir hauptsächlich am Raum der càdlàg Funktionen, ausgestattet mit der Skorohod Topolo-
gie, interessiert. Dabei diskutieren wir ausführlich sämtliche relevante Eigenschaften der Zolotarev
Metrik und klassifizieren Teilräume von M(B), in denen der ζs Abstand zwischen zwei Wahr-
scheinlichkeitsmaßen endlich ist. Geeignete obere Schranken, die es erlauben aus der Konvergenz
in einer anderen Metrik auf Konvergenz in ζs zu schließen, sind in der Literatur bekannt und wer-
den hier nur vorgestellt. Anders als in Hilberträumen, in denen Konvergenz in der Zolotarev Metrik
schwache Konvergenz impliziert, diskutieren wir Banachräume mit schlechten geometrischen Ei-
genschaften, in denen sich im Zusammenhang mit dem zentralen Grenzwertsatz Folgen von Zu-
fallsvariablen konstruieren lassen, die einerseits in ζs andererseits aber nicht in Verteilung kon-
vergieren. Ein explizites Gegenbeispiel findet sich dabei beispielsweise in einer Arbeit von Strassen
und Dudley [SD69] im Fall von C[0, 1]. Basierend auf einem Resultat von Barbour [Bar90] im
Kontext der Stein’schen Methode für Diffusionen, lässt sich unter schwachen Zusatzbedingun-
gen an die Pfade der betrachteten Folge und die Güte der ζs Konvergenz Verteilungskonvergenz
ableiten. Letzteres ist für Folgen D[0, 1]-wertiger Zufallsvariablen darauf beschränkt, dass ihr
Grenzwert stetige Pfade besitzt. Anders als in Hilberträumen ist Vollständigkeit der Metriken vom
ζs Typ nicht bekannt; die kontrahierende Eigenschaft von T liefert demnach nur die Eindeutigkeit
eines Fixpunkts, dessen Existenz anderweitig garantiert werden muss. Wir gehen darauf in den
Anwendungen ein. Unser Hauptresultat des theoretischen Teil der Arbeit, Theorem 3.6, beschreibt
abschließend einen funktionalen Grenzwertsatz für Rekursionen vom Typ (A.3) deren Grenzwert
über (A.5) und Zusatzbedingungen charakterisiert werden kann. Dafür müssen einige technische
Bedingungen erfüllt sein, wir skizzieren hier nur die wesentlichen:

• Kontraktionseigenschaft von T mittels
∑K

r=1 E [‖Ar‖s] < 1, wobei ‖ · ‖ die Operatornorm
eines stetigen linearen Operators beschreibt.

• E
[
‖A(n)

r −A‖s
]
→ 0 für r = 1, . . . ,K und E

[
‖b(n) − b‖s

]
→ 0, jeweils mit geeigneter

Rate R(n). In Anwendungen ist jede polynomielle Rate ausreichend.

• Existenz einer Lösung X von (A.5) mit ζs(Xn, Xm), ζs(Xn, X) < ∞ für alle n,m. Für
letztere Bedingung beachte man Lemma 3.8.

• Existenz einer Folge stetiger (resp. càdlàg) Funktionen hn mit ‖hn − h‖ → 0 und h ∈
C[0, 1], so dass Xn − hn für n → ∞ mit hoher Wahrscheinlichkeit auf Intervallen der
Mindestlänge rn linear (resp. konstant) ist. rn und Rn stehen dabei im Zusammenhang

R(n) = o

(
1

logm(1/rn)

)
.

Für eine präzise Formulierung sämtlicher Bedingungen und des Theorems verweisen wir auf Ab-
schnitt 3.1.
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In Anwendungen spielt das asymptotische Verhalten von ‖Yn‖ eine Rolle. Prozesskonvergenz
von (Xn) impliziert die Verteilungskonvergenz ‖Xn‖ → ‖X‖ für n → ∞, unter schwachen
zusätzlichen Bedingungen zeigen wir zudem Konvergenz aller Momente von ‖Xn‖.

Im zweiten Teil der Arbeit beschreiben wir zwei unterschiedliche Anwendungen der entwickelten
Methode. Zum einen eröffnet uns der Zugang der Kontraktionsmethode die Möglichkeit eines
kurzen direkten Beweises von Donsker’s Invarianzprinzip. Zum anderen geben wir einen funk-
tionalen Grenzwertsatz im Kontext von partiellen Suchabfragen in zufälligen Bäumen, genauer
Quadrantenbäumen und 2-d Bäumen, welcher einige offene Probleme über die Komplexität dieses
Suchproblems löst. Der Beweis des Satzes von Donsker ist dabei aus Sicht der Kontraktions-
methode intuitiv und beruht auf einer zeitlichen Zerlegung der Prozesse, die zu einer interessan-
ten Charakterisierung der Brownschen Bewegung führt. Wir zeigen, dass unter allen stetigen
Prozessen mit B0 = 0 und E [B1] = 1 die Brownsche Bewegung durch die stochastische Fix-
punktgleichung

(Bt)t∈[0,1] =

(√
1

2

[
1{t≤1/2}B2t + 1{t>1/2}(B1 +B2t−1)

])
t∈[0,1]

ausgezeichnet ist. Im Beweis des Grenzwertsatzes führen wir eine linearisierte Version der Brown-
schen Bewegung ein um die Endlichkeit der betrachteten ζs Abstände zu gewährleisten. Dies
verkompliziert die Argumente unwesentlich.

Im letzten Kapitel der Arbeit werden zunächst Quadrantenbäume eingeführt, die als vergleichs-
basierte Datenstruktur bei der Verarbeitung hochdimensionaler Datensätze fungieren. Quadranten-
wie auch K-d Bäume lassen sich als mehrdimensionale Verallgemeinerung des Binärsuchbaums
verstehen. Wir behandeln den Fall zweidimensionaler Daten, die in dem probabilistischen Modell
durch unabhängige, uniform auf dem Einheitsquadrat verteilte Zufallsvariable realisiert werden.
Das Ziel einer partiellen Suchabfrage in einem Baum der Größe n besteht darin, sämtliche Daten
auszulesen, deren erste Komponente fixiert ist, während die zweite beliebige Werte annehmen
kann (oder umgekehrt). Wird der Abfragewert ξ selbst zufällig, unabhängig vom Baum und uni-
form auf dem Einheitsintervall gewählt, so ist aus der Pionierarbeit von Flajolet et al. [FGPR93]
auf diesem Gebiet bekannt, dass

E [Cn(ξ)] ∼ κ nβ, β =

√
17− 3

2
, (A.7)

für eine Konstante κ > 0, siehe (1.15) auf Seite 10. Hierbei bezeichnetCn(s) die Anzahl besuchter
Knoten einer Suche nach sämtlichen Einträgen mit erster Komponente s. Die rekursive Konstruk-
tion des Baums, welche im Kapitel 1 ausführlich erläutert wird, erlaubt es eine Rekursion für die
Anzahl besuchter Knoten bei der Ausführung der Suchabfrage auf dem Niveau von càdlàg Funk-
tionen aufzustellen. Basierend auf dem Hauptresultat 3.6 zeigen wir einen funktionalen Gren-
zwertsatz für (Cn(s))s∈[0,1] nach Skalierung, die Charakterisierung des stetigen Grenzprozess
Z =

(
Z(s)s∈[0,1]

)
wird dabei durch E [Z(s)] = (s(1 − s))β/2, E

[
‖Z‖2

]
< ∞ und folgende

stochastische Fixpunktgleichung geliefert:

Z(s)s∈[0,1]
d
= 1{s<U}

[
(UV )βZ(1)

( s
U

)
+ (U(1− V ))βZ(2)

( s
U

)]
+1{s≥U}

[
((1− U)V )βZ(3)

(
1− s
1− U

)
+ ((1− U)(1− V ))βZ(4)

(
1− s
1− U

)]
.
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Eine Simulation des Grenzprozesses ist auf Seite 12 zu finden. Um unseren Zugang zu ver-
wirklichen, konstruieren wir die Lösung Z als gleichmäßigen Grenzwert von stetigen Prozessen,
welche punktweise die Martingaleigenschaft erfüllen. Dieser Teil der Arbeit beruht wesentlich
auf Konzentrationsungleichungen vom Chernoff-Hoeffding Typ und geometrischen Eigenschaften
von Quadrantenbäumen. Weiter verwenden wir ein Ergebnis von Chern und Hwang [CH03] über
die Konvergenzrate in (A.7) und ein Resultat von Curien und Joseph [CJ11] über die Asymptotik
des Erwartungswert

E [Cn(s)] ∼ K1(s(1− s))β/2nβ,

mit K1 > 0. Eine Verfeinerung letzterer asymptotischen Entwicklung erweist sich als notwendig
um die gleichmäßige Konvergenz der Koeffizienten und des additiven Terms in der Rekursion zu
garantieren. Sämtliche wesentliche Resultate werden in Abschnitt 5.1 aufgelistet, u.a. charakter-
isieren wir die eindimensionalen Randverteilungen vonZ und zeigen die Konvergenz der Verteilung
und aller Momente des Supremums des skalierten Prozesses, welches lange offene Fragen über das
worst-case Verhalten des Algorithmus löst. Als einfache Folgerungen lösen wir damit zusätzlich
die offenen Fragen nach Grenzwertsätzen und dem asymptotischen Verhalten der Varianz von
Cn(s) bei festem s und zufälligem s = ξ. Im hinteren Teil der Arbeit übertragen wir die Methode
auf den verwandten Fall der 2-d Bäume, die Hauptresultate sind dabei von ähnlicher Natur. Im let-
zten Abschnitt erläutern wir ein offenes Problem aus der Arbeit von Curien und Le Gall [CLG11]
im Kontext von zufälligen rekursiven Triangulierungen, das sich womöglich durch unsere Meth-
oden lösen lässt. Wir geben dabei einige, die Arbeit [CLG11] ergänzende, Resultate, ein Beweis
des angestrebten funktionalen Grenzwertsatzes erfordert weitere technische Abschätzungen.

Wesentliche Teile der Analyse der Komplexität von partiellen Suchabfragen in Quadrantenbäumen
wurden bereits als “extended abstract“ in [BNS12] veröffentlicht.
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