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1. Introduction

Since the middle of the past century, the theory of weak convergence in function spaces has be-
come an important concept in probability theory and its applications. Fundamental contributions
from various origins have been made by Kolmogorov [Kol31], Erd6s and Kac [EK46], Doob
[Doo049] and Donsker [Don51], [Don52]. The theory has been established systematically as it is
known today by Prokhorov [Pro53], [Pro56] and Skorokhod [Sko56]. Relying on the latter works,
Billingsley offered an accessible account to the area in his book Convergence of Probability Mea-
sures in 1968. Undoubtedly, it is still the main reference for weak convergence on function or more
general metric spaces. Relying on the so-called contraction method, the present thesis is mainly
concerned with results that allow to deduce weak convergence in function spaces and applications
thereof.

1.1. The idea of contraction

The contraction method is an approach to distributional convergence for sequences of random
variables obeying certain recurrence relations on the level of distributions. It has become a pow-
erful tool in the probabilistic analysis of algorithms since its invention in the seminal paper on the
running time analysis of the well-known sorting algorithm Quicksort by Rosler [R6s91]. Often,
the analysis of divide and conquer algorithms leads to the following recursion for a sequence of
random variables (Y},)

K
Y, < Z;Ar(n)yl(ﬁ?) +b(n), n>no, (1.1)

where < denotes that left and right hand side are identically distributed, and (Yj(r)) j>0 have the

same distribution as (Y,),>0 forall » = 1,..., K, where K > 1 and ny > 0 are fixed inte-
gers. Moreover I(") = (I l(n), . ,Ig)) is a vector of random integers in {0, ...,n}. The basic

independence assumption is that (Yj(l))jzg, cee (Yj(K))jZO and (A1(n), ..., Ag(n),b(n), 1)
are independent. This assumption also determines the law of the right hand side of (1.1). Depen-
dencies between the coefficients A,.(n), b(n) and the integers IT(”) appear in various applications.
Apart from the probabilistic analysis of recursive algorithms, recurrences of the form (1.1) ap-
pear in several fields, e.g., in the study of random trees, in branching processes, in the context
of random fractals, in models from stochastic geometry and in information and coding theory.
For surveys of such occurrences see [NRO4b] and [Nei04]. Mostly, (Y;,) is a sequence of real-
valued random variables and A, (n), b(n) are random coefficients also with values in R. However,
there is no harm in considering random variables with values in arbitrary vector spaces provided
Ar(n),r = 1,..., K denote random linear operators and the right hand side of (1.1) remains a
well-defined random variable. Recurrences for R¢ or Hilbert space valued random variables have
been treated in the literature and will be reviewed later. In the thesis we develop the contraction
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method in separable Banach spaces, where we mainly focus on the case C[0, 1], the space of con-
tinuous functions on the unit interval endowed with uniform topology. We also give analogous
results for D[0, 1], the space of cadlag functions, that is right-continuous functions with left limits,
equipped with Skorokhod topology.

In applications the quantities Y;, grow large as n tends to infinity, an appropriate scaling is typically
obtained by centering Y,, and normalizing by the order of the standard deviation. The scaling leads
to a recursion similar to (1.1) for the rescaled sequence (X,):

K
X, < z_; A,E“>X§£,Z) +5™. n > n, (1.2)
with conditions on identical distributions and independence similar to recurrence (1.1). The coef-
ficients A&”) and b(™ in the modified recurrence (1.2) are typically directly computable from the
original coefficients A,(n), b(n) and the scaling, see e.g., for the case of random vectors in R?,
[NRO4b, equations (4)].

The main idea: The rough idea of the contraction method is the following: First, it usually follows

)

directly from the coefficients A,(nn and the sequence b(" that there exists random operators A, and

a random variable b such that
A oA b b, (1.3)

as n — oo in a suitable sense. If also 1"

grows large asn — oo forallr = 1,..., K and it is
plausible that the quantities X, converge, say to a random variable X, then, by letting formally

n — 00, equation (1.2) turns into
K
X £33 4,0 4o, (1.4)
r=1

with XM X ) distributed as X and X ... X)) (A, ..., As,b) independent. The
distributional fixed point equation (1.4) will then serve as a characterization of the limiting distri-
bution £(X). Here £(X) denotes the distribution of a random variable X. Solutions of (1.4) are
usually considered as fixed-points of the following map 7" which is at the heart of the contraction
method:

T : M(B) — M(B)
K
T(p) =L (Z A, 71 b) , (1.5)
r=1

where (A1,..., Ag,b), ZW, ..., ZU) are independent and Z(1), ..., Z(K) have distribution .
Here M (B) denotes the set of probability distributions on the state space B, in which the sequence
of random variables (Y;,) [hence also (X,)] attains their values. Rosler’s approach to turn these
ideas into rigorous statements consists of the following two steps:

Step 1. Show existence and uniqueness of the solution of the fixed-point equation (1.4) in an
appropriate subspace M’ (B) of probability measures on M (B). To this end endow M'(B)
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with a complete metric d that turns 7" into a contractive self-map on M’(B). In light of
Banach’s fixed point theorem one then obtains a unique fixed-point of 7', hence a unique
solution of (1.4) in M’(B).

Step 2. Show convergence of X, to this unique fixed-point in the metric d and infer weak con-
vergence (and possibly more). The proof of the convergence of X, in the metric d usually
runs along similar lines as Step 1 by contraction arguments. It relies on the quality of con-
vergence of the coefficients in (1.3). The transition to weak convergence depends mainly on
properties of d and will turn out to be a hard task in our applications.

We shortly mention the classical case of Quicksort which will be used as a prototype example of
the real-valued case throughout the thesis.

Quicksort: Introduced in 1961 by Hoare [Hoa61, Hoa62], Quicksort has become one of the most
important sorting algorithms. Its median of three version serves as standard sorting routine in
Unix. It is well-known and easily seen that, given a list of n distinct elements from an ordered
set, the number of key comparisons Z,, of the standard randomized Quicksort algorithm satisfies
a recursion of type (1.1). More precisely, it holds

Zy 220 2P wn-1, n>1, (1.6)
where I, is uniformly distributed on {1,...,n}, Zy = 1 and conditions of independence as for

(1.1). The mean number of comparisons is known explicitly, it holds E [Z,,] = 2nlogn + c¢n +
o(n) for some real constant c. From (1.6) and the scaling of the form n=!(Z, — E[Z,]), it is
plausible that a possible limit random variable Z satisfies the following fixed-point equation, that
is nowadays known as the Quicksort equation:

Z=UzZW+1-0)Z® +2UlogU +2(1 — U)log(1 — U) + 1. (1.7)

Here U denotes a random variable on [0, 1] with uniform distribution and conditions as in (1.4)
are satisfied. Rosler [R9s91] was able to carry out both Step 1 and Step 2 working on the
subspace of probability distributions with zero mean and finite variance. Subsequently, we de-
note this space by My o(R). Endowing Mjo(R) with the minimal /> metric, see (2.8), he
proved that the map 7" in (1.5) has the Lipschitz property with Lipschitz constant bounded by
VE[U +E[(1 - U)? = \/2/3. By the Theorem of Riesz-Fisher completeness of /s is easily
checked and convergence of the rescaled sequence to the unique solution of (1.7) in M3 o(R) is

shown. One should not forget that the sequence (n + 1)~(Z, — E[Z,]) was identified as an
L?-bounded martingale by Régnier [Rég89]. Hence, the convergence was already known at that
time.

The /> approach: The approach has been established further and applied to a couple of examples
in Rosler [R6s92] and Rachev and Riischendorf [RR95]. Later on general convergence theorems
have been derived stating conditions under which convergence of the coefficients of the form (1.3)
together with a contraction property of the map (1.5) implies convergence in distribution X,, — X.
For random variables in R with the minimal /> metric see Rosler [R6s01], and Neininger [NeiO1]
for R? with the same metric. In R note that the linear operators A,.(n) and A&”) coincide with
random d x d matrices. As a prototype result, we cite (a slightly modified and simplified version
of) Theorem 3 in [R6s01].
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Theorem 1.1. Let (X,,) be a sequence of real-valued random variables satisfying (1.2) with ng =
1 such that forallr =1,... , K andn > 1

0<I™M<n—-1, E[b)=0 and L(Xo) € May(R).

Then L(X,,) € M2 o(R) for all n. Assume further that
K
L= ZE [14,] <1 (1.8)
r=1

and Eb] = 0,E [bQ] < 00. Then T is a contraction on Ma o(R) with Lipschitz constant at most
V'L with respect to lo. Hence, it has a unique fixed-point y in Mo o(R). Moreover; if

E[IAPL o] 0.

forallr =1,... K and m € N and
(A7 AW By By (A, AR, D),
then l3( Xy, X) — 0, where X has distribution .

When applying this result, the scaling of Y,, requires precise asymptotic information on the mean
E[Y},,] in advance whereas the order of the standard deviation o,, may be guessed. Typically, an
expansion of the form

E[Ya] = f(n) + o(on)

turns out to be sufficient. The assertion of Theorem 1.1 can be stated similarly using ¢, metrics
with 0 < p < 1 assuming only a finite absolute of order p by simply replacing 2 by p in every oc-
currence. In this case, no expansion of moments of Y;, has to be available in advance. A survey on
the contraction method mostly in the context of £ metrics including various applications mainly
from the area of random trees is given in [RRO1].

Limitations of /,: The ¢, approach is restricted in two ways: First, for 0 < p < 1 orp = 2, the
Lipschitz constant of T (restricted to suitable subspaces) is bounded by

min(1/p,1)

K
[ZE [|A:[7]

an analogous result can not be obtained for 1 < p < 2 or p > 2 along the same lines. In general,
p11/p
only a bound of the form E [(Zfil |A; ]) } can be given easily. This term is clearly increasing

in p which is illustrated by the following example.
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Example: Consider the fixed-point equation

iX—f—X’
= =5

where X' is an independent copy of X. Assuming a finite second moment of X, it immediately

X (1.9)

follows from the central limit theorem that X has normal distribution with zero mean. Histori-
cally, Polya [P6123] was the first to observe this in a remarkable paper from 1923. Later, based
on characteristic functions, Laha and Lukacs [LL65] removed the assumption on the finite second
moment, see also [KPS96] for a purely probabilistic proof. However, no metric of £, type seems
to provide the contraction property of 7.

The second problem is concerned with the generalization of the approach to infinite dimensional
spaces. In separable Hilbert spaces, the bound (1.8) remains valid if we restrict to the zero mean
case. In [RR95] and [Riis06], similar ideas are discussed also for 1 < p < 2 in general Ba-
nach spaces. Arguments based on Woyczynski’s inequality, see [Woy80, Proposition 2.1], imply
a bound on the Lipschitz constant of the form ¢, >.% | E [| A;|P] with a positive constant ¢, only
depending on p which turns out to be too large for applications. Riischendorf [Riis06] showed
uniqueness of the fixed-point equation (under mean zero and finite p-th moment condition) if only
the more natural condition Zfi 1 E[JAi|P] < 1is satisfied. However, the result is given in the real-
valued case and the ideas only extend directly to Banach spaces of type 1 < p < 2. In our main
application C[0, 1] endowed with the uniform topology, which is a Banach space only of trivial
type 1, we do not know of any useful generalizations of the ¢, approach for 1 < p < 2.

The Zolotarev distances: In the context of the contraction method, various other probability
metrics, among them the class of (; metrics that is also used in the present work, have been
mentioned first in [RR95], see in particular Proposition 1. (s metrics are also used in [RROI,
Theorem 5]. The approach has been worked out to its full extent for random variables in R? by
Neininger and Riischendorf [NRO4b]. The family of metrics of Zolotarev type which we study
intensively in Chapter 2 has proved to be more flexible than the classical ¢, metrics, the main
improvement being a reduction of the Lipschitz constant of T’ for arbitrary s > 1 to

K
ZEHAM

Note that Theorem 4.1 in [NRO4b] naturally extends Theorem 1.1. Thus, various problems with
normal limit laws could be solved in [NRO4b]. As it will turn out later, for s > 2, this approach
requires an exact scaling of Y,,, in particular a first order expansion of the standard deviation has
to be known a priori. An important case is when A;(n) = ... = Ag(n) = 1forall nin (1.1), see
[NRO4b, Section 5] for many examples. Here, the (s approach for s > 2 gives normal limit laws
for the rescaled quantity (X,) if

E[Y,] = f(n) +o(g"*(n)),  Var[V,] = g(n) +o(g(n)).

This results confirms a heuristic principle by Pittel [Pit99] where he proposes that the first two
moments accompanied by a linear recurrence might be sufficient to obtain normal limit laws. Note
that the contraction method relying on (s with s > 2 yields normal limits in all applications known
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so far. Yet another indication for the flexibility of Zolotarev’s metrics is given in [NR04a] where
normal limit laws for sequences (X,,) satisfying recurrences leading to degenerate fixed-point

. d . . .
equations of type X = X under certain properties of the moments of Y,, are given.

Recent results: An extension of the method and results in [NR04b] to continuous time, i.e., to pro-
cesses (X¢)i>0 satisfying recurrences similar to (1.2) was given in Janson and Neininger [JNOS].
For the case of random variables in a separable Hilbert space leading to functional limit laws gen-
eral limit theorems for recurrences (1.1) have been developed in Drmota, Janson and Neininger
[DJNO8]. The main application there was a functional limit law for the profile of random trees
whose analysis was carried out by an encoding in the so-called profile-polynomial, a generating
function of finite degree. This approach led to random variables in the Bergman space of square-
integrable analytic functions on a domain in the complex plane. It is remarkable that this approach
combines two different methods of analyzing distributional recurrences, namely manipulations
with generating functions and the contraction method. In Eickmeyer and Riischendorf [ER07]
general limit theorems for recurrences in D[0, 1] under the L,-topology were developed. Note,
that the uniform topology for C[0, 1] and the Skorokhod topology for D|0, 1] considered in the
present work are considerably stronger than the L,-topology. In C|0, 1], the uniform topology
provides more continuous functionals such as the supremum f +— sup;¢(o 1] f (t) or projections
f— f(s1,...,sk), for fixed si1,...,s; € [0,1], to which the continuous mapping theorem can
be applied. In D[0, 1] those functionals may also be applied once the limit random variable is
known to have continuous sample paths. Note that our approach in D[0, 1] is limited to sequences
of random functions with cadlag paths whose limits have continuous sample paths.

All results based on (, metrics in the context of the contraction method in R? or in separable Hilbert
spaces rely on the fact that convergence in (; implies weak convergence. However, for general
Banach spaces this is not true. Counterexamples have been reported in Bentkus and Rachkauskas
[BR85], we give explicit examples in Section 2.4. Furthermore, completeness of the (; metrics on
appropriate subspaces of M (B) is known only for separable Hilbert spaces, see [DJNO8, Theorem
5.1]. Summarizing, we face the following major difficulties in the framework of the contraction
method using metrics of Zolotarev type in the case of continuous or cadlag functions on the unit
interval.

P1. Distributional convergence can only be inferred by (s convergence under further conditions.

P2. For s > 1, by the lack of completeness of (s, a fixed-point of (1.4) has to be found by
different means.

P3a. For 1 < s < 2, the scaling and the convergence of coefficients (1.3) typically require the
convergence of E [X,,(¢)] to E[X (¢)] uniformly in ¢. Moreover, a rate of convergence is
needed to solve P1 which will later be clear.

P3b. When applying the contraction method with s > 2, exact scaling is required, i.e. the covari-
ance function of the sequence (X,) has to be independent of the time parameter n.

Outline - Chapters 2 and 3: We investigate the family of (s metrics in Chapter 2. In Sections 2.2
and 2.3 we give upper and lower bounds on the metrics in general Banach spaces in particular in
terms of the family of £, metrics that is also introduced here. We discuss counterexamples where
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convergence in (s does not imply weak convergence in Section 2.4. An appropriate formulation
of the Zolotarev distance in non-separable spaces, in particular for D[0, 1], is given in Section
2.5. From Section 2.6 on, we concentrate on the cases of C[0, 1] and D[0, 1] where we provide
a solution to P1 by additional assumptions on the rate of convergence and on the regularity of
sample paths of the sequence (X,,). Here, the key ingredient is a result in Barbour [Bar90] in the
context of an extension of Stein’s method to cadlag processes. We also prove that under the same
conditions on the rate of convergence and sample paths regularities, the sequence (||X|*),,>¢ is
uniformly integrable. This gives rise to moment convergence of the supremum, a very useful re-
sult in applications. Chapter 3 is devoted to the framework of the contraction method in separable
Banach spaces, our main result Theorem 3.6 in the case of C[0, 1] or DJ0, 1] is to be compared
with Theorem 4.1 in [NRO4b]. The rate of convergence in the Zolotarev metric needed to infer
weak convergence is guaranteed by a transfer theorem from the rate of convergence of the coef-

)

operator norm. Finally, we point out that the use of (s metrics in the cadlag space requires the

ficients (1.3). Here, convergence of the sequence of linear operators A&” is with respect to the
limit to have continuous paths since we have no arguments to deduce distributional convergence
otherwise. Moreover note that we deal with the Skorokhod instead of the uniform topology on
D0, 1] solely for reasons of measurability, see the beginning of Section 2.5.

The remaining problems P2, P3a and P3b will be discussed in the second part of the thesis, we
only mention P2 here. The obvious method for finding a solution of (1.4) is by considering the
infinite iteration of 7. This approach is taken in Chapter 5, where the main difficulties are the
verification of continuity and integrability of the supremum of the limit. For s > 2, as in the
real-valued case, one may guess a solution. This is what we do in Chapter 4.

1.2. Applications

We present applications of the ideas and results of Chapter 3 for recurrences of type (1.1) both in
the case 1 < s < 2 and s > 2 in the second part of this thesis. As a start, we provide a new and
considerably short proof of the classical invariance principle due to Donsker based on recursive
time-decompositions of Brownian motions and sums of independent random variables in Chapter
4. Here, the (, approach is worked out in the case of s > 2, a way to surmount the difficulties in
P3b is given by using a piecewise linear interpolation of the Brownian motion.

In the other case, our main result is concerned with partial match queries in random quadtrees
and K-d trees. These tree models, introduced by Finkel and Bentley in [FB74], resp. Bentley
in [Ben75], serve as comparison-based data structures for multidimensional databases and may
be considered as multidimensional generalizations of binary search trees. Higher-dimensional
databases arise in various contexts such as computer graphics, computational geometry, geograph-
ical information systems and statistical analysis. Using bit representations for the data, digital
structures such as tries, digital search trees or patricia tries provide alternatives allowing efficient
solutions for retrieval problems. For a general account on multidimensional data structures and
their applications, we refer to the series of monographs by Samet [Sam90a, Sam90b, Sam06].
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The Quadtree: The quadtree extends the comparison based construction of binary search trees
to higher dimensions. For d-dimensional data, the corresponding quadtree has branching number
at most 2¢ where each dimension causes a factor of 2. For convenience, we assume the data
field to be the unit cube [0, 1]%. For points py,...,p, € [0, 1]¢ the tree is constructed as follows:
The first point p; is inserted at the root, it splits the unit cube into 27 subregions according to
its coordinates. Each subregion corresponds to one of its children. The construction then goes
on recursively: Having inserted i points in the tree, the unit cube is covered by 1 + (2% — 1)
subregions each corresponding to an external node in the tree. Point p;; is then stored at the
node v that corresponds to the subregion in which it falls. Insertion divides this region into 2¢ new
subregions assigned to the children of w.

Figure 1.1.: A quadtree of size n = 6 with d = 2. External nodes are indicated by boxes which
correspond to regions in the partition on the right.

Searching: By far the most important property of binary search trees (and variants thereof) as data
structure is the fact that these trees are typically well-balanced under reasonable assumptions on
the data. Insertion, deletion, searching or retrieving specific data usually requires only logarithmic
time. The same is true in quadtrees if one aims at finding completely specified patterns. Under the
uniform model, that we will always assume throughout the thesis, the quadtree is generated by a
sequence of independent random variables uniformly distributed on the unit cube. For the insertion
depth D,, of the n-th node that measures the time for an unsuccessful search in the quadtree, we
have 5

E[D,] ~ p logn. (1.10)

This has been proved independently in [FGPR93] by means of generating functions and singularity
analysis and in [DL90] by probabilistic arguments. In [FL94], the order of the variance of D,, is
identified for all d > 2 and asymptotic normality of D,, after normalization is shown. For the
height H,, of the tree that corresponds to worst case search times, it holds

E [H,] ~ glogn, (1.11)

where ¢ = 4.31107. .. is the constant known from the height of random binary search trees sat-
isfying ce’/¢ = 2e. This result is due to Devroye [Dev87]. The behaviour of K-d trees, being
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introduced in Section 5.6, is included in these results choosing d = 1 in (1.10) and (1.11) since
they coincide with random binary search trees in distribution. It is worthwhile noting that an anal-
ogous result is not true for quadtrees: Here, insertion is not performed uniformly at random among
the available external nodes but nodes on lower levels are favoured.

Partial match retrieval: In partial match queries, one is interested in finding all data matching a
fixed pattern that only imposes some constraints on the data field. Such a query visits considerably
more nodes in the tree. The first investigations in partial match retrieval is due to Rivest [Riv76]
based on digital structures. For partial match queries with 1 < s < d specified components in a

quadtree of size n, Bentley and Stanat proposed pl—s/d

as the order of magnitude for the cost of
the retrieval algorithm, i.e. the number of traversed nodes, see [BS75] (and [Ben75] for a similar
statement in the model of K'-d trees). This claim was disproved by Flajolet et al. [FGPR93] in the

quadtree model (and in [FP86] for K -d trees). The main result in this paper states that
E |Cr(¢")] ~ oan®! (1.12)

for some constant v5 4 > 0 and « € [1, 2] solving

% (a+1)" = 2% (1.13)
Here C5%(x), © = (21,...,25) € [0,1]%, denotes the cost, i.e. the number of visited nodes, for
a partial match query with s specified components equalling 1, . . .,z and £(*) is assumed to be

uniform on [0, 1]°, independent of the quadtree. Note that o« > 2 — s/d. We give a simple heuristic
argument for the occurrence of the constant « at the beginning of Chapter 5. The result (1.12) has
been strengthened by Chern and Hwang in [CHO3] where the value of the leading constant 7, 4
and rates of convergence are provided in all dimensions. Distributional limit laws and asymptotics
of the variance at a uniform query line have been studied by several authors; however, neglecting
subtle dependencies between the contributions of subtrees, the order of the variance, higher mo-
ments and a limit law have remained open and will be solved in this thesis for the case d = 2.
It is worthwhile noting that, concerning partial match retrieval, comparison-based structures are
outperformed by digital structures. In multidimensional tries, called K-d tries in [FP86] and also
quadtries in [DZCO04], the order of the average cost, i.e. the number of bit comparisons, of partial
match retrieval is indeed n'~%/%, see [FP86].

The behaviour changes dramatically on the boundary where we enforce at least one coordinate to
be zero. A search for those lowest points in the tree visits considerably less nodes, we denote by

f{d the cost of the retrieval algorithm if s components are chosen to be zero and d — s components
are left unspecified. Then Flajolet et al. [FGPR93] proved

E [Rz_17d:| ~ nd—l,dna_lv o= 21/d7

for some constant 7g_1,4 > 0, where 72 is explicitly known to be I'(2a)/(al*()). Here
[(z) = [, e 't*"'dt denotes the Gamma function for 2 > 0. We do not know of any result
in the case of general s. Our heuristic approach at the beginning of 5 which can be worked out
analogously here, suggests that R is of order n® with o = 215/, For d = 2, a limit law for
R} based on fragmentation processes is given in [CJ11], a proof thereof could also be obtained



1. Introduction

by means of the contraction method based on the results in [FGPR93].

The two-dimensional case: In the thesis, we only treat two-dimensional quadtrees and 2-d trees.
The following observation is crucial for our approach: In a partial match query with fixed first
component s € [0, 1], any node in the tree is visited if and only if the region it is inserted in is
intersected by the horizontal line x = s. Moreover this is the case if and only if the horizontal
line z = s crosses the vertical coming from the node. We abbreviate C,,(s) := Ci(s) for the

Figure 1.2.: A partial match retrieval with fixed query line x = 0.2. Visited internal nodes are
marked red and so are external nodes that correspond to the four regions intersected
by the line.

number of vertical lines in the partition of the unit square governing the quadtree that intersect the
horizontal line at x = s. The constant 1 2 was already known in [FGPR93], we will subsequently
denote it by k. In the two-dimensional case Chern and Hwang [CHO3] provide an expansion for
the mean of arbitrary order; for our purposes, it will be sufficient to use

E[Cn(£)] = kn” — 14 0(nP1h), (1.14)
where
_ I(28+2) _ V173

B (1.15)

"TOs(E 1) 2

E=&Wand g =a— 1. Recently, Curien and Joseph [CJ11] were the first to give a result on
the mean of C,,(s) for a fixed query line z = s. Based on fragmentation processes, using (1.12)
and an ingenious coupling argument for Markov chains, they proved convergence of C,,(s)/n” in
mean for fixed s. Based on fixed-point arguments for the limit, their main result states that

n PR [Cp(s)] ~ Kih(s), (1.16)

where
(28 +2)(8+2)

R L R (1.17)

K
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1.2. Applications

Note that we use a refinement of their method and result in our work.

Recursive decomposition and main results: Given the number of points in each of the four
regions (equivalently, nodes in the subtrees), those points are again independent and uniformly
distributed. Moreover, the behaviour within each subregion is independent of each other. A partial
match query with fixed first component = s then searches in two of these subtrees, or equiva-
lently, certain horizontal lines are counted either in the first and second or in the third and fourth
subregion. Here we abbreviate the first subtree to correspond to the lower-left region, the second
to the upper-left, the third to the lower-right and the fourth to the upper-right. Note, that the query
line in the regions under investigation has to be considered relative to the x-component of the first
inserted node. Thus, a decomposition at the root gives the following fundamental distributional
recurrence

S

d (1) 2 (5
Cn(s) = 1415y [C,;m (U> +ng"> (U)]
@ (1—s @ (L1=s
+1{52U} |:CI§H) (1 — U) + Cfin) (1 — U>:| . (1.18)

Here, U, V denote the components of the first inserted point, I l(n), Y in) denote the number of

points in the subregions and (C,Sl)), cee (CT(L4)) are independent copies of (C),), independent of
(U, V. I fn), v 4n)>. Obviously, (1.18) can not be seen as a one-dimensional recurrence of type
(1.1) for fixed s. The crucial observation is that the recursive decomposition holds simultaneously
for an arbitrary finite number of coordinates sy, ..., s;. Thus, partial match queries for differ-
ent values of s are coupled and considered in one and the same quadtree! Naturally, there exist
cadlag versions of (C,(s))se(o,1), hence (1.18) can be viewed as a recursion in the space of cadlag
functions. Given (U, V'), we have

£ (1, 1) = Mult(n = LUV, U= V), (1= D)V, (1= U)(1 = V). (1.19)
Hence scaling by n suggests that any limit process Z of the scaled quantity n~?C,, (s) satisfies

Z(s) L 1o [(UV)BZ(U (%) (U1 —V)Pz® (%)} (1.20)

0 [((1 —U)V)Pz® (11__;) +((1-U)1-V))PzW (f:;ﬂ .

Based on the contraction method, our main result of Chapter 5 states that the process n " Cn(s)
indeed converges in distribution in the space of cadlag functions endowed with Skorokhod topol-
ogy to a continuous solution of (1.20) which is unique under the constraints that its mean at £
equals x, see (1.15), and its supremum is square-integrable. For a simulation of the limit, see
Figure 1.3. A direct consequence of the result is a limit law for C, () for uniform &, independent
of the quadtree and a first order expansion of the variance where we also identify the leading con-
stant. Our result also implies distributional convergence of the rescaled supremum of C,,(s) which
can be strengthened to convergence of all moments. This provides asymptotic information on the
worst-case behaviour of the algorithm and solves several long-open problems. Finally note that
the costs of partial match queries in quadtrees are not concentrated, typical fluctuations are of the
order of their mean. The behaviour in K-d tries is different. Here, under the symmetric Bernoulli
model, costs are extremely stable, see [DZC04]. For results on the variance and a normal limit law

11



1. Introduction

(after normalization) for the costs in K -d tries see [Sch95, Sch00].

Outline - Chapters 4 and 5: In Section 4.1, we start with the proof of Donsker’s theorem relying
on the contraction method. It is based on a fixed-point characterization of the Wiener measure that
we strengthen in Section 4.2. We also provide convergence of moments of the supremum of the
rescaled random walk when assuming corresponding moments for the increments.

In Section 5.1 we collect all results for the retrieval problem on quadtrees, that is process conver-
gence of (', after rescaling, convergence of the supremum in distribution and with all moments
and a characterization of all one-dimensional marginals of Z in terms of a single probability dis-
tribution on the real line. The proof of our main result is given in Section 5.2. Solutions for the
problems P2 and P3a are provided in Sections 5.3 resp. 5.4. In the latter section we also give
further illustrations for the occurrence of size-biasing effects that play a major role in this context.
In Section 5.6 we introduce 2-d trees and give analogous results for this class of two-dimensional
trees. Section 5.7 is devoted to further open problems in the partial match retrieval problem.
Finally, in Section 5.8, we present a problem left open in [CLG11] from the theory of random
recursive triangulations that exhibits similar behaviour as the problem of partial match queries.
Based on the methods we develop in this thesis, a proof thereof seems to be within reach.

Several parts of the Chapter 5 have recently been published as an extended abstract in [BNS12].

1.2
1.0
0.8 7
0.6
0.4

0.2

0.0 T T T T T T T T T T T T T T T T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 1.3.: Simulation of the limit process Z established by Nicolas Broutin.
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2. The Zolotarev metric

In his seminal work on probability metrics [Zol78], Zolotarev observes that “In probability theory
and its applications where there are especially many approximation problems, the use of metrics
[...] is also a common occurrence, although we must note that the arsenal employed in this con-
nection is not very large.” To this end, he justifies the use of metric distances by the following
three rules which we cite from [Zol76].

i) In approximation problems, a metric formulation of a problem is preferable to others equiv-
alent to it because it enables one to consider the question of obtaining quantitative estimates
for the approximations.

ii) In a metric formulation of a problem, a cardinal question is that of making a proper choice
of the metric used since the naturalness and completeness of a solution will depend on this
in many respects.

iii) If we have at our disposal a solution to an approximation problem in terms of some metric,
then going over to other metrics in the same problem can be accomplished by means of a
comparison of the metrics in the form of estimates for the metric with the help of others.

Based on these guidelines, Zolotarev introduces plenty of different metrics in his works in the
late seventies. Additionally, he finds relations between them and applications to justify each of
his rules. This method of metric distances was later investigated by various other researchers.
Zolotarev’ rules also play an important role throughout this thesis.

We start by introducing the class of Zolotarev metrics (s which we use for the purpose of the
contraction method. It was invented by Zolotarev [Zol78, Zol76] . In [Zol77], he summarizes lots
of its properties and gives further results. From his remaining works in the context of probability
metrics we use results from [Zol79a, Zol79b] and the survey article [Zol84]. In the real-valued
case, one should also take into account the comprehensive book [Zol97]. Note that this class of
metrics is only one possible choice and it would be very enlightening to find other distances that
can serve in this area.

2.1. Definition and main properties

We aim at considering random variables taking their values in a real vector space B that can
be endowed with a complete norm || - || which turns (B, || - ||) in a Banach space. There are
several reasons why the concept of non-separable Banach spaces equipped with the usual Borel-
o-algebra as state spaces for random variables is inappropriate, for more details see the beginning
of Section 2.5. There we will endow B with a considerably smaller o-algebra. Henceforth, for

'Indeed, [Zol78] was his first work on probability metrics and had already appeared 1976 in Russian language in Mat.
Sb. (N.S.),101(143)(3):416-454, 1976.

13



2. The Zolotarev metric

the current section and Sections 2.2 and 2.3, we will always assume (B, || - ||) to be a separable
Banach space equipped with Borel-o-algebra B. Moreover, we will, here and in the case of non-
separable B, always endow R¢ for d > 1 with the usual Euclidean norm and Borel-o-algebra.
We denote by M (B) the set of probability measures on B. For functions f : B — R which are
Fréchet differentiable we denote the derivative of f at a point 2 by D f(z). Observe that D f(x)
is an element of the topological dual L(B,R) of continuous linear forms on B. We also consider
higher order derivatives, where D™ f(z) denotes the mth derivative of f at point x and D™ f is
a continuous multilinear form on B. Note that the space of multilinear functions g : B"™ — R is
equipped with the norm

lgll = sup lg(has ..oy hm)ll.
1AL el | 1

For a comprehensive account on differentiability in Banach spaces we refer to book of Cartan
[Car71]. Subsequently, s > 0 is fixed and for m = [s] — 1, = s — m we define
Fo:={f:B=>R:[D"f(z) - D" f(y)| < |z —yl*Vz,y € B} 2.1)

Definition 2.1. Ler s > 0 and m = [s] — 1, = s — m. For u,v € M(B) the Zolotarev distance
between . and v is defined by

Cs(p,v) = sup [E[f(X) = fF(Y)]], (2.2)
fEFs

where X and Y are B-valued random variables with L(X) = pu, L(Y) = v. X.

A priori the expression (2.2) is not necessarily finite or well-defined. A simple application of
Taylor’s formula, see Lemma 2.9, shows that (2.2) is well-defined, if

Bu(uwv) i= [ llalfdu+ [ follav < oc 23)
and moreover finite if additionally
/f(x,...,:v)d,u:/f(x,...,x)du, (2.4)

for any continuous k-linear formon Band 1 < k < m.
Let u, v be probability measures on B satisfying condition (2.3) and f be a k-linear form on B
with k& < m such that

/f(x,...,x)d,uyé/f(x,...,m)dz/.

Then, as the mth derivative of f is constant, the function C' f belongs to F; for any C' > 0. Thus,
we have

Gl v) = sup [E[f(X) — [(¥)]] = co.
JeFs

As a consequence we can say that, for any probability measures u, v satisfying (2.3), finiteness
of {s(p, v) is equivalent to condition (2.4). Moreover, for various Banach spaces, such as Hilbert
spaces or C[0, 1], we have the following: If u, v satisfy (2.3) then condition (2.4) can be replaced
by

/ Fu@) - fu(@)dp(z) = / Fu(@) - fo(2)du(a), 2.5)

for all 1 < k < m and continuous linear forms f1, ..., fr. We discuss this property in more detail
in Section 3.2 and only give a proof in the Hilbert space case here. Note that this equivalence does
not hold for arbitrary Banach spaces, see [JK].

14



2.1. Definition and main properties

Lemma 2.2. Let B be a separable Hilbert space with scalar product < -,- > and p and v be two
probability measures on B satisfying (2.3). Then, for any k € N, the conditions (2.4) and (2.5)

are equivalent.

Proof. Let (e;);>1 be an orthonormal basis of B and f be a continuous bilinear form on B. Then,
using the Riesz representation theorem, we have

fla,y) =< Az,y >=)_ < Az,e; ><y,e; >=»_ < z,0; >< y,¢ >
i>1 i>1

for some continuous linear operator A and sequence (v;);>1 in B. The theorem of dominated
convergence in connection with Parseval’s identity and the Cauchy-Schwarz inequality implies

/f(x,x)du(x) = ;/ < z,v; >< x,e; > du(r)

since [ ||z||?du(x) < oco. This shows the assertion for & = 2. The remaining cases follow
analogously. 0

For p, v satisfying (2.3), the definition of (s(u, ) does not involve the common distribution of p
and v, hence we will use the abbreviation

G(X,Y) = ((L(X), L(Y))

for random variables X, Y in B with finite absolute moments of order s. Let M (B) be the
subset of M(B) of distributions g such that [ ||z|*du(z) < co. We fix a probability measure
v € My(B) and denote by M(v) the set of all u € My(B) such that (2.3) and (2.4) are
satisfied. The first Lemma follows directly from the Definition.

Lemma 2.3. (; is a pseudometric on M(v).

The next Lemma exhibits a very useful property of (, for the purpose of recursive decompositions
of stochastic processes. It is Theorem 3 in [Zol77].

Lemma 2.4. Let B’ be a Banach space and g : B — B’ be a linear and continuous operator.
Then we have

Cs(9(X), 9(Y)) < llg[°¢s (X, Y).
for L(X), L(Y) € Ms(v) where ||g|| denotes the operator norm of g, i.e. || g|| = supjjy<1 [|g(@)]]-

Proof. Note that g is bounded. It suffices to show that

{llgll™ fog:feF}CF,

where F, is defined analogously to Fs in B’. Let f € Fsandn := ||g||”® f og. Then 7 is m-times
continuously differentiable and we have D"'n(z) = ||g||”* (D™(f(g(x)))og®™ for x € B. Here,
g®™ . B™ — (B')™ denotes the tensor product g®"(hy, ..., hm) = (g(h1),...,9(hy)). This
implies

D™ n(z) — D™ n(y)]| lgll™* (D™ f(g(x))) 0 g¥™ = (D™ f(g(y))) 0 g°™|
g~ lg(z) — g()II*

= gl llg(z = lI* < [lz —yll*

IN

The assertion follows. O
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2. The Zolotarev metric

Another basic property is that (; is (s, +) ideal. This is Lemma 3 in [Zol76].

Lemma 2.5. (; is ideal of order s in M(v) for any v € M(B), that is

CS(CX?CY) = |C‘S§5(X,Y),
GX+2ZY+Z) < G(X,Y)

forc € R\{0}, (X,Y), Z independent, L(X),L(Y) € Ms(v) and L(Z) € M(B).

Proof. The map h. : B — B, h.(z) = cx is a linear and continuous operator for any ¢ € R.
Hence, by Lemma 2.4
Cs(eX,cY) < c]*¢s(X,Y).

Applying the Lemma with %, . gives the inequality in the other direction. For any z € B, f € F;
the map g, : B — B, g.(z) = f(z + z) is also element of F5. Conditioning on the value of Z
yields |[E[f(X +2Z) — f(Y + 2Z2)]| < (s(X,Y) forall f € F, which implies the second assertion
of the lemma. O

The Lemma directly implies the following corollary by an adaption of the triangle inequality.

Corollary 2.6. Let £(X1), L(Y1) € Ms(v1) and L(X2), L(Y2) € Mg(v2) with arbitrary vy, vy €
M(B) such that (X1,Y1) and (X2, Y2) are independent. Then

Cs( X1+ X2, Y1 +Y2) < ((X1, Y1) + (s(X2, Y2).

We want to give a result similar to Lemma 2.4 where the linear operator may also be random
itself. We focus on the case that B’ either equals B or R where an extension to R? for d > 1
is straightforward. Let B* = L(B,R) be the topological dual of B and B be the space of all
continuous linear functions from B to B (continuous endomorphisms). Endowed with the norms

lall = sup Ja(x)], b= sup [b(z)],
2€B, |al|<1 v€B|z]|<1

fora € B*)b € B both spaces are Banach spaces. However, these spaces are typically non-
separable, hence not suitable for purposes of measurability. Therefore, we will equip them with
considerably smaller o-algebras. We start with the dual space: Similarly to the weak-* topology,
we let B* be the o-algebra on B* that is generated by all norm-continuous linear forms ¢ on B*
[that is elements of the bidual B**] of the form ¢(a) = a(z) for some x € B. Note that the
set of these continuous linear forms coincides with the bidual B** if and only if B is reflexive, a
property that is not satisfied in our applications. We move on to B and define B to be generated
by all norm-continuous linear functions 1 from B to B of the form ¢(a) = a(z) for some z € B.
By Pettis’ Theorem, we have B = o(¢ € B*). Hence, if S C B* with B = o(¢ € S), then B is
also generated by the continuous linear forms ¢ on B that can be written as o(a) = £(a(z)) for
¢ € S and z € B. Using the separability of B it is easy to see that the map a — ||a|| is B* — B(R)
measurable for a € B*. In the same way, one shows that b — [|b|| is measurable with respect to
B — B(R).

Definition 2.7. By random continuous linear form on B we denote any random variable with
values in (B*,B*). Analogously, random continuous linear operators on B are random variables
with values in (B, B).
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2.2. Upper bounds for (

To settle issues of measurability, note the following: For any @ € B*,x € B, random continuous
linear form A and random variable X in B, we have that a(X ), A(z) and A(X) are again random
variables. The latter follows from measurability of the map (a,z) — a(z) with respect to B* ®
B — B. This is due to the separability of B, we have

{(a,xz) € B* x B:a(z) <r}
=U U N Ul{aeB*:ale;) <r—1/k} x{zx € B:|x—el <1/n},

E>1m>1n>mi>1
where {e; : i > 1} denotes a dense subset of B. Exactly the same is true for b(x), A(x), A(X)
when b € B,z € B, A denotes a random continuous linear operator and X a random variable in
B. The following Lemma is immediate from Lemma 2.4 by conditioning.

Lemma 2.8. Let L(X), L(Y) € M(v). Then, for any random linear continuous form or opera-
tor Awith E[||A||*] < oo independent of X andY, we have

Gs(A(X), A(Y)) < E[[[AI"] G(X, Y).

Note that the assumptions in Lemma 2.4, Lemma 2.5, Corollary 2.6 and Lemma 2.8 are sufficient
to guarantee finiteness of all (;-distances in the statements.

We close this section with the simple observation that any relevant property of ( is invariant under
isomorphisms. Indeed, if B’ denotes a Banach space and ¢ : B — B’ is isomorphic, then

Gs(p(X), oY) < llol*¢s(X,Y) (2.6)

for L(X),L(Y) € Mg(v) by Lemma 2.4.

2.2. Upper bounds for ¢

In this section we give upper bounds for (s, mainly for two reasons: First, we address the question
of finiteness of the distance and second to infer convergence in (s from other types of convergence.
Zolotarev gave many upper (and lower) bounds for (s, some of them being valid only if more
structure of B is assumed. The only upper bound we will use subsequently comes from Theorem
2.17 and therefore we include the short proof for the reader’s convenience. For any m times
continuously differentiable function f : B — R, we have by Taylor’s formula

el () Ty, X L1 —4m-1
f(x)zzf (0)(.’ ’ )+/0 %f(m)(tx)(:n,...,x)dt.

Hence we let

@ Ty...,T L —¢)ym-1
orla) = flo) - Yo FO G t) - PO gt @)
i—0 ! 0 !

be the remainder term in the Taylor expansion of order m of f at point 0, where Q(x) = fim) (z)—
f(m)(O). For f € F, we have

Q) (2, ..., 2)|| < t%[l]®
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2. The Zolotarev metric

which gives E [| f(X)|] < oo for f € Fs, L(X) € M4(B) and

I'l+a)
)~ 0] < fresd

By(X,Y),

for L(X),L(Y) € M,(v) where Bs(X,Y) := Bs(L(X),L(Y)) and Bs(u,v) was defined in
(2.3). Since the right hand side does no longer depend on f this immediately implies the following
result which is Lemma 2 in [Z0l76].

Lemma 2.9. If L(X),L(Y) € M(v) then

I'l+«)

G(XY) < m

Bs(X,Y).
For improved upper bounds we introduce other metrics on the space of probability measures. For
5 > 0 and probability measures y and v, let

Cs(p,v) = nf (B [| X = Y|[°])mn@/sh), (2.8)

where the infimum is taken over all random variables (X,Y") on the product space such that
L(X) = pand L(Y) = v. For random variables X, Y with values in B, we set {3(X,Y) =
ls(L(X),L(Y)). Note that £5(X,Y") is finite if both || X || and ||Y'|| have finite s-th moment. By
the separability of B, it is not hard to see that the infimum in (2.8) is attained if both X and Y
have finite absolute moment of order s. The short proof is given in Lemma A.2 in the appendix.
The historical background of the metric is diverse, it seems that it first appeared in Gini’s work on
the Gini coefficient in 1914. There are several other terms for /5, among them Wasserstein and
Kantorovich metric. We list several of its properties here and include proofs in the appendix. For
more detailed information on /5 we refer to [BF81] or the book of Rachev [Rac91]. The following
characterization of ¢; convergence can be found in both references [Lemma 8.3 in [BF81] and
Theorem 8.2.1 in [Rac91]]. A short proof is given in Lemma A.3 in the appendix.

Lemma 2.10. Ler s > 0 and E [|| X,,||°] , E[|| X ||*] < oo for all n. Then {s(X,,, X) — 0 implies
X,, = X in distribution and E [|| X, ||*] — E[||X||*]. The converse is true as well.

A further quantity that serves in the context of bounding (; from above is defined by
Rs(X,Y) = (X XL YY)

for B valued random variables X,Y. r4(X,Y) is also called the difference pseudomoment of
order s. It is easy to see that {5 and x are not equivalent. However, there are close in the sense of
the following Lemma, whose proof is contained in Lemma A.4 in the appendix. Note that both £
and k are indeed metrics on M(B), we refer to [BF81, Lemma 8.3] for a proof.

Lemma 2.11. For s > 0, the topologies induced by U, ks on M(B) are equal.

The quantities ¢; and ks are constructed as minimal versions of E [||g(X) — ¢g(Y)]|] for a given
function g : B — B whereas (; is defined as the supremum of |E [f(X) — f(Y)]| with certain
constraints on the function f. Both techniques are related by a classical Theorem of Kantorovich
and Rubinstein, see [KR58] (for B compact) and [Dud76] for the general case.
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Theorem 2.12. Let (S, d) be a separable metric space and X,Y be S-valued random variables
such that E [d(z, X)],E[d(y,Y)] < oo for some (hence all) x,y € S. Then

inf B [d(X,Y)] = sup{[E [f(X) = F(V)]| : [ : S = R, [f(2) = f(y)| < d(z,9)},

where the infimum is taken over all possible realizations of (X,Y') in S? with fixed marginals. The
supremum on the right hand side is attained for some 1-Lipschitz function f : S — R.

This leads to an alternative representation of k5. For B valued random variables X,Y with
E[|X|I°L, E[||Y|]*] < oo, we have

hs(X,Y) = sup{[E [f(X) — f(V)]|: f: B =R, [f(z) — f(y)] < llzll=]I*" = yllyl*~H]}.

For s = 1, this immediately follows from Theorem 2.12. For general s, use the observation that
d(z,y) == ||z||z||*~* — y|ly||*~!|| is a metric on B that defines the same topology as || - ||. Note
that the direction > of the latter expression is immediate from the definition of k.

Example 2.13. Let us consider the case B = R. Here, both metrics /; and «s have nice rep-
resentations. Let U be uniform on the unit interval, X,Y real-valued random variables with
E[|X|],E[]Y|] < coand s > 1. Then

1 1/s
((X,Y) = |Fx'(U) = Fy ' (U)]s = (/0 Fx'(u) Fy_l(u)st> , (2.9)

where Fii!(u) = sup{z : Fx(z) < t} with Fx(t) = P (X < t) denotes the generalized inverse
of the distribution function of X [If /4(X,Y) is infinite, then the same applies to the right hand
side of (2.9)]. This was first proved by Dall’ Aglio [Dal56], see [Maj78] for a proof in English
language. For s = 1, a simple geometric argument shows that this representation is equivalent to

0H(X,Y) = / Py () — By (u)du. (2.10)

—0o0

Moreover, if E [| X || ,E [|Y]] < oo then (;(X,Y") coincides with £; (X, Y") and the right hand sides
of both (2.10) and (2.9) (with s = 1). We provide a short self-contained proof thereof not relying
on the Kantorovich-Rubinstein Theorem in Lemma A.5 in the appendix. A simple parameter
transformation leads from (2.10) to a similar representation of xs. We have

ke(X,Y) =5 </OO lu* 7 Fx (u) — Fy(u)|du> : (2.11)

—0o0
for all s > 0.
We move on comparing the metrics ¢, x5 with (5. For s < 1, the definition of F; directly gives
((X,Y) < Ls(X,Y) (2.12)

for E[||X||*] ,E[|IY||*] < oco. Again, by Theorem 2.12, we have equality in (2.12) by the separa-
bility of B.

Corollary 2.14. Let s < 1 and E[|| X||*] ,E[||Y||*] < oc. Then (s(X,Y) = £5(X,Y).
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2. The Zolotarev metric

For applications with s > 1 we will use an upper bound for (, in terms of ¢, which we state as
Theorem 2.17 at the end of this section. Zolotarev himself gave upper bounds in terms of x; in
[Zol76, Section 4]. Like Lemma 2.9, they are based on a Taylor expansion of functions from class
Fs.

Theorem 2.15. Let L(X),L(Y) € M;(v) and bg = min(E [|| X||*], E[||Y[|*]). Then, for s > 0,

I'l+a)

GXY) < m

(2mks + (2k5)*bL7). (2.13)

Under the same conditions and for integer values of s, it holds

2K

(2.14)
If B is a Hilbert space both inequalities remain valid if we remove the 2’s on the right hand sides.
On M(v), convergence in ks implies convergence in (.

Remark 2.16. Zolotarev emphasizes that, in general, the condition (2.3) would not be necessary
for finiteness of (s(u,v). For s > 1 integer, (s(u,v) is well-defined and finite if only (2.4) and
ks(X,Y) < oo where L(X) = p, L(Y) = v hold true. In this case (2.14) remains valid. By
Theorem 4 in [Zol77] a similar statement is true for any s > 0 if v5(X,Y") < oo where v5(X,Y)
denotes the absolute pseudomoment of order s of X and Y. It is defined by

Ve(X,Y) = / [ul*d|Px — Py |(u),

where |Px — Py | is the variation measure of the signed measure Py — Py. However, E [|| X||*] =
00, E [||Y]|*] = oo may imply non-integrability of f(X) for certain functions of Fs. Thus, an ap-
propriate definition of ((u, ) involves a minimization over all possible random variables (X, Y")
on the product spaces with marginals p and v just as in the definition of /5. We do not want to deal
at all with this case.

We now state and prove the £; bound for s > 1. It is Lemma 5.7 in [DJNOS].
Theorem 2.17. Let L(X),L(Y) € My(v) with s > 1. Then

(s(X,Y) < [(E (XD + @YD Y| Lo(X, Y).

In particular, {5 convergence implies (s convergence in M (v).

Proof. Recall the function g7 from (2.7) for f € F;

" fO0)
(@) = §(@) - f(0) = 3 LB t)

The ¢-th summand is ¢-linear in its argument hence it vanishes for x = 0 and its i-th derivative is
constant. This gives

g7(0) = Dgs(0) =--- = D"gs(0) =0
and
|D™g5(2) = D™gs(y)]| = D™ f(x) = D™ F )| < o — yl|*
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2.3. Lower bounds on (

By the mean value theorem, for any x € B it exists 0 < § < 1 with
ID" tgp(x)|| = | D™ gp(0z) ()| < [lao]|*

and by backward induction
1D gy ()| < [l=]*~*,

forall 0 < k < m. Now, for z,y € B, again using the mean value theorem, there exists 0 < 6 < 1
such that

lgs(y) = g5 @)l = 1Dg(a+0(y — 2))(y — 2)| <11 = )z + Oyl |y — |
("= + Nyl =Hlly — |l

IN

using the triangle inequality and (1 — 6)||z|| + 0||y|| < max(||z||, ||y||) in the final step. Holder’s
inequality now implies

[E[f(X) = F(Y)]|

IN

E[lg(X) — g < E[(IX** + Y)Y - X]]
EIX |7 + BV B ()Y - X))

IN

Taking the supremum over f € F, and the infimum over realizations of £(X) and L(Y) the
assertion follows. Ul

2.3. Lower bounds on (;

Upper bounds are of interest to prove convergence of a sequence of random variables (X,,) to
a random variable X in the (, distance. Lower bounds however are of great importance aiming
to infer other modes of convergence, in particular weak convergence, from convergence in the
Zolotarev distance. In principle, lower bounds can be easily obtained by choosing arbitrary func-
tions f from F;. Therefore, the richness of Fy plays a major role. Our main focus in the section
lies on the following two problems.

e Does (s(p,v) =0imply u=v?
e Does (s(fin, ) — 0imply pu, — p weakly forn — oo ?

In general, only the first problem has a positive answer. However, we will give considerably weak
additional assumptions on (u,) and u to obtain weak convergence for the cases of continuous or
cadlag functions on the unit interval in Section 2.6. A simple, yet useful bound in the case of
real-valued random variables comes from by the observation that for all s > 0 integer, we have
C;lf € Fs with

f(z) = 2%, Cs = s!

This gives
[E[X*]-E[Y°]]| < Css(X,Y) (2.15)

for £(X),L(Y) € Ms(v) and B = R. This result is rather simple, however, based on it as a
lower bound and on the upper bound given in Theorem 2.15, Neininger and Riischendorf [NR02]

(28071 2) = 0 <1°g”> ,

n

were able to prove that

21



2. The Zolotarev metric

where, as mentioned in the introduction, Z* = (Var [Z,])~"V/?(Z,—E [Z,]) is the precise rescaled
version of Z,,, the number of key comparisons in the randomized Quicksort algorithm, Z its weak
limit given by the solution of (1.7) and 0> = Var [Z]. It is still an open problem to determine the
order of convergence in this problem for more common metrics, e.g. the Kolmogorov metric

o(X,Y) =sup|P (X <u)—P (Y <), (2.16)
z€R

or the Lévy-Prokhorov metric
7(X,Y) = inf{e>0:P(X €C) <P (Y € C°) +¢eVC closed}, (2.17)

where C° = {x € R : ||z — y|| < e forsome y € C'}. Bounds on the convergence rates in the
Quicksort problem in the Kolmogorov metric and the £, metrics for p > 1 have been obtained
in [FJO2]. Note that the Lévy-Prokhorov metric has an obvious extension to the case of arbitrary
metric spaces.

(2.15) naturally poses the question whether there exists constants C such that Cy||z||® € Fs. In
general, this cannot be the case, since the norm function may not be differentiable, B = CJ[0, 1]
is one of these cases [see Lemma A.6 in the appendix for a proof]. Nevertheless, it is true in
Hilbert spaces. This is easy to show for integer values of s and more involved in the general case.
Zolotarev gives a proof containing a slight mistake in the last step in the case of 1 < s < 2 [Z0l76,
Theorem 6]. Based on his arguments, we give a proof covering all cases here.

Lemma 2.18. Let B be a Hilbert space, s > 0. Then, there exists a constant Cs > 0 such that
Csl|z||* € Fs. Thus, for any L(X),L(Y) € M(v), we have

EIX1T=ENYIT] < O (X, Y).

Proof. Let v(x) = ||z|| and vs(x) = ||z||°. Obviously, vs(z) € Fs for s < 1. For s € 2N, it is
easy to see that || DSv,(x)|| is constant and equals s!. Hence Csvs(z) € Fy where Cy = (s!)7L
For the remaining of the proof fix s € RT\2N. Let # # 0. Then, it is not difficult to see that for

every k > 0

k—0)/2

‘ (
DFvy(x)[h1, ..., hi] = Z ZCngHS*kJ H <z, hi > H < hj., hy, >
r=1 r=1

0<t<k/f=Kkmod2 *

where, for fixed /, the second sum ranges over all disjoint sets {71, ...,i¢}, {j1,- - -, J(k—r)/2} and
p1s - Pp—py 2} With 1 <y < oo <dp <k, 1 < g1 < oo < J—pye <k, Ji < pifor
i=1,...,(k—¥¢)/2and ¢/ = s(s — 2)--- (s — (k + £) + 2). This representation is used also in
[Jam77, Lemma 1]. Thus, for y # 0, the term D™vg(x) — D™v4(y) consists of summands of the

form

V4 V4 (m—20)/2
cr (Hx“"‘“ I <2 hi > =lwl* T < v b, >> I <nhp > (2.18)

r=1 r=1 r=1
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2.3. Lower bounds on (

For ¢ = 0, the norm of this term is bounded by cy|||z||* — ||ly|%| < cellx — y||*. For 1 < ¢ < m,
we can express (2.18) as

13 14 (m—£)/2
S ol ] < hi, <z —yhiy > [[ <whi> [ <hivhp, >
0<t<l—1 r=1 r=t+2 r=1
(2.19)
L (m—20)/2
+ellzl =l [T < wohie > [T < hjor b > (2.20)
r=1 r=1

Let ||y|| < ||=||. Then, the norm of each of the summands in (2.19) is bounded by

l1-a
_ r—y —
el =yl < eo (B) o -yl < et - e
Additionally, the norm of the term (2.20) is bounded by ¢,3(¥, ||z, ||y||) where (¢, z,y) = y* —
y‘x®t for x,y € Rt and ¢ € N. It is easy to see that 3(¢,z,y) < ({/a — 1)(z® — y®) for
x >y > 0. Thus,

B [l lyll) < (¢/a =Dl = llyl*) < (¢/a =]z —y||*.

Overall, for ||z|| > ||y|| > 0, the term || D™'vg(x) — D™vs(y)||/||z — y||* is bounded uniformly in
x,y. Finally, note that v5(0) = D, (0) = --- = D™y, (0) = 0, so the case that y = 0 or / and
2 = 0 can be handled with ease. O

A useful concept in the issues of uniqueness and convergence of distributions is that of character-
istic functions (or Fourier transforms).

Definition 2.19. Ler X be a B valued random variable. The function ¢x : L(B,R) — C defined
by

is called characteristic function of X.

Obviously ¢ x only depends on the distribution of X so the characteristic function is naturally
defined for measures, we omit this reformulation here. The theory of characteristic functions in
infinite dimensional spaces is considerably more involved than in R?; nevertheless, our first result
resembles the corresponding statement in the multivariate real case and can actually be easily
proved relying on the latter. It was first noted by Kolmogorov [Kol35].

Theorem 2.20. The characteristic function uniquely determines the distribution, i.e. ¢px(h) =
¢y (h) forall h € L(B,R) implies L(X) = L(Y).

The next Lemma which essentially coincides with Theorem 2 in [Zol77] allows the transition from
characteristic functions to functions from class F.

Lemma 2.21. Let h € L(B,R) and e(x) = ™) for x € B. Then e is smooth. Remembering
s =m + a, we have 2°7||h|| =% sin(h(z)) € Fs and 2 1||h|| =% cos(h(z)) € Fs.
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2. The Zolotarev metric

Proof. The smoothness property is trivial since continuous linear forms are smooth and also z —
€' is. Observe that

e () (u1, . . . um) = iMe(@)h(ur) - - - ().

Using Lipschitz continuity of ¢** and min(2, ) < 2172 for z > 0 we obtain

le™ () =™ ()] < le(z) = el)llIR]|™
< AI™ min(2, [h(z) = h(y)l) < 270l |le - .
Since e(z) = cos(h(x)) + isin(h(x)) the result now follows by linearity of the derivative. O

The Lemma immediately implies

(px (h) — oy (h)] <227 ||A[|*¢(X,Y) (2.21)

for all h. In particular we have ¢x = ¢y if (s(X,Y) = 0. Together with Theorem 2.20 this gives
the following theorem.

Theorem 2.22. Let L(X),L(Y) € Ms(v). If (s(X,Y) = 0 then L(X) = L(Y), in particular

(s is a metric on M(v).

In his papers, Zolotarev defines the (s distances using functions from B to the space of complex
numbers. This would allow to work directly with e(z) and save a factor of 2 in (2.21).

We now move on to the question whether convergence in the Zolotarev distance implies weak
convergence. As in Lemma 2.18, the smoothness of the norm function z — ||z|| plays a crucial
role. That is one main reason why Hilbert spaces are much easier to handle than general Banach
spaces. There, one can only hope for good approximations of the norm by smoother functions. By
Theorem 2.12 and Lemma 2.10 ¢, convergence implies weak convergence for 0 < s < 1. A direct
proof not relying on the Kantorovich-Rubinstein Theorem is contained in the proof of the classical
Portementeau Lemma [Bil68, Theorem 2.1, ii)= iii)] together with Theorem 1.2 there. We will
make use of the latter theorem several times, so we state it as Lemma A.1 in the appendix.

Corollary 2.23. Let 0 < s < 1. Then (s convergence implies weak convergence.

We now move on to the general case. Let £(X,,), L(X) € M(v) for all n with (5(X,,, X) — 0.
According to (2.21), we have ¢x, (h) — ¢x(h) for every h € L(B,R). This immediately
connects our question to Lévy’s continuity theorem and motivates the following definition.

Definition 2.24. A Banach space B has property PL if the following statements are equivalent:
i) X, — X forn — oo in distribution,
ii) ¢x, (h) = ¢x(h) forevery h € L(B,R) as n — oc.

By definition (i7) follows from (7) so the interesting direction is i4) — 7). It is well-known that any
finite dimensional Banach space has property PL, thus (s convergence implies weak convergence
in finite dimensional Banach spaces. However, it is easy to see that not every Banach space B has
property PL. The following example is taken from [Mou53].
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2.3. Lower bounds on (

Example 2.25. Let B be an infinite dimensional separable Hilbert space with a basis (e;);en of
orthonormal vectors. Let (X;);cn be a sequence of B-valued random variables with £(X;) = de,.
Fix h € L(B,R). By the Riesz representation theorem there exists y;, € B such that h(z) =
(w,yn) for all z € B. Furthermore if y, = ),y cue; then a; — 0 since |y = [|h] < oc.
Therefore h(e,) = ay, — 0 which implies ¢x, (h) — 1. This means ¢x,, (h) — ¢x(h) if X has
distribution dy. But obviously X,, does not converge to X in distribution.

In fact, by results in [Bou73], no normed vector space of infinite dimension has property PL.
In their works on the central limit theorem in Hilbert spaces, Giné and Leén [GL80] proved the
following theorem, see also [DJNO8, Theorem 5.1].

Theorem 2.26. Let B be a separable Hilbert space. Then (s convergence implies weak conver-
gence.

In the general case, note that (s convergence uniquely determines the possible limit in the weak
topology. Solely the question of tightness of (X,,) remains open. We summarize the relations
between /., ks and (s by combining the statements of Lemma 2.10, Theorem 2.17 and Lemma
2.18.

Corollary 2.27. Let L(X,,), L(X) € M(B) for all n. Then, ks(X,,X) — 0 if and only if
ls(Xn, X) — 0. Furthermore, if L(X,,), L(X) € M(v) for all n, then {5(X,,, X) — 0 implies
Cs(Xn, X) = 0. (5(Xpn, X) — 0 implies 05(X,,, X) — 0if and only if (s(X,,, X) — 0 implies
X, — X in distribution. If B is a Hilbert space then (s, ks and U induce the same topology on
M (v).

The proofs of Corollary 2.23 and Theorem 2.26 are straightforward in the sense that no other
metrics on the space of probability distributions are involved. For the remaining of this section we
discuss lower bounds on the Zolotarev metrics in terms of the Lévy-Prokhorov metric as defined
in (2.17). Bounds of this type have been proved by Zolotarev [Zol76], Jamukov [Jam77] and
Senatov [Sen84] (based on results in [Sen83]). We collect them in the following Theorem. Here,
for a subset 2l of the Borel sets in B, let

(X, V;20)=inf{e>0:P(X € A) <P (Y € A%) +¢,
PYeA)<P(XeA)+eVAcA},

with A° = {z € B : ||z — y|| < e forsome y € A}. Moreover, we abbreviate € for the set of
convex measurable subsets of B and & for the set of closed spheres.

Theorem 2.28. For all 0 < s < 1 we have
(X, Y) < (XY, (2.22)

Let s > 0 and the norm function n(x) = ||z|| be m + 1 times differentiable for all x # 0 such that
there exists constants A1, . .., A1 With

In® ()| < Aglln'* ()| (2.23)

forallk =1,...,m + 1. Then there exists a constant Cs = Cs(«, A1, ..., Apmy1) such that
XL Y] < CsCs(X,Y). (2.24)
(X, Y 6) < Culo(X,Y). (2.25)
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2. The Zolotarev metric

Assumption (2.23) is satisfied in any Hilbert space. If B is a Hilbert space then, forany 0 < s < 2,
(X, Y;€) < CG(X,Y) (2.26)
for some constant C' > 0 which can chosen independently of s. Finally, if B = RY, then

TT(X, Y3 €) < CudE TR (X)Y), s>, (2.27)
(X, Y) < CodB~92¢(X,Y), s> 0. (2.28)

Here Cs denotes a constant which depends on s (but not on d).

The simplest bound (2.22) is mentioned in [Zol84] and [Sen83]. (2.24) is proved in [Z0l76], (2.25)
can be deduced easily from (2.24) as indicated in [Zol79b]. The final three bounds (2.26), (2.27)
and (2.28) are obtained in [Sen84]; weaker versions of (2.28) have been proved in [Jam77]. We
only outline the proofs here: Let ¢ < 7(X,Y") and C be a closed set with

e<P(XeC)—P((Y e€C).

It is sufficient to find a real-valued function f (depending on s,c and C on B) and a constant
¢ > 0 only depending on s such that || f|| < 1, f(z) = 1forxz € C, f(z) = —1 forz ¢ C* and
ce’f(x) € Fs. Then, 7'T5(X,Y) < 1/(2¢)¢s(X,Y) follows from the observation that

E[f(X)— f(Y)] > 2P (X € B) - P (Y € BY)) > 2.

For 0 < s < 1, the existence of such a function f and constant ¢ which can be chosen to be two is
guaranteed by Lemma A.1 in the appendix. This gives the bound (2.22).

2.4. (, in type p Banach spaces

Bentkus and Rachkauskas [BR85] were the first to mention that (; convergence does not always
imply weak convergence. Additionally, they claimed that any bound of the form 7% < ¢ ¢,
with 8,¢ > 0,s > 1 can not be valid for arbitrary Banach spaces (and not even for separable
Hilbert spaces). We discuss this by drawing attention to the central limit theorem and start with
the real-valued case. Let X1, Xo, ... be a sequence of independent and identically distributed real-
valued random variables with zero mean and finite variance o2, The central limit theorem, short
CLT, states that S}, = n~'/23""" | X; converges in distribution to a normally distributed random
variable N with zero mean and variance o2. Additionally, if E [| X |?] is finite, the classical Berry-
Essen Theorem gives

o(S;,N) = 0(n~Y/?),

where o denotes the Kolmogorov distance defined in (2.16) and the rate is known to be of this
order. The bound is actually uniform for all distributions of X; with fixed variance and bounded
absolute third moment but we do not emphasize this here. In the Lévy-Prokhorov distance, an
upper bound of the form

7(SE,N) = O(n~1/?)

is known as well [Yur75]. Let us now consider the Zolotarev distance. Assuming E [| X |*] < oo
for some s > 2, the ideal property of (s and the convolution property of the normal distribution
directly imply

Co(S5, N) = (o(Xy, N)n! /2, (2.29)
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Hence, for s = 3, we have the same order of convergence as in the Kolmogorov distance. Further-
more, assuming E [X}] = 0and E [| X1|*] < oo for some 3 < s < 4, the (, rate improves whereas
assuming higher moments does not improve the rate in the Kolmogorov distance in general. The
crucial observation is: The proof of (2.29) works analogously in any Banach space assuming that
X1, N both have mean zero [thatis E [f(X)] = E[f(N)] = 0forall f € B*], E[||X1]|*] < oo for
some 2 < s < 3, N is normally distributed [that is f(/N) is normally distributed for all f € B*]
and (2.4) is satisfied for k = 2. In fact, the behaviour of the distance between S,, and N in the
weak topology may change dramatically when the structure of B is decreased.

Hilbert space case: By the classical result of Varadhan [Var62] the CLT remains valid in Hilbert
spaces; that is X satisfies the CLT if X has mean zero [that is E [< X, v >] = 0 for all v € B]
and E [[| X ||?] < co. However, according to a result by Senatov [Sen81], there exists a symmetric
probability distribution x concentrated on the unit sphere of ¢2 (such that [ ||z||*du(z) < oo for
all £ > 0) with the following property: If X has distribution w then, for any € > 0,

m(Sp, N) = Q(n™%),
where NV is normal with zero mean and the same covariance operator as y [that is
El< X,o>< X, w>]=E[<N,v>< N,w >]

forall v, w € B]. Note that equality of the covariance operator of X and IV implies (2.4) for k = 2
by Lemma 2.2. This shows that any bound of the form 7% < ¢, for § > 0,¢ > 0,2 < s < 3is
false in £2.

Banach space case: The central limit theorem is considerably more involved in general Banach
spaces. As it turns out, square-integrability of the norm of the distribution is neither sufficient nor
necessary to imply the CLT. In the context of the CLT, the following properties of a Banach space
are of great interest.

Definition 2.29. A separable Banach space B is of type 1 < p if for a sequence (Y,,) of indepen-
dent and identically distributed random variables with P (Y1 =1) = P(Y1 = —1) = 1/2 and

every finite sequence 1, . .., xy from B, there exists a constant C' > 0 such that
k p k
E D @Yl | <CY |lailP
i=1 i=1

Similarly, B is of cotype 1 < g < o0 if

k k q
Dol t < CE||Y ai
i=1 i=1
under the same conditions. For q = oo, this reduces to
k
sup |lzi|| <CE szYz
i=1,..., i—1
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2. The Zolotarev metric

It is easily seen that the definition of type only makes sense for p < 2 and that B has type p’ < p
if it has type p. In the same way, the cotype definition is meaningful only for ¢ > 2 and cotype ¢
implies cotype ¢’ for ¢’ > q. However, note that being of type p’ < p for all p’ < p does not imply
B to be of type p. The analogous result holds for the cotype. Every Banach space is of trivial type
1 and of trivial cotype oo. Type and cotype properties are related to the geometry of the space B,
we refer to [LT91] for a comprehensive discussion of this topic. Every Hilbert space is of type and
cotype 2 and a fundamental result by Kwapient [Kwa72] states the converse: Every Banach space
of type and cotype 2 is isomorphic to a Hilbert space. This generalizes Theorem 2.26 to Banach
spaces with this property. The following two Theorems are fundamental with the first dating back
to Hoffmann-Jgrgensen and Pisier [HJP76] and the second to Jain [Jai77].

Theorem 2.30. Let X be a zero mean random variable with E [||X HQ] < oo and B be of type
2. Then X satisfies the central limit theorem. Conversely, if every zero mean random variable X
with E [||X||?] < oo satisfies the central limit theorem, then B is of type 2.

In general, a zero mean random variable X with E [||X[|?] < oo (or at least well defined co-
variance operator E [f(X)g(X)] for all f,g € B*) may not satisfy the central limit theorem due
to two reasons: First, the corresponding normal distribution with the covariance operator given
by X does not exist on B. Second, and more important for us, X might be pregaussian, that is
of mean zero such that the corresponding normal distribution exists [i.e. N has zero mean and
E[f(N)g(N)] = E[f(X)g(X)] for all f,g € B*], but the sequence (S}}) fails to be tight. Note
that the sequence £(.S};),>0 can have at most one accumulation point in the weak topology which
is necessarily normal. The following result is the analogue to Theorem 2.30 in the case where the
first problem is ruled out.

Theorem 2.31. Let X be pregaussian and B be of cotype 2. Then X satisfies the central limit
theorem. Conversely, if every pregaussian random variable satisfies the central limit theorem, then
B is of cotype 2. Additionally, E [HX H2] < 00 for any pregaussian random variable X in a space
of cotype 2.

In general, nothing more can be said: First, for any ¢ > 2 there exists a Banach space of type 2 and
cotype g where one finds pregaussian random variables not satisfying the CLT. Second, for any
p < 2 there exists a Banach space of type p and cotype 2 in which bounded random variables are
not necessarily pregaussian. Furthermore Ledoux [Led84] shows that there exists a Banach space
of type 2 — ¢ and cotype 2 + ¢ for any € > 0 in which one finds bounded pregaussian random
variables not satisfying the CLT. Relating these results to the Zolotarev metrics, we can state the
following corollary.

Corollary 2.32. Let B be of cotype q > 2 such that there exists a zero mean pregaussian random
variable X with

o E[|X]*] < oo forsome2 < s <3,
o X, N satisfy (2.4) for k = 2 where N is the corresponding normal distribution,
o X does not satisfy the CLT.

Then (s(S;;, N) — 0 but S}, does not converge to N in distribution.
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2.5. The non-separable case and DI0, 1]

We present the following example in C[0, 1] which goes back to Strassen and Dudley [SD69]. Note
that C[0, 1] is of trivial type 1 and cotype oo.

Example 2.33. Forn > 1,7 =0,1,...,n% — 1, let

0 ifze{0,1},
gnj(x) = Q1 if6i+1<6"(n!)%xr < 6i+2,
—1 if6i+4 < 6"(n!)%x <6i+5,

where i = j+rn?,r =0,1...,6" 1((n—1)!)2 -1 and linear on all remaining intervals on [0, 1]
where it is not defined otherwise. Let (p,,) be a distribution on the natural numbers with p,, ~
n—>/4. Now, define the distribution of random variable X by P (X1 = gnj) =P (X1 = —gnj) =
pn/(2n?) foralln > 1and j = 0,1,...,n% — 1. Dudley and Strassen show that X7 is pregaussian
but (.S}) is not tight. This, together with the obvious boundedness of X and the fact that (2.4) is
automatically satisfied in C|[0, 1], see Section 2.6, shows that (5(.Sy,, N) — 0 whereas S;; does not
converge in distribution.

Note that, if (; convergence implies weak convergence in B, the same is true for any closed
subspace of B and any space B’ isomorphic to B as observed in (2.6). Hence, by the Theorem
of Banach-Mazur, if a sequence of probability measures (u,,) converging in (s but not converging
weakly can be found in some Banach space B, then it can also be found in C|0, 1].

2.5. The non-separable case and D|0, 1]

In this section we only treat cases of Banach spaces which are non-separable with respect to
their norm. The application we have in mind is the space of cadlag functions. The concept of
Borel measurability is unsuitable for functions mapping from an underlying probability space
(Q,A,P) to (B,]| - ||). We can give several reasons here: First, a classical result (using the
continuum hypothesis) by Marczewiski and Sikorski [MS48] shows that any random variable with
values in a normed space equipped with Borel-o-algebra has to be concentrated on a separable
subset. Second, it is a non-trivial result involving the axiom of choice that the sum of two Borel-
measurable functions in metric spaces is again Borel-measurable [For a counterexample in a non-
metrizable space see [Pac05]]. Finally, the random function X with values in D[0, 1] defined by

Xy = 1{t2U}7 t e [0, 1],

where U has uniform distribution on the unit interval is not Borel-measurable in (D[0, 1], - ||),
see [Bil68, Section 18]. One can find a certain number of alternative approaches to this problem in
the literature. Concerning D[0, 1], the uniform topology is still appropriate if we assume the points
of discontinuities to attain values only in a countable set. In this case, it is sufficient to consider a
separable subset of (D[0, 1], || - ||). A more general approach is given by Dudley [Dud66, Dud67]
also with applications to the case D[0, 1]. He works with the o-algebra B, generated by the set of
open spheres in (B, || - ||). Obviously By C B, the inclusion can be strict as we will see in the case
of D[0, 1] later. However, By may also coincide with BB in non-separable case as noted in [Tal78].
For a further approach to weak convergence in non-separable metric spaces see also [Pol79].
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2. The Zolotarev metric

The general setting: Subsequently, we will equip B with a o-algebra B, that is smaller than the
Borel-o-algebra generated by the norm which we will always denote by B. In other words B, C B.
We have to impose the following restrictions on the richness of B,:

Al. Forany ¢ € R and y € B the functions z — cz and x — x + y from B to B are B, — B,
measurable. Moreover, the function (z,y) +— x + y from B x B to B is B, ® B, — B,
measurable.

A2. The norm function z — ||| is measurable with respect to B,.

We make the following general abbreviation: In any definition, lemma, theorem and corollary in
the Sections 2.1, 2.2 and 2.3, assume the following:

R1. For any norm-continuous linear operator f : B — B’, additionally suppose that it is B, — B
measurable if B’ equals B and B, — B(RY) measurable if B’ = R? for some d > 1.

R2. For any norm-continuous multilinear from on B, additionally suppose that this function is
measurable with respect to the product-c-algebra BE,

R3. The class of functions Fs used to define (s in (2.2) is replaced by the subset of functions
from Fj that are additionally measurable with respect to 3,.. We denote this set by F;.

To illustrate our approach, note that
e M(B) is the set of all probability distributions on (B, B,),

e M, (B) is the subset of all distributions x from M(B) with [ ||z||*du(x) < oo (remember
that = — ||z|| is measurable by A2),

o for v € My(B), Ms(v) is the set of all 1 € M(B) such that (2.4) is satisfied for norm-
continuous multilinear functions that are measurable with respect to BEF,

The definition of Zolotarev distance remains as in the separable case under consideration of R3.
The quantities /5 and ~ are defined as in the separable case.

Using these abbreviations, the following results remain valid in the present case: Lemma 2.3,
Lemma 2.4 if B’ = B or B’ = R for some d > 1, Lemma 2.5, Corollary 2.6, Lemma 2.9,
the direction = in Lemma 2.10, inequality (2.12), Theorems 2.15 and 2.17, Lemma 2.18 in the
Hilbert space case and Lemma 2.21 together with inequality (2.21) under the constraint that h is
additionally B, — B(IR) measurable.

The converse direction in Lemma 2.10 relies on separability; however, it remains valid if we only
assume the limit X to be concentrated on a separable subset of B.

Assuming that B, is generated by a separable topology that is induced by a metric d, we restrict
the set of norm-continuous linear forms or operators in Definition 2.7 to those linear forms that
are additionally continuous with respect to d and those operators that are continuous as endomor-
phisms on (B, d). On these smaller state spaces the corresponding o-algebras are generated by the
same set of functions as in the separable case and additionally also by the norm function. Then
Lemma 2.8 remains valid.
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2.6. The Zolotarev distance on (C[0, 1], || - ||) and (D0, 1], ds)

In general, the characteristic function may not uniquely determine the law of a random variable,
whence we do not know whether (s(u, ) = 0 implies i = v. There is one important exception:
The proof of Theorem 2.20 only relies on the fact that I3 is generated by the continuous linear
forms; whence, if B, is chosen to be generated by this class of functions, Theorem 2.20 remains
valid. In this case (s is a metric on M(v). A discussion of weak convergence requires that B,
is generated by a topology. Then, Corollary 2.23 remains valid, if this topology is induced by a
metric d such that d(z,y) < C||z — y|| for some C' > 0 and all 7,y € B.

The case DJ0, 1]: The application we have in mind is the space of cadlag functions. On D|0, 1],
there is a well-known topology 7. introduced by Skorokhod [Sko56] which is induced by the so-
called Skorokhod metric dg. All relevant properties of the metric [also its precise definition that is
not of interest here] can be found in [Bil68, Section 3]; (D[0, 1], dsx) is a complete, separable, i.e.
Polish space. Convergence dgsi(x,, x) — 0 is equivalent to the existence of a sequence of mono-
tonically increasing bijections (\,,) on the unit interval such that A, (¢) — ¢ and x,,(\,,(t)) — x()
both uniformly on [0, 1]. Thus, we choose B, to be the o-algebra generated by dg; and denote it
by Bk It is well known that By is generated by the finite dimensional projections which shows
that the norm function is measurable with respect to . Note that these properties also imply that
B coincides with By, where By was introduced as the o-algebra generated by the open spheres
in the uniform metric. This proves the conditions A1 and A2 to be satisfied. According to The-
orem 2 in [Pes95], any norm-continuous linear form on D|0, 1] is measurable with respect to the
Skorokhod topology. Moreover, these observations immediately imply that any norm-continuous
linear function from DJ0, 1] to D0, 1] is By, — Bsr measurable. Hence, the restriction R1 is
negligible. Moreover, according to the results in [JK], any norm-continuous k-linear form is mea-
surable with respect to Bﬁk. Thus, restriction R2 is negligible as well. We do not know whether
the classes F and F coincide, i.e. if every function from F; is measurable with respect to Bg.
However, it will turn out that this issue is not problematic. Lemma 2.8 is valid in the cadlag case,
where one should keep in mind that we only allow random norm-continuous linear forms A that
are continuous with respect to dgz (or norm-continuous linear operators which are continuous as
endomorphisms on (D[0, 1], dg) to (D[0, 1], dsx)) such that | A|| is a real-valued random variable.
By our remarks on characteristic functions in the previous section, Theorems 2.20 and 2.22 remain
valid on (D]0, 1], ds). Moreover, (s convergence implies weak convergence for 0 < s < 1 since

dsk(x’y) < H‘T - y”

2.6. The Zolotarev distance on (C[0,1],] - ||) and (D0, 1], ds)

In the following we consider the separable Banach space B = (C[0, 1], || - ||) and the Polish space
B = (D|0, 1], ds) with the supremum norm || - || resp. the Skorokhod metric dgj. First note, for
random variables X, Y in (C[0, 1], || - ||) with {5(X,Y) < oo we have

Cs((X(tl)v s 7X(tk))7 (Y(tl)v ce 7Y(tk)) < kS/ZCs(Xa Y) (2.30)

forall0 <¢; <... <t < 1. This follows from Lemma 2.4 using the continuous and linear func-
tion g : C[0,1] — R¥ g(f) = (f(t1),..., f(tx)) and observing that ||g|| = v/k [The more natural
bound (X (t1),..., X (t)), (Y (t1),...,Y (tr)) < (s(X,Y) is obtained if R* is endowed with
the max-norm. For the purpose of this thesis, this improvement is not essential] . Thus, we obtain
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2. The Zolotarev metric

for random variables X,,, X in (C[0, 1], - ||), » > 1, the implication
C(Xp, X) >0 = X, 94 x 2.31)

Here, 194 denotes weak convergence of all finite dimensional marginals of the processes. Addi-
tionally, if Z is a random variable in [0, 1], independent of (X,,) and X then Lemma 2.8 implies

(s(Xn(2), X(2)) <E[Z°] (s(Xn, X).

Finally, if (X,,), X are real-valued random variables, then (s(X,, X) — 0 also implies conver-
gence of absolute moments of order up to s by Lemma 2.18. In the cadlag case, only inequality
(2.30) and the implication (2.31) remain valid, the additional statements are based on the continu-
ous linear form A(f) = f(¢) for t € [0, 1] which is not continuous with respect to the Skorokhod
topology. However, (s convergence implies convergence of the characteristic function of X, (¢)
uniformly in ¢, hence we also have distributional convergence of X,,(Z). The same argument
works for the moments of X,,(Z). We summarize these properties in the following proposition.

Proposition 2.34. For random variables X,, X in (C[0,1],] - ||) or (D[0,1],dsx), n > 1, with

(s(Xpn, X) — 0 for n — oo we have

X, M4 ¥

In particular, L(X) is the only accumulation point of (L(Xy,))n>1 in the weak topology. For all
t € 10,1] we have
d
Xn(t) — X(t), E[IXn@)]] = E[X@)]].

For any random variable Z in [0, 1] independent of (X,,) and X we have
d S S
Xn(Z2) — X(2), E[Xn(2)P] = E[X(2)"].

To conclude from convergence in (s to weak convergence on B = (C[0, 1], | - ||) further assump-
tions are needed. In view of Proposition 2.34 a tightness criterion is required. Let, for » > 0,
Crl0,1]:={feCl0,1]|F0=t1 <to<---<ty=1Vi=1,...,0:
ti —ti—1| > 7, fljt,_, 4,] is linear} (2.32)
denote the set of all continuous functions for which there is a decomposition of [0, 1] into intervals
of length at least r,, such that the function is piecewise linear on those intervals. Analogously, we
define
D,0,1]:={feD[0,1]|FI0=t1 <to<---<tp=1Vi=1,...,¢:

|t; — ti—1| >, f|[ti,1,tz-) is constant, continuous in 1}. (2.33)
Note that for > 0, the set C, [0, 1] is Borel-measurable in C[0, 1] and D, [0, 1] is measurable in
Bgp..

Theorem 2.35. Let (X,,)n>0, X be C|0, 1] valued random variables and 0 < s < 3. Suppose
X, €C,,[0,1] for all n and

Co(Xn, X) =0 <1og—m <1>> . (2.34)

Tn

Then X,, — X in distribution. The assertion remains valid if C|0,1],C,. [0, 1] are replaced by
D[0,1], D, [0,1] and X has continuous sample paths.
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2.6. The Zolotarev distance on (C[0, 1], || - ||) and (D0, 1], ds)

As discussed in Section 2.4, (; convergence does not imply weak convergence in the spaces C|0, 1]
and DJ0, 1] without any further assumption such as (2.34). In the counterexample 2.33 presented
at the end of Section 2.4, the sequence S;: converges to a Gaussian limit with respect to (s for
2 < s < 3 and is piecewise constant but the sequence 7, can only be chosen of the order (roughly)
(en)~2" for some ¢ > 0. Thus, (2.34) is not satisfied.

In applications such as the proof of Donsker’s theorem or the application to the partial match
retrieval problem presented in Chapters 5 and 4 the rate of convergence will typically be of poly-
nomial order which is fairly sufficient. We postpone the proof of the theorem to the end of the
section and state two variants, where the first one, Corollary 2.36, contains a slight relaxation of
the assumptions that is useful in applications. The second one will be needed in the case s > 2,
see Subsection 4.

Corollary 2.36. Let (X,,)n>0, X be C|0, 1] valued random variables and 0 < s < 3. Suppose
Xy, = Yy + hy with (Y,) being a sequence C|0, 1] valued random variables and h,, € C|0, 1] for
all n, such that ||hy, — h|| — 0 for a continuous function h and

P (Y, ¢ C., [0,1]) = 0.

(X X) = 0 <1og—m (1>) ,

X, % x.

If

then we have

The statement remains true if C[0, 1] and C,, [0, 1] are replaced by D|0, 1] and D, [0, 1] endowed
with Skorokhod topology respectively, X has continuous sample paths and h remains continuous.

Corollary 2.37. Let (X,,)n>0, (Yn)n>0, X be C[0, 1] valued random variables and 0 < s < 3.
Suppose X,, € C,,[0,1] for alln andY,, — X in distribution. If

(X Vo) = 0 <1og—m (1)> |

X, > X

then

in distribution. The statement remains true if C|0, 1] and C,, [0, 1] are replaced by D|0,1] and
D, [0, 1] endowed with Skorokhod topology respectively and X has continuous sample paths.

In C[0, 1] (or D[0, 1] if the limit X has continuous paths), convergence in distribution implies
distributional convergence of the supremum norm || X, || by the continuous mapping theorem. In
applications, one is also interested in convergence of moments of the supremum. For random
variables X in C|0, 1] or DJ0, 1], we denote by

X[l := (B[ X))/

the L;-norm of the supremum norm. For technical reasons, we have to restrict ourselves to integer
s € {1,2, 3} in the following theorem. Note that we then have m = s — 1 and o = 1.

Theorem 2.38. Let (X,)n>0, X be C[0,1] valued random variables and s € {1,2,3} with
| Xnlls, | X||s < oo forall n. Suppose one of the following assumptions is satisfied:
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2. The Zolotarev metric

i) X, €C,,[0,1] for all n and

(X, X) = 0 <1og—m (:)) .

ii) Xp =Y, + hy withYy,, hy, € C[0,1] for all n,

hyn, — h|| — 0 for a continuous function h,

E (1%l ¢y, e, j0113] — 0

Co(X, X) = o0 (log_m <:n>> .

iii) (Y3 )n>0 is a sequence of C|0, 1] valued random variables with |Y,,| < Z almost surely for
a C[0, 1] valued random variable Z with || Z||s < oo, Xy, € C;., [0, 1] for all n and

Cs(Xn, Yn) =0 <1og—m (;)) .

Then (|| X,,||®) is uniformly integrable. All statements remain true if C[0, 1], C,, [0, 1] are replaced
by D[0, 1], Dy, [0, 1] endowed with Skorokhod topology and h in item ii) is continuous.

and

In applications of the contraction method one shows distributional convergence and convergence
of the s-th absolute moments with the help of the previous results. Convergence of higher moments
is a direct consequence of these considerations under mild additional assumptions.

Proposition 2.39. Let (X,,) be a sequence of B-valued random variables satisfying recursion
(1.2) where B is a separable Banach space or D|0, 1] endowed with the Skorokhod topology.
Suppose that, with k > 1 integer,

i) E [HXnHk} < oo for all n and sup,, E [||b(")||k] < 00,

i) E {||A£”)||k1{1(n):n ] S 0forr=1,....K,

}
iii) we have

K
lim su IE[ A k} <1,
mo 8 (140

iv) forany k' < k (or only k' = k — 1), we have sup,, E |:||Xn||k:,i| < 0.
Then E [||X,,||*] is bounded in n. In particular, if X,, — X in distribution, items i) — iii) are

satisfied for all k > p and sup,, E [| X,,||P] < oo, then || X|| has finite moments or arbitrary order
and E [|| X,||"] = E[|| X||*] for all k > 0.

Proof. The recursion implies that, stochastically,

+ 1168

K
ol < 3 A x ),
r=1
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2.7. Proof of the main results of Section 2.6

)

coefficients and Holder’s inequality, there exists a constant C' > 0 (independent of n) with

£ i) < 3e[Jaxs)
r=1

For simplicity, we assume Lgn < n for all . Then, by the assumptions, conditioning on the

k
|+c

Choose 0 < ¢ < 1,n1 € Nand C > 0 such that E [||X;|[*] < C for all i < n; and
YK E [HA,Q")H’“} < 1— gforall n > ny. This implies

E[I1X "] <@ -g)C+0

Further increasing C' yields E [|| Xy, ||*] < C, hence the desired uniform boundedness by induc-
tion. O

Completeness: It is of interest whether the metric space (M(v), (s) is complete. This is true for
0 < s < 1. Also, in the case that B is a separable Hilbert space, this holds true, see Theorem 5.1
in [DINO8]. Nevertheless, the problem remains open in the general case, in particular in the cases
C[0,1] and D[0, 1] with s > 1. We can only state the following proposition.

Proposition 2.40. Let (fi,)n>0 be a sequence of probability measures on C|0, 1] or D0, 1] that is
a Cauchy sequence with respect to the (s metric for some s > 0. Then there exists a probability
measure [, on RO such that

[ty 294, (2.35)

Proof. According to (2.30), (X, (t1), ..., Xn(tk))n>0 is a Cauchy sequence and hence it exists a
random variable Y;, _ ; in R* with

d
(Xn(tl)a s aXn(tk‘)) — }/tl:--wtk'

The set of distributions of Y, ; for0 < ¢; < ... <t < 1land k € N is consistent so there
exists a process X on the product space RI0:1] satisfying (2.35). Note that condition (2.4) would
be satisfied for u,, and a version of p with continuous paths and finite absolute moment of order
s. O

2.7. Proof of the main results of Section 2.6

We now come to the proofs of Theorem 2.35, its two corollaries and Theorem 2.38. The first
essentially coincides with Theorem 2 in [Bar90], see also [BJ09], and we present a version of the
proof given there so that we can deduce the variants and implications given in our other statements.
The basic tool is Corollary 2 in Section 2 of [Bil68]. We state it here as a Lemma.

Lemma 2.41. Let (jin)n>0, it be probability measures on a separable metric space (S,d). For
r >0,z € Slet By(zx) ={y €S :d(z,y) <r} Ifforany x1,...,xx € S,71,...,7 > 0 with
(0B, (x;)) =0 fori=1,... kit holds

223 <m B’Yi(xi)> — W <ﬂ B’Yi(x'i)> ’

el i€l

where I = {1,... k}, then p,, — p weakly.
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2. The Zolotarev metric

A main difficulty in deducing weak convergence from convergence in (s compared to the Hilbert
space case is the non-differentiability of the norm function x +— ||z||. We will instead use the
smoother L,-norm which approximates the supremum norm in the sense that

Ly(z) — ||z, (2.36)

for any fixed x € C[0, 1] as p — oo. For the remaining part of this section, p, for fixed values or
tending to infinity, is always understood as an even integer with p > 4.

Lemma 2.42. For z,y € C[0, 1] let

Ly(a) = ( / 1[w<t>]pdt) " =1, (12— y)"2).

Then Ly, is smooth on C[0, 1]\{0} where 0O is the zero-function and 1y, is smooth on C[0,1] for
all y € C[0, 1]. Furthermore for k € {1,2,3}, we have

ID*Ly(2)|| = O L, (2)),
uniformly for p and x € C|0, 1]\{0}. Moreover, again for k € {1,2,3},
10"y (@) = O (") (2.37)

uniformly for p and x,y € C[0,1]. All assertions remain valid when C[0, 1] is replaced by D|0, 1],
moreover both functions L, and 1, , are continuous with respect to the Skorokhod metric for all
pand y € D0, 1].

Proof. The smoothness properties are obvious. Differentiating L,, by the chain rule yields

oL@ = ( [ 1[x<t>}pdt)1/p_l [ o nya

For h € C[0, 1] with ||h|| < 1 by Jensen’s inequality and L,(h) < ||h| we obtain that the right
hand side of the latter display is uniformly bounded by 1. The bounds on the norms of the higher
order derivatives follow along the same lines. Using the same ideas, it is easy to see that

k
1D by (@) = O | D0/ Ly (wy(2) |
j=1

uniformly in p and z,y € C[0, 1] where wy(z) = (1 + |z — y|?)/2. This gives (2.37). O

We stress that the convergence in (2.36) only holds pointwise, it is easy to construct a sequence of
continuous functions (z,)py>o such that L,(z,) — 0 and ||zp| — oo for p — oco. Aside from the
obvious bound L, (z) < ||z|| we will need the following simple Lemma which contains sort of a
converse of this inequality.

Lemma 2.43. Let f € D,[0,1] and denote by \(-) the Lebesgue measure on the unit interval.
Then for any v > 0and 0 < 6 < 1,

== At 1F@) —g®)] = (1= 0)v}) > %T-
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2.7. Proof of the main results of Section 2.6

Moreover, for any g € C[0, 1] it exists 6 = 6(g,,0) > 0 such that

17 =gl > 3 = At 1) — (0] > (1~ 0)3)) > 5 min (r,6).

Let f € C,.[0,1] and vy, 0 as above. Then,

17129 = A 10 - 9] = =009} > £

Moreover, for g € C|0, 1] there exists § = 6(g,~,0) > 0 with

0 .
If =gl == ARt 1f(E) = 9(t)] 2 (A = O)}) = gmin(r,6).
We first give the proofs in the continuous case.

Proof. (Theorem 2.35)Forr > 0,z € C[0,1]let B,(x) = {y € C[0,1] : |[y—x|| < r}. According
to Lemma 2.41, we need to verify that

P <Xn < B%(:L‘i)> —P <X <) B%,(mi)) : (2.38)

el el

for7 ={1,...,k}and zy,..., 25 € S,71,...,7 > Osuch that P (X € (0B, (x;))) = 0. The
lack of uniformity in (2.36) leads us to find lower and upper bounds for the desired quantity. We
will establish

lim sup P (Xn € () B, (mi)> <P <X € () B (ari)> (2.39)
nreo iel iel
and
lim inf P (Xn N B%.(x,-)> >P (X <N B%.(x,-)> (2.40)
n—o0o
i€l i€l

separated from each other. To this end we construct functions g; ,, gi.» : C[0, 1] — [0, 1] satisfying

gm(a:) < 1{3%(%)}(1') < g@n(:ﬂ), for all x € CT" [0, 1], 2.41)
Gin(x), Gin(x) = 1{3%_(%)}(33), forall x € C[0,1]\0B,, (z;), (2.42)
and such that a,, [ [;c; 9ins @n [ [;c; Gin € Fs for appropriate constants ay,, @, > 0. Then we can
conclude
P (Xn < B%(mi)> <E|[[oin(X0)| SE|[]0in(X)] + 0" C(Xn, X)) (243)
iel iel iel
and
iel iel iel

Now, if a,,1(s(X,, X) for n — oo then (2.43) implies (2.39) and similarly (2.40) follows from
(2.44)) if a1 ¢s( X, X) as n — oo.
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Let us a give motivation of how to construct the functions g; ,,. According to (2.42), asymptotically,
the functions g; , have to separate points z € C[0, 1] which are in B, (x;) from those which are
not. This is why we use the L, norm. Consider v, ;. as introduced in Lemma 2.42. If x € B, (z;)
then ¥y 4, (x) < (1+~2)'/2 whereas if z ¢ B, (z;) then lim inf,,_ 0 ¥ 1, (2) > (1 +~2)/2.
Let ¢ : R — [0,1] be a three times continuously differentiable function with p(u) = 1 for
u < 0and p(u) = 0foru > 1. For p € Rand n > 0 we denote ¢,, : Rt — [0,1] by
Pon(u) = ((u—0)/n).

Let gi(%) = @(1442)1/2 (¥paa; (¥)). Let gin = gi withn = 1, | 0 and p = py, 1 oo. Then gin
has the properties in (2.41) and (2.42).

Now we construct g; ,. Let 0 < # < 1 and x € C,,,[0,1]. Since the family (z;);er is uniformly

equicontinuous, by Lemma 2.43 we can find 06 = §(0) (also depending on 1, ..., Zg, V1, ..,V
which are kept fixed) with

(I =l 2 3} € {M({t of6) = )] = (1~ D) > G min(r. )

1/p
c {wp,xxz) > (14920 = 02 (G minr ) ) }

C {gin(x) =0},

with g »(z) = (70(1+,Y’L2(179)2)1/2(0min(rn’(S)/g)l/pin’n(’pr’mi (x)). This gives (2.41). g, does not
fulfill (2.42), but we have

gz,n(x) — 1{371(179)(502)}(1.)
for z € C[0,1]\OB,,(1—g)(z;) and p = p,, T 00, = 0y, | 0 such that ry; M/Pr 1. This gives for
every 0 < 0 < 1 with P (X € 9B, (1_g)(x;)) = 0foralli € I

ngn (X S ﬂB (1— 9)(.%,)) .

el el

Iim E

n—oo

Assuming that a,, Hie 1 Gin € Fs and letting n tend to infinity (2.44) rewrites as

lim inf P <X € () By, (x:) ) > P (X € ﬂB%(lg)(:ci)> —limsupa, 'Cs(Xp, X), (2.45)
n—oo

n—00
el i€l

where a,, may depend on ¢ and §. Below, we will see that the error term on the right hand side of
(2.45) vanishes as n — oo uniformly in 6, §. So choosing 6 | 0 such that P (X € 9B.,1_g)(z)) =
0 for all ¢ € I the assertion

> . .
hnnilo%fP (X € mB Zi > >P (X € ﬂB,yz(xl)>

el i€l

follows.
It remains to show that the error terms vanish in the limit. By Lemma 2.42 g(z) = ¢4, (¥py(x))
and using the Mean Value theorem we achieve for m = 0, 1, 2

19" (z + B) = g™ (@) < Cop™ ="+ V|1

for p > 4,17 < 1 and some constants C,,, > 0. Itis easy to check that the same is valid for products
of functions of form g with different constants, independent of the parameters. It follows that both
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2.7. Proof of the main results of Section 2.6

error terms in (2.43) and (2.45) are bounded by C),p["ny, (mH)C s(Xn, X) for all n, uniformly in
6,0, where C/,, denotes a fixed constant for each m € {0, 1,2}. By (2.34) we can choose p,, T co
and 7, | 0 such that both 7“711/ Prn s 1 and the error terms vanish in the limit.

O

Proof. (Corollary 2.36) Again, according to Lemma 2.41 we only have to verify (2.38), for which
we modify the proof of Theorem 2.35: First note that the assumption of piecewise linearity of X,
and the convergence rate for (;(X,,, X) are not necessary for the upper bound

lim sup P <Xn c(\B i(m)) <P (X € ﬂB%.(asi)> .
o iel iel
For the lower bound let ¢ > 0 and note that

P (Xn ce(B i(:@)) > P (Xn € () By, (z:) N {Yn € C, [0, 1]}>

iel icl
We modify the functions g; ,,(x). Let 0 < g, < ~; such that
P (X € vaKi (:cz)> >P (X € m B%.(:ci)> —e.
i€l icl

and P (X € 0By, (1}1)) = O forall . Let 0 < # < 1 and ng be large enough such that
on = ||hn — h|| < min;(vx,(1 —0) ANy —k;) and P (Y,, ¢ C,. [0,1]) < ¢) for all n > ny.
Then, since the functions (z; — h);c; are uniformly equicontinuous, by Lemma 2.43 there exists
0 = 6(0) such that fory € C,,[0,1] with z = y + hy, and n > ng

{llz = zill > v} S {lly+h — x| > vk, }

c {0 0+ 10— 0] 2 (1 00)) 2 GG, ) )
A o)~ )] 2 90,1 0) - 02)) = min(r. )}

1/p
c {¢ (©) 2 (14 (o (1= 0) = 0 (G () }
€ {inle) =0}

With in () = P14 (e, (1-0)—a)2)1/2 O min(r 6)/8)1/P - (¥pi (%)) Henee,

P (Xn € ﬂBwi(xz’)) > E [H sz',n(Xn)l{Ynecrn[o,u}]
i€l el
> E [ng,n(Xn)] — &
el

for n > ng. The upper bound of the error term a,, '(s(X,,, X) is a function of p and 7 so it is
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2. The Zolotarev metric

uniform in g,, 8, §. Following the same lines as in the proof of Theorem 2.35 gives

lim inf P (Xn e B%.(x,-)> > P (X € () B, (xz-)) —¢

il iel
> P <X € ﬂB%(m,)> — 2e.
icl
Since € > 0 was arbitrary, the result follows. O

Proof. (Corollary 2.37) In the setting of the proof of Theorem 2.35, (2.43) rewrites as

P (Xn € ﬂB%(x,)> < E Hgi,n(Xn)] <E [H gi,n(Yn) + a;1CS(XmYn)
el el el
= E Hgi,n(Yn) —E Hgi,n(X)]
i€l el
+E Hgi,n(X) + a7_11Cs(Xn7 Yn)
i€l

limy, ¢;n(X) = 1 and on {X ¢ B, (z;)} we have lim,, g; »,(Y,)
P (X € 0B,,(z;)) = 0 it follows

[Tgin() =[] gin(X) =0

el el

We may choose Y;, — X almost surely. On the event {X € B, (x;)} we have lim,, g; ,(Y;,) =
= lim,, ¢;,(X) = 0. Since

for n — oo almost surely and dominated convergence yields

lim sup P (Xn € m B'yi(a’:i)> <P <X € m Bw(xi)) )

n—reo i€l iel

just like in the proof of Theorem 2.35. The lower bound follows similarly. O

We now head to the case of cadlag functions. We only discuss the approach in the proof of Theo-
rem 2.35. Following exactly the same arguments as in the continuous case and using the additional
statements of Lemma 2.42 and Lemma 2.43, it is easy to see that we also obtain (2.38) if the balls
B, (x;) are defined with the uniform metric in D[0, 1]. Remember that we still have z; € C[0, 1].
Note, that it is at the core of Skorokhod’s representation theorem [Bil99, Theorem 6.7] that, if X is
continuous and (2.38) is satisfied, we can find versions X, that converge almost surely to X in the
sense that ||.X,, — X|| — 0 as n — oco. Here, we might have to change the underlying probability
space which is inessential. This implies dgx (X, X) — 0 almost surely, hence the assertion.

The proof of Theorem 2.38 is close to the one of Lemma 5.3 in [DJNO8]. The L, approximation
of the supremum norm complicates the argument slightly. We only give the proof in the case of
C[0, 1], the modifications in the cadlag case are obvious.
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Proof. (Theorem 2.38) Suppose s € {1,2,3} and that the first assumption of Theorem 2.38 is
satisfied. Let » : Rar — RBL be a smooth, monotonic function with x(u) = 0 for 0 < u < %
and k(u) = u® for u > 1. We may as well assume that the interpolation for % < u < 1is done
smoothly such that we have k(u) < u® for % < u < 1, thus k(u) < u® for all u € RT. Let

f, f):C[0,1] — R be given by
fx) = w(|lz[]),
79 (2) = K(Ly()).

By Lemma 2.42, the restrictions of L, and f() to C[0,1]\{0} are smooth. Furthermore, all
derivatives of f(®) vanish for ||z|| < 1/2 which implies that f) is smooth on C[0, 1]. Again, by
Lemma 2.42 it is easy to check that for any k € {1,..., s},

ID* £ (@) = O [l]I*7),

uniformly in p and z € C[0, 1]. Hence, ||D°f®)(2)|| = O(p™) uniformly for all z, in particular
for the set [z, y] := {Az + (1 — A)y | A € [0, 1]}, and by the mean value theorem

|D™ f@ (2) — D™ P ()| = O(p™ || — y])).-
Hence, there is a constant ¢ > 0 such that cp™™ f (P) ¢ F, for all p > 4. We define, for r > 0,

fo(x) :=crf(z/r),
FPN @) o= er® P (/7).
Then p=™ ) ¢ F,. Furthermore, fr(x) and f,gp) (z) are bounded by c||z||* for all x € C|0, 1],

uniformly in p. For any fixed z we have f.(z) — 0 and sup,>, fr(p ) () — 0 as r — oco. Hence,
by E [|| X ||*] < oo and dominated convergence this implies

E

sup f,gp)(X)] —0, r— oo (2.46)
p=4

By definition of (; we have
E[£9)(X)] SE [£(X)] +P"G(Xn, X).
By definition of f,., for ||z|| > r we have ||z||* = ¢! f,(x). Hence,
E (I Xnll"Lgx, 220y ) = ¢ B [f(Xn) 1 (x5, 12201
<c¢'E [fﬁp)(Xn)} +et (]E [(fr(Xn) - fr(*p)(Xn))]-{HXnHZ%}})
< B [£0(X)] + 7P (X0, X)

+ 7 (B ((X0) = 20 L, z2m) ) - (2.47)

Now, let ¢ > 0 be arbitrary. By (2.46) fix » > 0 such that E {fr(p) (X)} < gforall p > 4.
Additionally, by the given assumptions there exists a sequence p,, T oo such that

logry,
Pn

=0,  p'G(Xn,X) =0, (n—o00)
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2. The Zolotarev metric

Therefore, let Ny be large enough such that p]”"(s(X,,, X) < ¢ for all n > Njp. It remains to bound
the third summand in (2.47). Using Lemma 2.43, piecewise linearity of X,, implies that for all
0<6<1,
Or \ 1/Pn
L) 2 Il -0 (50)

In particular, we have L, (X,,) > @ for all n sufficiently large. For those n and || .X,,|| > 2r we

also have f{")(X,,) = ¢L3(X.,). This yields

E (fr(Xn) - fr(p) (Xn))l{HXnHZQT}} =cE [(HXTLHS - L;(Xn))l{HXnHZQT}] (2.48)
< e(1 = 27K [| X" 1gx, 2203 - (2.49)

for all n sufficiently large. Increasing Ny if necessary, inserting (2.49) into (2.47) and rearranging
terms implies

E (1 X lI° 1y x, >2ry) <25

for all n > Ny. Since € was arbitrary, the assertion follows.
Now, suppose the second assumption to be satisfied. Then, we have to modify the last part of the
proof. In (2.48) we can decompose

Ly (Xn) = Ly(Xn)Liv,ec,, 0,11} + Lp(Xn) iy, ¢c,, 0,1}

Using L;(X») < || X,[|°, the assumptions guarantee the expectation of the second term to be small
in the limit n — oo. For the first one, using similar arguments as above, given {Y,, € C,,[0,1]},

we find

with g, = ||h,, — h|| for all n sufficiently large. Proceeding as in the first part, we obtain the result.

20p

Given the third assumption, it only remains to bound E [ T(p )(Yn)] which appears instead of

E [ fﬁp)(X)} by E [ fﬁp)(Z)} in (2.47). 0
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3. The contraction method

Originally, the contraction method for distributional recurrences (1.2) illustrated in the introduction
is based on a metric on the set of probability distributions satisfying the following three properties:

e The metric distance between £(.X,,) and £(X,,) is finite for all n, m.
e Convergence in the given metric implies weak convergence.
e The metric is complete on appropriate subsets of the entire set of measures.

With respect to these main points the results of the last chapter are rather disappointing. First,
the restrictions imposed on distributions to have finite (s distance are considerably strong; the
necessary scaling gives rise to the substantial problems P3a and P3b, which we will solve in our
applications in Chapters 5 and 4. Second, weak convergence can only be deduced after establish-
ing a rate of convergence with respect to (s and regularity conditions on the paths of X,,. Again,
this causes problems that have to be addressed in detail.

Regarding the last point, note that, looking at Banach’s fixed-point theorem for complete metric
spaces, one usually puts most emphasis on the existence of a fixed-point for a given contractive
map. However, one should not forget that, once the fixed-point has been established by differ-
ent means, both the statement of uniqueness and the exponential speed of convergence for the
distance between the successive iteration started at a valid point and the fixed-point itself remain
valid independently of the completeness property. Throughout this chapter, we will be led by this
observation while developing the contraction method based on the class of (5 metrics.

3.1. The main result: A functional limit theorem

The contraction method is developed first for a general separable Banach space B and the space
(D[0,1],ds). Then the framework is specialized to the cases (C[0, 1], || - ||) and (DI[0, 1], dsx).
For this section B will always denote a separable Banach space or (D[0, 1], ds;). We recall the
recursive equation (1.2). We have

K
d
X, 2 ZA,@XX,{) +6M, n > ng. @3.1)
r=1
where A(ln), ceey A(I?) are random continuous linear operators, b(") is a B-valued random variable,
(X,gl))nzo, ey (Xr(lK))nZO are distributed like (X, ),>0, and 1) = (Ifn), cey II(?)) is a vector of

random integers in {0, ..., n}. Moreover (Agn), e A%), b, 1), (XT(Ll))nzg, e (XflK))nzo

are independent and ng € N.

Recall that in order to be a random continuous linear operator, A has to take values in the set of
continuous endomorphisms on C[0, 1] respectively the set of norm-continuous endomorphisms that
are continuous with respect to dgx on D[0, 1] such that A(z)(t) is a real-valued random variable
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3. The contraction method

for all z € C[0,1] respectively x € D[0,1] and ¢ € [0,1]. In D|0, 1] we additionally have to
guarantee || A|| to be a real-valued random variable.

Next, we make assumptions about the moments and the asymptotic behavior of the coefficients
Agn), R A%), b(™). For a random continuous linear operator A and for random variable X with
values in B we write

|A]ls = E [ AJl5) )

We consider the following conditions with an s > 0:

Cl. Wehave | Xolls - -, | Xng—1llss |A™ [ls, 116y < 0o forall? = 1,..., K and n > 0 and
there exist random continuous linear operators Ai,..., Ax on B and a B-valued random

variable b such that, as n — oo,

K
1) = 60 = blla+ D= (140 = Arll + 100,48 ) = 0
r=1

and for all / € N,

(n)|s
E [1{15")6{07...,é}u{n}}HAr | } — 0.
C2. We have
K
L= E[JA]] <1
r=1

The limits of the coefficients determine the limiting operator 7" from (1.5):

T: M(B)— M(B)

K
s L (Z A,z 4 b) (3.2)

r=1

where (Ay,...,Ag,b), ZW, ..., ZU) are independent and Z() ..., Z(K) have distribution .

C3. The map T has a fixed-point € M(B), such that L(X,,) € M,(n) for all n > ny.

The existence of a fixed-point is not in general implied by contraction properties of 7" with respect
to a Zolotarev metric due to the lack of completeness of the metric on the space B. However, we
can argue that there is at most one fixed-point of 7" in M(n):

Lemma 3.1. Assume the sequence (Xy)n>0 satisfies (3.1). Under conditions C1-C3 we have
T(Ms(n)) € Ms(n) and

C(T (), T(N)) < Lls(p, A)  forall p, A € Ms(n).

In particular, the restriction of T' to M(n) is a contraction and has the unique fixed-point .
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3.1. The main result: A functional limit theorem

Proof. Let € Mg(n). Recall that we have s = m + o with m € Ny and o € (0,1]. We
introduce an accompanying sequence

K
Qn =y A <{](n>< ) I<3)+1{I(n>> )2 >+b<> n>no, (33
r=1

where (Agn), e ,A%), b)), ZzW .. ZX) are independent and Z(), ... Z(K) have distribu-
tion 7.

We first show that £(Q,,) € Mg(n) for all n > ngy. Condition C1, conditioning on the coefficients
and Minkowski’s inequality imply E [||@Q,,||*] < oo forall n. For s < 1 we already obtain £(Q),) €
M (n).

For s > 1 we choose arbitrary 1 < k& < m and multilinear and bounded f : BF — R. We have

Elf(Z,....,2)=E[f(Xn,...,Xn)]

(Z A X (3> +om Z AM X (3> + b<n>> ]

r=1 r=1

=E

To show L£(Q,) € Ms(n) we need to verify that the latter display is equal to E [f(Qn, ..., Qn)]:
Since f is multilinear, both terms can be expanded as a sum and it suffices to show that the
corresponding summands are equal:

E[f(cj(.f),...,cj(j))} — E{f(D§?),...,D§:))], (3.4)

where j1,...,Jk € {1,..., K} and foreach i € {1,...,k} we either have
(n) _ 4(n) (i) (n) _ 4(n) () (i)
Cji A X J(n) and Dji = Aji (1{I§:)<NO}XIJ<.@ + 1{1](:)2”0}2 J > (3.5)

or
iV =5™ and D =p™. (3.6)

The equality in (3.4) is obvious for the case where we have (3.6) foralli = 1, ..., k. For the other
cases we have (3.5) for at least 1 < ¢ < k arguments of f, say, for simplicity of presentation, for
the first £ with 1 < ¢ < --- < {q = £ such that j, = jy, forall s =¢; 1 +1,...,4;,i=1,...,d
and j,, pairwise different fori =1, ..., d (by convention ¢y := 0). The claim in (3.4) reduces to

E [f(c( n oo™ o ...,C(Z) b(”),...,b(”)}

Jeq? Jeq ) T ey

_E [f(DJ(.Z),. o D\, D) b(”),...,b(")} 3.7)

ey

We will prove that, for each p € {1,...,d},

(n) (n) () (n) n) D pn n
[f((]” v Cip O B G DY DB >)}
() ) Hn) (n) pm) (n) 4 (n n
[f(C]Z ,...,Cjep_l,Djé D5 DY ,Djed,b( ) >)}, (3.8)
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which in turn implies (3.7). Abbreviating V") = (1{,~<,LO}X?T) + 1{22%}2(7“)) and denoting by

T the joint distribution of (A( 1), A;Z), I ](Z), el j(”) b(n)> we have
(n) (n) (n) (n) r(n) (n) 1(n) (n)
[f(C’N O e e D D ]
:/f(oqxl,...,ozp1:17p1,ozp:17p,...,ap:np,apH:EpH,...,adzrd,b,...,b)

dPx,, (z1)--- dIP’XZ.p (:c;,,)dIP’yip+1 (Xps1) -+ dPYid (xq)dY (a1, ..., g, 01, ..., i4,b)

= /IE l9(Xi,, ..., Xi,)] dPx, -+ dPx,  dPy,  ---dPy, dT,
where, for all fixed aq,...,aq,%1,...,i4,0,21,...,Tp—1,Tps1,...,2q, We use the continuous
multilinear function g : B -1 — R,
g1, Ye,—e, 1)
:::f(alxlw..,ap_lxp_l,apyh...,apy%_fp%,o@+1mp+1w..,adxd,br..,b}

Since L(X), L(Z) € M(n) for all m > ng we can replace X; by Y; . This shows the equality
(3.8), hence (3.4). Altogether, we obtain £(Q,,) € Mg(n) for all n > ny.

Now, we show T'(u) € Ms(n). Let W be a random variable with distribution 7'(x). By C2,
in particular ||A,||s < oo forr = 1,..., K, by C1 we have ||b||s < oo. Thus, as for Q),,, from
Minkowski’s inequality we obtain E [||W]|*] < oo, hence T'(u) € M,(n) for s < 1. For the case
s > 1 we consider again arbitrary 1 < k < m and multilinear and bounded f : B¥ — R. It
suffices to show E [f(Qn, ..., Qn)] = E[f(W,...,W)] for some n > ng. In fact, we will show
that limy, oo E[f(Qn, .., Qn)] = E[f(W,...,W)]. For this we expand

K K
E[f(W,....W)] =E [f <ZATZ(’“)+b,...,ZATZ(’“>+b>
r=1 r=1

into summands corresponding to (3.4) and have to show that

nh_>HOlOE [f (D](':L)a .. -»D](':))} = E[f(EjN""Ejk)] )

where ji,...,jr € {1,...,K}. Foreachi € {1,...,k} we have in case (3.5) that E;, =
A Z (72) in case (3.6) that E;, = b. We obtain, introducing a telescoping sum and using Holder’s
inequality,

\E[( o DY) | BB )|

Z [ ( s qufl,D](.Z),...,D](:v—f(Ejl,... qu,D](”il,...,DJ(.’;)ﬂ

k
Z’ 7 (B By, DS — ]q,D](jjl,...,D](.Z))”

k
Z 111D ukHu e TT 105 .

v=g+1

IN
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3.1. The main result: A functional limit theorem

Note that the || E;, || and ||D](7Z) ||i; are all uniformly bounded by independence, C1, and || Xo||s,

oy [ Xng=1lls» | Z]|s < oo. Hence it suffices to show that HDJ(ZL) — Ej ||k — 0 for all j,. In case
(3.6) this is [|b(™) — b||;, — 0 by condition C1. In case (3.6) we have, abbreviating r = j;,

|

< [[af - 4,2

Aﬁn) <1{[£"><nO}X§£3,) + 1{[§">>n0}Z(T)> —A,Z™ k

8 (100 (55 -2)

The first summand of the latter display tends to zero by independence, || Z||; < oo and condition

|

k

C1. The second summand tends to zero applying Holder’s inequality, condition C1, which implies
that \|A,€n)||5 in uniformly bounded, || Xo||s,- .., || Xno—1lls: |Z]ls < oo and conditions C1 and
C3. Altogether we obtain T'(u) € Mg(n).

Let p1, A € Mg(n). Using Lemma 2.4 and Corollary 2.6 it follows that

K
(T (), T(N)) < (ZE[IIATHSO Csl A).
r=1

Thus, by condition C2, the restriction of 7" to M (n) is a contraction with respect to (.
Assume, 1 was a fixed-point of T" as well. Then the contraction property implies

Cs(pym) = G(T (1), T(m)) < LCs(p,m),

hence (1, 1) = 0. Since the (,-distance is a metric on M(n) it follows p = 7. O

Aiming to prove convergence of X, to a fixed-point of (3.2), the conditions C1, C2 and L(X,,) €
M () for n > ny, are natural in the context of contraction method. The existence of a solution of
the fixed-point equation in condition C3 is required since we miss knowledge about completeness
of the (s metrics. If we only assume C1, C2 and £(X,,) € M(p) for n > ng, then (1" (1) )n>0
is a Cauchy sequence with respect to (s, a proof thereof runs along similar lines as for the previous
proposition. Thus, by Proposition 2.40, 7™ (x) converges in 144 5 some measure v on RO,
the natural candidate for a fixed-point of (3.2). Indeed, if 7 is such a fixed-point in M(u), then
Cs(T™ (1), m) — 0 exponentially fast and therefore 7 has to be a continuous version of v.

The following proposition uses the ideas developed so far to infer convergence of X, to X in the
(s distance. The proof extends a similar proof for the case B = R?, see [NR04b, Theorem 4.1].
We draw further implications from this proof, see Corollary 3.5.

Proposition 3.2. Let (X,,),>0 satisfy recurrence (3.1) with conditions C1 — C3. Then for the
fixed-point n = L(X) of T in (3.2) we have, as n — oo,

(s(Xn, X) — 0.

Proof. We use the accompanying sequence defined in (3.3). Throughout the proof let n > ng.
Again since the (;-distance is a metric we have

Cs(Xn, X) < Cs(Xin, Qn) + Cs(Qn, X). (3.9)
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First, we consider the second term. By C1 and Minkowski’s inequality, absolute moments of order
s of the sequence (@, )n>n, are bounded, hence using Theorem 2.17 it suffices to show

ls(Qn, X) — 0

Using the same set of independent random variables X, ..., X5) for Q,, and in the recurrence
of X, we obtain

K
ls(Qn, X) < Z<Ar—1{1§n)>no}A£~n)> {I<n) n)X((n) +||b —blls
< Z(HA — A0+ gy 1407 >HXH + )~ b,

r=1
K

i Z 1{[§")<n0}A7("n)X(T)
r=1

By C1 the first two summands tend to zero. Also, the third one converges to zero using C1 and

‘ S

Furthermore, conditioning on the coefficients and using that (; is (s, +) ideal and Lemma 2.4, it

sup |||
J<no

[0 191X | <20, 1400

S

is easy to see that

K
GQuXa) < G (X ) B Ae o,y AP (X,@,X)] (3.10)
r=1 N -
K
(Xn, X E A X, X A1
< paGe(Xa, +<Z [ ”Dm;‘%%_fs( SX) G
where
K
pn=E Zl{lm) }”A NEl =0, n— oo
r=1

Combining (3.9) and (3.11) implies

Co(Xn, X) < - ZE[IA(" I"] sup (X X) +o(1)

no<i<n—1

From this it follows that (s(X,,, X) is bounded. Let

7 := sup (s(Xp, X), n := limsup (5(X,, X)
n>ng n—00
and ¢ > 0 arbitrary. Then, there exists £ > 0 with (5(X,,, X) < n+ ¢ for all n > ¢. Using (3.9),
(3.10) and splitting {ng < ™ <y - 1} into {ng < ™ < ¢} and {4 < I <y - 1}, we
obtain

+o(1)

c K
E > llAM)°
r=1

_ K
(X, X) < 1_"an E frozrin <y 14877 | +
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3.1. The main result: A functional limit theorem

which, by C1, finally implies

K
n<E|D AN (n+e).
r=1
Since € > 0 is arbitrary and by condition C2, we obtain = 0. O

Remark 3.3. As pointed out in [ER07] for a related convergence result, the statement of Proposi-
tion 3.2 remains true if condition C1 is weakened by replacing

—0
S

K
>l - a,
r=1

by

—0
S

K
> |l - anf

for all f € C|0, 1] and uniform boundedness of ||A§n) ||s forallm > Oandall r = 1,..., K. This
follows from the given independence structure and the dominated convergence Theorem.

Remark 3.4. The methodology developed in the present section covers sequences (X,,) with
jumps at random times. However, condition C1 essentially requires these times to be equal for all
n > ng. In particular sequences of processes with jumps at random times that require a (uniformly
small) time scale deformation cannot be treated by our approach.

To be able to deduce weak convergence in the situation of Proposition 3.2 for the special cases
C[0,1] and DJ0, 1], rates of convergence for (, are required. We impose a further assumption
on the convergence rate of the coefficients to establish a rate of convergence for the process that
strengthens condition C2.

C4. The sequence (7(n))n>n, from condition C1 satisfies v(n) = O(R(n)) as n — oo for
some positive sequence R(n) | 0 such that

K (n)
. R(I:)
L* =limsupE A8 1.
mawE | S 1401

Corollary 3.5. Let (X,,)n>0 satisfy recurrence (3.1) with conditions C1, C3 and C4. Then for the
fixed-point n = L(X) of T in (3.2) we have, as n — oo,

Cs(Xny X) = O(R(TL))

Proof. We consider the quantities introduced in the proof of Proposition 3.2 again. By condition
C4 we have (5(Qn, X) < CR(n) for some C' > 0 and all n. Furthermore, we can choose 7 > 0
and nq > 0 such that

K

> A T

o[

r=1
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3. The contraction method

for n > nj;. Obviously, for any na > nj, we can choose K > 2C/~ such that d(n) :=
(s(Xn, X) < KR(n) for all n < ng. Using (3.10), this implies

K
d(n2) < pryd(ng) +E Z1{I§”2><n2_1}‘|A7(~n2)\|sd(l7§n2)) + CR(ng)
r=1 N
hence
1 K
d(ng) < - (E Z||A£n2)||SKR(IT(”2)) +CR(TL2)>
n2 r=1
K (n2)
1 R(I;™)
= KR(n»)E A2 ||s =22 | + CR(n
— ( (e | Sl et |+ R 2>>
1
< (1=K + O)R(w) < KR(na),
n2
Inductively, d(n) < K R(n) for all n. O

We now consider the special cases C[0, 1] and D[0, 1]. Related to Corollary 2.36 we consider
the following additional assumption, where the notations C, [0, 1] defined in (2.32) and D, [0, 1]
defined in (2.33) are used:

C5 Case (C[0,1],]| - |I): We have X,, =Y}, + h,, for all n > 0, where ||h,, — k|| — 0 with
hn, h € C[0, 1], and there exists a positive sequence (7,),>0 such that

P (Y, ¢C,,[0,1]) — 0.

Case (D[0,1],ds;): We have X,, = Y,, + h,, for all n > 0, where ||h,, — h|| — 0 with
hyn € D|0, 1], h € C[0, 1], and there exists a positive sequence (7, ), >0 such that

P (Y, ¢ D,,[0,1]) — 0.

We now state the main theorem of this section. It follows immediately from Proposition 2.34,
Corollary 2.36, Proposition 3.2 and Corollary 3.5.

Theorem 3.6. Let (X,,)n>0 be a sequence of random variables in (C[0,1], | - ||) or (D[0, 1], dsk)
satisfying recurrence (3.1) with conditions C1, C2, C3 being satisfied. Then, for L(X) = n we
have for all t € [0,1]

Xo(t) =5 X(1), E[X,(0)] = E[X(1)]].
If Z is distributed on [0, 1] and independent of (X,,) and X then
Xu(2) -5 X(2),  E[Xau(2)]'] > E[X(2)]].

If moreover conditions C4 and C5 are satisfied, where R(n) in C4 and ry, in C5 can be chosen
with
R(n)=o0 <1> , T — 00, (3.12)
log™(1/rn)

and X has continuous sample paths, then we have convergence in distribution:

X, -4 x,
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3.2. The conditions on the moments

We comprehend our main result by convergence result for the moments of the norm based on
Theorem 2.38.

Corollary 3.7. Let (X,,)n>0 be a sequence of random variables in (C[0,1], | - ||) or (D0, 1], dsx)
satisfying recurrence (3.1) with conditions C1-C5 with s € {1, 2,3} and such that also condition
(3.12) is fulfilled. If, in the continuous case,

E [ Xnl* Ly, ¢c,, 0153] = 0,
where Y, is defined in CS, then
E [[| Xa[°] = E [ X]°] < cc.

The result remains valid in the cadlag case, if Cy, [0, 1] is replaced by D, [0, 1] and X has contin-
uous sample paths.

Finally, we give sufficient criteria for the cases C[0, 1] and D]0, 1] to verify condition C3. Let
L(Y) = v be a probability distribution on C|0, 1] with E[||Y]|*] < oco. Then for a probability
measure £(X) = p on C[0, 1] to be in M(v) we have the abstract defining properties in (2.3)
and (2.4). Note that the cases 0 < s < 3 are of interest in our main result, Theorem 3.6, and that
p € Ms(v) implies (5(p, v) < oo.

3.2. The conditions on the moments

In this section, we give a precise characterization of conditions (2.3) and (2.4) in the case of
continuous or cadlag functions on the unit interval. Then we also discuss more general state
spaces.

Lemma 3.8. Let L(Y) = L((Yi)ep,)) = v and L(X) = L((Xt)icp0,1) = 1 be probability
measures on C[0,1]. For 0 < s < 1 we have u € Ms(v) if

E[IXI]E[Y]°] < oo. (3.13)
For1 < s < 2 we obtain i € M(v) if we have condition (3.13) and
E[X,] =E[Y)] forall 0 <t < 1. (3.14)
For 2 < s < 3 we obtain . € M(v) if we have conditions (3.13), (3.14) and
Cov(Xy, Xy) = Cov(Y, Yy) forall 0 < t,u < 1. (3.15)
For0 < s <1lorl < s <2 the assertions remain true if C|0, 1] is replaced by DI0, 1].

Proof. The case 0 < s < 1 follows directly from the definition of the space M(v) for both,
C[0,1] and D[0, 1].

We first consider B = C[0, 1] and start with the case 1 < s < 2. By Riesz’ representation theorem
any linear and continuous function ¢ : C[0, 1] — R can be written as

o(f) = / £(t)du(t)
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3. The contraction method

where 4 is a finite, signed measure on [0, 1]. Hence, (2.4) is satisfied if E [X;] = E[Y;] for all
t € [0,1] and (2.3) is condition (3.13).

We move on to the case 2 < s < 3. By the Grothendieck inequality [Gro53], see also [Pis11] for
a modern account, for any continuous bilinear form ¢, there exist probability measures p and v on
the unit interval such that

1/2

r.9) < Kol [ [ £ 0uto) [ vt

for all f,g € C[0,1]. Here, K denotes a universal constant whose optimal value, called the
Grothendieck constant, is still unknown. Thus, denoting n = (x + v)/2 the mixture of the two
measures, it follows that ¢ is continuous on (C[0, 1])? when the space C[0, 1] is endowed with the
Ls(n) topology. The set C[0, 1] is dense in L2([0, 1], B([0,1]),n), hence we can extend ¢ to a
continuous bilinear form on Ly(][0, 1], B([0,1]),n). Being a Hilbert space, the claim follows from
Lemma 2.2 together with the Riesz representation theorem.
The description of the dual space of D[0, 1] is slightly more complicated than in the case of C[0, 1],
in particular a continuous linear form on D0, 1] is not uniquely determined by its values on C|0, 1].
Pestman [Pes95, Theorem 1] showed that any linear and bounded map ¢ : D[0, 1] — R is of the
form

o) = [ F0du®) + Y (@) - Fla-))ta), (.16)

z€[0,1]

where 1. is again a finite, signed measure on the unit interval, f(z—) := limp)o f(z—h), f(0—) :=
f(0) and ¢ : [0,1] — R takes values different from zero only on a countable subset F of [0, 1]
with > |¢(x)| < oo. Note that the measure p comes from the restriction of ¢ to C[0, 1].
Furthermore, the representation of ¢ in terms of y and ¢ is unique. Equation (3.16) implies that
p € My(v)if E[X(t)] = E[Y(t)] forall t € [0,1] and E[||X|*],E[||Y]|*] < oo like in the
continuous case. Note that E[X (t—)] = E[Y (¢t—)] for all ¢ € [0, 1] follows from the latter by
dominated convergence. O

Remark 3.9. Interpreting E [ X | as Bochner-Integral in the continuous case, it is equivalent to say
E[X(t)] =E[Y(¢)] forallt € [0,1] and E [X] = E [Y]. This is simply due to the fact that E [ X]
is a continuous function with E [X] (t) = E[X(¢)] and p(E[X]) = E [p(X)] for all continuous
linear forms ¢ on C[0, 1]. Also the higher moments can be interpreted similarly as expectations of
tensor products, cf. [DJNOS].

Remark 3.10. Note that condition (3.15) typically cannot be achieved for a sequence (X, )n>0
that arises as in (1.2) by an affine scaling from a sequence (Y;,),,>0 as in (1.1). This fundamental
problem for developing a functional contraction method on the basis of the Zolotarev metrics (s
with 2 < s < 3 was already mentioned in [DJNOS, Remark 6.2]. We describe a way to circumvent
this problem in our application to Donsker’s invariance principle by a perturbation argument, see
Section 4.

Remark 3.11. Lemma 3.8 implies that condition (2.4) may be replaced by (2.5) in the case of
C[0,1] for k = 1,2 or D[0, 1] for k£ = 1. In fact, much more can be said. Janson and Kaijser [JK]
show that the equivalence of (2.4) and (2.5) holds true for any £ € N in separable Banach spaces
having the approximation property such as C|0, 1] or sequence spaces. In fact, it had been an open
problem to find Banach spaces without this property for many years, the first example was given

52



3.2. The conditions on the moments

by Enflo in [Enf73]. Based on a Banach space without the approximation property, Janson and
Kaijser [JK] also give an example where the equivalence of (2.4) and (2.5) is false already in the
case k = 2.
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4. Donsker’s invariance principle

Let (V,,)nen be a sequence of independent, identically distributed real-valued random variables
with E [V;] = 0 and Var [V}] = 1. In Donsker’s theorem one considers the properly scaled and
linearly interpolated random walk S™ = (S}*);c(0,1], 7 > 1, defined by

1 [nt]

With W' = (W;),c[0,1) a standard Brownian motion, Donsker’s functional limit law states that
S™ — W in distribution on (C[0, 1], ]| - ||). Equivalently and more in the spirit of the time when
the result was formulated and proved, this means

F(5™) -5 p(w) @1

for any continuous function f : C[0,1] — R.

The history started with the idea of Erd6s and Kac [Kac46, EK46, EK47] to prove invariance prin-
ciples for f(.S,,) by two steps: First, one provides distributional convergence of f(S™) and notes
its limit to be invariant under the law of V;. Second, one determines the shape of the limit by
focussing on a convenient choice of £(V7) that allows one to compute the limit by means of direct
calculations. Applying this methodology, Erd6s and Kac established (4.1) for certain functions f,
e.g f(x) = supsepo ) 2(t) and f(x) = supsejo1) [#(t)]. A much earlier work by Kolmogorov
[Kol31] had already been in this spirit. In the works by Mark [Mar49] and Fortet [For49] the idea
of Erd6s and Kac was extended to various other continuous functionals. The heuristic approach of
directly approximating the sequence of processes by its limit goes back to Doob [Doo49], where
he uses this idea in the related case of the rescaled empirical distribution function and its limit,
the Brownian bridge. As an outcome of his dissertation, Donsker [Don51] gave a rigorous proof
of (4.1) for all continuous functions f. The concept of tightness was developed shortly after by
Prokhorov [Pro53, Pro56] and the proofs of the invariance principle found in most textbooks in-
volve his arguments based on the theorem that is today named after him.

For the purpose of the contraction method it is necessary to assume an additional moment on V.
Our aim of the next section is to prove the following theorem.

Theorem 4.1. Let E [|V1]?1¢] < oo for some & > 0. Then S™ L Wasn — ooin (o, 11, I-1)-
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4. Donsker’s invariance principle

4.1. A contraction proof

In this section we apply the general methodology of the Chapters 2 and 3 to give a short proof of
Theorem 4.1. For a recursive decomposition of S™ and W we define operators for 8 > 1,

¥p C[o,1] — C[o,1], p(f)(t) = 1{t§1/ﬁ}f(5t) + 1{t>1/ﬁ}f(1)a
¥ :C0.1] = €CI0,1], ws(F)(1) = Ly FO) + Lgmrm f (57 )

Note that both g and g are linear, continuous and ||¢s(f)|| = ||[¢s(f)]| = || f]| for all f €
C[0, 1], hence we have ||¢g|| = ||13]| = 1. By construction we have

gnd 21 (an/21>+ L”/QJ

n [n/2]

( W2J) n>2, (4.2)

where < denotes equality in distribution, (S*,...,5") and (S, ..., 5") are independent and S
and S7 are identically distributed for all j > 1. Therefore (S™)n>1 satisfies recurrence (3.1)
choosing

K=2 1I"=r[n2, L=|n/2], n=2

(n) _ W 2] (n) _ Ln/ 2] (n) _
A= P A2 =\ T Y U =0

Moreover, as (g, 95 are deterministic, the operators A(ln) and Aé”) are random linear operators in
the sense of Definition 2.7; the same holds also for their limits as defined in (4.4). In the following
let W = (Wt)te[o,l] be a standard Brownian motion, independent of W. Properties of Brownian

Wi\/gws( 4/ ) 43)

for any 5 > 1. Hence, the Wiener measure £(1) is a fixed-point of the operator 7" in (3.2) with

K=2A = \/7905,142 \/ ﬂ)ﬂab_o (4.4)

an illustration thereof is given in the figures 4.1 and 4.2. For § = 2 the coefficients in (4.2)

motion imply

converge to the ones in (4.3), i.e., as n — oo,

\/W\/T/?

but the coefficients A( n) A( ") only converge to A1, Ao in the operator norm for n even. Never-
theless, from the point of view of the contraction method this suggests weak convergence of S to
w.
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1.0
1.0

0
0

-1.0 -05 0.0
|

-1.0 -05 0.0
|

Figure 4.1.: Realizations of independent Brownian motions.

1.0

0.5

-1.0 -0.5 0.0
|

Figure 4.2.: The concatenation in the sense of (4.3) for 5 = 2.

The operator 1" associated with the fixed-point equation (4.3), i.e., with the coefficients in (4.4),
satisfies condition C2 only with s > 2. In view of condition C3 and Lemma 3.8 we need to match
the mean and covariance structure. We have E [S}'] = 0 forall 0 < ¢ < 1 and a direct computation
yields

S, for [ns| < |nt
Cov(S7,S)) = ( 4.5)

L{ns] + (ns — |ns))(nt — Lntj), for |[ns| = |nt].

Hence, we do not have finite (5. -distance between S™ and W since they do not share their
covariance functions. To surmount this problem we consider a suitable linear interpolation of the
Brownian motion . For fixed n € N we divide the unit interval into pieces of length 1/n and
interpolate W linearly between the points 0,1/n,2/n, ..., (n—1)/n, 1. The interpolated process
W™ = (W{")sefo,1) is given by

W o= Wine, + (nt — |nt)) (WWJH — WM> . te[o1].

We have E [W/'] = 0 and W™ and S™ have the same covariance function (4.5) for all n € N.
Furthermore W™ has the same distributional recursive decomposition (4.2) as S™.

57



4. Donsker’s invariance principle

1.0

0.5
|

Figure 4.3.: A Brownian motion W and its linearly interpolated version W™ for n = 10.

Note that the linearly interpolated version does not differ much from the original one:
Lemma 4.2. We have |[W" — W || — 0 as n — oo almost surely.

Proof. This directly follows from the uniform continuity of W. For € > 0 there exists a random
d > 0 such that [IW(¢) — W(s)| < e for any s,¢ € [0,1] with |t — s| < J. An adaption of the
triangle inequality gives |[WW"™ — W || < 2¢ for any n > 6. O

In view of Corollary 2.37 it suffices to prove that S and W™ are close with respect to (o.. The
proof of this runs along the same lines as the one for Proposition 3.2, resp. Corollary 3.5, in fact it
is much shorter due to the simple form of the recurrence:

Proposition 4.3. For any § < £/2 we have (o1.(S™, W™) = O(n™°%) as n — oc.

Proof. We have

CQe(S" W) = Coqe ( [n/2] p_n_ (SWﬂ) + MlﬂL (gWﬂ) :

n [n/2] n [n/2]

n [n/2] n /2]

21, (W(nm) M IE (thm))

n

1+¢/2
n <Ln/2J) Cone (SLn/2J’WLn/2J) .

n

( [n/2] ) el Cove (S[n/ﬂ 7 W(n/m)

We abbreviate

[n/2] ) e < /2] > e

dp := Coye(S™, W"), ap:= (
n n

and note that we have a,, + b, < 27%/2 + C’/n for some constant C’ > 0 and all n € N. For
arbitrary 0 < £/2 we prove the assertion by induction: Fix § < ¢’ < €/2 and choose mg € N

such that [n/2]| =% < (n/2)792/27% and 1 + 2/2C" /n. < 29~ for all n > my. Furthermore, let
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4.2. Characterizing the Wiener measure by a fixed-point property

C > 0 be large enough such that d,, < Cn%foralll <n< mg. Then, for n > mg, assuming
the claim to be verified for all smaller indices,

dn < andfn/2) + bnd|nyg
< C (an(n/z)*‘s + bn(n/2)’525/2’5/)
< On70292727% (4, + by,)
< On°.
The assertion follows. OJ

Now Donsker’s Theorem (Theorem 4.1) follows from Proposition 4.3, Lemma 4.2 and Corollary
2.37. Observe that we could have worked analogously in the framework of cadlag functions by
choosing a constant interpolation between successive points of type i /n.

By Theorem 2.38 and Proposition 2.39 we directly obtain convergence of moments of the supre-
mum if we assume additional moments for the increments.

Corollary 4.4. Suppose E “Vl ]k] < oo for an integer k > 3. Then the first k absolute moments
of ﬁ SUPg<<n Sk converge to the corresponding moments of |W|.

4.2. Characterizing the Wiener measure by a fixed-point
property

We reconsider the map 1" corresponding to the fixed-point equation (4.3) for the case 8 = 2:

T . M(C[0,1]) — M(C[0,1]) 4.6)
70 = £ (J50a(2) + —02(2) )

where Z, Z are independent with distribution £(Z) = £(Z) = u. Our discussion above implies
that the Wiener measure £(1V) is the unique fixed-point of 7" restricted to Ma-(L(W)) for any
e > 0. Note that Mo, (L(TV)) is the space of the distributions of all continuous stochastic
processes V' = (V;)iepo.1) With E [|[V[**¢] < oo, E[V;] = 0 and Cov(V;,V,) = t A u for all
0 < t,u < 1. Note that one easily verifies that T' (Moo (L(W))) C Mayo(L(W)) and the last
part of the proof of Lemma 3.1 implies that 7" restricted to Mo (L(W)) is Lipschitz-continuous
with Lipschitz constant at most L = 27¢/2 < 1, hence L(W) is the unique fixed-point of 7" in
Mot (L(W)).
We now show that a more general statement is true, the Wiener measure is also, up to multiplicative
scaling, the unique fixed-point of 7" in the larger space M(C]0,1]). For a related statement, see
also Aldous [Ald94, page 528]. The subsequent proof is based on the fact that the centered normal
distributions are the only solutions of the fixed-point equation

x4 X+ X 4.7

V2

where X, X are independent, identically distributed real-valued random variables as already dis-
cussed on page 5 in the introduction.
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4. Donsker’s invariance principle

Theorem 4.5. Let X = (Xi).c(01] be a continuous process with Xo = 0. Then L(X) is a
fixed-point of (4.6) if and only if either X = 0 a.s. or there exists a constant ¢ > 0, such that
(07" Xy)sepo,1] is a standard Brownian motion.

Proof. Let L(X) be a fixed-point of (4.6) and X = (X);[9,1) be independent of X with the same
distribution. The fixed-point property implies

Xl i Xl\—/i_iX17

hence £(X1) = N(0,0?) for some o> > 0, where A (0,02) denotes the centered normal distri-
bution with variance . This implies

X

X1/2 = 7%,
hence L£(X;5) = N(0,0%/2). Let 2 = {m2™" : m,n € No,m < 2"} by the set of dyadic
numbers in [0, 1]. By induction, we obtain £(X;) = N(0,0%t) for all t € 2. For the distribution
of the increments we first obtain

X1 — X2 42

\/iv

hence £(X1— X 5) = N(0,0?/2). Again inductively, we obtain £(X1 — X;) = N'(0, (1—t)o?)
for all t € 2. Also by induction, it follows £(X; — X,) = N(0, (t — s)o?) for all 5,t € 2 with
s < t. Finally, continuity of X implies the same property for all s, € [0, 1]. It remains to prove
independence of increments. Denoting by X (), X2 independent distributional copies of X,
we obtain from iterating the fixed-point property

2”
d —n m m
(Xt)tep,1) = (2 /2 E 1{(m—1)27n<t§m27n}X§nt)7m+1+1{m2*n<t}X1( )>
t€(0,1]

m=1

for all n € N. Hence, for any dyadic points 0 < ¢} < t9 < ... < tx < 1, choosing n large

enough, each X;,,, — X;, can be expressed as a function of a subset of XM XE") these

i+1
subsets being pairwise disjoint for i = 0,...,n — 1. Since, & is dense in [0, 1], this shows that
X has independent increments. For ¢ = 0 we have X = 0 a.s., otherwise 0~ ' X is a standard
Brownian motion.

The converse direction of the Theorem is trivial. O
Remark 4.6. Note that we cannot cancel the assumption on continuity of X without replacement,

e.g., the process
Wt ot ¢ @
Y, =
! { 0 : teg

also solves (4.3) and is not a multiple of Brownian motion. However, it would be sufficient to
require cadlag paths, so C[0, 1] could be replaced by D[0, 1] in our statement.

Remark 4.7. Our decomposition of Brownian motion in (4.3) is in time. However, equation (4.7)
suggests to also investigate a decomposition in space

d [ X+ Xy
(Xt) = () (4.8)
te(0,1] \@ o]
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4.2. Characterizing the Wiener measure by a fixed-point property

where (X;);c(0,1] and (X¢);e0,1] are independent and identically distributed. Again, equation (4.8)
induces a map on M(C[0, 1]) that is a contraction in (2. on the subspace M, .(L(V)), so the
Wiener measure is the only solution in M. (L(W)). In this case, we cannot remove the moment
assumption as in Theorem 4.5 since any centered, continuous Gaussian process solves equation
(4.8). Using (4.7), it is not hard to see that there are no further solutions of (4.8).
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5. Analysis of partial match queries

To begin the chapter on partial match retrieval in random quadtrees, let us quickly recap the rele-
vant terms from the introduction. Cy,(s) is the number of visited nodes of the retrieval algorithm
in the quadtree searching for all items whose first component equals s. Equivalently, we have seen
that the quantity coincides with the number of horizontal lines in the partition of the unit square
given by the points building up the tree which intersect the vertical line at s. We remember the
additive recursion (1.18) that is satisfied by (C'.(s))se0,1) on the level of cadlag functions.

) £ 110 [0 () + o (7))

(3) 1—s (4) 1—s
10 [Clén) <1 — U> +Chon (1 — U)] . (5.1)
Here, (U, V') denote the components of the first inserted point, I 1(”), R ) in) denote the number
of points in the subregions and (07(11)), ce (C7(14)) are independent copies of (C),), independent of

(U, Vv, I f”), o1 in)) The distribution of the number of points in the subquadrants is

c (11(7”, s 14”)) — Mult(n — 1, UV,U1 V), (1= U)V,(1-U)(1—V)). (52

In their analysis of the complexity of partial match retrieval, or as they call it regionsearch, Bentley
and Stanat [BS75] use the idealized approach of perfect quadtrees in which all subtrees have
the same number of nodes. Stochastically, this basically coincides with the assumption that the
proportion of nodes in each of the four subtrees converges to 1/4 as the tree size grows to infinity.
By means of the distribution of the split random variable (™) given in (5.2), we can immediately
discard this idea. Comparing their theoretical result with experimental data, the authors observe
that their approximation by a term of order /n underestimates the actual costs and give two
reasons for this phenomenon. First, based on arguments from [FB74] on the path length of the tree,
the number of visited nodes in the random quadtree is larger than in its idealized approximation.
Second, they point out that the partitioning of the search space is not well-balanced, or as they call
it “checkerboarding” [the distinction between these points is questionable as the first is a result of
the second]. However, they neglect the influence of the second point and emphasize the first.

In fact, the results by Flajolet et al. [FGPR93] reveal that it is just the other way around. First, the
path length is of the same asymptotic order as for perfect trees, i. e. ©(n log n) and second, higher
order asymptotics for the costs are caused by the non-balanced partitioning of the state space.
We aim at giving a short heuristic argument for this here. Let £ be uniform on the unit interval,
independent of the quadtree. The relative position of the line at £ in the both relevant subquadrants
that appear by adding the first point in the unit square is again uniform at random. The width of
these regions is distributed like a uniform random variable on [0, 1] conditioned to be covered by
& which gives rise to a size-biased distribution. This implies

Cal®) £ 14009 +C0,(©). (5.3)
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5. Analysis of partial match queries

Here, Jl(n), Jz(n) denote the number of points in the relevant subregions and (07(11)), 07(12)) are
independent copies of (C,,), independent of (5 , Jl(n), JQ(”)>. Moreover ¢ and (Jl(n), Jzn)) are
independent. The area of one of the two regions is distributed like a product of a uniform Y (for
the height) and an independent size-biased uniform VX (for the width). We thus have L(J 1(n)) =
Bin(n—1,v/XY) where X,V are uniform on the unit interval and the same holds for Jz(n). Taking

VX 2

Figure 5.1.: The first split in the quadtree with uniform query line &.

expectations in (5.3) and multiplying by n~" with v > 0 yields

g
(I

Jl(”)>” i)

nYE[Ch(€)] = n Y + 2E ( L

Assuming that the left hand side of the latter expression converges as n — oo and pulling apart
the expectation of the product in a non-rigorous way gives

(‘]1(71))7] —2E |(VXY)] = 1

1= lim 2E - -
n (y+1)(v+2)

n—oo

Thus, v has to equal 3 as defined in (1.15). Note that the same heuristic approach may be applied
for the mean of partial match queries in dimension d when s components are fixed, explaining
(1.13).

In the first section, we collect all results on the asymptotic behaviour of the sequence C,(s) we can
deduce by applying the contraction method as developed in the previous section. Subsequently,
for the remaining of this chapter, we abbreviate that additive recurrences such as (5.1) or fixed-
point equations such as (1.20) involving a parameter s € [0, 1] are to be understood on the level of
cadlag or continuous functions unless stated otherwise.

5.1. Main results and implications

Our main contribution is the following theorem whose proof is an application of Theorem 3.6.

64



5.1. Main results and implications

Theorem 5.1. Let C,,(s) be the cost of a partial match query at a fixed line s in a random two-
dimensional quadtree. Then, there exists a random continuous function Z such that, as n — o0,

C”(S)> Az 4
(%), " ZOcon (5.4
where

o TRE+AT(E+2)

1

T3 (B+ )I2(B/2+ 1)
is the constant appearing in (1.16). This convergence in distribution holds in the space (D]0, 1], ds).

The distribution of the random function Z is a fixed point of the following functional fixed-point
equation

Z(s) “1scv) [(UV)ﬂZ(” (£)+wa-vy'z® () ]

|- 020 ($20) + (-0 -vPz (27| 69

where U and V' are independent [0, 1|-uniform random variables and Z @), =1,...,4are inde-
pendent copies of the process Z, which are also independent of U and V. Furthermore, Z in (5.4)
is the only solution of (5.5) such that E [|| Z||*] < co and

E[Z(§)] =B(8/2+1,8/2+1)

where & is uniformly distributed on the unit interval and B(x,y) := T'(x)['(y)/T(z + y),x,y > 0
denotes the Beta function. Additionally, all moments of || Z|| are finite.

For a simulation of a quadtree with corresponding process rescaled process C, (s) see figure (5.2).

It turns out that we will make use of the (s metric for s = 2; thus, our approach is strong enough to
guarantee convergence of the variance of the costs of partial match queries. This settles the open
question on the order of the variance for uniform queries.

Theorem 5.2. Let & be uniformly distributed on [0, 1], independent of (C,) and Z, then

CR(O d
% 1, 200,

in distribution with convergence of all moments. In particular

Var (C,,(€)) ~ K4n?°

where
K, = K} -Var[Z(¢)]
5 [2(26+1) ) B B 2
K7 W(B(5+175+1)) - (B (24‘1724—1)) ] :
Numerically,

K4~ 0.447363034.
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Figure 5.2.: Quadtree for n = 500. The lower figure shows (Kl_ln_ﬁCn(s))Se[OJ] and the limit
mean.

Concerning the worst-case behaviour, an adaption of Theorem 3.7 and Proposition 2.39 reveals all
moments of the supremum to be of the same order as for fixed query lines.

Theorem 5.3. Let S;, = supyc(o 1] Cn(s). Then, as n — oo,

Sn,
— S := sup Z(s
Kinf s€[0,1] (=)

in distribution and with convergence of all moments. In particular, E [S,,] ~ n°E [S] and Var [S,,] ~
n?$Var [S]. The random variable S satisfies stochastically

S < ((UV)BS(I) (U@ - V))BS@)) v (((1 —V)ES® (1 - U)(1 - V))55<4>) ,(5.6)

where U and V' are independent [0, 1]-uniform random variables and S @, 5 =1,...,4 are inde-
pendent copies of S, which are also independent of U and V.
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5.2. Proof of the functional limit theorem

The leading constants in the expansion for the mean and the variance for the supremum, that
is E[S] and Var [S], remain open. The L,-boundedness of n=?S,, implies the corresponding
property for n~2C,,(s) for fixed s, hence it implies convergence of all moments as stated in the
following theorem.

Theorem 5.4. Forall s € [0, 1], we have

e [(529)"] » ez,

forallm € N asn — oo where ¢, is given in (5.38). Moreover, for any natural number £ > 0,
positions 0 < s1 < ...<sp<1,andky,...,ky € None has

E |CE (s1) -+ Che(s0)| ~ (Kan?)Z0=1bs B | 20 (1) - 20(s)|

Finally we note that the one-dimension marginals of the limit process (Z(s), s € [0, 1]) are all the
same up to a multiplicative constant.

Theorem 5.5. There is a random variable Z > 0 such that for all s € [0, 1],
Z(s) £ (s(1 - s))*/22.
Z be the unique solution of the fixed-point equation
7 LyublyByz L UubR1 - v)PZ,

withE [Z] = 1and E [Z?] < oo, where Z' is an independent copy of Z and (Z, Z') is independent
of (U, V).

We immediately proceed to the proof of our main result as an application of the contraction method
developed in the previous chapter.

5.2. Proof of the functional limit theorem

Theorem 5.1 can be considered a prototype application for the functional contraction method pre-
sented in the previous chapter. The verification of conditions C1 and C3 in Theorem 5.1 gives rise
to the problems P2 and P3a that have been mentioned in the introduction. We will deal with both
of them in subsequent sections and assume for a moment the following two propositions to hold
true.

Proposition 5.6. There exists a continuous solution Z of the fixed-point equation (5.5) with
E[Z(s)] = (s(1 — 5))*/2 and E [|| Z||?] < cc. Moreover; all moments of || Z|| are finite.

Proposition 5.7. There exists € > 0 such that

sup_[n~"E [Cy(s)] - fi(s)] = O(n™°).
s€[0,1]

Here [i(s) = K1(s(1 — s))5/2.
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5. Analysis of partial match queries

Following the heuristics in the introduction we scale the additive recurrence (1.18) by n®. Let
Qo(t) == 0and

Cn(t)
K 1n5 ’

Qn (t) =

n > 1.

The recursive distributional equation then rewrites in terms of (), as

(n)\ B M\ #
I m ([t I @ (1
(@n())teo1) = (1{t<U} [( . ) Qz@ <U> * < jz > Qlé”) U
() 8 (n)\ A
I @ (t-U 1 @ (t=U
+ 1450y [<n> Qlén) <1—U> + < n an) 1-U

L
Kl’I’LB
te[0,1]

where U, I YL), o1 in) are the quantities already introduced in the introduction and (Q%l))nzo,

, (le))nzo are independent copies of (Qy,)n>0, independent of (U, V, Ifn), | in)). The
convergence of the coefficients (1 ;n) /n)P suggests that a limit of Q,,(t) satisfies the fixed-point
equation (5.5).

A modified recurrence: Remember from condition C3 that the rescaled sequence has to have
distributions satisfying (2.4) for n > ng. As computed later in (5.9) the contraction property C2
is satisfied for s = 2 but not for s = 1. Hence, for C3 to be satisfied, we need to use a scaling
that leads to an expectation that is independent of n. This is not the case for @,,(¢). Denoting
pn(t) = E[Cy(t)], we are naturally led to consider Yj(¢) := 0 and

vy = OO _ gy + 0w ), w2 57)

where the error term is deterministic and uniform in ¢ € [0, 1] by Proposition 5.7. Remember that
h(t) was defined as (t(1 — t))?/2. The distributional recursion in terms of Y}, is

(n) (n)\ 8

1 (m (¢t I @ (1

e (1o | (B5) 730 ()« (55) via (7
O (n)

L @ (t=U I @ (t=U

e () (26)- ()i

_Mll(m ( + u,<n>
+ 1p<uy Kin?
i t
o [ ) g ()] 1
{t=U} Klnﬁ Klnﬁ ’
L t€[0,1]
where (Yél))nzo, ceey (Y7‘E4))n20 are independent copies of (Y},),>0 which are also independent of

the vector (U, V, I fn), o1 in) ). Therefore, any possible limit Y of Y;, should satisfy the following
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5.2. Proof of the functional limit theorem

distributional fixed-point equation

() eron) (1{t<U} [(UV)ﬁy(l) (5) + (U -V)PY® (é)}

t=U t—U
e [ 0O (E8) +a-na-vyve (28]
t—U
1o (20 (- 0W) + (@ -0 - V) b
; 8 8
+ 1k (5 ) (O + W -v)?) . (5.8)
t€[0,1]
Having Theorem 3.6 in mind, we define (random) operators A&”), r=1,...,4, by
(n)\ B
I t .
1{t<U}< " ) f(U) ifr=1,2
AP () = Sl 0
1{tZU} <n> f <1 _ U) lfT = 3,4

Furthermore let (™ (t) = S>4_ b (£) + (1 — pun(£))/(K1n?) with

1 e () ifr=1,2
(t<U} =1,
bl (t) = Klnﬁt—U
i (1—U ) ,
1{tZU} W lfT:3,4

Then the finite-n version of the recurrence relation for (Y},),>0 is precisely of the form (1.2).

We define similarly the coefficients of the limit recursive equation (5.8). Based on the two proposi-
tions at the beginning of this section, we will then show that with these definitions, all assumptions
C1-CS5 are satisfied. The operators Ay, ..., A4 are defined by

M D0O=1ey OV 1 () Al D)= 1y C-V)) 1 ()

Al D)O= 1 (=0 1 (125) AD0= 10 (1= D)1= 1) 7 ()
and b(t) = Y1, b.(t) — h(t) with

(0= 10y OV 1 (). (0= 1ecoy (U= V)"0 ()

(0= 1o (1= OV 0 (T2 )0 =1 (-1 - V)"0 (7).
The operators Ay, ..., Ay, A" .. A" are linear for each n. Moreover, it is immediate to see

that they are bounded above by one which implies them to be continuous. Obviously, their norm
functions are real-valued random variables. In order to establish them to be random continuous
linear operators on (D0, 1], ds) it remains to check that they are continuous with respect to the
Skorokhod topology. To this end, it is sufficient to prove that

ds(fr, [) = 0 = dg, (1{t§u}fn (t> <y f <2)> —0

U
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5. Analysis of partial match queries

for any u € [0, 1]. This follows easily since || f,,(An(t)) — f(¢)|| — 0 with monotonically increas-
ing bijections \,, on the unit interval such that ||\, (t) —|| — O implies || (13, (1)<u}fn(Bn(t)/u)—
Lg<uy f(t/u)]] — O where 3,,(t) = u Ay (t/u) for t < wand 3,(t) =t fort > u.

We are now ready to check that the conditions C1-C5 indeed hold.

C3 - Existence of a continuous solution. By Proposition 5.6 we have a continuous solution Z of
the fixed-point equation (5.5) with E [|| Z||2] < oo and E [Z(t)] = h(t) = (t(1 —t))?/2. A proof
this the existence of such a process is given in Section 5.3. Hence the function Y (t) = Z(t) — h(t)
is a continuous solution of (5.8) with E [V (¢)] = 0 and E [||Y]|?] < oo.

C2 - Contraction. An easy computation shows that E [[|A.||’] = E [(UV)?] = (28 + 1)72.
Thus,
. 4
L= E[|4)*] = —— < 1. 5.9
2[4 = 55y (5.9)

In particular, Y is the unique solution of (5.8) with E[Y'(¢)] = 0 and E [[|Y||?] < oco.

C1 and C4 - Convergence of the coefficients. It suffices to focus on the terms
JAY — Adlland [ bl

the remaining terms can obviously be treated in the same way. Establishing the convergence only
boils down to verifying that a binomial random variable Bin(n, p) is properly approximated by np.
Using the Chernoff-Hoeffding inequality for the binomial distribution [Hoe63], one easily verifies

?|

uniformly in p € [0, 1]. Thus, since |27 — y®| < |z — y|? for any z,y € [0, 1], we have
Ir(n) B
( ) — (OB =0m?). (5.11)
n
2

By Proposition 5.7 we have 11, (t) = K1h(t)n® + O(n®~¢) uniformly in ¢ € [0, 1]. Therefore

1oy G]) << 15;1))5 i (UV)5> iy

n
for some constant C' > 0. Since h is bounded, the first summand is O(n~"/2) just like in (5.11)

above. The second term is trivially bounded by Cn~¢. Overall, we have Hbg") — b1l = O(n~°).

Hence, since the coefficients Ag,") are bounded by one in the operator norm and by distributional

properties of [ {n), ce 4(n), condition C1 is satisfied. Moreover, in C4, we may choose R(n) =

that for every a > 0,
Bin(n, p)
——=l

] — Om~/2), (5.10)

1AT — Ayl <

16 — byl < +C

2

)

2

Cn™*¢ for a suitable constant C' > 0 and € > 0 as small as we want. By dominated convergence
we have

L* =limsupE

n—o0

4 (n)
S AR
r=1 R<n>

—4E [(UV)%(UV)*E}
4

B EEET
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5.3. The limit process

for € > 0O sufficiently small. This completes the verification of C4.

C5 and (3.12) - Rate of convergence. Note that ), is piecewise constant: Q,,(t) = Q,(s) for all
s, t if no z-coordinate of the first n points lies between s and ¢. There are n independent points, the
probability that there exists two lying within n =3 of each other is at most n 1. So C5 is satisfied
with 7, = n™3 and R,, = o(log~2n) = o(log2(1/r,)) Therefore, the condition on the rate of
convergence is satisfied.

Conclusion: We have shown (Y),(s))sc01] — (Y(5))se[0,1) in distribution. By the very defi-
nition of Y}, (5.7) and the relation Y (¢) = Z(t) — h(t) this implies the functional limit law for
(Qn(5))se0,1)- The remaining statements of Theorem 5.1 follow from Proposition 5.6 and the ob-
servation in [CJ11, Section 5] that the mean of any process satisfying (5.5) whose mean function
is integrable over [0, 1] has to be proportional to h(s). Theorem 5.2 also follows from Theorem
3.6 where the identification of the limit variance is worked out in Section 5.5. Mean convergence
of (||[Yn]|?)n>1 follows from Corollary 3.7 by choosing r, = n~>. Proposition 2.39 implies ||Y||
to have moments of arbitrary order and E [||Y,||"] — E[||Y||] for all x > 0. As for the process
convergence, these results transfer to (), and Z and prove Theorem 5.3. Theorem 5.4 follows
immediately.

5.3. The limit process

The aim of this section is to prove Proposition 5.6, i.e. the existence of a process Z on the unit

interval with continuous paths, that satisfies the distributional fixed point equation (5.5) whose

relevant moments match (asymptotically) with the corresponding ones of the rescaled version of

Ch(s).

As indicated in the introduction, we will find a representation of Z as an infinite series that con-

verges almost surely. The justification of the point-wise convergence is done by a martingale

argument. Showing that the convergence is almost surely uniform allows to deduce that Z has

continuous paths.

We identify the nodes of the infinite 4-ary tree with the set of finite words on the alphabet {1, 2, 3,4},

T=[J{1,234"

n>0

For anode u € T, we write |u/| for its depth, i.e.

the distance between u and the root &. The descendants of u € T correspond to all the words in
T with prefix u; in particular, the children of u are ul, ..., ud. Let {U,,v € T} and {V,,,v € T}
be two independent families of i.i.d. [0, 1]-uniform random variables. By Cy[0, 1] we denote the
set of continuous functions on the unit interval vanishing at the boundary, i.e. f(0) = f(1) = 0
for f € Co[0, 1]. Define the continuous operator G : (0,1)2 x Co[0, 1]* — Co[0, 1] by

Gl oo or 016 Liscy (@)1 (3) + (= =08 ()] G.12)
L (0= (125 + (-0 -0n (125 |
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5. Analysis of partial match queries

For every node u € T, let Z = h where h(s) = (s(1 — s))?/? as in (1.17). Then define
recursively

Z:;—i—l = G(UuaVuaZzlaziLLZ)Z'r’uLBaZ;f:Zl)' (513)

Starting the iteration with the initial deterministic value % in all nodes at level n, let Z,, = Z2 be
the value observed at the root of 7. As it turns out, for every s € [0, 1], the sequence (Z,,(s))n>0
is a non-negative discrete time martingale hence it converges to an integrable limiting random
variable almost surely.

It will be convenient to have an explicit representation for Z,,. For s € [0, 1], Z,(s) is the sum
of exactly 2" terms, each one being the contribution of one of the boxes at level n that is cut by
the line at s. Let {Q}(s),1 < ¢ < 2"} be the set of rectangles at level n whose first coordinate
intersect s. Suppose that the projection of Q)}'(s) on the first coordinate yields the interval [¢]', 7]
Then

2" n
=3 " Leb(Ql(s)" - h <;__€€n> , (5.14)
i=1 i

where Leb(Q7 (s)) denotes the volume of the rectangle Q7' (s). Here, we abbreviate h(s) = 0 for
s < 0or s > 1. The difference between Z,, and Z,, 1 can easily be expressed in terms of then
changes in the boxes Q}'(s): We have

n S—E? S—f?
Znii(s ZLebQ [ (UL, V!, h,h,h,h) <r —zn>_h<rn—m>]’
(5.15)

where U/, V/, 1 < ¢ < 2" are i.i.d. [0, 1]-uniform random variables. In fact, U] and V; are some
of the variables U,, V,, for nodes u at level n. Observe that, although Q7 (s) is not a product
of n independent terms of the form UV because of size-biasing, but U/, V/ are in fact unbiased,
i.e. uniform. Let .%,, denote the o-algebra generated by {U,,V, : |u| < n}. Then the family
{U!,V! :1<i<2"}is independent of .%,.

So, to prove that Z,,(s) is a martingale, it suffices to prove that, for 1 < ¢ < 27",

o s —
v i T _ i
G(Uthhh)(Tl £?>'Jn}_h<r?_@>.

79 710

Since U/, V/,1 < i < 2™ are independent of .%,, this reduces to the following lemma.

Lemma 5.8. For the operator G defined in (5.12), two independent random variables U,V each
uniformly distributed on the unit interval, and any s € [0, 1], we have

E [G(U,V, h, h, h,h)(s)] = h(s).

Proof. Since V and 1 — V have the same distribution, we have

E[G(U,V,h, by, 1)(5)) = 2B [1scty (UV)Ph ()] + 2B [I{SZU}((l ~U)V)’h (11__5)] :

Similarly, since U and 1 — U are both uniform, we clearly have

E|GU,V,h,h,h, h)(s)] = f(s) + f(1 = s),
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5.3. The limit process

where we wrote f(s) = 2E [1g,1y (U V)Ph(s/U)]. To complete the proof, it suffices to compute
f(s). We have

16 =28 [10en @V P ()] = 55 1t (5 (1= 7))

= 1E |:1{S<U}SB/2(U—S)B/2}

=5 155/2 /Sl(x — s)ﬁ/de

_ 4 8,8/2(1 o S),B/2+1
(B+1)(B+2)

= (1= s)h(s),

g

™
o+

=

where the last line follows since (5 + 1)(8 + 2) = 4 by definition of 3. It then follows easily that
E[G(U,V,h,h,h,h)(s)] = (1 — s)h(s) + sh(1 — s) = h(s),
which completes the proof. O

We could now use the martingale convergence theorem to define Z(s) as the limit of Z,,(s) for s
fixed. However, since converges only holds almost surely and the unit interval is uncountable, it
is not clear that we would thus define a proper limit on a set of P measure 1. The next proposi-
tion which is our main result of the section is proved by means of concentration inequalities and
properties of random quadtrees. A simulation of the limit process is presented at the end of the
introduction in figure (1.3) on page 12.

Proposition 5.9. With probability one Z,, converges uniformly to some continuous limit process
Z on [0,1].

It is well-known that (Z,,) has the Cauchy property in (C[0, 1], || - ||) almost surely if and only if
SUD,,>p, || Zm — Zn|| tends to zero in probability as n — oo. The latter is immediate if we find
constants constants a, b € (0,1) and C' > 0 such that

P < sup |Zn+1(8) - Zn(s)’ > an) < C-b". (516)
s€[0,1]

Completeness of the state space implies the existence of a continuous process Z such that, almost
surely, Z,, — Z uniformly [0, 1]. We now move on to showing that there exist constants a and b
such that (5.16) is satisfied. We start by a bound for a fixed value s € [0, 1]. We will then handle
the supremum using a large enough number of fixed points in the unit interval and bounding the
variations in between. The following Lemma is a necessary tool for the remainder of this section.
Its proof relies on the standard Chernoff bound for the exponential distribution; for independent
random variables F1, ..., E,, with exponential distribution of unit mean, we have

P (Z E; > tn> < e nlt—logt—1) (5.17)

=1

for ¢ > 1. Analogously, for 0 <t < 1,

P (Z E; < tn) < e~ n(t=logt=1) (5.18)
=1
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5. Analysis of partial match queries

Lemma 5.10. Let W, denote the maximum width of a cell at level n in the construction of the
process Zy,. Then, for c < 1,

P (W, = ") < (4elog(1/c))".

Proof. Let U;, 7 > 1 be a family of i.i.d.
[0, 1]-uniform random variables and E;, i > 1, be a family of i.i.d. exponential(1) random vari-
ables. Then, the union bound and the Chernoff bound (5.18) for the left tail yield

P (W, >c") <4". (HU >c)
= 4" P(Zn:Eignlog(l/c)>

4" exp(—n(log(1/c) — 1 — loglog(1/c)))
(

as desired. O

Lemma 5.11. For every s € [0,1], any a € (0, 1), and any integer n large enough, we have the
bound

P (|Zn+1(s) — Zn(s)] > a™) < 4(16elog(1/a))".
Proof. We use the representation (5.15). As we have already pointed out earlier in Lemma 5.8, for
every single rectangle Q7' (s) at level n, we have

— -0
E| GU.,V/ hhh h)(‘i €n> —h<‘i > ‘ Fn } = 0.
L] T

Since h(z) < 278 for 2 € (0, 1), conditional on .%,,, Z,, .1 — Z,, is a sum of 2" centered, bounded
and moreover independent terms (but not identically distributed). Moreover, conditional on .%,,
the term corresponding to Q7' (s) in (5.15) is bounded by

Leb(Q})’ - [|G(U;, Vi, h, h, b, h) — || < Leb(Q}) 2| R||

= Leb(Q7)P21 7, (5.19)

So when conditioning on .%,, one can bound the variations of Z,,.1 — Z,, using the Chernoff-
Hoeffding inequality [Hoe63]. We have

P (|Zn41(s) = Zn(s)] > ") = E[P(|Zn11(s) = Zn(s)| > a" | Fn)]

a2n
2 exp <— 212;1 Leb(Q7(s))2? > ]

on
< 2exp (—a~?") + 2P (Z Leb(Q%(s))% > a4"> . (5.20)

=1

<E

where the precise constant in the exponent in the second inequality can be taken to be one since
2/(2177)2 > 1. Now, since 23 > 1 and all the volumes Leb(Q?(s)) are at most one, we have

A A
P (Z Leb(Q%(s))% > a4”> <P (Z Leb(Q7(s)) > a4”>
=1

=1
<P (W, >da"), (5.21)
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5.3. The limit process

where W,, denotes the maximum width of any of the 4™ cells at level n. Indeed, the volume
covered by the union of all rectangles Q?(s), 1 < ¢ < 2™ is at most that of a vertical tube of width
W,. Putting together (5.20) and (5.21) yields

P (|Zy41(8) — Zu(s)] > a") < 2exp(—a™?") + 2P (W,, > a™)
< 2exp(—a?") + 2(16elog(1/a))"
< 4(16elog(1/a))™,

for all n large enough using Lemma 5.10. O

The previous lemma provides good control on pointwise variations of Z,, 11 — Z,, and we move on
to the supremum on [0, 1] now. Let V,, be the set of z-coordinates of the vertical boundaries of all
the rectangles at level n and L,, = inf{|z — y| : z,y € V,,}. Subsequently, we need a tail bound
for the quantity L,. Its proof is concerned with the saturation level of a random quadtree. By
saturation level we denote the deepest level £ in the tree in which all 2¢ internal nodes are present.
The quantity is studied in [Dev87]; we use arguments resembling ideas from this work to deduce
a precise tail bound.

Lemma 5.12. Let Sy be the saturation level of a random quadtree of size k. Then, for every
positive integer x© > 22, it exists an integer no(x) with

P (Spn < n) < 4nHlg=n/100, n > no(x).

Proof. We consider the 4™ possible nodes on level n. By symmetry each of them is occupied by
a key with the same probability. Looking at a specific one, e.g. the leftmost, it is obvious that
its subtree size is stochastically bounded by Bin(z"; U, V; - - - U, V,,) — n where {U;,7 > 1} and
{Vi,i > 1} are independent families of i.i.d. [0, 1]-uniform random variables. Then by the union
bound applied to the 4™ cells at level n, using Chernoff’s inequality, we have

P (Syn <n) <4"-P(Bin(z"; U1 V1 ---U,V,,) < n)
2 n
< 4" exp (—(1 —n27")%2" ) 4 4"P <U1V1 UV < () ) . (5.22)
x
However, using once again the large deviations principle (5.17) for sums of i.i.d. exponential
random variables F;,7 > 1,

p <U1V1 ULV, < <i)n> _p <§: B> nlog(x/2)>

=1
< exp (_2n <log(;:/2) L1 og log(;v/2)>>
< g7n/100) (5.23)

for all > 22 since then % log?(x/2) < x99/100_ Combining (5.22) and (5.23), we obtain
P (Szn < n) < 4n exp (_Qn—l) 44n. x—n/lOO < 471-!-1:E—n/1007

for x > 22 and n large enough. O
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5. Analysis of partial match queries

Lemma 5.13. There exists 0 < g < 1 such that any positive real number v < 7y, there exists an
integer ny(7y) with
P (Ln < ,yn) < 6n+17n/201’ n > nl('Y)-

Proof. The joint distribution of the x-coordinates of the vertical lines in the tree developed up to
level n is complex. In particular, it is not that of independent uniform points on [0, 1]. However,
we can use a simple coupling with a family of i.i.d. random points on [0, 1]? that yields a good
enough lower bound on L,,.
Let & = (U;, Vi), i > 1 be i.i.d. uniform random points on [0, 1]2. Let T} be the quadtree obtained
by inserting the random points &;, 1 < ¢ < k, in this order. We write D; for the depth at which
the point &; is inserted where the root has depth zero. Let K, be the first k£ for which the tree T},
is complete up to level n, i.e. T} has 4™ cells at level n and Tj_; has less on this level. Then,
by definition {&; : ¢ > 1, D; < n} has the distribution of the set of points used to construct the
process Z,. Obviously, {&;: i > 1,D; <n} C{§ :1<1i < K,} and for any integer z,

P (L, <q") <P (3i,j < Kp:i# 5, |Ui = Uj| <)
<SP (Eij<am i £, |Ui— Uyl <9") + P (K, > 2")
2. 29" + P (K, > "),

IN

by the union bound. The random variable K, is related to the saturation level as introduced in the
previous Lemma. We obtain

P (K, > ") = P (Syn < n) < 4(42~ /100,

as long as > 22 and n > ng(x), compare the conditions of the previous Lemma. It follows
readily that

P (L, <4") < 2(x)" 4 4(42~1/100)n
< 6n+1,yn/201

upon choosing z = [4100/201,=100/2017 [that is 22y ~ 42~ /100] and v < 4 - 227201 =:
which implies > 22. This completes the proof. O

We continue with the proof of (5.16). For technical reasons, suppose that 1/ is an integer. Then,

we have
sup |Zn+1(s) - Zn(s)‘ < sup sup ’ZnJrl (5) - Zn(5)|
s€[0,1] 1<i<y= (1) jantl < g < (54-1)yntl
< sup ‘Zn—l-l(i’YnJrl) - Zn(i’y"+1)|
1<i<y—(n+1)
+2  sup sup  |Zm(s) — Zm(t)|.

me{n,n+1} |s—t|<yntl

We first deal with the second term, and suppose that we are on the event that L, 1 > (4v)" 1.

Observe that the sieve we used, 4"+

, is much finer than the shortest length of a cell at level n + 1
which is at least L,,;1. We use the representation in (5.14); for [t — s| < ~™ 1 the two collections

{QM(s),1 < i < 2"} and {Q(t),1 < i < 2"} differ at most on one cell. We obtain, for any
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5.3. The limit process

s —t| < 4L,

27l
_m t—
_ < n B . SThH ) _ i n B
26) = Z0(0] < S L@ " (=) (%) -+ 2maxLeb(@1(s)
2n
< ST Leb(@ ()P - 4FHD 4 2 mmax Leb(QP(s))?
=1 !
< 3wh.

Here, in second inequality follows from the fact that |h(t) — h(s)| < |t — s|® for any s,t € [0, 1]
and the fact that L,, > (4v)"*!. The same upper bounds holds for |Z,;1(s) — Zn11(t)| on
|s —t|| < ~+™F!. Thus, by the union bound, for any € (0, 1),

P < SUp [Zn+41(s) — Zn(s)| = 2@”) <y sup P (|Zpt1(s) — Zn(s)| = a")
s€[0,1] s€[0,1]

+P (Lyt < (4™ + P (12ij > a"> . (5.24)

We are now ready to complete the proof of Proposition 5.9. From (5.24) and Lemma 5.13,

P ( sup |Zn+1(s) — Zn(s)| > 2an> < 4(166'f1 log(1/a))" +6 - 16n’y"/201
s€[0,1]

+(4elog(12/"/a) /B)",

for all v < 79/4 and n > ng(7y,a). Now, first choose a < 1 sufficiently close to 1 such
that 16(elog(1/a))*/?°? < 1/4 and then v > 0 such that 1/ is an integer and v'/291 <
ey~ !log(1/a). It follows that, for n sufficiently large,

P ( sup |Zn+1(s) — Zn(s)| > 2a”> <11-47".
s€[0,1]

Increasing a < 1 and C clearly ensures that (5.16) holds with b = 1/4 for all n > 1.

The functions at the four children of the root, Z}L, e Z;f are distributed as Z,,_1; they also con-

verge uniformly to continuous limits denoted Z (1), A (4), The random functions Z (1), R4 4)

are independent and distributed as Z. Equation (5.13) and independence imply

Z(s) =1pse0 [(UV)BZ(I) (%) + (U1 -V))Pz® (i)]

+ 10 [((1 —U)V)Pz® G — g) +(1 —[(]])(1 —V))fz@ <S—Uﬂ ,

1-U

almost surely, considered as random continuous paths. In particular, Z solves the distributional
fixed-point equation (5.5).
Finally, we look at the moments of || Z,, || = sup,c(o.1[Zn(s)| and || Z]| = sup,cpo.171Z(s)]-

Proposition 5.14. For every p > 1, we have E [|| Z||P] < oo, and E [||Z,, — Z||P] — 0.

Proof. Let Ay () = P (|| Zn+1 — Zn|| > x) and @ < 1,C > 0 such that (5.16) is satisfied with
b = 1/4. Then, by (5.15) and the upper bound (5.19), we have

2n+1

El||Zns1 — Znll] = /OO Ap(z)dr = /a Ap(z)dx —|—/ Ay (x)dz. (5.25)
0 0 a

n
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5. Analysis of partial match queries

The first summand is at most a”, the second one at most C' - 2~("~1) by (5.16). Altogether, there
exists R > 0and 0 < ¢ < 1 with

E [||Zn+1 - Zn”] < Rq"

for all n. Furthermore, for any p € N, our proof also provides (5.16) for a constant C' > 0 and
b = 47P by increasing the value of a. Therefore, replacing a™ and 2! by a"? resp. 2("+1P in
(5.25) shows that also the p-th moment of || Z,,+1 — Z, || is exponentially small in n for any p > 1.
Then, using Minkowski’s inequality

(Il pq 1/p
E[|Za)P =E ||| (Zk = Ze1) + b
L k>0
i n P 1/p
<E <Z||Zk—Zk—1||+||h||>
L k>0

<N E[|Zc — Zia "1V + E |17,
k>0

which is uniformly bounded in . This implies finite moments of || Z|| or arbitrary order. The L?
convergence follows along similar lines. 0

Remark 5.15. It is worth mentioning that we can also consider Z,, as a martingale sequence in
the space of continuous functions, that is E [Z,,11].%,,] = Z,, almost surely. This immediately
follows from the fact that the relation E [Y] (s) = E[Y(s)] for a continuous process Y extends
to conditional expectations, that is E [Y'|.%] (s) = E[Y(s)|.#] for any sub-o-algebra .%. For
convergence results of martingale sequences in separable Banach spaces we refer to the book of
Neveu [Nev75]. It appears that results which provide uniform convergence given LP boundedness
of the norm for some p > 1 extend only to reflexive Banach spaces or Hilbert spaces. Nevertheless,
we have the Doob representation Z,, = E [Z|.%,,]. We finally note that, in finding (and even more
classifying) fixed-points of the map 7" in 1.5 in the real-valued case, one main approach to construct
solutions as almost sure limits of martingales. These limits also provide series representations for
the fixed-points. For more detailed information we refer to [ABM12] and the references therein.

5.4. Uniform convergence of the mean

In this section we prove Proposition 5.7 to hold true. Note that, since C,(s) is continuous at any
fixed s € [0, 1] almost surely, the function s — E [C),(s)] is continuous for any n.

Following [CJ11], we first prove a poissonized version, the routine depoissonization arguments
yielding Proposition 5.7 are presented in Subsection 5.4.3. Consider a Poisson point process with
unit intensity on [0, 1]2 x [0, 00). The first two coordinates represent the location inside the unit
square, whereas the third one represents the time of arrival of the point. Let P;(s) denote the
partial match cost for a query at = s in the quadtree built from the points arrived by time ¢.

Proposition 5.16. There exists € > 0 such that

sup |t PE[P,(s)] — i(s)| = O(t~%).
s€[0,1]
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5.4. Uniform convergence of the mean

The proof of Proposition 5.16 relies crucially on two main ingredients: First, a strengthening of
the arguments developed by Curien and Joseph [CJ11], and second, the asymptotic expansion of
E [C}, ()] for a uniform query line &, see (1.14), by Chern and Hwang [CHO3]. By symmetry, we
write for any ¢ € (0,1/2)

sup |t PE[P(s)] = i(s)| = sup [t~ PE[Py(s)] — ils)]

s€[0,1] s€[0,1/2]
<sup |t E[Py(s)] — ils)| + sup [t PE[Pi(s)] — fi(s)].
<8 5€(8,1/2]

(5.26)

The two terms in the right hand side above are controlled by the following lemmas. Their proofs
are presented in the following two subsections.

Lemma 5.17. We have
sup ‘t_ﬁE [Py(s)] — ii(s)| < 2% sup rPE[P.(6)] + K16°/2.

s<d r>t/2
Lemma 5.18. There exist constants C1,Co,m with 0 < n < [ and vy € (0, 1) such that, for any
integer k, and real number § € (0,1/2) we have, for any real number t > 0,
sup PR [Py(s)] — i(5)] < Cro~L(1 = 7)* + Cok2*(8 — )2kt
s€(9,1/2]
Before proceeding with the proofs of the lemmas, we indicate how they imply Proposition 5.16.
By Lemmas 5.17 and 5.18, we have for any § € (0,1/2) and natural number k& > 0

s?p] tPE[Pi(s)] — iu(s)| < 3K18°%/% + 301671 (1 — 4)F + 5Cokt 2% (5 — ) 2.
s€l0,1

Choosing § = t” and k = |alogt] for v, > 0 to be determined, we obtain
sup [t PR[Py(s)] — i(s)| < 3Kyt "2 4307 (1 — )~ loat !
s€[0,1]
+5Cot 2/ (B — n)*]* B alog .

First pick o > 0 small enough that

alog <(6_2n)2) <n.

This « being fixed, choose v > 0 small enough that v + «log(1 — 7) < 0. The claim follows.

5.4.1. Behavior along the edge: proof of Lemma 5.17

The bound given by Lemma 5.18 blows up as § approaches zero. However, as we have already
noted in the introduction, C,,(0) is asymptotically of smaller order than at any other fixed query
line 0 < s < 1/2; the case s = 0 should therefore not cause any problems at all. This turns out
to be true and we will deal with the term involving the values of s € [0, §] by relating the value
E[P,(s)] to E[P,(d)]. The term E [P;(d)] will then be shown to be small choosing § sufficiently
small.

The limit first moment fi(s) = lim;_,o E[P:(s)] is monotonic for s € [0,1/2]. It seems, at
least intuitively, that for any fixed real number ¢ > 0, E[P;(s)] should also be monotonic for
s € [0,1/2], but we were unable to prove it. The following weaker version will be sufficient for
our purpose.
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5. Analysis of partial match queries

Proposition 5.19. Forany s < 1/2and ¢ € [0,1 — 2s), we have
s+te
E[P(s)] <E [Pt(lJre) <1+5ﬂ .
The idea underlying Proposition 5.19 requires to understand what happens to the quadtree by
considering a larger point set. For a finite point set P C [a, b] x [0, 1] x [0, c0), we let V(P) and
H(P) denote, respectively, the set of vertical and horizontal line segments of the quadtree built
from P.

Lemma 5.20. Let P = {p1,...,pn} be a set of points with p; = (x;,y;,t;) € [az,as] x [0,1] x
[0,00) ordered by their t coordinate, i.e. t; < ti11. Additionally we assume P to be in general
position, meaning that all x-coordinates are pairwise different and the same holds true for the y
and t coordinates. Furthermore let Q = {p},...,p,} C la1,az2] x [0,1] x [0,00) with p} =
(«},yl, t.) again ordered according to their third coordinate such that P U Q C [a1, ag] % [0, 1] x
[0, 00) is again in general position. Then we have

H(PUQ) S H(P) and V(PUQ)C V(P).

Proof. We assume for a contradiction that the assertion is wrong and focus on the case that
H(P) ¢ H(P U Q); the other case is handled analogously. Let i; be the index of the “first”
point in P such that the horizontal line of p;, is shorter (at least on the right or left side of the
point) in the quadtree built from P U Q than it was in the one built from P. Here, first refers to
the time coordinate ¢. By construction, there must be an index ¢ such that the vertical line of p;,
blocks the horizontal line of p;, in P U Q but not in P. We again choose ¢ such that ¢;, is minimal
with this property, by construction ¢;, < ¢;,. Repeating the argument gives the existence of an
index 73 and a point p;, whose horizontal line blocks the vertical line of p;, in P U Q but not in P
with ¢;, < t;,. This obviously contradicts the choice of 7. ]

Proof of Proposition 5.19. Consider the unit square [0, 1]? and the extended box [—¢, 1] x [0, 1],
and a single Poisson point process on [—¢, 1] x [0, 1] x [0, ¢] with unit intensity. Write P5 (s) for
the number of (horizontal) lines intersecting {x = s} in the quadtree formed by the all the points.
Similarly, let P;(s) = P?(s) be the corresponding quantity when the quadtree is formed using
only the points falling inside [0, 1]2. Then, for this coupling, we have by Lemma 5.20,

Als) < PE) L P (1)

Taking expectations completes the proof. 0

Proof of Lemma 5.17. 'We use Proposition 5.19 to relate E [P;(s)] to E [Py (§)] for some ¢'. Choos-
inge = (6 —s)/(1—9)yieldst = t(1 —s)/(1 —8) < t(1 —6)~L. Thus, forany § € (0,1/2)
and ¢ > 0 we have

sup |t E [Py(s)] - ials)| < sggt*ﬁE [Pi(s)] + j(9)

< Sggt‘ﬂE [Py (8)] + fa(5)

<t PE [Py (0)] + a(5)

<(1-0)"" su[/) r~PE[P.(8)] + f(d).
r>t/2

This completes the proof since § < 3 and fi(s) < K; 6P/2, O
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5.4. Uniform convergence of the mean

5.4.2. Behavior away from the edge: proof of Lemma 5.18

The core of the work is to bound the second term in (5.26) involving s € (0, 1/2]. Our approach
relies on tightening the arguments developed in [CJ11]. We start by re-explaining their basic ideas.
Observe that most of the quantities defined in the remaining of the subsection will depend on s
which we will neglect in the notation for the sake of readability.

The first step is to unfold k levels of the fundamental recurrence (1.18) in the Poisson case. Let 7
be the arrival time of the first point in the Poisson process and (91 = Q1(s) be the lower of the two
rectangles that intersects the line {z = s} after inserting the first point. Inductively let 7, = 7%(s)
be the arrival time of the first point of the process in the region ;1 and Qi be the lower of the
two rectangles that hit the line {x = s} at time 7. For convenience, set Qo = [0, 1]2. Finally,
let P, be an independent copy of the process P; (set P, = 0 for t < 0). At level one, using the
horizontal symmetry, we have

E[Pi(s)] = P (t = 1) + 2E | PLep(0y)—m) (£1) | »

where &1 = £;1(s) € [0, 1] denotes the location of the line {z = s} relative to the region Q. If the
interval [¢1, 1] denotes the projection of )1 on the first axis, we have

8—£1

1(s) =

=0

Write £, = &k(s) € [0, 1] for the location of the line {x = s} relatively to the region @, and
M, = Leb(Qy). Then, unfolding k levels, we obtain

E[Fi(3)] = g(t) + 2°E | Pagy o (&) (5.27)

where 0 < gi.(¢) < 2% — 1. Next, we introduce the inter-arrival times | = 75 — 7,1 with ¢}, :== 0

xol

Figure 5.3.: Unfolding & levels of the recursion. (x(s) equals the quotient of the dashed red line
and the solid red line.

and their normalized versions (i, = ¢, M}, (again (o := 0). Defining F}, = M},7;,, we can rewrite
(5.27) as

E[Pi(s)] = ge(t) + 2°E [ Prr-ri (&) - (5.28)
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The sequence (()x>1 are i.i.d. exponential random variables with unit mean, also independent of
(&k, Qk)r>1. Note that, as we have already seen in Section 5.3, the region (), is not distributed
as a typical rectangle at level k; in particular Leb(Qy) is not distributed as XY - - - XY}, for
independent [0, 1]-uniform random variables X, Y;, i > 1. Intuitively, Q) should be stochastically
larger than a typical cell, since it is conditioned to intersect the line { = s}. This is verified by the
following lemma. We return to the effect of size-biasing and give more details on the distribution
of M, in Subsection 5.4.4.

Lemma 5.21. For any s € (0,1), any integer k > 0, and 1 < i < 2%, we have, stochastically,
Leb(Qx) = My, > X1Y1 -+ Xy Yy,
where X;,Y;, i > 1 are independent random variables uniform on [0, 1].

Proof. Consider one split, at a point (X, Y") uniform inside the unit square. The split creates four
new boxes, two of them being hit by s. Let L be the length of these two cells. Their height is
either Y or (1 —Y'), which are both uniform. So it suffices to prove that L > X stochastically. By
symmetry, it suffices to consider s < 1/2. We have,

L=1pcx3X +1exy(1 - X).
Write Fr,(y) = P (L < y) and Fx(y) = P (X <y) = y. Itis then easy to see that

0, y<s
Friy)=P(L<y)=< y—s, s<y<l-s
20—1, y>1—s.

Hence, for all s € (0,1/2) and all y € (0, 1) we have F1(y) <y = Fx(y). The result follows.
U

The second term will be treated using results for the case s = &, for a uniform random variable &
independent of everything else. For every & > 1, the distribution of & depends on s thus we can
not use the result for a uniform query line directly. Curien and Joseph [CJ11] found a very clever
way to circumvent this problem. In their Proposition 4.1 they introduce a version of the homoge-
neous Markov chain (&, My,)r>1 where My, := M, /Mj,_; together with a random time 7" such
that for any £ € N, conditionally on {T" < k}, the random variable &, is uniformly distributed
on [0, 1], independent of (M, ..., My, T'). Choosing these random variables independent of the
process P, we will use them in the following without changing the notation (¥}, can be constructed
using (M/)1<¢<j and an additional set of i.i.d. exponential random variables with mean one).
The details of the definition of 7" are not important for us. The only crucial thing is that 7" has
exponential tails. Indeed, we have [CJ11, page 189]

E[1.157] < Cu(s A (1 —s)) 712 < 0671/, (5.29)

for some constant Cy in the case of § < s < 1/2. Proceeding as in [CJ11] we do not establish
uniform convergence with a suitable rate directly but prove the sequence (t~?E [Py(s)])>0 to be
Cauchy where we keep track of smaller order terms thoroughly. Using (5.28) and the triangle
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5.4. Uniform convergence of the mean

inequality, we obtain for any ¢ and 7 such that r > ¢,

|t PE [Pi(s)] — rPE [P:(s)] | (5.30)
Pl 51@[ vt 1 (66| = 7B [P (60)] |+ 2517

<2/t °E [PMkt F (&k) 1{T<k}] —r R [PMkr Fk(&c)l{qu}} |

+ 2%t PE [PMkthk (Ek)l{T>k:}] —r°E [PMkrka (fk)l{T>k}} | +2F P,

To complete the proof of Lemma 5.18, we formulate explicit bounds for the two main terms in
(5.30) where we distinguish the cases whether coupling has occurred by level k£ (i.e. T < k) or
not.

i. No coupling by level k, T' > k. In this case, we bound the terms roughly. We obtain
2* ‘tiﬁE [PMkt*Fk (gk)]-{T>k}] —rPE [PMM*FIC (fk)]-{T>k}} ’

< ok+1 st;pu —PE [PMku Fy, (gk)l{T>k}}
u>t

One then essentially uses the uniform bound sup, sup, u °E [P,(s)] < Cs (see (10) in [CJ11])
Holder’s and Markov’s inequalities to make use of a bound that is based on the exponential tails
of T'. For the details we refer to [CJ11, page 190]. For any v > 0 and s € (0, 1/2], one has

B 1-1/p
. ~ B 9 k=D/p [ [1.157

1/2—1/(2p) 2 r 1/p—1 ’
< 0405612710 [ 9 L1s/P1)
= {(5p+1)(6p+2)}

by the upper bound in (5.29). Choosing p close enough to one that the term in the brackets above

is strictly less than one, we obtain for any s € (d, 1/2] and real numbers ¢, r > 0,

25 |t~"E [PMkt*Fk (fk)l{T>k}] —r PR |:]3Mk7’*Fk (fk)l{T>k}} | < 2C4C567 /2B (1 — )k
<G 1=k, (531

where ' denotes a constant and v > 0.

ii. Coupling has occurred before level k, T < k. In this case, more care has to be taken, we will
have to match the first order terms in the expansion (1.14). In what follows, we write x4 = x V 0.
We start with

tP2FE [PMkthk (Ek)l{Tgk}} =2"E {1{T§k}(Mk — 7 ) O(Mit — Fk)} ,

where 0(x) = xjrﬁ E [P;(§)] with £ a [0, 1]-uniform random variable independent of everything
else. The estimate in (1.14) is easily transferred to the poissonized version [the details are similar to
the depoissonization in the next subsection], and we have 6(z) = xk + O(xz™") forany 0 < n < S3.
Therefore

2"t~ PE [PMkthk (fk)l{Tgk}} —rE [pMkrka (&;)HT@}} |
<2F|E [1{T§k}(Mk — 7 R 0(Mt — Fk)] -E {1{T§k}(Mk —r R 0(Myr — Fk)} |

< 2R H(Mk R O(Mt — Fy) — (M — v F)2 0(Myr — Fk)H . (5.32)
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Fix n < B. For x > 0, we have, as x — oo
(Mk — l‘_le)’f_ . Q(ka - Fk)
= MJ(1 - O(z ' Fu M7 YY) (k5 + O(M, "))
= kM + O(FMJ ™ a™Y) + O(MJ 2™ + O(F M.~ =17
= KM} + O(Fp My 27 1) + O(a™) + O(Fp My~ 2=y,

since M € (0,1) and < f3, the O terms being deterministic and uniform in s € [0, 1]. Going
back to (5.32), the terms kM 5 coming from the two terms with ¢ and r cancel out, and there exist
constants C7, Cg such that, for all ¢, r large enough such that moreover ¢ < r, we have

2"t PE [PMkthk (fk)l{Tgk}} —rPE [PMkT*Fk (&c)l{Tﬁk}} |
< Cr2* (B BT 4 7 4 R | R )
< C2bt~E [FkMkB_l_”] .

Since it will be necessary to choose k tending to infinity with 7 to control the term in (5.31),

it remains to estimate £ [FkM ,f 717"} . By definition of Fy, = M}, one immediately sees that

F < lezl (¢, where the normalized inter-arrival times (, were defined right after equation (5.27).
This rough bound together with Lemma 5.21 implies

E [FkM,f**”} < kE [M,f**”]
< kE [Xﬁf“ﬂ " k(g -

Here X denotes a uniform on [0, 1]. Note that an slightly improved upper bound for moments of
My, is given in [CJ11, Section 4.2], the advance being inessential. We finally obtain

2%t=PE [PMkthk (fk)l{Tgk}} —rPE [PMkrka (fk)l{Tgk}] | < Cshkt "2 (B8 — n)~%F.
(5.33)

Putting (5.31) and (5.33) together with (5.30) yields, for any ¢, > O such thatt < r
PR [B(s)] — 1 PE[Pr(s)] | < Cr6~ (1 = 7)F + Ch2®(8 — ) 25477 4 2k 1
< C10 N1 — )k + Cok2M(B — ) 2R,

for some constant Cs. The statement in Lemma 5.18 follows readily from the triangle inequality.

5.4.3. Depoissonization

The depoissonization relies on standard arguments based on the concentration of Poisson random
variables and the monotonicity of E [C,,(s)] in n for each s € (0, 1).
We first give a standard concentration bound for Poisson distribution that we will use.

Lemma 5.22. Let N be Poisson(t). Then, there exists 69 > 0 such that for every ¢ € (0, o) and

everyt >0 ,
P(|N —t| > t0) < 2710/,
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5.4. Uniform convergence of the mean

Proof. The standard Chernoff bound for N is
P (N > t(l + 5)) < eté—t(l-i—&)log(l—i—é)’ and P (N < t(l - (5)) < e—té—t(l—é)log(l—é).

Using log(1 + z) = z — 22/2 4+ O(23) for  — 0 shows that both tails are bounded by e~9*/3
for sufficiently small . This gives the result. O

Recall that we not only need to prove n°E [C,,(s)] — fi(s), uniformly for s € (0,1), we also
want to conserve the polynomial error rate. We first focus on the upper bound. Write &,, = n~1/3

and let N ~ Poisson(n(1 + £,)) be independent of the process building up the discrete quadtree.
Then Cy (s) 4 P, (14¢,)(8). By monotonicity, we have

E[C =F [Cn 3)1{N>n}] +E [C’ (3)1{N<n}]
§ E [CN(S 1{N>n}] +E [C (5)1{N<n}]
<E[Cn(s)] +E [Cn(s)1{n<ny]
<E[Cn(s)] +nP(N < n),

since Cp(s) < n.Fort =n(l+¢,)and 0 = ¢,/2, we have t(1 — ) = n(l +¢&,)(1 —e,/2) =
n(l +¢e,/2 + o(en)) > n, for all n large enough. It follows from Lemma 5.22, for all n large
enough,

[CN(S)] + nefn(lJren)E%/?)
O (s)] + &2

Therefore, for any s € [0, 1],

nPE[Cu(s)] — fi(s) le n PE[Cn(s)] — a(s) + nBe—n'?/12
= (1+ 5n)’8[n(1 e PE[Cn ()] — fls) +nPe /212
< [n(1+en)] PE[Cn(s)] — fils)

ten[n(1+ )] PE [Cn ()] + nBe /12 (5.34)

Similarly, we can obtain a lower bound using N’ ~ Poisson(n(1 — ¢,)), again independent of the
discrete process. We obtain

E[Ch(s)]| =E [Cn(s)l{N/>n}] +E [Cn(s)l{]\ngn}]
> B [Ox (9L (vra)]
=E[Cn(s)] = E [Cn/(5)Lnr<ny]
>E[Cni(s)] —nP (N' <n).

We again aim at using Lemma 5.22. Sett = n(1—¢,) and 6 = &,. Thent(1+6) = n(1—c2) <n
so that

(O (s)] = nem(men)en/®
[Cne(s)] — e °112,
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5. Analysis of partial match queries

for all n large enough. It follows that, for any s € [0, 1],
R [Co(s)] — fi(s) > (1= £n)[n(1 — £,)] R [Covi (5)] — fi(s) — n~ P12
> [n(1 — )] PE[Cnvi(s)] = fls) — n~Pem*/12, (5.35)
d

Finally, using Cn () 4 P14¢,)(8), Cni ()
and using Proposition 5.16, we obtain

Py (1—¢,)(8), putting (5.34) and (5.35) together,

sup |n~E [Cp(s)] — i(s)| = O(n ™),
s€[0,1]

where ¢ is given in Proposition 5.16. Hence the proof of Proposition 5.7 is complete.

5.4.4. Extensions to the limit mean

The last subsection on the asymptotic behaviour of the mean of C,,(s) is dedicated to a better
understanding of Proposition 5.16 and its proof. A key ingredient is the concept of size-biasing as
already emphasized in Lemma 5.21. For simplicity, we fix s € (0, 1) and do not face issues of uni-
formity. Summarizing the approach of Curien and Joseph [CJ11], they first show that t—°E [P;(s)]
admits a finite limit i(s) as t — oo by verifying the Cauchy property. To infer the shape of the
limit, they make use of a fixed-point characterization of fi(s), see [CJ11, page 191]. It is easy to
see that this equation is solved by any multiple of (s(1 — s))%/2. Finally, they are able to prove
that this fixed-point equation has at most one solution up to a normalization factor. In the last step,
using the results for the case of a uniform query line from [FGPR93], Curien and Joseph determine
the precise value of ji(s). Our result in this section extends their ideas to uniform convergence on
the unit interval. We attempt to give further insight for the occurrence of fi(s) here. Using Lemma
5.18 and the techniques of its proof, there exist constants C, Cy, C3 [which now may depend on
s] such that forany ¢t > 0,k € N

EIE[P(s)] = fi(t) + n2"E [ Mf]

with
|f1(t)] < Crt P28 + Co(1 — )% + Csk2Rt1(B8 — ) 2"

Hence the term which gives rise to the limit fi(s) is x2*F [M ,’f ] ; more precisely

|2 E [M,ﬂ —(s)| < Cs(1—v)F  and  k2'E [M,ﬂ = ils),

as k — oo. It is much easier to analyze the term M}, in the uniform case s = U. Then, using the
notation and the result of Proposition 1 in [CJ11], it holds My (U) = My(U) - -- My (U) where
(My(U))k>1 are i.i.d. random variables with density 2(1 — m)1(,,¢[0,1]}- This has already been
explained at the beginning of this chapter; the length of the interval covering U has size-biased
uniform distribution whereas the height is unbiased. Moreover, the product of two independent
random variables with uniform and size-biased uniform distribution on the unit interval has density

2(1 —m)1imepo,1)3- In particular, we have 2FE {M ,f (U )} = 1 according to the very definition of

/3. Here we could also turn things around and use 2*[E {M ,f (U )} = 1 as a heuristic for the precise
value of 3.
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Let us return to the non-uniform case where s € [0, 1] is fixed. Denoting Ly, = Lg(s) the length
of the interval on the xz-axis covering s after k iterations, we have M} = Ly Hle X; where
X1, ..., X are i.i.d. random variables with uniform distribution on [0, 1] and independent of Lj.
Therefore, the problem of analyzing the mean (or moments) of M}, is actually one-dimensional
and we could have focussed on the quantity Ly, instead of M}, throughout the proofs of the previous
subsections. However, we decided not to do so in order to apply the results from [CJ11] without
modifications.

The computation of the limit mean of L, after rescaling can be worked out as in [CJ11, Section 5]
based on its distributional recurrence

S

d (1) @ (1=s
(Li(s))s :<1s xyX Ly~ + 1exy(1 - X)L~ < )) ;
€[0,1] {s<X}2 M1 (X) {s2X} -1\ 7 x e

where, L,(Cljl, L,(i)l are independent copies of Lj_1, X is uniform on [0, 1] and independent of

(L;jf)17 Ll(i)l). As a conclusion, we can say that the function (s(1 — s))?/? results from the differ-

ence between the size-biasing effects in Ly (s) and Ly (U ), we have

i E [L’g(s)] B (s(1—s))8/2
koo [Lg(U)} T B(B/2+1,5/2+1)

where one should keep in mind that E [L,,(U)] = (%) g

We finally face the scaling behaviour of L (or M) on the distributional level. Again, we start
with the case s = U where U is uniform and independent of the process. Being a product of
non-negative i.i.d. random variables with mean one yields

3

k
<2> Ly(U) =0 (5.36)

almost surely as & — oo. Choosing the right scaling of Ly (U) still leads to a degenerate limit
due to the lack of uniform integrability. To obtain a non-degenerate limit, on might instead con-
sider log Ly (U). In distribution, — log L (U) equals a sum of independent exponential random
variables with parameter 2. This implies
log Li(U) 1
k2
almost surely and
log L (U) + &
k/4
in distribution. The convergence in (5.36) carries over to the case of a fixed s € (0,1). By
independence of U and Ly, for almost every s € (0, 1), we have (%)k Li(s) — 0 almost surely.

— N(0,1)

5.5. The marginals of the limit process

Our main result implies the convergence of the second moment of the discrete towards that of the
limit process. This section is devoted to identifying this limit, in particular it provides an explicit
expression for the limit variance. The following Proposition is a detailed version of Theorem 5.5
that also covers the additional statements on the variance in Theorem 5.2.
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5. Analysis of partial match queries

Proposition 5.23. Let Z(s) be the process constructed in Section 5.3 with mean h(s). Further-
more, let Z be the unique solution of the fixed-point equation

2 LUblyBz L UbR1 - vz,

withE[Z] = 1 and E [ZQ} < oo, where Z' is an independent copy of Z and (Z, Z') is independent
of (U, V). Then, for any s € [0, 1],

Z(s) L 7 (s(1 - s))°/2. (5.37)

The sequence of moments c,, = E [Z™] satisfies the recursion

m—1
Bm +1 (m)
Cm = . B(Bl+1,8(m —¥£) + 1)cpchm—r, 5.38
for m > 2 where cy = 1. In particular,
2 1
Var (Z(s)) = Kah2(s) = [213 (B+1,84+1) 3(fj5) — 1} h(s), (5.39)
and for & uniformly distributed on [0, 1], and independent of Z,
2(28 +1) > B .8 ’

Var (Z =Kyg:=——(B 1 )*"—(Bl=z+1,=+1 . 5.40
Remark 5.24. It’s worth noting that the random variable Z also appeared in [NRO1] where the
false distributional limit law o

Kn

is stated. In fact, our result reveals that

Cule) _, , (e0-€)""
wnf B(§+1.5+1)

where ¢ is uniform on the unit interval and independent of Z. Thus, compared to the former
incorrect result, the limit contains an additional independent multiplicative term h (&) scaled to
have unit mean.

Proof. The definition of the process Z(s) implies that the second moment pa(s) = E [Z(s)?]
satisfies an integral equation. We have

yas) =E [Z(s)?] = 2E [/:(xyﬁﬁz (2)2 dx] 4R UOS[(l _ )Yz (;_D dx]
+2E [/1 2Py (1 -1z (f) .z (f) dm}

X T

1 2E [/08(1 _ 2Py (1= Y)P20) (i:;) 7 G - i) d:r]

[ ([ (s [0 (125 )
+2E [[Y(l - Y)]ﬂ : {/:x%h (z)deJr/os(l — )% (i:;)Qd:g} .
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5.5. The marginals of the limit process

It now follows that 9 satisfies the following integral equation

1als) = Q;il{llﬁﬁm(i>M3FA?1xﬁﬂm<1:2>dm}

B(s)
B+1

+2B(f+1,5+1)-

One easily verifies that the function f given by f(s) = c2h?(s) solves the above equation when
¢y satisfies

L2 BELETY
ENCEE RNV B+1
We obtain, after the simplification using 3% = 2 — 313,
28+ 1
o =2B(B+1,0+1) "~ (5.41)
2= 2B '51-7)

It now suffices to prove that the integral equation for p5 admits a unique solution. To this end, we
show that the map K defined below is a contraction for the supremum norm:

i =gty { [ #0 ()a [l0-ar (153

h?(s)
B+1°

+2B(B+1,8+1) (5.42)

For any two functions f and g from C[0, 1], we have

K f— Ky
2 ! 28 ° 28
< sup {/1‘ dx}+ sup {/ 11—z dw} f—g
28+ 1 \sepo s sef0,1] LJo ( ) | |
4

Since 23 + 1 > 2, the operator K is a contraction on C|0, 1] equipped with the supremum norm.
Banach fixed point theorem then ensures that the fixed point is unique, which shows that indeed

E [Z(s)2] = coh?(s).

Then, K3 = ¢ — 1 and by integration

Var [Z(¢)] = eoB(B+1,8+1) — <B <§+1,§+1>>2.

Analogously one shows that the m-th moment of Z(s) is of the form ¢,,,h™ (s) where ¢, solves
(5.38). The Lipschitz constant of the corresponding operator in (5.42) is 4/(8m + 1), hence
again smaller than one. This immediately implies that (¢, )m,>1 are the moments of Z(s)/h(s),
independently of s.
It only remains to prove that there is only one distribution with these moments. We prove that
there exists A; > 0 such that

em < AT'm™, m>1, (5.43)
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5. Analysis of partial match queries

which completes the proof of the proposition by the Carleman condition [see, e.g. Fel71, page
228].

Suppose that (5.43) is satisfied for all m < mg. By Stirling’s formula, there exists a constant Ao
such thatforallm > land1 < /¢ <m

(7)ot + 1ptm -0+ < 22

m

o (m — e)mf>‘“ |

mm
Next, the prefactor in (5.38) is of order 1/m, hence bounded by A3/m for some A3 > 0 and all

m > 1. Using this, the induction hypothesis and z%(1 — x)'~* < 1 for all € [0, 1], it follows
that

AgAg 0! B-1 .
= Z (ge(mo—f)mo_e) m()O(1 D chemo o
/=1

Cmy < 2
0

AT Ay Ay 0! _
< 1m22 3 Z mgmomglo(l B)
0 =1

mo..mo
< A"myg

if mg is chosen large enough. 0

5.6. Partial match queries in random 2-d trees

The random 2-d tree was introduced by Bentley [Ben75] and is used to store two-dimensional data
just as the two-dimensional quadtree. It is also called two-dimensional binary search tree since it
is binary and mimics the construction rule of binary search tree for two-dimensional data. Our aim
in this section is to introduce 2-d trees, and extend to 2-d trees the results for partial match queries
in quadtrees we obtained in the previous sections. All the results such as process convergence,
convergence of all moments at one fixed or random point or at multiple points and distributional
and moment convergence of the supremum can be transferred. We will mainly state the forms of
the theorems for 2-d trees and focus on the points that deserve additional verifications.

5.6.1. Constructions and basic properties

Construction of 2-d trees. As in quadtrees, the data field is partitioned recursively, but the splits
are only binary; since the data is two-dimensional, one alternates between vertical and horizontal
splits, depending on the parity of the level in the tree. More precisely, consider a point sequence
P1,P2, -+, pn € [0,1]2 Initially, the root is associated with the whole square [0, 1]2. The first
point p; is stored at the root, and splits vertically the unit square in two rectangles, which are asso-
ciated with the two children of the root. More generally, when 7 points have already been inserted,
the tree has ¢ internal nodes, and ¢ + 1 (lower level) regions associated with the external nodes,
forming a partition of the unit square. When point p;; is stored in the node, say u, corresponding
to the region it falls in, it divides the region in two subrectangles that are associated to the two
children of u, which become external nodes. The last partition step depends on the parity of the
depth of u in the tree: If u has odd distance to the root we partition horizontally, otherwise verti-
cally. Equally likely, one could start at the root with a horizontal split. Then, splits are performed
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5.6. Partial match queries in random 2-d trees

Figure 5.4.: 2-d tree with n nodes and vertical split at the root.

horizontally on levels with even and vertically on levels with odd parity.

Unlike the case of quadtrees, K -d trees remain binary for higher dimensions d > 2. Then, during
the procedure of inserting a new item in the tree, one compares its s-th component with the corre-
sponding one in an internal node on level ¢ if £ = s + kd where k € N.

Partial match queries. From now on, we assume that the data consists of a set of independent
random points, uniformly distributed on the unit square. Unlike in the case of quadtrees, the
direction of a query line with respect to the direction of the root does matter. Let C.; () and C;-(t)
denote the number of nodes visited by a partial match for a query at position ¢ € [0, 1] when
the directions of the split at the root and the query are parallel and perpendicular, respectively.
Subsequently, we will analyze both quantities synchronously as far as possible. We will always
consider directions with respect to the query line, and although some of the expressions (for the
sizes of the regions for instance) will be symmetric, we keep them distinct for the sake of clarity.
Without loss of generality we assume the query line to be vertical, and that the direction of the cut
at the root may change.

As in a quadtree, a node is visited by a partial match query if and only if it is inserted in a subregion
that intersects the query line. Unfortunately, these nodes are not easily identifiable affer the inser-
tion of n points: the value of the quantity C; () is obtained by adding twice the number of lines
intersecting the query line at s to the number of boxes which are intersected by the query line and
about to be split perpendicular to the line in the next step [that is, the depth of the corresponding
external nodes in the tree has odd parity].

Recursive decompositions. Let (U, V') be the first point which partitions the unit square. By
construction, since the directions of the partitioning lines alternate, both processes C; () and
C:-(t) are coupled. When the query line is perpendicular to the split direction, the recursive
search proceeds in both subregions whose sizes we denote by /NV,, and D,,, and we have

n

Cik(s) 21+ OV (s) + €57 (s), (5.44)
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5. Analysis of partial match queries

When the query line and the first split at the root are parallel, only one of the subregions (of sizes
L, and R,) is relevant for the remainder of the retrieval algorithm and we have

S

_ o [(s—U
Ci(s) L1+ 1,y (U) + 10O <‘i _ U> . (5.45)

Here (CT(L:’l))nZO, (07(1:’2))”20 are independent copies of (C;;),>0, independent of (N, Sy,) in
(5.44) and (C’,(LJ"l))nZO, (C-2)),,5¢ are independent copies of (C:-),,>, independent of (L, R,,)
in (5.45). Moreover, here and in the following distributional recurrences and fixed-point equations
involving a parameter s € [0, 1] are to be understood on the level of cadlag or continuous functions
unless stated otherwise.

As in the case of partial match in random quadtrees, the expected value at a random uniform query
line &, independent of the tree, is of order n? for the same constant [ defined in (1.15), and we
have

E[C; ()]~ rn®,  E[CH(©)] ~rin,

n

for some constants k— > 0, x; > 0. This was first proved by Flajolet and Puech [FP86]. A more
detailed analysis by Chern and Hwang [CHO6] shows that

13(3—58) I'(28+2

~—

)

— (V] — o B B-1 _ ,
E[Cr (9] =kr=n"=2+0(n"""), K= 1 33+ 1) (5.46)
_ 13(26-1) T(28+2))
. = p_ p-1 = .
E [Cn (g)} —kinf — 3400, kL . S 1) (5.47)
Observe that k— = 313(3 — 53)x and | = 13(28 — 1)k, where & is the leading constant for

E [Cy,(€)] in the case of quadtrees defined in (1.15). Note that both - and x, are larger than k.

Two-step recursions and limit behaviour. For our purposes, and although yielding more complex
expressions, it is more convenient to expand the recursion one more level. Thus we obtain recursive
relations that only involve quantities of the same type, only (C; ),>0 or only (C;-),>o. This
follows since in both cases each of the first two subregions at the root is eventually split, and this
gives rise two a partition into four regions at level two of the tree. Let (U, V) and (U, V;) be
respectively the first points on each side (left and right) of the first cut, when it is parallel to the
query line. Let also (U, V,,) and (Uyg, V) be the first points on each side of the cut (up and down)
when it is perpendicular to the query line. Note that U, V}, V. are independent and uniform on
[0, 1], and so are V, U,, and Uy.

Let I (72, . ,I(,ni and I(ﬁ), e ,I(ﬁi denote the number of data points falling in these regions

= =,

when the root and the query line are parallel and perpendicular respectively. The distributions of
I(:Tﬁ, R I(:Z)l and [ (Ln%, - (nz)l are slightly more involved than in the case of quadtrees. One has
e.g. given the values of U, V, V.

4

1"} £ Bin((Bin(n — 1;U) — 1)4, Vi),

and given V, Uy, U,
1{") £ Bin((Bin(n — 1; V) - 1), Uy),

where the inner and outer binomials are independent. Analogous expressions hold true for the
remaining quantities.
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5.6. Partial match queries in random 2-d trees

Substituting (5.44) and (5.45) into each other gives
= d =1 S
Cp(s) =1+ 1y [1{Ln>0} + C(yw ) (U) + Cﬁw ) (U>]

(=3) (8=U (=1 (8=U
+ 1>} [1{R7L>0} + Cﬂzn% (1 — U> + Clin) <1—Uﬂ (5.48)

and
d S S
Crh(s) =1+ lig,>01 + 1N, >0) + 1{S<Ud}C§(n) ) (U) + 1{s<Uu}C§<n> ) <U>

(L,3) Uq (La) [(5s—Uy
- 1{32Ud}CI(") <1 —Uy ) + 1{s>Uu}CI<n> (1 _ Uu> (5.49)

where (C(:’A))n>o, i =1,...,4 are independent copies of (Cy, )n>0, Which are also indepen-
dent of the family (U, I(”{,I(”;,I("g,f )) in (5.48), and (C5")p=0, i = 1,. .., 4 are indepen-
dent copies of (C;-),>0, which are also 1ndependent of (Ug, Uy, I(L i, I(f%, I(f:),’, I(L 21) in (5.49).

Asymptotically, any limit Z=(s) of n=?C(s) should satisfy the follow1ng fixed-point equation

27 ey (V2 (F) + 00 =10 252 ()] (550
+ Ls>v) [((1 ~U)V)? 2= G:g) +((1-U)1 - V,))P 2 <‘j - g)} :

where Z(=1 | = 1,...,4 are independent copies of Z=, independent of (U, V4, V,.). Note that,
even though (5.50) resembles very much the corresponding fixed-point equation for quadtrees, it
is different from (1.20). Likewise any limit of n=?C;- () should satisfy

d S S
ZH(s) S gecvy (UaV)P 2D <Ud> + Lsep, (Uu(1 = V)P 22 (U)

-T
+ 1,y (1= Uy V) 29 ( d)

1-Uy
814 (5~ Uu
+ 1{52Uu}((1 —U,)(1-V))’Z —7U (5.51)
where Z(+4), j = 1,...,4 are independent copies of Z L independent of (Uy, U, V'). Moreover,

according to (5.44) and (5.45), we expect a connection between these two limits. This will be
stated in the first result of the next section and always allows us to focus on C}; (s) first. Results
for C;-(s) can then be deduced easily afterwards.

5.6.2. The conditions to use the contraction argument

Existence of continuous limit processes. The two main difficulties in proving the functional limit
theorem for partial match queries in quadtrees where the existence of a continuous limit process
and uniform convergence of the mean after rescaling. We address these issues in the present
subsection. The first results is the analogue of Proposition 5.6 for 2-d trees where we also include
the precise values for the limit variance.

Proposition 5.25. There exist two random continuous processes Z=, Z* with E [|| Z=|]?] < oo,
E[||ZH)?] < oo and E[Z=(£)] = E[Z+(€)] = B(B/2 + 1,8/2 + 1) such that Z= satisfies
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5. Analysis of partial match queries

(5.50) and Z+ satisfies (5.51). The laws of Z~ and Z L are both unique under these constraints.
Moreover E [Z=(s)] = E [Z*(s)] = h(s) and the suprema of both processes have finite absolute
moments of all orders. Additionally,

e we have
LZL( ) 2 VBZED(s) 4+ (1 - V)P ZED(s) (5.52)
B+1
and
+1 d s U
0 92 —Z ( ) - 1{5<U}UﬁZ(L71) (E) + l{szU}(1 - U)BZ(L 2) <—U> (5.53)

o forevery fixed s € [0, 1], Z=(s) is distributed like Z(s) where Z is the process constructed
in Section 5.3. In particular, Var [Z=(s)] is given in (5.39) and Var [Z+(s)] = K3-h?(s),

where
2 2
Ki = (252?1 <’8‘2H> +2B(B+1,8+1) <ﬁ2+1> - 1) , (5.54)

and ca is defined in (5.41),

e if € is uniform on [0, 1] and independent of Z=, Z*, then Var [Z=(£)] is given by (5.40)

and

Var [Zi(g)} :K;:<26+1+2B(5+1 B+1)> <52+1>2B(ﬁ+1,5+1)

2
- <B <§ + 1,§+1>> . (5.55)

Proof. The fixed-point equation (5.50) is very similar to that in (5.5), and we use the approach

that has proved fruitful in Section 5.3. Define the continuous operator G~ : [0, 1] x Co[0, 1]*
CU [07 1} by

G= (2,9, 2, f1, f2, 3, f4)(8) = Lpeen) [(xy)Bﬁ( ) (x(1 y))ﬁﬁ( )}

F1is>ay [((1 - ) ﬁf?’( i)]
15321 [((1—95 )1 =2) s (i )}

Then let (as in Section 5.3)
Zn—;-l — G:(Uu’ Vu, Wu’ Z:ml7 Z;’UQ, Zn=,u37 Z;,uél)’ ZO:,u —_ h(S),

for all w € T, where {U,,v € T}, {V,,v € T} and {W,,,v € T} are three independent fam-
ilies of i.i.d. [0, 1]-uniform random variables. Lemma 5.11 remains true for Z, = Z, ¥ since
W, equals W, in distribution where W,, appears in (5.21). Since also L;; and L,, (appearing
in Lemma 5.13) coincide in distribution, (5.16) holds true for Z; and therefore Proposition 5.9
remains valid. The existence of all moments of || Z=|| follows in the same way. Finally, note that
Z>(s) is distributed as Z,(s) for all fixed n, s, hence the one-dimensional distributions of Z=
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5.6. Partial match queries in random 2-d trees

and Z coincide. It is now easy to see that Z L defined by (5.52) solves (5.51). The uniqueness of
Z=(s) (resp. Z*(s)) follows by contraction with respect to the (» metric when fixing the mean to
be h(s). The improvement of the uniqueness statement is obtained as in the quadtree case based
on the arguments in [CJ11, Section 5]. Finally, the variance of Z1(s) can be computed as in
Section 5.5 but it is much easier to use (5.52), we omit the calculations. ]

Uniform convergence of the mean. Comparing construction and recurrence for partial match
queries in 2-d trees and quadtrees it seems very likely that this quantities are not only of the same
asymptotic order in the case of a uniform query but also closely related for fixed s € [0, 1] and
n € N. This can be formalized by the following Lemma.

Lemma 5.26. For any s € [0, 1] and n € N we have

FE[C(s)] < B[C(s)] < 2E[Cu(s)]

Proof. We prove both bounds by induction on n using the recursive decompositions (1.18), (5.48).

Both inequalities are obviously true for n = 0,1. Assume that the assertions were true for all
m <n—1ands € [0, 1]. We start with the upper bound which is easier. By (5.48), we have

2ie ) <2+ 1o [0 (7) + 0 (7))

=) ($ZUN L o= (52U
RO

Hence, it suffices to show that

S

10 (2)] <22 [1eanc (2)]

This can be done in two steps. First, by conditioning on 1. (:n% and U, using the induction hypothesis,

e eanci (7)) = 22 ey (7))

Finally, conditioning on U, I (:"} is stochastically smaller than I {n)

[1{5<U}CI(¢)L) (;)] <2E [1{5<U}C1(.(3L) (;)] :

by monotonicity of n — E [C),(s)]. For the lower bound, note that

we have

which gives

i) 2 1+ 10 [0 () + 0’ (7))

(=3) (8=U (=4 (52U
el e () e (2]

Therefore, it is enough to prove
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5. Analysis of partial match queries

This can be done as for the upper bound. First, by the induction hypothesis, we have

E {1{5<U}C§§1) (;)} > %E [1{s<U}C’§?ji (;)] .

The result follows as for the upper bound by the fact that I (:n% is stochastically larger than (I fn)

1)+ andC(( ()n) i ZC((Z) 1. O

Recalling (5.46) and (5.47), it is natural to introduce the constants

= 1
- K n K . n 2 —
B(J+1,2+1) B(Z+1,5+1) B+1

and the functions fi*(s) = Ki-h(s), and i=(s) = K h(s).

Proposition 5.27. There exists e—= > 0 such that

sup [n P E[C (s)] = i (s)] = O(n~),
s€[0,1]

and the analogous result holds true for E [Cy(s)].
We proceed as in Section 5.4 by considering the continuous-time process P, (s). Again the proof

runs along very similar lines as in the quadtree case. Thus we only give a brief sketch that focuses
on the few locations where the arguments need to be modified.

Sketch of proof. The first step is to prove pointwise convergence which is done as in [CJ11]. By
Lemma 5.26, using a Poisson(¢) number of points, we have

FE[P(s)] < E[P7()] < 2E[P(s)]. (5.57)

Let 7~ be the arrival time of the first point which gives rise to a horizontal partitioning line that
intersects the query line {x = s}, and let QT = Q7 (s) be the lower of the two rectangles created
by this cut. Let £ := &7 (s) be the relative position of the query line s within the rectangle QT
and M = Leb(Q)7T). Denoting 7 the arrival time of the first point in the process, we have

E[P7(s) =P (t>7) +P(t> ) +2E [P (60)]

where (P=(t));>0 denotes an independent copy of (P=(t))¢>0 and P=(t) = 0 for t < 0. Sim-
ilarly, let 7.~ be the arrival time of the first point which cuts QQ;_; perpendicularly to the query
line. Let (). be the lower of the two rectangles created by this cut, and let £ be the position of
the query line s relative to the rectangle ();-. With this notation and M, = Leb(Q);), we have

E[P7 ()] = gi (1) + 2°E | Pz (60)]

where 0 < gi-(t) < 2k+1,

We need to modify the inter-arrival times ', = 7, — 7. We can split (' in the time it takes
for the first vertical point to fall in Q7 _; which we denote by (’ :’1 and the remaining time ¢’ Z’2.
The normalized versions of the inter-arrival times with unit mean are

Gt =t My,
:72 _ glz 5_ /:72 M: > 1=,2 M:
G~ = & Ve 3+ = & Vemse= 1| G My 2 G - My
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5.6. Partial match queries in random 2-d trees

Write M, = M, /M, ,. Observe that, given M ,..., M, the random variable F~ =
M, - 7 is not independent of (£, )o<¢<k, a property which is used in [CJ11] and in the proof
of Lemma 5.18 in this thesis. However we can use the trivial lower bound 0 < F}; and the upper
bound obtained by bounding ¢’ :’2 from above by ¢, 2 /M~ . Then, using almost sure mono-
tonicity of P;(s) (in t) and (5.57) to transform bounds for the mean in the quadtree to bounds
in the 2-d tree (and vice versa), it is easy to see that the techniques of Section 4 in [CJ11] work
equally well in this case. The limit = (s) is identified as in Section 5 of [CJ11] since both limits
i and i~ satisfy the same fixed-point equation.

The generalization to uniform convergence with polynomial rate can be worked out as in Sec-
tion 5.4 using the modifications we have described above, e.g. the behaviour along the edge is
controlled by Lemma 5.17 and 5.26. The constants appearing in the course of Section 5.4 need to
be modified, but e~ may be chosen to equal the value of € in Proposition 5.16. The depoissoniza-
tion of Subsection 5.4.3 goes through without any modification.

Finally, we indicate how to proceed with £ [C’#(s)] The arguments above can be used to treat
uniform convergence of n °E [C:-(s)] on [0,1]; we present a direct approach relying on (5.44).
We have

n PE [C’#(s)] =n P+ 20 PE [C3, ()]
1n—1 B
=nF 4 2/ Z (5= (s) +O(k™==)) %P (Bin(n — 1,v) = k) dv
0 k=0
E [Bin(n — 1, V)]
P

=n"" + 217 (s) -
= [ (s) + O(n™*=),

+O0(nPE [Bin(n —1,v)P==])

uniformly in s € [0, 1] using Minkowski’s inequality, the concentration result for the binomial
distribution in (5.10), (5.56) for the first term and Jensen’s inequality for the second. ]

5.6.3. Statement of the result

We are finally ready to state the version of our main result for 2-d trees. It is proved along the
same lines we used for the case of quadtrees, and we omit the details.

Theorem 5.28. Let Z= and Z~ be the processes in Proposition 5.25. Then

CZ(S)) - Ci(s) 1
= = (Z7(5))sefo,) < 5 = (Z7(s) :
(Kl—nﬂ sc01] <] Kin? ) con) ( )56[0,1]

in distribution in (D[0, 1], ds,). Here K and Ki- are defined in (5.56). Moreover

n B[O (s)] = KT [s(1— )%, 0™ Var [C7 (s)] = (KT)*Ks[s(1 - 9))7,
and
nPE [C’#(s)} — Ki[s(1—9)]%?, n?Var [Cf;(s)} — (K{)?K5[s(1 — s)]?,
where K» is in (5.39) and K2l in (5.54). If £ is uniformly distributed on [0, 1], independent of
(C)n>0, (CH)p>0 and Z=, Z+, then

Co(§) d

_ Cir
Klznﬁ_>Z_(§)’ w(§) d

= Zh (0,
Kin? €3]
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5. Analysis of partial match queries

with convergence of the first two moments in both cases. In particular
Var (7 (€)] ~ Kin®,  Var [CH()] ~ Kin®,

where
Ky = (K7)%K3~0.69848,  Kj = (K{)?KY =~ 0.77754,

with K3 in (5.40) and K3 in (5.55).

For simulations of both versions of 2-d trees with corresponding C;; and C;- see figure 5.5 and
5.6 on pages 103 resp. 104.

Note that since Z=(s) equals Z(s) in distribution for fixed s € [0, 1], thus we can characterize
Z=(s) asin (5.37). (5.52) together with Proposition 5.25 implies that for fixed s € [0, 1]

ZH(s) L 7+ (s(1 - )72,

with

ViZ+(1- V)ﬁz’) ,
where Z’ is an independent copy of Z, Z being defined in Proposition 5.23, and V is uniform on
[0, 1] and independent of (Z, Z'). In particular, we have

B [(z4)] = (%“)mfj (77 BB+ 1.50m — )+ Derc,

=0

for m > 2 where ¢,,, = E [Z™] satisfies recursion (5.38) and ¢ = ¢; = 1.

As in the quadtree case, it is possible to give convergence of mixed moments of arbitrary order,
compare Theorem 5.4. Distributional and moment convergence of the suprema of the processes
after rescaling follows similarly.

5.7. Open problems

We have given a functional limit law for the cost of the partial match retrieval problem in random
quadtrees and 2-d trees. Moreover, we obtained a description of the limiting distribution for fixed
s in terms of a single distribution whose moments can be computed recursively. Solving several
open problems, our results naturally give rise to further studies:

Covariances. Our results imply n~2°Cov|[C,,(t), Cy,(s)] — Cov[Z(t), Z(s)]. Hence, the covari-
ance function of the process Z is of interest. We do not provide any information on this quantity
in the thesis.

Path properties. We know the paths of Z to be continuous. By construction, the paths of the
sequence Z,, in Section 5.3, whose uniform limit is Z, are locally 5’-Holder continuous for any
B’ < (/2 and the same holds for the mean of Z. Hence, also in the context of a related result
obtained in [CLG11] that will be discussed in the next section, we conjecture that the sample paths
of Z are almost surely locally 3’-Holder continuous for any 3 < /2.
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5.8. Random recursive triangulations

The supremum. Consider the limiting random variable .S of the supremum in Theorem 5.3. Triv-
ially, S is non-negative and our techniques imply S to have moments of all orders. However, we
do not provide further information about S except for the distributional inequality (5.6) and the
trivial lower bound E [S™] > ¢,,,277™ where c,,, is given in (5.38). In particular, E [S] is unknown
to us and we believe that this problem is hard. To this end, a comparison to the analogous question
for the FIND process, introduced by Griibel and Rosler [GR96], seems appropriate [see [Dev84]
and [Dev01] for further results on the worst-case of FIND].

Finally, one is immediately led to ask for similar results in higher dimensions. The results on mean
convergence for a uniform query line in [FGPR93], [CHO3] in the case of quadtrees and [FP86]
and [CHO6] for K-d trees for higher dimensions appear to be sufficiently strong for this purpose.
We believe that our method can be applied essentially in the same manner to the case where, in
trees of dimension d, d — 1 components are left open and only one component is fixed. Fixing
more, say s, parameters leads to considering functions from the unit cube [0, 1]° to R; thus, a
generalization of the contraction method to more intricate function spaces is necessary.

5.8. Random recursive triangulations

Curien and Le Gall [CLG11] consider a stochastic process in which chords (straight connections)
are inserted between points on the unit circle with circumference 27. In each step, two points on
the circle are chosen uniformly at random and become connected by a chord if it does not intersect
any other existing one. In the case of a crossing with a present chord we reject the points and do not
insert anything. Let IV,, be the number of inserted chords at time n, i.e. after n drawings of uniform
point pairs where Ny = 0. By L,, we denote the union of all inserted chords by time n consid-
ered as a subset of the unit disk in the complex plane. The authors introduce Lo, = J,,~; Ln as
an infinite geodesic lamination and investigate its Hausdorff dimension, various other ge_:ometric
properties and approximations by discrete triangulations of polygons. More interestingly in our
context, they also consider the random variable H,,(x,y) which counts the number of intersections
of chords in L,, with the chord from z to y for fixed z, y on the sphere. Without loss of gener-
ality one may fix one point to be one and consider H, (1, s) as a process where s ranges over all
points on the unit sphere. This immediately connects the problem with the partial match retrieval
algorithm in quadtrees. For the sake of convenience, we state the main result from [CLG11] on
H,(1,x), Theorem 1, together with parts of Proposition 4.1. Subsequently, for the sake of com-
paring with the partial match problem, it is appropriate to identify the unit sphere with the unit
interval by x — €2 z € [0,1]. We then let H,,(z) := H,,(0,z) where H,,(x) is extended to a
cadlag function in those finitely many points where the quantity is not well-defined.

Theorem 5.29 (Theorem 1[{CLG11]). o Almost surely,
n~Y2N, — /7 (5.58)
as n — oo.

e There exists a random process (M (s),s € [0, 1]) which is (locally) 3'-Holder continuous
for every 8’ < 3 such that for every s € [0, 1],

nP2H,(s) = M(s), (5.59)
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5. Analysis of partial match queries

in probability. Moreover, B [M (s)] = Cr(s(1 — s))? for some C, > 0.

Proving only pointwise convergence, process convergence is conjectured in Section 4 of [CLG11].
The proof of their main result is based on fragmentation processes [for the convergence] and
suitable upper bounds on the moments [for the Holder continuity via the Kolmogorov-Chentsov
theorem]. It is worthwhile noting that, since N,, is order \/n, H,(z) is of order NE which re-
sembles the behaviour in quadtrees [there, n points give rise to n horizontal and n vertical lines,
rejection does not take place; thus IV, is to be identified with n]. Before discussing a strengthening
of (5.59) we mention a simple observation concerning the sequence (IV,,) that allows a refinement
of (5.58) based on the work of Bai et al. [BHLTO1].

Let U be the length of the arc connecting the first inserted point pair in an arbitrary direction. Then
(Ny)n>o satisfies the following recursion

d
N, < NIS,)L) 4 N;(%)L) 11, n>1,
1 2

where the random sequences (N,gl))nzo, (Ny(?))nzo are independent copies of (N,,),>0, and inde-
pendent of (I {n), Ié"),l?gn)). Additionally, given U,

(I{"),IQ(”), I§")) 2 Multi(n — 1;U%, (1 — U)%,20(1 — U)).

Note that N,, satisfies the same recursive decomposition as the number of maxima in the unit
triangle [that is the triangle with corners (0, 0), (0, 1) and (1, 0)]; thus both distributions are equal
for all n. In [BHLTO1], the authors give exact formulas for the mean and the second moment
together with first order asymptotics of all higher moments which imply asymptotic normality of
N, after rescaling. We quote their Theorem 3 here for the sake of completeness.

Theorem 5.30. Mean and Variance of N,, satisfy

E[N,] = 1-‘(7;/_737;!/2)_1:\/7%—14-0(711/2),

Var (N,) = o2 n—%—l—O(n_l/Q),

with 02 = \/(2log 2 — 1)\/7. N,, satisfies asymptotic normality, i.e.

N, — /™ 4
%71/4—”\7(0,1)7

where the limit holds with convergence of all moments.

Remark 5.31. Using the asymptotics for mean and variance it is possible to give a considerably
shorter proof of the central limit theorem by the contraction method based on the (3 metric; the
details have been worked out in [NRO4b].

It seems obvious from the recursive construction of the insertion process that H, (s) satisfies an
additive recurrence. To this end, let 0 < U; < U; < 1 be the values of the feet of the first
inserted chord, where we use the notation in [CLG11] and denote the points on the unit disk which
are connected by a chord by its feet. Let ST be the arc connecting Uy, Us clockwise and S~ be
the arc connecting them counterclockwise. Observe that (U, Us) has density 21 {0<u; <up<1} and
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1 — (Uy — Uy), the length of S T has size-biased uniform distribution which is the distribution of
U'/2 for a uniform U. Furthermore, let I;" be the number of attempted insertions of chords in S*
and I the corresponding quantity in S~. By F}, we denote the number of unsuccessful insertions
of chords due to one foot falling in S™ and the other one in S~. Then, given (U, Us),

(I7,I7,Fy) L Multi(n — 1; U, (1 — VU)2,2VU(1 — VU)),

n»tn?

where U := (1 — (Uy — Uy))? is uniformly distributed on [0, 1]. The construction provides the
following recursive decomposition

d (1) s ) (8= (U= Uh)
Cn(s) = 1{5§U1}CI$ <1—(U2—U1)> +1{5>U2}CI;L <1_(U2_U1)

(1) Ur @ ( s—U
v, <s<tn} <1 + O (1(U2U1)) +C <U2 — U1>> , (5.60)

for s € [0, 1]. For fixed n, we can consider (Cy,(5))seo,1] as a process with cadlag paths and (5.60)

remains true on the level of cadlag functions. Letting Q,(s) := n~?/2C,,(s) and introducing linear
o A(n) A(n)
perators A and A,

(n) _ (I o 5 s — (Uy — Uy)
e = (5) (et (r=grmm) * 2o (=G0
U
+ 1{U1<3§U2}f <1—(U21—U1))> )

_\ B/2
n I s=U
A () = Lcssu) <n> / <U2 - U11>

yields

Qnls) = AVQ1Y(s) + AV QP(s) +87(s)

with b(" (s) = 1{U1<$§U2}n_5/2. This suggests that any limit Q(s) = lim,, Q,(s) satisfies

Q(s) £ A1QW(s) + 42Q(s) (5.61)
as process in D[0, 1] with

s = (=@ -0 (e (=g =) + 10! (=2 =)

Ui
+ 1{U1<5§U2}f <1—(U2—U1)>>7

s—U
Aif(s) = 1{U1<S§U2} (U2 — Ul)ﬁ f <U2_Ul'1> ’

In Section 8, Curien and Le Gall observe that the limit process M satisfies fixed-point equation
(5.61); moreover they ask to what extent the distribution of M is characterized by (5.61). We lack
knowledge about the supremum of M. As in the partial match case, it is very likely that || M || has
(at least) finite second moment, which, by

B[ A2+ 145)2) =B [1 = (s - )] + B [0 - )] <1,
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would imply M to be the only solution (modulo multiplicative constants) of (5.61) with continu-
ous (or only cadlag) sample paths, square integrable norm and mean (s(1 — s))? at point s.

As in the quadtree case, applying the contraction method, more precisely Theorem 3.6, to achieve
distributional convergence of (n~?/2H,,(s)) se[o,1] boils down to establishing the following two
results: First, it is necessary to prove E [||M|?*] < oo; second, we need a uniform polynomial
rate of convergence for the mean of H,(s) after rescaling. The similarities between the recursions
in the present and in the quadtree case propose that both problems could be solved by means of
our approach in Sections 5.3 and 5.4, where it seems that technicalities are more involved here.
Remembering that the rate of convergence for the mean in quadtrees has been transferred from the
analogous result at a uniform query line (1.14), the following theorem could play a major role. Its
proof is based on the use of generating functions as in [FGPR93] and [CHO3]; it is not given here.

Theorem 5.32. Let & be independent of the process and uniformly distributed on [0, 1]. Let i, =
E[H,(§)],a=p/2+1and a = %. Then

VA (n I(k—a+1)I(k—a+1)
pn) = - ; <k> (=) ET(k +3/2)[(2 — a)T(2 — &)

= CnP2+0(),

with o _ VAT 1/2)
“ ()2 (a+1/2)°

Remark 5.33. In [CLG11], the authors show

Hy(§)
nB/2

— T,

where T' > 0 almost surely and convergence holds in mean and almost surely. Thus we have
identified the mean of T" and moreover, we have also found the value of C', in Theorem 5.29,

" r nr 2
CrL = ¢ _ _vr(B+ DI(B+3/2) ~ 1.292574852.

B(Z+1,241) 20952+ I2(3/2+3/2)
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0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.5.: 2-d tree with vertical split at the root and n = 1000. The lower figure shows

(K7) " In=PC5(s)) and the limit mean.

s€[0,1]
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08 10 12
l

0.6

0.4

0.2

0.0

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.6.: 2-d tree with horizontal split at the root and n = 1000.The lower figure shows
(K1) ™' PCs(s)))sefo,1) and the limit mean.
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A. Appendix

The first Lemma is very elementary however practical and used several times throughout the thesis.
It is a slight generalization of Theorem 1.2 in [Bil68§].

Lemma A.1. Let (S,d) be a metric space. For any 0 < s < 1, closed set C and ¢ > 0, there
exists a real-valued function g : S — [0, 1] with g(z) = 1 forx € C, g(x) = 0 for d(z,C) > ¢
and |g(x) — g(y)| < e 8||lx — y||* for all x,y € S. The function f : S — [-1,1],f =29 — 1
satisfies f(x) = 1forx € Cand f(x) = —1 for d(z,C) > cand |f(x) — f(y)| < 2e 5|z —y]|°.

€

Proof. The function g(z) = max (O, 1-— <M> 8) has the desired properties. O

The following Lemmas A.2 to A.5 all concern properties of the metrics ¢5 and x;. The statement
of Lemma A.2 may be found in several references, e. g. [BF81, Lemma 8.1]. Lemma A.3 is given
in the same paper, however the proof presented here is based on arguments from [DR85]. The idea
of the proof of Lemma A.5 is taken from [Dud76, Section 20].

Lemma A.2. Let B be separable and 1,v be probability measures on B with finite absolute
moment of order s. Then there exists random variables X,Y with L(X) = p, L(Y) = v and
Cs(p,v) = [[ X =Y.

Proof. Let T be the set of probability measures on B? with marginals 1 and v. Let ¢ > 0 be
arbitrary. Since p and v are tight, we can find compact sets K, L with u(K€),v(L¢) < e. Thus
o((K x L)¢) < 2¢ forany o € T and T is tight. Any accumulation point of 7" in the weak
topology has to have marginals p and v which shows that T is closed. Prokhorov’s theorem
implies compactness of 7. The map f : T — RT : f(p) = || X — Y||s with L(X,Y) = g is
continuous and therefore it attains its infimum on 7. 0

Lemma A.3. Let B be separable, (X,,), X be B-valued random variables, s > 0 and E [|| X, ||*],
E[|X||*] < oo foralln. Then (X, X) — 0 implies X,, — X in distribution and E [|| X,,||°] —
E [||IX|I*]. The converse is true as well.

Proof. Assume {5(X,,, X) — 0. Lete > Oand X,(f), X (©)(n) be random variables with E(Xﬁf)) =
L(X,)and £(X©)(n)) = L(X) for all n such that

1XE) - X))y <e

for all n > Ny = Ny(e). As discussed right before Theorem 2.23, Lemma A.1 together with the
proof of the Portementeau Lemma implies that distributional convergence X,, — X is equivalent
to convergence of E [f(X,,)] — E[f(X)] for all bounded s-Holder continuous functions f : B —
R where s € (0, 1] is fixed. Let s > 1 and f be bounded and K -Lipschitz continuous. Then

E[I/(XE) = (XD )] < KE [| X - XOm)|| < K|IXP — XO(m)]), < Ke
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for all n > Nj. By the triangle inequality, we have E [f(X,,)] — E[f(X)] hence X,, — X in
distribution. For s < 1 the proof runs along the same lines using bounded s-Hdolder continuous
functions. Next, we have

1Xalls < X5 = XEO@)lls + 1XNls < e+ 1X]ls
and analogously, || X||s < e + || X,]||s hence
1 Xnlls = | Xls| <e

for all n > Ny. This gives E [|| X,,||*] — E [|| X]|*] as n — oc.

Now, suppose X,, — X in distribution and E [|| X,,||*] — E[||X||*]. By separability, using Sko-
rokhod’s representation theorem, we may choose (X,,), X such that X,, — X almost surely. Let
gs = max(1,2°71) and A,, = || X;, — X||. Then, forany 0 < ¢ < 1,

E| X, - X[*] < e +E X0 — X[I"1{a,5e}]

e® 4 gs (E [(1Xnll® + 1X11°) 1a,>e3])

%+ qs (B (| Xnll* = [ X11°] + 2B [| X[|°*11a, >}
—E[(I1Xal® = IX1) {2, <)) - (A.1)

IN

Then, the bounded convergence Theorem implies E [[| X [|*1(a, ~.}] — 0 and the term in (A.1) to
vanish as n — oo. This implies the assertion. O

Lemma A.4. Let B be separable and s > 0. Then the topologies induced by {5, ks on Ms(B)
are equal.

Proof. Let (4(X,,X) — 0. Again, we may choose X,, — X almost surely. For s > 1 and
Holder’s inequality gives

rs(Xn, X) < E[IX (165~ = 1XI°7DI] + E I Xall) Y B (1 X0 — XD

By Lemma A.3, we have E [|| X,,||*] — E[||X]|*]. Thus, by arguments as in the proof of Lemma
A.3, we see that k4(X,,, X) tends to zero as n — oo. For s < 1, it is not hard to see that for there
exists a constant ¢ = ¢(s) such that for all z,y € B,

llll1*= = yllyll "~ < glle — ylI*-

A detailed proof of this inequality in contained in the proof of Lemma 2.18. This proves x (X, X)
in the case s < 1.

Conversely, let r4(X,,, X) — 0. By Lemma 2.10, X,,|| X,,||*"! — X||X||*~! in distribution and
E[||X,]|°] = E[||X]|*]. Let Y., Y be random variables with £(Y;,) = L(X,,[|X,||*71), L(Y) =
L(X||X||*~") for all n and Y;, — Y almost surely. Then Y;,/||Y;||®~1/* — Y/||Y||¢=1/5 al-
most surely, hence X,, — X in distribution. This shows ¢4(X,,, X) — 0 by Lemma 2.10 and
completes the proof. O

Lemma A.5. Let X,Y be real-valued random variable with E [| X|] ,E[|Y'|] < co. Then

[e.e]

1
) = 6(5Y) = [1g ) = B ke = [ P = ()i

—00
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Proof. By definition, we have (1(X,Y) < £(X,Y) < [ |Fx'(u) — Fy'(u)|du. The last
equality in the assertion is easily seen by geometric arguments, hence it suffices to show that
Q(X,Y) = [%_|Fx(u) — Fy(u)|du. Let p = Px — Py and F(u) = p((—o0,u]) = Fx(u) —
Fy (u). Since p has finite first moment, we have uF),(u) — 0 for v — $oo. For any 1-Lipschitz
function f, using partial integration, this yields

B[00~ £V = [ fu)dutu) == [ Fy(u)f (w)du.

It is well-known that any function f on the real line is Lipschitz with constant K if and only if f
is differentiable almost everywhere with | f'(u)| < K for almost all u. Now, let h : R — {—1,1}
be defined by h(u) = 1 for Fx(u) < Fy(u) and h(u) = —1 otherwise. Let f(z) = [ h(u)du.
Then, f is differentiable almost everywhere and |f’(u)| = |h(u)| < 1 for almost all u. Hence, f
is 1-Lipschitz and

B () - £V = [ 1Fu(w]du.
This proves the assertion. O
The last Lemmas is concerned with the geometry of C|0, 1].
Lemma A.6. The function v : C[0,1] — R,v(x) = ||z|| is nowhere differentiable.

Proof. The norm function is easily seen to be non-differentiable at zero in any Banach space.
Moreover, the relation v(Az) = Av(z) for all A > 0 implies that we may restrict ourselves to the
unit sphere. Let x € C[0, 1] with ||z|| = 1 and (e,,) be a sequence of real numbers with &,, | 0 as
n — oo. Suppose v was differentiable at . For any h € C[0, 1], denote

lx + k|| — 1 — Dv(z)(h)

Al = ]

By the Riesz representation theorem there exists a finite signed measure p = f,, on the unit interval
such that D(v(x))(h) = [ h(t)du(t). We first assume that there exists t* > 0 with z(t*) = 1.
Then it is possible to choose a < t* such that x|, 4+) > 0 and p({a}) = 0. For all n large enough,
define h,, € C[0,1] by hy(t) = €, fort € [a,t*], hy(t) = 0fort < a—e,ort > t* + ¢, and
linear in between. This implies

en = Jia—ep.a) Pn @A) = [y 1 hn@dn(t) = [ poro ) Pn(t)dp(t)

€n

By o-continuity the first and third integrals are of order o(e,,), hence A(h,,) — 0implies p([a, t*]) =
1. The same arguments also imply ([b, t*]) = 1 forany a < b < t* with p({b}) = 0, in particular
we have p([a, b]) = 0 for these values of b which gives 1[4 4+ = ¢+

Next, choose a sequence (a,,) from [0, 1] with a < a,, < t* such that z|(,,, ;+] € [1 — &y, 1]. Define
a sequence of continuous functions hy, by hy,(t) = 1—x(t)+ey, fort € [an, (an+t*)/2], hp(t) =0
fort < aort > t* and linear in between. Then, for all n large enough, ||z + h,| > 1 + &4,
lhnll < 26, and thus A(hy,) > 1/2 while h,, — 0. This contradicts the differentiability of v at x.
All remaining cases follow from two observations: First, any function f between two Banach
spaces with f(x) = f(—=x) is differentiable at x if and only if it is at —z and second, any function
f:CJ0,1] — R with f(x) = f(z), where Z(t) = (1 — t), is differentiable at z if itisatz. [
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