
An Abstract Machine for
Concurrent Haskell with Futures

David Sabel

Technical Report Frank-48

Research group for Artificial Intelligence and Software Technology
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany

February 5, 2012

Abstract. We show how Sestoft’s abstract machine for lazy evaluation
of purely functional programs can be extended to evaluate expressions of
the calculus CHF – a process calculus that models Concurrent Haskell
extended by imperative and implicit futures. The abstract machine is
modularly constructed by first adding monadic IO-actions to the machine
and then in a second step we add concurrency. Our main result is that
the abstract machine coincides with the original operational semantics
of CHF, w.r.t. may- and should-convergence.

1 Introduction

The process calculus CHF [SSS11a] is a model of the core language of Concurrent
Haskell [PGF96,Pey01,PS09] but extended by implicit, concurrent futures which
allow a declarative style of concurrent programming.

CHF is monomorphically typed and its syntax comprises (unlike the π-
calculus [Mil99,SW01]) shared memory in form of Haskell’s MVars, threads
(i.e. futures) and heap bindings. Threads evaluate expressions which on the
one hand may be monadic operations to create and access the MVars and to
spawn new threads, and on the other hand are usual pure functional expressions
extending the lambda calculus by data constructors, case-expressions, recursive
let-expressions, as well as Haskell’s seq-operator.

In [SSS11a] the operational semantics of CHF is defined by a small-step re-
duction as rewriting on processes. Program equivalence of processes and also
expressions is given by a contextual equivalence: two programs are equal iff their
observable behavior is indistinguishable even if the programs are used as a sub-
program of any other program (i.e. if the programs are plugged into any arbi-
trary context). Besides observing whether a program may terminate (called may-
convergence) contextual equivalence also tests whether a program never loses the

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14524179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ability to terminate (called should-convergence, or sometimes must-convergence,
see e.g. [CHS05,NSSSS07,RV07,SSS08]). The classic notion of must-convergence
additionally requires that all possible evaluations terminate. An advantage of
using should-convergence is that it is invariant w.r.t. restricting the evaluator to
fair schedulings (see e.g [SSS11a]), that contextual equivalence is closed w.r.t. a
whole class of convergence predicates (see [SSS10]), and that inductive reasoning
is possible.

In [SSS11a] contextual equivalence in CHF is deeply investigated and a lot of
equivalences are proved, and recently [SSS11b] shows that CHF is a conservative
extension of its purely functional sublanguage, i.e. all equations that hold in
the pure call-by-need lambda calculus also hold in the process calculus CHF .
The obtained results show that the given operational semantics works well for
(mathematically formal) reasoning. On the other hand the operational semantics
is not easy to implement as an interpreter for CHF , since e.g. reduction contexts
in [SSS11a] have a complex definition and reduction uses structural congruence
of processes implicitly.

Hence the motivation of this paper is to investigate an alternative operational
semantics for CHF which can easily be implemented as an interpreter, i.e. we
will develop an abstract machine to evaluate expressions and processes of CHF .
As a starting point we will use the abstract machine mark 1 introduced by
Sestoft [Ses97] for call-by-need evaluation of pure functional programs (which
implements the natural semantics given by [Lau93]).

Sestoft’s machine mark 1 is a variant of the Krivine-machine which addition-
ally implements sharing during evaluation (see [DF07]). The main components
are a heap to model shared bindings, an expression which is evaluated, and
a stack to efficiently store the current evaluation context. There are only few
transition rules which perform the unwinding to find the next redex, perform
reduction, or access and update shared bindings.

Variants of Sestoft’s machine are well-used for several call-by-need lambda
calculi to define the operational semantics, or to give an alternative description
of the semantics, respectively. Some examples are [MSC99] for a call-by-need
lambda calculus with erratic choice, [Mor98,Sab08] for call-by-need lambda cal-
culi with McCarthy’s amb-operator, [BFKT00] for specifying the semantics of
Parallel Haskell, and [AHH+05] for the semantics of functional-logic languages.

To construct an abstract machine for CHF we extend (a slightly modified
variant of) Sestoft’s machine (called M1) in two steps. The first extension (called
IOM1) is to add the ability to perform monadic I/O-operations, i.e. we add stor-
age (i.e. MVars), a further stack, and machine transitions to execute monadic
actions to the machine M1 . In a second step we extend the machine IOM1
by concurrency, i.e. we allow several threads and add transitions to spawn new
threads. The concurrent machine is called CIOM1 . A nice property of our con-
struction is modularity, i.e. every extended machine reuses the already introduced
transitions of the machine before. Thus CIOM1 is easy to implement, and indeed
within a few hours we programmed a prototype of the machine in Haskell.

2

Albeit providing such a machine is an interesting result for itself, we also
show that our machine is a correct implementation of the operational semantics
of CHF : In Theorem 4.11 we show that may- and should-convergence defined by
the rewriting semantics in [SSS11a] coincides with may- and should-convergence
on the machine for every expression the machine starts with.

The structure of the paper is as follows: In Section 2 we briefly recall the
calculus CHF together with some results on program equivalences in CHF which
are required in later proofs. In Section 3 we introduce the abstract machine
CIOM1 for CHF , where we develop the machine in three steps. In Section 4 we
show that machine CIOM1 correctly implements the operational semantics of
CHF . We conclude in Section 5. Due to space reasons not all proofs are included
in the paper, but can be found in the appendix.

2 The Process Calculus CHF

We recall the calculus CHF which models Concurrent Haskell extended by con-
current futures [SSS11a]. In Fig. 1a the syntax of processes Proc and expressions
Exp is shown, where we assume that x, xi, y, yi are variables of some countably
infinite set of variables.

Parallel composition P1 |P2 composes processes, and name restriction νx.P
restricts the scope of variable x to process P . A concurrent thread x⇐ e evaluates
the expression e and then binds the result to the variable x. We also call variable
x the future x. In a process there is usually one distinguished thread – the main
thread – which is labeled with “main” (as notation we use x

main⇐== e). Bindings
x = e represent global shared expressions. MVars are synchronizing variables,
where xm e represents a filled MVar with content e, and xm− represents an
empty MVar. In both cases we call x the name of the MVar. For a process P we
say a variable x is an introduced variable if x is a future, a name of an MVar,
or a left hand side of a binding. A process is well-formed, if there exists at most
one main thread x

main⇐== e and the introduced variables are pairwise distinct.
We assume a finite set of data constructors c which is partitioned into sets,

such that each set represents a type T . The constructors of a type T are ordered
as cT,1, . . . , cT,|T |, where |T | is the number of constructors belonging to type T .
We omit the index T, i in cT,i if it is clear from the context. Each constructor
cT,i has a fixed arity ar(cT,i) ≥ 0. We assume that there is a unit type () with a
single constant () as constructor.

Besides the lambda calculus, expressions Exp (see Fig. 1a) comprise
(fully-saturated) constructor applications (c e1 . . . ear(c)), case-expressions, seq-
expressions for sequential evaluation, letrec-expressions to express recursive
shared bindings and monadic expressions MExp (described below). For case-
expressions there is a caseT -construct for every type T which must have a
case-alternative for every constructor of type T . We sometimes abbreviate the
case-alternatives as alts. Variables in case-patterns (c x1 . . . xar(c)) and bound
variables in letrec-expressions must be pairwise distinct.

3

P, Pi ∈ Proc ::= P1 |P2 | νx.P |x⇐ e |x = e |xm e |xm−
e, ei ∈ Exp ::= x |m |λx.e | (e1 e2) | c e1 . . . ear(c) | seq e1 e2

| letrec x1 = e1, . . . , xn = en in e
| caseT e of altT,1 . . . altT,|T | where altT,i = (cT,i x1 . . . xar(cT,i) → ei)

m ∈ MExp ::= return e | e1 >>= e2 | future e
| takeMVar e | newMVar e | putMVar e1 e2

τ, τi ∈ Typ ::= IO τ | (T τ1 . . . τn) | MVar τ | τ1 → τ2

(a) Syntax of Processes, Expressions, Monadic Expressions and Types

D ∈ PC ::= [·] |D |P |P |D | νx.D M ∈ MC ::= [·] |M >>= e

E ∈ EC ::= [·] | (E e) | (case E of alts) | (seq E e)

F ∈ FC ::= E | (takeMVar E) | (putMVar E e)
L ∈ LC ::= x⇐M[F] |x⇐M[F[xn]] |xn = En[xn−1]|. . .|x2 = E2[x1] |x1 = E1

where E2, . . . En are not the empty context.bL ∈ dLC ::= x⇐M[F] |x⇐M[F[xn]] |xn = En[xn−1]|. . .|x2 = E2[x1] |x1 = E1

where E1, E2, . . . En are not the empty context.

(b) Process-, Monadic-, Evaluation-, and Forcing-Contexts

Monadic Computations:
(lunit) y⇐M[return e1 >>= e2]

CHF−−→ y⇐M[e2 e1]

(tmvar) y⇐M[takeMVar x] |xm e
CHF−−→ y⇐M[return e] |xm−

(pmvar) y⇐M[putMVar x e] |xm− CHF−−→ y⇐M[return ()] |xm e

(nmvar) y⇐M[newMVar e]
CHF−−→ νx.(y⇐M[return x] |xm e)

(fork) y⇐M[future e]
CHF−−→ νz.(y⇐M[return z] | z⇐ e)

where z is fresh and the created thread is not the main thread

(unIO) y⇐ return e
CHF−−→ y = e if the thread is not the main-thread

Functional Evaluation:

(cp) bL[x] |x = v
CHF−−→ bL[v] |x = v if v is an abstraction or a variable

(cpcx) bL[x] |x = c e1 . . . en if c is a constructor, or a monadic operator
CHF−−→ νy1, . . . yn.(bL[c y1 . . . yn] |x = c y1 . . . yn | y1 = e1 |. . .| yn = en)

(mkbinds) L[letrec x1 = e1, . . . , xn = en in e]
CHF−−→ νx1, . . . , xn.(L[e] |x1 = e1 |. . .|xn = en)

(lbeta) L[((λx.e1) e2)]
CHF−−→ νx.(L[e1] |x = e2)

(case) L[caseT (c e1 . . . en) of . . . (c y1 . . . yn → e) . . .]
CHF−−→ νy1, . . . , yn.(L[e] | y1 = e1 |. . .| yn = en])

(seq) L[(seq v e)]
CHF−−→ L[e] if v is a functional value

Closure: If P1 ≡ D[P ′
1], P2 ≡ D[P ′

2], and P ′
1

CHF−−→ P ′
2 then P1

CHF−−→ P2

(c) Standard Reduction Rules

Fig. 1: The Calculus CHF

4

The monadic expression return e represents the monadic action which re-
turns expression e, the binary operator >>= combines monadic actions, the ex-
pression future e creates a concurrent thread evaluating the action e, the oper-
ation newMVar e creates an MVar filled with e, takeMVar x returns the content
of MVar x, and putMVar x e fills MVar x with e. takeMVar x blocks on an empty
MVar, and putMVar x e blocks on a filled MVar.

Variables get bound by abstractions, letrec-expressions, case-alternatives,
and by the restriction νx.P . This induces a notion of free and bound vari-
ables. With FV (P) (FV (e), resp) we denote the free variables of process
P (expression e, resp.) and with =α we denote α-equivalence. We assume
that the distinct variable convention holds, i.e. all free variables are distinct
from bound variables, all bound variables are pairwise distinct, and reductions
implicitly perform α-renaming to obey this convention. For processes struc-
tural congruence ≡ is defined as the least congruence satisfying the equations
P1 |P2 ≡ P2 |P1; νx1.νx2.P ≡ νx2.νx1.P ; (P1 |P2) |P3 ≡ P1 | (P2 |P3);
P1 ≡ P2, if P1 =α P2; and (νx.P1) |P2 ≡ νx.(P1 |P2), if x 6∈ FV (P2).

For typing of processes and expressions CHF uses a monomorphic type sys-
tem where data constructors and monadic operators are treated like “overloaded”
polymorphic constants. The syntax of types Typ is shown in Fig. 1a. IO τ means
a monadic action with result type τ , MVar τ means an MVar-reference with con-
tent type τ , and τ1 → τ2 is a function type. For a constructor c we let types(c)
be set of its monomorphic types. For simplicity we assume that every variable x
has a fixed (built-in) type given by a global typing function Γ , i.e. Γ (x) is the
type of variable x. For space reasons we omit the typing rules of [SSS11a], but
we use the notation Γ ` P :: wt (Γ ` e :: τ , resp.) meaning that (well-formed)
process P can be well-typed (expression e can be well-typed with type τ , resp.)
using the global typing function Γ . Special typing restriction are that x⇐ e is
well-typed, if Γ ` e :: IO τ , and Γ ` x :: τ , and that the first argument of seq
must not be an IO- or MVar-type, since otherwise the monad laws would not hold
in CHF (and even not in Haskell, see [SSS11a]).

Operational Semantics and Program Equivalence The operational semantics of
CHF (see [SSS11a]) is given by a small-step reduction which implements a call-
by-need strategy. The definition requires several classes of contexts, which are
shown in Fig. 1b. For processes there are process contexts PC. For expressions,
monadic contexts MC are used to find the first monadic action in a sequence of
actions. For the evaluation of pure expressions usual (call-by-name) expression
evaluation contexts EC are used, and to enforce the evaluation of the (first)
argument of the monadic operators takeMVar and putMVar the class of forcing
contexts FC is used. Since we follow a call-by-need strategy we sometimes need
to search a redex along a chain of bindings which is expressed by the LC-contexts
and as a special case by the L̂C-contexts.

Definition 2.1 (Call-by-Need Standard Reduction). A functional value
is an abstraction or a constructor application, a value is a functional value or
a monadic expression of MExp. The call-by-need standard reduction CHF−−→ is

5

defined by the rules and the closure in Fig. 1c. We assume that only well-formed
processes are reducible.

The rules for functional evaluation include a sharing variant of β-reduction (rule
(lbeta)), a rule for copying shared bindings into a needed position: For abstrac-
tions rule (cp) is used and for constructor applications rule (cpcx) shares the
arguments before copying the constructor. The rules (case) and (seq) evaluate
case- and seq-expressions, and the rule (mkbinds) moves letrec-bindings into
the global set of shared bindings. For monadic computations the rule (lunit)
applies the first monad law to proceed a sequence of monadic actions. The rules
(nmvar), (tmvar), and (pmvar) handle the creation of and the access to MVars
where (tmvar) can only be performed on a filled MVar, and (pmvar) requires an
empty MVar. The rule (fork) spawns a new concurrent thread, where the calling
thread receives the name of the future as result. If a concurrent thread finishes
its computation, then the result is shared as a global binding and the thread is
removed (rule (unIO)).

For a reduction→ (and also transitions and transformations) we denote with
+−→, ∗−→ the transitive and the reflexive-transitive closure of →, respectively. The
notation k−→ means a sequence of k →-steps and 0∨1−−→ mean one or no reduction.
We also sometimes attach a specific label to the arrow if we mean a specific
reduction, and also write (CHF , a) for a CHF -standard reduction of kind a.

Contextual equivalence equates two processes P1, P2 if their observable be-
havior is indistinguishable if P1 and P2 are plugged into any process context.
Thereby the usual observation is whether the evaluation of the process suc-
cessfully terminates (called may-convergence) or not. However, this observa-
tion is not sufficient in a concurrent setting, and thus we will observe may-
convergence and a variant of must-convergence (called should-convergence, see
also [RV07,SSS08,SSS11a]):

Definition 2.2. A process P is successful iff it is well-formed and contains a
main thread of the form x

main⇐== return e. A process P may-converges (written
as P↓), iff it is well-formed and reduces to a successful process, i.e. ∃P ′ : P

CHF,∗−−−→
P ′ ∧ P ′ is successful. If P↓ does not hold, then P must-diverges written as P⇑.
A process P should-converges (written as P⇓), iff it is well-formed and remains
may-convergent under reduction, i.e. ∀P ′ : P

CHF,∗−−−→ P ′ =⇒ P ′↓. If P is not
should-convergent then we say P may-diverges written as P↑. For an expression
e :: IO τ we write eχ for any χ ∈ {↓,⇓, ↑,⇑} iff Pχ where P := x

main⇐== e and
x 6∈ FV (e).

Note that P↑ iff there is a finite reduction sequence P
CHF,∗−−−→ P ′ such that P ′⇑.

Definition 2.3. Contextual approximation ≤CHF and contextual equivalence
∼CHF on processes are defined as ≤CHF :=≤↓ ∩ ≤⇓ and ∼CHF :=≤CHF ∩ ≥CHF

where

for χ ∈ {↓,⇓} : P1 ≤χ P2 iff ∀D ∈ PC : D[P1]χ =⇒ D[P2]χ

6

(gcp) C[x] |x = e → C[e] |x = e

(cpx) C[x] |x = y → C[y] |x = y, where y is a variable

(cpcxxL) bL[x] |x = c y1 . . . yn → bL[c y1 . . . yn] |x = c y1 . . . yn,

where c is a constructor or a monadic operator, bL ∈ dLC, and all yi are variables

(gc) νx1, . . . , xn.(P | Comp(x1) | . . . | Comp(xn)) → P
if for all i ∈ {1, . . . , n}: Comp(xi) is a binding xi = ei, an MVar xi m ei,
or an empty MVar xi m−, and xi 6∈ FV (P).

Fig. 2: The Transformations (gcp), (cpx), (cpcxxL), and (gc)

Transformations and Reduction Lengths in CHF We recall some results of
[SSS11a] on the correctness of several program transformations for CHF . More-
over, for some specific cases we prove that the reduction length of a standard
reduction is not increased by a transformation. These results will be necessary
later when we show that the abstract machine is a correct evaluator for CHF .

A program transformation γ is a binary relation on processes. It is correct iff
γ ⊆ ∼CHF .

In Fig. 2 some program transformations are defined, where C is a process
context with an expression hole. The general copying rule (gcp) allows to copy
a binding into an arbitrary position, the transformation (cpx) is the special case
where the copied expression is a variable, and the transformation (cpcxxL) is
the special case of (gcp) where the copied expression is a constructor application
or a monadic operator where all arguments are variables and the target must be
inside an L̂C-context. The rule (gc) performs garbage collection and thus allows
to remove unused parts of the process.

Theorem 2.4 ([SSS11a]). The reductions (CHF , lunit), (CHF , nmvar),
(CHF , fork), (CHF , unIO) are correct transformations. The transformations
(cp), (cpcx), (lbeta), (case), (seq), (mkbinds) are correct as transformation in any
context (i.e. the reduction rules in Fig. 1c where the context L is replaced by an
arbitrary process context C with an expression hole) such that the scoping is not
violated by the transformation. The transformations (gcp), (cpx), (cpcxxL), and
(gc) are also correct.

We introduce a special notion for reduction lengths:

Definition 2.5. If P0
CHF−−→ P1

CHF−−→ . . .
CHF−−→ Pn where Pn is successful (Pn⇑,

resp.) and m ≤ n is the number of all reductions except for (cp)-reductions
that copy a variable, then we write P0↓[m,n]Pn (P0↑[m,n]Pn, resp.). We omit the
process Pn if it is not of interest.

In Appendix A we show that the following properties on reduction lengths
hold:

Proposition 2.6. Let P1, P2 be processes. If P1
a−→ P2 where a ∈

{(CHF , cp), (gc), (cpx)}, then P1↓[m,n] =⇒ P2↓[m
′,n′] and P1↑[m,n] =⇒

7

P2↑[m
′,n′] where in both cases m′ ≤ m and n′ ≤ n. If P1

cpcxxL−−−−→ P2, then
P1↓[m,n] =⇒ P2↓[m

′,n′] and P1↑[m,n] =⇒ P2↑[m
′,n′] where in both cases

m′ ≤ m.

3 Constructing an Abstract Machine for CHF

The goal of this section is to introduce an abstract machine for CHF . The
construction of the machine is performed in three steps: first the machine M1
for evaluating pure functional expressions is introduced, then the machine is
extended to handle monadic actions (called IOM1) and finally concurrency is
added resulting in the machine CIOM1 .

An Abstract Machine for Evaluating Pure Expressions The abstract machine
M1 evaluates pure functional programs. It is analogous to Sestoft’s machine
mark 1 [Ses97] but extended to operate also on case- and seq-expressions and
to “functionally evaluate” monadic expressions, i.e. they are treated like ordi-
nary constructor applications and not as actions. All of our abstract machines
will only evaluate simplified expressions (analogous to normalized expressions in
[Lau93,Ses97]):

Definition 3.1. Simplified expressions ExpS and simplified monadic expres-
sions MExpS are built by the following grammar, where x, xi are variables:

e, ei ∈ ExpS ::= x |me |λx.e | (e x) | c x1 . . . xar(c) | seq e x
| letrec x1 = e1 . . . xn = en in e
| caseT e of altT,1 . . . altT,|T | where altT,i = (cT,i x1 . . . xar(cT,i) → ei)

me ∈ MExpS ::= return x |x1 >>= x2 | future x
| takeMVar x | newMVar x | putMVar x1 x2

Simplified process ProcS are defined like processes Proc where all expressions are
simplified expressions and additionally all MVars have only variables as content.

We first define the state of M1 :

Definition 3.2. A state of machine M1 is a tuple (H, e,S) where: H is a heap,
i.e. a mapping of (finitely many) variables to expressions. To make the mapping
explicit we use the notation {x1 7→ e1, . . . , xn 7→ en}. We write H1 ·∪H2 for the
disjoint union of the heaps H1 and H2. The second component, e, is a simplified
expression. It is the currently evaluated expression. S is a stack, where allowed
entries are #app(x), #seq(x), #case(alts), and #heap(x). We use list notation for
stacks, i.e. [] is the empty stack, and a : S is the stack with top entry a and tail
S.

For a well-typed simplified expression e, the initial state of machine M1 is
(∅, e, []). A state of M1 is a final state if it is of the form (H, v, []) where v is an
abstraction, a constructor application, or a monadic expression. In Fig. 3a the
transition relation M1−→ of machine M1 is defined. The rules (pushApp), (pushSeq),

8

(pushApp) (H, (e x),S)
M1−→ (H, e, #app(x) : S)

(pushSeq) (H, (seq e x),S)
M1−→ (H, e, #seq(x) : S)

(pushAlts) (H, (caseT e of alts),S)
M1−→ (H, e, #case(alts) : S)

(takeApp) (H, λx.e, #app(y) : S)
M1−→ (H, e[y/x],S)

(takeSeq) (H, v, #seq(y) : S)
M1−→ (H, y,S),

if v is an abstraction or a constructor application

(branch) (H, (c x1 . . . xn), #case(. . . (c y1 . . . yn → e) . . .) : S)
M1−→ (H, e[xi/yi]

n
i=1,S)

(enter) (H ·∪{y 7→ e}, y,S)
M1−→ (H, e, #heap(y) : S)

(update) (H, v, #heap(y) : S)
M1−→ (H ·∪{y 7→ v}, v,S)

if v is an abstraction, a constructor application, a monadic operator,
or a variable with v 6= y

(mkBinds) (H, letrec x1 = e1, . . . , xn = en in e,S)
M1−→ (H ·∪

Sn
i=1{xi 7→ ei}, e,S)

(a) Transition Relation
M1−→ of Machine M1

(M1) (H,M, e,S, I)
IOM1−−−→ (H′,M′, e′,S ′, I′)

if (H, e,S)
M1−→ (H′, e′,S ′) on machine M1

(newMVar) (H,M, newMVar x, [], I)
IOM1−−−→ (H,M·∪{y mx}, return y, [], I)

where y is a fresh variable

(takeMVar) (H,M·∪{xm y}, x, [], #take : I)
IOM1−−−→ (H,M·∪{xm−}, return y, [], I)

(putMVar) (H,M·∪{xm−}, x, [], #put(y) : I)
IOM1−−−→ (H,M·∪{xm y}, return (), [], I)

(pushTake) (H,M, takeMVar x, [], I)
IOM1−−−→ (H,M, x, [], #take : I)

(pushPut) (H,M, putMVar x y, [], I)
IOM1−−−→ (H,M, x, [], #put(y) : I)

(pushBind) (H,M, x >>= y, [], I)
IOM1−−−→ (H,M, x, [], # >>= (y) : I)

(lunit) (H,M, return x, [], # >>= (y) : I)
IOM1−−−→ (H,M, (y x), [], I)

(b) Transition Relation
IOM1−−−→ of Machine IOM1

(unIO) (H,M, T ·∪{(x, (return y), [], [])}) CIOM1−−−−→ (H ·∪{x 7→ y},M, T)
if thread named x is not the main-thread

(fork) (H,M, T ·∪{(x, (future y), [], I)})
CIOM1−−−−→ (H,M, T ·∪{(x, (return z), [], I), (z, y, [], [])})
where z is a fresh variable

(IOM1) (H,M, T ·∪{(x, e,S, I)}) CIOM1−−−−→ (H′,M′, T ·∪{(x, e′,S ′, I′)})
if (H,M, e,S, I)

IOM1−−−→ (H′,M′, e′,S ′, I′) on machine IOM1 .
The rule is only used if (fork) or (unIO) is not applicable
for the thread named x.

(c) Transition Relation
CIOM1−−−−→ of Machine CIOM1

Fig. 3: Transition Relations of the Machines M1 , IOM1 , and CIOM1

9

and (pushAlts) perform unwinding to find the next redex. The corresponding
contexts are stored on the stack. The rules (takeApp), (takeSeq), and (branch)

perform beta-, seq-, and case-reduction. The rules (enter) and (update) are used
to lookup and restore (after a successful evaluation) bindings of the heap. The
rule (mkBinds) moves local letrec-bindings into the (global) heap.

Compared to Sestoft’s mark 1 we did some slight modifications (aside from
handling seq and case): We did not include a rule (blackhole) for the case,
that the redex is a variable which is not bound in the heap (e.g. this case may
happen after trying to evaluate a recursive binding of the form x 7→ seq x x).
In our machine M1 there is simply no transition and the machine gets stuck.
Another difference is in the (update) transition: While M1 allows to perform
an update if the expression is a variable, Sestoft’s mark 1 does not allow this
transition. One reason for our modification is that later in the machine with
IO-transitions (IOM1) we also must perform those updates, if the variables are
names of MVars, e.g. for the process y⇐ takeMVar x |x = z | z m v the name of
the MVar z must be copied resulting in y⇐ takeMVar z |x = z | z m v. Finally,
we do not explicitly perform α-renaming in our rules, but we assume that the
distinct variable convention is always fulfilled and that necessary α-renamings
are performed implicitly.

Extending M1 by Monadic I/O We will extend the machine M1 , such
that MVars and operations on MVars can be performed. We have to im-
plement the operations of the monad, i.e. return, >>= and the operations
takeMVar, putMVar, newMVar to access and create MVars. The state of the ma-
chine is extended by two components: a set of MVars which models the memory
and a further stack – called IO-stack – which allows a clean separation between
monadic and functional evaluation. An IO-stack is a stack where the following
entries are allowed: The symbol #take to store a takeMVar operation, entries of
the form #put(x) to store a putMVar-operation, where x is the new (to-be-written)
content of the MVar, and # >>= (y) to store a >>= -operation, where y is the right
argument of >>= .

Definition 3.3. A state of the machine IOM1 is a tuple (H,M, e,S, I) where
heap H, expression e, and stack S are as before (in machine M1). M is a set
of MVars with variables as content: a filled MVar is written as xm y, and an
empty MVar is written as xm−. I is an IO-stack.

We only consider the evaluation of expressions of IO-type. For computing an
expression e :: IO τ the machine IOM1 starts with state (∅, ∅, e, [], []). A state is
a final state if both stacks are empty and the evaluated expression is of the form
(return x).

The transition relation IOM1−−−→ of the machine IOM1 is defined in Figure 3b.
The first rule lifts all transitions of M1 to machine IOM1 . The remaining rules
have in common, that they require the (usual) stack S to be empty. That is how
functional evaluation is separated from monadic computation: as long as the
usual stack is filled, functional evaluation is performed and if the usual stack is

10

empty, then monadic computations are performed. The rule (newMVar) creates
a new MVar and returns its name. The rule (takeMVar) takes the content of a
filled MVar. There is no rule for the case that the MVar is already empty. In
this case the machine gets stuck. Performing the take-operation requires that
the to-be-evaluated expression is already the name of the MVar. That is why
first (pushTake) pushes the take-operation on the IO-stack and thus forces the
argument to be evaluated first. The rules (putMVar) and (pushPut) are the cor-
responding rules for performing a putMVar-operation: First (pushPut) enforces
the first argument to be evaluated (to get the name of the MVar), then either
(putMVar) is performed to fill the MVar (if it is empty) or the machine gets stuck,
if the MVar is already filled. For implementing the monadic sequencing operator
>>= , the action on the left hand side is performed first. Hence the (pushBind)-
operation stores the second argument on the IO-stack. When the execution of
the first action ends successfully with (return x), then rule (lunit) evaluates the
>>= -operator.

A single thread y⇐M[F[e]] of CHF corresponds to a machine state of IOM1
as follows: the IO-stack holds the corresponding M-context of the expression and
also the takeMVar- or putMVar-operation on the top-level of the F-context. The
call-by-name evaluation context E inside the F-context is stored on the usual
stack.

Since we only evaluate well-typed expressions, the following lemma holds:

Lemma 3.4. For any machine state of IOM1 which is reachable from a start
state for a well-typed expression e :: IO τ , the IO-stack is of the following form:
All entries are of the form # >>= (x) except for the top-element which also may be
#take or #put(x).

Adding Concurrency Constructing the concurrent machine CIOM1 from the se-
quential machine IOM1 is easy, since most of the parts of the machine IOM1
can be reused. Instead of evaluating a single expression, the machine CIOM1
will evaluate several expressions in several threads. Any such thread consists of
a to-be-evaluated expression, a stack, and an IO-stack. Moreover, since threads
represent futures, every thread has a name (a variable). There is one unique
distinguished thread, the main thread. If the main-thread is successfully evalu-
ated, then the whole machine stops. Further components of the machine CIOM1
are the heap H and the set of MVars M which are globally shared over all
threads. For the transition relation of the machine CIOM1 a single thread is
non-deterministically selected and the (thread-local) transition is performed for
the selected thread. For this thread-local transition we can reuse the transition
relation of the machine IOM1 . There are two exceptions: If the monadic oper-
ation future spawns a new thread, and if a thread finishes its evaluation such
that its result can be shared in the heap.

Definition 3.5. A thread (or future, alternatively) of the machine CIOM1 is
a 4-tuple (x, e,S, I) where x is a variable, called the name of the future, e is a
simplified expression which is evaluated by the thread, S is a stack, and I is an

11

IO-stack. A future can be distinguished as a main-thread, which we sometimes
write as (x, e,S, I)main.

A state of machine CIOM1 is a 3-tuple (H,M, T) where H is a heap of
shared bindings, M is a set of MVars, and T is a set of threads.

Definition 3.6. For a simplified expression e :: IO τ the start state Init(e) of
machine CIOM1 is (∅, ∅, T) where T = {(x, e, [], [])main} and x is a fresh variable
(x /∈ FV (e)).

A state of the machine CIOM1 is a final state if the main-thread is of the
form (y, return x, [], [])main where y and x may be equal.

Definition 3.7. The transition relation CIOM1−−−→ of machine CIOM1 is shown in
Fig. 3c. For one step a thread is selected which may proceed. This selection is
performed nondeterministically over all threads. Note that threads which cannot
proceed are not selected. Those threads are about to evaluate a variable which is
not bound in the heap, or try to perform a (takeMVar)- or (putMVar)-transition
on an empty or filled MVar.

When a thread successfully finishes its computation, the rule (unIO) removes
the thread and stores the result in the heap by a new binding. Note that other
threads which want to access the value of a future x will not be selected for
transition until the result becomes available as a binding in the heap. The rule
(fork) evaluates a future-operation and spawns a new thread. In all other cases
the rule (IOM1) is used which lifts the transition relation IOM1−−−→ of IOM1 to the
concurrent machine CIOM1 .

Note that for a real implementation one would require some kind of fairness
and thus for instance organize the set of threads as a priority-queue of threads.

Definition 3.8. A state S is valid, if there exists a well-typed expression e ::
IO τ such that Init(e)

CIOM1,∗−−−−→ S.

We only consider valid states in the following. It is easy to verify that for any
valid state of CIOM1 all introduced variables (names of MVars, left hand sides
of heap bindings, and names of threads) are pairwise distinct, all #heap(x)-entries
in stacks are pairwise distinct, and all the variables x in such entries do not
occur as a left hand side in the heap.

4 Correctness of the Abstract Machine

In this section we will show that the abstract machine CIOM1 is a correct evalu-
ator for CHF , that is for all expressions e :: IO τ may- and should-convergence of
CHF coincide with may- and should-convergence of the machine CIOM1 where
e is simplified before the evaluation. Indeed we will not only consider expressions
and will work with processes in most of our proofs. As a simplification we assume
that in CHF for the evaluation of a process all ν-binders are dropped and that
reduction does not introduce ν-binders. Instead corresponding α-renamings are
performed implicitly to represent the according scopes.

12

We first show that it is correct to take into account simplified expressions
and processes, only. The first translation shares all necessary parts to derive
simplified processes, i.e. general processes can be transformed into simplified
processes by creating new bindings.

Definition 4.1. The function σ :: Proc → ProcS translates processes into
simplified processes. It is defined to be homomorphic over the term structure
(e.g. σ(P1 |P2) := σ(P1) |σ(P2), etc.) except for the following cases:

σ(e1 e2) := letrec x = σ(e2) in (σ(e1) x)
σ(c e1 . . . en) := letrec x1 = σ(e1), . . . , xn = σ(en) in c x1 . . . xn

if c is a constructor, or a monadic operator
σ(seq e1 e2) := letrec x = σ(e2) in seq σ(e1) x
σ(xm e) := xm y | y = σ(e)

The results in [SSS11a] imply that the translation σ preserves contextual equiv-
alence:

Theorem 4.2. For all processes P ∈ Proc: P ∼CHF σ(P).

We define may- and should-convergence based on the machine transition of
CIOM1 :

Definition 4.3. A valid state S may-converges (S↓CIOM1) iff there exists a
final state S′ such that S

CIOM1,∗−−−−→ S′; and S should-converges (S⇓CIOM1)
iff ∀S′ : S

CIOM1,∗−−−−→ S′ =⇒ S′↓CIOM1 . An expression e :: IO τ may-
converges on CIOM1 (e↓CIOM1) iff Init(σ(e))↓CIOM1 , and e should-converges
on CIOM1 (e⇓CIOM1) iff Init(σ(e))⇓CIOM1 . We write e⇑CIOM1 iff ¬(e↓CIOM1)
and e↑CIOM1 iff ¬(e⇓CIOM1).

Note that if we would restrict evaluation to fair evaluations only, i.e. for-
bidding (infinite) reductions sequences where an executable thread is ignored
infinitely long, then the induced predicates of may- and should-convergence are
unchanged (see also e.g. [Sab08,SSS11a]). Thus for reasoning it is not necessary
to explicitly treat fairness.

We will now define the translation ρ which translates valid machine states
of CIOM1 into processes. Note that the resulting process is not necessarily sim-
plified. In abuse of notation we allow also non-simplified expressions inside the
machine state during the translation.

Definition 4.4. Let (H,M, T) = (
⋃n

i=1{xi 7→ e1},{m1, . . . ,mn′},
{T1, . . . , Tn′′}} be a valid machine state of CIOM1 where mi are MVars
and Ti are threads.
Then ρ(H,M, T) := x1 = e1 | . . . |xn =
en |m1 | . . . |mn′ | ρ(T1) | . . . | ρ(Tn′′) where a single thread Ti is trans-
lated as follows:

13

ρ(y, e, #app(x) : S, I) := ρ(y, e x,S, I)
ρ(y, e, #seq(x) : S, I) := ρ(y, seq e x,S, I)
ρ(y, e, #heap(x) : S, I) := x = e | ρ(y, x,S, I)
ρ(y, e, #case(alts) : S, I) := ρ(y, case e of alts,S, I)
ρ(y, e, [], # >>= (x) : I) := ρ(y, e >>=x, [], I)
ρ(y, e, [], #take : I) := ρ(y, takeMVar e, [], I)

ρ(y, e, [], #put(x) : I) := ρ(y, putMVar e x, [], I)
ρ(y, e, [], []) := y

main⇐== e, if y is a main-thread, and y⇐ e, otherwise

Lemma 4.5. Let S be a valid machine state with S
CIOM1−−−→ S′. Then either

ρ(S) = ρ(S′) or ρ(S) CHF−−→ cpx,∗−−−→ gc,∗−−→ ρ(S′).

Proof. This follows by inspecting all cases (see Appendix B). The (cpx) and (gc)
transformations are necessary to remove variable-to-variable bindings which are
introduced in CHF by (lbeta), (case), and (cpcx) but not by the corresponding
transitions (takeApp), (branch), and (update).

Proposition 4.6. For every valid state S of CIOM1: S↓CIOM1 =⇒ ρ(S)↓.

Proof. Let Sn↓CIOM1 , i.e. Sn
CIOM1−−−→ . . .

CIOM1−−−→ S0 where S0 is a final state. We
use induction on n: If n = 0, then Sn is a final state and ρ(Sn) is successful. For
the induction step assume that ρ(Sn−1)↓. The analysis in Lemma 4.5 shows that
either ρ(Sn) = ρ(Sn−1), ρ(Sn) CHF−−→ ρ(Sn−1), or ρ(Sn) CHF−−→ P ∼CHF ρ(Sn−1)
(since (cpx) and (gc) are correct program transformations, see Theorem 2.4).
For the first two cases obviously ρ(Sn)↓, for the third case Sn−1↓ and contextual
equivalence imply that P↓ and thus also ρ(Sn)↓.

Given a state S and a reduction of the corresponding process, say ρ(S) CHF−−→
P , we now try to find a sequence of corresponding machine transitions for S.

Lemma 4.7. Let S be a valid machine state, and let ρ(S) CHF−−→ P . Then there
exists a valid state S′ with S

CIOM1,∗−−−−→ S′ such that one of the following properties
holds: (1) ρ(S′) = P ; or (2) P

CHF,cp−−−−→ ρ(S′); or (3) in case of a (CHF , cpcx)-

reduction P
cpcxxL−−−−→ cpx,∗−−−→ gc,∗−−→ ρ(S′); or (4) P

cpx,∗−−−→ gc,∗−−→ ρ(S′).

Proof. We give a brief description, details are in Appendix C. Several transitions
are necessary to find the corresponding redex using the transitions (pushBind),
(pushApp), (pushSeq), (pushAlts), and (enter). For the first case a machine transi-
tion corresponds to standard reduction in CHF . The second and third case may
occur if a (cp) or (cpcx) reduction is performed: then perhaps the corresponding
heap binding in the machine is under evaluation of the wrong thread and the
machine must perform two (update) transitions, where one corresponds to the
(cp) (or (cpcx)) reduction, and the other one is also a (cp) standard reduction
or a (cpcxxL)-transformation. If a constructor was shared by a (CHF , cpcx)-
reduction, then the generated variable-to-variable bindings must be inlined and
removed by performing a sequence of (cpx) and (gc) transformations. Case (4)
describes a necessary removal of variable-to-variable bindings which are intro-
duced by a (lbeta)- or (case)-reduction.

14

Proposition 4.8. For every valid machine state S of CIOM1: ρ(S)↓ =⇒
S↓CIOM1 .

Proof. Let Pn↓[m,n]P0, i.e. Pn
CHF−−→ Pn−1

CHF−−→ . . .
CHF−−→ P0 where P0 is success-

ful, and m is the number of all reductions except of (cp)-reductions that copy
a variable. We use induction on the pair (m, n), ordered lexicographically. For
n = 0 the claim holds, since only final machine states are translated into suc-
cessful processes. For the induction step assume that the claim holds for all
(m′, n′) < (m, n). We apply Lemma 4.7 to the reduction ρ(Sn) = Pn

CHF−−→ Pn−1

where Pn−1↓[m
′,n−1] such that either m′ = m (if the reduction is also (cpx)-

transformation), or m′ = m − 1 (in all other cases). This shows Sn
CIOM1,∗−−−−→ S′

by the following cases: (i) ρ(S′) = Pn−1: Then Sn↓CIOM1 by the induction
hypothesis. (ii) Pn−1

CHF,cp−−−−→ ρ(S′), or Pn−1
cpx,∗−−−→ gc,∗−−→ ρ(S′). Then Propo-

sition 2.6 shows that ρ(S′)↓[m
′′,n′′] where (m′′, n′′) < (m, n). Applying the

induction hypothesis to ρ(S′) yields S′↓CIOM1 and thus also Sn↓CIOM1 . (iii)

Pn−1
cpcxxL−−−−→ cpx,∗−−−→ gc,∗−−→ ρ(S′). Then the equation m′ = m − 1 must hold, since

the standard reduction is (CHF , cpcx). Proposition 2.6 shows that ρ(S′)↓[m
′′,n′′]

where (m′′, n′′) < (m, n) and thus we can apply the induction hypothesis to
ρ(S′) and have S′↓CIOM1 and thus also Sn↓CIOM1 .

Since ¬↓ = ⇑ and ¬↓CIOM1 = ⇑CIOM1 , Propositions 4.6 and 4.8 also imply:
Lemma 4.9. For every valid machine state S of CIOM1: ρ(S)⇑ ⇐⇒
S⇑CIOM1 .

Proposition 4.10. For every valid machine state S of CIOM1: ρ(S)⇓ ⇐⇒
S⇓CIOM1 .

Proof. The claim is equivalent to ρ(S)↑ ⇐⇒ S↑CIOM1 . Both directions can be
proved by induction analogously to the proofs for may-convergence in Proposi-
tions 4.6 and 4.8 except for the base cases of the inductions which are covered
by Lemma 4.9.

Theorem 4.11. For every expression e :: IO τ the equivalences e↓ ⇐⇒
e↓CIOM1 and e⇓ ⇐⇒ e⇓CIOM1 hold.

Proof. This follows from Propositions 4.6,4.8, and 4.10 and since for any well-
typed expression e :: IO τ we have ρ(Init(σ(e))) = x

main⇐== σ(e) ∼CHF x
main⇐== e

where the last equivalence holds by Theorem 4.2.

5 Conclusion

We introduced the concurrent abstract machine CIOM1 for evaluation of CHF -
programs and showed that the machine is a correct evaluator w.r.t. the semantics
of the process calculus CHF . Further work is to optimize the machine, e.g. by
following the modifications presented in [Ses97] (e.g. avoiding substitutions by
using closures, using a nameless representation by de Bruijn-indices, etc.) and
showing correctness of them. Another direction is to extend CHF and the ab-
stract machine by exceptions and by a primitive to kill threads.

15

Acknowledgments

I thank Manfred Schmidt-Schauß for reading this paper and for discussions and
comments on this paper.

References

[AHH+05] E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational seman-
tics for declarative multi-paradigm languages. J. Symb. Comput., 40:795–
829, 2005.

[BFKT00] C. A. Baker-Finch, D. J. King, and P. W. Trinder. An operational semantics
for parallel lazy evaluation. In 5th ICFP, pp. 162–173. ACM, 2000.

[CHS05] A. Carayol, D. Hirschkoff, and D. Sangiorgi. On the representation of Mc-
Carthy’s amb in the Pi-calculus. Theoret. Comput. Sci., 330(3):439–473,
2005.

[DF07] R. Douence and P. Fradet. The next 700 Krivine machines. Higher Order
Symbol. Comput., 20:237–255, 2007.

[Lau93] J. Launchbury. A natural semantics for lazy evaluation. In 20th POPL, pp.
144–154. ACM, 1993.

[Mil99] R. Milner. Communicating and mobile systems: the π-calculus. CUP, 1999.

[Mor98] A. Moran. Call-by-name, call-by-need, and McCarthy’s Amb. PhD thesis,
Dept. of Comp. Science, Chalmers university, Sweden, 1998.

[MSC99] A. Moran, D. Sands, and M. Carlsson. Erratic Fudgets: A semantic theory
for an embedded coordination language. In Coordination ’99, LNCS 1594,
pp. 85–102. 1999.

[NSSSS07] J. Niehren, D. Sabel, M. Schmidt-Schauß, and J. Schwinghammer. Obser-
vational semantics for a concurrent lambda calculus with reference cells and
futures. Electron. Notes Theor. Comput. Sci., 173:313–337, 2007.

[Pey01] S. Peyton Jones. Tackling the awkward squad: monadic input/output, con-
currency, exceptions, and foreign-language calls in Haskell. In Engineering
theories of software construction, pp. 47–96. IOS-Press, 2001.

[PGF96] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In 23th
POPL, pp. 295–308. ACM, 1996.

[PS09] S. Peyton Jones and S. Singh. A tutorial on parallel and concurrent pro-
gramming in Haskell. In 6th AFP, pp. 267–305. Springer, 2009.

[RV07] A. Rensink and W. Vogler. Fair testing. Inform. and Comput., 205(2):125–
198, 2007.

[Sab08] D. Sabel. Semantics of a call-by-need lambda calculus with McCarthy’s amb
for program equivalence. Dissertation, Goethe-Universität Frankfurt Ger-
many, 2008.

[Ses97] P. Sestoft. Deriving a lazy abstract machine. J. Funct. Progr., 7(3):231–264,
1997.

[SSS08] D. Sabel and M. Schmidt-Schauß. A call-by-need lambda-calculus with
locally bottom-avoiding choice: context lemma and correctness of transfor-
mations. Math. Structures Comput. Sci., 18(03):501–553, 2008.

[SSS10] M. Schmidt-Schauß and D. Sabel. Closures of may-, should- and must-
convergences for contextual equivalence. Inform. Process. Lett., 110(6):232
– 235, 2010.

16

[SSS11a] D. Sabel and M. Schmidt-Schauß. A contextual semantics for Concurrent
Haskell with futures. In 13th PPDP, pp. 101–112, ACM, 2011.

[SSS11b] D. Sabel and M. Schmidt-Schauß. On conservativity of Concurrent Haskell.
Frank report 47, Institut für Informatik, Goethe-Universität Frankfurt am
Main, 2011. http://www.ki.informatik.uni-frankfurt.de/papers/frank/.

[SW01] D. Sangiorgi and D. Walker. The π-calculus: a theory of mobile processes.
CUP, 2001.

17

A Proof of Proposition 2.6

Proposition 2.6 follows from Propositions A.1, A.3, and A.7 which will be proved
throughout this section. We first consider some easy cases:

Proposition A.1. Let P1, P2 be processes such that P1
CHF,cp−−−−→ P2 or P1

gc−→ P2.
If P1↓[m,n] (P1↑[m,n], resp.) then P2↓[m

′,n′] (P2↑[m
′,n′], resp.) such that m′ ≤ m

and n′ ≤ n.

Proof. We use induction on the pair (m, n), ordered lexicographically: If n = 0
and P1 is successful then in both cases P2 is also successful. If n = 0 and P1

is must-divergent, then correctness of (gcp) and (gc) implies that P2 is must-
divergent, too. For the induction step let (m, n) > (0, 0). Then P1

CHF−−→ P ′
1 where

P ′
1↓

[m′,n−1] (P ′
1↑

[m′,n−1], resp.) where either m = m′ (in case of a (CHF , cp)-
reduction that copies a variable) or m′ = m− 1 (in all other cases).

If the transformation P1 → P2 is the same reduction (i.e. P2 = P ′
1), then we

are finished. Otherwise, by analyzing all possible cases, we can show that the
reduction and the transformation commute, i.e.:

P1
b //

CHF ,a

��

P2

CHF ,a

���
�
�

P ′
1 b

//___ P ′
2

for b = (gc) or b = (CHF , cp) and any standard reduction (CHF , a). Thus we
can apply the induction hypothesis to P ′

1
b−→ P ′

2 and have P ′
2↓

[m′′,n′′] (P ′
2↑

[m′′,n′′],
resp.) where n′′ ≤ n − 1 and either m′′ ≤ m (for the (CHF , cp)-reduction that
copies a variable) or m′′ ≤ m − 1. In both cases this shows that P2↓[m

′′′,n′′′]

(P2↑[m
′′′,n′′′], resp.) where m′′′ ≤ m and n′′′ ≤ n.

Now we analyze the (cpx)-transformation.

Lemma A.2. Let P1
cpx−−→ P2 and P1

CHF−−→ P ′
1 be such that the reduction and

the transformation are not the same step. Then the reductions can always be
commuted by one of the following cases (where the corresponding processes P ′

2, P
′′
2

exist):

P1

CHF

��

cpx // P2

CHF

���
�
�

P ′
1 cpx

//___ P ′
2

P1

CHF

��

cpx // P2

CHF

���
�
�

P ′
1 cpx

//___ P ′′
2 cpx

//___ P ′
2

P1

CHF

��

cpx // P2

CHF~~~
~

~
~

P ′
1

Proof. This follows by inspecting all possible overlaps. The first diagram is the
most common case, the second diagram covers the case where the target of the
(cpx)-transformation is copied by the standard reduction, and the third diagram

18

covers the case, where the target of the (cpx)-transformation is removed by the
standard reduction (e.g. the first argument of seq, an unused case-alternative,
. . .).

Proposition A.3. Let P1, P2 be processes such that P1
cpx−−→ P2. If P1↓[m,n]

(P1↑[m,n], resp.) then P2↓[m
′,n′] (P2↑[m

′,n′], resp.) such that m′ ≤ m and n′ ≤ n.

Proof. We use induction on (m, n): If P1 is successful, then P2 is also successful.
If P1 is must-divergent, then correctness of (cpx) (see Theorem 2.4) implies that
P2 is must-divergent, too. Thus the base case n = 0 holds. For the induction step
let (m, n) > (0, 0). Then P1

CHF−−→ P ′
1 where P ′

1↓
[m′,n−1] (P ′

1↑
[m′,n−1], resp.) such

that either m′ = m (if the standard reduction is also a (cpx)-transformation) or
m′ = m − 1. If P1

cpx−−→ P2 is the same reduction, i.e. P ′
1 = P2 then the claim

obviously holds. Otherwise, we apply one of the diagrams of Lemma A.2 and
then use the induction hypothesis – where for the second diagram the induction
hypothesis is applied twice.

We now analyze the situation where a (cpx)-transformation is applied back-
wards. More details are required, hence we introduce new notation: With (icpx)
we denote the transformation (cpx) except for the cases where the transfor-
mation is also a (CHF , cp)-standard reduction. We also split the standard re-
duction (CHF , cp) into two disjoint transformations: a (CHF , cpx)-reduction
is any (CHF , cp)-reduction where the copied expression is a variable, and a
(CHF , cpabs)-reduction is any (CHF , cp)-reduction where the copied expression
is an abstraction.

Lemma A.4. If P1
icpx−−−→ P2 and P2

CHF−−→ P2,1, then one of the following dia-
grams can be applied (where the processes P1,1, P

′
1,1, P1,2 exist):

P1

CHF ,a

���
�
�

icpx // P2

CHF ,a

��
P1,1

icpx
//___ P2,1

for any a

P1

CHF ,cpabs

���
�
�

icpx // P2

CHF ,cpabs

��
P1,1

icpx
//___ P ′

1,1 icpx
//___ P2,1

P1

CHF ,cpx

���
�
�

icpx // P2

CHF ,cpx

��

P1,1

CHF ,cpx

���
�
�

P1,2
icpx

//___ P2,1

P1

CHF ,a
��4

4
4

icpx // P2

CHF ,a

��

P1,1

CHF ,cpx
��6

6
6

P2,1

a ∈ {unIO, lbeta, case, seq, cpabs}

P1

CHF ,a !!C
C

C
C

icpx // P2

CHF ,a

��
P2,1

a ∈ {case, seq}

Proof. This follows by checking all overlaps.

19

Lemma A.5. Let P1, P2 be processes with P1
cpx−−→ P2 and P2↓[m,n] (P2↑[m,n],

resp.) Then P1↓[m
′,n′] (P1↑[m

′,n′], resp.) such that m′ ≤ m.

Proof. We only show the claim for may-convergence, since the proof for may-
divergence is completely analogous (where the base case holds, since (cpx) is a
correct program transformation).

Let P1
cpx−−→ P2 and P2

CHF−−→ P2,1
CHF−−→ . . .

CHF−−→ P2,n such that P2,n is suc-
cessful, i.e. P2↓[m,n] for some m ≤ n. We use induction on the (lexikographically
ordered) pair (m, n). For the base case let n = 0. Then P2 is successful, and
it is easy to verify that P1 must be successful too. For the induction step let
(m, n) > (0, 0) and as induction hypothesis we assume that the claim holds for
all processes P ′

1, P
′
2 with P ′

1
cpx−−→ P ′

2 and P ′
2↓

[m′,n′] where (m′, n′) < (m, n).
If P1

cpx−−→ P2 is also a standard reduction, then P1↓[m,n+1]P2,n and we are fin-

ished. Otherwise, we apply a diagram of Lemma A.4 to P1
icpx−−−→ P2

CHF−−→ P2,1. We
have to analyze the five case of Lemma A.4: For the first case either P2,1↓[m,n−1]

(if P2
CHF,cpx−−−−−→ P2,1) or P2,1↓[m−1,n−1] (in all other cases). In both cases the in-

duction hypothesis can be applied to P1,1
cpx−−→ P2,1 such that P1,1↓[m

′,n′] where
for the first case m′ ≤ m and for the second case m′ ≤ m − 1. This show that
P1↓[m

′′,n′′] such that m′′ ≤ m.
For the second case we have P2,1↓[m−1,n−1]. Applying the induction hypoth-

esis to P ′
1,1

cpx−−→ P2,1 shows P ′
1,1↓

[m′,n′] where m′ ≤ m − 1. Hence we can again
apply the induction hypothesis to P1,1

cpx−−→ P ′
1,1 and have P1,1↓[m

′′,n′′] where

m′′ ≤ m− 1. Since P1
CHF,cpabs−−−−−−→ P1,1 this shows P1↓[m

′′+1,n′′+1].
For the third case we have P2,1↓[m,n−1]. After applying the induction hy-

pothesis to P1,2
cpx−−→ P2,1, we have P1,2↓[m

′,n′] where m′ ≤ m. Since P1
CHF,cpx−−−−−→

P1,1
CHF,cpx−−−−−→ P1,2, this shows P1↓[m

′,n′′] and thus the claim holds.
The last two cases are easy to verify.

We now inspect the (cpcxxL)-transformation.

Lemma A.6. Let P1
cpcxxL−−−−→ P2 and P1

CHF−−→ P ′
1 be such that the reduction

and the transformation are not the same step. Then the reductions can always
be commuted by one of the following cases (where the corresponding processes
P ′

2, P
′′
2 exist):

P1

CHF

��

cpcxxL// P2

CHF

���
�
�

P ′
1cpcxxL

//__ P ′
2

P1

CHF ,cpcx

��

cpcxxL // P2

CHF ,cpcx

���
�
�

P ′
1 cpcxxL

//___ P ′′
2

oo
cpx,∗

___ P ′
2

P1

CHF ,cpcx

��

cpcxxL // P2

P ′′
2

gc,∗
99r

r

P ′
1

cpx,∗
99s

s

Proof. This follows by inspecting all possible overlaps. The first diagram is ap-
plicable if the reductions are independent and thus can be commuted, the second
case occurs, if the standard reduction copies the same constructor application

20

as the transformation but in a different target, and the last diagram covers the
case that the target is identical.

Proposition A.7. Let P1, P2 be processes such that P1
cpcxxL−−−−→ P2. If P1↓[m,n]

(P1↑[m,n], resp.) then P2↓[m
′,n′] (P2↑[m

′,n′], resp.) such that m′ ≤ m.

Proof. We only show the part for may-convergence, since the part for may-
divergence can be shown analogously (where the base case follows from correct-
ness of (cpcxxL), see Theorem 2.4).

We use induction on (m, n): If P1 is successful, then P2 is also successful. Thus
the base case (n = 0) holds. For the induction step we assume that (m, n) > 0.
Then P1

CHF−−→ P ′
1 such that P1↓[m

′,n−1], where either m′ = m (in case of a
(CHF , cpx)-reduction), or m′ = m−1. If P ′

1 = P2 then the claim holds. Otherwise
we apply one of the diagrams of Lemma A.6. For the first diagram the induction
hypothesis can be applied to P ′

1 and then the claim follows. For the second

diagram we have P ′
1

cpcxxL−−−−→ P ′′
2

cpx,∗←−−− P ′
2

CHF ,cpcx←−−−−−− P2. Then m′ = m − 1.

Applying the induction hypothesis to P ′
1

cpcxxL−−−−→ P ′′
2 shows that P ′′

2 ↓
[m′′,n′′]

where m′′ ≤ m′ = m−1. Applying Lemma A.5 to P ′′
2

cpx,∗←−−− P ′
2 shows P ′

2↓
[m′′′,n′′′]

such that m′′′ ≤ m− 1. Since P2
CHF,cpcx−−−−−→ P ′

2, this shows P2↓[m
′′′+1,n′′′+1]. Thus

the claim holds. For the third diagram the results on the transformations (gc)
and (cpx) of Propositions A.1 and A.3 imply that the claim holds.

B Proof of Lemma 4.5

First of all, note that for all valid states with a thread (z, e,S, I) the translation
of the thread is ρ(z, e,S, I) = L[e] for some L ∈ LC. The reason is that on the
stacks only EC-, FC-, and MC-contexts and bindings are stored. Moreover, due
to the (update)-transition it is impossible that the stack S contains a sequence
of the form #heap(y1), #heap(y2). Moreover, if the top-entry of the stack is not of
the form #heap(x), then the context L is also an L̂C-context.

To prove Lemma 4.5 let S, S′ be valid machine states with S
CIOM1−−−→ S′. We

now inspect all possible transitions. For the transitions (pushApp), (pushSeq),
(pushAlts), (enter), (pushTake), (pushPut), and (pushBind) one can verify that
ρ(S) = ρ(S′) holds.

For the transition (takeApp):

ρ(S) = ρ(H,M, T ·∪{(z, λx.e, #app(y) : S, I)}) = ρ(H) | ρ(M) | ρ(T) |L[(λx.e) y]
CHF,lbeta−−−−−−→ ρ(H) | ρ(M) | ρ(T) |L[F[e]] |x = y
cpx,∗−−−→ ρ(H) | ρ(M) | ρ(T) |L[e[y/x]] |x = y
gc,∗−−→ ρ(H) | ρ(M) | ρ(T) |L[e[y/x]] = ρ(H,M, T ·∪{(z, e[y/x],S, I)}) = ρ(S′)

For the transition (takeSeq):

ρ(S) = ρ(H,M, T ·∪{(z, v, #seq(y) : S, I)}) = ρ(H) | ρ(M) | ρ(T) |L[(seq v y)]
CHFseq−−−−→ ρ(H) | ρ(M) | ρ(T) |L[F[y]] = ρ(H,M, T ·∪{(z, y,S, I)}) = ρ(S′)

21

For the transition (branch):

ρ(S) = ρ(H,M, T ·∪{(z, (c x1 . . . xn), #case(. . . (c y1 . . . yn)→ e; . . .) : S, I)})
= ρ(H) | ρ(M) | ρ(T) |L[case (c x1 . . . xn) of . . . (c y1 . . . yn → e) . . .]
CHF,case−−−−−→ ρ(H) | ρ(M) | ρ(T) |L[e] | y1 = x1 | . . . yn = xn
cpx,∗−−−→ ρ(H) | ρ(M) | ρ(T) |L[e[xi/yi]ni=1] | y1 = x1 | . . . yn = xn
gc,∗−−→ ρ(H) | ρ(M) | ρ(T) |L[e[xi/yi]ni=1]
= ρ(H,M, T ·∪{(z, e[xi/yi]ni=1,S, I)}) = ρ(S′)

For the transition (mkBinds):

ρ(S) = ρ(H,M, T ·∪{(z, letrec x1 = e1, . . . , xn = enin e,S, I)})
= ρ(H) | ρ(M) | ρ(T) |L[letrec x1 = e1, . . . , xn = enin e]
CHF,mkbinds−−−−−−−−→ ρ(H) | ρ(M) | ρ(T) |x1 = e1 | . . . |xn = en |L[e]
= ρ(H ∪ {x1 7→ e1, . . . , xn 7→ en},M, T ·∪{(z, e,S, I)}) = ρ(S′)

For the transition (update) there are two cases: If the value is an abstraction
or a variable:

ρ(S) = ρ(H,M, T ·∪{(z, v, #heap(y) : S, I)}) = ρ(H) | ρ(M) | ρ(T) | L̂[y] | y = v
CHF,cp−−−−→ ρ(H) | ρ(M) | ρ(T) | L̂[v] | y = v
= ρ(H ·∪{y 7→ v},M, T ·∪{(z, v,S, I)}) = ρ(S′)

The other case is that the value is a constructor application or monadic expres-
sion:

ρ(S) = ρ(H,M, T ·∪{(z, c x1 . . . xn, #heap(y) : S, I)})
= ρ(H) | ρ(M) | ρ(T) | L̂[y] | y = c x1 . . . xn
CHF,cpcx−−−−−→ ρ(H) | ρ(M) | ρ(T) | L̂[c y1 . . . yn] | y = c y1 . . . yn | y1 = x1 | . . . | yn = xn
cpx,∗−−−→ ρ(H) | ρ(M) | ρ(T) | L̂[c x1 . . . xn] | y = c x1 . . . xn | y1 = x1 | . . . | yn = xn
gc,∗−−→ ρ(H) | ρ(M) | ρ(T) | L̂[c x1 . . . xn] | y = c x1 . . . xn

= ρ(H ·∪{y 7→ c x1 . . . xn},M, T ·∪{(z, c x1 . . . xn,S, I)}) = ρ(S′)

For the transition (newMVar):

ρ(S) = ρ(H,M, T ·∪{(z, newMVar x, [], I)}) = ρ(H) | ρ(M) | ρ(T) | z⇐M[newMVar x]
CHF,nmvar−−−−−−−→ ρ(H) | ρ(M) | ρ(T) | z⇐M[return w] |w mx
= ρ(H,M·∪{w mx}, T ·∪{(z, return w, [], I)}) = ρ(S′)

For the transition (takeMVar):

ρ(S) = ρ(H,M·∪{w mx}, T ·∪{(z, w, [], #take : I)})
= ρ(H) | ρ(M) |w mx | ρ(T) |M[takeMVar w]
CHF,tmvar−−−−−−−→ ρ(H) | ρ(M) |w m− | ρ(T) |M[return x]
= ρ(H,M·∪{w m−}, T ·∪{(z, return x, [], I)}) = ρ(S′)

22

For the transition (putMVar):

ρ(S) = ρ(H,M·∪{w m−}, T ·∪{(z, w, [], #put(x) : I)})
= ρ(H) | ρ(M) |w m− | ρ(T) |M[putMVar w x]
CHF,pmvar−−−−−−−→ ρ(H) | ρ(M) |w mx | ρ(T) |M[return ()]
= ρ(H,M·∪{w mx}, T ·∪{(z, return (), [], I)}) = ρ(S′)

For the transition (lunit):

ρ(S) = ρ(H,M, T ·∪{(z, return x, [], # >>= (y) : I)})
= ρ(H) | ρ(M) | ρ(T) | z⇐M[returnx >>= y]
CHF,lunit−−−−−−→ ρ(H) | ρ(M) | ρ(T) | z⇐M[y x] = ρ(H,M, T ·∪{(z, y x, [], I)}) = ρ(S′)

For the transition (unIO):

ρ(S) = ρ(H,M, T ·∪{(z, return w, [], []})} = ρ(H) | ρ(M) | ρ(T) | z⇐ return w
CHF,unIO−−−−−−→ ρ(H) | ρ(M) | ρ(T) | z = w = ρ(H ·∪{z 7→ w},M, T) = ρ(S′)

For the transition (fork):

ρ(S) = ρ(H,M, T ·∪{(x, (future y), [], I)}) = ρ(H) | ρ(M) | ρ(T) |x⇐M[future y]
CHF,fork−−−−−−→ ρ(H) | ρ(M) | ρ(T) |x⇐M[return z] | z⇐ y
= ρ(H,M, T ·∪{(x, (return z), [], I), (z, y, [], [])}) = ρ(S′)

C Proof of Lemma 4.7

To prove the lemma let S be a valid machine state such that ρ(S) CHF−−→ P . We
analyze the cases which standard reduction is applied to ρ(S) and argue for any
such case on the structure of state S.

The reduction is (lunit): Then ρ(S) = P ′ | y⇐M[return e1 >>= e2] and P =
P ′ | y⇐M[e2 e1]. Moreover, inspecting the translation ρ, e1, e2 must be variables
and there must be a thread (y, e,S, I) in state S with the following possibilities:
Either e = return e1 and the IO-stack already contains the M-context (w.r.t. ρ)
and at the top is the entry # >>= (e2) or e is of the form M1[return e1 >>= e2]
and I contains the entries which correspond (w.r.t. ρ) to a context M2 with
M = M2[M1[]]. The stack S must be empty. Then we can unwind the context
M1 using (pushBind)-transitions and then apply a (lunit)-transition to return e1.

I.e. there exist states S′, S′′ such that S
CIOM1,pushBind,∗−−−−−−−−−−→ S′

CIOM1,lunit−−−−−−→ S′′ and
ρ(S) = ρ(S′) and ρ(S′′) = P .

The reduction is (tmvar): Then ρ(S) = P ′ | y⇐M[takeMVar x] |xm z and
P = P ′ | y⇐M[return z] |xm−. Obviously S has an MVar xm z in the setM
and a thread (y, e,S, I). The stack S must be empty, and e together with the I
must correspond to M[takeMVar x] w.r.t. ρ. This implies that there exists states

S′, S′′, S′′′ such that S
CIOM1,pushBind,∗−−−−−−−−−−→ S′

CIOM1,pushTake,0∨1−−−−−−−−−−−−→ S′′
CIOM1,takeMVar−−−−−−−−−→ S′′′

where ρ(S) = ρ(S′) = ρ(S′′) and ρ(S′′′) = P .

23

The reduction is (pmvar): This case is completely analogous to (tmvar),

i.e. there exist states S′, S′′, S′′′ such that S
CIOM1,pushBind,∗−−−−−−−−−−→ S′

CIOM1,pushPut,0∨1−−−−−−−−−−−→
S′′

CIOM1,putMVar−−−−−−−−−→ S′′′ where ρ(S) = ρ(S′) = ρ(S′′) and ρ(S′′′) = P .

The reduction is (nmvar): This case is also analogous to (tmvar), i.e. there

exist states S′, S′′ such that S
CIOM1,pushBind,∗−−−−−−−−−−→ S′

CIOM1,newMVar−−−−−−−−−→ S′′ where ρ(S) =
ρ(S′) and ρ(S′′) = P .

The reduction is (fork): This case is analogous to the previous cases, i.e. there

exist states S′, S′′ such that S
CIOM1,pushBind,∗−−−−−−−−−−→ S′

CIOM1,fork−−−−−−→ S′′ where ρ(S) =
ρ(S′) and ρ(S′′) = P .

The reduction is (unIO): Then ρ(S) = P ′ | y⇐ return e and P =
P ′ | y = e. The translation ρ ensures that S must be of the form
(H,M, T ·∪{(y, return e, [], [])}. This shows that there exists a state S′ such

that S
CIOM1,unIO−−−−−−→ (H ∪ {y = e},M, T } = S′ where ρ(S′) = P .

The reduction is (cp):

– We first consider the case that ρ(S) = P ′ | y⇐M[F[x]] |x = v and P =
P ′ | y⇐M[F[v]] |x = v. Let (y, e,S, I) be the corresponding thread in the
machine state S. If e = v and S = #heap(x) then there exists a state S′ such

that S
CIOM1,update−−−−−−−−→ S′ with ρ(S′) = P and we are finished. Otherwise, we

distinguish two cases:
• The first case is that no other thread has #heap(x) as

a stack entry. Then we can perform unwinding con-
trolled by thread y, i.e. there exists a state S′ such that
S

CIOM1,pushBind,∗−−−−−−−−−−→ CIOM1,pushTake∨pushPut,0∨1−−−−−−−−−−−−−−−−−→ CIOM1,pushApp∨pushAlts∨pushSeq,∗−−−−−−−−−−−−−−−−−−−−−→ CIOM1,enter−−−−−−−→
S′ where in S′ the y-thread is of the form (y, v, #heap(x) : S ′, I ′) and
ρ(S) = ρ(S′), since all the used transitions are invariant w.r.t. ρ. Finally,
we can perform an (update)-transition, i.e. there exists a thread S′′ such

that S′
CIOM1,update−−−−−−−−→ S′′ with ρ(S′′) = P

• The second case is that there exists another thread z which has #heap(x)
as a stack entry. Inspecting the translation ρ one can verify that thread
z must have v as the to-be-evaluated expression and the entry #heap(x)
must be the top symbol of the stack (otherwise the binding x = v can-
not be present in ρ(S)). Thus the thread z can perform the (update)-
transition (say resulting in state S′) and then the thread y can proceed
as before, i.e. unwinding until it enters the heap binding x 7→ v (say in
state S′′) and then perform an (update)-transition resulting in state S′′′,

i.e. S
CIOM1,update−−−−−−−−→ S′

CIOM1,∗−−−−→ S′′
CIOM1,update−−−−−−−−→ S′′′ where ρ(S′) = ρ(S′′).

Analyzing the transition S
CIOM1,update−−−−−−−−→ S′ shows that ρ(S)

CHF,cp−−−−→ ρ(S′)
and ρ(S′′)

CHF,cp−−−−→ ρ(S′′′). Since the targets of both copy operations are
different, we can also commute both reductions in CHF and thus get
ρ(S)

CHF,cp−−−−→ P
CHF,cp−−−−→ ρ(S′′), or put differently S

CIOM1,∗−−−−→ S′′ such that
P

CHF,cp−−−−→ ρ(S′′).

24

– We now consider the more complex case, where the redex in-
cludes a chain of bindings, i.e. ρ(S) = P ′ | y⇐M[F[xn]] |xn =
En[xn−1] | . . . |x2 = E2[x1] |x1 = E1[x] |x = v. If no thread in
the machine has a stack entry #heap(x) or #heap(xi) for i = 1, . . . , n,
then we choose thread y and perform first a sequence of transi-
tions S

CIOM1,pushBind,∗−−−−−−−−−−→ CIOM1,pushTake∨pushPut,0∨1−−−−−−−−−−−−−−−−−→ CIOM1,pushApp∨pushSeq∨pushAlts,∗−−−−−−−−−−−−−−−−−−−−−→
S′ such that xn is the currently evaluated expression of thread y. Then follow
the bindings in the heap for xn, . . . , x by repeating sequences of the form
CIOM1,enter−−−−−−−→ CIOM1,pushApp∨pushSeq∨pushAlts,∗−−−−−−−−−−−−−−−−−−−−−→ resulting in a state S′′ such that v is
the to-be-evaluated expression and #heap(x) is the top entry. Finally, perform

the update-transition S′′
CIOM1,update−−−−−−−−→ S′′′ which writes the binding x 7→ v

into the heap. Inspecting the definition of ρ shows that ρ(S′′′) = P .
If any thread has a stack entry #heap(x) or #heap(xi) on the stack, then there
are the cases:
• #heap(x) is on the stack of thread y: Then perform the update operation

S
CIOM1,update−−−−−−−−→ S′ where ρ(S′) = P

• #heap(x) is on the stack of some other thread z: The easy case
is that #heap(x1) is also on the stack of thread z: Then the tar-
get of the copy operation is correct and thread z can perform
the right update operation, i.e. there exists a state S′ such that
S

CIOM1,update−−−−−−−−→ S′ and ρ(S′) = P . If #heap(x1) is on a stack of an-
other thread z′. Then first perform the update operation for #heap(x)

on thread z, i.e. S
CIOM1,update−−−−−−−−→ S′ and then perform a sequence of

the form S′
CIOM1,pushApp∨pushSeq∨pushAlts,∗−−−−−−−−−−−−−−−−−−−−−→ CIOM1,enter−−−−−−−→ CIOM1,update−−−−−−−−→ S′′ such

that thread z′ first unwinds to variable x, then enters the binding
x 7→ v, and then updates x. Then again one can show that the (update)-
transitions are commutable (CHF , cp)-reductions in the image ρ, and
hence P

CHF,cp−−−−→ ρ(S′′).
• #heap(x) is not on a stack, but at least one #heap(xi) is on some stack . Then

choose the thread with the minimal i-value, say thread z and proceed as
follows for thread z: unwind and enter all corresponding bindings using
the transitions (enter), (pushApp), (pushSeq), (pushAlts) several times,
and finally update the entry for x. This implies that there exists states
S′, S′′ such that S

CIOM1,∗−−−−→ S′
CIOM1,update−−−−−−−−→ S′′ where ρ(S) = ρ(S′) and

ρ(S′′) = P

The reduction is (cpcx): Then the cases are analogous to (cp) with the
the difference that (update) transitions on the machine slightly differ from the
(cpcx) reduction (w.r.t. ρ): The (cpcx) reduction of CHF creates bindings (it
shares the constructor arguments), which is not done by the machine. How-
ever, the resulting state of the machine is equivalent w.r.t. ρ to P up-to some
(cpx)- and (gc)-transformations which inline the bindings. Moreover, for the
case that two (update)-operations must be performed by the machine, process
P must be transformed by an additional (cpcxxL)-transformation. Conclud-

25

ing, if ρ(S)
CHF,cpcx−−−−−→ P then there exist a state S′ such that S

CIOM1,∗−−−−→ S′

where either P
cpx,∗−−−→ gc,∗−−→ ρ(S′) or (in the case of two (update)-transitions)

P
cpcxxL−−−−→ cpx,∗−−−→ gc,∗−−→ ρ(S′).
The reduction is (mkbinds). Then either ρ(S) =

P ′ | y⇐M[F[letrec Env in e]] or ρ(S) = P ′ | y⇐M[F[xn]] |xn =
En[xn−1] | . . . |x2 = E2[x1] |x1 = E1[letrec Env in e]. Analogous to
the cases of the (cp)-reduction one can verify that either the thread y in the ma-
chine state S or another thread can perform an (mkBinds)-transition after some

unwinding, i.e. there exists states S′, S′′ such that S
CIOM1,∗−−−−→ S′

CIOM1,mkBinds−−−−−−−−−→ S′′

with ρ(S) = ρ(S′) and ρ(S′) = P .
The reduction is (seq). This case is analogous to (mkbinds), where the

letrec-expression is now a seq-expression. There exists a machine states S′, S′′

such that S
CIOM1,∗−−−−→ S′

CIOM1,takeSeq−−−−−−−−→ S′′ with ρ(S) = ρ(S′) and ρ(S′′) = P .
The reduction is (lbeta) or (case): Then in the machine state the correspond-

ing redex can be found as e.g. for (mkBinds). After unwinding until the redex is
reached, the machine can perform a (takeApp)-transition in case of the (lbeta)-
reduction, or a (branch)-transition in case of the (case)-reduction. However, in
both cases the resulting state is not necessarily equal to P (w.r.t. ρ), since the
standard reduction in CHF shares the arguments (of the application, or construc-
tor application, resp.) while the machine substitutes the arguments. Since the ar-
guments can only be variables, (cpx)- and (gc)-transformations can be applied to

P to get the equal process. Concluding, this means: (1) If ρ(S)
CHF,lbeta−−−−−−→ P then

there exist machine states S′, S′′ such that S
CIOM1,∗−−−−→ S′

CIOM1,takeApp−−−−−−−−→ S′′ with
ρ(S) = ρ(S′) and P

cpx,∗−−−→ gc,∗−−→ ρ(S′′). (2) If ρ(S)
CHF,case−−−−−→ P then there exist

machine states S′, S′′ such that S
CIOM1,∗−−−−→ S′

CIOM1,branch−−−−−−−→ S′′ with ρ(S) = ρ(S′)
and P

cpx,∗−−−→ gc,∗−−→ ρ(S′′).

26

