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An array of square metallic patches on a thin suspended dielectric layer is introduced
as an effective terahertz absorber. The suspended structure is placed on a metalized
substrate and the device exhibits metamaterial behavior at specific frequencies deter-
mined by the size of the patches. It is feasible to place patches with different sizes in
an array formation for a broadband absorber. In array configuration, individual ele-
ments induce distinct resonances yielding narrow band absorption regions. Design of
the absorber is described using electromagnetic simulations. The absorber structure
was fabricated on a silicon wafer using standard microfabrication techniques. The
characteristics of the absorber were measured using a terahertz time domain spec-
troscope. The measured data match well the simulations indicating strong absorption
peaks in a band of 0.5-2 THz. C 2016 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4945417]

I. INTRODUCTION

Metamaterials are patterned sub-wavelength sized structures that are usually made of dielec-
trics and metals. They exhibit strong resonant behavior when they are excited with electromagnetic
waves and the resonant frequencies are determined by the geometries of the patterned structures.
Metamaterials with different geometries and sizes have been introduced for a wide range of bands
in electromagnetic spectrum spanning from radio1–3 to terahertz,4 infrared5 and visible frequencies.6

The wavelength of the radiation at 1 THz corresponds to 300 µm, so it is feasible to fabricate
metamaterial structures for terahertz applications using standard UV photolithography. In addition,
most of the materials used for the realization of metamaterials are compatible with microfabrication
technology. Consequently, a wide variety of metamaterial microstructures have been presented for
terahertz applications. Variety of imaging and spectroscopy applications in terahertz band has been
increasing rapidly including detection of explosives,7 surveillance,8,9 chemical sensing,10 and med-
ical screening.11,12 High performance terahertz absorbers enable developing new devices for these
applications.

Metamaterial-based terahertz absorbers have been employed that exhibit a magnetic or electric
resonance at desired frequencies. Different geometries have been demonstrated including split-ring
resonators,13,14 Swiss crosses,15–17 concentric rings,18 square patches,19–23 and circular disks.24 At
resonance, these structures can absorb radiation with high efficiency. Unity absorption is observed
with metamaterial absorbers at terahertz frequencies.25 However, the absorption band is usually
very narrow. For example, the full width at half maximum (FWHM) of the absorption peak is
0.1 THz for an absorber at 1 THz.25 Typically, structures with different sizes are combined together
to increase the number of absorption bands for broadband absorbers. As an alternative method,
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FIG. 1. Three-dimensional drawing of the metamaterial-based terahertz absorber structure.

square patches with comparable sizes are located in a planar array19 or are stacked on top of each
other with dielectric spacers in between20,23 to increase the number of absorption bands. In addition,
concentric rings are used as resonators to extend the absorption band as well.18

In this paper, we present a metamaterial-based terahertz absorber employing metallic square
patches implemented in the same plane with different sizes. Fig. 1 shows a three-dimensional
drawing of an absorber structure on a silicon wafer. The metallic patches are fabricated on top of
a thin patterned Parylene layer that is suspended over a metallized substrate. Terahertz resonators
on thin dielectric layers are demonstrated for filter and sensor applications in the literature.26,27 Our
aim is to realize a terahertz absorber on a thin layer of dielectric and the intended configuration for
the absorber is when the incident wave vector is perpendicular to the device as shown in Fig. 1.
Metallic patches with different sizes are laid out on a single Parylene film that is anchored to the
substrate through a set of suspensions. This configuration is desirable for terahertz detectors that
requires pixel structures isolated from their substrate. The metamaterial behavior is observed for
unit cells including the metallic patches on top, blanket metal on the substrate and the Parylene and
air spacing in between. Transmission is guaranteed to be zero with the presence of the thin blanket
metal underneath the patches, whereas reflection from the device diminishes at certain frequencies
set by the geometry of the square patches, resulting in increased absorption at those frequencies.

We implemented absorbers employing different configurations of square patch arrays made
of titanium with side lengths of 86 µm, 43 µm, 30 µm and rectangular patches with side lengths
of 100 µm and 43 µm. The individual metal patches are separated by a planar gap of 2 µm. The
thickness of the patches and the blanket titanium film underneath the patches is 200 nm. The Pary-
lene layer is implemented in a 2 µm-thick released mesa. The thickness of the air gap between the
Parylene layer and the blanket metal is 5 µm.

II. SIMULATIONS AND MODELING

Fig. 2(a) shows a three-dimensional drawing of a metamaterial-based terahertz absorber that
includes a 4x4 array of patches with a size of 43 µm at the center of the free-standing Parylene
layer. The absorber also includes two rectangular patches with a size of 100x43 µm. Fig. 2(b) shows
the reflection, transmission and absorption spectra of the absorber obtained using a commercially
available electromagnetic simulation software (CST Studio Suite, Darmstadt, Germany). The prop-
agation vector is normal to the surface (along z-axis, Fig. 1) and the electric field vector is aligned
along y-axis of Fig. 1. We implemented waveguide ports perpendicular to the structure as the source
of excitation for the simulations and chose a time domain solver with hexahedral adaptive meshing.
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The absorption spectrum in a band of 0.3-2 THz exhibits two peaks at 0.59 THz and 1.47 THz.
The patch structures introduce electric dipole resonances at specific frequencies induced by the
electric field in the plane of the patches. At resonance, the metamaterial can be modeled using a
parallel combination of an equivalent capacitance (Ceq) and inductance (Leq) given below.19

FIG. 2. a) Three-dimensional drawing of a metamaterial-based terahertz absorber with a 4x4 array of patches with a size of
43 µm and two rectangular patches with a size of 100x43 µm. (b) Simulated transmission, reflection and absorption spectra
of the absorber.
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Ceq =
αεeffL2

teff
, Leq = βµeff teff (1)

fres =
1

2π


LeqCeq

(2)

where L is the side length of a square patch, teff is the effective thickness of the structure between
top and bottom metal films, α and β are geometrical correction parameters, εeff and µeff are the
effective permittivity and permeability of the structure, respectively.

The resonant frequency of the structures is inversely proportional to the size of the patches. The
larger rectangular patches excites a resonance at 0.59 THz while the smaller square patches excites

FIG. 3. The variation of the resonance characteristics of the structure as a function of (a) thickness of the Parylene layer,
(b) gap height at the tip of the structure.
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another resonance at 1.47 THz. The array formation of the square patches enhances the peak of the
absorption at the resonance. The resonant frequency of the device is also determined by the effective
relative permittivity of the structure. So, the thickness of the Parylene layer has an influence on the
resonance characteristics. Fig. 3(a) shows the distribution of the resonance peaks with respect to the
changes in the thickness of the Parylene layer. The effective permittivity of the structure increases
with the thickness of the dielectric layer. This results in a decrease in resonant frequency of the
device, as expected.

During the operation of the device, the freestanding structure will be tilted with respect to its
substrate. We analyzed the dependency of the resonator behavior by introducing a tilt angle such
that the position of the edge of the structure where we place the rectangular patches is kept station-
ary and the freestanding structure is tilted about the y-axis (Fig. 1). We varied the gap at the tip of
the structure between 3 and 7 µm and observed the resonance characteristics as shown in Fig. 3(b).
The resonant frequency of the structure excited by the rectangular patches keeps the same value at
0.59 THz, since the effective gap change along the rectangular patches are minimal. However, the
resonant frequency related to the array of the square patches decreases with increasing gap.

The length of the patches along which the electric field is aligned determines the resonant
frequency of the structure. Thus, the resonant frequency is ideally the same for the electric field
vector aligned along x-axis or y-axis of Fig. 1 since the basic structure is a square. We analyzed
the dependency of the resonator characteristics with respect to the polarization as shown in Fig. 4.
The field was kept perpendicular to the device along z-axis and we varied the angle β between

FIG. 4. The dependency of the resonance characteristics of the structure with respect to the orientation of electric field.
(a) Variation of the angle between the electric field vector and y-axis. The electric field and the magnetic field vector is in the
plane of xy. (b) Absorbance of the structure with different values of β.
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the electric field vector and y-axis. The absorption spectra for β = 0◦ and β = 90◦ are shown in
Fig 4(b). The resonant frequency of the structure at 1.47 THz due to the square patches is not
altered. However, the resonance at 0.59 THz due to the square patches disappears for β = 90◦ since
the electric field is no more aligned along the larger side of the rectangular patches. On the other
hand, another resonance at 1.2 THz is observed for β = 90◦ as a result of the interaction between the
rectangular and square patches at that frequency.

Due to the fact that the resonance is mainly determined by the electric field vector along the
edge of a square or a rectangular patch, the incidence angle should have minor influence on the
resonance behavior as long as the orientation of the electric field vector is kept the same. We
analyzed the influence of the incidence angle for TE mode as shown in Fig. 5(a) by varying the
angle θ between the incoming beam and the z-axis. The absorption spectra of the structure for
various angles of θ are shown in Fig. 5(b). The structure performs well as an absorber even for large
incidence angles for TE mode as expected.

FIG. 5. The dependency of the resonance characteristics of the structure with respect to the incidence angle. (a) The plane
of incidence and the angle between the propagation vector and z-axis is shown. The orientation of electric field is stationary
and is along y-axis. (b) The dependency of the resonance characteristics of the structure with respect to the changes of the
angle θ.
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We designed another absorber by combining different sizes of patches on a single freestanding
Parylene layer. The layout of the patches is shown in Fig. 1. The absorber includes square patches
with side lengths of 86 µm, 43 µm, 30 µm and rectangular patches with side lengths of 100 µm
and 43 µm. The computational model for the absorber includes all the structures shown in Fig. 1.
Electric field is along y-axis for the simulations. The reflection, transmission and absorption spectra
of the absorber are shown in Fig. 6. The absorption spectrum exhibits sharp resonant peaks at
0.63 THz, 1.12 THz, 1.47 THz and 1.87 THz. Compared to Fig. 2, it can be seen that incorporating
patches with different sizes improve the absorption characteristics of the device.

Electric field distributions corresponding to the resonant frequencies are shown in Fig. 7.
Larger patches are associated with smaller frequencies. Specifically patches with 100 µm side
lengths excites resonance at 0.63 THz, 86 µm patch excites resonance at 1.12 THz, 43 µm patches
and their interactions with 30 µm patches excite resonance at 1.47 THz. The rectangular patches
also excite another resonance at 1.87 THz. The absorber characteristics are different when the
electric field is along x-axis (see Fig. 1), since the absorber includes two rectangular patches. The
resonant frequency of a specific patch element is proportional to the reciprocal of the side length
of the patch.19 So, the electric field orientation determines the effective side length of a rectangular
patch.

Considering the equations (1) and (2), it can be deduced that for an absorbing element, resonant
frequency is inversely proportional to L. Simulation results with individual square patch structures
verify the dependency of the resonant frequency to the patch size as shown in Fig. 8. The linear
fit can be used as a powerful design tool for the absorbers. The wavelength of waves propagating
in vacuum at 1 THz is approximately 300 µm. This value sets a limit for the minimum size of
structures in a pixelated array form. Fig. 8 shows that it is feasible to fit various combinations of
different patch geometries in a typical pixel for the operation wavelength. The analytical model
of equation 1 suggests that the resonant frequency is independent of the thickness between the
electrodes, teff . Although the dependency of the resonant frequency with respect to teff is weak, we
observe that the resonant frequency is altered with the tilt of the freestanding structure as shown in
Fig. 3(b).

FIG. 6. Simulated transmission, reflection and absorption spectra of the absorber.
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FIG. 7. Distribution of electric field at a) 0.63 THz, b) 1.12 THz, c) 1.47 THz and d)1.87 THz.

III. FABRICATION AND EXPERIMENTAL CHARACTERIZATION

We fabricated the designed absorbers using standard microfabrication methods. An SEM image
for a fabricated structure is shown in Fig. 9. The design of this device is shown in Fig. 1. The
Parylene layer is anchored to the substrate near to the rectangular patches. The Parylene layer also

FIG. 8. Dependency of the resonant frequency of square patches as a function of side lengths.
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FIG. 9. SEM image of a fabricated absorber.

includes etch holes that helps removing the sacrificial layer underneath the structure during the
releasing step using wet etching. We measured the characteristics of the fabricated absorber using
a terahertz time-domain spectroscope (TERA K15, Menlo Systems GmbH, Martinsried, Germany).
We obtained the transmission and reflection spectra of the absorber using reference measurements
and calculated the absorption spectrum as shown in Fig. 10. We collected the data for the case when
no sample was placed between the emitter and the receiver antennas of the spectrometer as the
reference for the transmission measurements. Then we placed a thick metal reflector between the
antennas that are bent 90◦ to collect the reference measurement for the reflectance measurements.

FIG. 10. Measured transmission, reflection and absorption spectra of the absorber.
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FIG. 11. a) Three-dimensional drawing of a metamaterial-based terahertz absorber with square patches with side lengths of
15, 20, 25, 30, 43 and 86 µm and two rectangular patches with a size of 100x43 µm. (b) Measured transmission, reflection
and absorption spectra of the absorber.

The measured absorption peaks match well with the simulated peaks. The measured resonant
frequencies exhibit redshift with respect to the simulation results. The largest deviation is observed
with the first resonant frequency where the measured frequency is 20% smaller than the simulation
results. We identify the sources of the error as the differences between the material properties we
used for the simulations and the actual ones, the deviation of the incidence angle from the normal
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incidence angle case and the deviation of the polarization of the electric field. Nevertheless, the
measurement results verify our findings in simulations.

We fabricated another design that is shown in Fig. 11(a). We obtained this design by filling
the empty spaces of the design shown in Fig 1 with different patches. The design includes square
patches with side lengths of 15, 20, 25, 30, 43 and 86 µm and two rectangular patches with a size
of 100x43 µm. The absorption spectrum shown in Fig. 11 indicates distinct resonances in a band
of 0.3-2 THz. We realized a broadband absorber in this design by combining patches with different
sizes. The device exhibits significant absorption in this band as a result of the resonances of indi-
vidual patches and the interactions between patches. We measured zero transmission for this design
in the designated band. However, the transmission we measured for the device of Fig. 9 is very
small but finite. The most significant difference between two designs is the fill factor considering the
patches on the surface of the device. A significant portion of the device of Fig. 9 does not include
any patches and the incoming radiation impinges on the Parylene surface, which is transparent. We
realize the bottom electrode, which is 200 nm in thickness transmits some of the power it receives
contrary to our simulation results. Nevertheless, the transmission is very low (less than 10%) for the
entire band for the bottom electrode.

IV. CONCLUSION

An array of square patch metamaterial resonators that can be used as an effective terahertz
absorber is presented. We designed square patches with different geometries on a thin layer of Pary-
lene that is suspended over a substrate for a frequency range of 0.5-2 THz. We presented a compu-
tational model that explains the resonant absorption characteristics of the device. We analyzed how
the behavior of the absorber changes with the polarization and the incidence angle. We fabricated
the absorber structure on a Silicon wafer and measured its characteristics at terahertz frequencies
using a terahertz time-domain spectroscope. The fabricated device exhibits strong absorption peaks
with absorbance of 0.8 at desired frequencies and the absorbance of the device is larger than 0.4 in a
band of 0.3-2 THz.
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