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Abstract— Shared control is an increasingly popular approach 

to facilitate control and communication between humans and 
intelligent machines. However, there is little consensus in 
guidelines for design and evaluation of shared control, or even in 
a definition of what constitutes shared control. This lack of 
consensus complicates cross-fertilization of shared control 
research between different application domains. This paper 
provides 1) a definition for shared control in context with 
previous definitions, and 2) a set of general axioms for design and 
evaluation of shared control solutions. The utility of the 
definition and axioms are demonstrated by applying them to four 
application domains: automotive, robot-assisted surgery, brain-
machine interfaces and learning. Literature is discussed for each 
of these four domains in light of the proposed definition and 
axioms. Finally, we to facilitate design choices for other 
applications, we propose a hierarchical framework for shared 
control that links the shared control literature to traded control, 
co-operative control and other human-automation interaction 
methods. Future work should reveal the generalizability and 
utility of the proposed shared control framework in designing 
useful, safe, and comfortable interaction between humans and 
intelligent machines.  

 
Index Terms—shared control, supervisory control, traded 

control cooperation, human-machine interaction, human-robot 
interaction, human-automation interaction 

I. INTRODUCTION 
orbert Wiener stated in 1950 “…in the future 
development of (…) messages and communication 

facilities, messages between man and machines, between 
machines and man, and between machine and machine, are 
destined to play an ever increasing part” [1]. He advocated 
intuitive human-machine communication, where 
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communication can be defined as the “…exchanging of 
information by speaking, writing, or using some other 
medium” [2]. An even broader perspective of communication 
is suggested by its Latin roots: the Latin verb ‘communicare’ 
means ‘to share’.  

Since then, increasing technological sophistication and the 
availability of inexpensive mechatronics and artificial 
intelligence (AI) have substantially increased the capabilities 
of machines. However, the challenge to create effective 
embodied artificial intelligence–intelligent machines that can 
physically interact with their environment–remains huge, 
especially in unstructured environments. To avoid confusion, 
we will use the single term robot to describe a designed 
system that has a degree of ‘intelligence’ and ‘autonomy’ 
(self-directedness), which it uses to interact physically in and 
with its environment. Robots, therefore, include intelligent 
vehicles, brain-controlled wheelchairs, exoskeletons, semi-
autonomous systems, etc.  

The ability for robots to be fully autonomous always and 
everywhere is a myth [3], despite the impressive 
demonstrations of today’s highly-automated planes and cars, 
or of the DARPA Robotic Challenges. Full automation can be 
achieved in environments which can be predicted with high 
accuracy and where the consequences of failure are acceptable 
(e.g., a conveyor belt). But in more complex and unpredictable 
environments, some form of human control is needed to 
achieve adequate performance in the overall task that the robot 
is designed for. We will use the term human-robot interaction 
(HRI) to describe the interaction and communication between 
human and robot [4], specifically when completing a task in a 
physical environment; and the term human is hereafter used 
for the operator, driver, pilot or teammate of the robot. HRI is 
studied in the field of human factors and ergonomics [5][6][7], 
and is also addressed as human-computer interaction or 
human-automation interaction. In these fields, it is recognized 
that in unpredictable real-world environments, human and 
robot need to cooperate to robustly keep performing the 
overall task. Depending on the individual capabilities of robot 
and human in the specific environment, co-operation can 
occur at different levels [8]: low-level subtasks (executing 
physical actions) up to high-level tasks (judging situations, 
developing plans, making decisions, and implementing 
actions). Successful cooperation between human and robot at 
different levels requires effective communication and 
interaction [9]: the long-standing challenge described by 
Wiener, pursued already in the 50’s [10] and 60’s [11], is still 
relevant today [5]. 
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One of the most influential concepts for human-robot 
interaction was published in a 1967 issue of IEEE Spectrum, 
in which Ferrell and Sheridan studied control over a remote 
robot and introduced the concept of supervisory control. 
Supervisory control does not require full robot autonomy, but 
‘merely’ the ability to achieve some goals independently, 
while the human supervisor sets high-level intermediary goals. 
One of the main issues according to the authors is “…setting 
up a method of communication between the operator and the 
machine” [12]. In later work on subsea robotics [13], Sheridan 
and Verplank distinguished two types of control: “To share 
control means that both human and computer are active at the 
same time. To trade control means that at one time the 
computer is active, at another the human is”. Traded control 
became a widespread paradigm for HRI, where trained 
operators act as a backup system for the robot (i.e., the 
automation system controlling a plant/vehicle/device). One of 
the best-known applications of traded control is in aviation, a 
domain that is exposed to human factors issues arising from 
limited communication between human and robot [14]. These 
issues identified decades ago in aviation [15][16] and other 
domains [17][18] persist today [19], and include problems 
with: trust [20], switching authority, loss of skills and situation 
awareness, overreliance, and inaccurate ‘calibration’ with 
regards to robot reliability [19][21][22][23].  

Shared control, on the other hand, has only recently 
received popularity. A full-text search for “shared control” 
between 1966–1999 yields only 348 publications on IEEE 
Explore and 4,300 hits on Google Scholar. The same search 
between 2000–2016 yields 2,078 publications through IEEE 
Explore, and over 17,100 hits on Google Scholar. Even 
accounting for a 5% year-by-year increase in publications in 
general, this illustrates the recent rapid growth in using the 
term “shared control”. Shared control has been applied to a 
wide range of control tasks and a diversity of applications. 
This diversity is illustrated by the backgrounds of the authors 
of this paper: each of us has been working to develop shared 
control solutions in different domains (automotive, brain-
machine interfaces, telerobotic surgery and transfer of 
learning). Intrigued by the similarities and differences across 
domains, three of the authors founded the IEEE SMC 
Technical Committee on Shared Control [3] in 2011, with the 
goal of stimulating cross-fertilization and sharing of design 
and evaluation methods. In annual workshops, the organizers 
and participants discussed each other’s work as well as recent 
and early literature. We encountered much confusion about 
what constitutes shared control and what does not; which 
design principles should be followed; where shared control 
can and cannot be applied; and how shared control systems 
should be evaluated. In short, we experienced a lack of a 
coherent design and evaluation framework for shared control. 

The goal of this paper is to provide researchers interested in 
shared control with 1) a common definition for shared control, 
grounded in previous definitions in the literature, 2) general 
axioms for design and evaluation, 3) a review of shared 
control in four contrasting application domains; 4) a 
hierarchical shared control framework to identify how 
communication and interaction can aid the human in 

remaining aware and able. 
In Section II we provide an overview of definitions in the 

literature, along with a consensus definition of shared control. 
We include three axioms that reflect our guidelines for design 
and evaluation of shared control applications. Next, we 
illustrate domain-specific issues regarding the design and 
evaluation of shared control technology across four fields: 
automotive (Section III), robot-assisted surgery (Section IV), 
brain-machine interfaces (Section V) and learning (Section 
VI). In Section VII, we propose a framework that structures 
different types and levels of control into a hierarchical task 
decomposition, that can guide design considerations about 
which types of shared control are most suitable for given tasks 
and conditions (Section VII). The framework constitutes a 
principled approach to comparing and contrasting the pros and 
cons of different shared control designs within a specific 
domain, and exposes possibilities for communication and 
interaction.   

II. WORKING WITH SHARED CONTROL 

A. Shared Control Defined 
There is no single definition for shared control that is used 

across application domains. Often, studies use the term 
‘shared control’ without providing a definition, and among 
studies that do define the term, definitions vary.  

One early definition of shared control was provided by 
Sheridan [17]: shared control is a situation where the human 
acts “…as supervisor with respect to control of some variables 
and direct controller with respect to other variables.” Exactly 
what variables this definition refers to remains unclear. 
Niemeyer et al. [24] stated that we could speak of shared 
control “if task execution is shared between direct control and 
(…) autonomy, or if user feedback is augmented from virtual 
reality or other automatic aids.” 

More recent definitions introduce a hierarchy of subtasks: in 
shared control “…the remote system can exert control over 
some aspects of the task while the human operator maintains 
access to low-level forces and motions…” [25], or “…the 
robot can control low-level functions (...) while the human 
operator maintains high-level control” [26]. In the field of 
brain-machine interfaces (BMI), shared control was first 
applied by Srinivasan’s group [27], who defined continuous 
shared control as being: “…continuous because the interaction 
is immediate and does not have the ‘wait and see’ 
characteristics of a planner-based approach or the switching 
characteristic of a traded-control” and “shared because it 
always reflects input of both brain and sensor, as 
distinguished from traded control where control switches 
discreetly from direct operator control to the autonomy of the 
robot depending on task and situation.” 

Another view is put forward by Endsley and Kaber [16], 
who discussed shared control in the context of levels of 
automation, where during shared control “…both the human 
and the computer generate possible decision options. The 
human still retains full control over the selection of which 
option to implement; however, carrying out the actions is 
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shared between the human and the system.” Here, the essence 
of sharing control lies in the execution of actions, although 
‘monitoring’ and ‘generating’ can also be shared. This 
emphasis on shared control for ‘low-level’ execution is also 
central to proposed definitions for the automotive domain. 
Shared control solutions can be divided into two general 
methods [28]: input-mixing shared control and haptic shared 
control. The former approach steers a vehicle using “…a final 
steer command which is a blend of a human driver and an 
optimal controller” [29]. In haptic shared control, the shared 
control occurs at the force level: “…the human utilizes the 
haptic sensory modality to share control of the machine 
interface with an automatic controller” [30][31]. The 
confusion over what does and does not constitute shared 
control largely results from a different perspective on what 
constitutes control. Our position is that sharing of task control 
between human and robot can occur at different hierarchical 
levels of control and learning. During shared control, human 
and robot jointly arrive at a plan, decision, or control action 
for a system (vehicle/device), each of which can differ from 
the one that either agent alone would generate. In sum, in this 
paper we propose the following definition of shared control: 

 
In shared control, human(s) and robot(s) are interacting 
congruently in a perception-action cycle to perform a 
dynamic task, that either the human or the robot could 
execute individually under ideal circumstances. 
 

This definition excludes full automation (where there is no 
human) or manual control (where there is no automation). It 
also excludes traded control, because in traded control human-
machine interaction is not temporally congruent. More 
specifically, a case where control is traded to the human – who 
goes out of the loop temporarily to get back into the loop later 
– would not fall under our shared control definition. Shared 
control also excludes binary warning systems and decision 
support systems because these systems only support the 
perception side of the perception-action cycle. That is, 
decision support systems or mission planning systems do not 
close the perception-action cycle by themselves (although they 
may provide inputs to a shared controller). Our definition 
furthermore excludes stability control systems (e.g., in high-
performance vehicles or aircraft) when these support humans 
outside their control bandwidth because those tasks could not 
be performed by the human alone (e.g., when the computer 
system fails). This definition does include robots that support 
the human beyond physical limitations (e.g., exoskeletons, 
telemanipulators, robotic prostheses, intelligent wheelchairs).  

Our definition is open to many forms of shared control, 
such as the interaction between multiple humans and one 
system, or one operator controlling multiple systems. 
However, this paper focuses on shared control applications 
where a single human controls a single tool or vehicle.  

B. General Design Approach for Shared Control 
Sharing of control between human and robot can take place 

via different modalities and at different task levels. For 

example, a driver and an intelligent vehicle may both act 
haptically on the steering wheel, or a BMI wheelchair user and 
an intelligent wheelchair may both act on the decisions to 
initiate a turn at the next suitable location. The key element of 
shared control is that mechanisms are created to facilitate the 
communication of some aspect of control (planning, decision-
making, action execution), from which the human and robot 
can understand each other’s activity and intent. Axiom 1 for 
shared control design is therefore: 
 

Shared control should link the actions of the human(s) 
and the robot(s) by combining their efforts towards a 
final control action, decision, or plan, such that each 
agent directly perceives how its intent is shaped by the 
other agent, without having to wait for controlled system 
dynamics to reveal the outcome of their joint efforts. 

 
To encourage cooperation and minimize conflict between 
human and robot intentions, it may prove beneficial to model 
robot behavior based on human behavior [28], as advocated by 
human-centered automation [32]. This leads to the following 
human-centered design corollary: 
 

In shared control, conflicts between the human and the 
robot should be minimized, by modeling robot actions 
based on human behavior; and in case of conflicts, the 
robot should ensure that the human has the time and 
ability to influence the robot’s actions. 

 
For example, during BMI wheelchair control that involves 
shared control at the decision level, the system has to 
communicate the chosen maneuvering decisions sufficiently 
far in advance for the human to be able to overrule or 
influence that decision. 

Thus far, we have mainly discussed limitations on the side 
of the robot. Humans also have limitations, which is the 
reason to create robotic systems in the first place. Effective 
shared control design allows mutually guiding and protecting 
roles for robot and human. 

C. When to Employ Shared Control? 
Shared control is not necessarily the best choice for every 

kind of human-robot interaction. Traded control may be 
perfectly acceptable when control authority can be traded with 
enough time margins for the human operator to get back in the 
loop and respond adequately. This offers the benefit that the 
human operator can safely focus his or her attention 
elsewhere, in the assurance that all situations where human 
intervention is required can be identified accurately and 
communicated timely. However, an essential complication for 
many HRI scenarios is that robot functionality is not constant, 
but situated [33][34]. That is, the situation or context impacts 
the functionality, which may shrink or shift outside of the 
expectations of the operator (whose preferences and abilities 
are dynamic and situated as well). Although the robot may 
function as intended within the boundaries of certain situations 
and conditions, it requires the human operator outside of them. 
Unexpectedly and rapidly changing boundaries complicate 
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exactly when and how to trade control between robot and 
human [35][36]. Situated robot abilities and the accompanying 
human factors issues also limit the utility of conventional 
binary warning systems and adaptive automation [37].  

As long as a human operator is needed for system integrity, 
then he or she also needs to be supported in maintaining 
appropriate situation awareness and understanding the robot’s 
situated limitations: that is, the human must develop mental 
models of situated robot functioning and utility. This is in line 
with Billings’ concept of human-centered automation [32]. 
We hypothesize that shared control is especially useful to 
foster awareness of the robot’s control activities, intent, and 
capabilities, especially when the robot reaches its functional 
limits, or when the situation changes so that the robot shows 
degraded performance.  

Axiom 2 for shared control design in terms of safety and 
performance is therefore: 

 
Shared control finds its highest safety utility in 
circumstances where situations and conditions can 
rapidly change beyond the envisioned design boundaries 
of the robot, and where rapid adaptation in human 
involvement is needed to maintain system integrity.  
 
Shared control finds its highest performance utility in 
circumstances where a human’s situated control, 
perception, or cognitive ability is the main limiting 
factor for the combined performance, and where the 
robot complements these human abilities. 
 

The accompanying design corollary is:  
 
For humans to understand the utility of a robot under 
realistic conditions, task domains and system design 
limitations need to be made explicit and used to shape 
the communication between human and robot. 

 

D.  Shared Control Evaluation 
Conventionally, shared control designs have been evaluated 

to show their advantages compared to manual control. Many 
researchers concerned with shared control, including 
ourselves, have the vision that shared control has the potential 
to mitigate many of the known issues of traded control. 
However, solid evidence for this statement is lacking due to 
the manner in which we have been evaluating shared control 
systems [38].  

We have often followed the same, rather self-confirming 
approach observed in other groups: evaluating the human-
robot system within the task domain for which the robot 
(support system) was specifically designed, effectively 
ensuring that human-robot system limitations are not exposed 
during evaluation. Only quite recently have several studies 
specifically addressed the evaluation of shared control outside 
of design boundaries [39][40][41][42]. As argued above, the 
true quality of human-robot interaction emerges when crossing 
robot limitations, either by conditions in the environment or 

by the human operator who may try to ‘push’ the robot 
boundaries. Obviously, it is impossible to evaluate utility and 
satisfaction for human-robot interaction for every conceivable 
situation, but we advocate purposeful evaluation of situations 
and conditions for which the robot was not specifically 
designed. Axiom 3 is therefore that: 

 
To evaluate a human-robot system it is necessary to 
evaluate within and beyond the boundaries of the task 
domain for which the robot was designed, as well as 
within and beyond the boundaries of the robot 
limitations imposed by hardware, cost or policy–insofar 
as necessary to meet the full spectrum of realistic 
situations and conditions where humans may use the 
robot. 

 
The accompanying evaluation corollary is that:  

 
To fairly compare different robot designs and human-
robot interaction philosophies, it is necessary that the 
experimental conditions include static and dynamic 
conditions that fall within and beyond the boundaries of 
the task domain (design scope), within which each agent 
yields maximal independence (autonomy) and thus 
performance. 
 

The key of Axiom 3 and its corollary is that, if applied to 
shared control, it tests Axiom 2 and its corresponding 
corollary at a task level above the common task-level. 
Hence, it allows for comparisons of shared control designs 
across tasks.  

The three axioms will serve as a focus in sections III-VI, 
which provide a shared control literature review for four 
application domains: automotive, robot-assisted surgery, 
brain-machine interfaces, and skill transfer. 

III. THE AUTOMOTIVE DOMAIN 
Driving is a partially self-paced hierarchical task, based on 

(sampled) visual information from the road and other road 
users, although drivers also receive valuable auditory, haptic 
and vestibular cues. An insightful perspective on this 
hierarchical driving task is tolerance management: minimizing 
the risk of reaching spatiotemporal constraints such as lane 
boundaries or other road users. Because tolerances on these 
constraints are not rigid, but instead depend both on the driver 
as well as on the situation (Axiom 2), a large variety of 
different driving strategies exist that depend on driver ability 
(e.g., skill, insight, physiology, age) and preferences or needs 
(comfort, speed, safety). The demands of the driving situation 
sometimes exceed the ability of the driver, resulting in 
dangerous conditions or even accidents. Hence, the 
automotive industry has a long history of driver support 
systems [43] and steps towards self-driving cars [44]. In the 
last decade the abilities of advanced driver support systems 
(ADAS) have increased so much that intelligent vehicles are 
sometimes called ‘self-driving’ in the media, although in 
reality the cars employ traded control: they need to be 
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supervised by a driver to whom control will be traded back 
when the ADAS boundaries are reached in real-world 
scenario’s (Axiom 3) or in case of conflicts (Axiom 1). 

A. Task of Support Systems 
The variety of driving tasks that ADAS can support can be 

hierarchically classified [45][46] using three levels: 
i) Strategic Level: planning and task set adaptation, e.g., 

recognizing that an intersection is approaching and that 
stopping and turning are new tasks to “load” into the 
tactical level.  

ii) Tactical Level: decision making and task management 
such as initiating a lane change or changing the 
following distance 

iii) Operational Level: continuous control and discrete 
maneuvers such as lane keeping, car following  

These levels correspond to aviation’s navigation, guidance, 
and control [47]. A fourth level is sometimes included as well: 
an Execution Level that captures the neuromuscular control 
loops, ensuring the execution of Operational Level commands. 
Most ADAS are not based on shared control, but either on 
warning signals (such as auditory parking assistance and lane-
departure warning systems) or traded control of longitudinal 
control tasks (e.g., cruise control, adaptive cruise control) and 
lateral control tasks [48].  

B. Design of Driver Support Systems 
The need to think about shared control design between the 

driver and an ADAS that can individually perform (part of) 
the hierarchical driving task can be well illustrated by 
considering the example of one of the most widely available 
ADAS: adaptive cruise control (ACC). This ADAS can follow 
a lead vehicle: it automates the driver task of car-following at 
the operational level, leaving the driver free to remove the 
foot from the gas pedal and communicate the tactical choice of 
the desired following distance by pressing a button. However, 
ACC has dynamic, situated limitations: bad weather 
conditions degrade lead vehicle tracking; sharp bends and 
roundabouts lead to sudden loss of the lead vehicle; the 
capabilities and authority to accelerate and decelerate are 
limited. As a result, the ACC capabilities may shrink as a 
result of changes in the system (degraded sensors) or changes 
in the environment (changing weather conditions, sharp 
curves). The situated task for the combined human-robot 
system may shift according to traffic density, the chosen 
speed, or following distance. Such shifts are an example of 
Axiom 2, and call for continuous and intuitive communication 
and interaction between human and robot.  

To communicate with the driver, the ACC can give warning 
signals ‘upwards’ to the driver when it realizes that functional 
limitations of its operational task are approached. The driver 
can communicate ‘downwards’ to provide set-points or switch 
the ACC on or off. Comparatively few attempts have been 
made to make this communication system and driver more 
continuous, such as a visual interface to display ACC behavior 
[49], intended to “…promote appropriate reliance and support 
effective transitions between manual and ACC control.” This 

work recognized the need for continuous communication of 
ADAS limitations. The results showed that drivers responded 
properly to system failures when braking limits were 
exceeded.  

Shared control offers an alternative approach: employing 
the same sensor suite of ACC but translating separation states 
continuously to forces on a haptic gas pedal [50], instead of 
feeding to direct control inputs to the vehicle. This approach is 
called haptic shared control [28] and essentially physically 
couples the driver’s operational control actions to the 
operational control actions of the robot (ADAS). The action-
perception coupling persistently links the communication 
between the system and driver to the concurrent situation, 
allowing mutual awareness of conflicts and immediate 
resolution (Axiom 1). The continuous nature of the 
communication and interaction keeps drivers comfortably in 
the loop, and enhances situation awareness also outside system 
boundaries (Axiom 3). Haptic shared control has demonstrated 
to be an effective way to not only improve driver performance 
but also to reduce risk [51]. The haptic gas pedal can also 
communicate legal speed limits [52] and be useful for eco-
driving [53].  

Haptic shared control for lateral tasks require a haptic 
steering wheel, and has been explored for lane keeping and 
curve negotiation [54][55]), but also for discrete maneuvers, 
such as evasive maneuvers [56], lane changing [57], and 
merging/cut-in [58]. Flemisch and colleagues [59] proposed 
the “H(orse)-Metaphor” as a design metaphor for the 
communication and interaction with a highly automated 
vehicle. Later they developed the concept of ‘cooperative 
guidance and control’ [40][60][61], linking support at the 
operational (=‘control’) and tactical (=‘guidance’) levels. 
Recent literature [62] proposed to unify ‘cooperative guidance 
and control’ with ‘shared control’ by treating ‘shared control’ 
as a subset for the encompassing ‘cooperative guidance and 
control’, which may include both shared and traded control 
solutions in a cooperative manner. Regardless, a design 
metaphor (such as the horse metaphor [59][60]) is useful to 
guide shared control design as well as to communicate the 
concept to users. 

Two of the main design challenges for shared control for 
steering include 1) designing the underlying controllers that 
calculate steering inputs from the sensed environment 2) 
deciding what control inputs to share with the human, and how 
to weigh them. The first design challenge is essentially that of 
designing the controllers that can autonomously steer the 
vehicle within the design boundaries. Based on Axiom 2, the 
underlying controllers should be human-centered (and 
possibly even individualized) to increase comfort and 
predictability of the actions of the intelligent vehicle. In some 
cases it may even be necessary to base robot behavior on the 
individual operator’s behavior [63][64], or to adapt 
continuously to the adapting human as situations and 
conditions change [65]. The second design challenge strongly 
depends on the choice for either sharing control at the level of 
generated steering angles (i.e., input-mixing shared control 
[29] [66], or the related ‘indirect haptic aiding’ [67]) or at the 
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level of generated steering torques that will jointly realize the 
steering angle input to the vehicle (i.e., haptic shared control 
[28] [30][50][55][60] [68]).  

Input-mixing shared control inherently assigns the final 
steering authority to the robot [28], which conflicts with 
Axiom 2. This version of shared control may work well in 
situations where the automation is always reliable and the 
driver is unlikely to make responsible steering movements, but 
may pose problems when the driver wishes to overrule the 
automation’s actions [69]. The sharing of control depends on 
design choices concerning the (static or dynamic) contribution 
of each steering input to the vehicle [66]. Note that input-
mixing masks the controller’s activity unless feedback is 
provided [67], and variably changing the ratio of steering 
wheel angle to tire angle may result in a significant period of 
motor adaptation [70].  

In contrast, for haptic shared control, the sharing occurs at 
torque level, thereby including the fast and highly adaptive 
neuromuscular system of the driver [71] to communicate and 
interact with the automation. Here, the sharing of control 
depends on the magnitude of the forces [68] [72] and the level 
of haptic authority [28] (i.e., stiffness [73] around the 
controller’s optimal steering angle). The tuning of the 
magnitude of the shared control forces can be formalized 
when based on measured neuromuscular behavior [74].  

C. Evaluation of Shared Control Solutions 
Shared control solutions are usually evaluated safely within 

intended system boundaries, and not compared to traded 
control ADAS. An interesting exception is a study that 
compared a haptic gas pedal and an adaptive cruise control on 
the expressways around Minneapolis-Saint Paul in high traffic 
density conditions. Drivers had to engage and disengage ACC 
each time the speed dropped below 40 mph ACC and had to 
press the brake when a deceleration greater than 2.5 m/s2 was 
needed. Under these conditions, drivers preferred the shared 
control provided by the haptic gas pedal over the traded 
control of the ACC and over manual driving, mainly due to 
annoyance with repeated disengaging and engaging of the 
ACC due to the traffic. In more recent studies of steering 
support in highly automated vehicles [75], different shared 
control design options for shared control were evaluated [40] 
[41] within and beyond the design boundaries (Axiom 3).  

IV. ROBOT-ASSISTED SURGERY 
Surgery is a domain that continues to be enhanced by the 

addition of supporting technology into the operating room, 
both assisting existing surgical procedures and enabling new 
techniques that were not previously possible. Surgical 
procedures demand both dexterous motor and cognitive skills, 
which can pose challenges to even the most experienced 
surgeons. While the accuracy and precision of robotic devices 
offer a promising approach to provide assistance in the 
operating room, full automation is often not possible due to 
the high level of risk involved in surgical procedures [76]. In 
contrast to the previously discussed automotive domain, 
surgery encompasses a large range of operations that are 

performed with a variety of tools by highly trained specialists, 
who often have high expectations for support system 
transparency and low acceptance of systems that they feel will 
hinder their work [77].  

A. Task of surgical robotic support systems 
A variety of computer-assisted support systems have been 

considered to enhance a range of procedures, from orthopedics 
to percutaneous therapies to laparoscopic surgery. Support 
systems have been designed to assist during different phases 
of these surgical operations, both with preoperative planning, 
intraoperative procedures, and postoperative verification. In 
this paper, we limit the discussion to robotic support systems 
that have been designed to aid and improve the intraoperative 
phase. The unique surgical environment presents a handful of 
additional constraints that challenge the surgeon’s 
sensorimotor and spatial reasoning skills: delicate surrounding 
tissues to avoid damaging, intricate anatomical structures 
around which to maneuver, and complex mappings and 
kinematics of robotic instruments. The assisted intraoperative 
subtasks vary greatly with different surgical procedures, 
ranging from tissue manipulation to needle driving, from 
suturing to navigation. Despite this subtask variability, support 
systems can be considered to assist the surgeon in the 
following types of tasks: 

 
i. Extension of sensing/motor capabilities: The limits of 

the human sensorimotor system, which are often 
approached due to the scale of some procedures, can be 
enhanced to help the surgeon operate within the 
environment constraints (e.g., small anatomical 
structures, delicate tissues, low interaction forces).  

ii. Information integration: Incorporating different sources 
of information (e.g., patient-specific anatomy from 
different imaging modalities) in a seamless manner can 
aid the surgeon in efficiently determining and executing 
a desired plan. 
 

B. Design of surgical robotic support systems 
Surgical robotic support systems, both in the clinical and 

experimental stage, have been designed with varying levels of 
automation [78]. While it is usually desirable to keep the 
surgeon in-the-loop, the complexity of the procedure and the 
dynamics of the environment affect the acceptable level of 
automation. 

Autonomous robotic systems that replace specific subtasks 
of the surgeon have been used in some clinical applications, 
particularly orthopedics and neurosurgery. These particular 
applications allow for accurate registration of the surgical 
tools to rigid bony structures, with little deformation to the 
targeted anatomy. One of the first clinical systems was the 
ROBODOC Surgical System (Curexo Technology Corp., 
USA), designed to improve the precision of manual joint 
replacement surgery [79]. Prior to the operation, the surgeon 
selects the appropriate implant based on preoperative 
computed tomography (CT) images and determines the 
desired placement. The ROBODOC system autonomously 
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mills the desired shape for the selected implant, while the 
surgeon serves a supervisory role with the ability to monitor 
and abort the process. Other clinical robotic systems have 
been developed to support the surgeon by automating such 
subtasks as positioning a mechanical guide for the manual 
insertion of a tool (e.g., NeuroMate for neurosurgery, 
Reinshaw, UK). Experimental systems are also being 
developed to automate subtasks in less predictable situations 
or deformable environments, such as suturing (EndoBot, [80]). 

Automation of surgical procedures is limited, however, 
because “…situations and conditions can rapidly change 
beyond the envisioned boundaries” (Axiom 2). It comes as no 
surprise then that many surgical robotic devices have been 
designed to share control with surgeons, improving their 
performance rather than autonomously executing tasks. These 
systems use the principles of either teleoperation (master-slave 
system) or cooperative manipulation (surgeon and robot both 
hold the tool). Since the surgeon and robotic system are 
continuously in physical interaction, this presents the 
possibility for synergistic shared control. The da Vinci 
Surgical System (Intuitive Surgical, USA), one of the most 
successful commercial teleoperation surgical systems, 
currently features tremor filtering and motion scaling but does 
not include haptic feedback [81].  

Researchers have considered a form of shared control to 
compensate for physiological motion, due to respiration or 
heartbeat. During teleoperated cardiac surgery, robotic 
technologies have been investigated to eliminate the need for 
constraining the heart with mechanical or vacuum stabilizers. 
If the slave device tracks and moves with the physiological 
motion, the surgeon can operate on a static image of the heart. 
This approach is a form of “input-mixing” shared control [28], 
since the automatic controller and surgeon control the robotic 
system concurrently, but the activity of the automatic 
controller is not continuously communicated to the operator.  

Other clinical and experimental surgical robotic systems 
have implemented haptic shared control, enabling the surgeon 
and an intelligent controller to communicate their respective 
actions to one another directly, without inducing sensory 
overload via additional sounds or lights in an already hectic 
operating room environment. Virtual fixtures have been 
widely investigated to support an operator, either preventing 
the incursion of designated forbidden regions (passive 
assistance) or providing guidance along desired paths (active 
assistance) [82]. By integrating patient-specific anatomical 
information (e.g., CT or MR images), the intelligent controller 
can help the surgeon stay at the surface of an organ or avoid 
puncture of delicate structures. In contrast to the autonomous 
ROBODOC, the RIO Robotic Arm Interactive Orthopedic 
System (MAKO Surgical Corp., USA) allows the surgeon to 
stay involved in the milling process, providing support via 
virtual fixtures [83]. The surgeon manually moves the robotic 
arm to guide the cutting process and only feels resisting forces 
if the tool begins to move outside the predetermined surgical 
plan. 

Virtual fixtures for haptic shared control have been 
investigated to tackle these issues for a variety of other 

surgical procedures, although they remain in the experimental 
stage [84][85][86]. Park et al. used forbidden region virtual 
fixtures to prevent excursions from the area of interest in a 
blunt dissection task with the application of cardiac surgery 
[84]. For the application of ophthalmic microsurgery, Becker 
et al. generated real-time virtual fixtures from microscope 
video to prevent over-penetration of the retinal membrane 
[86]. Virtual fixtures have also been explored to provide 
guidance by imposing motion constraints during various 
endoscopic procedures and tasks, including the insertion of 
tools during sinus surgery [87], steering of flexible endoscopes 
[88], and suturing [89].  

The design of a surgical support system that is accepted 
with confidence for use in clinical stage remains a challenge. 
The design challenges for shared control are driven by high 
surgical accuracy, on-demand maneuvers, and anatomical 
considerations in different surgical procedures. Operator 
proficiency issues and variability in the surgical subtasks can 
severely impact the ability of surgeons supported by surgical 
robot systems to achieve optimal performance and safety in 
the shared (sub)tasks [78]. These challenges demand improved 
design and evaluation methods to communicate and process 
critical information at different levels of intraoperative 
subtasks.  
While current clinical robotic systems mainly serve to extend 
the surgeon’s eyes and hands, the implementations of haptic 
shared control discussed above supplement the surgeon with 
additional guidance at the Operational Level (see Section 
III.A). Further developments in advanced visualization and 
recognition algorithms, informatics, and machine learning will 
enable future systems to provide not only increased dexterity 
and precision but also knowledge, thereby supporting 
decisions at the Strategic and Tactical Levels.  

C. Evaluation of surgical support systems 
Due to the high concern for patient safety in surgery, it is of 

utmost importance to also evaluate shared control for robotic 
systems outside of conditions for which it was originally 
designed [90] (Axiom 3). It is imperative to understand the 
effects of system malfunctions and conflicts (Axiom 1) 
between the intentions of the surgeon and intelligent controller 
on the surgeon’s behavior and the overall objectives of the 
surgical procedure. 

For image-guided navigation, one method for displaying the 
system’s uncertainty of tool or anatomy position is to show an 
ellipse representing registration imprecision [77]. Analogous 
methods need to be implemented to inform the surgeon of the 
limitations of the haptic shared controller. Conversely, 
methods to improve the controller’s awareness of the 
surgeon’s limitations, such as hand tremor or insufficient 
dexterity, can be implemented. There has been some work on 
varying the guidance gains (level of haptic authority) and 
adapting assistance based on user intent using continuous 
hidden Markov models [91]; however, these adaptive methods 
require further attention in terms of design and evaluation. In 
addition, due to the specific targeted population for surgical 
support systems, these systems should be evaluated in the 
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appropriate context. Evaluation with and feedback from 
surgeons can produce different results from testing the system 
with laypersons or tests on virtual surgery simulators. It is also 
important to assess how well the support system integrates 
into the overall flow of the surgical environment. And lastly, 
while improvements in performance metrics (e.g., accuracy 
and precision) are often emphasized, the effect on clinical 
outcome must be prioritized. 

V. BRAIN-MACHINE INTERFACES 
In the previous two sections on vehicle control and robot-

assisted surgery, we have seen how haptic shared control 
provides an effective methodology for blending human input 
with robot precision at the level of physical interaction, while 
maintaining the user's authority. However, some applications 
render it impractical or impossible to physically interact with a 
control interface, especially in the domain of assistive 
technology for people with severe motor impairments, where 
the end-user often has weak or no voluntary muscular activity. 
This means that activities of daily living, such as locomotion, 
reaching and grasping are extremely limited or impossible to 
achieve independently. One possible solution that has been 
gaining increasing attention over recent years is to use brain 
signals directly to control robot-assistive technologies, thus 
bypassing the usually peripheral motor-output pathways. 

A. Task of Brain-Machine Interfaces 
Brain-Machine Interfaces (BMIs) aim to empower people 

with severe motor impairments to get on with (some) of their 
activities of daily living, by using thoughts alone to control 
assistive robotic devices [92][93]. Typical activities include 
operating self-feeding systems, environmental control units, 
prosthetic devices, text-entry systems and wheelchairs. BMIs 
monitor the user's brain activity, most often through non-
invasive electroencephalography (EEG) and translate his or 
her intentions into commands, which can be sent to external 
devices, computer programs [94], or physical devices such as 
the wheelchair that we will use as a case study in this section 
[95]. 

The primary aims of a brain-machine interface are to: 
• Monitor the user’s brain signals 
• Recognize the correlates of a predetermined set of 

mental activities or processes in real-time 
• Map these correlates to control actions 
• Provide feedback to the user about his or her 

perceived mental state and the corresponding selected 
control actions. 

B. Design of Brain-Machine Interfaces 
Many BMI implementations rely upon the subject attending 

to visual or auditory stimuli, which are synchronously 
presented by the system [96]. This leads to a duality between 
control and feedback: is the robot or the user initiating the 
control? Conversely, our philosophy is to keep as much 
authority with the users as possible, such that the user should 
be able to spontaneously and asynchronously control the 
wheelchair, for example by performing a motor imagery task 

[95]. Since this does not rely upon visual stimuli, it does not 
interfere with the visual task of navigation. Furthermore, when 
dealing with motor-impaired patients, it makes sense to use 
motor imagery, since this involves a part of the cortex, which 
may have become redundant; that is, the task does not 
interfere with the residual capabilities of the patient. 

As we have previously seen, in haptic interfaces, the system 
provides a force, which the user can yield to, or override. In 
BMI, the system (robot) can either initiate an action or give an 
indication that it will initiate an action, having detected a 
particular pattern of brain signals (Axiom 1). If the robot 
executes or proposes an action, which the human deems to be 
incorrect, it is possible to detect a so-called error-related 
potential (ErrP) in the human EEG signal [97]. Such 
“cognitive states” can be used as feedback to the system, to 
correct mistakes or inform the refinement of a learned control 
policy [98]. 

This framework, however, poses several challenges in 
determining the human’s intention from such uncertain 
channels and consequently generating the most appropriate 
control signals. These challenges are associated with relatively 
low accuracies; low temporal precision; and low information 
transfer rates in the human control input signals. Furthermore, 
uncertainty in the system, such as the human’s internal state 
(attention, workload, fatigue, etc.); the non-stationary nature 
of brain signals; and the variation of the class-discriminative 
information, both within and between users, exacerbate the 
challenge [96]. Shared control seems like a reasonable 
approach to compensate for these inherent ambiguities 
associated with BMIs. 

C. Input-Mixing Shared Control for BMIs 
In contrast with Sections II and III, to support humans in 

performing tasks with BMIs, we propose to share control at 
the higher tactical level by using an input-mixing shared 
control system. The human input is interpreted given 
contextual information (e.g., the environment surrounding an 
assistive robotic device) to determine the resultant control 
signals that should be sent to the robot (e.g., wheelchair), to 
achieve acceptable performance and maintain safety (Axiom 
2). Under such a scheme, the user is provided with feedback 
through alternative modalities, such as visual, auditory, 
vibrotactile, electrotactile, etc. 

There are some critical issues to be considered when 
designing shared control systems for BMI applications. 
Commands from the BMI and the contextual information need 
to be fused to determine the final command that should be 
delivered to the device, but this can be done in many different 
ways, using approaches such as gating, fusion or regulation 
[99]. Gating (in the automotive domain often called “transition 
of control”) means that one signal from the user or the device 
enables the other party to take control. However, this approach 
does not fit with our definition of shared control since it 
violates Axiom 1. Instead, this approach would be categorized 
under the broader term co-operative control [62]. Conversely, 
fusion is an excellent example of shared control, since it 
means that both the user input and the information from the 
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device contribute directly to the final control command, 
through rules including competitive methods, weighted sums, 
and probabilistic reasoning. Alternatively, the notion of 
regulation fits nicely with Axiom 2, since it means that one or 
more of the signals can be used to adjust the parameters of the 
shared control system, resulting in changes in the level of 
assistance that the robot provides to the human. For example, 
a dynamic Bayesian network (DBN) has been used to track the 
human’s intended actions or goal destinations [98]. Finally, 
the gating, fusion and regulation approaches can be cascaded 
to create more complex or flexible behaviors [99]. 

Another important aspect to consider in the design is the 
level of assistance (or automation) that is provided by the 
robot to the human. End-users of such devices often prefer to 
have authority over the device rather than to be controlled by 
it, but at the same time, safety should take precedence. In 
other words, the system should provide a transparent 
assistance for the human and allow the assistance to be 
overridden in non-safety critical situations [96][100]. 

Most shared control systems tend to have predefined 
settings based on the task and the environment in which the 
task is performed. Additionally, the provided level of 
assistance is usually constant for each user. However, to have 
an effective interaction, shared control assistance should be 
well-matched to each user and should adapt to complement 
their dynamic and evolving capabilities [65]. 

Finally, hybrid control techniques can be used to take 
control of additional degrees of freedom or combat the fatigue 
associated with a particular control channel. This allows the 
users to take more or less low-level (operational level) control 
and switch between different modalities when they want or 
need to do so [95][96][101]. 

D. Evaluation of BMIs with Shared Control 
Many shared control implementations are still evaluated 

with respect to the global system or specific task performance. 
The use of shared control systems, in which both human and 
robot contribute to the control process have been shown to be 
beneficial [27][102]. Operating devices with a BMI combined 
with shared control techniques result in better performance, 
higher speed and safety while reducing the required effort 
compared with not having the additional support, as we would 
expect from Axiom 2 [96][103]. Expert users aside, such 
metrics will often lead to a fully automated controller 
outperforming any other control approach, especially if the 
validation task is relatively trivial. 

Although these traditional metrics (like speed and 
efficiency) are important, the ultimate goal is that the user is 
able to complete tasks voluntarily when they want. Therefore 
evaluations should additionally place great emphasis on a 
human factors analysis [65]. As an example, we can employ 
standardized validated questionnaires, such as the NASA-TLX 
[104], which also take into account subjective measures such 
as the user's frustration. 

There still exists much work to be done in particular in 
investigating adaptive shared control for brain-machine 
interfaces. It will be particularly challenging to decide exactly 

how to evaluate such systems. Nevertheless, they could have a 
high impact in related fields, such as neuro-rehabilitation, 
where for example the level of assistance is usually decreased 
over time as motor skills are re-learned. Moreover, we have 
not yet found any examples of BMI systems being evaluated 
on or beyond the boundaries of the task domain (Axiom 3), 
which is necessary if we are to see them used more widely 
outside of the lab. 

VI. LEARNING 
Cognitive psychologists have stated that it takes 10,000 

hours of deliberate practice to become an expert at a complex 
task [105]. However, not everybody gets to be an expert 
performer, because of lack of talent, or physical or mental 
limitations such as aging factors [106]. Can shared control be 
used for accelerating the learning process? 

In this paper, we adopt the following definition: “learning is 
a relatively permanent change in knowledge that occurs as a 
result of experience” [107]. Learning is crucial for survival, as 
the knowledge acquired through learning allows us to 
anticipate the future from past experiences and to control an 
ever-changing environment [108]. When a person is new to a 
task, he or she tends to apply knowledge-based behavior, 
meaning that information processing is relatively slow and 
sequential. When learning, knowledge becomes implicit, and 
information processing becomes fast and parallel, that is, the 
person applies skill-based behavior [124].  

Technology may facilitate learning by providing the learner 
with computer-stored knowledge in appropriate doses and at 
appropriate moments, either in the form of error feedback and 
guidance at the operational level, or in the form tactical 
feedback of strategic advice. Shared control appears to be an 
effective medium for communicating knowledge between 
human and machine (Axiom 1), and so could be valuable in 
learning. In particular, feedback from a haptic display is in 
agreement with the proximity compatibility principle [109] if 
the haptic feedback is applied directly at the control interface. 
For example, whereas visual feedback (e.g., a warning light 
indicating to the learner that he/she makes an error) needs to 
be attended to and interpreted before implementing a decision, 
haptic feedback (e.g., force feedback at a joystick) can support 
the learner directly and reflexively.  

Haptic shared control for learning (usually called haptic 
guidance) has mostly been studied for tasks at the operational 
level, such as in the learning of tracking tasks [110][111]. 
However, in complex tasks, having excellent skills at the 
operational level does not suffice for safety. A classic 
illustration is provided by Williams and O’Neill [112]. These 
authors showed that nationally licensed race drivers (who can 
be assumed to have excellent vehicle handling skills) were 
involved in more police-registered accidents than a 
comparison group of similar age, race, and sex. Motivations to 
drive are higher-order determinants that place demands on the 
operational level, which is situated lower in the hierarchy. 
That is, accidents cannot be prevented by only perfecting 
skills at the operational level; training interventions should 
also tackle risk-taking at the strategic level [113]–[115].  
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Haptic shared control may be a promising means for 
acquiring knowledge at the strategic level. However, 
participants get annoyed when they have to resist forces 
contrary to their intentions. Applying extreme pressures on the 
human skin may result in discomfort, arousal, and even pain. 
Interestingly, frustration and emotionally arousing events 
facilitate the formation of long-term memory structures [116] 
and may promote self-reflection. But we aim for a different 
learning method: inspired by the “horse metaphor” [59][60] 
haptic shared control and cooperative guidance and control 
may facilitate mutual trust and social bonding between human 
and robot. 

A. Open issues in the use of shared control for learning 
Schmidt and Bjork [117] argued that the goal of training is 

to be able to apply knowledge in the long term and novel 
circumstances (Axiom 3). Although augmented feedback may 
temporality boost human knowledge, in some cases feedback 
may hamper long-term retention and the ability to complete 
the task independently from the computer aid. Hancock and 
Hancock [3], for example, stated:“…it is (…) common for 
many individuals today to have problems performing even 
basic mathematical additions when the computer is ‘down’. 
The problem here is that the balance of some forms of 
expertise has shifted over toward the computer side and 
suddenly we have purportedly ‘smart’ machines being 
operated by sadly ‘dumb’ humans.”  

Similarly, humans may become overly dependent on 
guidance from haptic shared control, and as pointed out by 
[111], non-adaptive (fixed-gain) haptic guidance protocols 
may even be detrimental to motor learning, since “…such 
schemes actively interfere with the coupled system dynamics 
and cause participants to experience task dynamics that are 
altered from those of the real task.” [118]. If inappropriately 
implemented, shared or traded control may, in fact, de-skill 
operators [14][18][19], which – rather than empowering 
operators – gradually disables them as they become 
increasingly reliant upon the robot. 

Semantically rich messages for effective learning at the 
strategic level [39] are usually communicated through visual 
or auditory means, and it is still unknown how to haptically 
convey such messages. Presumably, low-dimensional channels 
such as pedals, steering wheels, and joysticks will be 
insufficient, and richer multidimensional interfaces (e.g., 
pressure seats) will have to be developed to communicate 
goals and intent of human and robot. The degree to which the 
human should be required to learn a task (i.e., to store 
knowledge in the brain), versus the degree to which 
knowledge should be accessible via a computerized aid, is an 
ongoing source of debate (cf., [119]). Technological potential, 
such as computational speed of chips and hard disk storage 
capacity, grow at an exponential rate [120]. Accordingly, 
knowledge is now often retained in computerized support 
systems, and as pointed out by Hancock and Hancock 
“…crucial knowledge and thus one aspect of ‘expertise’ does 
not necessarily need to be resident in the head of the 
operator” [3]. Computers surpass humans at computational 

speed, and memorizing fact and procedures [10][118]. It 
would therefore be useful to delegate this type of knowledge 
to machines, unless, of course, the machine’s computing 
abilities are statistically unreliable or temporarily unavailable 
(cf. [121]).  

On the other hand, humans still surpass artificial 
intelligence during physical movement and manipulation in 
situations that require quick adaptation and generalization. 
Therefore, in the foreseeable future, this type of knowledge 
will have to either rest with the human, be taught by humans 
to robots (e.g., by means of learning-from-demonstration 
techniques), or be efficiently shared with robots. 

VII. TOWARDS A SHARED CONTROL FRAMEWORK 
In Section II we proposed a definition of shared control that 

captures multiple levels of control, and gave three axioms for 
design and evaluation of shared control. We then provided a 
review of shared control implementations for four domains: 
automotive applications (Section III), robotic surgery (Section 
IV), BMI wheelchair control (Section V), and learning 
(section VI). In each of these four application areas, we argued 
that shared control is beneficial to enhance communication 
between human and robot (Axiom 1) at different hierarchical 
levels of control, especially where changing conditions require 
human interventions (Axiom 2). The presented shared control 
designs resulted from highly domain-specific design 
approaches, and in almost all cases the evaluation approaches 
do not explore behavior outside the design boundaries (Axiom 
3). Even within a specific domain widely different design and 
evaluation approaches exist, which complicates between-study 
comparisons of similar support systems (see for example 
[122][123]) and therefore hinders cross-fertilization. 

The above illustrates the need for a shared control 
framework that facilitates interdisciplinary collaboration and 
accelerates the development of shared control systems. We 
here aim to establish a shared control framework that 
addresses the need to design, understand and evaluate the 
communication and interaction between a human and a robot. 
We link multiple frameworks and concepts from diverse 
disciplines so that our shared control framework can:  

1. Capture human and robot control at different task 
levels, ranging from high-level planning to low-level 
execution. 

2. Capture different behaviors of human information 
processing ranging from cognitive deliberation to 
sensory signal processing.  

3. Capture interaction between a human and a robot 
within and between each task level. 

4. Comply with shared control Axioms 1, 2, and 3  
5. Capture shared control solutions from Sections III-VI 

and can be extended 
The envisioned shared control framework should also 
facilitate comparisons between alternative human-automation 
interaction methods (such as traded control and binary 
warnings) or interface designs (haptic, tactile, visual, auditory, 
or multimodal). 
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A. Relevant Hierarchical Frameworks 
In the 1970s, Sheridan and Verplank [13] proposed a 
conceptual framework for a hierarchical division of 
“computer-aided manipulation” into goals, strategies, tactics, 
and action, linking this division to the type of commands 
needed for communication. In the same period, the intelligent 
control community [126][127][128][129][131][130] focused 
on developing computational frameworks that could be used 
to control robots for performing complex tasks that include 
planning, decision making, and control. Such frameworks 
have been applied to driving a car [44] and are still used today 
in the control of automated vehicles. It also inspired the 
ClaraTY framework [132], a computational framework used 
for space robotics that stresses the distinction between three 
layers (strategic layer, decision, functional).  

Concerning more human-centered frameworks, a useful 
approach for decomposing information processing in human-
machine systems is Rasmussen’s distinction between 
knowledge, rules, and skills, (KRS) and the accompanying 
symbols, signs, and signals needed to communicate at 
different task levels [124]. With experience or training, tasks 
can move from the knowledge-based level to skill-based level, 
requiring less cognitive control. An accompanying design 
framework for support systems is Ecological Interface Design 
(EID) [125], an approach that makes complex relationships in 
the dynamic work environment perceptually evident.  

A third research area that generated relevant frameworks is 
the field of human-machine cooperation. According to [133], 
cooperation implies “…several agents pursuing interfering 
goals and trying to manage this interference to facilitate their 
tasks.” They state that interference management can take 
place at three hierarchical levels: action level, planning level, 
and meta-cooperation level. Flemisch et al. [60] provided an 
‘onion-layered’ framework for cooperative automation, where 
both human and robot (‘automation’) control a vehicle based 
on perception and situation-assessment that feed into 
hierarchical control levels (navigation, maneuvering, short-
term planning, control). They aimed to capture shared and 
traded control at different levels in a framework referred to as 
‘shared and cooperative control’[61]. Recent work in 
conceptual modeling [134][135] has linked a hierarchical 
dimension of control (operational, tactical and planning levels) 
to a ‘horizontal’ extension in terms of information gathering, 
analysis, decision-making, and execution.  

The above frameworks explain how human and robot 
cooperate but do not explicitly incorporate the vital fact that 
human and robot can perform tasks at different levels at a 
skill, rule or knowledge-based level, and that these control 
behaviors require different interface designs to facilitate 
communication and interaction. 

B. Proposed Design and Evaluation Framework 
Why add another framework to describe hierarchical 

control? The main reason is that no known framework 
captures the possibilities that shared control offers for human-
robot interaction within and between hierarchical control 
levels, where the robot can also learn from a human (and vice 

versa) through communication and interaction within and 
between these levels. An attractive perspective for a 
comprehensive shared control framework is a combination of 
vertical task levels (i.e., strategic, tactical, operational, 
executional STOE) and horizontal knowledge-, rule-, and 
skill-based (KRS) behaviors within each level. Such a 
topology illustrates what can be communicated within and 
between levels, what needs to be learned at each task level, 
and accordingly what should be supported at each task level. 
At each STOE level, control can be performed independently 
by human or robot, traded between them, or shared. By 
assigning control within and between each level plus detailing 
what types of transitions in control are expected (Axiom 1, 2, 
3), the required communication opportunities (e.g., visual, 
auditory or haptic) become apparent, and the most suitable 
form of interaction can be designed (shared or traded). 

The proposed shared control design and evaluation 
framework is shown in Figure 1. Vertically, it shows the 
strategic, tactical, operational and executional task levels. 
Within each level, the human and potentially the robot can 
independently exhibit skill-, rule-, or skill-based behavior. For 
example, strategic choices and decisions initially require 
abstract thinking (knowledge-based behavior) but with 
experience are made quickly and effectively. This process is 
well established within the naturalistic decision-making field 
[136]. Similarly, before a high level of skill is achieved in 
motor control, much practice is needed to build the right 
situated internal models; a process well established within the 
motor control community [137]. This framework illustrates 
that individual human or robot learning is integrated as a 
progression from knowledge-based interaction at a particular 
task level to rule-based and finally skill-based interaction.  

The framework shows all communication and interaction 
possibilities between and within STOE levels, under the 
assumption that the robot and human can individually perform 
tasks at each task STOE level without the other. In real-life 
applications, robot capabilities may well be limited to the 
execution or operational level (e.g., adaptive cruise control). 
Conversely, the human may also be limited at the execution or 
operational level (e.g., patients with impaired motor control). 
The framework illustrates that two types of interfaces can be 
designed for communication and interaction: within task-level 
and between task-level.  

At each task level, communication and interaction between 
human and robot may be designed to support knowledge-
based behavior (symbols), rule-based behavior (signs) or skill-
based behavior (signals). For example, the BMI wheelchair 
from Section V supports the human at the tactical decision 
level, to enable the operator to learn intuitive tactical control 
over the robotic wheelchair; and giving the tactical commands 
eventually become second nature (i.e., using intuitive skill-
based behavior as opposed to the initially rule-based 
behavior). When the robot is always present, humans will 
simply learn to operate in the new robot-enhanced 
environment, whereas in other cases the robot may accelerate 
learning of a task that normally does not offer such support 
(Section VI). The framework captures the possibility that 
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human and robot can mutually teach, show or guide each other 
through interaction, as well as learn from the other through 
observation or collaboration, thereby progressing in the KRS 
behaviors within an STOE level. This duality, as well as the 
symbiotic relationship between human and robot, is novel in 
this framework.  

Between STOE task levels, the actions of a higher level 
enter the layer “Goal Sharing / Multi-modal Communication 
Interface,” to be passed, shared or traded into goals for lower-
level control of human or robot. When control is traded to the 
robot, the robot needs to take control over lower levels - 
including the communication and interaction required for the 
human to monitor its performance and influence its goals.  
 

 
Figure 1. Hierarchical Framework for Shared Control between 
human/operator (left) and robot/intelligent agent (right), controlling a 
plant/vehicle within a task-environment. The vertical task decomposition for 
both human and robot is along the STOE levels. Within each level, humans 
and robots can learn (KRS behaviors) and through multi-modal interfaces 
interact to provide, receive or share information in the form of knowledge-
based symbols, rule-based signs, or skill based signals. The robot is shown 
here with the full learning and interactive capabilities of a human, which is a 
utopia for now.  
 
Haptic shared control allows human and robot to communicate 
and interact at the operational level, through forces on a 
control interface: signals, denoting skill-based behavior. The 
human and robot both directly feel each other’s forces and can 
use stiffness to protect their respective actions against 

available safety margins. Together they shape the action that 
gets passed to the execution level. However, the framework 
points to other design possibilities for haptic interaction, at all 
STOE task levels. For example, in driving one could use a 
joystick interface to select between a number of route 
alternatives strategically. The force needed to select one of 
them could be low for those that satisfy many of the driver’s 
needs and high for those that are less satisfactory. Similarly, 
regarding the tactical level, stiffness on the turn signal could 
be used to inform at a skill-based level that the tactical 
decision to change lanes is wrong (high stiffness) or right (low 
stiffness). This communication could be augmented (through 
visual or auditory feedback) to elucidate the motivation for a 
low or high stiffness, the presence of other cars in adjacent 
lanes, or the fact that the target lane may be closed soon.  

The framework allows exploration of many more such 
design options. In general, three forms of interaction between 
robot and human are possible: (1) shared control between task 
levels (i.e., both handing down goals to the same lower level 
such that they get mixed or fused by the communication 
interface), (2) traded control between task levels (e.g., the 
human hands goals to the robot who performs lower level 
tasks, or vice versa), and (3) shared control within a task level 
through mutual sharing and receiving of information 
(knowledge), demonstration (rules), and action (skill) so that a 
symbiotic relationship is established. To the best of our 
knowledge, these three forms of human-robot interaction are 
for the first time captured within a single framework.  

Although useful as a conceptual framework, its structure is 
meant to house computational frameworks for describing 
human control, robot control, and human-robot interaction 
interfaces. Demonstration of this utility of the framework 
requires more detail in what takes place within a task level and 
what gets communicated between task levels.  

At each task level, the goal from a higher-level controller is 
transformed into a controller output action that constitutes the 
goal for a specific lower-level controller as illustrated in 
Figure 3. Some tasks, including driving, involve multiple tasks 
at the same STOE task level that need to be performed 
simultaneously. In those cases, goals of multiple lower-level 
controllers need to be coordinated. Therefore we detail the 
control framework based on intelligent control concepts of 
dispatchers and controllers/coordinators [127]. The goal of the 
task level is targeted through a learned schema that 
implements a procedure. The procedure constitutes the 
dispatching of a series of subtasks to a coordinator that keeps 
track of what subtask should be implemented next. It does so 
by communicating with lower level controllers and feeding 
them each a particular goal while monitoring their progress for 
timing (as well as for adaptation and learning). The specific 
inputs, processes and outputs at each of the task levels are 
shown in Table I with examples for driving. 

The downward flow is thus one of the commands to lower 
levels. The upward stream is sensory information from the 
environment (impacted by the plant’s state) and lower-level 
controllers. Sensory information is used for three purposes: i) 
sensory feedback to assess the situation, in order to select the 
right mental and internal models employed within each task 
level, and refine them ii) within-level performance feedback to 
assess if the task level goal was met, and iii) between-level 
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performance feedback for the coordinator to keep track of the 
progress of each of the lower level controllers it manages. 
Performance feedback is used to learn and shape both the 
mental models employed by the schema-dispatcher within 
each task level and the internal models used by the controller-
coordinator. Note that the framework explicitly uses processed 

sensory feedback to self-evaluate performance and progress. 
Also note that, to evaluate human-robot systems, it would be 
beneficial to adopt the same performance metrics that the 
human also employs; in other words: metrics that capture what 
matters to the human. 

 
TABLE I. 

DECOMPOSITION OF HIERARCHICAL TASK EXECUTION ALONG THE FOUR STOE TASK LEVELS, SPECIFIED FOR DRIVING. AT EACH TASK LEVEL, A GOAL IS 
EXECUTED BY A SCHEMA WHOSE TASK IS TO DISPATCH A SEQUENCE TO A (WITHIN-LEVEL) CONTROLLER. THE CONTROLLER OUTPUTS THE ACTIONS THAT SERVE AS 

GOALS FOR THE LOWER TASK LEVEL. 

Task	Level	(STOE) 
Schema	Input 

(=	Goal	from	Higher	
Level	Controller) 

 
Schema	Task 
(to	dispatch	a	

Sequence	of	Tasks	with	
target	States) 

Schema	Output	(=	
Controller	Input) 

Controller	Task	–	
Coordinate	what	Lower	
Level	Controllers	needs	
to	reach	what	Goal 

Controller	Output	
Action	(=	Goal	for	
Specific	Lower	Level	

Controller) 

Strategic	 Destination 

Dispatch	 
-	a	route	that	

transitions	along	a	
number	of	goal	

locations;	 
-	the	sequence	of	
targets	to	the	
controller 

Sequence	of	target	
maneuvers	or	task	
(e.g.,	stop	at	next	

intersection	or	merge	
at	next	junction). 

Coordinate	when	what	
maneuver(s)	to	select	
and	how	to	shape	them	
to	reach	the	next	target	
(e.g.,	stop	at	stop	line	
or	change	lane	to	

achieve	higher	speed). 

Specific	vehicle	
maneuver	(e.g.,	

merge). 

Tactical	 Specific	vehicle	
maneuver	(e.g.,	merge) 

Dispatch	a	sequence	of	
goal	behavioral	stages	

that	achieve	the	
maneuver 

Sequence	of	target	
behavioral	states	(e.g.,	
check	emptiness	of	
adjacent	lane,	match	
speed	to	an	adjacent	
lane,	decide	to	make	a	
lane	change,	etc.). 

Coordinate	what	target	
steady	state	vehicle	
states	to	adopt	(e.g.,	

match	speed	to	
adjacent	traffic). 

Specific	steady	state	
target	vehicle	state	or	
specific	safety	margin	
to	maintain	(e.g.,	reach	
a	speed	of	adjacent	
traffic	or	maintain	a	

certain	distance	to	lead	
vehicle). 

Operational	 

Specific	steady	state	
target	vehicle	state	or	
specific	safety	margin	
to	maintain	(e.g.,	reach	
a	speed	of	adjacent	
traffic	or	maintain	a	

certain	distance	to	lead	
vehicle). 

Dispatch	a	sequence	of	
goal	vehicle	states	 

that	achieve	the	target	
environmental	state 

Sequence	of	dynamic	
vehicle	states	with	

constraints	that	need	
to	be	satisfied	(e.g.,	
maintain	distance	but	
do	not	allow	for	the	

gap	to	grow	beyond	or	
below	a	particular	

time). 

Coordinate	what	
manipulator	control	
needs	to	be	applied	or	
what	dynamic	vehicle	
states	need	to	be	

traversed	(e.g.,	certain	
deceleration	rate). 

Specific	dynamic	target	
manipulator	state	(e.g.,	

associated	with	
reaching	yaw	rate,	
deceleration	rate). 

Execution	 

Specific	dynamic	target	
manipulator	state	(e.g.,	

associated	with	
reaching	yaw	rate,	
deceleration	rate). 

Dispatch	a	sequence	of	
low-level	control	
actions	that	achieve	
the	target	manipulator	
state 

Sequence	of	electrical	
signal	adjustments. 

Coordinate	what	low-
level	signals	to	send	to	
the	actuators	(incl.	
muscles).	IM	of	

actuator	logic	or	more	
precisely	

neural/electrical	
mechanisms. 

Specific	neural	signal	or	
voltage	or	current. 

 

C. How to use the Proposed Framework for Shared Control 
for novel studies 

Shared control design is an interplay between creative and 
engineering processes. The proposed framework can guide 
and constrain these processes, offering a ‘saliency map’ that 
draws attention to various opportunities for designing the 
interface across which information and control are shared 
between human and robot. The proposed STOE-KRS 
framework illustrates the types of information that are needed 
at each task level as well as the information that flows 
between task levels. Because of its computational nature, it 
also embodies what needs to be learned at each ‘node’ in the 
hierarchical intelligent control model and what type of 
feedback is necessary to facilitate knowledge acquisition and 

usage. The framework exposes possible weaknesses in the 
control of the system when information at the ‘touch points’ 
between human, robot and controlled system is noisy, limited, 
or missing. Because the framework proposes an interface that 
supports interaction at all task levels and across all knowledge 
levels it promotes a transparency between the controlled 
system, robot and human that should be implemented, by 
exposing both the limitations of sensing as well as the 
knowledge relied upon. The KRS aspect of the framework 
assures that even when the human is supported to control a 
particular task level in a skill-based fashion, the domain within 
which this skill-based support is warranted is exposed through 
a set of constraints or rules and is further explained in the form 
of knowledge that exposes the reason for such restrictions. 
This type of informed transparency enables the human to 
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know when to rely on the skill-based support or similarly rely 
on the robot to perform the task reliably. Because the 
boundaries of robust or reliable support are explicitly exposed 
in the interface, the human can quickly determine who has 
control and what level of vigilance is needed under what 
situational conditions. 
 The proposed STOE-KRS framework shows the many 
possibilities to share control between a human and a robot. 
The shared control community has only scratched the surface 
of understanding the pros and cons that each constellation of 
human-robot task sharing holds, especially in the context of 
real-world support limitations. However, by exploring the 
different interaction constellations across disciplines and 
evaluating them against real-world limitations, we hope that a 
set of design and evaluation ‘best practices’ emerges that can 
accelerate the informed release of shared control interfaces 
into unpredictable human-inhabited environments. The STOE-
KRS framework captures the efforts representative of our field 
and highlights the requirements for proper shared control that 
creative interface designers can integrate into their human-
robot interaction interfaces. 

VIII.  CONCLUSIONS 
The diversity in application fields for shared control 

solutions, with its accompanying lack of consensus in 
definitions, and methodologies for design and evaluation, was 
the inspiration for the proposed definitions, axioms, and a 
suggestion for a unifying hierarchical shared control 
framework. This framework is not merely conceptual, but 
constructed to guide the design and evaluation of shared 
control within, around and beyond system operational and 
functional boundaries. The framework addresses the need for 
out-of-scope design and evaluation because supporting 
transitions in and out of the design scope are most critical for 
safe introduction of systems into the real world. Examples 
from four different HRI disciplines show how shared control 
at different task levels and different behavior levels fit within 
the STOE-KRS framework. 

 
The three main design elements of the proposed shared 

control framework are:  
1. Shared control should implement continuous 

interaction between human and robot to facilitate 
robust mutually aware interaction (constituting 
enhanced operation at a particular task level). 

2. Shared control should communicate the proximity to 
task boundaries, environmental constraints, or system 
limits to facilitate a need for adaptation in control 
strategy or adaptation in the cooperation balance 
(constituting efficient sharing and trading of human 
and robot control at each task level). 

3. Shared control should be complemented with 
information about the motivation for operational 
limitations, decision boundaries or strategic choices to 
facilitate understanding of the system and promote 
learning towards a skill-based interaction (constituting 

effective learning of system functioning and the 
situation limitations that plague it). 

The three main evaluation elements of the proposed 
framework are:  

1. Support systems should be evaluated to demonstrate 
that the performance-effort balance shows a positive 
shift within the targeted task domain as defined by 
situated operational and functional support boundaries 
(constituting proof of superiority under predetermined 
conditions).  

2. Support systems should be evaluated to demonstrate 
that transitions across task boundaries, designed system 
boundaries, and unexpected changes in system 
performance due to hardware changes are quickly 
recognized, and adjustments in human involvement are 
promptly and efficiently achieved (constituting proof of 
superiority in recognition and recovery of out-of-scope 
transitions and conditions. 

3. Support systems should be evaluated to demonstrate 
learning, by showing a shift towards proactive 
interaction in response to changes in system 
functionality or reliability (constituting proof of 
superiority in learning dynamics). 

 
The proposed framework forms a coherent way of 
approaching these design and evaluation elements. It can be 
applied to shared control, but also to traded control solutions 
as part of truly cooperative human-machine systems.  

In a future where the machines we work with become 
increasingly capable of sensing, decision-making, and 
physical (inter)action, we need increasingly intelligent ways to 
communicate and interact with these robots. We agree with 
[21] that “…as the frontiers between automation and 
operators blur, it becomes increasingly critical that 
automation designers realize that they are not building 
technology, but relationships.” Echoing Wiener, 
communication and control are essential to foster such 
relationships.  

The concept of shared control has great potential to design 
communication and control between human and robot. 
Unfortunately, the widespread application of shared control 
across different disciplines has grown more quickly than the 
underlying theories and design & evaluation principles. It is 
high time to start thinking in, on, and out of the boundaries of 
our domains to realize the full potential of shared control. We 
hope that this review paper and its proposed definition, axioms 
and framework for design and evaluation for support systems 
serves as a useful starting point towards that goal.  
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