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Abstract 

The effect of oligomer length on the vibrational mode coupling and energy relaxation mechanisms of AT-rich 

DNA oligomers in double- and single-stranded conformations has been investigated using two-dimensional 

infrared spectroscopy. Vibrational coupling of modes of the DNA bases to the symmetric stretching vibration 

of the backbone phosphate group was observed for oligomers long enough to form duplex-DNA structures. 

The coupling was lost upon melting of the duplex. No significant effect of oligomer length or DNA secondary 

structure was found on either the timescale for vibrational relaxation of the base modes or the mechanism, 

which was consistent with a cascade process from base modes to intermediate modes, some of which are 

located on the deoxyribose group, and subsequently to the phosphate backbone. The study shows that 

vibrational coupling between base and backbone requires formation of the double-helix structure while 

vibrational energy management is an inherent property of the nucleotide. 
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Introduction 

The fundamental position occupied by deoxyribonucleic acid (DNA) within biology has motivated 

considerable efforts to understand both its structure and function in the solution phase. Although DNA 

consists of a polymer of just four repeating units, the deoxy-nucleotides of adenosine (A), guanosine (G), 

thymidine (T) and cytidine (C), the molecular physics of double stranded (ds)DNA is complex. The fact that 

dsDNA is biologically silent, acting only as a repository for genetic information, means that unravelling the 

dynamic behavior of DNA is as important as determining its static structure. In particular, the double-to-

single strand transition of DNA is a key step in the cellular machinery of transcription and replication. The 

role of the solvent either in defining the chemical properties of the helix or when participating in the 

intermolecular interactions of DNA, such as duplex formation or ligand binding, is also not properly 

understood. 

Ultrafast infrared (IR) spectroscopy has been instrumental in revealing important dynamics of the DNA 

molecule. In the electronic ground state, IR pump-probe spectroscopy has been used to study the vibrational 

relaxation dynamics of base vibrational modes.[1] The application of two dimensional IR (2D-IR) spectroscopy 

has revealed the nature of vibrational modes of the bases and base-pairs, including the considerable changes 

brought about by Watson-Crick base pairing, which leads to delocalisation of base vibrations.[2ʹ6] The 

couplings of these base modes makes them sensitive reporters of DNA structure and they have been used to 

determine the spectroscopic effects of base stacking[7,8] as well as the sequence-dependent impact of ligand 

binding on the structure of the double helix.[9] Transient 2D-IR spectroscopy methods have observed the 

melting of dsDNA sequences.[10] The interaction of DNA with the aqueous solvent has also been studied 

with 2D-IR spectroscopy.[11] Focussing on the vibrational modes of the phosphodiester backbone, it has 

been shown that the primary contact of DNA with water is through the PO2
- unit.[11,12]  

In recent publications, attempts have been made to understand how the individual components of the 

nucleotide (base, deoxyribose and phosphate backbone) combine to define the dynamics of the 

macromolecule. Studies of AT-rich DNA have shown a correlation between Watson-Crick base pairing and 

the creation of long-range phonon-type vibrational modes in the terahertz spectrum of DNA.[13,14] The use 

of two color-2D-IR spectroscopy has been used to probe dynamic links between the base modes and the 

sugar-phosphate backbone.[15] In a 15 base pair all-AT DNA sequence, the formation of the duplex was 

shown to lead to vibrational coupling of base carbonyl and ring-stretching vibrations with the symmetric 

stretching mode of the phosphate group. In addition, a long-range energy transfer mechanism was 

determined, featuring relaxation of the bases into a suite of intermediate modes coupled to the phosphate, 

some of which were located on the deoxyribose unit, prior to energy transfer to the phosphate group itself. 

This energy cascade is in good agreement with the recently proposed role of the phosphate unit as the 

primary point of contact with the solvent[11,12] and would seem to contribute to the fast energy dissipation 

mechanisms needed to protect DNA from photo-damage.[16ʹ25]  
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In this article, we explore these long-range dynamic phenomena of dsDNA further. By extending two-color 

2D-IR and vibrational relaxation experiments to a range of samples with varying oligomer lengths from one 

to 15 bases, we seek to determine whether the coupling observed between base and phosphate groups for 

the 15-base sequence is prevalent in other sequences and whether this interaction requires a minimum chain 

length to become established. In addition, we aim to discover whether the vibrational relaxation process is a 

property of the macromolecule or of the individual nucleotide.  

Oligomer  SĞƋƵĞŶĐĞ ;ϱ͛-хϯ͛Ϳ Sample Concentration (mM) 

n = 15 ATTATTATTATATTA 10 

n = 10 ATTATTATTA 10 

n = 6 ATTATT 20 

n = 4 AATT 40 

n = 2 AT 40 

n = 1 T 300 

Table 1. Summary of DNA oligomers studied. In the text, these are referred to using the n value. For n ш ϲ͕ Ăůů 

samples contained the oligomer shown and the complementary oligomer. For n = 2, 4 the oligomers are self-

complementary. For n = 1, stable base pairing in solution at room temperature was not possible and so this 

was used as a solution of the single monophosphate. The sample concentration for each oligomer is shown 

for reference. 

 

Figure 1. Schematic representation of the structures of some of the molecules studied. a) shows the structure 

of thymidine monophosphate (n = 1). The T2 and T4 carbonyl groups, referred to in the text, are highlighted.  

b) shows the AT dimer (n = 2) and c) shows the structure of the n = 15 oligomer, also studied previously [14,15] 

(duplex image created in Jmol: an open ʹ source Java viewer for chemical structures in 3D. 

http://www.jmol.org/.). 
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Experimental 

Sample Preparation 

The DNA oligomers studied are shown in Table 1 with representative schematic structures in Figure 1. The 

oligomers were designed to encompass lengths from one to fifteen bases, while maintaining a sequence 

structure that was as similar as possible to the 15 base pair sequence studied previously (results for this 

sequence are also included in the data presented here for comparison).[15] Specifically, the ATT motif was a 

major component of the oligomers. This was chosen in order to minimise any slippage of base pairs or 

creation of unintended base pairing interactions. Henceforth, ͚n͛ will refer to the number of bases within the 

specific DNA strand. For the oligomers that formed dsDNA structures at room temperature (n = 6, 10, 15, see 

IR absorption results), mixtures of the oligomer with its complementary oligomer were used at all times and 

the sample concentrations quoted for these oligomers in Table 1 are the concentration of the resulting 

duplex. In the case of the oligomers with n = 2 and 4, the oligomers used were self-complementary, but it 

was determined that dsDNA structures did not form at room temperature (see IR absorption results). Sample 

concentrations quoted for the n < 4 oligomers in Table 1 reflect oligomer concentrations. DNA oligomers 

along with their complementary oligomers were obtained from Eurofins Genomics (n = 6, 10, 15), Eurogentec 

(n = 2 and 4) and Sigma-Aldrich (n = 1). All samples were used without further purification. Oligomers were 

dissolved in a deuterated Tris buffer (100 mM Tris, 100 mM NaCl, pD7.4).  

IR Absorption and 2D-IR Spectroscopy 

For all IR spectroscopy measurements, the DNA sample was held between two CaF2 windows separated by a 

25 ʅŵ-thick polytetrafluoroethylene spacer. The sample was housed in a thermostatically-controlled mount, 

allowing the temperature to be varied between 293 and 353 K, accurate to ±1 K. FTIR spectra were recorded 

on a Bruker Vertex 70 FTIR spectrometer with a resolution of 1 cm-1. 

Ultrafast 2D-IR spectra were obtained using the LIFEtime spectrometer and the Fourier Transform 2D-IR 

method with the three input pulses arranged in a pseudo pump-probe geometry as described 

elsewhere.[15,26ʹ28]  For single color 2D-IR measurements, mid-IR laser pulses with a pulse duration of ~300 

fs were generated with central frequencies of 1650 cm-1 for use as pump and probe pulses for excitation and 

detection of the base modes of DNA. For two-color 2D-IR measurements, pulses with central frequencies of 

1650 cm-1 were used to pump the base modes of DNA while probe pulses with a center frequency of 1090 

cm-1 were used to detect the response of the DNA backbone modes. In both experiments, the pump pulse 

pairs were created using a mid-IR pulse shaper with phase cycling used to reduce any scattered light from 

the sample. The waiting time for the experiment was determined by the use of an optical delay stage. Parallel 

polarization of pump and probe pulses was used throughout. 
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Figure 2. IR absorption spectra of the DNA samples (n = 1-15) in the backbone (left) and base (right) region of 

the IR spectrum. Solid lines indicate room temperature (293 K) spectra while the dashed lines show the result 

of heating to 353 K. Grey shaded areas indicate the positions of particular vibrational modes described in the 

text along with the assignment of these modes using ssDNA notation. The absorbance scale is indicated by 

the blue scale bar. The scaling factor (e.g. x12) accompanying each spectrum gives an indication of relative 

spectral amplitudes for each oligomer. The factor quoted in each case reflects a combination of the sample 

concentration relative to that of the n = 15 sequence (Table 1) and any amplitude scaling applied to the 

spectrum to enable comparison of all spectra on a single figure. 

Results 

IR Absorption Spectroscopy - Base Region 

Figure 2 shows the IR absorption spectra of the DNA oligomers in both the DNA base (1550-1750 cm-1) and 

backbone (1000-1160 cm-1) spectral regions. The solid lines show the spectra at room temperature (293 K), 

while the dashed lines indicate the effect of increasing the temperature to 353 K. 
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Considering the base region spectra, for the oligomers with n ш 2, three absorptions were observed at room 

temperature (Fig.2, solid lines) located near 1620, 1660 and 1690 cm-1. These are marked in the figure with 

grey shaded areas. In samples with a chain length n ш 6, a fourth peak was resolved near 1640 cm-1. This peak 

was also present in the shorter (n = 2, 4) oligomers but visible only as a shoulder on the 1620 cm-1 mode. 

Using designations of the modes appropriate for ssDNA [2ʹ6,29] (see 2D-IR section below), these modes can 

be assigned to the AR ring stretching vibration of adenine (1620 cm-1) and three vibrational modes of thymine: 

a ring vibration (TR, 1640 cm-1) and the T4S and T2S  stretching vibrations of the T4 and T2 carbonyl groups (1660 

and 1690cm-1; see also Fig.1) respectively. These assignments are shown in Figure 2. For the n = 1  sample, 

which contains only a single T base, the AR mode was not present, so the peaks visible at 1690 and 1660 cm-

1 are assigned to the T2S and T4S  modes while the third peak at 1630 cm-1 is assigned to the TR mode.[2] This 

peak is very sensitive to base pairing and stacking[3ʹ6,14,15] and so is shifted relative to that in the oligomers 

with n > 1. All peak assignments are given in Table 2. 

 

Sample Backbone Region Assignments Base Region Assignments 

L2 L1 P2 Rib2 Rib1 ART/Ar
a) ATR/TR

a) AT4S/T4S
a) AT2S/T2S

a) 

n = 15 1055 1075 1087 1108 1158 1622 1640/1633 1663/1661 1693 

n = 10 1055 1075 1085 1108 1158 1622 1640/1633 1663/1661 1693 

n = 6 1056 1077 1085 1108 1158 1622 1639/1633 1663/1661 1692 

n = 4 1057 1077 1085 1108 1158 1626/1621 1634 1661/1660 1689 

n = 2 - - 1078 1106 1156 1624/1621 1633 1660 1690 

n = 1 - - 1086 1108 1156 - 1630/1633 1661 1687 

Table 2. Assignments and mode frequencies for all DNA samples studied. a) Frequency shifts of base modes 

caused by the loss of base pairing at higher temperatures are shown using dsDNA/ssDNA mode designations 

(see text).  

 

The differing oligomer lengths can be divided into two distinct groups in terms of their response to an 

increase in temperature. The longer oligomers (n ш 6) showed a marked increase in the intensity of the AR 

mode upon heating to 353 K, though the TR mode also shifted to lower frequency (Fig.2 dashed lines). By 

contrast, the spectrum of the shorter oligomers (n ч 4) at 353 K was largely the same as that at 293 K. The 
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most visible effect of increased temperature on the shorter oligomers was a minor shifting of the frequency 

of the AR mode.  

The increase in amplitude of the AR mode at higher temperatures, as observed for the longer strands (n ш 6) 

can arise from the loss of base stacking upon melting of dsDNA strands.[29] To confirm that this was the case 

here, IR absorption spectra were recorded over a range of temperatures from 293 to 353 K. The results of 

these experiments are shown in detail in the Supporting Information (Fig.S1), but briefly, the spectra of 

oligomers with n ш 6 underwent temperature-dependent changes that were shown by Principal Component 

Analysis (PCA)[14] to follow a sigmoidal temperature dependence, with mid points of 329 ± 2, 313 ± 2 and 

298 ± 2 K for n = 15, 10 and 6 respectively. In the case of the oligomers with n ч 4, a linear temperature 

dependence of the spectra was recovered, consistent with heating of the DNA oligomer but with no 

accompanying change in secondary structure. The spectral contributions to the temperature-dependent PCs 

of the long and short oligomers are shown in Fig.S1. The longer oligomers that displayed a sigmoidal 

temperature dependence (n ш 6) also showed a dramatic change in the AR peak amplitude and a smaller 

reduction in the T2S mode amplitude, both of which are characteristic changes associated with duplex 

melting.[29] For the shorter oligomers, the PCA analysis showed that only a shift of the AR mode was 

correlated with increasing the temperature, consistent with observations from Figure 2. Thus, we conclude 

that oligomers with n ш 6 form a ds-DNA structure at room temperature, but oligomers with n ч 4 do not. 

This was found to be consistent with traditional DNA melting curves obtained with UV-Visible absorption 

spectroscopy for the n ш 6 sequences, the results of which are shown in the supporting information (Fig S2.) 

IR Absorption Spectroscopy - Backbone Region 

In the backbone region of the IR absorption spectrum (Fig.2; 1000-1160 cm-1), the spectra also fall into two 

groups depending on oligomer length; those with n ш 6 and those with n ч 4. For the longer oligomers (n ш 

6), four features of interest were identifiable near 1050, 1085, 1105 and 1155 cm-1. These are marked with 

grey shaded areas in Figure 2 and can be assigned via previous studies[11] to the L2 phosphodiester stretching 

mode, the P2 symmetric PO2
- stretch, and two modes located principally on the deoxyribose moiety, which 

we identify as Rib2 (which appears as a shoulder on the high frequency side of the P2 band) and Rib1, 

respectively. A further phosphodiester mode, designated L1 is present as a low frequency shoulder on the P2 

mode, but is not clearly visible in the spectra as shown. Table 2 summarizes the assignments of the modes. 

For the samples with n ш 6, the P2 mode decreased markedly in amplitude upon heating from 293 to 353 K. 

This too followed a sigmoidal process (Fig.S3) and we attribute the effect to dsDNA melting. 

For the oligomers with n ч 4, the spectra were weaker and less well-defined in the backbone region, however, 

the P2 mode and the two Ribx modes (x=1,2) were visible and lay close to the frequencies of the same modes 

in the longer strands. The backbone region spectra of the oligomers with n ч 4 were largely temperature 

independent, consistent with the results observed in the base region (see also Fig.S3). 
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Figure 3. IR and 2D-IR spectra for n = 10 oligomer: a) and b) IR absorption spectra of the n = 10 oligomer at 

293 K (solid blue lines) and 353 K (dashed red lines) in the backbone (a) and base (b) region of the spectrum. 

c) and d) 2D-IR spectra of the n = 10 oligomer at 293 K. c) shows the two-color 2D-IR spectrum using excitation 

of the base modes and detection of the backbone modes. d) shows the one-color 2D-IR spectrum with 

excitation and detection in the base region of the spectrum. e) and f) 2D-IR spectra of the n = 10 oligomer at 

353 K e) shows the two-color 2D-IR spectrum using excitation of the base modes and detection of the 

backbone modes. f) shows the one-color 2D-IR spectrum with excitation and detection in the base region of 

the spectrum. In all spectra, the waiting time was 400 fs and relative pump-probe polarization was parallel. 

The color scale runs from red (negative) to blue (positive) with contour lines placed at 5% intervals. Contours 

for d) and f) start at the 10% level to reduce the effect of small features and noise. 
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2D-IR Spectroscopy - Base Region 

Single color 2D-IR spectra (pumping and probing the base-region vibrational modes) of the n = 10 oligomer 

are shown in Figure 3 at both 293 K (Fig3.(d)) and 353 K (Fig.3(f)) alongside the corresponding IR absorption 

spectra for reference (Fig.3(b)). The waiting time used to acquire these spectra was 400 fs, which was chosen 

to avoid the effects of temporal overlap of the pulses in the 2D-IR experiment. The 2D-IR spectroscopy of AT 

rich systems in this spectral region has been reported elsewhere and so we will provide only a brief overview 

of the results, as they were entirely consistent with previous observations. [14] The spectra of the n = 10 

oligomer (Fig.3) are representative of those recovered for all systems with n ш 6, i.e. those that are capable 

of forming a dsDNA structure at room temperature. At 293K, the spectrum showed four negative peaks along 

the diagonal, assignable to the v=0-1 transitions of the four peaks visible in the IR absorption spectrum 

obtained at 293 K (Fig.3(b), blue, solid line). The v=1-2 transitions of each of these modes was observed in 

the 2D-IR spectrum as a positive peak shifted ̱15-18 cm-1 to lower probe frequency relative to the v=0-1 

transition. In addition to these peaks, off-diagonal features were observed linking all four of the diagonal 

peaks. These are shown by dashed guidelines in the figure and are assigned to vibrational coupling of the 

modes. These include peaks linking the AR mode to each of the TR, T2S and T4S modes (see red arrows in 

Fig.3(d)). This ĐŽƵƉůŝŶŐ ŽĨ ŵŽĚĞƐ ƉƌĞǀŝŽƵƐůǇ ĂƐƐŝŐŶĞĚ ƚŽ ͚ĂĚĞŶŝŶĞ͛ Žƌ ͚ƚŚǇŵŝŶĞ͛ ŵŽĚĞƐ ƌĞĨůĞĐƚƐ ƚŚĞ ƐƚƌŽŶŐ 

vibrational interactions leading to delocalisation of the vibrational modes across the base pair caused by 

Watson-Crick base pairing and this is reflected by the modified mode assignments (AT2S, AT4S, ATR and ART) 

that will be used for the ds-DNA vibrational modes henceforth (Fig.3, Table 2).[2ʹ6]  

Heating the dsDNA oligomers with n ш 6 to 353 K led to the loss of the off-diagonal peaks linking the ART 

mode to the ATR, AT2S and AT4S modes (red arrows, Fig.3(f)). This reflects the loss of base pairing upon duplex 

melting. A shift of the ATR mode to lower frequency as it changes to the TR mode was also observed.[14] It 

should be noted that the apparent change in intensity of the T2S diagonal feature in Fig.3(f) is not due to a 

change in signal size but rather to due to a contouring effect arising from the large increase of the AR on-

diagonal peak. 

In the case of the shorter strands (n ч 4), the base region 2D-IR spectra at both 293 and 353 K closely 

resembled that of the n = 10 oligomer at 353 K (Fig.3(f)), which is indicative of the lack of base-pairing present 

in the oligomers with fewer bases. 
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Figure 4. Two-color 2D-IR spectra of DNA samples as a function of oligomer length. a)-e) show the spectra at 

293 K while f)-j) show the corresponding spectra at 353 K. The blue (upper row) and red (lower row) boxes 

highlight the same regions of the spectrum highlighted in Figure 3 and show the regions of the spectra where 

temperature-dependent off-diagonal peaks linking base modes to the P2 backbone mode appear for 

oligomers with n ш 6. The color scale runs from red (negative) to blue (positive) with contour lines placed at 

5% intervals. 

Backbone Region 2D-IR Spectra  

Two-color 2D-IR spectra of the 10-mer oligomer are shown in Fig.3(c) and Fig.3(e) at 293 and 353 K 

respectively. The waiting time used to acquire these spectra was 400 fs. In the two-color 2D-IR experiments, 

the pump frequency was set near 1650 cm-1 to excite the base vibrational modes discussed in the previous 

section while the probe frequency (~1100 cm-1) interrogated the response of the backbone vibrations. Thus, 

the 2D-IR spectra show the off-diagonal region of the 2D-IR spectrum linking the base and backbone 

vibrational modes. 

At 293 K, the results for the n = 10 oligomer (Fig.3(c)) showed a series of off-diagonal peaks linking the four 

base modes (AT2S, AT4S, ATR and ART) with the P2 symmetric stretching vibration of the phosphate group. 

These peaks are highlighted by the blue box in Fig.3(c). The peaks are identical to those reported for the n = 

15 oligomer previously.[15] Further, weaker off-diagonal features were also observed linking the base modes 

to the L2 phosphodiester mode and to the Rib1 vibration near 1150 cm-1. These are highlighted by dashed 

lines in Fig.3(c).  

Raising the temperature to 353 K caused a significant change in the two-color 2D-IR spectrum of the n = 10 

oligomer (Fig.3(e)). The strong peaks linking the base modes to the P2 vibration were lost for all except 

excitation of the T2S mode (red box, Fig.3(e)). This resulted in off-diagonal modes between the T4S, TR and AR 
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base vibrations and the L1 phosphodiester mode becoming visible (red box, Fig.3(e)). The L1 mode is located 

at 1075 cm-1 and appeared only as a shoulder to the P2 band in the spectrum recorded at 293 K (Fig.3(c)). By 

contrast, the positions of off-diagonal peaks between the base modes and the L2 and Rib1 modes were 

unchanged by increasing the temperature (see black crosses, Fig.3(c) and (e)), though some variations in 

amplitude were observed. The changes in the spectrum are assigned to changes in base to backbone mode 

coupling caused by melting of the helix, which is discussed in more detail below. 

Considering the two-color 2D-IR spectra for all of the oligomers studied at both 293 K and 353 K (Fig.4), the 

temperature-dependent peak patterns identified in the n = 10 spectra, shown by the blue and red boxes in 

Fig. 3(c,e), were replicated in the spectra for all oligomers with n ш 6 (cf Fig.4(a-c) and Fig.4(f-h)). By contrast, 

the spectra for oligomers with (n ч 4) showed no evidence of the strong peaks linking base modes to the P2 

vibration (Fig.4(d,e)) observed for the longer oligomers. Furthermore, the spectra of these shorter oligomers 

showed no particular variation with increased temperature (Fig.4(i,j). Thus we conclude that there is a 

correlation between the presence of these off-diagonal peaks linking base modes to the P2 mode and the 

formation of the dsDNA structure. 

The weaker peaks linking the base modes to the L1, L2 and Rib1 modes were relatively unaffected by 

temperature and consistent across the spectra of all oligomers. It must however be considered that the P2 

mode amplitude is greatly reduced in the spectra of the shorter oligomers (n ч 4) and reduced further with 

elevated sample temperature. Despite this, the fact that the Rib1 mode, although weaker than the P2 mode 

in every case (Fig.2), was visible in each spectrum (Fig.4(f-j) suggesting that this important off-diagonal peak 

is not falling below the level of detection. 

Vibrational Relaxation Dynamics - Base Relaxation Dynamics 

One-color 2D-IR spectra were obtained for each of the oligomers at a series of waiting times ranging from 0 

fs to 5 ps (e.g. Fig.5(a)). As the waiting time increased, the amplitudes of the diagonal peaks were observed 

to decrease due to vibrational relaxation of the v=1 level. Plotting the peak amplitudes as a function of 

waiting time and fitting to a single exponential decay provided the vibrational relaxation time (T1) of each of 

the base modes. A representative example of the vibrational relaxation of the diagonal features from the n 

= 10 oligomer is shown in Figure 5(b). In each case, the T1 parameter was obtained from an average of the 

decay timescales of the v=0-1 and v=1-2 features, which both relate directly to the v=1 population. The results 

are shown in Table 3. Each of the base modes showed similar relaxation timescales, with a value of ̱660 fs 

± 50 fs representing the bulk of the base modes at 293 K. This is consistent with previous measurements for 

the n = 15 oligomer, but slightly superior in terms of the spread of T1 times recovered.[15] Little variation in 

the vibrational lifetimes of the modes was observed with changes in chain length (Table 3), though a generally 

slightly longer T1 time was obtained for the ART/AR mode than for the higher frequency modes (~760 fs ± 50 

fs). It is noted that the measurements were performed using ZZZZ polarisation, though no significant 
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anisotropy has been observed on these timescales that would affect the outcome of the dynamics measured. 

Despite the fast T1 times recovered by single exponential fitting, it is noted that a small residual signal is 

present at a waiting time of 5 ps (Fig.5). This is attributed to a small heating effect following relaxation of the 

DNA modes. 

 

Figure 5. a) Cross sections through the 2D-IR spectrum of the n = 10 oligomer at a pump frequency resonant 

with the ART mode (1622 cm-1) showing the waiting time dependence of the diagonal peak observed. b) 

Temporal behavior of diagonal peak of the ART mode in the one-color 2D-IR spectrum of the n = 10 oligomer. 

Red open circles show the waiting time dependence of the amplitude of the v=0-1 transition (see red arrow in 

a), the black solid squares show the same for the v=1-2 transition (see black arrow in a). Solid lines show the 

results of fitting the data to single exponential decay function. 
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Sample  ART (fs) ATR (fs) AT4S (fs) AT2S (fs) 

n = 15 680 ± 50 520 ± 70 550 ± 30 580 ± 30 

n = 10 830 ± 50 - 560 ± 20 590 ± 20 

n = 6 710 ± 30 360 ± 50 570 ± 30 600 ± 30 

n = 4 710 ± 40 - 600 ± 40 630 ± 10 

n = 2 810 ± 30 - 650 ± 40 620 ± 50 

 n = 1 - 530 ± 50 590 ± 40 640 ± 30 

Table 3. Summary of the vibrational relaxation times (T1) obtained for base modes from the amplitudes of 

diagonal peaks appearing in one-color 2D-IR spectra recorded at a temperature of 293 K.  

 

 

Figure 6. Waiting time-dependent two-color 2D-IR spectra of the n = 6 oligomer. a)-d) show results at 293 K, 

e)-h) show spectra for the corresponding waiting times but at 353 K. Arrows identify peaks referred to in the 

text. Results are representative of all samples with n ш 6. 
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Figure 7. Waiting time dependent cross-sections through the two-color 2D-IR spectra of the n = 10 sample at 

a pump frequency resonant with the AT4S base mode (1663 cm-1), at 293 K. Results are representative of all 

samples with n ш 6 at 293 K. The line colors run from red (waiting time = 0 ps) to purple (5 ps). Arrows identify 

peaks referred to in the text and correspond to arrows of the same color in Figure 6. Inset shows expanded 

region of the spectrum near 1085 cm-1 (P2 mode). 

 

Backbone Relaxation Dynamics 

By recording two-color 2D-IR spectra as a function of waiting time from 0 fs to 5 ps, it was possible to 

determine the vibrational relaxation mechanisms occurring to transfer vibrational energy from the base 

modes to the backbone modes. The results for the n = 15 oligomer have been published previously and we 

seek here to extend the observations to shorter chain lengths.[15] 

Phosphate group (P2): As the off-diagonal peaks linking base vibrational modes to the P2 mode are the only 

ones that are structure- (i.e. temperature-) dependent, we begin by considering the dynamics of the off-

diagonal peaks linking the base modes AT2S, AT4S, ATR and ART to the P2 stretching vibration in dsDNA 

oligomers ;Ŷ ш ϲ at 293 K). We note that these peaks do not appear in the two-color 2D-IR spectra of the 

oligomers with n ч ϰ (Fig.4). A series of waiting-time dependent two-color 2D-IR spectra of the n = 6 oligomer 

are shown in Figure 6 while cross-sections through the two-color 2D-IR spectrum of the n = 10 oligomer are 

shown at a pump-frequency of 1660 cm-1, resonant with the AT4S mode, at a range of waiting times (Fig.7). 

The data in these figures are both representative of the consistent spectra obtained for the longer oligomers 

;Ŷ ш ϲͿ at room temperature, irrespective of oligomer length and the base mode excited.  
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The cross-sections show that the off-diagonal peak linking base modes to the P2 mode has three 

contributions. A negative peak (Fig.6(a) and Fig.7, blue arrow) was accompanied at short waiting times (̱400 

fs) by a narrow, positive feature shifted by around 7 cm-1 to lower probe frequencies (Fig.6(a) and Fig.7, red 

arrow). As the waiting time increased, the negative peak grew in amplitude and then decayed, while the 

narrow positive feature decreased in amplitude, to be replaced by a broader peak shifted by around 12 cm-1 

to lower probe frequencies relative to the negative peak (Fig.6(a) and Fig.7, black arrow).  

 

Figure 8. a) Waiting time dependence of the amplitudes of off-diagonal peaks in two color-2D-IR spectra 

linking base vibrational modes to the P2 mode. Data shows the average response for all dsDNA samples (n ш 

6) at 293 K. The error bars show the spread of values recovered across the three samples. Blue, red and black 

traces correspond to the peaks identified by arrows of the same color in Figs.6 and 7. b) Time dependence of 

the off-diagonal peaks in two color-2D-IR spectra linking base modes to the Rib1 vibrational mode. Data shows 

the average response for all dsDNA samples at 293 K. The error bars show the spread of values recovered 

across all samples. 
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The time-dependent dynamics of the three components of the P2 off-diagonal peaks were obtained from the 

two-color 2D-IR data by comparing peak amplitudes as a function of waiting time (293 K). The results are 

shown in Figure 8(a). As the results recovered for all oligomers with n ш 6 were similar, Fig.8(a) reproduces 

the average response of the three peaks (one negative and two positive features) across the three oligomers 

(n = 6, 10, 15) and the error bars show the spread of the data across the three oligomers. The dynamics were 

well-represented by exponential functions in all cases. In the case of the negative peak (Fig.8(a), blue and 

blue arrow Fig.7), an average rise time of 500 ± 150 fs and a decay of ~5000 ± 2000 fs was observed. It is 

noted that the accessible time-range of the data, as defined by the T1 time of the base modes, prevented 

accurate definition of the long-time relaxation dynamics. The red-shifted positive feature (Fig.8(a), black, and 

black arrow Fig.7) showed a similar rise time and a long-lived decay (>5000 fs). In the case of the sharper 

positive peak (Fig.8(a), red and red arrow Fig.7), this showed dynamics consistent with an exponential decay 

(~4000 fs). These results are summarised in Table S1. 

The complex spectroscopy observed for the dsDNA oligomers with n = 10 and 6 is identical to that reported 

for the n = 15 oligomer previously[15] and is assigned to a combination of vibrational coupling and energy 

transfer resulting from excitation of the base modes. The negative peak and sharp positive feature present 

at short waiting times are due to the effects of vibrational coupling of the base and P2 modes caused by the 

formation of the double helix dsDNA structure. This explains the loss of the off-diagonal peaks to the P2 mode 

upon heating of the sample (Fig.4). In the case of coupling, the separation of the positive and negative 

features along the probe frequency axis is determined by the off-diagonal anharmonicity of the coupled 

modes.  

The growth of the negative feature and appearance of the red-shifted positive feature at longer waiting times 

are attributable to energy transfer dynamics. The rise time of 500 ± 150 fs overlaps with that observed for 

relaxation of the base modes (̱650 ± 50 fs) to within experimental accuracy, suggesting direct energy 

transfer from base to PO2
- group. However, in the case of energy transfer, the frequency shift of the positive 

feature from the negative peak is defined by the diagonal anharmonicity of the mode to which energy is 

transferred. This does not exactly match the known anharmonicity of the P2 mode (12 vs 8 cm-1[11]) and so 

we conclude that the energy transfer from the base modes occurs to an intermediate mode (or modes), 

which couple to the P2 mode.[30,31] This leads to the rising component observed in the P2 off-diagonal peak. 

The decay timescale of these off-diagonal peaks is significantly longer than the relaxation (T1) time of the P2 

mode[11] and so we further conclude that we are observing the first step in a complex energy transfer 

pathway that ultimately leads to population of the P2 mode within a few picoseconds. This is supported by 

the fact that the anharmonic shift of the positive feature assigned to energy transfer in the 2D-IR spectrum 

continues to evolve in terms of its position throughout the waiting time range studied (see inset Fig.7), 

consistent with continuous transfer of energy between a network of modes, which couple to P2. The fact that 
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the positive feature assigned to coupling also decays slowly, further suggests that some of the intermediate 

modes receiving energy from the bases are coupled to the P2 mode in the dsDNA configuration.  

We now turn to the behavior of off-diagonal peaks linking base modes to the P2 mode at elevated 

temperature (353 K), where all oligomers are in the ssDNA conformation. At 353K, the majority of the off-

diagonal peaks linking the base modes to the P2 mode were lost with the exception of that between the T2S 

and P2 modes for the oligomers with n ш 6. The behavior of this feature can be seen in Figure 6(e-h) (blue 

arrow).  In this case, the peak showed the rising (̱500 fs) and decaying (~5000 fs) dynamics characteristic of 

the energy transfer mechanism observed in the dsDNA sample, but without the additional narrow positive 

lineshape component assignable to vibrational coupling that was specific to the dsDNA samples.  

In the case of the oligomerƐ ǁŝƚŚ Ŷ ч ϰ, the off-diagonal peak to the P2 modes were not clearly visible and as 

such dynamics for these oligomers cannot be compared with those with n ш 6. From the backbone region off-

diagonal features present in the 2D-IR spectra for oligomerƐ ǁŝƚŚ Ŷ ч ϰ ƚŚĞ ĞǀŝĚĞŶĐĞ ŽĨ an energy transfer 

mechanism is found through the dynamics recovered for the L2 and Rib2 modes which we will now discuss. 

Phosphodiester backbone (L2): The off-diagonal peak linking the AT4S base vibration to the L2 phosphodiester 

stretching vibration is visible in Fig.6 and Fig.7 (purple arrows). This off-diagonal peak was visible in all 

samples at both low and high temperatures, with the exception of the TMP sample where the phosphodiester 

linkages are not present in the structure. It is noted that the expected dispersive lineshape is not clearly 

observed due to the presence of overlapping features assignable to the L1 vibrational mode.[15] However, a 

peak is observed at 1070 cm-1 in the FTIR spectrum of the n = 1 sample, which may have a similar origin. This 

is visible in the 2D-IR spectra (Fig.4(e,j), purple arrows). The temporal dynamics recovered for the L2 off-

diagonal peaks are shown in Fig.S4 and Table S1. In all samples, this mode showed dynamics consistent with 

the energy transfer process described for the P2 mode, with a rise time of 730 fs ± 120 fs and decay of >5000 

fs being observed. This is slightly longer than observed for the P2 mode but again the errors overlap 

preventing definitive separation. The striking result is the agreement across the chain lengths, as shown in 

the figure by the small error bars, further reinforcing the result obtained from the P2 mode that the 

vibrational relaxation mechanism is relatively robust irrespective of the chain length and conformation (ds 

or ss) of the sample. This is different to the coupling phenomenon, which is unique to dsDNA. 

Ribose (Rib1): The most intense off-diagonal peak linking the base modes to vibrational modes of the ribose 

group is located at 1155 cm-1
, identified as Rib1. This off-diagonal is shown in Fig.6 and Fig.7 (orange arrows). 

This peak was present in the spectra of all oligomers at both low and high temperatures. Interestingly, the 

dynamics recovered for the Rib1 mode were different to those discussed for the P2 and L2 modes (Fig.8(b)). 

In the case of the Rib1 off-diagonal peak, a slightly faster rise (450 ± 40 fs) was followed by a significantly 

faster decay time (1200-1600 fs) than was observed for off-diagonal peaks to the P2 and L2 modes. Once 

again, the dynamics of this off-diagonal peak were robust across the samples studied, as can be seen by the 
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very small spread in the data in Figure 8(b). Furthermore, the relaxation timescales were invariant with 

increased temperature and so were not sensitive to the dsDNA to ssDNA transition. 

It is noted that the rise time was a little too fast to allow definitive measurement given the time resolution 

of the LIFEtime instrument, the qualitative indication is that it is faster than that observed for the P2 and L2 

backbone modes. It is impossible to rule-out absolutely a contribution from vibrational coupling from the 

base modes to the Rib1 mode however, although if it is present then it must be conformation independent, 

as opposed to that seen for the P2 mode. Similar dynamics were reported previously for the base-Rib2 mode 

of the n = 15 oligomer and the faster rise and decay times were assigned to the Rib2 mode playing an 

intermediate role in the energy transfer dynamics.[15] Thus, the data appears consistent with the ribose 

group acting as a link between the base and backbone dynamically as part of the energy transfer cascade in 

a manner that reflects its physical position within the DNA structure. 

Discussion 

It is clear from the data presented that creation of dsDNA structures, as seen in the oligomers with n ш ϲ͕ 

leads to  specific features in the off-diagonal region of the 2D-IR spectrum associated with coupling of base 

vibrational modes to the P2 symmetric stretching mode of the PO2
- unit. Upon melting of the DNA duplex 

these features were no longer present. An off-diagonal peak linking T2S to P2 remained at high temperature 

but lacked the spectroscopic signature of vibrational coupling, indicating only the presence of an energy 

transfer process between these modes at elevated temperature. The coupling of base modes to the P2 mode 

has been previously proposed to arise from the conformation of the helix bringing the transition dipole 

moments of the PO2
- modes and base modes into common alignment perpendicular to the helix 

direction.[15] It has been suggested that this alignment may also result in the increased P2 amplitude in 

dsDNA samples (Fig.2).[15] The commonality of the feature across the duplex-forming oligomers studied here 

lends further support to this, but further simulations are required to fully understand this behavior. 

The shorter oligomers (n ч ϰͿ used in this study do not show the same coupling behavior as the longer ones. 

In the case of the n = 4 oligomer there is some indication of interaction between the T4S mode and the P2 

mode (Fig.4(d)) however the amplitude of this feature is very small compared to other features in the 

spectrum. Upon heating of the sample, this feature was also lost as observed in the longer oligomers. This 

points to some change in the conformation in the n = 4 oligomer upon heating, despite the IR absorption and 

base region 2D-IR spectra indicating that the n = 4 oligomer can be considered to be ss-DNA at all 

temperatures. As the number of bases required for a full turn in a double helix is ten,[32] there is some 

possibility of weak base pairing between the n = 4 oligomers, which would be disrupted at higher 

temperatures. The indications from the 2D-IR data are that, at room temperature, this is insufficient to form 

the vibrational coupling interactions observed in the longer oligomers however and this may be due to the 
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fact that a half-turn of the DNA helix is not achievable. In the n = 1 spectrum, there are no features coupling 

the base modes to the P2 mode, indicating firmly that these peaks are a feature of the double helix as opposed 

to a nucleotide-based mechanism. 

Although the energy transfer processes were remarkably similar for oligomer lengths studied, a notable 

difference between the shorter and longer oligomers was observed in the features assigned to energy 

transfer between the T2S and P2 modes that were visible for ssDNA ǁŚĞŶ Ŷ ш ϲ.[15] This peak (indicated by 

blue arrows in Figure 6 (e-f)) was visible at 353 K, indicating that it was not dependent upon the dsDNA 

conformation. However, the absence of this off-diagonal peak in the spectra of oligomers with n ч 4 indicates 

that a minimum oligomer length is needed to facilitate energy transfer between the two vibrational modes. 

It was postulated previously that this peak may arise from local structure formation of the single oligomer[15] 

and the chain length dependence reported here would seem to add weight to that conclusion. 

There is also a remarkable drop in the amplitude of any off-diagonal features from the T2S base mode in the 

oligomers with n ч 4. It is notable that, in the IR absorption spectra for these shorter oligomers, the T2S mode 

is clearly the smallest absorption band compared to the others in this spectral region. This feature is also 

broader in the spectra for oligomers with n ч 4. The lack of off-diagonal features linking this particular base 

mode with the backbone modes could be a result of reduced transition dipole strength in these shorter 

oligomers ĚƵĞ ƚŽ Ă ůĂĐŬ ŽĨ ǀŝďƌĂƚŝŽŶĂů ĐŽƵƉůŝŶŐ ďĞƚǁĞĞŶ ƚŚĞ ƚƌĂŶƐŝƚŝŽŶ ĚŝƉŽůĞƐ ĂƐ ŽďƐĞƌǀĞĚ ŝŶ ɲ-helical 

peptides.[33] Another possibility could be that in the shorter oligomers, energy from the T2S mode is 

preferentially dissipated via interaction with the solvent environment in proximity with this C=O group. The 

broadening of features in the FTIR spectra is indicative of increased interaction with the solvent and this 

direct base-water interaction may prove to be a more efficient pathway for vibrational relaxation than 

observed in the longer oligomers where some degree of hydrophobic collapse of the oligomer may be 

impossible. 

Across the range of modes for which dynamics have been measured in this data, it is clear that no significant 

variation in timescales between the different lengths of DNA oligomers used in this study exists. In general, 

the spread in the dynamics throughout the oligomers, represented by error bars in Figure 8 was generally 

small and therefore the use average timescales as presented is a reasonable representation of the data. 

The dynamics of the energy transfer behaviour of the off-diagonal features falls into two groups. The ribose 

modes (Rib1,2) show faster dynamics and appear to act as an initial conduit for energy as the base modes 

relax. By contrast, the P2 and L2 modes show slower energy transfer dynamics, with the decaying signals 

lasting significantly longer than 5 ps. This is indicative of general pathway for energy transport in DNA 

oligomers that support the conclusions made previously.[15] Population relaxation from the bases to the 

ribose modes facilitates vibrational transfer to and then between the coupled backbone modes followed by 

subsequent dissipation of energy to the solvent environment via vibrations of the DNA backbone. It is also 

clear however that the energy transfer mechanism is complex and it is not possible to rule out the 
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involvement of alternative pathways utilising low frequency vibrational modes.[30,34] In particular, the long-

time duration of the signals suggest that the low frequency modes of the DNA oligomer may be coupled to 

the P2 and L2 modes of the backbone.[30,31,35] This is consistent with the established position of the 

phosphate group as the primary contact between DNA and the solvent.  

For all the oligomers measured in this study, off-diagonal features in the backbone region 2D-IR spectra 

linking the base modes with the L2, and Rib2 modes are unaffected by heating of the sample. The primary 

mechanism giving rise to these peaks has been identified as being energy transfer and the indication is that 

this process is insensitive to oligomer conformation and is active in both longer oligomers and single 

nucleotide building blocks. Therefore energy relaxation process of DNA would appear to be a property of the 

nucleotide rather than the secondary structure. This is consistent with the need for fast energy dissipation 

mechanisms to avoid the effects of photo-induced damage to exist in all oligomers, irrespective of base 

composition. 

Conclusions 

One and two-color 2D-IR spectroscopy has been used to investigate the coupling and vibrational energy 

relaxation mechanisms in a series of AT-rich DNA oligomers varying in length from one to 15 bases. The ability 

ŽĨ ƚŚĞ ůŽŶŐĞƌ ;Ŷ ш ϲͿ oligomers to form a stable base paired geometry plays a key role in facilitating coupling 

between the base and phosphate backbone vibrational modes. Upon melting of these oligomers, 2D-IR off-

diagonal features connecting the majority of the base modes to the P2 symmetric PO2
- stretching mode were 

lost, indicating they are unique to ds-DNA. Varying the oligomer length of the DNA oligomers had no 

significant impact on the timescales of the vibrational energy relaxation process observed in time-resolved 

data. A previously proposed mechanism for a 15mer AT-DNA oligomer, where population relaxation of the 

base modes to lower frequency backbone modes, including those on the ribose unit, which are coupled to 

and thus allow energy transfer to the backbone is supported by the dynamic data presented in this study. It 

appears that the ability of DNA to effectively dissipate excess energy to prevent damage has roots in the 

mononucleotide building blocks of DNA, while the ds-DNA architecture gives rise to helix-specific vibrational 

interactions across the macromolecular structure. 
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