
Azzopardi, Leif and Zuccon, Guido (2018) Economics models of 

interaction : a tutorial on modeling interaction using economics. In: 

Computational Interaction. Oxford University Press, Oxford. ISBN 

9780198799610 , 

This version is available at https://strathprints.strath.ac.uk/62795/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any correspondence concerning this service should be sent to the Strathprints administrator: 

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research 

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the 

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/145241436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


Economic Models of Interaction:

A Tutorial on Modeling Interaction using Economics

Leif Azzopardi1 and Guido Zuccon2

1 Dept. of Computer and Information Sciences, University of Strathclyde, Glasgow,
Scotland

leif.azzopardi@strath.ac.uk
2 School of Electrical Engineering and Computer Science, Queensland University of

Technology (QUT), Brisbane, Australia
g.zuccon@qut.edu.au

Abstract. This chapter provides a tutorial on how economics can be
used to model the interaction between users and systems. Economic the-
ory provides an intuitive and natural way to model Human-Computer In-
teraction which enables the prediction and explanation of user behaviour.
A central tenet of the approach is the utility maximisation paradigm
where it is assumed that users seek to maximise their profit/benefit sub-
ject to budget and other constraints when interacting with a system.
By using such models it is possible to reason about user behaviour and
make predictions about how changes to the interface or the users inter-
actions will affect performance and behaviour. In this chapter, we de-
scribe and develop several economic models relating to how users search
for information. While the examples are specific to Information Seeking
and Retrieval, the techniques employed can be applied more generally
to other human-computer interaction scenarios. Therefore, the goal of
this chapter is to provide an introduction and overview of how to build
economic models of human-computer interaction that generate testable
hypotheses regarding user behaviour which can be used to guide design
and inform experimentation.

1 Introduction

When interacting with a system, users need to make numerous choices about
what actions to take in order to advance them towards their goals. Each action
comes at a cost (e.g. time taken, effort required, cognitive load, financial cost,
etc.), and the action may or may not lead to some benefit (e.g. getting closer
to completing the task, saving time, saving money, finding out new information,
having fun, etc.). Describing Human Computer Interaction (HCI) in this way
naturally leads to an economic perspective on designing and developing user in-
terfaces. Economics provides tools to model the costs and benefits of interaction
where the focus is on understanding and predicting the behaviour and interac-
tion of economic agents/users within an economy/environment. By developing
economic models of interaction, it is possible to make predictions about user be-
haviour, understand the choices they make and inform design decisions. When
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interaction is framed as an economic problem, we can examine what actions lead
to accruing the most benefit for a given cost or incur the least cost for a given
level of benefit, from which it is then possible to determine what is the optimal
course of action that a rational user should take given the task, interface, context
and constraints.

Let’s consider a simple example: your friend has just completed a marathon,
and you are curious to know how long it took them to complete the race3. You
have arrived at the web page showing all the times and names of runners, ordered
by time. You consider two options: (i) scrolling through the list, or (ii) using
the “find” command4. The first option would mean scrolling through on average
about half the list of names, while the second would require selecting the find
command, typing in their name, and then checking through the matches. Unless
the list is very small, then the second option is probably going to be less costly
(i.e. less comparisons) and more accurate5. In this example, it may seem obvious
that using the “find” option would be preferable in most cases - and indeed it
is reasonably trivial to develop a simple model of the costs and benefits to show
at what point it is better to use the “find” option over the “scroll” option, and
vice versa. However, even to arrive at such an intuition, we have made a number
of modelling assumptions:

1. that the user wants to find their friend’s performance (and that the said
friend took part in the marathon),

2. that the user knows and can perform both actions,
3. the currency of the costs/benefit is in time i.e. time spent/saved, and,
4. that the user wants to minimize the amount of time spent completing the

task.

Such assumptions provide the basis for a formal model to be developed. The
last assumption is common to most economic models. This is because they are a
type of “optimization” model [31, 32, 38, 37], which assumes that people attempt
to maximise their profit given their budget (costs) or minimize their budget
expenditure given some level of profit. The other assumptions serve as constraints
which are a result of the environment, the limitations of the person, and/or
the simplifications made by the modeller. By engaging such an assumption, the
model can be used to consider the trade-offs between different strategies, reason
about how users will adapt their behaviour as the costs and benefit change,
and make predictions about their behaviour. Consequently, economic models go
beyond approaches which just focus solely on cost (e.g. GOMS-KLM[14], Fitt’s
Law[19], Hick’s Law[22], etc.), as economic models also consider the benefit and
profit that one derives from the interaction. This is an important difference,
because not all tasks are cost/time driven where the goal is to reduce the time

3
This example is based on a study conducted in [42], where people were challenged to undertake
such a task.

4
Note that we have assumed that you are familiar with using the “find” command (e.g. CTRL-f,
CMD-f, etc). Of course, not all users are familiar with, or even aware that this option is available.

5
It is easy to skip over records when browsing through thousands of entries. Indeed, in the study
conducted in [42], subjects that scrolled often reported the incorrect time.
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taken or minimize friction. For example, when should an author stop editing
a paper, when should an artist stop photoshopping an image, when should a
researcher stop searching for related works? In the above example, the different
options have varying degrees of accuracy when employed to find the correct
runner’s name and subsequent time. This is because as the number of items in
the list increases the chance of missing or skipping over an item also increases,
thus decreasing the accuracy. So in this case, there is a trade-off between the
speed (minimising time taken to complete the task) and the accuracy (finding
the correct time). Also when using the “find” option, there is another trade-
off between the number of letters entered (typing cost) versus the number of
matching names (scanning costs, and thus accuracy). In such tasks, it is clear
that understanding the trade-off between the benefits and the costs of different
interaction strategies can help predict user behaviour. Economic models can
help to draw insights into these trade-offs and understand when one strategy
(sequence of actions) is better to perform than another or what strategy to
adopt under different circumstances.

In economic models, it is commonly assumed that users are economic agents
that are rational in the sense that they attempt to maximize their benefits, and
can learn to evolve and adapt their strategies towards the optimal course of
interaction. Thus the theory is normative, and gives advice on how a rational
user should act given their knowledge and experience of the system. Going back
to the example above, if a user is not aware of the “find” option, then they will be
limited in their choices, and so they would select the “scroll” option (or, choose
not to complete the task, i.e. the “do nothing” option). However, when they
learn about the existence of the “find” option, perhaps through exploratory
interactions or from other users, then they can decide between the different
strategies. While assuming that users are rational may seem like a rather strong
assumption, in the context of search a number of works [6, 39, 44, 45] have shown
that users adapt to systems and tend to maximize benefit for a given cost (e.g.
subscribe to the utility maximisation paradigm [46]) or minimize cost for a given
level of benefit (e.g. subscribe to the principle of least effort [52])6. So a user,
knowing of the “find” option would select it when the list of items is sufficiently
long such that employing the find command is likely to reduce the total cost
incurred. Once we have a model, we can then test such hypotheses about user
behaviour, e.g. given the cost of using the find command, the cost of scanning
items, etc. then we may hypothesise that when the length of the list is over
say two pages, it is more efficient to use the “find” option - and then design
an experiment to test if this assertion holds in practice (or not) in order to
(in)validate the model.

During the course of this chapter, we will first provide an overview of eco-
nomic modelling in the context of HCI where we will formalise the example above
by developing two models that lead to quantitative predictions regarding which
option a user should employ (i.e. “find” or “scroll”), and, how they should use

6
Note that essentially these optimisations objectives are two sides of the same coin and arrive at
the same optimal solution i.e. if the maximum benefit is $10 for 5 minutes of work, then for a
benefit of $10 the minimum cost is 5 minutes of work.
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the “find” command, when chosen. Following on from this finding example, we
will then consider three further search scenarios related to information seeking
and retrieval, where we will develop models of: (i) querying, (ii) assessing and
(iii) searching. The first model will be provide insights into query length and
how to encourage longer or shorter queries. The next model will provide insights
into when to stop assessing items in a ranked list of results and how to design
different result pages for different result types. The third model on searching
will examine the trade-off between issuing queries and how many documents to
examine per query during the course of search session. This will lead to a number
of insights into where the system can be improved and how users will respond to
such changes. While these models are focused on search and search behaviour,
similar models could be developed to help describe how people browse products,
play games, use messaging, find apps, enter text, and so on. In the next section,
we will describe a framework for building economic models of interaction that
can be used to build your own models, that inform your designs and guide your
experimental research.

2 Economic Models

An economic model is an abstraction of reality, that is a simplified description
of the phenomena in question, designed to yield hypotheses about behaviour
that can be tested [36]. There are two types of economic models: theoretical and
empirical.

Theoretical models aim to develop testable hypotheses about how people will
behave and assume that people are economic agents that maximise specific
objectives subject to constraints (e.g., amount of time available for the task,
knowledge of potential actions, etc.). Such models provide qualitative an-
swers to questions such as, how does the cost of querying affect the user’s
behaviour, if the benefit of query suggestions increases, how will user’s adapt?

Empirical models aim to evaluate the qualitative predictions of theoretical
models and realise the predictions they make into numerical outcomes. For
example, consider a news app that provides access to news articles for a small
payment, and a theoretical model that says that if the cost of accessing news
articles increases, then users will reduce their consumption of such articles.
Then an empirical model would seek to quantify by how much consumption
will drop given a price increase.

Economic models generally consist of a set of mathematical equations that
describe a theory of behaviour [36]. According to Ouliaris [36], the aim of model
builders is to include enough detail in the equations so that the model provides
useful insights into how a rational user would behave and/or how a system
works. The equations, and their structure, reflect the model builder’s attempt
to represent reality in an abstracted form by making assumptions about the
system, the user and the environment. Economic models range in complexity. For
example, we may model the demand for news articles as inversely proportional to
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the cost of the article. The less expensive the news articles, the more that they are
demanded according to such model. Models however can be much more complex
consisting of non-linear, interconnected differential equations that for example
predict the flow and transmission of fake news through a social network [25].

Building Economic Models Varian has described how to approach the prob-
lem of building a useful economic model [47] (which is similar to other model
building approaches [12, 15, 32]). The main steps involved when building eco-
nomics models are:

1. Describe the problem context,
2. Specify the functional relationships between the interactions and the cost

and benefit of those interactions,
3. Solve the model,
4. Use the model to generate hypotheses about behaviours,
5. Compare the predictions with observations in the literature and/or experi-

mental data, and,
6. Refine and revise the theory accordingly, and iterate the procedure.

Step 1 - Describe the Problem Context: First off, outline what is known
about the problem context, the environment and the interface(s) in which the
interaction is occurring. It may also help to illustrate the interface(s), even if hy-
pothetical, that the user population will be using. For example, we may want to
consider how facets when added to a shopping interface would affect behaviour,
and so draw a faceted search interface from which we can consider different ways
in which the user can then interact with it [27]. According to Varian all economic
models take a similar form, where we are interested in the behaviour of some
economic agents [47]. These agents make choices to advance towards their ob-
jective(s). And these choices need to satisfy various constraints based upon the
individual, the interface and the environment/context. This leads to asking the
following questions:

– who are the people making the choices?
– what are their constraints?
– how do they interact with the interface? and
– what factors/constraints in the environment are likely to affect the interac-

tion?

Let’s re-visit the scenario we introduced earlier, where we want to know our
friend’s performance in the marathon. Imagine, we are at the page containing a
list of the names and their race completion times. And let’s assume we are tech
savvy individuals. We are aware of several choices: (i) search by scrolling, (ii)
search via the find command, (iii) some combination of scrolling and finding. To
make things simple we consider only the first two and assume that we only select
one or the other. We would like to try and find out as quickly as possible our
friend’s race time because we’d like to see whether we ought to congratulate our
friend or sympathise with them. So in this case, the objective is to minimize the
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time taken to find their name. Since time is at a premium, we have a constraint
such that we want to complete the search within a certain period of time (after
which we may give up), or, if we believe we could not complete the task within
the time constraint, then we may decide not to search at all. In this later case,
where we decide not to search, we may take some other action like asking our
friend. Though, of course, we would like to keep the initiative in the conversation
from which we will derive benefit. In terms of interaction with the page, if we
(i) scroll, then we plan to look down the list, one by one, and see if we recognise
our friend’s name in the list, while if we (ii) use command find, we plan to
type in a few letters of their name, and step through each matching name. In
both cases, we also acknowledge that there is some chance of skipping over their
name and so there is some probability associated with finding their name - such
that as the list of names that has to be checked increases, the chance of missing
also increases. We also can imagine that in case (ii) if we enter more letters the
list of names to check decreases proportionally with each additional letter. We
can now formalise the problem with a series of assumptions (like those listed in
Section 1), and then start to model the process mathematically.

Step 2 - Specify the Cost and Benefit functions: For a particular strat-
egy/choice, we need to identify and enumerate the most salient interactions
which are likely to affect the behaviour when using the given interface. At this
point, it is important to model the interaction at an appropriate level - too low
and it becomes unwieldy (i.e. modelling every keystroke), too high and it be-
comes uninformative (i.e. simply considering the aggregated cost/benefit of the
scroll option vs. the cost/benefit of find option). Varian [47] suggests to keep
this as simple as possible:

“The whole point of a model is to give a simplified representation of

reality...your model should be reduced to just those pieces that are required

to make it work”.

So initially focus on trying to model the simplest course of action, at the high
level possible, to get a feel for the problem, and then refine. If we start too high
level, we can then consider what variables influence the cost of the scroll option
(i.e. the length of the list), and start to parameterise the cost function, etc. We
can also reduce the complexity of the interaction space, so, for example, in the
facet shopping interface, we might start with one facet, and then progress to two
facets. Essentially, make the problem simple and tractable to understand what
is going on. The simple model that is developed will probably be a special case
or an example. The next important step is to generalize the model, e.g., how do
we model f facets?

In our scenario, for option (i) we need to perform two main actions: scroll
(scr) and check (chk), where we will assume that the cost of a scroll is per item
(cscr), and the cost of checking the name is also per item (cchk). In the worse
case, we’d need to scroll through and check N names, while in the average case
we’d only need to examine approximately half of the names N/2, and in the
best case our friend came first, so N = 1. Let’s consider the average case, where
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then, the cost of option (i) would be:

C(i)(N) =
N · (cscr + cchk)

2
(1)

We also know that the benefit is proportional to our likelihood of success
and that is conditioned on how many items we need to check through, so we can
let the probability of successfully finding our friend’s name be pscr(N). Thus we
can formulate an expected benefit function, i.e. the benefit that we would expect
to receive on average:

B(i)(N) = pscr(N) · b (2)

where b is the benefit, e.g., the time saved from having to hear your friend going
on and on about how you are not interested in them, and how you couldn’t even
find it on the computer, etc. Now we can create a profit function to denote how
much time we expect to save/lose if we take this option. A profit function is the
difference between the benefit function and the cost function:

π(i) = B(i)(N)−C(i)(N) = pscr(N) · b−
N(cscr + cchk)

2
(3)

On the other hand, for option (ii), we need to perform a different sequence
of actions: command find (cmd), type (typ), skip (skp) and check (chk), where
we will assume that the cost to evoke command find is ccmd, to type in a letter
is ctyp and to skip to the next match is cskp. For simplicity, we will assume the
cost of a skip and the cost of a scroll be the same cskp = cscr. The course of
interaction is press command find, type in m letters, and then skip through the
results, checking each one. Since typing in m letters will reduce the number of
checks, we assume that there is a function f(N,m), which results in a list of M
to check through (and as m increases, M decreases). Again we are concerned
with the average case, if there are M matches, then we’d only need to examine
approximately half, i.e. M/2. Putting this all together, we can formulate the
following cost function, which takes in both the size of the list and the number
of letters we are willing to enter:

C(ii)(N,m) = ccmd +m · ctyp +
M(cscr + cchk)

2
(4)

We can also formulate the benefit function, which also takes in N and m as
follows:

B(ii)(N,m) = pscr

(

f(N,m)
)

· b = pscr(M) · b (5)

where, since M will be typically much smaller than N, the expected benefit will
typically be higher. Again we can formulate a profit function π(ii) by taking the
difference between the benefit and cost function.

Step 3 - Solve the model: The next step is to solve / instantiate the model in
order to see what insights it reveals about the problem being studied. This can
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be achieved through various means: analytically, computationally or graphically.
For example, we could determine which option would be more profitable, π(i)

or π(ii), by taking the difference and seeing under what circumstances option
(i) is better than (ii), and vice versa. We could achieve this analytically, i.e. if
π(i) > π(ii), then select option (i), else (ii). Alternatively, we could instantiate
the model, with a range of values, and plot the profit functions of each to see
when π(i) > π(ii), and under what conditions. Or in the case of option (ii), we
could consider the tradeoff between typing more letters and the total time to
find the name - and find the optimal number of letters to type. Note, above
we have not specified the form of the functions f(N,m) or pscr(.); so in order
to solve or plot, we would need to make some further assumptions, or look to
empirical data for estimating functional forms.

So if we are interested in deciding which option to take, then we can try and
solve the inequality π(i) > π(ii), which we can reduce to:

ccmd +m · ctyp > (N−M) · (cscr + cchk) (6)

where we have assumed that p(N) is approximately equal to p(M) for the sake
of simplicity i.e. we are assuming that the two methods perform the same (even
though this is probably not the case in reality). To plot the model graphically,
we further assumed that, f(N,m) = N

(m+1)2 , to reflect the intuition that more

letters entered will reduce the number of names to check. Later we could also
empirically estimate the form based on a computational simulation, i.e. given a
list of names, we could count how many names are returned, on average, when N

and m are varied in order to gather actual data to fit a function. Next we have
to provide some estimates of the different costs. Here, we have set ctyp to be 1
second per letter, ccmd to be 15 seconds, cscr and cskp to be 0.1 seconds per
scroll/skip and cchk to be 0.5 seconds per name check. Of course, these values
are only loosely based on the time taken to perform such actions. To create a
more precise instantiation of the model, we would need to empirically ground
these values. Part of the model building process involves iteratively refining the
parameters and their estimates based on observed data. But, initially, we can
get a “feel” for the model by using some reasonable approximations. Figure 1
shows a plot of the inequality when m = 2 (top) and m = 7 (bottom).

Now, focusing on option (ii), we can calculate the optimal way to interact
when using the find command, i.e. how many letters should we type? To do this,
we can consider maximising the profit with respect to the number of letters we
need to type (as this reduces the number of possible matches to skip through). To
achieve this, we instantiate the profit function for option (ii), where we assume,
for simplicity, that pscr(M) = 1, such that:

π(ii) = b−

(

ccmd +m · ctyp +
N

2 · (m+ 1)2
(cscr + cchk)

)

(7)

then we can differentiate the profit function with respect to m to arrive at:

dπ(ii)

dm
= −ctyp +N · (cscr + cchk) · (m+ 1)−3 (8)
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Fig. 1. Top: Plot of the inequality when only 2 letters are entered, Bottom: Plot of the
inequality when 7 letters are entered, where if LHS > RHS then scroll, else use the find
command. The plots suggest that once the size of the list is greater than 30-40 items,
using the find command is less costly. But as m increases, a longer list is required to
justify the additional typing cost.

Setting
dπ(ii)

dm
= 0, we obtain the following expression form⋆, which is the optimal

number of letters to enter for a list size of N:

m⋆ =

(

N · (cscr + cchk)

ctyp

)
1

3

− 1 (9)

Figure 2 shows a plot of the optimal number of letters (m⋆) as N increases.
As expected, more letters are required as N increases, but at a diminishing rate.

Step 4 - Use the model and hypothesise about interaction: Given the
models created above, we can now consider: how different variables will influ-
ence interaction and behaviour, find out what the model tells us about optimal
behaviour, and see what hypotheses can be generated from the model.

From Eq 6 and Figure 1, we can see that if the cost of using the find command
is very high, then the list will have to be longer before it becomes a viable
option. There is a trade-off between the number of letters entered (m) and the
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Fig. 2. Top: Plot of m⋆ versus the size of the result list (N).

reduction in M, which is of course proportional to m. From the plots, we can
see that moving from m = 2 to m = 7 does not have a dramatic impact on
when we’d decide to scroll or find. However, a longer list is needed to warrant
the entry of more letters. Furthermore, from the graphs, we can see that, in
these examples, once the list contains more than 40-50 names, it is better to use
the find command. Exactly, where this point is, depends on how we estimate
the various costs and instantiate the functions used. However, it is possible to
create hypotheses about how people would change their behaviour in response to
different circumstances. For example, we could imagine a similar scenario where
the cost of comparison is very high, because we are trying to match a long unique
number that represents each runner instead (and so hypothesise that using the
find command is preferable when lists are even shorter).

From Eq. 9 and Figure 2, we can see that as the list size increases the optimal
number of letters to enter (given our model) increases, such that 4 letters are
optimal when the list is around 250 in size, while around 7 letters are required
when the list grows to 1000. Given these estimates, we can then hypothesise that
for large lists (around 1000 in size), users will tend to enter, on average, 7 letters,
while for shorter lists (around 200-300), users will tend to enter, on average, 4
letters.

Step 5 - Compare with observed behaviour: The next step is to determine
whether the hypothesis made using the model are consistent with with empiri-
cal observations from the literature, and/or to validate the model by designing
empirical experiments that explicitly test the hypotheses.

This is an important step in the process for two reasons: (a) the model pro-
vides a guide for what variables and factors are likely to influence the behaviour
of users, and thus enables us to inform our experiments, and (b) it provides
evidence which (in)validates the models, which we can use to refine our models.
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From the experimental data, we may discover that, for instance, users performed
in a variety of ways we did not consider or that we ignored. For example, maybe
a significant proportion of users adopted a mixed approach, scrolling a bit first,
then using the find command. Or when they used the find command, they mis-
spelt the name or couldn’t remember the exact spelling, and so there is some
probability associated with entering in the correct partial string to match the
name. As a consequence, we find that the model, or the estimates, need to be
refined, and so the final step (6) is to iterate: refining and revising the model and
it’s parameters accordingly. Once we have conduced an empirical investigation,
we can better estimate the costs and benefits. Alternatively, they allow us to
develop new models to cater for different interactions and conditions. With this
respect, Box notes that:

“All models are wrong but some are useful”. [12]

He points out that it would be remarkable if a simple model could exactly
represent a real world phenomena. Consequently, he argues that we should build
parsimonious models because model elaboration is often not practical, but adds
increased complexity, without necessarily improving the precision of the model
(i.e. how well the model predicts/explains the phenomena). This is not to say
that we should be only building very simple models; instead, Box [12] argues we
should start simple, and then only add the necessary refinements based on our
observations and data, to generate the next tentative model, which is then again
iterated and refined, where the process is continued depending on how useful
further revisions are judged to be. That is, there is a trade-off between the
abstraction of the model and the predictions that it makes - the less abstracted,
the greater the complexity, with perhaps increased model precision. Therefore,
the refinements to the model can be evaluated by how much more predictive or
explanatory power the model provides about the phenomena.

Following this approach helps to structure how we develop models, and cru-
cially how we explain them to others and use the models in practice. The ap-
proach we have described here is similar to the methodology adopted when
applying the Rational Analysis method [2, 15], which is a more general approach
that is underpinned by similar assumptions. However, here we are concerned with
building economic models as opposed to other types of formal models e.g. [38,
32, 37, 31]. During the remaining of the chapter, we shall describe three different,
but related economic models of human-computer interaction, where a user in-
teracts with a search engine. Our focus is on showing how theoretical economics
models can be constructed (i.e. steps 1-4) and discuss how they provide insights
into observed behaviours and designs.

3 An Economic Model of Querying

We first consider the process of a user querying a search engine. The model
that we will develop will focus on the relationship between the length of the
query and the costs/benefits of the query given its length. This is because a user
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directly controls how long their query is, and query length is strongly related
to performance [24], as short queries tends to be vague, while a long queries
tends to be more specific. Of course, other factors also influence the performance
of a query, i.e. the choice of terms, the type of search task, etc. For simplicity,
however, we will only focus on length, as the primary factor affecting performance
and behaviour. Using the model we wish to answer the following questions.

– what is the trade-off between cost and benefit over length?
– what is the optimal length of a query?
– how does the length of a query change when the costs/benefits change?

Problem Context: Before answering these questions, let’s first consider what
we know about the length of queries, and how query length relates to perfor-
mance. Typically, user queries tend to be short: in a typical web search scenario
they have been measured to be around two to three terms in length [3]. On the
other hand, it has been shown on numerous occasions that longer queries tend
to yield better performance [4, 11, 17], but as queries get longer the performance
increases at a diminishing rate [4]. This has led designers and researchers to
develop interfaces that try to elicit longer queries from the user[1, 23, 29, 30]. For
example, in [1], they used a halo effect around the query box, such that as the
user types a longer query the halo changes from a red glow to a blue glow. How-
ever, these attempts have largely been ineffectual and have not be replicated
outside the lab [23]. So can the model provide insights into why this is the case,
why user queries tend to be short, and how we could improve the system to
encourage longer queries?
Model: To create an economic model of querying, we need to model the benefit
associated with querying and model the cost associated with querying. Let’s
assume that the user enters a query of length W (the number of words in the
query). The benefit that a user receives is given by the benefit function b(W)
and the cost (or effort in querying) defined by the cost function c(W). Here
we make a simplifying assumption: that cost and benefit are only a function of
query length.

Now let’s consider a benefit function which denotes the situation where the
user experiences diminishing returns such that as the query length increases they
receive less and less benefit (as shown by Azzopardi [4] and Belkin et al. [11]).
This can be modeled with the function:

b(W) = k · loga(W + 1) (10)

where k represents a scaling factor (for example to account for the quality of the
search technology), and a influences how quickly the user experiences diminishing
returns. That is as a increases, additional terms contribute less and less to the
total benefit, and so the user will experience diminishing returns sooner.

Next, let’s assume that the cost of entering a query is a linear function based
on the number of words such that:

c(W) = W · cw (11)
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where cw represents how much effort must be spent to enter each word. This
is, of course, a simple cost model and it is easy to imagine more complex cost
functions. However the point is to provide a simple, but insightful, abstraction.
Optimal Querying Behaviour: Given the cost and benefit functions, we can
compute the profit (net benefit) π that the user receives for a query of length
W :

π = b(W)− c(W) = k · loga(W + 1)−W · cw (12)

To find the query length that maximizes the user’s net benefit, we can dif-
ferentiate with respect to W and solve the equation:

∂π

∂W
=

k

log a
·

1

W + 1
− cw = 0 (13)

This results in:

W⋆ =
k

cw · log a
− 1 (14)

Hypotheses: Figure 3 illustrates the benefit (top) and profit (bottom) as query
length increases. For the left plots k = 10, and for the right plots k = 15. Within
each plot we show various levels of a. These plots show that as k increases (i.e.
overall the performance of the system increases), the model suggests that query
length, on average, would increase. If a increases (i.e. additional terms contribute
less and less to the overall benefit), then queries decrease in length. Furthermore
the model suggests that as the cost of entering a word, cw, decreases then users
will tend to pose longer queries.

Discussion: This economic model of querying suggests that to motivate longer
queries either the cost of querying needs to decrease or the performance of the
system needs to increase (either by increasing k or decreasing a). The model
provides several testable hypotheses, which provide key insights that inform the
design of querying mechanisms and help explain various attempts to encourage
longer queries. For example, the query halo does not reduce cost, nor increase
benefit, and so is not likely to change user behaviour [23]. On the other hand, the
inline query auto-completion functionality now provided by most search engines,
reduces the cost of entering queries (e.g., less typing to enter each query term),
and also increases the quality of queries (e.g., fewer mis-spellings, less out of
vocabulary words, etc. ). Thus according to the model, since the key drivers are
affected, queries are likely to be longer when using query auto-completion than
without.

While this model provides some insights into the querying process and the
trade-off between performance and length, it is relatively crude. We could model
more precisely the relationship between the number of characters, number of
terms and the discriminative power of those terms, and how they influence per-
formance. Furthermore, depending on the search engine, the length of a query
relative to performance will vary, and may even decrease as length increases.
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Fig. 3. The top plots show the benefit while the bottom plots show the profit as the
length of the query increases. Plots on the right show when the queries yield greater
benefit (left k = 10; right k = 15). Each plot shows three levels of a which denotes
how quickly diminishing returns sets in.

For instance, if our search engine employed an implicit Boolean “AND” between
terms, then as the number of query terms increases the number of results re-
turned decreases - and so fewer and fewer relevant items are returned (if any).
In this case, we would need to employ a different benefit function to reflect and
capture this relationship. It is only when we empirically explore, either through
an analysis of query logs [23], user judgements and ratings [48], or computa-
tional simulations [4, 5] that we can test and refine the model, updating the
assumptions and cost/benefit functions/parameters.

4 A Model of Assessing

In this section, we consider how people interact with a list of search results after
they pose a query to a search engine. Intuitively, when examining search results a
person decides to stop at some point in the ranked list and either stop searching
altogether, being satisfied with what they have found (or not), or decides to
issue a new query and continue searching. Here we will only consider a person’s
interaction with one list of results. From the literature, a number of studies
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have been conducted examining the question of when users decide to stop. The
general finding is that users stop when they have found “enough” [18, 40, 50].
Other research has suggested that people employ stopping rules, such as, stop
after n non-relevant results [16] or stop when the results do not provide any new
information [13]. While these rules are reasonably intuitive, perhaps we can be
more formal by modelling the process and considering the following questions:

– what is the trade-off between benefit over assessment depth?
– what is the optimal stopping point?
– how does the depth change in response to changes in costs and benefits?

Problem Context: Let’s consider the interaction with the search engine.
After a user poses a query, most search engines return a list of results, typically
ranked in decreasing likelihood of being relevant to the user’s query [41]. This
implies that as the user goes down through the ranked list the benefit that they
receive (or the expected benefit) decreases – and so at some point the cost out-
weighs the benefit of assessing a subsequent item. Of course, there are lots of
factors that affect when people stop. For example, if a user types in a “dud”
query, which retrieves no relevant items, they are likely to stop after only exam-
ining a few items, if any. If the user enters “good” query, which retrieves many
relevant items, then when they stop is probably more task or time dependent.
If a user wants to find many relevant items, they presumably they would go
deeper. But of course they don’t want to waste their time assessing non-relevant
items and so will stop at some point, or if they find enough then they will stop.
On the other hand, if they only want one relevant item, then they will stop once
they find one item. So the model we develop will need to be sensitive to these
different conditions.

Model: To create an economic model of assessing, we need to formulate cost
and benefit functions associated with the process. Let’s start off by modelling
the costs. A user first poses a query to the search engine and thus incurs a query
cost cq. Then for the purposes of the model, we will assume the user assesses
items, one by one, where the cost to assess each item is ca. If the user assesses
A items, then the cost function would be:

c(A) = cq +A.ca (15)

Now, we need a function to model the benefit associated with assessing A

items. Consider the scenario where a user is searching for news articles, and that
they are reading about the latest world disaster. The first article that they read
provides key information, e.g. that an earthquake has hit. The subsequent articles
start to fill in the details, while others provide context and background. As they
continue to read more and more news articles the amount of new information
becomes less and less as the same “facts” are repeated. Essentially, as they work
their way down the ranked list of results, they experience diminishing returns.
That is, each additional item contributes less and less benefit. So we can model
the benefit one receives as follows:
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b(A) = k.Aβ (16)

where k is a scaling factor, and β represents how quickly the benefit from the
information diminishes. If β is equal to one, then for each subsequent item exam-
ined, the user receives the same amount of benefit. However if β is less than one,
then for each subsequent item examined, the user receives less additional benefit.
This function is fairly flexible: if k = 0 for a given query, then it can represent a
“dud” query, while β = 0 models when only one item is of benefit (e.g. A0 = 1).
So the benefit function can cater for a number of different scenarios.

Optimal Assessing Behaviour: Now given these two functions, we can
compute the profit (i.e., net benefit) π that the user receives when they assess
to a depth of A:

π = b(W)− c(W) = k.Aβ
− cq −A.ca (17)

To find the assessment depth that maximizes the user’s net benefit, we can
differentiate with respect to A and solve the equation:

∂π

∂A
= k.β.Aβ−1

− ca = 0 (18)

This results in:

A⋆ =
( ca

k.β

)
1

β−1

(19)

Hypotheses: From Equation 19, we can see that the optimal depth is de-
pendent on the cost of assessment (ca), and the performance surmised by k and
β. Using comparative statics [46], we can see how a user should respond when
one variable changes, and everything else is held constant. If the cost of assess-
ing increases, and β is less than one (i.e. diminishing returns), then the model
suggests that the user would examine less documents. For example, consider a
news app that charges per article, while another does not. In this case, the model
predicts that users would read less documents in the first app, when compared
to the second.

Figure 4 shows how the profit of assessing changes as the cost of assessing is
increased. If the performance increases, i.e. β tends to one, then the user would
examine more documents. Similarly, as the performance increases via k, then
this also suggests that the user would examine more documents.

Discussion: Intuitively, the model makes sense: if the performance of the
query was very poor, there is little incentive/reason to examine results in the
list. And if the cost of assessing documents is very high, then it constrains how
many documents are examined. For example, consider the case of a user searching
on their mobile phone when the internet connection is very slow. The cost of
visiting each page is high (i.e. it takes a lot of time to download the page, and
may not even load properly), so the model predicts that users are less likely to
click and assess documents. Alternatively, consider the case of a user searching
for images. The cost of assessing thumbnails (and thus the image) is very low
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Fig. 4. Top: Plot of the benefit of assessing, Bottom: Plot of the profit of assessing
where the result list is of low quality (b = 0.3) and higher quality (b = 0.5). The
model predicts users will assess more documents as the result list quality increases.

(compared to examining text snippets), and so the model predicts that a user
will assess lots of images (but few text snippets). Interestingly, under this model,
the cost of a query does not impact on user behaviour. This is because it is a
fixed cost, and the analysis is only concerned with the change in cost versus
the change in benefit (i.e. stop when the marginal cost equals the marginal
benefit). However, in reality the cost of the query is likely to influence how a
user behaves. Also, users are likely to issue multiple queries, either new queries
or better reformulations which lead to different benefits. While this simple model
of assessing provides some insights into the process, it is limited, and may not
generalise to these other cases7. Next, we extend this model and consider when
multiple queries can be issued, and how the trade-off between querying and
assessing affects behaviour.

7
As an exercise the reader may wish to consider a model where two queries are issued, and the
benefit function is different between queries. See Azzopardi and Zuccon [8] for a solution.
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5 A Model of Searching

This section describes the process of searching over a session, where numerous
queries can be issued, and the user examines a number of items per query. The
model will focus on the different search strategies that users can undertake and
how the costs and benefits affect the optimal search strategy; specifically, we will
explore the following questions:

– what is the trade-off between querying and assessing?
– what is the optimal search strategy?
– how does the search strategy change in response to changes in costs and

benefits?

Essentially, given a particular context, we would like to know if a user should
issue more queries and assess fewer items per query, or whether they should issue
fewer queries and assess many items per query?

Problem Context: Let’s first consider the standard search interface (much
like a web search interface) consisting of a query box (or query area) and search
button. When a user issues a query to the search engine, the search result page is
shown and displays: (i) the number of search results, (ii) the current page num-
ber, (iii) a list of n result snippets (usually n = 10 result snippets per page) and
(iv) a next and previous button, see Figure 5. Each search result has a title (of-
ten shown as a blue link), a snippet from the item, along with the URL/domain.
This style of interface is usually referred to as the “ten blue links” [28].

Given this interface, the user can perform a number of actions: (i) (re)query,
(ii) examine the search results page, (iii) inspect individual result snippets, (iv)
assess items, e.g., click on the result and view the web page, image, news arti-
cle, etc., and (v) visit subsequent results pages. Each of these actions have an
associated cost and so are likely to affect search behaviour.

Model: Described more formally, during the course of a search session, a
user will pose a number of queries (Q), examine a number of search result pages
per query (V), inspect a number of snippets per query (S) and assess a number
of items per query (A). Each interaction has an associated cost where cq is the
cost of a query, cv is the cost of viewing a page, cs is the cost of inspecting
a snippet, and ca is the cost of assessing an item. With this depiction of the
search interface we can construct a cost function that includes these variables
and costs, such that the total cost of interaction is:

c(Q,V,S,A) = cq.Q+ cv.V.Q+ cs.S.Q+ ca.A.Q (20)

This cost function provides a reasonably rich representation of the costs in-
curred during the course of interaction. In modelling the interaction, we have
assumed that the number of pages, snippets and items viewed is per query. Of
course, in reality, the user will vary the number of pages, snippets and items
viewed for each individual query (see Azzopardi and Zuccon [8] for how this can
be modelled). So, V, S and A can be thought of as the average number of pages,
snippets and items viewed, respectively. Thus, we are modelling how behaviour
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Fig. 5. Standard Search Interface – showing results for the query “python”.

with respect to these actions changes, on average. Nonetheless, the cost function
is quite complex, so we will need to simplify the cost function. To do so, we will
need to make a number of further assumptions.

First, we shall ignore the pagination and assume that all the results are all
on one page, i.e. V = 1. Thus a user does not need to go to subsequent pages
(i.e. infinite scroll)8. The assumption is quite reasonable as in most cases users
only visit the first page of results anyway [7, 28].

Second, we shall assume that the number of items assessed is proportional
to the number of snippets viewed, i.e. that users need to first inspect the result
snippet, before clicking on and examining an item, thus S ≥ A. Furthermore,
we can associate a probability to a user clicking on a result snippet, pa, and
examining the item. The expected number of assessments viewed per query would
then be A = S.pa. Substituting these values into the cost model, we obtained:

c(Q,V,S,A) = cq.Q+ cv.Q+ cs.
A

pa

.Q+ ca.A.Q (21)

8
However, it would be possible to encode the number of page views per query more precisely by
using a step function based on the number of snippets viewed, representing the fixed cost incurred
to load and view each page of results. The step function would be such that the number of pages
viewed V would be equal to the number of snippets viewed divided by the number of snippets
shown per page (n), rounded up to the nearest integer, i.e. ⌈S

n
⌉.
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We can now reduce the cost function to be dependent only on A and Q, such
that:

c(Q,A) = (cq + cv).Q+
( cs

pa

+ ca

)

.A.Q (22)

Let’s turn our attention to building the benefit function and characterising
how much benefit the user receives from their interactions. Given the two main
interactions querying and assessing, we assume, as in the previous model, that as
a user examines items, they obtain some benefit, but as they progress through the
list of items, the benefit they experience is at a diminishing returns. As previously
mentioned, when searching for news about the latest crisis, as subsequent news
articles are read, they become less beneficial because they begin to repeat the
same information contained in previous articles. In this case, to find out about
other aspects of the topic, another related but different query needs to be issued.
Essentially, each query issued contributes to the overall benefit, but again at a
diminishing returns, because as more and more aspects of the topic are explored,
less new information about the topic remains to be found. To characterise this,
we shall model the benefit function using the Cobbs-Douglas function [46]:

b(Q,A) = k.Qα.Aβ (23)

where α represents returns from querying, while β represents the returns from
assessing, and k is a scaling factor9. Let’s consider two scenarios when α = 0 and
when α = 1. In the first case, regardless of how many queries are issued Q0 = 1,
so issuing more than one query, wold be a waste as it would not result in more
benefit. In the latter case,Q1 = Q, there is no diminishing returns for subsequent
queries. This might model the case where the user poses independent queries, i.e.
the user searches for different topics within the same session, poses queries that
retrieve different items for the same topic, or when there is an seemingly endless
supply of beneficial/relevant items e.g., procrastinating watching online videos.
Given the form in Eq. 23 the benefit function is sufficiently flexible to cater for
a wider range of scenarios. In [5], Azzopardi showed this benefit function to fit
well with empirical search performance of querying and assessing.

Optimal Search Behaviour: Using the model of searching it is now possible
to determine what the optimal search behaviour, in terms of Q and A, would be
given the parameters of the model. To do this we assume that the objective of the
user is to minimise the cost for a given level of benefit (or alternatively, maximise
their benefit for a given cost). This occurs when the marginal benefit equals
the marginal cost. We can solve this optimisation problem with the following
objective function (using a Lagrangian Multiplier λ):

∆ = (cq + cv.v).Q+
( cs

pa

+ ca

)

.A.Q− λ
(

k.Qα.Aβ
− b

)

where the goal is to minimise the cost subject to the constraint that the amount
of benefit is b. By taking the partial derivatives, we obtain:

∂∆

∂A
=

( cs

pa

+ ca
)

.Q− λ.k.β.Qα.Aβ−1 (24)

9
Note that if α = 1 then we arrive at the same benefit as in the model of assessing, see Eq. 16.
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and:
∂∆

∂Q
= cq + cv.v +

( cs

pa

+ ca
)

.A− λ.k.α.Qα−1.Aβ (25)

Setting these both to zero, and then solving, we obtain the following expres-
sions for the optimal number of assessments per query A⋆:

A⋆ =
β.(cq + cv.v)

(α− β).
(

cs

pa
+ ca

) (26)

and the optimal number of queries Q⋆:

Q⋆ = α

√

g

k.A⋆β
(27)

Hypotheses: Using this analytical solution we can now generate a number
of testable hypotheses about search behaviour by considering how interaction
will change when specific parameters of the model increase or decrease. From the
model it is possible to derive a number of hypotheses regarding how performance
and cost affect behaviour. Rather than enumerate each one below we provide a
few examples (see Azzopardi [6] for details on each).

Similar to the previous model, we can formulate a hypothesis regarding the
quality of the result list, where as β increases, the number of assessments per
query will increase, while the number of queries will decrease (as shown in Fig-
ure 7, top left plot). Intuitively, this makes sense because as β increases the
rank list of results contains more relevant items: it is better to exploit the cur-
rent query before switching to a new query.

Regarding costs, we can formulated a query cost hypothesis, such that as
the cost of a query cq increases, the number of items assessed per query will
increase, while the number of queries issued will decrease (as shown in Figure 7,
top, right plot). It should be clear from the Eq. 26 that this is the case because
as cq becomes larger, A⋆ also becomes larger. In turn, the number of queries
issued will decrease, because as A⋆ becomes larger, Q⋆ tends to zero. Of course,
to start the search session, there needs to be at least one query, e.g., Q must
be equal to one or greater. A similar hypothesis can be formulated regarding
assessment costs, where as the cost of an assessment increases, the number of
items assessed per query will decrease, while the number of queries issued will
increase. Since the assessment cost ca appears in the denominator in Eq. 26 then
any increase will reduce the number of assessments.

Another hypothesis that the model produces is regarding the probability of
assessing items. Here, as the probability of assessing increases, the number of
items assessed increases, while the number of queries issued decreases (as shown
in Figure 7, bottom, right plot). If a user examines every item in the ranked list,
then pa would equal one meaning that for each snippet that they examine, they
also examine the item. As a result, because more items are being examined, less
queries are issued overall.

Discussion: This economic model of searching provides a useful representa-
tion of the interaction between a user and a search engine. The model provides
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Fig. 6. Top: Plots of the number of queries vs. the number of items examined per query
for a given level of benefit. Any point yields the same amount of benefit. The asterisk
indicates the optimal querying/assessing strategy, i.e. (A⋆,Q⋆). Bottom: Plots of the
Cost vs. the number of items examined per query. The asterisk indicates when the cost
is minimised, i.e. at A⋆.

a number of insights into different factors that are likely to affect behaviour,
and serves as guide on how and where we could improve the system. For ex-
ample, the search engine could focus on improving the quality of the results,
in which case increases in performance should, according to the model, should
lead to changes in search behaviour. Or the search engine may want to increase
the number of queries, and so may focus on lowering the cost of querying. Of
course, the usefulness of the model depends on whether the model hypotheses
hold in practice. These hypotheses were tested in two related studies. The first
study by Azzopardi et al. [7] explicitly explored the query cost hypothesis where



23

0.1 0.2 0.3 0.4
0

5

10

15

Beta

A
c
ti

o
n

s

10 20 30 40 50
0

5

10

15

Query Cost

A
c
ti

o
n

s

10 20 30 40 50
0

5

10

15

Assessment Cost

A
c
ti

o
n

s

0.2 0.4 0.6 0.8
0

5

10

15

Probability of Assessing

A
c
ti

o
n

s

 

 

Assessments

Queries

Fig. 7. Top Left: Plot of A⋆ and Q⋆ as β changes. Top Right: Plot of A⋆ and Q⋆

as query cost changes. Bottom Left: Plot of A⋆ and Q⋆ as assessment cost changes.
Bottom Right: Plot of A⋆ and Q⋆ as the probability of assessment changes.

a between groups experiment was devised where the search interface was modi-
fied to create different query cost conditions. They used a structured, standard
and suggestion based search interface. Their results provided evidence to sup-
port the query cost hypothesis, such that when the query cost was high subjects
issued fewer queries and examined more items per query, and vice versa. In a
follow-up analysis on the same data, the other hypotheses above were explored,
and it was shown that they also tend to hold in general [6]. In a study by Ong
et al. [33], they conducted a between groups study evaluating the differences in
search behaviour when subjects used either a mobile device or a desktop device
to perform search tasks. On mobile devices, the costs for querying and assessing
are much higher due to smaller keyboard (leading to slower query entry) and
bandwidth/latency limitations (leading to slower page downloads). This resulted
in subjects assigned to the mobile condition issuing fewer queries, but examining
more snippets/items per query [33]. Again, this is broadly consistent with the
model developed here.

While the model provides a number of insights into search behaviour for
topic based searches, there are a number of limitations and assumptions which
could be addressed. For example, the model currently assumes that the user
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examines a fixed number of snippets/items per query, yet most users examine
a variable number of snippets/items per query. Essentially, the model assumes
that on average this is how many snippets/items are viewed per query. For a finer
grained model, we would have to model each result list individually, so that the
total benefit would be, for example, the sum of the benefit obtained from each
result list over all queries issued. Then it would be possible to determine, given a
number of queries, how far the user should go into each result list (see Azzopardi
and Zuccon [8] for this extension). Another aspect that could be improved is the
cost function. We have assumed that the cost of different actions are constant,
yet they are often variable, and will change during the course of interaction (e.g.,
a query refinement may be less costly than expressing a new query or selecting
from among several query suggestions). Also a more sophisticated and accurate
cost model could be developed which may affect the model’s predictions.

6 Discussion and Conclusions

In this chapter, we have described the process of building economic models and
provided several examples in the context of information seeking and retrieval.
In previous work [9, 10] we have also enumerated a number of other models that
analyse other aspects of search interface components, e.g., when should facets
be used, when is it better to issue a new query or is it better to take a query
suggestion, how many results should we put on a result page query, and so on.
While such models are relatively simple, they provide useful abstractions which
focus the attention on the main levers that are likely to affect the behaviour
of users. Furthermore, we are able to derive testable hypotheses about user
behaviour. This is particularly useful because it provides a guide for experimen-
tation which is grounded by theory. If the hypotheses are shown to hold, then
the model provides a compact representation of the phenomena which designers
and researchers can use when developing interface innovations or improving the
underlying systems. For example, in the last scenario, if it is difficult to formulate
an effective query, say in the context of image search, then we would expect that
users would examine many more result items, and so we could adapt the system
to show more results per page. Indeed, search engines provide ten blue links
for web pages but hundreds of results for images. While useful and informative,
there are, however, a number of challenges in taking the theory and putting it
into practice.

The first major challenge concerns the estimation of the costs and benefits.
Firstly, we have only considered the costs and benefits as common, but abstract
units. However, if we wish to estimate the costs and benefits then we need to
select some unit: this could be temporal, fiscal, physical or cognitive based. Often,
though, time is used as a proxy for the cost. However, it would be more realistic
to consider multiple cost functions for the different aspects of cost, and the trade-
offs between them, i.e. a user might prefer to expand physical effort over cognitive
effort. Or to combine the different costs functions into an overall cost function,
where the different aspects are weighted according to their impact on the user’s
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preferences. For example, Oulasvirta et al. [34] create a benefit function that is
a linear combination of several criteria (usefulness, usability, value, etc.) in order
to evaluate which features/actions an interface should afford users. In this case,
rather than having one possible optimal solution, instead, depending on what
aspect(s) are considered most important, different solutions arise. On the other
hand, what is the benefit that a user receives from their interactions with the
system? Is it information, enjoyment, satisfaction, time, money? In our models
we have made the assumption that the cost and benefit are in the same units,
however, if we were to assume time as the cost, then the benefit would be how
much time is saved (as done by Fuhr [20]). While this makes sense in the case
of finding a name in a list, it does not make sense in all scenarios. For example,
in the news search scenario, we could imagine that the amount of benefit is
proportional to the new information found, and the benefit is relative to how
helpful the information is in achieving their higher level work or leisure task.
So, if we were to assume benefit as say, information gain (as done by Zhang and
Zhai [51]), or user satisfaction (as done by Verma and Yilmaz [48]), then how do
we express cost in the same unit? In this case a function is needed to map the
benefits and costs into the same units (as done by Azzopardi and Zuccon [8]).
Alternatively, the ratio between the benefit and the cost could be used instead
as done in Information Foraging Theory (IFT) [38], or when performing a cost-
effectiveness analysis. Once the units of measurement have been chosen, and
instruments have been created to take such measurements, then the subsequent
problem is how to accurately estimate the cost of the different interactions, and
the benefit that is obtained from those interactions. This is very much an open
problem.

A noted limitation of such models is the underlying assumption that people
seek to maximise their benefit (e.g., the utility maximisation paradigm). This as-
sumption has been subject to much scrutiny, and shown to break down in various
circumstances leading to the development of behavioural economics. Kahneman
and Tversky have shown that people are subject to various cognitive biases and
that people often adopt heuristics which results in sub-optimal behaviours [26].
In their work on Prospect Theory, they argue that people have a more subjective
interpretation of costs and benefits, and that people perceive and understand risk
differently (i.e. some are more risk-adverse than others). Whereas Simon argues
that people are unlikely to be maximisers that relentlessly seek to maximise
their benefit subject to a given cost [43], but rather satisificers who seek to ob-
tain a satisfactory amount of benefit for the minimum cost. While the utility
maximisation assumption is questionable, there is opportunity to extend these
economics models presented here, and create more behavioural economic models
that encode these more realistic assumptions about behaviour. As pointed out
earlier though it is best to start simple and refine the models accordingly.

Another challenge that arises when developing such models is to ensure that
there has been sufficient consideration of the user and the environment in which
the interaction is taking place. In our models, we have largely ignored the cog-
nitive constraints and limitations of users, nor have we explicitly modelled the
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environment. However, such factors are likely to influence behaviour. For exam-
ple Oulasvirta et al. examined how choice overload (i.e. the paradox of choice)
affects search behaviour and performance, finding that people were less satisfied
when provided with more results [35]. While White showed that searchers would
often seek confirmation of their a priori beliefs (i.e. confirmation bias), and were
again less satisfied with the results that contradicted them [49]. However within
the Adaptive Interaction Framework [37] it is argued that the strategies that
people employ are shaped by the adaptive, ecological and bounded nature of hu-
man behaviour. And as such, these biases and limitations should be taken into
account when developing models of interaction. That is, by using the economic
modelling approach presented above it is possible to develop models that max-
imize utility subject to such constraints. Essentially, the economic models here
could be extended to incorporate such constraints (and thus assume Bounded
Rationality [21, 43], for example). Furthermore, they could be incorporated into
approaches such as Rational Analysis [2] or the Adaptive Interaction Frame-
work [37], whereby a model includes user and environmental factors as well.
Imposing such constraints, not only makes the models more realistic, but they
are likely to provide better explanations of behaviour and thus better inform
how we design interfaces and systems.

On a pragmatic point, the design and construction of experiments that specif-
ically test the models can also be challenging. In the models we have described
above, we used a technique called comparative statics, to consider what would
happen to behaviour, when one variable is changed e.g., as cost goes up, less
queries are issued. This required the assumption that all other variables were
held constant. In practice, however, the manipulation of one variable, will in-
variably, influences other variables. For example, in the experiments performed
examining the query cost hypothesis, one of the conditions contained query sug-
gestions – the idea being that clicking on suggestions would be cheaper than
typing in suggestions [7]. However, this inadvertently led to an increase in the
amount of time on the search result page for this condition, which was attributed
to the time spent reading through the suggestions [7]. However, this cost was not
considered in the initial economic model proposed by Azzopardi [5]. This led to
the revise model [6], described above, which explicitly models the cost of inter-
acting with the search result page as well as the cost of interacting with snippets.
These changes subsequently led to predictions that were consistent with the ob-
served data. This example highlights the iterative nature of modelling and how
refinements are often needed to create higher fidelity models.

To sum up, in this chapter, we have presented a tutorial for developing eco-
nomic models of interaction. While we have presented several examples based on
information seeking and retrieval, the same techniques can be applied to other
tasks, interfaces and applications – in particularly where there is a trade-off
between the cost and benefits. By creating such models, we can reason about
how changes to the system will impact upon user behaviour before even imple-
menting the said system. We can identify what variables are going to have the
biggest impact on user behaviour – and focus our attention on addressing those
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aspects – thus guiding the experiments that we perform and the designs that
we propose. Once a model has been developed and validated, then it provides
a compact representation of the body of knowledge, so that others can use and
extend the model developed. While we have noted above a number of challenges
in working with such models, the advantages are appealing and ultimately such
models provide theoretical rigour to our largely experimental discipline.
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