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Abstract

Dust acoustic (DA) solitary and shock structures have been investigated under the influence

of Landau damping in a dusty plasma containing two temperature nonthermal ions. Motivated

by the observations of Geotail spacecraft that reported two-temperature ion population in the

Earth’s magnetosphere, we have investigated the effect of resonant wave-particle interactions on DA

nonlinear structures. The KdV equation with an additional Landau damping term is derived and its

analytical solution is presented. The solution has the form of a soliton whose amplitude decreases

with time. Further, we have illustrated the influence of Landau damping and nonthermality of

the ions on DA shock structures by a numerical solution of the Landau damping modified KdV

equation. The study of the time evolution of shock waves suggests that an initial shock-like

pulse forms an oscillatory shock at later times due to the balance of nonlinearity, dispersion and

disspation due to Landau damping. The findings of the present investigation may be useful in

understanding the properties of nonlinear structures in the presence of Landau damping in dusty

plasmas containing two temperature ions obeying nonthermal distribution such as in the Earth’s

magnetotail.
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I. INTRODUCTION

Landau damping of collective oscillations in a collisionless plasma is caused by resonant

wave-particle interactions1. Since the linear Landau damping of Langmuir waves was first

predicted about five decades ago, Landau damping has now been identified in many different

modes of collective oscillations in plasma. A nonlinear theory for ion acoustic waves modified

by Landau damping due to electrons was proposed by Ott and Sudan2. They derived a KdV

equation with Landau damping under the assumption that the ions are cold, i.e., Ti = 0

and the particle trapping time is much larger than the Landau damping time, and investi-

gated the dependence of steepening of waveform on the relative magnitudes of nonlinearity

and Landau damping. Later, the Landau damping of ion acoustic wave in a Xenon plasma

contaminated with Helium ions has been experimentally observed as a function of frequency

in a uniform magnetic field3. A detailed theory pertaining to modification of the solitary

solution due to resonant wave-particle interactions has been discussed. It has also been

proposed that the resonant wave-particle interactions in a plasma may give rise to an accel-

eration of charged particles by transfer of wave energy to the charged species4. Thereafter,

many researchers have reported theoretical and experimental studies of nonlinear Landau

damping in different plasma systems5–11. An experiment to demonstrate the propagation of

ion acoustic soliton in an Ar-He plasma has been reported and it is suggested that the addi-

tion of a Landau damping term in the KdV equation affects the balance of nonlinearity and

dispersion which leads to modification of the evolutionary pattern of initial pulse12. This

modification arises as the higher frequency components of the perturbation are assumed to

suffer preferential damping. An experimental and numerical study has been reported to

illustrate the influence of Landau damping of ion acoustic solitary waves and it has been

observed that the magnitude of Landau damping due to ions is increased by increasing the

temperature of ions13.

Micron, or sub-micron sized dust particles when suspended in a plasma can be electrically

charged positively or negatively via processes such as thermionic emission, field emission,

radioactivity, impact ionization, collection of background electrons and ions, etc14,15. The

charged dust particles tend to significantly alter the dynamics of normal electron-ion plasma

and form a dusty plasma16. Dusty plasmas have received a considerable attention in the

past three decades due to their wide occurrence in space (cometary tails, asteroids zones,
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planetary rings, interstellar medium, Earth‘s ionosphere and magnetosphere, etc.) and

laboratory environments. After the theoretical predictions of the low-frequency dust acous-

tic waves (DAWs)17 and the high-frequency dust ion acoustic waves (DIAWs)18, the novel

physics associated with the propagation of waves in different dusty plasma environments

has been investigated by many researchers around the world. The presence of negatively

charged dust in the plasma leads to an electron depleted plasma. In the recent past, various

investigations pertaining to dust acoustic nonlinear waves have been reported in electron

depleted dusty plasma19,20. A nonlinear theory of dust acoustic solitary waves with Lan-

dau damping due to ions has been investigated in an unmagnetized electron depleted dusty

plasma containing positive and negative ions5. It is found that for some typical plasmas in

laboratory and space, the Landau damping and nonlinear effects are more dominant than the

dispersive effects and hence, the KdV soliton theory ceases to govern the dynamics of dust

acoustic waves in such plasma. Recently, the effects of Landau damping on low frequency

solitary waves in a dusty plasma have been investigated taking into account the variation

of dust charge6 and it is reported that the amplitude of DAW decreases with time due to

the influence of Landau damping. However, all these investigations have been reported in

context of solitary waves in plasmas.

It is assumed that the shock waves carry energy and momentum with them and may be

responsible for accelerating elementary charged particles in our galaxy and thus give rise to

cosmic rays21. A delicate balance between nonlinearity and dissipation may give rise to the

formation of shock waves in plasma where the dissipation may arise due to fluid viscosity,

inter-particle collisions, non-adiabatic dust charge fluctuations or can be because of Landau

damping. In the past, various particle heating mechanisms have been associated with shock

waves, such as heating of cold ions in Earth’s plasma sheet due to slow mode shocks22.

A number of investigations have been reported for the study of shock waves in different

types of plasmas using Burgers/KdV-Burgers equation19,20,23,24. Recently, analytical and

experimental studies have been performed to investigate the effect of Landau damping of ion

acoustic shock waves using the KdV equation with an additional Landau damping term7,8.

But no investigation has been reported to study the propagation properties of dust acoustic

shock waves undergoing Landau damping due to resonance of heavy ions with low frequency

dust acoustic wave mode.

Satellite observations have reported the distributions of particles in plas-
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mas that significantly deviate from equilibrium distributions and are found

to obey certain non-Maxwellian distributions such as Kappa-distribution or q-

nonextensive distribution. Recent investigations have considered the existence

of different kinds of nonlinear structures in magnetized and unmagnetized dusty

plasma containing electrons obeying q-nonextensive distribution.25,26. Another

commonly employed distribution to study the distributions far removed from Maxwellian

distributions is Cairns nonthermal distribution27,28 that has been successfully fitted to ex-

plain the density depletion in the upper ionosphere detected by Freja satellite29. Such a

non-Maxwellian distribution has been employed to study nonlinear structures in different

plasma environments23,30–33. The effect of Landau damping on a nonlinear ion-acoustic

solitary wave in a magnetized plasma containing nonthermal ions has been reported by

Bandyopadhyay and Das9. They derived an evolution equation, including the effects due to

Landau damping and discussed its solitary solution. Further, the analysis was extended to

derive a KdV-ZK equation to study a kinetic Alfvén and ion-acoustic waves in a nonthermal

magnetized plasma containing warm ions10. Recent observations by the Geotail spacecraft

have reported the presence of two-temperature (hot and a relatively cold) ion population in

Earth’s magnetotail34,35. Two energy peaks at 0.7keV and 7keV were observed where the

cold ion population consisted mainly of O+ ions, whereas the hot ions were mainly protons

(H+ ions) whose source is the solar wind. It is emphasized that due to their larger mass,

the effect of inertia of the colder O+ ions is not negligible when considering the dynamics

of large scale phenomena in the Earth’s magnetosphere34. The two ion populations having

substantially higher temperatures can be assumed to follow a non-Maxwellian distribution

such as Cairns distribution.

Motivated by the observations by the Geotail spacecraft in the magnetotail region of the

Earth’s magnetosphere, we have investigated the effect of Landau damping due to cold and

heavier O+ ions on DAWs propagating in the magnetotail34–37. The aim is to study the

variation in characteristics of dust acoustic nonlinear structures (shocks and solitons) in the

presence of Landau damping within a plasma containing two temperature nonthermal ions.

The effect of Landau damping on the properties of dust acoustic waves in an electron depleted

dusty plasma in presence of Cairns distributed two temperature ions has not been reported

so far. We aim to highlight the effect of a nonthermal ion population on the propagation

properties as well as Landau damping of DAWs. The results of this investigation may
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be useful to understand the resonant wave-particle interactions in dusty plasmas containing

nonthermal ions as well as the formation of nonlinear structures in such plasma environments.

The manuscript is structured as follows. In Sec. II, the model equations for present

investigation are presented and using the reductive perturbation method the KdV equation

with Landau damping has been derived. In Sec. III, the analytical solution for Landau

damping modified KdV-equation is derived. In Sec. IV, the numerical investigation and

discussion is presented and Sec. V is devoted to concluding remarks of present investigation.

II. THE FLUID EQUATIONS

We consider an electron depleted dusty plasma consisting of a negatively charged inertial

dust fluid and two temperature ions obeying a nonthermal Cairns distribution. The colder

ion species is considered massive as compared to the hot ions and hence, we shall investigate

Landau damping of DAWs due to cold heavier ions. We assume that the plasma is collision-

less while neglecting the dissipation due to dust charge fluctuation. The fluid equations of

motion are as follows:
∂nd

∂t
+

∂(ndud)

∂x
= 0, (1)

∂ud

∂t
+ ud

∂ud

∂x
= − qd

md

∂ϕ

∂x
, (2)

∂2ϕ

∂x2
= −4πe(ni1 + ni2 − Zdnd). (3)

The dynamics of the ion species are governed by the Vlasov equation

∂fj
∂t

+ v
∂fj
∂x

− qj
mj

∂ϕ

∂x

∂fj
∂v

= 0 (4)

yielding the number density

nj =

∫ ∞

−∞

fjdv. (5)

At equlibrium, the plasma is considered to be quasi-neutral and the charge neutrality con-

dition is given by ni10 + ni20 = Zdnd0 which yields

µi1 + µi2 = 1

where, µi1 =
ni10

Zdnd0
, µi2 =

ni20

Zdnd0
, Zd is the charge and nd is the density of dust particles. We

shall normalize the number densities of cold ions, hot ions and dust grains nr(r = i1, i2, d) by
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their unperturbed number densities nr0(r = i1, i2, d). The speed and electrostatic potential

shall be respectively normalized by Cd =
(

ZdKBTi1

md

)1/2

= λD,d ωp,d which is the dust acoustic

speed and ϕ0 = KBTi1

e
, where λD,d =

(

KBTi1

4πnd0Zde2

)1/2

is the dust Debye length and ω−1
p,d =

( md

4πnd0Zd
2e2

)1/2 is the inverse dust plasma frequency, Ti1 is the temperature of the colder

ion species, md is the dust mass. fj is normalized by
nj0

vtj
and v is normalized by vti1,

vtj =
√

KBTj

mj
is the thermal velocity of jth ion species. Space and time shall be normalized

by L and L/Cd, respectively, where L depicts the characteristic scale length for variation of

physical quantities. The normalized equations can be written as

∂nd

∂t
+

∂(ndud)

∂x
= 0, (6)

∂ud

∂t
+ ud

∂ud

∂x
=

∂ϕ

∂x
, (7)

λd
2

L2

∂2ϕ

∂x2
= −µi1ni1 − µi2ni2 + nd, (8)

and the normalized number densities as

nj =

√

Ti1mj

Tjmi1

∫ ∞

−∞

fjdv. (9)

The normalized Vlasov equation for ion species become

δ
∂fj
∂t

+ v
∂fj
∂x

− mi1

mj

∂ϕ

∂x

∂fj
∂v

= 0 (10)

where j = i1, i2 for cold and hot ions, respectively.

• δ =
√

Zdmi1

md
represents the effects due to inertia of cold ions and in particular Landau

damping by heavier ions.

• nd1

nd0
depicts the ratio of perturbed density to its equilibrium value which is a measure

of the strength of nonlinearity in electrostatic disturbances.

• λD
2

L2 depicts the strength of the wave dispersion due to deviation from the charge

quasi-neutrality, where L represents the characteristic scale length for variations of

the physical quantities, namely nd, ud, ϕ etc.

If the normalization of the space co-ordinate is performed by the dust Debye length, the

term depicting the strength of the wave dispersion shall vanish in Eq.(8). One of our main
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interests is to study the interplay among the nonlinearity, the dispersion and the Landau

damping effects. We consider2,5

δ = γ1ϵ,

nd1

nd0

= γ2ϵ,

λ2
D

L2
= γ3ϵ.

where, γj, with j = 1, 2, 3 is a constant of the order unity and ϵ is a smallness parameter.

From Eq. (10), the Vlasov equations for the two ion species become

γ1ϵ
∂fi1
∂t

+ v
∂fi1
∂x

− ∂ϕ

∂x

∂fi1
∂v

= 0, (11)

γ1ϵ
∂fi2
∂t

+ v
∂fi2
∂x

−m
∂ϕ

∂x

∂fi2
∂v

= 0 (12)

wherem = mi1

mi2
. To study the evolution of nonlinear structures in a nonthermal dusty plasma

under the effect of Landau damping, we will derive a characteristic equation using hybrid

model equations (Eqs. (6)-(12)). Using the reductive perturbation method, we introduce

the following stretched co-ordinates to derive the KdV equation with an additional Landau

damping term:

ξ = ϵ1/2(x−Mt) and τ = ϵ3/2t (13)

where M is the nonlinear wave speed (relative to the frame) normalized by Cd. The depen-

dent physical quantities are expanded in powers with respect to ϵ about equilibrium state

as

nd = 1 + γ2ϵn
(1)
d + γ2

2ϵ2n
(2)
d + ...

ud = γ2ϵu
(1)
d + γ2

2ϵ2u
(2)
d + ...

ϕ = γ2ϵϕ
(1) + γ2

(2)ϵ2ϕ(2) + ...

nj = 1 + γ2ϵn
(1)
j + γ2

2ϵ2n
(2)
j + ...

fj = f
(0)
j + γ2ϵf

(1)
j + γ2

(2)ϵ2f
(2)
j + ... (14)

where fj
(0) represents the equilibrium distribution function for ion species and j = i1, i2

for cold and hot ions. The cold and hot ions are assumed to obey the nonthermal Cairns

distribution whose normalized distribution function has the form27,28:

fj
(0) =

1√
2π(1 + 3αs)

(

1 + αsv
4

(

Ti1mj

Tjmi1

)2
)

exp

(

−v2
Ti1mj

Tjmi1

)

(15)
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where, αs = α1, α2 is the nonthermal parameter for cold and hot ions respectively. Sub-

stituting Eqs. (13)-(14) in Eqs. (6)-(9) and Eqs. (11)-(12), then equating the coefficients

multiplying ϵ and ϵ2 to zero, we obtain the equations for the first and second order quantities.

A. First-order perturbations and nonlinear wave speed

At lowest order of ϵ, equating the coefficients of ϵ3/2 from Eqs.(6)-(9) and Eqs. (11)-(12)

to zero, we get the first order equations

−M
∂nd

(1)

∂ξ
+

∂ud
(1)

∂ξ
= 0, (16)

−M
∂ud

(1)

∂ξ
+

∂ϕ(1)

∂ξ
= 0, (17)

−µi1ni1
(1) − µi2ni2

(1) + nd
(1) = 0, , (18)

n
(1)
j =

√

Ti1mj

Tjmi1

∫ ∞

−∞

f
(1)
j dv, (19)

v
∂f

(1)
i1

∂ξ
− ∂ϕ(1)

∂ξ

∂f
(0)
i1

∂v
= 0, (20)

v
∂f

(1)
i2

∂ξ
− m

∂ϕ(1)

∂ξ

∂f
(0)
i2

∂v
= 0, (21)

from Eqs. (16)-(17), we obtain

n
(1)
d =

−ϕ(1)

M2
, (22)

u
(1)
d =

−ϕ(1)

M
. (23)

Eq.(20) yields

∂f
(1)
i1

∂ξ
= −f

(0)
i1

∂ϕ(1)

∂ξ
+ λ(ξ, τ)δ(v), (24)

where δ(v) is Dirac’s delta function and λ(ξ, τ) is an arbitrary function of ξ and τ . The above

solution for
∂f

(1)
i1

∂ξ
involves the arbitrary function λ(ξ, τ), and hence is not unique. Thus, for a

unique solution to exist, the problem should be posed as an initial value problem. Following

Ott and Sudan2, we include a term ϵ7/2γ1
∂f

(1)
i1

∂τ
originating from the third order of ϵ in Eq.(11)

after the expressions (13) and (14) being substituted. Thus, we write Eq.(20) as

γ1ϵ
2∂f

(1)
i1ϵ

∂τ
+ v

∂f
(1)
i1ϵ

∂ξ
− ∂ϕ(1)

∂ξ

∂f
(1)
i1ϵ

∂v
= 0. (25)
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Similarly, Eq. (21) becomes

γ1ϵ
2∂f

(1)
i2ϵ

∂τ
+ v

∂f
(1)
i2ϵ

∂ξ
−m

∂ϕ(1)

∂ξ

∂f
(1)
i2ϵ

∂v
= 0. (26)

The solutions of the initial value problems (25) and (26) can now be found uniquely, once

f
(1)
jϵ for j = i1, i2 are known, by letting ϵ → 0 as

fj(1) = lim
ϵ→0

fjϵ
(1) (27)

Next, taking the Fourier transform of Eq. (25) with respect to ξ and τ ,

f̂(ω, k) =

∫ ∞

−∞

∫ ∞

−∞

f(ξ, τ) exp ι(kξ − ωτ)dξdτ (28)

we obtain

f̂
(1)
i1ϵ = − k

∂f
(0)
i1

∂v

kv − ωγ1ϵ2
ϕ̂1. (29)

To avoid the singularity appearing in Eq.(29), we replace ω by ω + ιη, where η (> 0) is a

small parameter, to obtain

ˆfi1ϵ
(1)

= − k
∂f

(0)
i1

∂v

kv − ωγ1ϵ2 − ιηγ1ϵ2
ϕ̂1 (30)

Proceeding to the limit ϵ → 0 and using the Plemelj’s formula

lim
ϵ→0

1

kv − ωγ1ϵ2
= P

(

1

kv

)

+ ιπδ(kv) (31)

where P and δ denote the Cauchy principal value and Dirac’s delta function, respectively,

we obtain

f̂
(1)
i1 = 2

∂f
(0)
i1

∂v2
ϕ̂1, (32)

where we have used the properties xP
(

1
x

)

= 1, xδ(x) = 0. Next, taking the inverse Fourier

transform of the Eq. (32), we obtain

f
(1)
i1 = 2

∂f
(0)
i1

∂v2
ϕ1. (33)

Proceeding in the same way as above for the hotter ions, we obtain from Eq.(26)

f
(1)
i2 = 2m

∂f
(0)
i2

∂v2
ϕ1. (34)
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From Eqs. (33) and (34) and using Eq. (19), we obtain the number density for the cold and

hot ion species as

n
(1)
i1 = −Ci1

(1)ϕ1 (35)

n
(1)
i2 = −Ci2

(1)ϕ1 (36)

where Ci1
(1) = (1− βi1) and Ci2

(1) = σ(1− βi2), with βi1 =
4α1

1+3α1
, βi2 =

4α2

1+3α2
and σ = Ti1

Ti2
.

Substituting the expressions for n
(1)
j from Eqs.(35) and (36) in Eq. (18), we obtain

M =
1

√

(µi1Ci1
(1) + µi2Ci2

(1))
, (37)

which is the expression for nonlinear wave speed.

B. Second-order perturbations

At higher order of ϵ, equating coefficients of ϵ(5/2) from Eqs. (6) and (7), the coefficients

of ϵ2 from Eqs. (8) and (9) and the coefficients of ϵ(5/2) from Eqs. (11) and (12) to zero, we

successively obtain

∂n
(1)
d

∂τ
−M

∂n
(2)
d

∂ξ
+

∂u
(2)
d

∂ξ
+

∂(n
(1)
d u

(1)
d )

∂ξ
= 0 (38)

∂u
(1)
d

∂τ
−M

∂u
(2)
d

∂ξ
+ u

(1)
d

∂u
(1)
d

∂ξ
− ∂ϕ(2)

∂ξ
= 0 (39)

λ2
d

L2

∂2ϕ(1)

∂ξ2
= −µi1n

(2)
i1 − µi2n

(2)
i2 + n

(2)
d (40)

n
(2)
j =

√

mjTi1

mi1Tj

∫ ∞

−∞

f
(2)
j dv (41)

v
∂f

(2)
i1

∂ξ
−∂ϕ(2)

∂ξ

∂f
(0)
i1

∂v
= γ1M

∂f
(1)
i1

∂ξ
+

∂ϕ(1)

∂ξ

∂f
(1)
i1

∂v
(42)

v
∂f

(2)
i2

∂ξ
−m

∂ϕ(2)

∂ξ

∂f
(0)
i2

∂v
= γ1M

∂f
(1)
i2

∂ξ
+m

∂ϕ(1)

∂ξ

∂f
(1)
i2

∂v
(43)

Substituting the expression for f
(1)
j from Eqs.(33) and (34) into Eqs. (42) and (43), we

successively obtain

v
∂f

(2)
i1

∂ξ
−∂ϕ(2)

∂ξ

∂f
(0)
i1

∂v
= 2Ca1

∂f
(0)
i1

∂v2
+ 4vDa1

∂2f
(0)
i1

∂(v2)2
(44)

v
∂f

(2)
i2

∂ξ
−m

∂ϕ(2)

∂ξ

∂f
(0)
i2

∂v
= 2Ca2

∂f
(0)
i2

∂v2
+ 4vm2Da2

∂2f
(0)
i2

∂(v2)2
(45)
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where, Ca1 = γ1M
∂ϕ(1)

∂ξ
, Da1 = ϕ1

∂ϕ(1)

∂ξ
; Ca2 = γ1Mσ ∂ϕ(1)

∂ξ
and Da2 = σ2ϕ1

∂ϕ(1)

∂ξ
.

Proceeding as above, to obtain unique solutions for fj
(2) for cold (j = i1) and hot ions

(j = i2), we introduce an extra higher order term ϵ9/2γ1(
∂fj

(1)

∂τ
) originating from the term

ϵ5/2γ1(
∂fj
∂τ

) in Eqs.(11) and (12) after substituting Eqs. (13) and (14). Thus, Eqs. (44) and

(45) are rewritten as

γ1ϵ
2∂fi1

(2)

∂τ
+ v

∂f
(2)
i1

∂ξ
− ∂ϕ(2)

∂ξ

∂f
(0)
i1

∂v
= 2Ca1

∂f
(0)
i1

∂v2
+ 4vDa1

∂2f
(0)
i1

∂(v2)2
(46)

γ1ϵ
2∂fi2

(2)

∂τ
+ v

∂f
(2)
i2

∂ξ
−m

∂ϕ(2)

∂ξ

∂f
(0)
i2

∂v
= 2Ca2

∂f
(0)
i2

∂v2
+ 4vm2Da2

∂2f
(0)
i1

∂(v2)2
(47)

In order to obtain unique solutions, we need to find fj
(2) for both ion species by letting

ϵ → 0,

fj
(2) = lim

ϵ→0
fjϵ

(2). (48)

Taking Fourier transform of Eq. (46), we get

f̂
(2)
i1 =

k ∂fi1
(0)

∂v
ϕ̂(2)

kv − ωγ1ϵ2
− 2ι

Ĉa1
∂fi1

(0)

∂v2

kv − ωγ1ϵ2
−

ι4vD̂a1
∂2fi1

(0)

∂(v2)2

kv − ωγ1ϵ2
. (49)

In order to avoid singularity, ω is assumed to have a small positive imaginary part. So, we

replace ω by ω + ιη, where η > 0 and obtain from Eq. (49) as

f̂
(2)
i1 =

k ∂fi1
(0)

∂v
ϕ̂(2)

kv − ωγ1ϵ2 − ιηγ1ϵ2
− 2ι

Ĉa1
∂fi1

(0)

∂v2
+ 2vD̂a1

∂2fi1
(0)

∂(v2)2

kv − ωγ1ϵ2 − ιηγ1ϵ2
. (50)

Proceeding to the limit ϵ → 0 similar to the case of first order perturbed equations, using

Plemlj’s formula from Eq. (31) and using xP (1/x) = 1, xδ(x) = 0 and δ(kv) = δ(v)
|k|

, we

obtain the expressions for the number densities of the cold and hot ion species as

∂ni1
(2)

∂ξ
+ a1

∂ϕ

∂ξ
− a2P

∫ ∞

−∞

∂ϕ(1)

∂ξ′
∂ξ′

(ξ − ξ′)
− a3ϕ

(1)∂ϕ
(1)

∂ξ
= 0, (51)

∂ni2
(2)

∂ξ
+ b1

∂ϕ

∂ξ
− b2P

∫ ∞

−∞

∂ϕ(1)

∂ξ′
∂ξ′

(ξ − ξ′)
− b3ϕ

(1)∂ϕ
(1)

∂ξ
= 0, (52)

where the coefficients for cold ion populations are

a1 = 1− βi1, a2 = Mγ1
(4− 3βi1)

4
√
2π

, a3 = 1. (53)

For the hot ions population, the coefficients become

b1 = σ(1− βi2), b2 = Mγ1
σ3/2

√
m(4− 3βi2)

4
√
2π

, b3 = σ2 (54)

11



In order to obtain the required KdV-equation, we first eliminate ∂ud
(2)/∂ξ and ∂nd

(2)/∂ξ

from Eqs. (38)-(40) and then eliminate ∂nj
(2)/∂ξ by using Eqs. (51) and (52). In the

resulting equation, we also substitute the expressions for nd
(1) and ud

(1) and obtain the

following equation where the constants γ1, γ2 and γ3 will enter into the Landau damping,

nonlinear and the dispersive terms:

∂n

∂τ
+ A P

∫ ∞

−∞

∂n

∂ξ′
∂ξ′

(ξ − ξ′)
+ Bn

∂n

∂ξ
+ C

∂3n

∂ξ3
= 0 (55)

where n ≡ nd
(1), and the Landau damping, nonlinear and dispersion coefficients are

A =
γ1M

3

2
(µi1a2 + µi2b2); (56)

B =
γ2M

3

2

(

3

M2
− (µi1a3 + µi2b3)M

2

)

(57)

C =
γ3M

3

2
. (58)

C. Landau damping of DAWs

To obtain the regular Landau damping of DAWs in plasmas, we set B = C = 0. Then,

Eq. (55) reduces to the following form:

∂n

∂τ
+ A

∫ ∞

−∞

∂n

∂ξ′
∂ξ′

(ξ − ξ′)
= 0 (59)

Taking the Fourier transform of (59) and using that the inverse transform of [isgn(k)] is

− 1
π
P (1

ξ
), we have

ω = −ιπk
γ1M

3

2
(µi1a2 + µi2b2) (60)

Thus, due to the presence of δ =
√

Zdmi1

md
, the dust acoustic waves suffer Landau damping

due to inertial effects of colder ion population. The normalized Landau damping decrement

is given as

|γ| = πk
γ1M

3

2
(µi1a2 + µi2b2) ≡ πA (61)

To evaluate the importance of Landau damping, we have plotted the ratio of the Landau

damping decrement to the phase velocity of linear DAWs in Fig 1. It is observed that as the

nonthermalities of the cold and hot ions increase, the influence of Landau damping on the

dynamics of the DAWs increases, i.e., for highly nonthermal plasma the Landau damping of

DAWs due to colder ions becomes more significant. For lower values of the nonthermality

12
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FIG. 1. (Color online) Variation of the ratio of the Landau damping decrement and the phase

velocity of linear DAWs with nonthermality parameter for hot ions (α2) for different values of the

nonthermal parameter for the cold ions (α1), the cold ions to dust density ratio (µi1) and cold to

hot ions temperature ratio (σ). The parameters for red solid curve are given as α1 = 0.2, µi1 = 0.7,

σ = 0.1, γ1 = 0.01. Blue (dotdashed) curve: µi1 = 0.75, black (dotted) curve: α1 = 0.21, green

(dashed) curve: σ = 0.06 with other parameters same as for the red curve.

of hot ions, the value of the Landau damping decrement is slightly higher for lower values

of the cold to hot ion temperature ratio till a critical value of nonthermal parameter for

the hot ions α2. Above this critical value of α2, there is an increase in ratio the of Landau

damping to the linear phase velocity of the DAWs with an increase of the ion temperature

ratio. In other words, as the temperature of the colder ions increase, the Landau damping

has a more profound influence on the properties of linear DAWs. Also, with an increase in

the number density of the colder ions, the effect of Landau damping on the DAWs becomes

less dominant.

III. ANALYTICAL SOLUTION OF THE KDV EQUATION WITH LANDAU

DAMPING

To obtain an analytical solution of Eq. (55), we follow the approach described in Refs.

[2] and [13]. As γ1 → 0, i.e., in the absence of Landau damping, Eq. (55) reduces to the

usual KdV equation, with a solitary wave solution given by

n = Nsech2

(

ξ − U0τ

W

)

(62)

where N = 3U0

B
is the amplitude, W = (12C/NB)1/2 ≡

√

4C/U0 is the width, and U0 =

NB/3 is the constant phase speed (normalized by Cd).
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To emphasize certain properties of KdV equation with Landau damping, we integrate

Eq. (55) with respect to ξ and obtain2

∂

∂τ

∫ +∞

−∞

ndξ = 0 (63)

i.e., Eq. (55) conserves the number of particles. Furthermore, multiplying Eq. (55) by n

and integrating over ξ yields
∂

∂τ

∫ ∞

−∞

n2(ξ, τ)dξ ≤ 0 (64)

where the equality sign holds only when n = 0 for all ξ. Eq. (64) states that, an initial

perturbation of the form (62) for which

∫ +∞

−∞

n2dξ < ∞ (65)

will decay to zero. The peak amplitude N of the wave is not a constant now but decreases

slowly with time. Therefore, steady-state solutions such as shock waves do not exist with

condition (65). However, steady-state shock solutions may exist for which the integral
∫ +∞

−∞
n2dξ > ∞, i.e., the integral of n2 is divergent. We shall try to find the shock solution

of the Landau damping modified KdV equation by numerically solving Eq. (55).

To determine the influence of a small amount of Landau damping on the solitary solution

of famous KdV equation, we perform a perturbation analysis of Eq. (55) assuming that a

(≫ ϵ) is a small parameter with b, c ≫ a. A new space coordinate is introduced in a frame

moving with group velocity of solitary wave and normalized to its width

z =

(

ξ − B

3

∫ τ

0

Ndτ

)

/W (66)

where N is assumed to vary slowly with time and N = N(a, τ). Also, assume that n ≡
n(z, τ). Under this transformation, Eq. (55) becomes

∂n

∂τ
+

A

W
P

∫ +∞

−∞

∂n

∂z′
dz′

z − z′
−
(

NB

3W
− z

2N

(

dN

dτ

))

∂n

∂z
+

B

W
n
∂n

∂z
+

C

W 3

∂3n

∂z3
(67)

where we have used ∂n/∂z‘ = ∂n/∂z at z = z′. Next, to determine the solution of Eq. (67),

we follow Refs. [2], [28] and [29] and generalize the multiple time scale analysis with respect

to a. Thus, we consider the solution

n(z, τ) = n(0) + an(1) + a2n(2) ++a3n(3) + ......, (68)
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FIG. 2. (Color online) Variation of phase velocity (M) with the nonthermality parameter for hot

ions (α2) for different values of the nonthermal parameter for the cold ions (α1), the cold ions to

dust density ratio (µi1) and cold to hot ions temperature ratio (σ). The parameters for red solid

curve are given as α1 = 0.2, µi1 = 0.7, σ = 0.1. Blue (dotdashed) curve: µi1 = 0.75, black (dotted)

curve: α1 = 0.21, green (dashed) curve: σ = 0.08 with other parameters same as for the red curve.

To obtain the analytical soliton solution of Eq. (55) with the Landau damping as

n = N0

(

1 +
τ

τ0

)−2

sech2

[(

ξ − B

3

∫ τ

0

Ndτ

)

/W

]

+O(a) (69)

where τ0 is

τ0 =
1.37

A

√

3C

BN0

(70)

Eq. (69) shows that the addition of Landau damping in dynamics of dust acoustic (DA)

solitary waves tends to algebraically decay the solitary amplitude with time. In order to

understand the variation of solitary amplitude with various physical parameters, we perform

a numerical investigation of Eq. (69) according to the data obtained by observations of

Geotail satellite.

IV. NUMERICAL ANALYSIS

Using the reductive perturbation method, we have derived a KdV equation including

Landau damping for DA solitary waves propagating in an electron depleted dusty plasma

containing two temperature nonthermal ions. In order to study the influence of various

plasma parameters on the properties of DA solitary waves, we have performed a numerical

investigation of various coefficients of Eq. (55) which is presented in Figs. 2-8. Dust

charging typically occurs in a plasma due to the attachment of ions and electrons to the dust
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FIG. 3. (Color online) Variation of the Landau damping coefficient (A) with nonthermality param-

eter for hot ions (α2) for different values of nonthermal parameter for cold ions (α1), the cold ions

to dust density ratio (µi1) and cold to hot ions temperature ratio (σ). The parameters for red solid

curve are given as α1 = 0.2, µi1 = 0.7, σ = 0.1, γ1 = 0.01. Blue (dotdashed) curve: µi1 = 0.75,

black (dotted) curve: α1 = 0.21, green (dashed) curve: σ = 0.08 with other parameters same as

for the red curve.

B > 0

B < 0

0.3 0.4 0.5 0.6 0.7 0.8 0.9
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0.15

0.20

Μi1

Α1

FIG. 4. (Color online) Contour plot for variation of the nonlinear coefficient (B) with the nonther-

mality parameter for the cold ions (α1) and the cold ion to dust density ratio (µi1) for different

values of the nonthermal parameter for hot ions (α2) and the cold to hot ions temperature ratio

(σ). The parameters for the red solid curve are given as α2 = 0.2, σ = 0.1,. Blue (dashed) curve:

α2 = 0.5, black (dotted) curve: σ = 0.08 with γ2 = 0.5.

grain14,15. At equilibrium, the dust grains become negatively charged due to the higher flux

of electrons to an uncharged surface. For numerical investigation, the parameters are taken

to be Ti1 = 0.7keV ; Ti2 = 7keV , md = 4.6× 10−16 kg, Zd = 4.6× 105, mi1 = 2.65× 10−26kg
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FIG. 5. (Color online) Variation of the dispersion coefficient (C) with nonthermality parameter

for hot ions (α2) for different values of nonthermal parameter for cold ions (α1), the cold ions to

dust density ratio (µi1) and cold to hot ions temperature ratio (σ). The parameters for the red

solid curve are given as α1 = 0.2, µi1 = 0.7, γ3 = 0.8, σ = 0.1. Blue (dotdashed) curve: µi1 = 0.75,

black dotted curve: α1 = 0.21, green (dashed) curve:σ = 0.08 with the other parameters same as

for the red curve.
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FIG. 6. (Color online) Time evolution of the solitary wave profile under the influence of Landau

damping. Red (solid) curve: τ = 0; Blue (dotdashed) curve: τ = 50; Black (dashed) curve:

τ = 100. The values of the physical parameters being µi1 = 0.7, α1 = 0.2, α2 = 0.8, γ1 = 0.01,

γ2 = 0.5, γ3 = 0.8, σ = 0.1.

for the O+ ions and mi2 = 1.672× 10−27kg for the H+ ions. Fig. 2 depicts variation of the

phase velocity M with nonthermality of cold and hot ions (via α1, α2), cold ions to dust

density ratio (µi1) and cold to hot ions temperature ratio (σ). The phase velocity of the DA

solitary waves increases with increasing nonthermality of the hot and cold ions. In other

words, the DA solitary waves propagate faster if there are more nonthermal ions present. It

is also observed that the phase velocity of DA solitary waves decreases with increase in cold

ions to dust density ratio (µi1) as well as with an increase in the ion temperature ratio (σ).
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FIG. 7. (Color online) The variation of the peak amplitude of a soliton with time under the

influence of Landau damping for different values of the nonthermal parameter for cold ions (α1).

Red (solid) curve: α1 = 0.2, blue (dotdashed) curve: α1 = 0.3, black (dashed) curve: α1 = 0.4.

Other parameters are N0 = 0.4, U0 = 40, µi1 = 0.7, α2 = 0.8, γ1 = 0.01, γ2 = 0.5, γ3 = 0.8,

σ = 0.1.
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FIG. 8. (Color online) The variation of the peak amplitude of a soliton with time under the

influence of Landau damping for different values of the nonthermal parameter for hot ions (α2).

Red (solid) curve: α2 = 0.3, blue (dotdashed) curve: α2 = 0.6, black (dashed) curve: α1 = 0.9.

Other parameters are N0 = 0.4, U0 = 40, µi1 = 0.7, α1 = 0.2, γ1 = 0.01, γ2 = 0.5, γ3 = 0.8,

σ = 0.1.

This may be due to that with an increase in the temperature of the hot ions or as the hot

ions become more nonthermal, the streaming of ions through the layers of plasma becomes

fast. However, for highly nonthermal ions, the phase velocity of DA solitary waves does not

show much variation with the cold to hot ions temperature ratio.

Fig. 3 depicts the variation of the Landau damping coefficient (A) with different physical

parameters. It is to be noted here that the magnitude of Landau damping is enhanced

as both the ion species become more nonthermal similar to the case of variation of phase
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FIG. 9. (Color online) Time varying numerical solution of KdV equation with Landau damping.

The parameters being N0 = 0.4, α1 = 0.15, α2 = 0.8, µi1 = 0.7, U0 = 40, γ1 = 0.01, γ2 = 0.5,

γ3 = 0.8, σ = 0.1.
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FIG. 10. (Color online) Time varying numerical solution of KdV equation with Landau damping.

The parameters being N0 = 0.4, α1 = 0.25, α2 = 0.8, µi1 = 0.7, U0 = 40, γ1 = 0.01, γ2 = 0.5,

γ3 = 0.8, σ = 0.1.
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FIG. 11. (Color online) Time varying numerical solution of the KdV equation with Landau damp-

ing. The parameters being N0 = 0.4, α1 = 0.35, α2 = 0.8, µi1 = 0.7, U0 = 40, γ1 = 0.01, γ2 = 0.5,

γ3 = 0.8, σ = 0.1.
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velocity (M) with different physical parameters. The physical interpretation is that

with an increase in the nonthermal parameter for the ions, the number of ener-

getic ions in the tail of the energy spectrum increases and a larger number of

particles extract energy from the wave and the Landau damping increases. It is

also inferred that as the cold ions to dust density ratio increases, i.e., the dust

concentration decreases, the magnitude of the Landau damping coefficient de-

creases. In other words, a decrease in the concentration of inertial dust particles

tends to decrease the rate of Landau damping of the DAWs. With an increase in

cold to hot ions temperature ratio, the Landau damping coefficient decreases (increases) for

lower (higher) values of the nonthermal parameter for the hot ions. To illustrate the ex-

istence region of parameters for different polarity solitary structures, a contour

plot that represents variation of the nonlinear coefficient (B) with the nonther-

mal parameter of the cold ions (α1) and the cold ions to dust density ratio (µi1)

for different values of the nonthermal parameter for hot ions (α2) as well as the

cold to hot ions temperature ratio (σ) is shown in Fig. 4. The physical parameters

regime above the curves represents the existence of rarefactive nonlinear structures, whereas

the parametric regime below the curves represent compressive nonlinear structures. It can

be easily inferred from the graphs that the critical number density ratio of cold ions to dust

concentration µi1 (at which transition from compressive to rarefactive nonlinear structures

occurs) has a higher value if the nonthermality of the cold and hot ions is increased. How-

ever, the critical number density ratio decreases with an increase in the cold to hot ion

temperature ratio (σ). The variation of the dispersion coefficient of the KdV equation with

Landau damping with various physical parameters is presented in Fig. 5. The value of the

dispersion coefficient shows a similar trend as that of the Landau damping coefficient with

a variation of the associated physical parameters. However, the value of dispersive term is

several orders of magnitude higher than that of Landau damping coefficient. The analytical

solution of the KdV equation with Landau damping (Eq. (55)) as obtained in Eq. (69) is

illustrated in Fig. 6. It is a well known fact that the balance of nonlinearity and dispersion

in a plasma can lead to the formation of stable localized structures called solitons. In the

case when A → 0, Eq. (55) reduces to the well known KdV equation which has solutions

in the form of solitons. However, the presence of an additional Landau damping term tends

to decay the amplitude of the solitary wave with time, which is evident from Fig. 6 which

20



depicts the time evolution of a soliton under the influence of Landau damping. The varia-

tion of the peak amplitude of the solitary structures with the nonthermality of cold ions is

presented in Fig. 7. It is seen that the decay of the peak solitary amplitude is faster as the

cold ions are more nonthermal. Similar is the case of varying the nonthermality of the hot

ions as illustrated in Fig. 8, i.e., the decay in the peak amplitude of the soliton becomes

more rapid with an increase in the nonthermality of hot ions and the variation is substantial

as compared to the case of increasing nonthermality of the colder ions.

α1 A B C

0.08 0.00423 0.142442 1.06

0.09 0.00443 0.07935 1.120

0.1 0.0046 0.010147 1.179

TABLE I. The values of the nonlinear, dispersion and Landau damping coefficients used to evaluate

the numerical solution for different values of the nonthermal parameter for the cold ions. Other

parameters are µi1 = 0.7, γ1 = 0.01, γ2 = 0.5, γ3 = 0.8, σ = 0.1, α2 = 0.8.

The balance of nonlinearity and dissipation (due to Landau damping) gives rise to shock-

like structures in plasma. Shock waves are characterized as an abrupt jump in the plasma

potential, density etc. To illustrate the influence of varying the nonthermality of the ions

on the Landau damping modified shock-like solution, we shall use the values of various

coefficients of Landau damping modified KdV equation (55) for different values of the non-

thermality of the cold ions as given in Table 1. In order to follow the time evolution of the

shock-like solution of the KdV equation with Landau damping, we use a MATHEMATICA

based finite difference scheme to numerically solve Eq. (55). To obtain the time varying

numerical solution, we shall use a shock-like pulse as the initial waveform as

n(0, ξ) = Aini

(

1− tanh(k0ξ)

)

, ξ ∈ (−L,L) (71)

where, L depicts the spatial length and Aini the shock amplitude. The boundary conditions

are n(τ,−L) = Aini

(

1 + tanh(k0L)

)

and ϕ(1)(τ, L) = 0. For numerical analysis, we take

L = 100 and simulate Eq. (55) using the values of the coefficients given in Table I. The

Landau damping term is numerically integrated using a trapezoidal rule. The time varying

solutions of the KdV equation with Landau damping for values of the nonthermal parameter

for the cold ions as α1 = 0.08, α1 = 0.09 and α1 = 0.1 are shown in Figs. 9, 10 and 11,
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respectively. It is inferred from the Fig 9 that if the colder ions are less nonthermal (i.e., more

Maxwellian), the initial shock-like compression pulse propagates with increasing amplitude

and develops an oscillatory tail, i.e., as time elapses, the dispersive effects begin to dominate

the plasma dynamics and a monotonic shock transits into an oscillatory shock profile due

to the balance of dissipative, nonlinear and dispersive effects. The time evolution of the

shock profile for an increased nonthermality of the cold ions is presented in Fig 10. It is

observed that as the value of nonthermal parameter increases (at α1 = 0.09), the dispersive

effects become less dominant and the monotonic character of the shock wave is retained for

a longer duration in time. In other words, we can say that the monotonic shock structures

are found to be temporally more stable as the colder ion species becomes more nonthermal.

As we further increase the value of the nonthermal parameter for the cold ions α1 = 0.1,

we observe that the nonlinearity in the system is unable to balance the dissipation due to

Landau damping and the monotonic shock structure decays with time (see Fig. 11). As it

is also evident from Table I that the value of the Landau damping coefficient A increases,

whereas that of the nonlinear coefficient B decreases with increase in the nonthermality

of cold ions. It is, however noteworthy that as the colder ions approach a Maxwellian

distribution, the dispersive effects dominate and the monotonic shock structure transits

into an oscillatory shock. The nonthermality of the hot ions does not incur a profound

influence on the evolution of the shock structures in the plasma. It is remarked that the

solitary wave experiences a larger Landau damping rate for a high concentration

of nonthermal hot ions as compared to cold ions and the peak amplitude decays

due to the dominance of increasing dissipative effects arising through Landau

damping with the increase in the nonthermality of ions. Similar effects are

observed for an initial shock-like pulse, where an oscillatory shock structure at

later times tends to retain a monotonic character due to a subtle balance between

nonlinear and dissipative effects with an increase in the nonthermality of cold

ions. Hence, the relatively weak dissipative effects due to Landau damping

even being lower in magnitude may be significant for the evolution of nonlinear

structures in a dusty plasma.
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V. CONCLUSIONS

We have investigated the influence of Landau damping and nonthermality of the ions on

the propagation properties of dust acoustic (DA) solitary and shock waves in a dusty plasma

comprising two temperature ions motivated by the observations of the Geotail spacecraft.

An analytical solution of the KdV equation with an additional Landau damping term is

investigated. It is found that the solitary amplitude decays with time due to the presence

of an additional Landau damping term in the KdV equation. The decrease of the peak

amplitude becomes more rapid with increase in the nonthermality of ions, whereas the decay

is observed to be faster for highly nonthermal hot ions as compared to more nonthermal

cold ions. On the other hand, under certain conditions when the nonlinearity is balanced

by dissipation, shock-like structures are formed. The time evolution of the shock waves

is investigated as a numerical solution of the modified KdV equation including Landau

damping. It is seen that an initially compressional shock-like pulse forms a monotonic

shock profile for a higher nonthermality of the cold ions, whereas oscillatory shock structure

is formed as the nonthermality of cold ions is decreased, i.e., as the cold ions approach

Maxwellian distribution. Motivated by the reports of the Geotail spacecraft and observation

of highly energetic charged particles in space, we have for the first time investigated the

influence of Landau damping due to cold ions on dust acoustic nonlinear structures (shocks

and solitons) in the presence of two temperature nonthermal ions. It is noteworthy that

the Landau damping of DA waves due to cold O+ ions incurs a profound influence on the

propagation characteristics of DA nonlinear structures and hence, the inertia of heavier

O+ ions shall not be neglected while studying the dynamics of nonlinear waves in this

particular region of space. The findings of present investigation shall be very useful in

understanding the physics of resonant wave-particle interactions in an electron depleted

dusty plasma environment where two temperature electrons have been observed such as

Earth’s magnetosphere and Saturn’s F-ring.
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