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There are several advantageous features of using a 

pseudospark (PS) discharge [1] for electron beam produc-

tion. One of these features is the formation of an ion 

channel following the pseudospark anode, which enables 

the beam to propagate and eliminates the need for a guid-

ing magnetic field [2–5]. When a high voltage is applied 

to the hollow cathode, the electric field across the anode-

cathode gap penetrates a short distance into the hollow 

cathode region due to the small cathode aperture. A PS 

discharge will occur if the pressure in the system is suita-
bly low (typically 50–500 mTorr) so that the discharge is 

at the left-hand side (with respect to the minimum) of the 

Paschen curve. In such a PS discharge condition, the gas 

breakdown will occur along the longest possible path, 

allowing a virtual anode to form, extending from the an-

ode into the hollow cathode region. As the virtual anode 

reaches the cathode surface field-enhanced emission be-

gins to occur. Electrons begin emitting from the cathode 

surface at an increased rate, augmented by secondary 

emission and are accelerated toward the aperture by the 

electric field. Consequentially this rapid increase in elec-
tron emission results in a rapid increase in the beam cur-

rent. As the beam propagates through the anode its front 

edge ionizes the background gas, forming a plasma chan-

nel, while the following beam electrons expel part of the 

plasma electrons so that an ion-channel is formed, confin-

ing the beam and eliminating the need for any external 

magnetic guide field. A high current density, high bright-

ness electron beam with a sweeping voltage can therefore 

be generated and propagated by ion channel focusing. 

Pseudospark discharges have been explored for vari-

ous important applications, especially high quality elec-

tron beam generation for microwave sources [2, 5, 6] and 
potential terahertz devices. High frequency sources above 

100 GHz are very attractive for a wide range of research 

and technical applications, including molecular spectros-

copy, bio-imaging and security screening. As the fre-

quencies move into the sub-terahertz and terahertz region, 

the size of device reduces greatly. This brings a challenge 

with regard to device fabrication. Therefore a compact 

and simplified structure is desirable, with the pseu-

dospark-sourced electron beam an ideal choice for high 

power, high frequency sources. This paper presents some 

experimental results of the electron beam current depend-
ence on the gap separation of a single-gap pseudospark 

structure. At a certain gap separation, the relationship 

between the beam current and discharge voltage has been 

studied [2]. It is found that the electron beam only starts 

to occur when the charging voltage is above a certain 

value and increases with the increasing discharge voltage 

following two tendencies. Under the same discharge volt-

age, the configuration with the larger electrode gap sepa-

ration will generate higher electron beam current. Be-

cause the energy of the high brightness electrons in the 

beam produced by a pseudospark is relatively low post 

acceleration experiments on the hollow cathode beam 

have also been successfully carried o ut [4, 5]. 

X-ray emission studies and spatial visualization of 

the PS beams have been used to improve the characterisa-

tion of these beams [7, 8]. Several experiments have suc-

cessfully produced mm-wave/sub-THz radiation [9, 10]. 

Zhao et al. [11, 12] have measured the dependence of the 
PS beam on the gap separation and the beam variability 

in a post-accelerated PS [13]. Kumar et al. [14] have car-

ried out an analysis of how the PS geometrical factors 

affect the PS emission. These studies have provided in-

creased insight for the designs of future sub-terahertz and 

terahertz sources driven by PS electron beams. 

 

 
 

Fig. 1. Experimental configuration producing a micro-electron 

beam from a PS which is used to excite a 200 GHz BWO struc-
ture [9]  

 
Fig. 1 shows the experimental configuration of a mul-

tigap PS discharge that produces a micro-electron beam.  

No magnetic field is needed to transport the electron 

beam. The rippled wall BWO structure is mounted im-

mediately adjacent to the PS exit micro-aperture, so that 

the electron beam can pass through the BWO structure. 

The BWO structure, together with the conical radiation 

launching horn, was manufactured by high speed grinding 

of an aluminum former and the subsequent electrodeposi-

tion of a 5mm thick layer of copper on the aluminium for-

mer, which was later dissolved away in an alkali solution. 

An electron beam ~1mm diameter carrying a current 

of up to 10A and current density of 108Am
_2, with a 

sweeping voltage of 42 to 25 kV and pulse duration of  

25 ns, was generated from the PS discharge. Fig. 2 shows 

the repeatable time-correlated electron beam voltage, the 

discharge current and the millimetre wave pulse. The 
electron beam current has a step of about 5A at the hol-

low cathode discharge phase and then a peak current of 
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about 10A follows in the conductive phase. The micro-

wave radiation was mainly generated near this first 5 A

step, because the correlated beam voltage has stronger 

coupling with the BWO structure. In the conductive 

phase, the beam voltage is too small to have efficient 

beam-wave interaction.  

Fig. 2. Time-correlated electron beam voltage, current pulse, the 
radiation pulse from the 200 GHz BWO, the IF output from a 
harmonic mixer recorded on a deep memory (20 GHz) single 
shot digital storage oscilloscope, and FFT result of the interme-
diate frequency output [9] 

The output power was measured using the general 

antenna theorem with the total power from a launching 

antenna, calculated by integrating its radiated power den-

sity over space. The integration was completed by nu-

merically integrating the normalized mode profile of the 

launching horn and multiplying by the measured maxi-
mum power density. The result of this measurement was 

that the total power of the BWO in this frequency range 

was found to be 20 W. 
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