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Zusammenfassung

Diese Arbeit verfolgt ein zweifaches Ziel. Zum einen untersuchen wir die Leistungsfähigkeit

der Dichtefunktionaltheorie (DFT) bei der Anwendung auf stark korrelierte Systeme, wie

z.B. Verbindungen mit Übergangsmetallen. Wir widmen uns dabei im Besonderen der

Entwicklung und Verbesserung von Techniken zur Parametrisierung effektiver Modelle

auf der Basis von DFT-Rechnungen. Zum anderen befassen wir uns im Rahmen der

DFT mit einer Reihe von Fragestellungen in Bezug auf die Physik der Mott-Isolatoren.

Wir betrachten dazu konkrete Systeme, bei deren Untersuchung jeweils verschiedene As-

pekte korrelierter elektronischer Systeme im Vordergrund stehen, insbesondere (i) mag-

netische Frustration und Elektron-Phonon Wechselwirkung (Cs2CuCl4, Cs2CuBr4), (ii)

Hochtemperatur-Supraleitung (Bi2Sr2CaCu2O8+δ), sowie (iii) die Dotierung von Mott-

Isolatoren (TiOCl).

(i) (Magnetische Frustration, Elektron-Phonon Wechselwirkung) In den frus-

trierten Antiferromagneten Cs2CuCl4 und Cs2CuBr4 untersuchen wir das Zusam-

menspiel von starken elektronischen Korrelationen mit Magnetismus und Elektron-

Gitter Kopplung, sowie den Einfluß dieses Zusammenspiels auf die mikroskopischen

Modell-Parameter.

(ii) (Hochtemperatur-Supraleitung) Ein weiteres Objekt unserer Untersuchungen

ist der mit Sauerstoff dotierte Cuprat-Supraleiter Bi2Sr2CaCu2O8+δ, in dem durch

rastertunnelspektroskopische (STS) Messungen elektronische Inhomogenitäten auf

der Nanoskala festgestellt wurden. Unter Verwendung von DFT und Vielteilchen-

methoden analysieren wir die Beziehung zwischen strukturellen und elektronischen

Inhomogenitäten und die supraleitenden Eigenschaften in diesem Material.

(iii) (Dotierung von Mott-Isolatoren) Wir nutzen DFT und Molekulardynamik-

simulationen, um den mikroskopischen Ursprung des Mott-Isolator Zustandes von

TiOCl bei beliebigen Natriumdotierungen zu erklären.

Unser Interesse an den frustrierten Antiferromagneten Cs2CuCl4 und Cs2CuBr4 gründet

sich auf das fehlende Verständnis des mikroskopischen Ursprungs der experimentell

beobachteten Unterschiede in den magnetischen Eigenschaften dieser beiden isostruk-

turellen Verbindungen. Die magnetischen Eigenschaften der beiden Antiferromagneten

werden typischerweise im Rahmen des zweidimensionalen Heisenberg-Hamiltonians auf

dem Dreicksgitter diskutiert. Die führenden Spinaustausch-Kopplungen J und J ′ zwis-

chen den lokalisierten magnetischen Kupfermomenten, die sich auf die Bindungen ent-

lang einer Kette bzw. auf die Zick-Zack Verbindungen im Dreiecksgitter beziehen, wur-

den experimentell wie folgt bestimmt: J ′/J = 0.3 in Cs2CuCl4 sowie J ′/J = 0.7 in



Cs2CuBr4 (was auf höhere magnetische Frustration in Cs2CuBr4 hinweist), mit jew-

eils höheren Werten für J und J ′ in Cs2CuBr4. Darüber hinaus wurden schwache

interplanare Wechselwirkungen sowie eine anisotrope Dzyaloshinskii-Moriya Wechsel-

wirkung gemessen. Es ist jedoch noch nicht geklärt, ob das Heisenberg-Modell ausre-

icht, um das reichhaltige Phasendiagramm von Cs2CuCl4 und Cs2CuBr4 erklären zu

können: im Fall von Cs2CuCl4 lassen sich Signaturen von Spin-Liquids wie z.B. kon-

tinuierliche Anregungsspektren und Bose-Einstein Kondensation von Magnonen finden,

während das Phasendiagramm von Cs2CuBr4 Phasen mit ”up-up-down” Spinkonfigu-

rationen und Plateaus in der Magnetisierung aufweist, die von Quantenfluktutationen

stabilisiert werden. Die zwei wichtigsten Ergebnisse unserer DFT Untersuchungen an

Cs2CuCl4 und Cs2CuBr4 sind (1) die Bestimmung der zugehörigen Tight-Binding und

Heisenberg-Modelle und (2) das Herausstellen der entscheidenden Bedeutung von elek-

tronischen Korrelationen und Magnetismus für eine akkurate Beschreibung der Kristall-

strukturen in DFT. Bei der Strukturoptimierung mit verschiedenen Näherungen für das

Austausch-Wechselwirkungs-Funktional erzielen wir eine systematische Verbesserung

der sich ergebenden Strukturparameter und eine bessere bereinstimmung der aus DFT

ermittelten Modelle mit den experimentellen Ergebnissen, indem wir die Behandlung von

Korrelationen und Magnetismus im Rahmen der gegebenen Funktionale verbessern. Die

DFT-gestützte Parametrisierung der Heisenberg-Modelle für Cs2CuCl4 und Cs2CuBr4

erlaubt uns die Identifikation mehrerer bislang unbekannter Spinaustausch-Kopplungen,

die für einige der exotischen magnetischen Phasen verantwortlich sein könnten. Wir

finden auch einen qualitativen Unterschied zwischen den elektronischen Strukturen von

Cs2CuCl4 und Cs2CuBr4, nämlich die Relevanz nur eines Cu t2g Bandes für das Hop-

ping der Elektronen in Cs2CuCl4 im Vergleich zur Beteiligung aller drei t2g Bänder in

Cs2CuBr4.

Die elektronischen Inhomogenitäten im dotierten Cuprat-Supraleiter Bi2Sr2CaCu2O8+δ

sind jüngst Gegenstand intensiver Forschung mit der Hoffnung, in diesem Phänomen

einen Schlüssel zum Verständnis der Hochtemperatur-Supraleitung zu finden. Eine der

überzeugendsten Erklärungen der in STS-Experimenten beobachteten Korrelation zwis-

chen der Größe der lokalen supraleitenden Lücke und der Position der Dotierungsatome

basiert auf der Annahme, daß die Fremdatome die Supraleitung lokal erhöhen. In unserer

Arbeit testen wir diese Annahme im Rahmen des Spin-Fluktuations-Austausch Modells

für die Hochtemperatursupraleitung. In einem ersten Schritt parametrisierten wir Tight-

Binding Modelle für die Beschreibung des Cu 3dx2−y2 Bands in reinem und mit Sauerstoff

dotiertem Bi2Sr2CaCu2O8+δ. Diese aus den DFT-Ergebnissen abgeleiteten Modelle wer-

den im Anschluß für die Berechnung der Spin-Suszeptibilität und der Stärke der supralei-

tenden Paarwechselwirkung unter Verwendung der Random Phase Approximation be-

nutzt. Der Vergleich der Ergebnisse für reines und dotiertes Bi2Sr2CaCu2O8+δ zeigt, daß



die über den Raum gemittelte Stärke der supraleitenden Paarwechselwirkung durch die

Dotierung um ca. 30 % steigt. Das ist in bereinstimmung mit der lokalen Erhöhung der

Spinaustausch-Wechselwirkung, die sich aus Modellrechnungen mit einem Band ergibt

und über das Spin-Fluktuations-Austausch Modell mit der lokalen supraleitenden Lücke

in Beziehung steht. Auf der anderen Seite liefern ähnliche, von uns durchgeführte

Rechungen für einen Hubbard Hamiltonian mit drei Bändern abweichende Ergebnisse,

indem dort die durch die Dotierung induzierte lokale Inhomogenität je nach Parameter-

bereich zur Verstärkung oder Unterdrückung des lokalen Spinaustauschs führen kann.

Diese widersprüchlichen Ergebnisse verlangen nach einer sorgfältigen und akkuraten

Charakterisierung der durch die Dotierung induzierten Variation der Parameter für das

Dreiband-Modell. Die Anwendung der von uns entwickelten Projektions-Methode ver-

spricht hier gute Ergebnisse.

Für den geschichteten Mott-Isolator TiOCl erklären unsere DFT-Rechnungen die

mikroskopische Natur seines ungewöhnlichen isolierenden Zustandes, der auch bei

Dotierung sowie unter Anwendung von Druck erhalten bleibt. TiOCl – welches ein ef-

fektives quasi-1D Spinsystem darstellt – ist bekannt als eine der wenigen anorganischen

Verbindungen mit einem Spin-Peierls Phasenübergang. Es ist auch interessant aufgrund

seiner strukturellen Ähnlichkeit mit den Cuprat-Supraleitern, was auf eine mögliche

Supraleitung hinweist, sofern es gelänge, TiOCl zu metallisieren. Experimente mit Pho-

toemission an mit Na oder K dotiertem TiOCl sowie unter Anwendung von Druck zeigten

jedoch keine Signaturen eines metallischen Zustandes. Um dieses überraschende Verhal-

ten zu erklären, führten wir eine DFT-Analyse der elektronischen Strukturen von reinem

und dotiertem TiOCl durch. Da keine Strukturdaten für dotiertes TiOCl vorlagen, bes-

timmten wir mittels Molekulardynamik-Simulationen die Parameter der Einheitszelle für

verschiedene Na-Dotierungen sowie für Substitution mit V, Sc, F und S. Wir stellen fest,

dass der isolierende Zustand das Ergebnis eines Zusammenspiels der Hund’schen Regel,

die die Besetzung eines neuen Ti 3d Orbitals durch ein dotiertes Elektron fördert, und

der durch die Dotierung induzierten Modifikation der Kristallfeld-Aufspaltung für Ti ist,

die zum Einfangen des Elektrons durch ein Ti Ion führt. Auf der Basis dieser Ergeb-

nisse schlagen wir Ansätze zur Metallisierung von TiOCl vor. Darüber hinaus zeigen

wir mittels Downfolding-Rechnungen, daß dotiertes TiOCl durch ein zweidimensionales

ionisches Hubbard Modell mit mehreren Bändern beschrieben werden sollte.

Eine wichtige Errungenschaft dieser Arbeit ist die Entwicklung einer Parametrisierung-

stechnik für Bandstrukturen, die auf der Projektion von Blochfunktionen aus den Kohn-

Sham Gleichungen auf Wannierfunktionen basiert. Wir wenden diese Technik für die

Parametrisierung des Tight-Binding Modells für Cs2CuBr4 mit drei Bändern an. Per-

spektivisch kann sie auch für die Parametrisierung eines Dreiband-Modells für die kom-

plizierte Supercell-Bandstruktur von dotiertem Bi2Sr2CaCu2O8+δ verwendet werden.



Abstract

The objective of this work is twofold. First, we explore the performance of the density

functional theory (DFT) when it is applied to solids with strong electronic correlations,

such as transition metal compounds. Along this direction, particular effort is put into

the refinement and development of parameterization techniques for deriving effective

models on a basis of DFT calculations. Second, within the framework of the DFT,

we address a number of questions related to the physics of Mott insulators, such as

(i) magnetic frustration and electron-phonon coupling (Cs2CuCl4, Cs2CuBr4), (ii) high-

temperature (high-Tc) superconductivity (Bi2Sr2CaCu2O8+δ) and (iii) doping of Mott

insulators (TiOCl).

(i) (Magnetic frustration and electron-phonon coupling) In the frustrated anti-

ferromagnets Cs2CuCl4 and Cs2CuBr4, we investigate the interplay between strong

electronic correlations and magnetism on one hand and electron-lattice coupling

on the other as well as the effect of this interplay on the microscopic model pa-

rameters.

(ii) (High-temperature superconductivity) Another object of our investigations

is the oxygen-doped cuprate superconductor Bi2Sr2CaCu2O8+δ, where nano-scale

electronic inhomogeneities have been observed in scanning tunneling spectroscopy

(STS) experiments. By means of DFT and many-body calculations, we analyze

the connection between the structural and electronic inhomogeneities and the su-

perconducting properties of Bi2Sr2CaCu2O8+δ.

(iii) (Doping of Mott insulators) We use the DFT and molecular dynamic sim-

ulations to explain the microscopic origin of the persisting under doping Mott

insulating state in the layered compound TiOCl.

Our interest in the frustrated antiferromagnets Cs2CuCl4 and Cs2CuBr4 has been mo-

tivated by the lack of understanding of the microscopic origin of the experimentally

observed differences in the magnetic properties of these isostructural compounds. Mag-

netic properties of both antiferromagnets are usually discussed in terms of the Heisenberg

Hamiltonian on a 2D triangular lattice. The leading spin exchange couplings between

Cu localized magnetic moments J and J ′, which correspond to the intrachain and zig-

zag bonds of the triangular lattice respectively, have been determined experimentally as

follows: J ′/J ≈ 0.3 for Cs2CuCl4 and J ′/J ≈ 0.7 for Cs2CuBr4 (which indicates that

Cs2CuBr4 is more frustrated than Cs2CuCl4), both J and J ′ being stronger in Cs2CuBr4.

Additionally, weak interlayer interactions as well as an anisotropic Dzyaloshinsky-Moriya



interaction are detected. It is, however, still a matter of debate whether the Heisenberg

model alone is sufficient to explain the rich phase diagrams of Cs2CuCl4 and Cs2CuBr4,

where in the case of Cs2CuCl4 one finds signatures of a spin liquid state, such as continu-

ous excitation spectra, and the Bose-Einstein condensation of magnons while in the case

of Cs2CuBr4 the phase diagram contains phases with quantum-fluctuation-stabilized

“up-up-down” spin configurations and magnetization plateaux. The two main results of

our DFT studies on Cs2CuCl4 and Cs2CuBr4 consist in (1) deriving their tight-binding

and Heisenberg models and (2) unveiling the importance of electronic correlations and

magnetism for an accurate description of the Cs2CuCl4 and Cs2CuBr4 crystal struc-

tures within the DFT. By performing structural optimizations using various approxi-

mations for the exchange-correlation functional, we find a systematic improvement of

the resulting Cs2CuCl4 and Cs2CuBr4 structural parameters and better agreement of

the DFT-derived models with experimental results as the treatment of correlations and

magnetism is being improved within a given functional. The DFT-assisted parameteri-

zation of the Cs2CuCl4 and Cs2CuBr4 Heisenberg models allowed us to identify several

so far unknown second-order spin exchange couplings that might be responsible for some

of the observed exotic magnetic phases. We also find a qualitative difference between

the electronic structures of Cs2CuCl4 and Cs2CuBr4, namely, that in Cs2CuCl4 only one

of the Cu t2g bands participates in electron hopping whereas in Cs2CuBr4 all three t2g

bands are involved.

The nano-scale electronic inhomogeneities in the doped cuprate superconductor

Bi2Sr2CaCu2O8+δ have been recently a subject of intense research as one hopes to

find in this phenomenon a key to the understanding of the high-Tc superconductiv-

ity. One of the most convincing explanations of the correlation between the size of

the local superconducting gap and the position of dopant atoms, observed in STS ex-

periments, is based on the assumption that the dopants enhance the superconducting

pairing locally. In our work, this assumption was tested in the framework of the spin-

fluctuation-exchange model for the high-Tc superconductivity. As a first step, we pa-

rameterized the tight-binding models to describe the Cu 3dx2−y2 band of the pure and

oxygen-doped Bi2Sr2CaCu2O8+δ. The DFT-derived models were subsequently used to

calculate the spin susceptibility and superconducting pairing strength within the ran-

dom phase approximation. The comparison between the results for the pure and doped

Bi2Sr2CaCu2O8+δ reveals that the averaged over the real space superconducting pair-

ing strength increases by about 30% upon doping. This is in agreement with the local

enhancement of the spin exchange interaction – which is related with local supercon-

ducting gap within the spin-fluctuation-exchange model – as found in single-band model

calculations. On the other hand, similar model calculations on a three-band Hubbard

Hamiltonian that we perform give a different result, namely, that the dopant-induced



local electronic inhomogeneity can lead both to the enhancement as well as suppression

of the local spin exchange, depending on the parameter regime. These contradictory

findings call for a more thorough and accurate characterization of the dopant-induced

variations of the three-band model parameters. In view of this challenging task, the ap-

plication of the projection technique which has been developed in this work is expected

to give good results.

Concerning the layered Mott insulator TiOCl, our DFT calculations explained the micro-

scopic nature of its unusual insulating state, which survives doping as well as application

of pressure. TiOCl – which effectively behaves as a quasi-1D spin system – is known

as one of the rare inorganic compounds with a spin-Peierls phase transition. This com-

pound is also interesting due to its structural similarity with cuprate superconductors,

which suggests that, once metallized, TiOCl might also become superconducting. How-

ever, the doped via K or Na intercalation TiOCl showed no signature of a metallic state,

as probed by photoemission experiments. In order to understand this unexpected re-

sult, we performed a DFT analysis of the electronic structures of the pure and doped

TiOCl. Since structural data on the doped TiOCl had not been available, we performed

molecular dynamics simulations to determine unit cell parameters for several Na-doping

concentrations as well as for substitutional doping with V, Sc, F and S. We find that

the insulating state is a result of the interplay between the Hund’s rule coupling, which

makes a doped electron occupy a new Ti 3d orbital, and the dopant induced modification

of the crystal field splitting of Ti states, which leads to trapping of the doped electron

on a Ti ion. Based on these conclusions, we outline possible routes to metallize TiOCl.

Also, using the downfolding technique, we established that the doped TiOCl should be

described in terms of a 2D multi-band ionic Hubbard model.

An important achievement of this thesis is the development of the bandstructure pa-

rameterization technique that is based on projecting Bloch functions of the Kohn-Sham

equations onto Wannier functions. We apply this technique to parameterize the three-

band tight-binding model for Cs2CuBr4. In perspective, it can also be used to parame-

terize the complicated bandstructure of the doped Bi2Sr2CaCu2O8+δ supercell in terms

of a three-band model.



“Whatever is worth doing at all is worth doing well.”

Lord Chesterfield
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Ĥmulti-Hub multi-band Hubbard model
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Introduction

The density functional theory (DFT) is nowadays one of the best tools to study the

electronic properties of real materials but it runs into difficulties when applied to systems

with strong electronic correlations. The application of many-body methods which are

more suitable to tackle the problem of strong correlations is, on the other hand, limited

by the presently available computer power to considering only greatly simplified model

systems. However, as the material science has been recently entering the era of practical

applications based on phenomena driven by strong correlations (see, e. g., Refs. [Ahn03,

Dagotto05]), the need for the new approaches within the DFT, which would be as good in

their treatment of strong correlations as the many-body methods, becomes more urgent.

Somewhat generalizing, there are currently two ways of considering the DFT for the

study of strongly correlated materials. One is to use the DFT for establishing the

microscopic model parameters that are specific to a given material and then to apply

many-body methods to solve the model system that has been derived within the DFT.

A large part of this thesis is dedicated to the improvement and development of the

DFT-assisted model parameterization techniques and their application to a number of

Mott insulators. For some of them, we also perform model calculations based on the

DFT-derived models. The other way to combine the DFT and many-body methods is to

improve the DFT-calculated energy spectrum of a material by performing a many-body

calculation for the strongly correlated Bloch states of the DFT solution. This is done,

for instance, in the LDA+DMFT (local density approximation, dynamical mean-field

theory) method, where the Bloch states are projected onto a model basis for strongly

correlated electrons and the model Hamiltonian is self-consistently solved within the

DMFT. The LDA+DMFT as well as other methods of similar philosophy have been

rapidly developing in the recent years and are seen as the most promising adaptation of

the DFT designed to handle strong electronic correlations. Although the present the-

sis does not take advantage of the achievements of the LDA+DMFT method directly,

we employ some concepts of the method, namely, Wannier functions and the projec-

tion technique, to develop an efficient tool for parameterizing multi-band tight-binding

models.
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2 Introduction

With the methodology outlined above, we address a broad spectrum of questions related

to the physics of Mott insulators. Thus, the DFT is used for a comparative study of the

frustrated antiferromagnets Cs2CuCl4 and Cs2CuBr4, which are Mott insulators in the

regime of strong on-site Coulomb interaction and localization of the Cu magnetic mo-

ment. The frustrating triangular geometry together with the antiferromagnetic exchange

coupling between the localized spins and low dimensionality in these compounds give

rise to quite exotic magnetic behavior. For a fundamental theoretical understanding of

the observed behavior of Cs2CuCl4 and Cs2CuBr4, the knowledge of the spin exchange

model parameters is essential, but, as a result of magnetic frustration, their experimen-

tal determination is rather complicated. This motivated us to use DFT calculations for

an alternative determination of the Cs2CuCl4 and Cs2CuBr4 model parameters. Along

with providing important physical results, the presented DFT study of Cs2CuCl4 and

Cs2CuBr4 illustrates the amount of caution and delicate balancing between various ap-

proximations that is sometimes required in order to apply the DFT-based methods to

correlated systems, especially when structural optimization is involved.

Strong electronic correlations – which lead to a Mott insulating state in Cs2CuCl4

and Cs2CuBr4 – are believed to be responsible for the unconventional high-Tc super-

conductivity in doped copper oxides (La2−xBaxCuO4 [Bednorz86], Nd2−xCexCuO4,

La2−xSrxCuO4, YBa2Cu3O7−x). The research on the cuprate superconductivity has

been profiting from DFT calculations for many years (see, e. g., [Rosner99] and

references therein). In our work, we undertake a technically involved task of pa-

rameterizing the tight-binding model for an oxygen-doped cuprate superconductor

Bi2Sr2CaCu2O8+δ. The DFT-assisted model parameterization of the pure and oxygen-

doped Bi2Sr2CaCu2O8+δ allows us to study the crystal and electronic structure inhomo-

geneities, induced by the dopant atom, and their effect on the superconducting properties

of the compound. The analysis of the superconducting properties of Bi2Sr2CaCu2O8+δ

is performed in the framework of the spin-fluctuation-exchange model for the high-Tc

superconductivity and using the random phase approximation.

Another low-dimensional Mott insulator, TiOCl, which due to its structural similarity

with the cuprates is often seen as a possible candidate for unconventional superconduc-

tivity, is also studied. Despite this similarity, TiOCl demonstrates a rather different

behavior upon Na doping remaining in an insulating state at Na concentrations up to

≈ 0.4. We analyze the microscopic origin of this persistent insulating state and propose

an effective model that describes the anomalous behavior of this Mott insulator in terms

of crystal field splitting effects and the Hund’s rule coupling.
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In short, the structure of the thesis is as follows.

� A general discussion of Mott insulators and their effective models as well as the

Hartree-Fock and random phase approximations are presented in Chapter 1.

� Chapter 2 gives an overview of various approaches within the DFT, covering both

the fundamental theorems of the DFT and the practical aspects of its application

to solids.

� In Chapter 3, we present a more detailed discussion of the studied materials

Cs2CuCl4, Cs2CuBr4, Bi2Sr2CaCu2O8+δ and TiOCl by reviewing the current sta-

tus of their experimental and theoretical investigations.

� Results of our DFT and many-body studies on Cs2CuCl4/Cs2CuBr4,

Bi2Sr2CaCu2O8+δ and TiOCl are discussed in Chapters 4, 5 and 6, respectively.

� In the concluding chapter, we summarize the results and highlight possible direc-

tions of future research.





Chapter 1

Physics of Mott insulators

1.1 Properties of transition metal compounds

The Mott insulating state has been most extensively explored in transition metal com-

pounds. These materials contain transition atoms, i. e., atoms whose various ionized

forms have an incomplete (open) d shell. The studied Ti and Cu based compounds

(Cs2CuCl4, Cs2CuBr4, Bi2Sr2CaCu2O8 and TiOCl) belong to the 3d transition element

series.

Depending on the d shell filling, transition ions are classified as light or heavy. In the

light transition ions, such as the Ti3+ ion with a single 3d electron (3d1 configuration) in

TiOCl, less than half of the ten 3d electron levels are occupied. In the heavy transition

ions, such as the Cu2+ ion with nine 3d electrons (3d9 configuration) in Cs2CuCl4,

Cs2CuBr4 or Bi2Sr2CaCu2O8, the situation is the opposite. The two classes of transition

metal compounds demonstrate similar properties due to the electron-hole symmetry,

which implies that, e. g., the nine 3d electrons of the Cu2+ ion effectively behave as a

single hole with charge +e (see, for example, Ref. [Sugano70]).

The ten 3d energy levels are degenerate in an isolated atom, with each state |m,σ〉 being

distinguished by the orbital angular momentum quantum numberm = −2,−1, 0, 1, 2 and

the spin angular momentum quantum number σ = −1
2 ,

1
2 . Often, it is more convenient

to deal with a set of states |m′, σ〉 constructed as linear combinations of |m,σ〉, which

constitute a basis for the irreducible representation of the real space symmetry operations

group. The real-valued functions 〈r|m′, σ〉 are referred to as the dz2 , dx2−y2 , dxy, dxz

and dyz orbitals1, their shapes being schematically shown in Fig. 1.1.

1One may as well use linear combinations of the dz2 , dx2−y2 , dxy, dxz and dyz orbitals. Eventually,
the choice of the most convenient basis depends on the symmetry of the crystal field.

5
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Figure 1.1: 3d energy states: crystal field splitting of the ionic 3d levels (a) in a
regular tetrahedral environment as well as (b) in a distorted tetrahedral environment;
the half-filled 3d energy band in a solid (c) without the on-site electron repulsion U and
(d) with the on-site repulsion. “UHB“ and “LHB“ stand for the upper Hubbard band

and the lower Hubbard band, respectively. ε denotes the energy.

In a crystal, the transition metal atom gets oxidized by giving away some of its outer

electrons. In addition, the electrostatic field created by the neighboring ions, mainly

the nearest anions which are called ligands, causes redistribution of the transition ion’s

energy levels. In particular, the crystal field affects the 3d levels by splitting them in

various ways depending on the crystal field symmetry. Figures 1.1 (a) and (b) show

examples of the 3d level splitting in a regular and a distorted tetrahedral ligand environ-

ment, respectively. In the regular tetrahedral environment, the 3d levels are split into

six degenerate t2g levels (dxy, dxz and dyz orbitals) with higher energy and four degen-

erate eg levels (dz2 and dx2−y2 orbitals) with lower energy2. The tetragonal distortion

in a squeezed tetrahedron of ligands lifts some of the remaining degeneracies in the t2g

and eg levels [Fig. 1.1 (b)]. The 3d level splitting illustrated by Fig. 1.1 (b) occurs, for

instance, in the Cu2+ ion in Cs2CuCl4 and Cs2CuBr4 (see Chapter 4).

Due to the hybridization between valence states of different atoms in a crystal, their

single energy levels develop into energy bands, as illustrated in Fig. 1.1 (c), which reflects

the fact that valence electrons occupying the hybridized partially filled states can move

around with a certain momentum k. Typically, the 3d states of the transition ions are

2The names t2g and eg stem from the group theory notation.
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strongly hybridized with anion p states. In the example considered in Fig. 1.1 (c), which

is relevant for Cs2CuCl4 or Cs2CuBr4, the 3dxy band is half-filled indicating a metallic

ground state.

However, Cs2CuCl4 and Cs2CuBr4 as well as many other transition metal compounds

are insulators. The insulating behavior originates from the Coulomb repulsion between

the 3d electrons of transition metal ions. The special property of the 3d electrons is their

significant localization at ionic sites, which reduces the electron charge screening and

thus makes the Coulomb interaction more pronounced than in the case of completely

delocalized conduction s electrons.

Moving around in a crystal, two 3d electrons can simultaneously occupy the same transi-

tion ion for a short time period, which would have no influence on the electron motion if

there were no interaction between electrons. But the presence of the Coulomb repulsion

between the two 3d electrons on the same ion increases the system’s energy and therefore

the state with doubly occupied ions becomes energetically unfavorable. This introduces

correlations between the motions of individual electrons and, with large enough on-site

Coulomb repulsion, the electrons may freeze completely thus turning the crystal into an

insulator [Fig. 1.1 (d)]. In this case, the energy band splits into two such that the lower

band corresponds to each ionic level being occupied by a single electron, which would

be the ground state, while the upper band collects states with doubly occupied ions.

The two bands are separated by an energy gap of the order of the Coulomb interaction

strength U , which corresponds to the energy required to excite the system, i. e., create

doubly occupied ionic sites. An insulating state that has been developed through the

mechanism described above is referred to as the Mott insulating state.

1.2 Effective models for Mott insulators

1.2.1 Hubbard model

It has been early recognized that the Mott metal-insulator transition in transition metal

compounds is mainly governed by the behavior of the semi-localized 3d electrons. Mott

was the first who made use of this fact to simplify the many-body problem of interacting

particles in a crystal. He showed [Mott49, Mott56, Mott61] that the metal-insulator

transition can be explained already in the framework of an effective model where all

particle degrees of freedom except those of the 3d electrons in partially filled transition

ion outer shells have been neglected.
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Mott’s idea lies in the foundation of the famous Hubbard model [Anderson59, Hubbard63,

Hubbard64], which has probably become the most intensively studied model of strongly

correlated electronic systems. The Hubbard model considers a case of a single active 3d

orbital on each transition ion, which can host maximally two electrons. The model is

traditionally written in second quantization as

ĤHub = µ
∑
iσ

n̂iσ

−
∑
〈ij〉,σ

(
tij ĉ
†
iσ ĉjσ + h.c.

)
+
∑
i

Un̂i↑n̂i↓, (1.1)

where operators ĉ†iσ (ĉiσ) create (annihilate) an electron with spin σ at ionic site i,

n̂iσ ≡ ĉ†iσ ĉiσ, µ is the on-site energy, tij is a parameter characterizing hybridization

between orbitals of different ions, and U is the on-site Coulomb repulsion strength, as

has already been mentioned.

The Hubbard Hamiltonian (1.1) describes a competition of two processes:

(1) the kinetic motion of electrons, represented by the second term; tij is a matrix

element of the kinetic energy operator T̂ in the basis of Wannier functions wi(r)

(see also Section 2.5.1),

tij =

∫
dr w∗i (r)

(
− ~2

2me
∇2

)
wj(r); (1.2)

(2) the Coulomb repulsion between two 3d electrons on the same atom, represented

by the third term, which hinders free electron hopping between ionic sites.

Of special interest is the case when the number of electrons in the system deviates from

the number of ionic sites. Then, one of the two bands that appear upon switching on

the on-site Coulomb interaction will be partially filled – in the electron-deficient regime

there will be some empty states in the lower Hubbard band and in the electron-abundant

regime some of the upper Hubbard band states will be occupied – so that an insulating

state does not occur.

Though metallic, properties of such a doped correlated system are, generally, rather

different from those of Fermi-liquid metals. Some of the unusual properties of strongly

correlated metals are, for instance, the high-temperature superconductivity and spatial
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charge order in doped cuprates (Ref. [Lee06], Section 3.2) or the anomalous effective

mass enhancement near the boundary with an insulating phase in, e. g., V2O3
3.

Multi-band case

In many transition metal compounds there are several 3d orbitals, with close or equal

energies, that are involved in the intersite electron hopping. This happens when the

crystal field splitting is less than the 3d bands’ dispersion like, for example, in iron

pnictides, where at the Fermi level all five 3d bands of Fe are strongly hybridized [Wen11].

Also, sometimes, especially in highly symmetric structures, the partially filled t2g or eg

states remain degenerate, as in the case of the doubly occupied t2g manifold of the V 3+

ion’s 3d shell in cubic SrVO3 (see, e. g., Ref. [Aichhorn09]) or in TiOCl, where the single

Ti 3d electron can equally occupy the doubly degenerate 3dxz and 3dyz bands or the

slightly lower in energy 3dxy band (Chapter 6).

The presence of additional orbital degrees of freedom may have important consequences

on the behavior of the multi-band system. Therefore, such systems are better described

by the following multi-band Hubbard model

Ĥmulti-Hub =
∑

i,mi,m
′
i

σ

µmim′i ĉ
†
imiσ

ĉim′iσ

−
∑
〈ij〉

σ,mi,mj

(
t
mimj
ij ĉ†imiσ ĉjmjσ + h.c.

)

+
∑

i,mi,m
′
i

σσ′

(1− δσσ′δmim′i)Umim′i n̂imiσn̂im′iσ′ , (1.3)

where index mi denotes one of the 3d orbitals of ion i. This Hamiltonian allows for the

intersite as well as intrasite interorbital electron hopping and differentiates the strengths

of the on-site Coulomb repulsion between electrons from different orbitals.

Often, one additionally includes the intrasite exchange interaction term ĤJH
,

ĤJH
= −

∑
i,mi,m

′
i

σσ′

JH
mim′i

[
(1− δmim′i)ĉ

†
imiσ

ĉimiσ′ ĉ
†
im′iσ

′ ĉim′iσ

−(1− δmim′i)(1− δσσ′)ĉ
†
im′iσ

′ ĉ
†
im′iσ

ĉimiσ ĉimiσ′
]
, (1.4)

into Hamiltonian (1.3). This term models a Hund’s rule coupling by favoring parallel

orientation of electron spins on different atomic orbitals.

3Ref. [Mott90] reviews experiments on this compound.
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1.2.2 Heisenberg, t–J and Kugel-Khomski models

In the limit of strong Coulomb repulsion,

U

t
� 1, (1.5)

the Hubbard Hamiltonian (1.1) at half-filling, i. e., with one electron per site, can be

approximated by an effective spin Hamiltonian. Indeed, when the on-site Coulomb re-

pulsion is strong enough, the electron motion around the crystal via interatomic hopping

freezes, which results in an insulating state. Yet, virtual electron hopping between neigh-

boring atoms, which would lower the system’s energy, may still take place provided that

the electron spins on neighboring sites are antiparallel, as required by the Pauli exclu-

sion principle. By means of the virtual electron hopping, the electron spins interact with

an effective antiferromagnetic4 coupling J , which can be expressed in terms of a spin

effective model as

ĤH =
∑
〈ij〉

JijŜiŜj , (1.6)

where Ŝi is the spin operator acting on a site i electron. The Hamiltonian (1.6) is known

as the Heisenberg model.

The expression (1.6) can be rigorously derived by performing a perturbation theory

expansion of the Hubbard model (1.1) in terms of the kinetic energy term. Then, to the

second order, the effective spin exchange coupling is given by

Jij =
4t2ij
U
, (1.7)

while the spin operator Ŝi = (Ŝxi , Ŝ
y
i , Ŝ

z
i ) is related with the electron creation and anni-

hilation operators as

Ŝ+
i = Ŝxi + iŜyi = ĉ†i↑ĉi↓,

Ŝ−i = Ŝxi − iŜ
y
i = ĉ†i↓ĉi↑,

Ŝzi =
1

2

(
ĉ†i↑ĉi↑ − ĉ

†
i↓ĉi↓

)
. (1.8)

In Section 5.3, one can find more technical details on the perturbation expansion applied

to derive the spin superexchange in the three-band Hubbard model.

Two special cases of the Heisenberg Hamiltonian are the Ising model and the XY model,

where the x and y spin operator components or, respectively, the z component are

4Ferromagnetic spin coupling is, in general, also possible.
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neglected. Such models are relevant for real systems with substantial anisotropy of spin

coupling.

While the Heisenberg model is defined for Mott insulators in the half-filled regime,

the presence of extra charge carriers in doped systems requires an effective model that

accounts for their possible motion through empty or singly occupied sites. The t–J

model [Gros87, Chao77, Hirsch85a]

Ĥt–J = −
∑
〈ij〉,σ

P̂ †d

(
tij ĉ
†
iσ ĉjσ + h.c.

)
P̂d +

∑
〈ij〉

JijŜiŜj , (1.9)

where P̂d projects away doubly occupied sites, is a good approximation for systems

which are slightly under half-filling. The t–J model has been intensively discussed in

the context of the high-Tc cuprate superconductivity [Gros87].

In multi-band systems, the interorbital electron hopping results in an effective orbital

exchange coupling in analogy with the spin exchange coupling (1.6). The corresponding

effective model applicable in the strong interaction regime has been derived by Kugel

and Khomski [Kugel82]. For the simplest case of a two-band system with only nearest-

neighbor interactions, the Kugel-Khomski model reads5

ĤKH(2b) =
∑
〈ij〉

(
J (1)ŜiŜj + J (2)τ̂ iτ̂ j + 4J (3)ŜiŜj τ̂ iτ̂ j

)
, (1.11)

where

J (1) =
2t2

U

(
1− JH

U

)
, J (2) = J (3) =

2t2

U

(
1 +

JH

U

)
. (1.12)

Operators τ̂ i = (τ̂xi , τ̂
y
i , τ̂

z
i ) are given in terms of pseudospin representation as

τ̂+
i = τ̂xi + iτ̂yi = ĉ†imi ĉim′i ,

τ̂−i = τ̂xi − iτ̂
y
i = ĉ†

im′i
ĉimi ,

τ̂ zi =
1

2

(
ĉ†imi ĉimi − ĉ

†
im′i
ĉim′i

)
. (1.13)

5It has also been assumed that

t
mi=1,mj=1

ij = t
mi=2,mj=2

ij = t, t
mi=1,mj=2

ij = 0;

Umi=1,m′
i=1 = Umi=2,m′

i=2 = Umi=1,m′
i=2 = U ;

JH
mi=1,m′

i=2 = JH
mi=2,m′

i=1 = JH, JH
mi=m

′
i

= 0. (1.10)
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1.3 Many-body approaches to study the Hubbard model

The Mott-insulating phase transition is controlled by the strength of the on-site Coulomb

repulsion U and the width of the d band W . The transition is to be expected in the

intermediate regime, when the two controlling parameters are of the same order of

magnitude,
U

W
∼ 1. (1.14)

Therefore, the Hubbard model, Eq. (1.1) or Eq. (1.3), is a minimal model to study the

Mott transition. The effective models introduced in the previous section are applicable in

the strong coupling regime and are helpful in elucidating collective phenomena in systems

with only spin and/or orbital degrees of freedom (see, for instance, Section 3.1.1).

Although the Hubbard model is an enormous simplification to the original many-particle

Schrödinger equation for electrons and nuclei in a solid, its general solution is not avail-

able. Except for the 1D case, where the Hubbard model can be solved exactly [Lieb68],

one has to resort to approximative methods in order to analyze its properties. Imada

et al. present in Ref. [Imada98] an extensive overview of the methods that have been de-

veloped for this purpose. Often, the various mean-field approaches (e. g., Hartree-Fock

and random phase approximations [Bohm53], infinite-dimensional approach [Georges96]

etc.) and numerical methods (e. g., quantum Monte Carlo) are used as complementary

many-body tools to study different aspects of the problem at hand and to better control

approximation errors.

Here, we will discuss in some detail the Hartree-Fock and random phase approximations

(RPA). We pay special attention to the RPA in order to provide a theoretical back-

ground for the discussion of the spin-fluctuation-exchange-mediated superconductivity

in Bi2Sr2CaCu2O8, which we present in Section 5.2.

1.3.1 Hartree-Fock and RPA solutions. Superconductivity

In the Hartree-Fock method, two-particle correlations are neglected so that the many-

body wave-function can be approximated by a single Slater determinant. This approxi-

mated wave-function is obtained self-consistently by adjusting the particle density 〈n̂iσ〉
and the effective mean-field potential it generates. This approach is equivalent to ap-

proximating the interaction term of the Hubbard model (1.1) by an interaction with the
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mean field as

ĤHub ≈ µ
∑
iσ

n̂iσ

−
∑
〈ij〉,σ

(
tij ĉ
†
iσ ĉjσ + h.c.

)
+U

∑
i

(〈n̂i↑〉n̂i↓ + n̂i↑〈n̂i↓〉+ 〈n̂i↑〉〈n̂i↓〉) . (1.15)

The Hartree-Fock method can already capture the metal-insulator transition upon dop-

ing the Hubbard model away from half-filling, as was, for example, demonstrated by

Hirsch [Hirsch85b] for a 2D nearest-neighbor Hubbard model (Fig. 1.2).

Figure 1.2: The Hartree-Fock phase diagram for the 2D nearest-neighbor Hubbard
model (taken from Ref. [Hirsch85b]). Here, ρ stands for the filling 〈n〉 whereas “P“, “A“
and “F“ denote, respectively, the paramagnetic, antiferromagnetic and ferromagnetic

phases.

The nature of approximations in the Hartree-Fock method can also be expressed in the

language of Green’s functions and Feynman diagrams. In fact, the Green’s functions

formalism is widely used to study many-body problems. The zero-temperature one-

electron Green’s function is defined as

Gλ(t− t′) = − i
~
〈Ψ0|T̂ ĉλ(t)ĉ†λ(t′)|Ψ0〉. (1.16)

It probes the response of a system in the ground state |Ψ0〉 to an electron characterized by

the quantum number λ that is created at time t′, then propagates through the system,

interacting on its way, and is finally destroyed at time t. In Eq. (1.16), the electron
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creation and annihilation operators are in the Heisenberg representation and T̂ is the

time ordering operator. This kind of probing the system’s response can provide full

information on its equilibrium properties as well.

At finite temperatures, it is convenient to operate with Green’s functions defined for

imaginary time τ through the thermodynamic average as [Mahan81]

Gλ(τ − τ ′) = Tr
(
e−β(Ĥ−µN̂−Ω̂)T̂τe

τ(Ĥ−µN̂)ĉλe
−(Ĥ−µN̂)(τ−τ ′)ĉ†λe

−τ ′(Ĥ−µN̂)
)
, (1.17)

e−βΩ̂ = Tr
(
e−β(Ĥ−µN̂)

)
, (1.18)

or, in short notation,

Gλ(τ − τ ′) = −〈T̂τ ĉλ(τ)ĉ†λ(τ ′)〉. (1.19)

In Eq. (1.17), N̂ is the total particle number operator, µ plays the role of the chemical

potential and −β ≤ τ − τ ′ ≤ β, with β = 1
kBT

.

The Green’s function for a non-interacting (single-band) system G0
p(τ − τ ′), with the

quantum number p being the wavevector, can be easily calculated, and its Matsubara

frequency Fourier transform6 is

G0
p(iωn) =

1

iωn − ε(p)
, G0

p(τ − τ ′) =
1

β

∑
n

e−iωn(τ−τ ′)G0
p(iωn), (1.20)

where ε(p) is the spectrum of the non-interacting Hamiltonian Ĥ0. In the presence of

an interaction term7 Û , Ĥ = Ĥ0 + Û , the Green’s function can be formally obtained as

a series expansion in powers of the interaction:

Gp(τ − τ ′) = −
∞∑
n=1

(−1)n
∫ β

0
dτ1 . . .

∫ β

0
dτn

×Tr
[
e−β(Ĥ0−µN̂)T̂τ ĉp(τ)Û(τ1)Û(τ2) . . . Û(τn)ĉ†p(τ ′)

]
unique
connected

(1.21)

Note that among the terms produced via application of the time ordering operator T̂τ ,

one should consider only those terms that are unique in terms of the dummy variables

τ1, . . . , τn equivalence and connected. We explain below the meaning of “connected”.

The expansion (1.21) can be graphically represented as a sum of Feynman diagrams

such that each expansion term is mapped into a corresponding diagram following certain

6The discrete frequencies are a result of the imaginary time being defined within a finite interval:

−β ≤ τ − τ ′ ≤ β.

7In the Hubbard model, Û(τ) = U
∑
i

n̂i↑(τ)n̂i↓(τ).
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Figure 1.3: (a) Gp(τ − τ ′), G0p(τ − τ ′) and up. (b) A disconnected diagram. (c)
Expansion of Gp(τ − τ ′).

prescriptions (see, e. g., Ref. [Mahan81], page 111). Graphical representations of Gp(τ −
τ ′), G0

p(τ − τ ′) and up = 4πe2

p2 are shown in Fig. 1.3 (a), while Fig. 1.3 (c) displays

Eq. (1.21) in a graphical form. The requirement for the expansion series terms to be

connected can now be formulated as a requirement that the diagrams in the sum should

all be without topologically isolated parts [an example of a disconnected diagram is

shown in Fig. 1.3 (b)].

Now, the Hartree-Fock approximation consists in replacing the infinite series of Fig. 1.3 (c)

by a bare propagator G0
p(τ − τ ′) plus two interaction terms that involve the interacting

propagator Gp(τ − τ ′) itself, as shown in Fig. 1.4. The first interaction term is called the
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Figure 1.4: The Hartree-Fock approximation in terms of Feynman diagrams.

Hartree term and results from infinitely summing over a particular type of diagrams,

such as the second expansion term in Fig. 1.3 (c), which represent an interaction of

the propagating test electron with the mean field generated by the rest of electrons.

Analogously, the second interaction term in Fig. 1.4 is a sum over all the exchange type

diagrams, the first-order representative of which is shown as the third expansion term

in Fig. 1.3 (c). The exchange term takes account of the electron scattering processes

whereby the test electron is exchanged with one of the electrons from the medium.

Such processes reflect the quantum-mechanical indistinguishability of electrons. Since

Gp(τ − τ ′) appears on both sides of the Hartree-Fock equation in Fig. 1.4, it has to be

determined self-consistently, in accordance with our earlier formulation of the method.

We consider next the random phase approximation (RPA) [Bohm53], which is a method

commonly used to study the linear response of a many-body system to an external field.

Within the RPA, the interaction between electrons is described in terms of electron-hole

pairs excitations, which result in an effective screening of the Coulomb interaction8. The

RPA gives accurate results for systems with high particle density.

Let us discuss the application of the RPA to the dynamical spin susceptibility χ(q, iω).

χ(q, iω) is a measure of the system’s response to an external magnetic field H(r, t) that

varies in space and time. It can be calculated from a two-particle Matsubara Green’s

function:

χ(q, iω) =

∫ β

0
dτ eiω(τ−τ ′)〈T̂τ Ŝq(τ)Ŝ−q(τ ′)〉, Ŝq =

1

2

∑
k

∑
αβ

ĉ†k+q,ασαβ ĉk,β, (1.22)

where α and β are spin indices and σαβ is the vector of Pauli matrices. Diagrammati-

cally, χ(q, iω) appears as a bubble in-between two interaction lines with wavevector q,

8In fact, approximations that are introduced to evaluate the infinite series expansion of a given
response function within the RPA are equivalent to deriving that response function from the single-
electron Green’s function obtained within the Hartree approximation, which consists in keeping only the
Hartree term in Fig. 1.4.
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Figure 1.5: Magnetic susceptibility χ(q, iω): (a) definition, (b) RPA expression.

as shown in Fig. 1.5 (a). The RPA for χ(q, iω) consists in keeping only bubble- and

ladder-like diagrams in the susceptibility expansion in terms of the interaction and the

non-interacting magnetic susceptibility χ0(q, iω) [Fig. 1.5 (b)]. These diagrams repre-

sent scattering processes that excite electron-hole pairs on the way of the propagating

electron.

Summing all the diagrams in Fig. 1.5 (b) up gives the following simple analytic expression

for χRPA(q, iω)

χRPA(q, iω) =
χ0(q, iω)

1− Uχ0(q, iω)
, (1.23)
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Figure 1.6: RPA pairing vertex ΓRPA(q,q′, iω).

where

χ0(q, iω) = − 1

Nβ

∑
k,iωn

Gk(iωn)Gk+q(iωn + iω). (1.24)

On the other hand, the dynamical spin susceptibility is related to spin fluctuations via

the fluctuation-dissipation theorem. Exchange of spin fluctuations between electrons

results in their effective attraction or repulsion [Berk66]. In cuprates, the effective spin-

fluctuation-exchange-mediated interaction between electrons is attractive, owing to the

crystal and electronic structure peculiarities of these compounds, which has given rise to

a development of a microscopic theory of magnetically driven high-Tc superconducting

pairing (see Ref. [Scalapino95] and Section 5.2). In the RPA, the effective electron-

electron interaction vertex ΓRPA(q,q′, iω) arises from the RPA spin fluctuations, as

shown in Fig. 1.6. After performing the summation, we get

ΓRPA(q,q′, iω) = U2

(
3

2

χ0(q− q′, iω)

1− Uχ0(q− q′, iω)
− 1

2

χ0(q− q′, iω)

1 + Uχ0(q− q′, iω)

)
+ U. (1.25)

The pairing vertex ΓRPA(q,q′, iω) can be straightforwardly used in the BCS gap equa-

tion [Bardeen57] as an effective attraction:

∆q = −
∑
q′

ΓRPA(q,q′, ω = 0)∆q′

2Eq′
, (1.26)

where Eq =
√
ε(q) + ∆q. In Chapter 5, we use a multi-orbital version of the RPA

expressions for the magnetic susceptibility and pairing vertex [Takimoto02].



Chapter 2

Electronic properties of solids

within the density functional

theory

Although the effective models for strongly correlated materials that we discussed in the

previous chapter are very helpful in providing a qualitative description of the correlation

effects, their common disadvantage is the fact that a major part of the system’s degrees

of freedom are neglected, except for those that are believed to be relevant for the effect

of interest. With this kind of approximation, much of the material specific information is

lost and the results of the model calculations cannot be easily compared to experimental

results on a real material.

In this chapter, we would like to introduce a paradigm of methods that approach the

many-body problem of solids (molecules, atomic clusters etc.) following quite a different

route. In these methods, gathered under the name “density functional theory” (DFT),

the central quantity is the electron density ρ(r). The basic equations of the DFT are

formulated in terms of the electron density, which in principle allows one to treat all

electrons and all degrees of freedom in the system exactly and with as little effort as

required to operate with only three spatial variables r.

Also in the DFT, the complications due to the two-particle interaction terms in the

Hamiltonian cannot be avoided and are eventually resolved using certain approxima-

tions. Nevertheless, the DFT provides an exact theoretical framework, which is open to

continuous improvement on the approximations involved and can moreover be efficiently

combined with many-body methods. The development of the combined DFT and many-

body methods is a recently established research frontier in the solid state theory, which

we have also tried to push forward in our work.

19
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In the rest of this chapter, the reader will get familiar with the theoretical foundations

of the DFT as well as with some of the practical aspects of its application to crystalline

materials. The methods to derive effective model parameters for real systems by using

the DFT will also be discussed.

2.1 Theoretical foundations

The microscopic world of atoms obeys quantum-mechanical laws. In a conventional

quantum-mechanical language, the state of a many-particle microscopic system is de-

scribed by the many-particle wave-function Ψ(x1,x2, . . . ,xN ), where x1,x2, . . . ,xN

are the spatial and spin coordinates of the system’s N particles. The wave-function

Ψ(x1,x2, . . . ,xN ) is obtained by solving the time-independent1 Schrödinger equation

ĤΨ = EΨ, (2.1)

where the Hamilton operator Ĥ is given as

Ĥ = Ĥe + ĤIon + Ĥe-Ion, (2.2)

with

Ĥe = −
Ne∑
i

~2

2me
∇2
i +

1

2

e2

4πε0

Ne∑
i

Ne∑
j 6=i

1

|ri − rj |
, (2.3)

ĤIon = −
NIon∑
I

~2

2MI
∇2
I +

1

2

e2

4πε0

NIon∑
I

NIon∑
J 6=I

ZIZJ
|RI −RJ |

, (2.4)

Ĥe-Ion = − e2

4πε0

Ne∑
i

NIon∑
I

ZI
|RI − ri|

(2.5)

for an atomic system that consists of electronic (e) and ionic (Ion) subsystems. In

Equations (2.3)–(2.5), Ne (NIon), me (MI), −e (eZI), ri (RI) are, respectively, the total

number, mass, electric charge and spatial coordinates of electrons (ions). The double

sum terms stand for the Coulomb interactions and the single sum terms represent the

kinetic energy operators.

The Hamiltonian (2.2) can be considerably simplified if one recognizes that the ions

are much less mobile than the electrons due to the much smaller electron mass (the

proton mass is approximately equal 1836me). Then, the ions can be treated as being

spatially fixed and the electrons as moving in an electrostatic potential of the motionless

1It is assumed that there are no time-dependent potentials in the system’s Hamiltonian Ĥ.
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ions vext(r). This constitutes the Born-Oppenheimer approximation [Born27]. With the

ionic degrees of freedom having been neglected, the Hamiltonian (2.2) reads

Ĥ = Ĥe + Ĥe-Ion ≡ Ĥe + V̂ext. (2.6)

Unfortunately, even within the Born-Oppenheimer approximation solving the electron

Schrödinger equation (2.1) still remains a complicated many-body problem.

With the Born-Oppenheimer approximation as a starting point, the fermionic density

functional theory offers an alternative approach to this problem. The DFT considers

the electron density ρ(r),

ρ(r) = 〈Ψ|
Ne∑
i

δ(r− ri)|Ψ〉, (2.7)

as a quantity that incorporates all information about the system, which is justified by

the Hohenberg-Kohn theorem. The electron density ρ(r) is equivalent in this sense to the

many-electron wave-function Ψ(r1, r2, . . . , rNe) but is much easier to handle as ρ(r) is a

function of three variables whereas Ψ(r1, r2, . . . , rNe) is a function of 3Ne variables. The

DFT approach, though, has a disadvantage with respect to the conventional quantum-

mechanical approach in that it only gives access to the ground state properties.

2.1.1 Hohenberg-Kohn theorem

The Hohenberg-Kohn theorem [Hohenberg64] is formulated in two statements.

Statement 1. The external potential vext(r) is uniquely determined within an

additive constant by the electron density ρ(r).

ρ(r) also determines the number of electrons Nel. It follows then that the ground state

wave-function Ψ0 and all the other properties of the system, which depend on vext(r),

are determined by the electron density. In particular, ρ(r) determines the total energy

E, i. e., E is a functional of ρ(r): E[ρ]. Just following the Hamiltonian decomposition

(2.6), the total energy functional can be written as

E[ρ] = He[ρ] + Vext[ρ]

= T [ρ] + Ve-e[ρ] + Vext[ρ]

= T [ρ] + Ve-e[ρ] +

∫
ρ(r)vext(r)dr

= FHK[ρ] +

∫
ρ(r)vext(r)dr, (2.8)

where T is the kinetic energy and Ve-e is the electronic Coulomb repulsion.
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Statement 2. With the energy functional E[ρ] defined as (2.8), the ground state

energy (E0) variational principle reads:

E0 ≤ E[ρ̃], (2.9)

where ρ̃(r) is a trial density such that ρ̃(r) ≥ 0 and
∫
ρ̃(r) dr = Ne.

The ground state density should therefore satisfy the stationary principle

δ

{
E[ρ]− µ

[∫
ρ(r) dr−Ne

]}
= 0, (2.10)

where the second term expresses the total electron number constraint on ρ(r) and µ

is the associated Lagrange multiplier. Eq. (2.10) transforms into the Euler-Lagrange

equation:

µ =
δE[ρ]

δρ(r)

= vext(r) +
δFHK[ρ]

δρ(r)
. (2.11)

The term δFHK[ρ]
δρ(r) is decoupled from the external potential vext(r) and therefore FHK[ρ] is

a universal functional. The Euler-Lagrange equation is the central equation of the DFT

and by solving it one could find the electron density and other quantities of interest.

Unfortunately, this is never done in practice as the functional FHK[ρ] is not known.

Instead, in order to proceed, one resorts to approximate schemes, which all consist in

approximating certain terms in FHK[ρ].

FHK[ρ] can be written as [see Eq. (2.8)]

FHK[ρ] = T [ρ] + Ve-e[ρ]

= T [ρ] + VH[ρ] + Vxc[ρ], (2.12)

where VH[ρ] is the Hartree (classical) term,

VH[ρ] =
1

2

e2

4πε0

∫
ρ(r)ρ(r′)

|r− r′|
drdr′, (2.13)

and Vxc[ρ] is the exchange-correlation (non-classical) term, whose mathematical expres-

sion is unknown but assumed to exist. As a first approximation to FHK[ρ], the Thomas-

Fermi model [Fermi27, Thomas27] only retains the Hartree term in Ve-e[ρ] and approx-

imates the kinetic term T [ρ] by that of a non-interacting uniform electron gas. The

Thomas-Fermi-Dirac model [Dirac30] is an improvement on top of the Thomas-Fermi

model, where the exchange-correlation term Vxc[ρ] is represented by the exchange energy
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formula for a uniform electron gas2. The most accurate and successful method to handle

the functional FHK[ρ] was, however, proposed by Kohn and Sham in 1965.

2.1.2 Kohn-Sham equations

The Kohn-Sham method [Kohn65] treats in an indirect but exact way a larger part

of the kinetic energy T [ρ] by mapping the actual interacting electron system onto a

non-interacting reference system.

The non-interacting reference system of Kohn and Sham is described by the Hamiltonian

Ĥs,

Ĥs =

Ne∑
i

ĥs

=

Ne∑
i

{
− ~2

2me
∇2
i + vs(ri)

}

= T̂s +

Ne∑
i

vs(ri), (2.14)

where the single-electron potential vs(r) is such that the ground state electron density

of the system is exactly ρ(r). For this system the ground state wave-function is a single

Slater determinant

Ψs
0 =

1√
N !

det [ψ1ψ2 . . . ψNe ] , (2.15)

with ψi being the Ne lowest eigenstates of ĥs:

ĥsψi = εiψi. (2.16)

Kohn and Sham proposed to express the Euler-Lagrange equation (2.11) in terms of the

functional Ts[ρ] and the single-electron orbitals ψi by rearranging the FHK[ρ] terms as

FHK[ρ] = Ts[ρ] + VH [ρ] + Exc[ρ], (2.17)

with the exchange-correlation functional Exc[ρ] defined as

Exc[ρ] ≡ T [ρ]− Ts[ρ] + Ve-e[ρ]− VH[ρ]. (2.18)

So, the exchange-correlation functional Exc[ρ] incorporates the difference T [ρ] − Ts[ρ],

which is assumed to be small, and the non-classical part of the electronic interaction.

2Note that the Thomas-Fermi and Thomas-Fermi-Dirac models appeared before the Hohenberg-Kohn
theorem and do not use the energy variational principle.
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Now, the Euler-Lagrange equation becomes

µ = veff(r) +
δTs[ρ]

δρ(r)
, (2.19)

where

veff(r) = vext(r) +
δVH[ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
, (2.20)

δVH[ρ]

δρ(r)
=

e2

4πε0

∫
ρ(r′)

|r− r′|
dr′, (2.21)

δExc[ρ]

δρ(r)
= vxc(r). (2.22)

From the analogy of Eq. (2.19) with the expression that one would obtain for the non-

interacting system (2.14) under the condition vs(r) = veff(r), it follows that the ground

state ρ(r) can be obtained by solving the Ne one-electron equations{
− ~2

2me
∇2 + veff(r)

}
ψi = εiψi (2.23)

and setting (σ is the spin coordinate)

ρ(r) =

Ne∑
i

∑
σ

|ψi(r, σ)|2. (2.24)

Equations (2.20)–(2.24) are the Kohn-Sham equations. The Kohn-Sham eigenvalues εi

are, in fact, mere Lagrange multipliers associated with the constraint that the single-

electron orbitals be orthonormal and not the single-particle energies.

2.1.3 Exchange-correlation functional

The Kohn-Sham method allows to accumulate all the exchange and correlation effects

in the functional Exc[ρ]. If this functional were available, the solution of the Kohn-Sham

equations would provide the exact ground state electron density, total energy etc. The

functional Exc[ρ] is not known, however, but the power of the Kohn-Sham method is to

provide an exact theoretical framework, within which the description of Exc[ρ] can be

continuously improved.

The concept of a uniform electron gas from the Thomas-Fermi-Dirac model proved

very useful in a search for a good approximation to Exc[ρ]. Thus, in the local-density
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approximation (LDA), the exchange-correlation functional is of the form

ELDA
xc [ρ] =

∫
ρ(r)εxc(ρ)dr, (2.25)

where εxc(ρ) is the exchange and correlation energy per particle of a uniform electron

gas. εxc(ρ) can be divided into the exchange and correlation contributions:

εxc(ρ) = εx(ρ) + εc(ρ). (2.26)

The exchange contribution is available in an analytical form,

εx(ρ) = −Cxρ(r)1/3, Cx =
3

4

(
3

π

)1/3

, (2.27)

while the correlation contribution can be numerically calculated. Commonly used are

the quantum Monte Carlo results for εx(ρ) obtained by Ceperley and Alder [Ceperley80]

and subsequently parameterized by Perdew and Zunger [Perdew81] and by Perdew and

Wang [Perdew92].

By construction, the LDA method is expected to perform well for systems with slowly

varying electron densities. Atoms and molecules are apparently not such systems, but

the LDA has nevertheless been generally quite successfull in describing them. Yet, the

LDA fails for transition metal compounds, where the electron inhomogeneity due to the

open 3d shell is particularly pronounced. The LDA, for example, does not reproduce the

Mott insulating state in oxides MnO, NiO, NiS, YBa2Cu3O6 and La2CuO4 [Terakura84,

Pickett89, Singh91] as well as in the materials studied in this thesis Cs2CuCl4, Cs2CuBr4,

Bi2Sr2CaCu2O8 and TiOCl.

Since a Mott insulating state is often associated with magnetic ordering, a natural

improvement to the LDA would be a functional that allows magnetically-polarized solu-

tions for the electron density. This idea is realized in the local spin-density approximation

(LSDA) method. In order to derive the LSDA exchange-correlation functional ELSDA
xc [ρ],

one needs to generalize the DFT for cases with a finite vector potential of magnetic field

B(r). The generalized Hamiltonian reads [compare to Eq. (2.6)]

Ĥ = Ĥe + V̂ext + 2µB

Ne∑
i

B(r) · si, (2.28)

where µB is the Bohr magneton and si is the spin angular momentum vector of electron i.

It turns out that the properties of a system described by this Hamiltonian are uniquely

determined by two quantities, the spin-up electron density ρ↑(r) and the spin-down

electron density ρ↓(r), which is analogous to the role of ρ(r) = ρ↑(r) + ρ↓(r) in the
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spin-independent DFT. The Hohenberg-Kohn functional becomes now a functional of

two variables [compare to Eq. (2.17)],

FHK[ρ↑, ρ↓] = Ts[ρ
↑, ρ↓] + VH[ρ↑ + ρ↓] + Exc[ρ

↑, ρ↓]. (2.29)

In analogy to the LDA, ELSDA
xc [ρ↑, ρ↓] depends only on the local spin-up and -down

electron densities,

ELSDA
xc [ρ↑, ρ↓] =

∫ {
ρ↑(r) + ρ↓(r)

}
εxc(ρ

↑, ρ↓) dr, (2.30)

where εxc(ρ
↑, ρ↓) corresponds to the exchange and correlation energy per particle of a

uniform spin-polarized electron gas.

Even though the spin-density functional theory is defined such as to account for the

presence of a magnetic field, it is also highly relevant for magnetically isolated systems

with uncompensated spin (odd number of electrons), among which are many transition

metal compounds. The mentioned MnO appears insulating and antiferromagnetically

ordered within the LSDA [Terakura84], which is a big qualitative improvement with

respect to the LDA. As the present work reveals, the same result is obtained for Cs2CuCl4

and Cs2CuBr4. However, there are many Mott insulators, where the LSDA does not

completely remove electronic states at the Fermi level as in, for example, the ZnV2O4

spinel [Maitra07].

Another improvement of the LDA is to also take into account the non-local depen-

dence of the exchange-correlation potential vxc(r) on ρ(r′), where r′ 6= r. This is a

reasonable step to consider for systems with strongly varying electron density. In the

generalized gradient approximation (GGA), the non-locality of vxc(r) is introduced into

the exchange-correlation functional through the local electron density gradient ∇ρ(r):

EGGA
xc [ρ] =

∫
ρ(r)F (ρ,∇ρ) dr. (2.31)

The function F (ρ,∇ρ), which comprises a polynomial expression of ∇ρ(r), can be con-

structed and parameterized in various ways. Accordingly, there exist a number of GGA

functionals EGGA
xc [ρ] [Langreth83, Perdew86, Wu06, Perdew96, Perdew08], some of them

being based on fitting to experimental data. The GGA method has been shown to give

slightly quantitatively better results for a number of transition metal compounds in

terms of the binding energy and band gap.
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〈n〉
eff φ
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yes
no

Figure 2.1: DFT cycle.

2.1.4 DFT cycle

The Kohn-Sham equations (2.20)–(2.24) present a non-linear problem to find the electron

density ρ(r) as the effective potential veff(r) depends on ρ(r) via Eq. (2.24). Therefore,

the Kohn-Sham equations have to be solved self-consistently in an iterative way. In

the first iteration, veff(r) is calculated from a guessed electron density ρ〈0〉(r) and the

Kohn-Sham equations are then numerically solved. The obtained new electron density

ρ〈1〉(r) is used to generate a new potential for the second iteration. This cyclic procedure

is repeated until convergence is reached, which means that the input electron density

is equal, to specified accuracy, to the output electron density from the solution of the

Kohn-Sham equations. The DFT cycle is schematically illustrated in Fig. 2.1.

It should be noted that although the Kohn-Sham eigenenergies εi do not have direct

physical meaning they are usually regarded as a reasonable approximation to the true

single-electron eigenenergies. As a function of the momentum k vector, εi(k) are used

to reproduce the bandstructure of a periodical crystalline solid. The density of states
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(DOS) as a function of energy E, g(E), is also defined in terms of εi(k):

g(E) =
2

VBZ

Ne∑
i

∫
δ {E − εi(k)} dk, (2.32)

where the integration is performed over the first Brillouin zone and VBZ is the volume

of the Brillouin zone.

2.2 Application to crystalline materials: variability of ba-

sis sets

In a crystalline solid, the ionic potential vext(r) possesses translational symmetry,

vext(r + RT ) = vext(r), (2.33)

with RT being a lattice vector. According to the Bloch’s theorem [Bloch29], the single-

electron wave-functions [Eq. (2.23)] that correspond to this periodic potential are the

Bloch wave-functions ψik(r),

ψik(r) = eik·ruik(r), (2.34)

where uik(r) is a periodic function with the same periodicity as vext(r). Note that the

momentum vector k is a good quantum number in a periodic environment.

In order to solve the single-electron Kohn-Sham equations,{
− ~2

2me
∇2 + veff(r)

}
ψik(r) = εi(k)ψik(r), (2.35)

ψik(r) are expanded in terms of some given basis functions φnk(r),

ψik(r) =

P∑
n

cni φnk(r), (2.36)

cni being expansion coefficients3. The number of basis functions P can be, in general,

infinite, but for practical applications one of course retains only a finite number of basis

functions with, presumably, the highest contribution. In terms of the basis functions,

3This is a general prescription, applied also to systems without translational symmetry, like atomic
clusters and molecules.



2.2. Application to crystalline materials: variability of basis sets 29

the Kohn-Sham equations now become
〈φ1k|ĥeff|φ1k〉 〈φ1k|ĥeff|φ2k〉 · · ·
〈φ2k|ĥeff|φ1k〉 〈φ2k|ĥeff|φ2k〉 · · ·

...
...

. . .

〈φPk|ĥeff|φPk〉




c1
i

c2
i
...

cPi



= εi(k)


〈φ1k|φ1k〉 〈φ1k|φ2k〉 · · ·
〈φ2k|φ1k〉 〈φ2k|φ2k〉 · · ·

...
...

. . .

〈φPk|φPk〉




c1
i

c2
i
...

cPi

 . (2.37)

This is a secular equation, which is solved for every k-vector by diagonalizing the Hamil-

tonian matrix with 〈φnk|ĥeff|φmk〉 elements. Eq. (2.37) can be written in a shorter matrix

form as

HC = SCE, (2.38)

where H is the Hamiltonian matrix, S is the overlap matrix, E = diag[εi(k)] and C is

a matrix of expansion coefficients cni .

There are quite a number of basis sets proposed and developed over the recent years.

Here, we will consider in detail three of them, namely the linearized muffin-tin orbitals

(LMTO), the full-potential local-orbital minimum-basis set (FPLO) and the linearized

augmented plane waves (LAPW), as these are intensively used in our calculations. In

general, calculations with basis sets constructed out of local orbitals (like LMTO and

FPLO) are fast since a relatively small number of basis functions suffice in the ψik(r)

expansion, Eq. (2.36). In this sense, such basis sets are efficient. On the other hand, the

resulting wave-functions ψik(r) can inherit too much of the basis functions’ features and

thus be quite off the true wave-functions of the system. One says in this case that the

basis set is biased. Basis sets constructed out of plane waves (like LAPW) are unbiased

and thus better, in terms of accuracy, compared to local-orbital basis sets. However, one

usually requires many plane-wave basis functions in the expansion (2.36), which means

longer computational times.

In fact, the accuracy problems of local-orbital basis sets are much less severe in the

case of the FPLO basis, thanks to an ingenious scheme of reconstructing the secular

problem and to an exact representation of the lattice potential. The accuracy of the

FPLO scheme is comparable to that of the LAPW scheme.
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2.2.1 LMTO and NMTO

The basis functions of the LMTO method [Andersen75] are local orbitals centered at

atomic positions RI . They are solutions to the Schrödinger equation with the potential

vMTO(r−RI) =

{
veff(|r−RI |), |r−RI | < RIMT

v0
MTO, |r−RI | ≥ RIMT

, (2.39)

which is defined as a constant v0
MTO outside the muffin-tin sphere of atom I with radius

RIMT and as the spherical average of the crystal potential veff(r) inside the muffin tin

sphere. The Schrödinger equation is solved separately for the region inside the muffin-tin

sphere and for the outside region, called the interstitial region. The two solutions are

matched by making use of the requirement that the muffin-tin orbital (MTO) has to be

continuous and differentiable on the boundary between the two regions. This leads to

the following MTO expression:

φMTO
lm (r−RI , E) =


N I
l (E)ϕlm(r−RI , E) + P Il (E)Jlm(r−RI), |r−RI | ≤ RIMT

Klm(r−RI), |r−RI | ≥ RIMT

.

(2.40)

Here, Jlm(r−RI) and Klm(r−RI) are, respectively, the regular and irregular solutions of

the Laplace equation in the interstitial region, ϕlm(r−RI , E) is the energy dependent

solution of the Schrödinger equation inside the muffin-tin sphere (partial wave) and

the functions N I
l (E) and P Il (E), given in terms of Jlm(r − RI), Klm(r − RI) and

ϕlm(r−RI , E), take care of the boundary matching.

The energy dependence of φMTO
lm (r −RI , E) considerably complicates the Kohn-Sham

problem as the system’s energy E is not available before the Kohn-Sham equations

are solved. In order to get rid of the energy dependence of the basis, the MTO’s are

linearized, i. e., the functions ϕlm(r − R, E) are replaced by their Taylor expansions

with respect to E up to a linear term:

ϕlm(r−RI , E)→ ϕlm(r−RI , E
I
l ) + (E − EIl )

∂ϕlm(r−RI , E)

∂E

∣∣∣∣
E=EIl

. (2.41)

The linear E dependence is removed by matching the linearized ϕlm(r −R, E) at the

muffin-tin sphere boundary with the interstitial solution.

In the polynomial MTO method (NMTO) [Andersen00], the muffin-tin sphere part of

the basis function is given as a linear combination of partial waves evaluated at N fixed
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energies En:

χ
(N)
lm (r−RI) =

N∑
n=0

∑
RI′m

′

ϕlm′(r−RI′ , En)L
(N)
RI′ lm

′,RI lm;n, (2.42)

with
N∑
n=0

L
(N)
RI′ lm

′,RI lm;n = δRI′RI
δm′m. (2.43)

The advantage of the NMTO method compared to the (L)MTO method is its ability

to produce the correct bandstructure in a wide energy window without increasing the

basis set size, which makes it most suitable for downfolding.

The preparation of the LMTO/NMTO basis functions is finalized by constructing the

Bloch sums:

φ
LMTO/NMTO
lmk (r−RI) =

∑
RT

φ
LMTO/NMTO
lm (r−RI)e

ik·RT
, (2.44)

which are the appropriate functions to be used for a periodic crystal.

The MTO methods are often applied jointly with the atomic sphere approximation

(ASA), which consists in choosing overlapping muffin-tin spheres and introducing so-

called empty spheres to fill the remaining interstitial space.

One feature of the LMTO and NMTO methods used in the present work that strongly

affects their accuracy is that these methods are not full-potential as one uses the ap-

proximated potential (2.39) also to solve the Kohn-Sham equations.

2.2.2 FPLO

There exist several versions of the FPLO method, all having been developed by Es-

chrig, Koepernik and co-authors. The original ideas of the method were introduced in

Ref. [Koepernik99]. The FPLO calculations of this thesis are performed with the latest

versions FPLO8.50-33 and FPLO9.00-34, which differ in a few aspects from the original

formulation and which we briefly review here.

The FPLO method uses non-orthogonal local orbitals obtained as solutions to the

Schrödinger equation with the spherically symmetric potential that consists of three

terms4:

vFPLO(r−RI) = v0
eff(|r−RI |) + vconf(|r−RI |) + vQ(|r−RI |). (2.45)

4In the original version of the FPLO method by Koepernik and Eschrig [Koepernik99], vFPLO(r−RI)
only contained the first two terms of Eq. (2.45).
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Here, v0
eff(|r−RI |) is the free atom potential, vconf(|r−RI |) ∼ |r−RI |4 is the confining

potential and vQ(|r − RI |) is the binding potential for higher states. The role of the

confining potential is to compress the local valence basis orbitals.

The FPLO basis is adjusted in the beginning of calculations by choosing optimal param-

eters for vconf and vQ and is kept fixed in the self-consistent cycle. In the older FPLO

versions, the basis set is updated for every new iteration as there one uses the spher-

ically averaged actual crystal potential instead of the free atom potential for defining

vFPLO(r−RI), which is similar to the LMTO/NMTO basis construction.

The FPLO method is a full-potential method, with the crystal potential veff(r) being

decomposed for the sake of computational convenience as

veff(r) =
∑

RT+RI ,lm

vRI ,lm
eff (|r−RT −RI |)Ylm(r−RT −RI), (2.46)

where Ylm(r −RT −RI) are spherical harmonics. The sum over lm is convergent and

can be approximated by a finite sum with a cut-off lmax.

The very efficient approach of the FPLO method to the Kohn-Sham problem is to

divide the basis functions into core and valence states according to the criterion that the

strongly localized core states are orthogonal among each other and use the orthogonality

of core states to reduce the rank of the secular matrix. With the valence states labeled

as v and the core states as c, the overlap matrix S can be written as

S =

(
Scc Scv

Svc Svv

)
, (2.47)

with

Scc = 〈φFPLO
c′ (r−RI′)|φFPLO

c (r−RI)〉 = δc′cδRI′RI
(2.48)

and

Svc = S†cv. (2.49)

The Hamiltonian matrix H simplifies to

H =

(
Hcc HccScv

SvcHcc Hvv

)
, (2.50)

with

Hcc = 〈φFPLO
c′ (r−RI′)|Ĥ|φFPLO

c (r−RI)〉 = εc,RI
δc′cδRI′RI

. (2.51)
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The orthogonality of core states makes it possible to perform a simplified Cholesky

decomposition of S:

S = SlSr =

(
1 0

Slvc Slvv

)(
1 Srcv

0 Srvv

)
. (2.52)

Rewriting the secular equation (2.38) as

(Sl)−1H(Sr)−1D = DE, C = (Sr)−1D, (2.53)

where D is the unitary matrix that diagonalizes (Sl)−1H(Sr)−1, and making use of the

fact that Dcc = 1 and Dcv = 0, we arrive at the reduced eigenvalue problem

(Slvv)
−1(H − SvcHccScv)(S

r
vv)
−1Dvv = DvvEv, (2.54)

which is now of rank Nv, with Nv the number of valence local orbitals.

2.2.3 APW+lo and LAPW

In the (L)APW method [Andersen75, Wimmer81, Blaha90], basis functions, being es-

sentially plane waves, are augmented by a combination of atomic-like radial functions

inside the non-overlapping muffin-tin spheres centered at atomic positions. In this way,

the generally unbiased plane-wave basis is also made more efficient as it is assumed that

radial functions are more adequate to describe atomic surroundings where the crystal

potential is strongly varying.

The LAPW basis is given as

φLAPW
G,k (r) =


1√
V
ei(k+G)r, r /∈ RIMT

∑
lm

[
AI,k+G
lm uIl (r, E

I
1l) +BI,k+G

lm u̇Il (r, E
I
1l)
]
Ylm(r−RI), r ∈ RIMT

,

(2.55)

where G is a reciprocal lattice vector, V is the unit cell volume, uIl (r, E
I
1l) and u̇Il (r, E

I
1l)

are, respectively, the solutions to the radial Schrödinger equation of an isolated atom

I and their energy derivatives, evaluated at linearization energies EI1l. The coefficients

AI,k+G
lm and BI,k+G

lm are determined from the requirement that φLAPW
G,k (r) has to be

continuous and differentiable at the muffin-tin sphere boundary.
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In order to improve description of semicore states, the LAPW basis is complemented by

local orbitals (LO), which are defined only inside muffin-tin spheres:

φLO
I,lm(r) =


0, r /∈ RIMT[
AI,LO
lm uIl (r, E

I
1l) +BI,LO

lm u̇Il (r, E
I
1l) + CI,LO

lm uIl (r, E
I
2l)
]
Ylm(r−RI), r ∈ RIMT

,

(2.56)

The third term CI,LO
lm uIl (r, E

I
2l), with the linearization energy EI2l 6= EI1l, takes account

of the semicore state for a given atom I with a given l. The coefficients AI,LO
lm , BI,LO

lm

and CI,LO
lm are obtained by normalizing the local orbital and setting its value and slope

at the muffin-tin sphere boundary equal to zero.

An alternative extension of the energy-dependent APW basis is a basis consisting of

APW’s, evaluated at fixed energies, and local orbitals [which are different from the

LO’s, Eq. (2.56), and which conventionally are abbreviated as “lo”]:

φAPW
G,k (r) =


1√
V
ei(k+G)r, r /∈ RIMT

∑
lm

AI,k+G
lm uIl (r, E

I
1l)Ylm(r−RI), r ∈ RIMT

, (2.57)

φlo
I,lm(r) =


0, r /∈ RIMT[
AI,lolm uIl (r, E

I
1l) +BI,lo

lm u̇Il (r, E
I
1l)
]
Ylm(r−RI), r ∈ RIMT

.(2.58)

AI,k+G
lm are obtained by requiring that φAPW

G,k (r) is continuous at the muffin-tin sphere

boundary, and AI,lolm and BI,lo
lm are obtained from normalizing the local orbital and by

requiring that its value at the muffin-tin sphere boundary is zero. The APW+lo basis

set can also be extended by adding LO’s for semicore states. These LO’s differ from the

LO’s of the LAPW basis, Eq. (2.56), in that they do not contain the Bu̇Il (r, E
I
1l) term.

The LAPW and APW+lo basis functions can be efficiently combined in order to achieve

optimal accuracy at low computational costs, as is done in the full-potential LAP-

W/APW+lo code Wien2k [Blaha01], which we use in the present work.

2.3 Forces and lattice dynamics

The knowledge of nuclear forces, i. e., forces imposed on a nucleus through the elec-

trostatic field of other nuclei and through interaction with the electronic subsystem,

enables one to optimize the crystal structure by finding optimal atomic positions that
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correspond to zero nuclear forces and minimal total energy. This kind of structural opti-

mization is employed in the present thesis in studies on the frustrated antiferromagnets

Cs2CuCl4 and Cs2CuBr4 (Chapter 4) and the Mott insulator TiOCl (Chapter 6). In the

case of Cs2CuCl4 and Cs2CuBr4, structural optimization is required in order to refine

the experimentally determined crystal structures of the compounds, while in the case of

TiOCl relaxation of Na-doped TiOCl unit cells with the Car-Parinello molecular dynam-

ics method (see below) was used for the modeling of Na doping of TiOCl at various Na

concentrations. In fact, crystal structure relaxation has become a widely and frequently

used procedure performed in the context of electronic structure calculations.

As stated in the force (Hellmann-Feynman) theorem [Hellmann37, Feynman39], the force

acting on a nucleus (ion) I,

FI = − ∂E

∂RI
, (2.59)

does not depend on the kinetic energy and internal interactions but is given exclusively in

terms of the electron density ρ(r), external potential vext(r) and electrostatic interaction

between positively charged ions EII :

FI = − ∂E

∂RI

= −〈Ψ0|
∂Ĥ

∂RI
|Ψ0〉 −

∂EII
∂RI

= −
∫
ρ(r)

∂vext(r)

∂RI
dr− ∂EII

∂RI
. (2.60)

This follows from the fact that the ground state wave-function |Ψ0〉 is at a variational

minimum with respect to any parameter and that the only term of Ĥ that explicitly

depends on ionic positions is the external potential.

Although the force expression (2.60) is exact in principle, in many cases actual calcula-

tions require consideration of additional terms. Some of them, sometimes referred to as

the Pulay correction terms [Pulay69], result from the explicit dependence of the basis

upon atomic positions, which is the case for local-orbital type basis sets, like the bases

used in our calculations [(L)MTO, FPLO, (L)APW]. Calculations with a plane-wave

basis, on the other hand, do not require the Pulay correction, which is an advantage as

its calculation is computationally demanding. Another “real life“ contribution to the

nuclear force, which is absent in Eq. (2.60), is due to non-self-consistency errors.

Structural optimization, which minimizes the total energy as a function of atomic

positions E({RI}), is performed iteratively. In each iteration step, an ordinary self-

consistent DFT calculation with fixed atoms is carried out and for the next iteration the

atomic positions are modified according to the calculated forces. There are a number of



36 Chapter 2. Electronic properties of solids within the density functional theory

algorithms for updating atomic positions, the Newton method and its extensions being

among the most frequently used ones.

In 1985, Car and Parinello [Car85] proposed an alternative approach to the structural

optimization, which, unlike the more straightforward approach sketched above, treats si-

multaneously the electronic system and the motion of nuclei. The Car-Parinello method

introduces a fictitious Lagrangian, which depends on both classical ionic degrees of free-

dom {RI} and electronic degrees of freedom, represented by single-particle Kohn-Sham

orbitals {ψik(r)}:

L =
∑
i

1

2
(2µ)

∫
|ψ̇ik(r)|2 dr +

∑
I

1

2
MIṘ

2
I − E({ψik(r)}, {RI})

+
∑
ij

Λij

[∫
ψ∗ik(r)ψjk(r) dr− δij

]
. (2.61)

Here, 2µ is a fictitious electron mass and Λij are Lagrange multipliers associated with

the orthonormality condition for the Kohn-Sham orbitals. The Lagrangian (2.61) leads

to the following equations of motion

µψ̈ik(r, t) = − δE

δψ∗ik(r, t)
+
∑
j

Λijψjk(r, t)

= −Ĥψik(r, t) +
∑
j

Λijψjk(r, t), (2.62)

MIR̈I = FI = − ∂E

∂RI
. (2.63)

It can be easily shown that the stationary solution of Equations (2.62) and (2.63),

corresponding to vanishing time derivatives, is equivalent to the conventional Kohn-

Sham equations. The equations of motions are solved numerically with discrete time

steps.

The Car-Parinello approach does not only offer an efficient scheme for optimizing crystal

structures, but it can also deal with simulations of the coupled motion of nuclei and

electrons, i. e., the real dynamics of an atomic system. Among others, this includes

modelling of thermal motion, liquids and thermal phase transitions.

Since in the Car-Parinello method the nuclear forces are calculated in each time step, one

needs a basis that would allow for fast calculation of forces. As mentioned, the plane-

wave basis meets this requirement, so the Car-Parinello method has been developed

mainly on a basis of plane-wave type basis sets, like in the ”ultrasoft“ pseudopotentials

method [Laasonen91] and in the projector-augmented wave (PAW) method [Blöchl90].

The latter method was used in the modeling of Na doping of TiOCl (Section 6).
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2.4 Extensions of DFT for strongly correlated materials

Despite the numerous successful applications of the local approximations to the exchange-

correlation functional (LDA, LSDA, GGA, etc.), they describe rather badly correlated

materials with localized d (and f) electrons. For example, notoriously known is their

disability to reproduce an insulating state in many Mott insulators. In the 1990s, ad-

dressing this problem, a number of approaches were proposed, among which the LDA+U

methods [Anisimov91, Czyżyk94] and the LDA+DMFT (dynamical mean-field theory)

method [Anisimov97, Lichtenstein98] stand out. The former method is used in our

present work.

LDA+U

In fact, the term LDA+U refers to a class of functionals which are constructed in a

similar way. In the LDA+U method, a local functional is extended by introducing

additional terms for selected (correlated) orbitals that mimic the strong many-body

interaction between the localized electrons residing on them. The general form of an

LDA+U functional can be written as5

ELDA+U = ELDA +Hint − 〈Hint〉, (2.64)

where Hint is the interaction part of the many-body Hamiltonian and the average 〈Hint〉
is supposed to comprise the part of electronic correlations that is already present in

ELDA and is subtracted in order to avoid double counting (hence the term ”double-

counting correction“ ). In the most general case, Hint is given in terms of the Coulomb

interaction matrix Umm′ and the Hund’s rule coupling matrix JH
mm′ , which describe

interactions between the 2l + 1 correlated orbitals m,

Hint =
1

2

∑
m,m′,σ

Umm′nmσnm′−σ +
1

2

∑
m6=m′,σ

(
Umm′ − JH

mm′
)
nmσnm′σ, (2.65)

where σ and nmσ denote, respectively, spin projection and occupation number.

The two most popular versions of the LDA+U method, which we shortly discuss be-

low, differ in the definition of the double-counting correction term. One of them is the

around mean-field (AMF) LDA+U method proposed in the pioneering work of Anisi-

mov et al. [Anisimov91]. Originally, the AMF LDA+U functional was derived in the

”fluctuation-around-the-mean“ form, which can be easily transformed into the form

5Here, we put ”LDA“ to label the local functional, which, however, can as well be the LSDA, GGA
etc. functional.
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given by Eq. (2.64). The AMF LDA+U functional, proposed subsequently by Czyżyk

and Sawatzky [Czyżyk94] as an extension of the LSDA functional, allows for richer

physics and more realistic spin-polarized solutions and is given as

EAMF = ELSDA +
1

2

∑
m,m′,σ

Umm′(nmσ − n̄σ)(nm′−σ − n̄−σ)

+
1

2

∑
m 6=m′,σ

(Umm′ − JH
mm′)(nmσ − n̄σ)(nm′σ − n̄σ), (2.66)

where n̄σ = 1
2l+1

∑
m nmσ is the spin-resolved average occupation number. In the same

paper [Czyżyk94], the authors introduced the atomic limit (AL) version of the LDA+U

method, where the double-counting correction is taken to be

〈Hint〉AL =
1

2
UN(N − 1)− 1

2
JHN↑(N↑ − 1)− 1

2
JHN↓(N↓ − 1), (2.67)

EAL = ELSDA +Hint − 〈Hint〉AL, (2.68)

withN =
∑

mσ nmσ, U = 1
(2l+1)2

∑
mm′ Umm′ and U−JH = 1

2l(2l+1)

∑
mm′(Umm′−JH

mm′).

The LDA+U calculations presented in this thesis are performed by using either the

AMF version of the LDA+U method, Eq. (2.66), or the AL version, Equations (2.67)

and (2.68).

Although in the LDA+U method the description of strongly correlated materials is

significantly improved, usage of the method is associated with a number of problematic

issues. The interaction parameters U and JH are basis-dependent and the localized

orbital for which the orbital-dependent terms are added in the functional should be

manually chosen. Actually, the very fact of adding extra terms to the DFT functional

makes such calculations somewhat less ab initio.

2.5 DFT-based derivation of effective models

2.5.1 Tight-binding and Hubbard models

The kinetic energy term of the Hubbard Hamiltonian (1.3),

ĤTB =
∑

i,mi,m
′
i

σ

µmim′i ĉ
†
imiσ

ĉim′iσ

−
∑
〈ij〉

σ,mi,mj

(
t
mimj
ij ĉ†imiσ ĉjmjσ + h.c.

)
,
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is referred to as the tight-binding (TB) model. The hopping integrals t
mimj
ij are ob-

tained following the assumption that the TB model eigenvalues should match the DFT

calculated Kohn-Sham energies εν(k) in the reciprocal space. This assumption neglects

the fact that effects of the Coulomb interaction are already partially taken into ac-

count within the DFT and therefore the DFT bandstructure is not purely that of a

non-interacting electron system. In order to achieve the match, the TB Hamiltonian

is Fourier-transformed into the reciprocal k-vector space and the hopping integrals are

optimized such as to fit the TB model spectrum to the DFT bandstructure. The ef-

fective Coulomb interaction U − JH can be calculated by the constrained LDA method

[Madsen05] or the constrained RPA method [Aryasetiawan04].

An alternative derivation of the hopping integrals employs Wannier functions, which

are defined as

wimi(r−RT ) =
∑
k

e−ik·R
T
∑
ν∈W

Pimiν(k)ψνk(r)

=
∑
k

e−ik·R
T
wimik(r). (2.69)

Here, i runs over all the transition atoms in the unit cell and mi runs over correlated

orbitals; W is an energy window covering the bands that can be associated with the

correlated orbitals, and the expansion coefficients Pimiν(k) are called projectors. The

construction of projectors in the (L)APW basis, which we use in our calculations, is dis-

cussed in detail by Aichhorn et al. [Aichhorn09]. In short, the (L)APW-based projectors

are calculated as orthonormalized within the energy windowW overlaps between the self-

consistently obtained Bloch functions ψνk(r) and the radial solution to the Schrödinger

equation uIl (r, E
I
1l)Ylm(r).

With the Wannier functions considered as localized electrons’ eigenfunctions, the overlap

integrals and the Coulomb interaction are given as

t
mimj
ij =

∫
drw∗imi(r)

(
− ~2

2me
∇2

)
wjmj (r), (2.70)

Umim′i =

∫
dr1dr2w

∗
imi(r1)wimi(r1)

e2

4πε0

1

|r1 − r2|
w∗im′i

(r2)wim′i(r2). (2.71)

In practice, in order to obtain the hopping integrals, one does not need to explicitly

calculate the Wannier functions and the integral (2.70). Since the TB Hamiltonian
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matrix is known to be diagonal in the basis of Bloch states,

(
ψ∗ν=1,k(r) ψ∗ν=2,k(r) · · · ψ∗ν=Nν ,k(r)

)
ĤTB


ψν=1,k(r)

ψν=2,k(r)
...

ψν=Nν ,k
(r)

 =


εν=1(k) 0 · · · 0

0 εν=2(k) · · · 0
...

...
. . .

0 0 εν=Nν
(k)

 , (2.72)

where Nν is the number of energy bands inside W , one can make use of the definition

(2.69) to obtain the TB Hamiltonian matrix in the basis of Wannier functions as

(
w∗M=1,k(r) w∗M=2,k(r) · · · w∗M=NM ,k

(r)
)
ĤTB


wM=1,k(r)

wM=2,k(r)
...

wM=NM ,k
(r)

 =

P †(k)


εν=1(k) 0 · · · 0

0 εν=2(k) · · · 0
...

...
. . .

0 0 εν=Nν
(k)

P (k), (2.73)

where P (k) is

P (k) =


PM=1,ν=1(k) PM=1,ν=2(k) · · ·
PM=2,ν=1(k) PM=2,ν=2(k) · · ·

...
...

. . .

PM=NM ,ν=Nν
(k)

 . (2.74)

In the last two equations, M combines indices i and mi. After this transformation,

performed for every k-vector, we have a numerically given overlap matrix
〈wM=1,k|ĤTB|wM=1,k〉 〈wM=1,k|ĤTB|wM=2,k〉 · · ·
〈wM=2,k|ĤTB|wM=1,k〉 〈wM=2,k|ĤTB|wM=2,k〉 · · ·

...
...

. . .

〈wM=NM ,k
|ĤTB|wM=NM ,k

〉


(2.75)
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as a function of k. By Fourier transforming 〈wM,k|ĤTB|wM ′k〉, one obtains the overlap

integrals tMM ′ and onsite energies µmi = tmimiii as

t
mimj
i−RT

i ,j−RT
j

=
1

Nk

∑
k

〈wimi,k|T̂ |wjmj ,k〉e
−ik·(RT

j −RT
i ), (2.76)

µmi =
1

Nk

∑
k

〈wimi,k|T̂ |wimi,k〉, (2.77)

where Nk is the number of k-vectors chosen for a numerical integration over the Brillouin

zone.

It has to be noted that in order to achieve high reproducibility of the DFT bandstructure

by the projection method presented above, the number Nν of projected Bloch functions

ψν,k(r) should be equal to the number of correlated orbitals in the cell NM . If it is not

possible to choose an energy window that would include only the bands of interest, a

selective projection has to be performed, which consists in selecting the required number

of bands using, e. g., their high correlated orbital weight as a selection criterion.

Downfolding

The two presented methods for the TB model parameterization – the fitting and the

projection onto Wannier basis – are both postprocessing methods, which implies that

the Wannier functions are constructed after the Bloch functions have been generated.

A preprocessing parameterization, where the Wannier functions are constructed before

the Hamiltonian diagonalization, is also possible and has been implemented on a basis

of NMTOs [Andersen00]. The idea of the method, termed downfolding, consists in a

systematic reduction of the Hilbert space by ”folding“ down the state that are located

far enough from the Fermi energy.

In order to provide some insight into the basics of the downfolding procedure, we consider

the eigenvalue problem [Eq. (2.38)]

HC = EC, (2.78)

defined on an orthonormal basis. Let C1 comprise the eigenfunctions to be retained and

C2 the rest of the Hilbert space to be downfolded. Then, the secular equation (2.78)

can be written as

H11C1 +H12C2 = EC1,

H21C1 +H22C2 = EC2. (2.79)
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The downfolded solution is obtained from the following effective eigenvalue problem

HeffC1 = EC1, (2.80)

where

Heff = H11 −H12 (H22 − E)−1H21. (2.81)

The NMTO basis is a suitable choice for the downfolding because the NMTOs are

constructed to be orthonormal and, most importantly, they are localized functions that

can play the role of Wannier functions. The TB model parameters, defined as the matrix

elements of the kinetic energy operator in the basis of Wannier functions [Eq. (2.70)],

are obtained by Fourier transforming Heff.

2.5.2 Heisenberg model

In this thesis, we parameterize the Heisenberg Hamiltonian (1.6),

ĤH =
∑
〈ij〉

JijŜiŜj , (2.82)

for the antiferromagnetic insulators Cs2CuCl4 and Cs2CuBr4 (Chapter 4) using the total

energy difference method. This method treats the localized spins of magnetic atoms as

if they were classical vectors, whose direction can be fixed. To give an idea of how the

total energy difference method works, it is convenient to consider a simple case of two

classical spins S:

ĤH = J Ŝ1Ŝ2. (2.83)

The energies of the collinear ferromagnetic and antiferromagnetic configurations of the

system are, respectively,

EFM = JS2, (2.84)

EAFM = −JS2. (2.85)

Combining the two equations, one expresses the exchange coupling J in terms of the

ferromagnetic and antiferromagnetic energy differences:

J =
EFM − EAFM

2S2
. (2.86)

In real systems, one is usually interested in several exchange couplings n, so n + 1

different spin configurations need to be considered for deriving a system of n coupled
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equations. The total energies of different spin configurations are calculated with a DFT

code, with the spins of magnetic atoms fixed in certain directions.





Chapter 3

Strongly correlated materials

under study

This chapter provides an overview of the studied correlated materials: Cs2CuCl4,

Cs2CuBr4, Bi2Sr2CaCu2O8 and TiOCl. We discuss their crystal structure and phys-

ical properties. In order to fully appreciate the non-trivial physics demonstrated by

these materials, some general introduction to such phenomena as frustration in spin

systems and cuprate superconductivity will be presented as well.

In addition to reviewing the experimental situations around the studied materials, we

discuss the current status of their theoretical understanding, mainly, in terms of model

description. We also outline possible applications of the DFT, which could provide new

information on the microscopic properties of the materials and guide future theoretical

as well as experimental investigations.

3.1 Low-dimensional frustrated antiferromagnets CsCu2Cl4

and Cs2CuBr4

3.1.1 Magnetic frustration

Antiferromagnets Cs2CuCl4 and Cs2CuBr4 are representatives of frustrated spin sys-

tems. The term “frustration“ is applied to systems with competing interactions, whose

actions favour different ground states. Due to the interplay of competing interactions,

a frustrated system can realize either a complex compromising ground state or, in case

of complete frustration (none of the interactions can win), a degenerate ground state,

with non-zero entropy.

45
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Figure 3.1: Examples of frustrated lattices: (a) zero-dimensional three-site lattice,
(b) 1D J–J ′ model, (c) 2D triangular and Kagome lattices and (d) pyrochlore lattice.

Presence of triangular motifs in a magnetic sublattice consisting of localized spins to-

gether with antiferromagnetic interactions between them are prerequisites for magnetic

frustration [Balents10]. A textbook example of a frustrated spin system is the system

of three Ising spins displayed in Fig. 3.1 (a). In crystalline materials, one encounters

frustration in periodic lattices, which can be of any dimensionality. Some examples are

the J–J ′ model (1D) [Fig. 3.1 (b)], the periodic triangular and Kagome lattices (2D)

[Fig. 3.1 (c)] and the pyrochlore lattice (3D) [Fig. 3.1 (d)].

Frustration hinders long-range magnetic ordering. In fact, the absence of magnetic

ordering at the Curie-Weiss temperature θCW (Fig. 3.2) is an experimental indication of

magnetic frustration in a given material. Since in most real frustrated systems magnetic

ordering does occur due to small stabilizing interactions at the Néel temperature TN,

TN � θCW, the ratio

f =
θCW

TN
(3.1)

is used as a measure of frustration.
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Figure 3.2: Magnetic susceptibility of the frustrated material C28H32N4O4 χ and its
inverse χ−1 as a function of temperature T . The red dashed line is a linear fit to χ−1

above ∼ 25 K. The experimental data are presented under permission of Pham Thanh
Cong.

Instead of becoming ordered, a frustrated system at low enough temperature devel-

ops short-range magnetic correlations between spins. In the temperature dependent

magnetic susceptibility, the onset of short-range correlations manifests itself as a broad

maximum (Fig. 3.2). This state is called a spin liquid.

Most interesting behavior is expected from low-spin systems, the S = 1
2 being the lowest-

spin case. In the low-spin systems, quantum effects are particularly strong. When

combined with frustrating geometry and low dimensionality, they can give rise to the

most exotic quantum states. One of such states is the resonating valence bond (RVB)

state conjured up by Anderson [Anderson73], where the neighbouring S = 1
2 spins

couple into dimers and the ground state is the superposition of differently coupled dimers

(Fig. 3.3).

Another fascinating feature of a spin liquid is that its elementary excitations are un-

conventional in terms of ”classical” expectations. Classical excitation quasiparticles in

a spin system are magnons, one magnon corresponding to a single spin flip that spreads

through the crystal with certain wavevector and energy. In a dimerized spin liquid, on

the other hand, elementary excitations would be of different nature. These excitations,

called spinons, result from dimer breaking and carry half of the classical excitation spin.

While in 1D spin systems the physics of spinons is theoretically well understood and

their existence has been experimentally detected, the possibility of spinon excitations in

2D systems is still under debate [Misguich05].
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|RVBÄ = +    « 

+  +  

+    « 

Figure 3.3: Resonating valence bond state |RVB〉. The dimerized spins on the trian-
gular lattice are marked by green ellipses.

3.1.2 Cs2CuCl4 and Cs2CuBr4: experimental background and theoret-

ical description

In view of the presented highlights on the physics of frustrated magnets, let us now

examine the crystal and magnetic structures of the studied Cs2CuCl4 and Cs2CuBr4.

The two materials are isostructural, with the space group Pnma and an orthorhombic

unit cell [Bailleul91, Morosin60], shown in Fig. 3.4. One recognizes that the Cu atoms,

each being surrounded by a tetrahedron of ligand Cl or Br atoms, form layers parallel

to the bc plane and are arranged within each layer in a periodic triangular pattern. The

Cu atoms are in a Cu2+ ionization state, with the outer shell electrons being in a 3d9

configuration. This implies that there is an electron hole localized on each Cu ion with

spin S = 1
2 . Effectively, the physics of the insulators Cs2CuCl4 and Cs2CuBr4 can thus

be discussed in terms of the Heisenberg spin model (1.6). The well-pronounced layered

arrangement of Cu ions in Cs2CuCl4 and Cs2CuBr4 suggests a possibility of a two-

dimensional network of exchange interactions between the Cu spins, while the triangular

lattice that the ions form in a layer allows for magnetic frustration, provided that the

spin interactions are antiferromagnetic. The possible low dimensionality and magnetic

frustration attracted attention of the condensed matter community and triggered a series

of intensive theoretical and experimental investigations of the Cs2CuCl4 and Cs2CuBr4

magnetic properties.

Measurements of the temperature dependent magnetic susceptibility of Cs2CuCl4 [Carlin85,



3.1. Low-dimensional frustrated antiferromagnets CsCu2Cl4 and Cs2CuBr4 49

Figure 3.4: Cs2CuCl4 and Cs2CuBr4 crystal structure.

Tokiwa06] and Cs2CuBr4 [Ono03] showed a characteristic broad-peak structure (see

Fig. 3.2), signaling the onset of short-range spin correlations, and confirmed the an-

ticipated antiferromagnetic and hence frustrating nature of the leading spin exchange

interactions in the two systems. In the absence of external magnetic field, Cs2CuCl4

magnetically orders at the Néel temperature TN = 0.62 K, determined using elastic

neutron scattering [Coldea96], and Cs2CuBr4 orders at TN = 1.4 K, determined from

specific heat measurements [Ono03].

Detailed measurements of the thermodynamic properties of Cs2CuCl4 [Radu05, Tokiwa06]

and Cs2CuBr4 [Ono03, Fortune09, Tsujii07] as a function of temperature T and mag-

netic field H, applied along different crystallographic directions, together with nuclear

magnetic resonance (NMR) [Fujii07] and neutron scattering [Coldea01] experiments,

revealed their rich T -H phase diagrams, featuring a number of ordered phases (see

Fig. 3.5). Some of these phases and phase transitions are particularly interesting. Thus,

the magnetic field controlled phase transition from the high-field fully polarized fer-

romagnetic phase to the low-field non-collinear antiferromagnetic phase in Cs2CuCl4

at vanishing temperature, observed when the magnetic field is applied perpendicular

to the Cu planes, has been interpreted as the Bose-Einstein condensation of magnons

[Matsubara56] [Fig. 3.6 (a)]. In Cs2CuBr4, quantum fluctuations can stabilize, under
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Cs2CuCl4

Cs2CuBr4

 

Figure 3.5: Left panel: the Cs2CuCl4 phase diagram in the plane of temperature
T and magnetic field B (taken from Ref. [Tokiwa06]). In the top (bottom) diagram,
the field is applied parallel to the b (c) direction. Data points of open circles (mag-
netization), squares (specific heat) and triangles (neutrons [Coldea01]) connected by
solid lines indicate phase boundaries. Solid circles show positions of the maximum in
the temperature dependence of the magnetization and indicate a cross-over from para-
magnetic to short-range order (SRO). “E“ in the bottom phase diagram denotes the
elliptical phase, and ”SRO” denotes the short-range ordered phase. Right panel: the
Cs2CuBr4 phase diagram in the plane of temperature T and magnetic field B ‖ c (taken
from Ref. [Fortune09]) deduced from the magnetocaloric-effect data. Circles indicate
second-order phase boundaries, whereas other symbols except the open diamonds indi-
cate first-order boundaries. Lines are guides to the eye. The phases labeled as I, IIa,
IIb and III are incommensurate, the phase V is presumably a canted-spiral phase. The
uud, A, B and 2/3 phases correspond to a commensurate collinear alignment of spins.
The uud phase features a magnetization plateau at 1/3Ms, where Ms is the saturation
magnetization. The A phase does not have a plateau and is presumably gapless with
magnetization of 1/2Ms. The only 70 mT wide B phase might have a magnetization
plateau at 5/9Ms and gapped low-lying excitations. The 2/3 phase has a magnetization

plateau at 2/3Ms.

certain conditions, a collinear up-up-down spin order, which shows up as a magnetization

plateau inside a finite field range [Ono03]. Two such plateaux were observed [Ono05]

when the magnetic field was applied along the b and c axes [Fig. 3.6 (b)].

In the region of the Cs2CuCl4 T -H phase diagram above the long-range ordered phase

[Fig. 3.6 (a)], magnetic properties are governed by short-range spin correlations. Probing

this region with inelastic neutron scattering, Coldea et al. [Coldea01, Coldea03] discov-

ered extended scattering continua in the magnetic excitation spectra of Cs2CuCl4, which

were interpreted as a signature of spinon-like quasiparticle excitations in the Cs2CuCl4

spin system, and Cs2CuCl4 was classified as a rare example of a 2D spin liquid. Later,
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Figure 3.6: (a) The T -B phase diagram of Cs2CuCl4 demonstrating the Bose-Einstein
condensation of magnons upon the transition from the ferromagnetic phase (”F”) to
the cone phase (”Cone”) (taken from Ref. [Radu05]). (b) Magnetization plateaux in

Cs2CuBr4 (taken from Ref. [Ono04]).

this conclusion was, however, abandoned when Kohno et al. [Kohno07] showed that

spinons in Cs2CuCl4, which do exist, are in fact confined to the Cu chains with the

strongest exchange interaction (along b axis) as a result of the so-called dimensional

reduction induced by frustration and quantum fluctuations (see below).

Inelastic neutron scattering measurements also provided information on the Cs2CuCl4

magnon dispersion spectrum in the fully polarized ferromagnetic phase, which was used

to determine the Heisenberg Hamiltonian for this system, by fitting an exactly derivable

in this case analytical expression to the experimental spectrum [Coldea02]. The result

confirmed that Cs2CuCl4 is a 2D spin system with antiferromagnetic exchange couplings

within the Cu planes as almost no magnon dispersion was detected in the perpendicular

direction along the a axis. Exchange interaction between Cu spins along the b axis, J ,

was found to be 0.374 meV, while the zig-zag coupling J ′ appeared smaller by a factor

of three: J ′ = 0.123 meV ≈ J/3 (Fig. 3.7). Additionally, it was concluded that there

exists a small but detectable exchange coupling between Cu spins from adjacent Cu

layers J ′′, whose value was estimated as J ′′ = 0.017 meV ≈ J/22, and an anisotropic

Dzyaloshinsky-Moriya interaction at zig-zag bonds, with the vector D pointing in the a

direction and Da = 0.02 meV. The Dzyaloshinsky-Moriya interaction plays an important

role in stabilizing the long-range order in Cs2CuCl4. Determination of the Cs2CuBr4

Heisenberg model with the same method is complicated by the need to apply an H &

32 T magnetic field [Ono03] in order to fully polarize the spins, which is beyond the



52 Chapter 3. Strongly correlated materials under study

J 

Jï 

Jïï 

b 

c D 

Figure 3.7: Interaction paths for the effective spin model of Cs2CuCl4 and Cs2CuBr4.

maximum value of ∼ 17 T compatible with inelastic neutron scattering measurements

[Ono]. It was, though, possible to deduce the ratio J ′/J = 0.74 from a comparison

[Ono05] of the wave number of the incommensurate cycloidally ordered spin structure

of Cs2CuBr4 at zero field [Ono04] with results of linked-cluster expansions [Weihong99].

Compared to Cs2CuCl4, Cs2CuBr4 is thus closer to the maximal frustration limit of

J ′/J = 1. The absolute value of J in Cs2CuBr4 was estimated from its saturation

field as 0.97 meV [Tsujii07]. Ref. [Tsujii07] also concludes that interlayer interactions

in Cs2CuBr4 are weaker than those in Cs2CuCl4.

The theoretical understanding of the experimentally observed behavior of Cs2CuCl4

and Cs2CuBr4 has made significant progress over the last years (see Ref. [Chung03,

Zheng05, Veillette05, Veillette06, Kohno07, Starykh07, Starykh10] for theoretical stud-

ies of Cs2CuCl4 and Ref. [Zheng05, Alicea09] for those of Cs2CuBr4). The initial dis-

pute over the origin of the continuous magnetic excitation spectra in Cs2CuCl4 has led

Kohno et al. [Kohno07] to the idea that these continua are a reflection of 1D spinon

excitations confined to the Cu chains with the strongest spin coupling J . This effect of

dimensional reduction appears to be a universal property of anisotropic triangular anti-

ferromagnets. The quite plausible suggestion by Kohno et al. weakened considerably the

widely supported belief in Cs2CuCl4 as an experimental realization of a 2D spin liquid

with truly 2D spinon excitations. They explained the observed substantial dispersion

of the peak energy in the direction transverse to the chains by pairs of spinons getting

bound into spin-1 triplons that are able to hop between chains. In Refs. [Starykh07]

and [Starykh10], the concept of dimensional reduction, which allows to develop a so-

lution to a 2D anisotropic triangular spin system from a 1D limit, was employed to

explore the complex T -H phase diagram of Cs2CuCl4. In these studies, the role of some

of the weak exchange couplings, such as J ′′ and the next-nearest-chain coupling J14

(see Fig. 4.8), and the Dzyaloshinsky-Moriya interaction in stabilizing various Cs2CuCl4

phases was analyzed in detail. Theoretical studies of Cs2CuBr4 have been somewhat less

intensive, probably due to its effective model becoming available more recently and also
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due to its larger frustration, which would require more involved theoretical methods.

The Cs2CuBr4 magnetization plateaux and the up-up-down collinear phase have been

attracting particular attention [Alicea09].

The differences in the Cs2CuCl4 and Cs2CuBr4 magnetic properties, e. g., the more pro-

nounced tendency to sustain spinon excitations in Cs2CuCl4 and additional, quantum

fluctuation driven phases with magnetization plateaux in Cs2CuBr4, are often considered

as being caused by the differences in their spin effective models. The Heisenberg model

is definitely a good approximation to describe Cs2CuCl4 and Cs2CuBr4, but taking also

into account electronic degrees of freedom on a model level would provide a more com-

plete picture. Electronic structure calculations with DFT methods can be used as a first

step towards a deeper understanding of the Cs2CuCl4 and Cs2CuBr4 electronic proper-

ties. They allow the determination of the Hubbard model parameters for Cs2CuCl4 and

Cs2CuBr4, which have been not available so far. Also, using the total energy difference

method (Section 2.5.2) one can theoretically calculate the spin exchange couplings in

Cs2CuCl4 and Cs2CuBr4, in addition to the experimentally established values. Such

calculations are especially desirable in the case of Cs2CuBr4, where experimental de-

termination of exchange couplings was indirect and the results are therefore somewhat

uncertain.

Recently, several experimental groups have been exploring properties of the mixed sys-

tems Cs2CuCl4−xBr4 [Krüger10, Cong11]. It is expected that by varying the Cl to Br

ratio one will be able to tune the effective model parameters and observe the correspond-

ing variation of macroscopic properties of Cs2CuCl4−xBr4 in experiment, which would

be a valuable reference to guide theory. The density functional theory would then be of

a great assistance in characterizing the Cs2CuCl4−xBr4 crystal structures as well as in

determining their effective models.

3.2 Oxygen-doped high-Tc superconductor Bi2Sr2CaCu2O8

3.2.1 Cuprates – unconventional superconductors

Superconductivity is a fascinating example of collective electronic behavior which macro-

scopically manifests itself through (i) vanishing electrical resistivity below certain critical

temperature Tc and (ii) the Meissner effect, which consists in an expulsion of magnetic

filed from the interior of a superconductor upon the transition.

The superconducting state was first observed by Kamerlingh Onnes in

1911 [Kamerlingh Onnes11]. After about half a century, Bardeen, Cooper and



54 Chapter 3. Strongly correlated materials under study

Schrieffer (BCS) [Bardeen57] proposed a microscopic theory to explain the phe-

nomenon. According to the BCS theory, superconductivity arises as a result of pairing

between electrons with wavevectors k and −k near the Fermi surface into bound states,

called Cooper pairs, which becomes energetically favorable at low enough temperature.

The Cooper pairs can propagate through the crystal without scattering, which explains

the absence of electrical resistance. The pairing is possible if there is an effective

attractive interaction between electrons. In conventional superconductors, which were

the only type of superconductors known at the time BCS were developing their theory,

this effective attraction is a consequence of the electron-phonon interaction. The BCS

ground state, where a certain number of electrons are bound into Cooper pairs, is

separated from the first excited state by an energy gap ∆k, which in general is k-vector

dependent. In conventional superconductors, the gap is nearly isotropic and the Cooper

pair wave-function g(k) has the symmetry of the crystal lattice.

The BCS theory is one of the most successful theories in condensed matter physics,

capable of describing many experimental findings on conventional superconductors even

on a quantitative level [Claeson74]. However, with the discovery of superconducting

heavy fermion compounds [Steglich79] and copper oxides [Bednorz86], whose properties

greatly deviated from the BCS predictions, it became clear that the BCS theory is at

best just a special case of a more general theory of superconductivity, which is yet to

be developed. A class of superconductors that demonstrate non-BCS properties are

traditionally referred to as unconventional.

Copper oxides – or cuprates – are probably the most intensively studied unconventional

superconductors. The unprecedentedly high interest in the cuprates is partly due to

their transition temperatures being the highest among all superconductor families (e. g.,

Tc = 94 K in Bi2Sr2CaCu2O8+δ [Ando99], Tc = 135 K in HgBa2Ca2Cu3O8+δ [Kim95]),

which positions them as very valuable materials from the practical point of view. The

high transition temperatures is one of the cuprates’ properties that point to their un-

conventionality since in the BCS theory the transition temperature of a superconductor

would not exceed ∼ 30 K. This is dictated by the maximally possible electron-phonon

coupling. On the other hand, the cuprates are strongly correlated materials, as is mani-

fested, e. g., by an antiferromagnetically ordered insulating ground state observed in the

undoped compounds, whose non-interacting bandstructure with a half-filled Cu 3dx2−y2

band would rather suggest a metallic state. It has been proposed therefore that elec-

tron pairing in the cuprates might be realized through the strong electronic correlations.

As can be seen from a typical temperature T – charge carrier concentration n dia-

gram in Fig. 3.8 (a), the spin-ordered insulating state at low n is destroyed at larger
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Figure 3.8: (a) Typical T -n phase diagram of a cuprate superconductor, (b) the
symmetry of the Cooper pair function g(k) in the cuprates, compared with that in
conventional superconductors, and (c) a schematic drawing of the CuO2 plane where

Cu (O) atoms are represented by blue (red) circles.

doping concentrations giving place to a metallic phase with non-Fermi-liquid proper-

ties1 [Pruschke95], in accordance with the Mott transition scenario. Upon increasing

the doping concentration, superconductivity sets in, with the Tc reaching its maximum

at some optimal doping concentration, followed by another phase transition to a con-

ventional Fermi-liquid metallic state. The low n region of the cuprates’ phase diagram

strongly resembles that of the Hubbard model, and it is widely believed that one should

1 Most prominent anomalous properties of the normal state in cuprates are:

(i) the linear T -dependence of the resistivity;

(ii) the linear T -dependence of the NMR-relaxation rate of the Cu spins;

(iii) the T 2 increase of a Hall angle over a wide temperature range.
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also be able to describe the superconducting phase in the framework of the doped Hub-

bard model (see, e. g., Refs. [Anderson87, Lee06, Imada98, Dagotto94]).

Another unconventional feature of the cuprate superconductivity is related to the spatial

symmetry of the Cooper pair wave-function g(k). While in conventional superconduc-

tors g(k) assumes the symmetry of the crystal and would, e. g., stay invariant under

the Ĉ4 symmetry transformation (a 90° rotation) in a tetragonal system (s-wave pair-

ing), the Cooper pair wave-function in the cuprates has a lower symmetry such that

Ĉ4g(k) = −g(k) (d-wave pairing), with the nodes [g(k) = 0] lying on the |kx| = |ky|
lines. The spatial symmetry of the conventional and cuprate Cooper pair wave-function

is schematically shown in Fig. 3.8 (b). At the same time, in spin space both conventional

and cuprate g(k) are singlet functions. The d-wave pairing symmetry of the Cooper pair

wave-function has an important consequence for the k-vector dependence of the energy

gap ∆k, making it disappear in the |kx| = |ky| directions. The d-wave pairing in the

cuprates has been evidenced by numerous experiments probing the k dependence of g(k)

as well as the nodal structure of ∆k [Tsuei00].

All superconducting copper oxides share a common structural feature, namely, layers of

Cu and O atoms in a square lattice arrangement [Fig. 3.8 (c)], their number typically

varying from one to three in different compounds. Superconductivity is believed to occur

in the CuO2 layers as a result of strongly correlated motion of the electrons within the

layers. One therefore considers a 2D Hubbard model defined for the CuO2 layer. Three

orbitals – Cu 3dx2−y2 and O 2px/O 2py – are primarily involved in electron hopping,

which leads to a three-band Hamiltonian [Emery87]. Alternatively, by downfolding the

oxygen states, one can derive an effective single-band Hamiltonian, with renormalized

hopping parameters [Zhang88]. The single-band model has been shown to describe many

of the low-energy cuprate properties equally well (see, e. g., Ref. [Medici09b]). It has

also been suggested that other orbitals, such as the apical O 2pz or the Cu 3dz2 orbital,

should be included in the model Hamiltonian [Andersen94].

Although the high relevance of the Hubbard model and the importance of the proximity

to the Mott insulating transition in the cuprates has been recognized by most researchers

in the field, there exist many different proposals for the high-Tc pairing mechanism that

exploit strong electronic correlations encoded in the Hubbard model. Their number is

continuously growing, but we will mention here only two such mechanisms, which have

withstood critique and have been gaining experimental support through the years. One

of them relies on Anderson’s idea of the RVB state as the ground state in parent cuprate

compounds, where upon doping the singlet pairs are retained and carry charge to sup-

port supercurrents [Anderson87, Anderson04, Ruckenstein87, Baskaran87, Kotliar88].

The other theory considers strong antiferromagnetic spin fluctuations near the Mott
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insulating state as the pairing glue, by drawing the analogy with the ferromagnetic-

spin-fluctuations-mediated superconductivity in 3He [Scalapino86, Miyake86, Bickers89,

Berk66, Scalapino95, Moriya00]. An appreciated merit of the spin-fluctuation-exchange

model is that the dx2−y2-wave pairing symmetry is obtained in its framework as a natural

result. In Chapter 5, the model is applied to calculate the superconducting properties

of a cuprate Bi2Sr2CaCu2O8; there, as well as in Section 1.3.1, the reader can find the

technical formulation of the model and of the computational method associated with it.

Though successful in describing the superconducting state, many of the present-day mod-

els for the high-Tc superconductivity, including the spin-fluctuation-exchange model, still

face difficulties when making an attempt to understand the properties of the anoma-

lous metallic state. One has to mention here the pseudogap signatures observed in

many experiments [Timusk99] in the hole-underdoped regime [see Fig. 3.8 (a)], of-

ten accompanied by charge- and spin-ordering phenomena, such as stripes (see, e. g.,

Ref. [Tranquada95]), and the linear temperature dependence of the resistance in the

metallic phase near optimal doping [Gurvitch87, Martin88].

3.2.2 Doping-induced inhomogeneity of the superconducting gap in

Bi2Sr2CaCu2O8+δ

In our work, we focus on a Bi2Sr2CaCu2O8 compound. By means of DFT calcula-

tions of the electronic structure of the parent (pure, undoped) Bi2Sr2CaCu2O8 sys-

tem and that of the oxygen-doped Bi2Sr2CaCu2O8+δ system, we are aiming to model

and explore the experimentally observed spatial inhomogeneity of the superconduct-

ing gap in oxygen-doped Bi2Sr2CaCu2O8+δ samples, as measured in scanning tunneling

microscopy (STM) and scanning tunneling spectroscopy (STS) experiments [Cren00,

Howald01, Pan01, Lang02, Kinoda03, McElroy05].

Bi2Sr2CaCu2O8 has two superconducting CuO2 layers [see Fig. 3.9 (a)], separated by Ca

atoms. The symmetry of the parent compound Bi2Sr2CaCu2O8 conventional unit cell is

base-centered tetragonal, with the space group I4/mmm. This (nominal) unit cell is in

fact an approximation to the real crystal structure of Bi2Sr2CaCu2O8, where the periodic

lattice of nominal unit cells is additionally modulated with an incommensurate density

wave, whose wavelength equals approximately 4.8 nominal unit cells [Fig. 3.9 (b)]. The

result of such modulation are corrugated CuO2 planes [He08]. The parameters of the

approximated Bi2Sr2CaCu2O8 unit cell which we adopt for our DFT calculations are

taken from Ref. [Liang88].

The peculiar crystal structure of Bi2Sr2CaCu2O8, with its adjacent BiO2 layers being

bound together by weak van der Waals forces, makes a Bi2Sr2CaCu2O8 crystal an ideal
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Figure 3.9: (a) Crystallographic unit cell of Bi2Sr2CaCu2O8. (b) The structural
supermodulation in Bi2Sr2CaCu2O8 as observed in the integrated LDOS which has
been measured by an STS scan [Pan01]. (c) The nano-scale electronic inhomogeneity
in the integrated LDOS. This image has been obtained (Ref. [Pan01]) by Fourier filtering

the well-ordered topological structure visible in (b).

object for STM studies (see, for instance, Ref. [Fischer07] for an overview on STM of

high-Tc superconductors). Indeed, the Bi2Sr2CaCu2O8 crystal can be easily cleaved

along the weakly bound BiO2 layers to produce a high-quality surface required for an

STM scan.

Atomic-scale resolution STM and STS experiments conducted recently on a

Bi2Sr2CaCu2O8+δ surface [Cren00, Howald01, Pan01, Lang02, Kinoda03] gave surpris-

ing results. The measured tunneling spectra are found to be highly inhomogeneous in

space on a scale of several nanometers [Fig. 3.9 (c)]. The observed variation of the tun-

neling spectra has several peculiar features. First, the superconducting gap, measured as

a distance between coherence peaks, may vary by as much as a factor of three (Fig. 3.10).

Second, the superconducting gap variation is found to be correlated with the positions

of dopant atoms. Thus, Pan et al. [Pan01] observed correlations between the size of
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Figure 3.10: The integrated LDOS (left top panel) and the superconducting
gap (right top panel) measured by STS and STM scans on the surface of cleaved
Bi2Sr2CaCu2O8+δ (taken from Ref. [Pan01]). The red square indicates the region
shown in Fig. 3.9 (c) with higher resolution. The bottom panel displays tunneling
spectra measured at different positions on the surface, with are marked by crosses in

the two upper panels.

the gap and the integrated local density of states (LDOS)2 (Fig. 3.10). These findings

put under question the previously dominating point of view that doping a cuprate with,

e. g., oxygen atoms would only produce additional charge carriers in the superconduct-

ing CuO2 layer, resulting in a uniform shift of the chemical potential. Pan et al. [Pan01]

also noted the analogy between the superconducting gap versus LDOS dependence in

their measured Bi2Sr2CaCu2O8+δ sample and the spatially averaged3 superconducting

gap versus oxygen concentration dependence in a series of differently doped samples.

The gap and LDOS inhomogeneities have been interpreted by some authors [Howald01,

Pan01, Lang02] as a signature of electronic phase separation, which plays a key role in

one of the models proposed to explain the high-Tc superconductivity [Phillips03]. In an

2The local density of states is assumed to be proportional to the directly measured differential con-
ductance [Pan01, Fischer07]. The states that are integrated over are all states below and above the
Fermi level.

3Such an averaged gap is measured by angle-resolved photoelectron spectroscopy.
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alternative hypothesis, the inhomogeneous tunneling spectra are caused by extrinsic4

influences, such as inhomogeneous distribution of non-stoichiometric doping atoms. In

Ref. [McElroy05], McElroy et al. provided strong evidences for extrinsic mechanisms

being at work by showing that the size of superconducting gap as well as other spec-

tral features are positively correlated with the oxygen dopant position. There are also

theories relating inhomogeneous electronic structure to a competing order parameter

[Kivelson03, Atkinson05, Alvarez05].

Several attempts to explain the nanoscale inhomogeneities in Bi2Sr2CaCu2O8+δ in the

framework of traditional inhomogeneous BCS theory did not succeed in describing its

STS spectra [Hettler99, Shnirman99]. More recently, however, a significant progress

has been made by Nunner et al. [Nunner05], who showed that all spectral features

can be reconciled within a single theoretical model if one assumes that the Cooper pair

attraction is locally enhanced by dopant atoms. Interestingly, in order to arrive at this

conclusion, Nunner et al. did not need to specify the Cooper pairing mechanism in their

model. As the microscopic origin of superconducting pairing in cuprates is still a matter

of debate, we thus get one more criterion to identify the right microscopic theory for

high-Tc superconductivity, among a few of those that have been proposed, through its

ability to also account for such local enhancement of superconducting pairing.

When a magnetically mediated mechanism of Cooper pairing is assumed, the local pair-

ing enhancement can be a result of the local increase of spin-fluctuation exchange, which

in turn might be caused by local structural modifications induced by a dopant atom. In

order to explore possible effects of local structure modifications on the superexchange

interaction, one way would be to derive the effective exchange interaction from an in-

homogeneous Hubbard model by means of perturbation expansion. In this procedure,

it is assumed that structural modifications affect locally electronic structure and are

thus directly reflected in the Hubbard model parameters, such as on-site energies and

transfer integrals. Application of this procedure to an inhomogeneous single-band Hub-

bard model [Maśka07] gives as a result that superexchange interaction would always

increase in the vicinity of a source of crystal and electronic structure inhomogeneity,

i. e., in the vicinity of a dopant atom. In their calculations, Maśka et al. assumed

that the dopant shifts on-site energies of neighboring Cu 3dx2−y2 orbitals, but has no

effect on transfer integrals. However, analogous calculations performed on a three-band

Hubbard model [Foyevtsova09], which are presented in Section 5.3 of this thesis, as

well as cluster-model calculations [Johnston09], which also consider local variation of

hopping integrals, lead to an opposite behavior of the local exchange interaction. These

4Extrinsic influences should be understood as such that are in opposition to intrinsic mechanisms
related with electron self-organization.
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contradictory results indicate that the calculated dopant-induced effect on local superex-

change is sensitive to the quality of approximations used. This motivated us to derive an

accurate single-band Hubbard model for oxygen-doped Bi2Sr2CaCu2O8+δ using ab ini-

tio methods (Section 5.1), which provide considerably improved accuracy of evaluating

doping-induced variations of model parameters compared to the electrostatic calcula-

tions of Johnston et al. [Johnston09]. The derived inhomogeneous Hubbard model is

used to explore superconducting properties of the doped Bi2Sr2CaCu2O8+δ crystal by

performing RPA calculations of its magnetic and charge susceptibilities and Cooper

pairing strength [Foyevtsova10].

3.3 Quasi-1D quantum magnet TiOCl

The Mott insulator TiOCl, with a quasi-1D network of spin-1
2 interactions, has initially

attracted intense interest as one of the few inorganic systems [Hase93, Isobe96] manifest-

ing a spin-Peierls transition [Buzdin80]. The high-temperature (> Tc2 = 91 K) crystal

structure of TiOCl is orthorhombic Pmmn. The TiOCl crystal is formed by bilayers of

Ti and O atoms, stacked along the crystallographic c direction, which weakly interact

through van der Waals forces. The van der Waals interaction is mediated by the Cl

atoms, which, together with the O atoms, make up distorted ligand octahedra around

the Ti atoms [see Fig. 3.11 (a)]. The triply ionized Ti ion hosts one electron in the

3d shell, which induces a localized spin-1
2 magnetic moment. The interactions between

the Ti spins are of pronounced 1D character [Seidel03, Saha-Dasgupta04, Zhang08a],

with chains of antiferromagnetically coupled Ti spins (Jb = 660 K) running along the

crystallographic b direction. The two additional spin interactions Jc = −16.7 K and

Ja = −10.5 K couple the antiferromagnetic chains from adjacent layers and along the a

direction, respectively, as shown in Fig. 3.11 (b) [Zhang08a].

The high-temperature phase of TiOCl is unstable towards the spin-Peierls transition,

whereby the antiferromagnetic Ti chains distort to form a double-period structure with

short and long Ti-Ti distances and the Ti spins dimerize at the short Ti-Ti bonds in a

chain. The spin-Peierls transition in TiOCl has a bunch of atypical features [Kataev03,

Lemmens04, Caimi04, Hemberger05] indicating an important role of, presumably, or-

bital degrees of freedom and magnetic frustration, which act simultaneously with the

conventional spin-Peierls mechanisms. These are likely to be responsible, in particular,

for the fact that there are two phase transitions upon temperature lowering, one at

Tc2 = 91 K to an incommensurate structure phase and the other at Tc1 = 67 K to a

dimerized phase. The second transition at Tc1 is of the first order, which also deviates

from the conventional spin-Peierls scenario.
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Figure 3.11: (a) TiOCl crystal structure and (b) exchange coupling pathways be-
tween Ti spins. In (b), the Ti atoms are schematically shown as blue and light blue
circles. The orange rectangle represents the TiOCl unit cell. The figures are taken from

Ref. [Zhang08a]

Though being promoted in some early works on TiOCl [Kataev03], the relevance of or-

bital fluctuations for the stabilization of the incommensurate phase between Tc2 and Tc1

seems now to be less convincing. The DFT calculations of Ref. [Saha-Dasgupta04] have

shown that the ground state of TiOCl, obtained with the LDA+U5 exchange-correlation

functional, consists of a well separated Ti 3dxy band6 (Fig. 3.12). The direct overlap

5Qualitatively, the TiOCl DOS calculated within the LDA+U does not depend on the choice of U
and JH over the ranges 0.3 eV ≤ JH ≤ 1 eV and 2 eV ≤ U ≤ 7 eV. The susceptibility data are best
described by a spin model with the exchange coupling constants obtained from the LDA+U calculations
with U = 3.3 eV and JH = 1 eV.

6This is with respect to the coordinate system, in which ẑ = a and x̂ and ŷ are rotated by 45°.
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Figure 3.12: The DOS of TiOCl obtained with the FPLO code [Koepernik99] in
Ref. [Saha-Dasgupta04]. Top panel: orbital resolved Ti 3d states from non-spin-
polarized LDA calculations. Bottom panel: atomic resolved DOS from antiferromag-
netically polarized LDA+U calculations (U = 3.3 eV, JH = 1 eV). In the LDA+U
ground state, the Ti 3dxy band appears well-separated from the rest of the Ti 3d bands

and fully occupied.

between the Ti 3dxy electron clouds is responsible for the strong antiferromagnetic cou-

pling Jb, with the transfer integral being estimated as ∼ −0.25 eV. As opposed to the

orbital fluctuations, a number of theoretical [Saha-Dasgupta04, Zhang08a] as well as

experimental [Rückamp05, Hoinkis05] studies provide evidences in favor of frustration

induced spin fluctuations being the key driving force behind the transition to the incom-

mensurate phase at Tc1 .

Much effort has also been invested into finding a route to metallize TiOCl by either
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(i) applying pressure [Kuntscher06, Forthaus08, Zhang08b] or

(ii) doping [Zhang10, Sing11].

As a low-dimensional Mott insulator, TiOCl is anticipated to exhibit properties similar

to, e. g., 2D cuprate superconductors. In particular, it is speculated whether a doped –

or metallized in some other way – TiOCl might become superconducting.

While Car-Parinello molecular dynamics (Section 2.3) simulations do find a pressure-

induced insulator-to-metal transition in TiOCl [Zhang08b], which is accompanied by

a structural transition and Ti-Ti dimerization, the electric transport measurements on

pressurized TiOCl samples up to 24 GPa [Forthaus08] point to a persisting band gap.

The electrical resistance anomaly at 13 GPa and the strong suppression of the light

transmittance in the infrared and visible frequency range [Kuntscher06] at 13.9 GPa

indicate, however, a change in the electronic structure, which is probably overestimated

in the DFT calculations.

Recently, Sing et al. [Sing11] have succeeded in producing Na doped TiOCl samples in

order to explore the second possibility to drive TiOCl into a metallic state. The pho-

toemission spectroscopy of the doped samples finds, however, that a band gap at the

Fermi level remains for all concentrations of Na. The microscopic origin of this persistent

insulating state should apparently be related with the local crystal and electronic struc-

tural changes that the intercalated Na ions induce. In our work [Zhang10], presented in

Chapter 6, we employ the DFT methods to study these effects.



Chapter 4

Cs2CuCl4 and Cs2CuBr4

microscopic models

This chapter presents a detailed DFT study of the frustrated antiferromagnets Cs2CuCl4

and Cs2CuBr4, which was initiated in order to gain a better understanding of the exper-

imentally observed properties of the compounds on a microscopic level. Among others,

we were searching for the answers to the following questions: Can the different magnetic

behavior of Cs2CuCl4 and Cs2CuBr4 be traced back to the differences in their electronic

structure? Will the experimentally established Heisenberg models for Cs2CuCl4 and

Cs2CuBr4 be confirmed also by DFT calculations? Which are the main features of their

electronic TB models? How important is the role of electronic correlations in these

materials?

On our way to establishing the DFT-based microscopic models of Cs2CuCl4 and

Cs2CuBr4, we discovered that electronic correlations play an important role in these

systems and should be treated on (at least) the LDA+U level. Moreover, an interplay

between electronic correlations, which tune localization of the Cu 3d electrons and the

value of the Cu magnetic moment, and lattice dynamics via the Jahn-Teller effect re-

sults in the Cs2CuCl4 and Cs2CuBr4 equilibrium crystal structures being dependent

on the DFT optimization functional. The decisive role of electronic correlations and

magnetism in the two compounds becomes evident with the observation that the val-

ues of spin exchange couplings couple to the variation of the Cs2CuCl4 and Cs2CuBr4

structural parameters obtained with different optimization functionals. This knowledge

enables us to make correct predictions for the Cs2CuCl4−xBr4 crystal structures and

study these mixed systems with DFT methods in the future.

65
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4.1 Electronic properties

In our discussion of the Cs2CuCl4 and Cs2CuBr4 electronic properties, we will be an-

alyzing and comparing several sets of calculated data for each compound. For a given

compound, the different data sets are obtained by using slightly different structural

parameters during DFT calculations, which in one case are determined by x-ray mea-

surements and in the rest of cases obtained by performing structural optimization within

the DFT. Our motivation to perform crystal structure optimization for Cs2CuCl4 and

Cs2CuBr4 was the surprisingly large disagreement between the Heisenberg model de-

termined for Cs2CuCl4 from DFT calculations when using the experimental crystal

structure and the experimentally determined model. The nuclear forces calculated by

the DFT turned out to be large in the experimental crystal structure of Cs2CuCl4 (as

well as in that of Cs2CuBr4), which gave us a reason to expect that structural relaxation

would improve the DFT description of spin exchange in the two systems. Since it was

not known a priori which exchange-correlation functional is most suitable in the case of

Cs2CuCl4 and Cs2CuBr4, we performed a number of structural relaxations using differ-

ent exchange-correlation functionals. We will now proceed by introducing the functionals

we chose for this purpose and presenting computational details of the optimization.

4.1.1 Structure optimization schemes

The crystal structure relaxations of the compounds are performed using as a starting

point the room temperature experimental structural data, as reported in Ref. [Bailleul91]

for Cs2CuCl4 and in Ref. [Morosin60] for Cs2CuBr4. Each relaxation consisted in op-

timizing atomic positions under constraints imposed by the space group symmetry of

the Cs2CuCl4 and Cs2CuBr4 unit cell and with fixed lattice constants. We chose to fix

the experimental lattice constants as these are usually determined with high accuracy,

while, on the other hand, the LDA and GGA are known to, respectively, underestimate

or overestimate the unit cell volume.

We consider the following optimization schemes with different approximations to the

exchange-correlation functional within the DFT and different magnetic configurations:

(1) the local density approximation (LDA[nm]) [Perdew92];

(2) the generalized gradient approximation (GGA[nm]) [Perdew96];

(3) the spin-dependent GGA with a ferromagnetic Cu spin configuration (GGA[fm]);
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(4) the spin-dependent GGA+U (AMF functional [Czyżyk94]) with a ferromagnetic

Cu spin configuration (GGA+U[fm]). The on-site Coulomb interaction U = 6 eV

and the Hund’s rule coupling JH = 1 eV are introduced for Cu ions.

For Cs2CuCl4, we also considered two optimization schemes with an antiferromagnetic

Cu spin configuration:

(5) GGA[afm] and

(6) GGA+U[afm] (U = 6 eV, JH = 1 eV).

Additionally, for both compounds we completed the LDA series of structural optimiza-

tions with LDA[fm] and LDA+U[fm] optimizations. However, due to the analogous

behavior of the structural properties of Cs2CuCl4 and Cs2CuBr4 observed within this

series with those observed within the GGA series, we will not discuss the full LDA series

in detail.

Calculations with an antiferromagnetic spin configuration were performed for a Cs2CuCl4

supercell with a reduced symmetry P21/c. A detailed description of this antiferromag-

netic configuration as well as other computational details of structural optimization can

be found in Appendix A.1.

In order to better understand the effects responsible for the differences in crystal struc-

tures optimized using different exchange-correlation functionals, let us compare the den-

sities of states of the unrelaxed Cs2CuCl4 and Cs2CuBr4 crystal structures calculated

with GGA[nm], GGA[fm] and GGA+U[fm] functionals, presented in Fig. 4.1. The spin-

independent GGA[nm] functional renders the two compounds metallic, with a finite DOS

at the Fermi level [Fig. 4.1 (a) and (d)]. However, when the spin-dependent GGA[fm]

functional is applied instead, Cs2CuCl4 and Cs2CuBr4 are found in a spin-polarized

state, with a band gap opened at the Fermi level1 [Fig. 4.1 (b) and (e)]. Upon introduc-

ing the on-site Coulomb repulsion for Cu 3d electrons in the GGA+U[fm] scheme, the

gaps in both compounds increase considerably [Fig. 4.1 (c) and (f)].

Apparently, the spin-dependent functionals GGA[fm] and GGA+U[fm] perform much

better than the spin-independent GGA[nm], correctly reproducing the insulating ground

state of Cs2CuCl4 and Cs2CuBr4. Therefore, we should expect to obtain more accu-

rately relaxed Cs2CuCl4 and Cs2CuBr4 crystal structures when using the spin-dependent

functionals.

Along with the band gap opening, the spin-dependent functional calculations find a

finite Cu magnetic moment, which grows as the Coulomb interaction is switched on.

1In Cs2CuBr4, the GGA[fm] gap is rather small (∼ 0.03 eV).
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Figure 4.1: Total DOS’s for majority and minority electron spin for (a) Cs2CuCl4,
calculated with GGA[nm], (b) Cs2CuCl4, calculated with GGA[fm], (c) Cs2CuCl4, cal-
culated with GGA+U[fm], (d) Cs2CuBr4, calculated with GGA[nm], (e) Cs2CuBr4, cal-
culated with GGA[fm], and (f) Cs2CuBr4, calculated with GGA+U[fm]. For an easier
comparison, the two DOS’s are plotted with opposite signs. In the case of GGA+U[fm],
the AMF scheme is employed, with U = 6 eV and JH = 1 eV. The Fermi level is set to

zero.

Tables 4.1 and 4.2 display the Cu magnetic moments µCu in, respectively, Cs2CuCl4

and Cs2CuBr4 calculated with the GGA[fm] and GGA+U[fm] functionals.

4.1.2 Structural analysis

The relaxed as well as experimental Cs2CuCl4 and Cs2CuBr4 structural parameters are

listed in Appendix A.2.

In our discussion of the various Cs2CuCl4 and Cs2CuBr4 crystal structures we focus

on geometry variations of the CuX4 (X = Cl, Br) tetrahedron, which, as will become

evident later, determine the strength of important exchange couplings. Let us introduce

below the CuX4 tetrahedron parameters that we find to be of special interest.

In Cs2CuCl4 and Cs2CuBr4, the CuX4 tetrahedron is distorted due to the Jahn-Teller

effect and also due to the steric pressure originating from Cs+ ions [Morosin60]. The

Jahn-Teller effect results in a squeezing of the tetrahedron such that the X-Cu-X bond

angles γ12 and γ33 increase and the X-Cu-X bond angles γ13 and γ23 decrease (Fig. 4.2).
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Figure 4.2: Neighboring CuX4 tetrahedra. Labels 1, 2 and 3 of the X atoms denote
the three inequivalent X atoms: X(1), X(2) and X(3). As indicated, angles γ12, γ13,
γ23 and γ33 correspond to the angles X(1)-Cu-X(2), X(1)-Cu-X(3), X(2)-Cu-X(3) and

X(3)-Cu-X(3), respectively.

The steric pressure by Cs(2) on X(3) causes additional symmetry lowering by increasing

γ13 and decreasing γ33. In order to compare the strengths of the two types of distortions

in different structures, we define the Jahn-Teller deviation ∆JT as the difference between

averages 1
2(γ12 + γ33) and 1

2(γ13 + γ23),

∆JT =

∣∣∣∣12(γ12 + γ33)− 1

2
(γ13 + γ23)

∣∣∣∣ , (4.1)

and the steric pressure deviations δsteric
1 and δsteric

2 as

δsteric
1 =

1
2 |γ12 − γ33|
1
2(γ12 + γ33)

and δsteric
2 =

1
2 |γ13 − γ23|
1
2(γ13 + γ23)

. (4.2)

We first compare results of spin-dependent functional relaxations of Cs2CuCl4 with fer-

romagnetic and antiferromagnetic spin configurations in order to find out how big is the

effect of relaxing with different spin configurations. As it turns out, it is rather small

as the Cs2CuCl4 structures relaxed with GGA[fm] and GGA[afm] are very close as well

as the structures relaxed with GGA+U[fm] and GGA+U[afm] (see Appendix A.2). The

tetrahedron parameters in these structures are also similarly close. This demonstrates

that, within the spin-dependent GGA and GGA+U, interatomic forces in Cs2CuCl4 are

very weakly dependent on the actual Cu spin configuration. Therefore, we find it suffi-

cient to consider in the following only ferromagnetic spin-dependent relaxation schemes

for Cs2CuCl4 and Cs2CuBr4. The observed insensitivity of the structural relaxation

results to magnetic order is a consequence of the rather small energy scale of magnetic

interactions between Cu spins, which is much smaller than the difference between total

energies usually involved in structural relaxations2.

2It should also be noted that the energy difference between various spin-polarized DFT ground states
with localized Cu magnetic moments is much smaller than the energy difference between any of the
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Table 4.1: Tetrahedron parameters for the Cs2CuCl4 structures and corresponding
values of the Cu magnetic moment µCu during structural relaxation. The angles are
given in degrees, the deviations δsteric1 and δsteric2 in percent and the averaged Cu-Cl

distance d̄Cu−Cl in Ångström.

exp GGA+U[fm] GGA[fm] GGA[nm] LDA[nm]

γ12 131.33 130.97 133.05 133.66 135.56
γ13 101.67 101.60 100.67 99.69 98.26
γ23 99.58 99.43 98.55 97.86 97.11
γ33 126.79 127.78 130.41 134.34 138.56
∆JT 28.44 28.86 32.12 35.22 39.38
α 153.99 153.89 155.21 157.17 159.28

δsteric
1 1.76 1.23 1.00 0.25 1.10
δsteric

2 1.04 1.08 1.06 0.93 0.59

d̄Cu−Cl 2.232 2.263 2.263 2.267 2.227

µCu - 0.78µB 0.50µB 0 0

Table 4.2: Tetrahedron parameters for the Cs2CuBr4 structures and corresponding
values of the Cu magnetic moment µCu during structural relaxation. The angles are
given in degrees, the deviations δsteric1 and δsteric2 in percent and the averaged Cu-Br

distance d̄Cu−Br in Ångström.

exp GGA+U[fm] GGA[fm] GGA[nm] LDA[nm]

γ12 130.40 130.06 131.77 132.53 133.72
γ13 102.16 102.16 101.70 100.48 99.03
γ23 99.93 99.75 98.89 97.94 97.34
γ33 126.42 126.42 128.05 133.07 137.48
∆JT 27.52 27.28 29.62 33.59 37.41
α 153.21 153.22 154.03 156.53 158.74

δsteric
1 1.55 1.42 1.43 0.20 1.38
δsteric

2 0.96 1.19 1.40 1.28 0.86

d̄Cu−Br 2.376 2.407 2.407 2.411 2.368

µCu - 0.73µB 0.42µB 0 0
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Figure 4.3: Parameters of the CuX4 tetrahedron in the experimental as well as re-
laxed crystal structures of Cs2CuCl4 and Cs2CuBr4: (a) the average Cu-X (X = Cl,
Br) bond distance d̄Cu−X , (b) Jahn-Teller deviation ∆JT, (c) Cu-X-X angle α in the
J superexchange bridge, (d) steric pressure deviation δsteric1 and (e) steric pressure

deviation δsteric2 .

In Tables 4.1 and 4.2, we present the tetrahedron parameters defined above for the

experimental and relaxed crystal structures of Cs2CuCl4 and Cs2CuBr4, respectively.

Some of them are additionally shown in Fig. 4.3 in order to facilitate comparison of

different crystal structures. In both compounds, the crystal structures of the GGA

relaxation series (GGA+U[fm], GGA[fm] and GGA[nm]) are featured by a continuous

variation of the X-Cu-X angles. In terms of these angles, the relaxed crystal structures

of Cs2CuCl4 and Cs2CuBr4 closest to the corresponding experimental structures are the

GGA+U[fm] structures. However, in terms of the Cu-X bond distances, represented here

spin-polarized states and the spin-unpolarized state obtained with a spin-independent functional. The
latter energy difference is comparable with the energy differences involved in structural relaxations.
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by the averaged distance d̄Cu−X , the GGA crystal structures are further away from the

experimental structures than the LDA structures [see Fig. 4.3 (a)]. In the LDA structures

of Cs2CuCl4 and Cs2CuBr4
3, parameter d̄Cu−X is smaller than in the corresponding

experimental structures, but the difference is less compared to the GGA series. The

GGA relaxation tends to increase the bond distances in the CuX4 tetrahedron while the

LDA relaxation decreases them.

In the GGA series, the Jahn-Teller distortion [∆JT, Fig. 4.3 (b)] is most pronounced

in the Cs2CuCl4 and Cs2CuBr4 crystal structures relaxed with the spin-independent

functionals LDA[nm] and GGA[nm]. With application of the spin-dependent functionals

GGA[fm] and GGA+U[fm], when the systems become insulating and there appears a

finite Cu magnetic moment, the Jahn-Teller distortions in Cs2CuCl4 and Cs2CuBr4

reduce. They reach minimal values, which are also very close to the corresponding

experimentally found Jahn-Teller distortions, in the GGA+U[fm] relaxed structures.

An explanation to such behavior will be given in Section 4.3.

The X-Cu-X bond angle γ33 and the structurally coupled angle α of the Cu-X-X-Cu

bridge (Fig. 4.2) behave analogously to the Jahn-Teller distortion ∆JT [compare Fig-

ures 4.3 (b) and (c)]. The angle α is one of the geometrical parameters of the superex-

change path J , so the observed variation of α in differently relaxed crystal structures

points to a possible variation of the exchange coupling J . We indeed find such a variation

in the total energy difference calculations, which, moreover, turns out to be unexpectedly

strong (see Section 4.2.2).

4.1.3 Bandstructure and density of states

Let us discuss now electronic properties of Cs2CuCl4 and Cs2CuBr4 calculated with the

experimental and relaxed crystal structures introduced above. We show here results

obtained with the spin-independent GGA exchange-correlation functional. Calculations

are performed with both the FPLO (Section 2.2.2) and Wien2k codes (Ref. [Blaha01],

Section 2.2.3). We present here the Wien2k calculated data, which are in good agreement

with the FPLO results.

We first concentrate on generic features of the electronic structures of Cs2CuCl4 and

Cs2CuBr4, equally found in calculations with any of the Cs2CuCl4 and Cs2CuBr4 crys-

tal structures. Fig. 4.4 displays projected densities of states (DOS) for Cs2CuCl4 and

Cs2CuBr4 obtained using their experimental structures. In both compounds, the hy-

bridized Cu 3d and Cl 3p/Br 4p bands occupy the energy range between about -4 eV

and 0 eV [see, for instance, the atomic DOS in Figs. 4.4 (a) and (c)]. There is almost no

3This includes also the LDA[fm] and LDA+U[fm] structures, which are not listed in the tables.
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Figure 4.4: Atomic species resolved DOS calculated from the experimental crystal
structures for (a) Cs2CuCl4 and (c) Cs2CuBr4 and the orbital projected DOS of Cu 3d
for (b) Cs2CuCl4 and (d) Cs2CuBr4. Energy is measured relative to the Fermi level EF.

contribution from Cs atoms to the DOS near the Fermi level, which indicates a negligible

hybridization of Cu with Cs. This allows us to conclude, in particular, that the exchange

coupling J along the Cu chains in the b direction arises mainly from the Cu-X-X-Cu

hybridization. A gap of approximately 4 eV separates the Cu and X (X = Cl, Br)

bands from the next unoccupied states [not shown in Figs. 4.4 (a) and (c)], which have

significant Cs contribution.

The Cu and X band manifold is an assembly of bonding states in the interval between
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Figure 4.5: (a) Schematic splitting of the Cu 3d orbitals in the crystal field with
tetrahedral symmetry. (b) The path in the Cs2CuCl4/Cs2CuBr4 Brillouin zone for
bandstructure calculations (Figs. 4.6 and 4.7). (c) The local reference frame of a Cu

atom, in which its orbital projected density of states is defined.

-4 eV and -2 eV and anti-bonding states in the interval between -2 eV and the Fermi

level. The Cu anti-bonding states are split by the crystal field generated by X− ions

surrounding a Cu2+ ion into the energetically lower eg doublet (dx2−y2 and dz2) and the

energetically higher t2g triplet (dxy, dxz and dyz). Due to the Jahn-Teller uniaxial distor-

tion of the tetrahedron, the t2g triplet is further split into the degenerate dxz/dyz states

and the half-filled dxy states. This splitting is schematically illustrated in Fig. 4.5 (a),

and the orbital projected densities of Cu 3d states for the experimental Cs2CuCl4 and

Cs2CuBr4 structures are presented in Figs. 4.4 (b) and (d), respectively. Note that the

orbital designation is given according to the local reference frame of the CuX4 tetrahe-

dron as shown in Fig. 4.5 (c).

In Figs. 4.6 and 4.7, we present the total DOS and bandstructures for the experimen-

tal as well as relaxed crystal structures (GGA+U[fm], GGA[fm], GGA[nm], LDA[nm])

of Cs2CuCl4 and Cs2CuBr4, respectively. In contrast to Cs2CuCl4, the t2g states in

Cs2CuBr4 are strongly hybridizing, which is indicated by the non-separable character of

the overlap of the Cs2CuBr4 dxy and dxz/dyz bands in the bandstructure.

We now inspect how the differences in the experimental and variously relaxed crystal

structures of Cs2CuCl4 and Cs2CuBr4 manifest themselves in their electronic structures.

For this purpose, we focus at energies close to the Fermi level4. In both Cs2CuCl4

and Cs2CuBr4, the splitting between the Cu 3dxy bands and the degenerate Cu 3dxz

4This region defines the low-energy physics in Cs2CuCl4 and Cs2CuBr4 and thus is of special interest.
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Figure 4.6: DOS and bandstructures for various Cs2CuCl4 structures (specified by
the panel captions). In the bandstructure plots, the DFT calculated bands are in black
(solid) lines and the tight-binding fits are in red (dashed) lines. The bandstructure
path in the Brillouin zone is shown in Fig. 4.5 (b). Energy is again measured relative

to the Fermi level EF.
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Figure 4.7: DOS and bandstructures of various Cs2CuBr4 structures (specified by the
panel captions). The bandstructure path in the Brillouin zone is shown in Fig. 4.5 (b).
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and Cu 3dyz bands decreases for structures which have been relaxed with a higher Cu

magnetic moment, i. e., from the GGA[nm] relaxed structure to the GGA+U[fm] relaxed

one. We relate this behavior to the variation of the Jahn-Teller distortion of the CuX4

tetrahedron, which has direct influence on the band splitting. The trend is better seen

in Cs2CuCl4 where the dxy band is separated by a gap (except for the GGA+U[fm]

structure).

The Cu 3dxy bandwidth appears to be weakly dependent on the relaxation functional

in both Cs2CuCl4 as well as Cs2CuBr4 relaxed structures. However, when calculated

with the experimental crystal structure, the Cu 3dxy bandwidth of Cs2CuCl4 is found

to be by a factor of two smaller than the roughly uniform Cu 3dxy bandwidth of the

relaxed Cs2CuCl4 structures. In Cs2CuBr4, on the contrary, there is no big difference in

the Cu 3dxy bandwidths of the relaxed and experimental structures. The narrowing of

the Cu 3dxy band in the experimental structure of Cs2CuCl4 results in a sharply peaked

DOS at the Fermi level. This is a signature of strong structural instability, which is

apparently much stronger than in the case of the Cs2CuBr4 experimental structure.

4.2 Derivation of effective models

4.2.1 Tight-binding model

We have just discussed the Cs2CuCl4 and Cs2CuBr4 bandstructures and their variations

as a function of the exchange-correlation functional used for relaxation on a qualitative

level. It is also possible to quantify the observed variations by mapping the bandstructure

onto a tight-binding (TB) model HTB,

ĤTB = −
∑
〈ij〉

σ,mi,mj

(
t
mimj
ij ĉ†imiσ ĉjmjσ + h.c.

)
, (4.3)

where every feature of the bandstructure will be described by a certain hopping inte-

gral t
mimj
ij .

For Cs2CuCl4, the Hamiltonian (4.3) simplifies to a single-band TB model:

ĤTB = −
∑
〈ij〉σ

(
tij ĉ
†
iσ ĉjσ + h.c.

)
, (4.4)

since in this case only one orbital Cu 3dxy, being well separated from other bands, is in-

volved in electron hopping. A single-band TB model can be in most cases parameterized
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Table 4.3: The TB model parameters in meV for the Cs2CuCl4 Cu 3dxy band, cal-
culated from the various Cs2CuCl4 crystal structures. The hopping integral index

corresponds to the order of the neighbor.

LDA[nm] GGA[nm] GGA[fm] GGA+U[fm] exp.

t -44.9 -35.9 -27.4 -21.7 -11.0
t′ 12.5 -13.6 14.0 14.4 6.7
t′′ -1.4 -4.5 -6.0 -6.8 -6.3
t1 6.3 -7.4 -6.3 -3.6 -3.9
t3 -9.5 8.4 7.5 7.5 8.2
t7 2.4 2.3 2.6 2.9 2.3
t8 -2.2 -2.5 -2.7 -3.0 3.6
t6 -2.4 -2.8 -3.0 -2.7 1.7
t14 0.6 0.9 1.1 1.4 1.6
t18 0.0 0.2 0.3 0.6 -0.1
t22 -4.8 -5.1 -4.5 -4.4 -2.4
µ -15.3 -17.3 -17.6 -17.8 -11.7

by means of fitting as well as downfolding or projecting onto Wannier functions (Sec-

tion 2.5.1). Table 4.3 contains the Cs2CuCl4 TB model parameters for various crystal

structures obtained through fitting; the corresponding TB models’ spectra are plotted

in red dashed lines on top of the DFT bandstructure in Fig. 4.6. These values have also

been confirmed by applying the projecting technique.

In the case of Cs2CuBr4, on the other hand, one needs to consider the full multi-band

TB model (4.3) because of the hybridization between the Cu 3dxy and Cu 3dxz/Cu 3dyz

orbitals. Due to additional orbital degrees of freedom, such a model is featured by a

considerably larger number of parameters compared to the single-band model. With

increasing number of model parameters, parameterization through fitting becomes less

reliable and therefore is rarely applied to multi-band models. The Cs2CuBr4 TB models

calculated via projection onto Wannier functions are presented in Appendix A.3.

In the following discussion of the TB model parameterization results, the reader should

be guided by the schematic diagram of interaction pathways for Cs2CuCl4 and Cs2CuBr4

shown in Fig. 4.8, which displays the 11 most important interactions that we consider

in our modeling. We denote the hopping integrals associated with interaction paths J ,

J ′, J ′′ and Ji by, respectively, t, t′, t′′ and ti (i = 1, 3, 6, 7, 8, 14, 18, 22).

The parameterization reveals an unexpected fact: there are more non-negligible inter-

layer interactions in Cs2CuCl4 and Cs2CuBr4 that are associated with electronic degrees

of freedom than expected when being guided by their experimentally determined Heisen-

berg models. In particular, we observe that the interlayer hopping integrals t1 and t3 are
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Figure 4.8: Cs2CuCl4 interaction pathways considered for the TB model parameter-
ization.

in most cases larger than the interlayer hopping t′′ and in some cases even comparable

with the zig-zag in-plane bond interaction t′.

In either Cs2CuCl4 or Cs2CuBr4, the dominant intrachain hopping integral t shows a

systematic variation as a function of crystal structure. As can be more easily seen in

Table 4.3 for Cs2CuCl4, where each interaction path is described by a single hopping

integral between the Cu 3dxy orbitals, t strongly decreases for structures relaxed with a

higher Cu magnetic moment, i. e., from the GGA[nm] or LDA[nm] relaxed structures

to the GGA+U[fm] relaxed structure, and reaches a minimal value in the experimental

structure. The zig-zag bond hopping integral t′ and the interlayer hopping integral t3 are

rather insensitive to the relaxation functional, but in the experimental crystal structure

t′ is reduced with respect to the relaxed structures by a factor of roughly two.

We associate the above discussed variation of the hopping integral t with the variation

of the CuX4 tetrahedron geometry and, in particular, with the variation of the angle

α in the Cu-X(3)-X(3)-Cu interaction path: increasing α results in the increase of t.

Such a relation can be understood when one notices that α is the defining angle for the

Cu 3dxy-Cl 3p/Br 4p-Cl 3p/Br 4p-Cu 3dxy hybridization. By considering perturbation

theory on the on-site Coulomb repulsion U up to the second order, the effective Cu-

Cu superexchange coupling can be obtained from t as5 J = 4t2

U (Section 1.2.2). Then,

the relation between t and α fulfills the Kanamori-Goodenough rule [Goodenough58,

5In the multi-band case of Cs2CuBr4, the exchange coupling J is evaluated as a sum of contributions
from hoppings from the fully filled Cu 3dxz and Cu 3dyz orbitals and the half-filled Cu 3dxy orbital
to the half-filled Cu 3dxy orbital. All three contributions are antiferromagnetic and therefore should
depend on sin(α/2), as the exchange through the Cu 3dxy → Cu 3dxy hopping in the single-band case
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Kanamori59], stating that J reaches a maximum when the cation-anion-cation angle

equals 180◦. In the present case of the cation-anion-anion-cation (Cu-X-X-Cu) bridge,

the four atoms get aligned along a straight line when α increases.

4.2.2 Heisenberg model

We calculate exchange couplings of the Cs2CuCl4 and Cs2CuBr4 Heisenberg models

employing the total energy difference method, which was introduced in Section 2.5.2. As

before, we will compare the results obtained with various crystal structures of Cs2CuCl4

and Cs2CuBr4. All calculations presented in this section were performed with the FPLO

code, using the AMF GGA+U or, in one case, the AL GGA+U exchange-correlation

functional, with the Coulomb interaction U = 4, 6 or 8 eV and the Hund’s rule coupling

JH = 1 eV introduced for the Cu 3d shell. Other computational details can be found

in Appendix A.4. We consider three values of the Coulomb interaction U because the

exact value of U , which also depends on a basis set, is not known but is expected to lie

between 4 and 8 eV for Cu 3d electrons and is probably close to 6 eV6.

The calculated exchange couplings are plotted in Figures 4.9 (a)-(i), as a function of

1/U . For an easy comparison, we also mark by horizontal dashed lines of corresponding

colors the experimentally determined values of J , J ′ and J ′′ for Cs2CuCl4 [Coldea02]

and of J and J ′ for Cs2CuBr4 [Tsujii07]. A common feature of all the Cs2CuCl4 and

Cs2CuBr4 structures is the 2D character of their spin interactions, with J being the

leading interaction followed by J ′. This result is in agreement with the picture derived

from experimental data and thus justifies the 2D Hamiltonian Ansatz used for the data

analysis by Coldea et al. [Coldea02] and Tsujii et al. [Tsujii07].

Let us now examine in more detail the Heisenberg models obtained with the exper-

imental crystal structures of Cs2CuCl4 and Cs2CuBr4. Unlike Cs2CuBr4, Cs2CuCl4

demonstrates in this case strong disagreement between its DFT model and experimen-

tally determined model, namely, in Cs2CuCl4 the DFT derived exchange couplings J

and J ′ are by a factor of more than two smaller than the experimental values, if we

take as reference DFT couplings the values in the vicinity of U = 6 eV [Fig. 4.9 (b)].

As mentioned in the beginning of this chapter, this disagreement motivated us to study

in depth effects of crystal structure relaxation with different exchange-correlation func-

tionals. In Cs2CuBr4, the DFT exchange couplings calculated using the experimental

does. This theoretical expectation for Cs2CuBr4 is in accordance with the relations between the hopping
integrals from Table A.1 and the angle α from Table 4.2.

6This assumption is supported, for instance, by Wien2k calculations [Haas07] of electric field gradients
at Cu2+ ions in a number of Cu2+ oxides and halides performed using the LDA+U functional, with
Ueff = U − JH = 5 eV, which successfully reproduce experiment.
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Figure 4.9: The spin exchange coupling constants as a function of 1/U for (a)
the Cs2CuCl4 experimental structure calculated with the atomic limit version of the
GGA+U, (b) the Cs2CuCl4 experimental structure (c) the Cs2CuCl4 GGA+U[fm]
relaxed structure, (d) the Cs2CuCl4 GGA[fm] relaxed structure, (e) the Cs2CuCl4
GGA[nm] relaxed structure, (f) the Cs2CuBr4 experimental structure, (g) the
Cs2CuBr4 GGA+U[fm] relaxed structure, (h) the Cs2CuBr4 GGA[fm] relaxed struc-
ture, (i) the Cs2CuBr4 GGA[nm] relaxed structure. When not specified otherwise, the
exchange couplings are obtained with the around mean field version of the GGA+U.
The three sets of exchange couplings correspond to U = 8, 6 and 4 eV. Dashed lines

mark the experimentally determined values of J , J ′ and J ′′.

crystal structure are quite close to the experimentally established values in the range of

U ∼ 6 eV [Fig. 4.9 (f)].

Exchange couplings calculated using the relaxed crystal structures of Cs2CuCl4

[Fig. 4.9 (c)-(e)] and Cs2CuBr4 [Fig. 4.9 (g)-(i)] depend, as expected, on the relax-

ation potential. In both compounds, the intrachain exchange coupling J grows fast in

structures relaxed with a lower Cu magnetic moment (from the GGA+U[fm] structure

to the GGA[nm] structure), whereas the zig-zag bond exchange coupling J ′ is much less

sensitive to the variation of structural parameters. Consequently, the ratio J ′/J is also

strongly dependent on the relaxation functional and decreases from the GGA+U[fm]

structure to the GGA[nm] structure. In both Cs2CuCl4 and Cs2CuBr4, the exchange

couplings calculated with the GGA+U[fm] relaxed structures are in the best agreement

with the experimentally determined models. Implications of these results are discussed

in the next section.
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The strong interplane electronic interactions that are found in the Cs2CuCl4 and

Cs2CuBr4 TB models, like t3, (see, for instance, Table 4.3) do not result in equally

strong interplane exchange couplings of their spin models. This quite surprising effect of

“dimensional reduction” upon reducing electronic model degrees of freedom to just spin

degrees of freedom can be caused by the presence of compensating ferromagnetic direct

exchange along the interaction pathway J3. Calculation of spin exchange couplings with

the DFT revealed, however, that, in addition to the interlayer coupling J ′′, there are a

few other interlayer couplings that are of the same order of magnitude, such as J3 and

J7.

To conclude this section, we briefly comment on the performance of the atomic limit

version of the GGA+U exchange-correlation functional. The exchange couplings of the

experimental Cs2CuCl4 structure calculated with the AL double-counting correction dif-

fer considerably from those obtained with the AMF double-counting correction [compare

panels (b) and (c) of Fig. 4.9]. The AL calculated exchange couplings J and J ′ do not

behave linearly with 1/U , as expected from the J = 4t2/U relation, valid for these

antiferromagnetic couplings. Therefore, we restricted our discussion to the calculations

with the AMF double-counting correction.

4.3 Discussion

4.3.1 Analysis of the results

Let us summarize the main results on the Cs2CuCl4 and Cs2CuBr4 electronic properties

obtained by means of DFT calculations.

� Structural parameters of both Cs2CuCl4 and Cs2CuBr4 depend on the exchange-

correlation functional employed during structural relaxation. The performed struc-

tural relaxations consisted in optimizing atomic coordinates within a given space

group and with fixed lattice constants.

� Depending on the exchange-correlation functional, DFT calculations can render

the Cs2CuCl4 and Cs2CuBr4 ground state either metallic or insulating, with vary-

ing localization of the Cu magnetic moment. Thus, the GGA[nm] and LDA[nm]

functionals give a metallic ground state, whereas the GGA(+U)[fm/afm] and

LDA(+U)[fm/afm] give an insulating ground state. The Cu magnetic moment is

zero within the GGA[nm] and LDA[nm] and non-zero within the GGA(+U)[fm/afm]

and LDA(+U)[fm/afm], increasing as the U value increases.



4.3. Discussion 83

� The strength of the Jahn-Teller distortion of the CuX4 tetrahedron and the angle α

in the superexchange path J which is coupled to it depend on the relaxation func-

tional. This dependence is systematic and can be characterized as “the smaller the

Cu magnetic moment during relaxation the stronger the Jahn-Teller distortion”.

� The hopping integral t and the corresponding superexchange coupling J depend

systematically on the relaxation potential such that the bigger the Cu magnetic

moment during relaxation the smaller the t and J values.

� The Heisenberg models of Cs2CuCl4 and Cs2CuBr4 calculated with the GGA+U[fm]

relaxed structures are in the best agreement with the experimentally established

models, while the models calculated with the GGA[nm] relaxed structures are most

far away from the experimental models, both in terms of the exchange couplings’

absolute values as well as in terms of their relative strength.

� In Cs2CuBr4, the Heisenberg model calculated with the experimental crystal struc-

ture is in quite good agreement with the experimentally established model (and

with the model of the GGA+U[fm] structure), while in Cs2CuCl4 the model cal-

culated with the experimental crystal structure is featured by unrealistically small

exchange couplings.

The stated dependence of the interaction parameters t and J on the relaxation functional

is realized through the direct dependence of these parameters on the angle α, which is the

Cu-X-X angle in the superexchange path Cu-X-X-Cu, so that the observed behavior

is in accordance with the Kanamori-Goodenough rule. The rather unusually strong

variation of the exchange interaction J among different crystal structures of Cs2CuCl4

and Cs2CuBr4 is probably due to its smallness.

More interesting is the mechanism behind the variation of α in the relaxed structures.

Here, one should first recognize that this variation is just a consequence of the variation of

the Jahn-Teller distortion of the CuX4 tetrahedron. To explain the latter effect, we argue

that by means of electron-lattice interaction the electron system induces strengthening

of the Jahn-Teller distortion in order to alleviate the strong instability due to large DOS

at the Fermi level. Since the Jahn-Teller distortion is responsible for the electronic levels’

splitting, the instability is removed by redistributing electronic states. We note that this

mechanism need not involve variation of bond distances, which is in fact also observed

in our results [Fig. 4.3 (a)].

In this scenario, the relaxation functional and the Jahn-Teller distortion are related

through the amount of electron system instability (DOS at the Fermi level) obtained

within different functionals. The GGA[nm] and LDA[nm] functionals render Cs2CuCl4
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and Cs2CuBr4 metallic [Fig. 5.7], which is in a sharp contrast with the true ground

state. This results in the strongest instability and, correspondingly, in the strongest

Jahn-Teller distortion needed to remove it. The same kind of reasoning explains the

minimal distortion for the GGA+U[fm] and LDA+U[fm] relaxed structures.

The correct insulating state obtained with the GGA(+U)[fm] and LDA(+U)[fm] func-

tionals is already an indication that the realistic crystal structures of Cs2CuCl4 and

Cs2CuBr4 should be searched by employing these approximations. This conclusion

is also supported by the results for the Heisenberg model. We saw that only the

GGA(+U)[fm] and LDA(+U)[fm] relaxation schemes produce crystal structures whose

calculated Heisenberg models are in reasonable agreement with experimentally deter-

mined models.

Based on these observations, we can identify the key ingredients that have to be taken

into consideration in order to correctly describe the Cs2CuCl4 and Cs2CuBr4 crystal and

electronic structures. The first ingredient is magnetism, which, more specifically, acts

through allowing for spin-polarization of the electron system in calculations with spin-

dependent functionals. The other ingredient is electronic correlations, which tune the

Cu magnetic moment and which are modeled though introducing the on-site Coulomb

repulsion between correlated Cu 3d electrons in the LDA+U and GGA+U exchange-

correlation functionals.

Finally, the strong deviation of the Cs2CuCl4 Heisenberg model calculated with the

experimental crystal structure from the experimentally determined model is likely to

be a result of the insufficiently accurate determination of the Cs2CuCl4 crystal struc-

ture by x-ray measurements [Bailleul91]. We dare to propose that the x-ray analysis

of the Cs2CuCl4 crystal structure might have been affected by the presence of non-

stoichiometric hydrogen containing compounds (HCl, H2O, etc.), which was indeed ex-

perimentally detected [Bailleul91, Krüger].

4.3.2 Placing the DFT study in the context of our general knoweldege

about Cs2CuCl4 and Cs2CuBr4

One of the tasks set in the beginning of our investigations was to derive ab initio Heisen-

berg models for Cs2CuCl4 and Cs2CuBr4 in order to check the validity of the previously

proposed models that were established from experimental data. Due to complications

caused, on one hand, by the lack of exact x-ray structural data for Cs2CuCl4 and, on the

other hand, by approximations involved in any DFT calculation, we came up in the end

with several models and used their agreement (or disagreement) with the experimentally
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determined Heisenberg models as a correctness criterion to pick up the most accurate

DFT model.

Some features of the calculated DFT models, however, turn out to be approximation-

independent and can thus be regarded as “truly ab initio derived”. These features are the

two-dimensionality of spin interactions in both Cs2CuCl4 and Cs2CuBr4, the fact that

the interactions are stronger in Cs2CuBr4 and that Cs2CuBr4 is more frustrated, i. e.,

has a larger J ′/J ratio. These findings justify, in particular, the 2D model Ansätze used

for analysing experimentally measured Cs2CuCl4 and Cs2CuBr4 magnetic excitation

spectra.

Our DFT calculations also revealed the principal difference in electronic structures of

Cs2CuCl4 and Cs2CuBr4, namely, that the Cs2CuBr4 electronic structure at the Fermi

level maps onto a three-band Hubbard model, whereas the Cs2CuCl4 electronic structure

maps onto a single-band model. The significance of this fact for understanding the

different macroscopic properties of the compounds still needs to be explored.

Recently, some more insight has been gained into the rich phase diagrams of Cs2CuCl4

and Cs2CuBr4 by recognizing the importance of small (perturbative) exchange couplings

and the Dzyaloshinsky-Moriya interaction [Starykh10]. In the context of this study, the

DFT derived models can serve as a guide to identify the “second-order“ interactions,

which are nonetheless strong enough to play a role. Possible candidates could be J1, J3

and J7.

Finally, it is important to mention that the thorough investigation of the Cs2CuCl4

and Cs2CuBr4 electronic properties, which, in particular, allowed us to recognize the

important role of magnetism and electronic correlations, prepared a solid ground for

future DFT studies of the mixed systems Cs2CuCl4−xBr4.





Chapter 5

Modulation of pairing interaction

in Bi2Sr2CaCu2O8+δ by an oxygen

dopant

Section 3.2.2 introduces the state-of-the-art research problem of nanoscale elec-

tronic structure inhomogeneities in the oxygen-doped cuprate superconductor

Bi2Sr2CaCu2O8+δ. Understanding the mechanism through which oxygen dopants en-

hance in their vicinity superconducting pairing would be an important step in unveiling

the still unclear nature of the high-Tc superconductivity. DFT and many-body calcu-

lations that model oxygen doping of Bi2Sr2CaCu2O8+δ in order to explore microscopic

processes associated with doping, such as local crystal and electronic structure modifi-

cations, are a subject of the present chapter.

In particular, Section 5.1 presents a comparative DFT study of electronic structures of

pure and doped Bi2Sr2CaCu2O8 crystals by means of mapping the valence Cu 3dx2−y2

band of Bi2Sr2CaCu2O8 onto a single-band tight-binding model. Such mapping al-

lows us to quantify the dopant-induced local variations of the Bi2Sr2CaCu2O8 elec-

tronic structure in a more accurate way than by electrostatic considerations used in

Ref. [Johnston09].

Then, based on the derived single-band tight-binding models of the pure and oxygen-

doped Bi2Sr2CaCu2O8, the spin and charge susceptibilities and the pairing strength are

calculated with corresponding Hubbard models in the framework of the random phase

approximation (RPA) (Section 5.2). It is shown that the dopant-induced local variations

of electronic structure in Bi2Sr2CaCu2O8+δ result in an enhancement of superconducting

pairing.
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dopant

We also perform perturbation theory calculations of the local superexchange in the

vicinity of a dopant with a three-band Hubbard model. In these calculations, presented

in Section 5.3, dopant-induced effects are described on a new accuracy level, when the

effective model itself is being improved, which is in contrast to our single-band DFT

based calculations of Sections 5.1 and 5.2, where emphasis is put on precise determination

of the single-band model parameters.

In future studies, achievements of the three-band model calculations (Section 5.3) and

of the DFT assisted determination of the single-band Hubbard model parameters (Sec-

tions 5.1 and 5.2) can be combined. The proposed DFT-based approach of evaluating

dopant-induced effects on the single-band TB model parameters, which has proven to

give accurate results, can be applied to the three-band TB model, which would be the

next step in improving model description of oxygen doping in cuprates.

5.1 DFT-assisted TB model parameterization of the

oxygen-doped Bi2Sr2CaCu2O8

5.1.1 Crystal structure of Bi2Sr2CaCu2O8+δ

Before we proceed, it might be helpful to clarify some notation. Throughout this chapter,

we will be using the name Bi2Sr2CaCu2O8 or “parent compound“ when referring to a

pure structure, which we approximate in our calculations by a I4/mmm tetragonal

unit cell (Section 3.2.2), and the name Bi2Sr2CaCu2O8+δ or ”doped compound” when

referring to an oxygen-doped structure.

Oxygen doping of Bi2Sr2CaCu2O8+δ is modeled by constructing a supercell that con-

sists of eight Bi2Sr2CaCu2O8 unit cells with a single interstitial oxygen. The exten-

sion to eight unit cells is done in the xy plane such that in terms of a, which is the

Bi2Sr2CaCu2O8 unit cell lattice vector in the xy plane, the xy face of the supercell is

given as (2
√

2a × 2
√

2a)R45◦, where R45◦ means rotation of the lattice basis by 45◦

around the z axis [see Fig. 5.1 (a)]. In the supercell, constructed via such an extension,

one slab – an atomic layer confined in-between BiO2 planes – is replaced by 15 Å of

vacuum, whereas the remaining slab is doped by an oxygen atom.

The exact atomic positions in the slab were obtained by He et al. [He06], who relaxed

the supercell with the Vienna ab initio simulation program VASP [Kresse96] within the

local density approximation. In particular, He et al. established that the dopant enters

the interstitial region between the BiO2 and SrO2 planes, i. e., close to the surface of the
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Figure 5.1: (a) Schematic xy projection of the Bi2Sr2CaCu2O8 unit cell (top) and of
the Bi2Sr2CaCu2O8+δ supercell (bottom) where only Cu atoms (blue circles) are shown.
(b) The primitive Brillouin zones of Bi2Sr2CaCu2O8 (top) and Bi2Sr2CaCu2O8+δ (bot-
tom) in the a∗b∗ plane. The two intermediate drawings illustrate the transformation

from the Bi2Sr2CaCu2O8 Brillouin zone to the Bi2Sr2CaCu2O8+δ Brillouin zone.

slab. The supercell space group is centered monoclinic Cm, with symmetry operations

being the identity transformation and a mirror plane reflection m, shown in Fig. 5.5.

The considered doped supercell of Bi2Sr2CaCu2O8+δ corresponds to δ = 1/8 of hole

concentration per formula unit, which is a bit less that the hole concentration in an



90
Chapter 5. Modulation of pairing interaction in Bi2Sr2CaCu2O8+δ by an oxygen

dopant

optimally doped Bi2Sr2CaCu2O8+δ sample δopt [Maeda88]:

δ = 0.125 < δopt = 0.16,

so that our Bi2Sr2CaCu2O8+δ crystal is in the underdoped regime.

In the reciprocal space, the primitive Brillouin zone of the Bi2Sr2CaCu2O8+δ supercell

is obtained from the primitive Bi2Sr2CaCu2O8 Brillouin zone by consecutively folding

the rectangular corners of the latter towards the center of the Brillouin zone three times

[Fig. 5.1 (b)]. The paths between the high-symmetry points Γ = (0, 0, 0), X = (π, 0, 0)

and T = (π, π, 0) in the kz = 0 plane1 of the parent and doped compounds are not

equivalent. The original Γ → X → T → Γ path in the pure compound Brillouin zone

undergoes transformations upon being folded down to the supercell Brillouin zone as

shown in Fig. 5.1 (b) by a green line with arrows. It is obviously not the Γ→ X → T → Γ

path in the doped supercell Brillouin zone, shown as a red line with arrows in the bottom

panel of Fig. 5.1 (b).

5.1.2 Electronic structures of the parent and oxygen-doped compounds

The electronic bandstructures of Bi2Sr2CaCu2O8 and Bi2Sr2CaCu2O8+δ are calculated

in the LAPW basis (Section 2.2.3) and with the GGA exchange-correlation functional.

Calculations for the parent compound are carried out with an energy cut-off for the

basis set size given by RMTKmax = 5.502. The muffin tin radii for the different atoms

in the unit cell are chosen as RMT(Bi) = 1.88 bohr, RMT(Sr) = 2.22 bohr, RMT(Ca) =

2.17 bohr, RMT(Cu) = 1.82 bohr, and RMT(O) = 1.61 bohr. We consider a mesh of 240

k-points in the irreducible Brillouin zone that corresponds to the space group I4/mmm

of the parent compound unit cell. Both RMTKmax and the number of k-points have

been tested to be sufficient for rendering an accurate electronic bandstructure. For the

supercell calculations, we used the same RMTKmax and RMT values as for the parent

compound and 64 k-points in the irreducible Brillouin zone of the supercell.

The electronic bandstructures of Bi2Sr2CaCu2O8 and Bi2Sr2CaCu2O8+δ are presented

in, respectively, Figures 5.2 (a) and (b) for the Γ → X → T → Γ k-paths shown in

Fig. 5.1 (b) (the green line for Bi2Sr2CaCu2O8 and the red line for Bi2Sr2CaCu2O8+δ).

As explained, these paths are not equivalent in the pure and doped compound Brillouin

zones, which is the reason why the two bandstructures are seemingly incomparable.

1The kz direction is not considered as there is no interaction between CuO2 planes from adjacent
slabs and hence no band dispersion in this direction.

2RMT is the smallest muffin tin radius and Kmax is the maximal reciprocal lattice vector considered.
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Figure 5.2: DFT electronic bandstructure of (a) Bi2Sr2CaCu2O8 and (b)
Bi2Sr2CaCu2O8+δ. The weight of the Cu 3dx2−y2 character in the eigenvalues is pro-

portional to the circles’ size.

We first discuss main features of the simpler bandstructure of Bi2Sr2CaCu2O8. In

Fig. 5.2 (a), the two Cu 3dx2−y2 bands of the parent compound are marked by circles with

sizes proportional to the Cu 3dx2−y2 weight. They are rather dispersive, which is a typical

feature of the cuprate family (see, for instance, Refs. [Mattheiss87] and [Markiewicz05]).

The two bands crossing the Fermi level are the anti-bonding bands in the chemical bond-

ing between the Cu and O atoms in the superconducting layer. The bonding bands lie

in the region between −8 eV and −5 eV. At the X point the Cu 3dx2−y2 bands show

a strong overlap with the Bi-O bands near the Fermi level, and at the Γ point there is

strong hybridization between the Cu 3dx2−y2 and some of the lower-lying O 2p and Cu

3d bands.

The bandstructure of Bi2Sr2CaCu2O8 in Fig. 5.2 (a) is plotted in the primitive Brillouin

zone, which explains why there are only two Cu 3dx2−y2 bands instead of four, the

number of Cu atoms in the conventional I4/mmm unit cell of Bi2Sr2CaCu2O8. The

Bi2Sr2CaCu2O8+δ supercell also has a centered lattice, therefore one sees 16 Cu 3dx2−y2

bands in Fig. 5.2 (b), depicting the Bi2Sr2CaCu2O8+δ bandstructure in the primitive

Brillouin zone, instead of 32, which corresponds to the number of Cu atoms in the

conventional unit cell.

Since the Γ→ X → T → Γ paths of the parent and doped compounds are not equivalent,

their bandstructures cannot be straightforwardly compared. In order to make such a

comparison, one needs to recalculate the electronic structure of the parent compound in

the folded Brillouin zone. Once this is done, small but traceable changes in the shape

of the Cu 3dx2−y2 bands as a function of oxygen doping become apparent. In the next

section, we will carry out quantitative evaluation of these changes in terms of on-site

energies and hopping integrals of a single-band tight-binding Hamiltonian.



92
Chapter 5. Modulation of pairing interaction in Bi2Sr2CaCu2O8+δ by an oxygen

dopant

5.1.3 Parameterization of a single-band tight-binding model

We will parameterize the single-band TB model for Cu 3dx2−y2 orbitals in the parent

and oxygen-doped compounds employing the fitting procedure.

As the symmetry of the Bi2Sr2CaCu2O8 unit cell is high, the number of distinct ad-

justable model parameters to fit the Cu 3dx2−y2 DFT bands of Bi2Sr2CaCu2O8 is small.

In this case, TB parametrization via fitting is rather straightforward and has been al-

ready performed in previous studies [Markiewicz05, Andersen94]. The complexity of

the problem is dramatically increased when trying to obtain the TB parameters for the

doped supercell bands shown in Fig. 5.2 (b): first, because the number of bands to

be mapped increases by a factor of eight, which means that, in order to optimize the

TB parameters, a global minimum of a complex mathematical function expressed by

a 16 × 16 matrix needs to be found; second, because the number of distinct hopping

integrals is expected to rise considerably as we increase the size of the unit cell and

lower its symmetry. Our strategy to overcome these complications is to use the hopping

integrals and on-site energies obtained for the parent compound Cu 3dx2−y2 bands as

starting values for parameterizing the doped supercell bands.

The desired TB models for Bi2Sr2CaCu2O8 and Bi2Sr2CaCu2O8+δ should reproduce

their DFT bandstructures with high accuracy and within the entire energy range of the

Cu 3dx2−y2 band dispersion. The need to pursue highly accurate fits is due to the fact

that we want to compare bandstructures that are only slightly different. Indeed, the

differences between the Cu 3dx2−y2 bands of the parent and doped compounds are small,

which is reasonable since we do not expect the interstitial oxygen to have a drastic effect

on the orbital overlap of its neighboring Cu atoms.

Parent compound

Another complication that arises already when parameterizing the TB model for the

parent compound is the strong hybridization of its Cu 3dx2−y2 orbital with oxygen

orbitals, which affects the shape of the Cu 3dx2−y2 bands. For example, as a result of

such hybridization, the Cu 3dx2−y2 bands near the Γ point are anomalously flat and

show εk ∝ k4 behavior [Andersen94].

Our single-band model should, however, also reproduce these hybridization-caused fea-

tures of the bandstructure. In terms of model equations, this can be achieved through

inclusion of high-order harmonics. In terms of physics, the high-order harmonics cor-

respond to hopping integrals between nearest neighbors of higher orders, which play
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Table 5.1: TB1undoped results: Optimized values of the on-site energy µ and hopping
integrals tl between 12 Cu nearest neighbors in eV. The vector l = (n,m, z) is given by
integers n,m; z can take values of 0 or z = 0.099 as 0.099c is the distance between two

CuO2 layers.

µ t00z t100 t10z t110 t11z

0.4212 0.0543 -0.5196 0.0056 0.1115 -0.0221

t200 t20z t210 t21z t220 t22z t300

-0.0859 0.0117 -0.0078 -0.0064 0.0025 -0.0103 -0.0238

roles of effective parameters without reflecting real interactions, which of course are

moderately short-ranged.

When considering the nearest Cu neighbors, we find that, in order to accurately repro-

duce the DFT Cu 3dx2−y2 bands of the parent compound [Fig. 5.2 (a)], 12 Cu-Cu neigh-

bors have to be included in the model TB Hamiltonian. They are listed in Table 5.1.

One observes that hoppings between high-order neighbors, such as t20z, t210 etc., are

considerably smaller than the second, t100, and the fourth, t110, nearest-neighbor hop-

pings. As these high-order hoppings are, as argued, effective parameters, alternative

single-band models for Bi2Sr2CaCu2O8 can exist, corresponding to a different choice of

effective parameters, which need not necessarily be the nearest neighbors and which can

reproduce the DFT bandstructure equally well.

We therefore discuss two possible sets of single-band TB Hamiltonian parameters for

the parent compound to give a sense of how robust the TB models can be.

� TB1undoped

The first parameter set is obtained for a TB model considering 12 nearest neigh-

bors, which has already been introduced (Table 5.1). This model, denoted as

TB1undoped, contains six effective interlayer hoppings.

� TB2undoped

The other TB model, denoted as TB2undoped, considers 13 interaction pathways

between Cu atoms, among which there are four effective interlayer hoppings. The

13 hopping integrals as well as the on-site energy of the TB2undoped model are

listed in Table 5.2.

In physical terms, the TB2undoped model has some advantages over the TB1undoped

model. Thus, it includes only four hopping integrals between the two CuO2 layers

– t00z, t11z, t21z and t33z – whose relevance can be justified either by the close

proximity of the two Cu atoms (t00z) or by the presence of a Ca atom along the Cu-

Cu connection mediating electron hopping (t11z, t21z and t33z). In the TB1undoped
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Table 5.2: TB2undoped results: Optimized values of the on-site energy µ and hopping
integrals tl in eV for the parent compound as well as for the homogeneous Hamiltonian
TB2hom. doped of the doped compound. The meaning of the three subindices is the same

as in Table 5.1.

µ t100 t110 t200 t00z

TB2undoped 0.4464 -0.5174 0.1085 -0.0805 0.0818
TB2hom. doped 0.4900 -0.5150 0.1158 -0.0800 0.0700

t11z t210 t300 t400 t21z

TB2undoped -0.0264 -0.0073 -0.0182 -0.0122 -0.0044
TB2hom. doped -0.0229 -0.0075 -0.0177 -0.0046 -0.0062

t220 t330 t500 t33z

TB2undoped 0.0068 -0.0052 -0.0049 -0.0047
TB2hom. doped 0.0045 -0.0015 -0.0012 -0.0003

model, on the other hand, the mechanism of some of its six interlayer interactions is

not as clear. Furthermore, one would rather expect the contribution of interacting

far Cu neighbors within a CuO2 layer to be more important as considered in the

TB2undoped model.

Parameters t100 and t110 of both models have quite close values, which are also in agree-

ment with the results of previous DFT calculations [Markiewicz05] and with the analysis

of photoemission measurements of the Bi2Sr2CaCu2O8 electronic structure [Radtke94].

Figures 5.3 and 5.4 compare energy spectra (lines) of, respectively, the TB1undoped and

TB2undoped Hamiltonians against the DFT calculated Cu dx2−y2 bands (dots). Panels (a)

of both figures display the model spectra and the DFT calculated Cu dx2−y2 bands of

the parent compound in the full Brillouin zone, i. e., in the primitive Brillouin zone of

Bi2Sr2CaCu2O8 [upper panel of Fig. 5.1 (b)]. Apparently, the quality of both TB1undoped

and TB2undoped fits is very good, the TB2undoped fit matching the DFT bandstructure

slightly better in the vicinity of the Γ point. In panels (b) of Figures 5.3 and 5.4, the

model spectra are replotted in the folded Brillouin zone in order to be compared with the

DFT Cu 3dx2−y2 bands of the doped supercell. The small differences between the doped

supercell DFT bands and the TB spectra of the parent compound are due to the presence

of the interstitial oxygen, which displaces neighboring Cu atoms and thus modifies their

on-site energies as well as overlap integrals between their Cu dx2−y2 orbitals.

In the next section, we will discuss the derivation of the TB Hamiltonian for the doped

Bi2Sr2CaCu2O8+δ supercell, obtained when either the parameter set of the TB1undoped

model (Table 5.1) or that of the TB2undoped model (Table 5.2) is used as initial values

for mapping the supercell DFT bands.
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Figure 5.3: Plot of the DFT calculated Cu 3dx2−y2 bands (dots) and the TB1 Hamil-
tonian spectrum (lines) for Bi2Sr2CaCu2O8 and Bi2Sr2CaCu2O8+δ: (a) comparison
of the Bi2Sr2CaCu2O8 electronic structure to the TB1undoped model; (b) comparison
of the Bi2Sr2CaCu2O8+δ electronic structure to the TB1undoped model plotted in the
folded Brillouin zone; (c) comparison of the Bi2Sr2CaCu2O8+δ electronic structure to
the TB1loc. doped model (see Fig. 5.5). High symmetry points are given by (kx, ky) only,

kz = 0; thus (0, 0) = Γ, (π, 0) = X, (π, π) = T .

Oxygen-doped supercell

In order to parameterize interactions between Cu dx2−y2 orbitals for the doped com-

pound, one has to construct a 16×16 Hamiltonian matrix. Since the interstitial oxygen

introduces inhomogeneity that breaks the symmetry, the number of distinct model pa-

rameters for the supercell is not defined as simply the number of parameters of the parent
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Figure 5.4: Plot of DFT calculated Cu 3dx2−y2 bands (dots) and the TB2 Hamilto-
nian spectrum (line) for Bi2Sr2CaCu2O8 and Bi2Sr2CaCu2O8+δ: (a) comparison of the
Bi2Sr2CaCu2O8 electronic structure to the TB2undoped model; (b) comparison of the
Bi2Sr2CaCu2O8+δ electronic structure to the TB2undoped model plotted in the folded
Brillouin zone; (c) comparison of the Bi2Sr2CaCu2O8+δ electronic structure to the

homogeneous TB2hom. doped model (Table 5.2, second row).

compound unit cell – which is 12 and 13 for the TB1undoped and TB2undoped models,

respectively, plus the on-site energy – but increases considerably. The total number of

independent hopping integrals in the supercell TB Hamiltonian would be as big as 238

if one chooses to perform the derivation starting from the TB1undoped Ansatz. Techni-

cally, it is impossible to find a unique and unambiguous parameter set by performing

optimization of such a huge number of parameters, especially since our aim is to capture
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the slight differences between the bandstructures of the parent and doped compounds.

One way to proceed would be to approximate hopping integrals that become distinct

in the supercell by their average values. In this “averaged” homogeneous TB model for

the supercell, there would be as many parameters as in the corresponding model for

the parent compound, and their optimization would be simple; an example is given in

Table 5.2 (TB2hom. doped row). With such an approach, however, the most interesting

physics concerning local effects due to the dopant is left out.

As discussed in detail in Section 3.2.2, the exact knowledge of how the Cu on-site

energies and most relevant Cu-Cu hopping integrals t100 and t110 are modified near

the dopant is very important for understanding the dopant-induced effects on the local

spin superexchange coupling, which is related to the size of the local superconducting

gap in cuprates. Therefore, in order to be able to study local variations in the model

parameters, we propose the following approximate treatment of the problem. We assume

that the on-site energies and hopping integrals most affected by the dopant are those

that are nearest to the dopant and concentrate on the largest TB model parameters,

such as µ, t100 and t110. Then, the supercell TB Hamiltonian is optimized by adjusting

the selected parameters, while preserving initial values for the rest of parameters.

This approach is applied to derive a supercell TB model using the TB1undoped model as

an Ansatz. As adjustable parameters, we select eight hopping integrals: three hopping

integrals of the t100 type (solid lines in Fig. 5.5), two of the t110 type (dashed lines)

and three of the t200 type (dash-dotted lines). The selected interactions are between

the Cu atom that experiences the largest displacement due to the interstitial oxygen

and its neighbors . We also allow for different on-site energies µ for 3dx2−y2 orbitals of

the eight Cu atoms in the CuO2 layer closest to the dopant. Making use of the crystal

symmetry, the number of µ parameters is reduced to six. We then assign a unique µ

value to the on-site energies of the other eight Cu atoms since we expect that they are

less affected by the dopant. The seven on-site energies together with the selected eight

hopping integrals are varied during Hamiltonian optimization. The optimized values of

the hopping integrals are given in Fig. 5.5 in eV and the on-site energies are listed in the

Figure caption. We denote this model TB1loc. doped. From Fig. 5.3 (c), which compares

the DFT Cu dx2−y2 bands of Bi2Sr2CaCu2O8+δ and the spectrum of the TB1loc. doped

model, one can appreciate the good quality of the fit.

The resulting variation of the selected TB model parameters in the TB1loc. doped model

is in agreement with the expected dopant-induced effects, according to electrostatic

calculations of Ref. [Johnston09] as well as general physical considerations. Thus, one

finds that the on-site energy µ of the most displaced Cu atom (marked with an arrow in

Fig. 5.5), whose value is 0.5757 eV, deviates the most from the µ value of the TB1undoped



98
Chapter 5. Modulation of pairing interaction in Bi2Sr2CaCu2O8+δ by an oxygen

dopant

model 0.4212 eV. On the other hand, the Cu atoms of the second – with respect to the

dopant – CuO2 layer are hardly affected, with their common µ being equal 0.4445 eV.

Variation of the selected hopping integrals in the TB1loc. doped model also follows a

physically reasonable trend. For example, t100 increases when the two Cu atoms get

closer and slightly decreases when they are pushed apart by the interstitial oxygen. The

decrease is even stronger when the Cu atoms shift with respect to each other parallel to

the mirror plane, which appreciably reduces the orbital overlap.

We also considered the same 15 parameters (seven µ’s and eight t’s) to map the DFT

Cu 3dx2−y2 bands with a supercell TB Hamiltonian based on the TB2undoped for the

parent compound, Table 5.2. While in this case a mapping to the DFT bands is almost

as good as the one given by the previous model, the resulting model parameters assume

seemingly chaotic values not consistent with their expected behavior. One faces similar

inconsistencies also when other trial sets of adjustable parameters are used. The failure

of the TB2undoped model (Table 5.2) in describing the dopant-induced changes in the

bandstructure of Bi2Sr2CaCu2O8+δ indicates that the results provided by the approach

based on optimizing certain selected model parameters depend very strongly on the

choice of effective far neighbor interactions that are not optimized.

To conclude this section, we give some comments on the homogeneous TB model for the

doped compound TB2hom. doped, which is derived using the TB2undoped Bi2Sr2CaCu2O8

model. The TB2hom. doped model parameters are listed in Table 5.2, while Fig. 5.4 (c)

demonstrates that this model can describe the Bi2Sr2CaCu2O8+δ bandstructure as good

as the above discussed TB1loc. doped model. Even though the homogeneous model does

not reflect the local dopant-induced effects, it can still be useful as it provides information

on how the model parameters change on average. For instance, it is interesting to observe

that the average ratio t110/t100 increases in the doped supercell compared to that in the

parent compound (from 0.2097 to 0.2249); this might suggest a possible increase of the

superconducting transition temperature upon doping, in analogy with the observation

within the cuprate family, that the materials characterized by a larger t110/t100 ratio

have higher transition temperatures [Pavarini01]. Unlike the situation with the mapping

approach discussed previously, which aimed at capturing local physics, the parameters of

the homogeneous Hamiltonian demonstrate the same behavior upon doping regardless of

the parent compound TB model (TB1undoped or TB2undoped) chosen as a starting point

for mapping the doped supercell electronic structure.
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Figure 5.5: The schematic lattice of dopant-displaced Cu atoms in the oxygen-doped
supercell of Bi2Sr2CaCu2O8+δ. The smallest circle represents the interstitial oxygen
atom, and the larger circles stand for Cu atoms. Darker color is used for Cu atoms in
the CuO2 layer closest to the interstitial oxygen. The Cu-Cu bonds that correspond
to the hopping integrals of the t100 type are represented by solid lines, the hopping
integrals of the t110 type by dashed lines, and the hopping integrals of the t200 type
by dash-dotted lines. The numbers over the bonds stand for the optimized values
of corresponding hopping integrals of the doped supercell TB model based upon the
TB1undoped model of the parent compound (see text). The optimized value of the
on-site energy of this model for the Cu in the next-nearest CuO2 layer (the light Cu
atom symbols) is µ = 0.4445 eV. The six optimized on-site energy values for Cu in
the nearest CuO2 layer (the dark Cu atom symbols) are µ = 0.5757 eV, 0.5057 eV,
0.5341 eV, 0.5151 eV, 0.4930 eV, and 0.5186 eV. µ = 0.5757 eV corresponds to the Cu
atom which is displaced most by the dopant and is marked with an arrow. m labels
the mirror plane. The size and direction of displacements are qualitatively reflected in

the figure.

5.2 RPA susceptibility and spin fluctuation pairing

5.2.1 Spin susceptibility

In this section, we calculate the magnetic spin susceptibility for the pure and doped

compounds with the TB models obtained previously, namely,

(i) the TB1undoped model for Bi2Sr2CaCu2O8 (Table 5.1);

(ii) the TB2undoped model for Bi2Sr2CaCu2O8 (Table 5.2, first row);
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(iii) the inhomogeneous TB1loc. doped model for Bi2Sr2CaCu2O8+δ (Fig. 5.5);

(iv) the homogeneous TB2hom. doped model for Bi2Sr2CaCu2O8+δ (Table 5.2, second

row).

We remind that the TB models describe non-interacting electron systems; Coulomb

interaction between electrons will be considered on an RPA level in the next subsection.

Calculations of the spin susceptibility are carried out within the Matsubara Green’s func-

tions formalism (Ref. [Mahan81], Section 1.3.1), making use of non-interacting Green’s

functions. The spin susceptibility corresponds to a retarded two-particle Green’s func-

tion which is obtained from the Matsubara Green’s function (1.22) by performing an-

alytical continuation to the real frequency axis. In a general formulation, the spin

susceptibility is a function of four orbital indices, (χs)
pq
st , which, in the considered case

of a single orbital but multiple atoms in a unit cell, refer to the orbitals on different

atoms. For the non-interacting case, the spin susceptibility (χs)
pq
st is equivalent to the

charge susceptibility (χc)
pq
st , (χs)

pq
st = (χc)

pq
st ≡ χ

pq
st , and is given by [Graser09]:

χpqst (q, ω) = − 1

NNk

∑
k,µν

[f(εν(k + q))− f(εµ(k))]
asµ(k)ap∗µ (k)aqν(k + q)at∗ν (k + q)

ω + εν(k + q)− εµ(k) + i0+
.

(5.1)

In this expression, indices s, p, q and t refer to the N Cu atoms in the unit cell and run

from 1 to N while indices µ and ν distinguish the N eigenvalues εν(k) of the diagonalized

TB Hamiltonian. The matrix elements asµ(k) are the components of the eigenvectors of

the TB Hamiltonian3. The integration over the Brillouin zone has been replaced by a

sum over a sufficiently large number Nk of k-points. f(ε) is the Fermi-Dirac distribution

function. In the following, we will focus on the static non-interacting spin susceptibility

χS(q),

χS(q) =
1

2

∑
sp

χppss(q, ω = 0), (5.2)

and examine its behavior in the four cases of interest along the main symmetry directions

in the Brillouin zone.

The static spin susceptibilities χS(q) of the parent compound calculated for temperature

kBT = 0.01 eV with the TB1undoped model of Table 5.1 (bold black line) and with the

TB2undoped model of Table 5.2 (bold dashed line) are plotted in Fig. 5.6 (a). The two

susceptibilities show similar features with double peaks along the (0, 0, 0)− (π, 0, 0) and

(π, π, 0)− (0, 0, 0) directions and a broad plateau at (π, π, 0). These similarities can be

understood in terms of the fact that most important parameters in the two TB models

3The matrix elements asµ(k) are also equivalent to projector components, which follows from their
definition in Section 2.5.1.
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Figure 5.6: The static spin susceptibility of (a) the two parent compound TB models
TB1undoped and TB2undoped and the homogeneous doped supercell model TB2hom. doped,
plotted in the full Brillouin zone, and (b) the two parent compound TB models
TB1undoped and TB2undoped and the inhomogeneous TB1loc. doped and homogeneous

TB2hom. doped doped supercell models, plotted in the folded Brillouin zone.

(t100, t110 etc.) have close values. In this respect, it is not surprising that the spin

susceptibility calculated with the averaged TB parameters of the homogeneous Hamil-

tonian TB2hom. doped for Bi2Sr2CaCu2O8+δ [thin dashed line in Fig. 5.6 (a)] qualitatively

reproduces the same behavior as the TB models for the parent compound.

We next calculate the spin susceptibility with the inhomogeneous TB Hamiltonian

TB1loc. doped for the doped Bi2Sr2CaCu2O8+δ supercell. Of course, in this case the

spin susceptibility must be calculated with the full supercell (16× 16) Hamiltonian ma-

trix and is accordingly defined in the folded Brillouin zone. Fig. 5.6 (b) shows the spin

susceptibility calculated with the inhomogeneous TB1loc. doped model (thin black line)

and, for comparison, the two parent compound susceptibilities replotted in the folded

Brillouin zone [as in Fig. 5.6 (a), bold solid and bold dashed lines]. Within the in-

homogeneous model, a pronounced peak in the spin susceptibility evolves at (π, 0, 0)

upon doping whereas in both parent compound susceptibilities this region is featured

by a shallow minimum in between two asymmetrical peaks located at some distance

from (π, 0, 0). A peak in the spin susceptibility of a non-interacting system can trans-

form into a divergence indicating magnetic instabilities and possible ordering, when the

interparticle interactions are switched on. (π, 0, 0) corresponds to a commensurate anti-

ferromagnetic striped order with period 2
√

2a, with stripes along the (110) direction of

the parent compound unit cell.
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5.2.2 Superconducting gap function

We consider now the models TB1undoped and TB1loc. doped in order to analyze the su-

perconducting properties of Bi2Sr2CaCu2O8 and Bi2Sr2CaCu2O8+δ, respectively. We

calculate the pairing vertex by assuming that superconductivity in the high-Tc cuprates

is driven by the exchange of spin and charge fluctuations [Bickers89]. The many-body

effects of the Coulomb interaction are treated within the RPA (Section 1.3.1).

In order to calculate the pairing vertex, the RPA charge and spin susceptibilities,

χRPA
c (q, ω) and χRPA

s (q, ω), are required. They can be obtained from the non-interacting

susceptibility χ(q, ω) in the form of Dyson-type equations as

(χRPA
c )pqst = χpqst −

∑
uvwz

(χRPA
c )pquv(U

c)uvwzχ
wz
st (5.3)

and

(χRPA
s )pqst = χpqst +

∑
uvwz

(χRPA
s )pquv(U

c)uvwzχ
wz
st . (5.4)

For a single-band model, only the diagonal U c and U s matrices’ components are non-

zero:

(U c)iiii = U, (U s)iiii = U, (5.5)

where U is the strength of the on-site intraband Coulomb repulsion between electrons.

The singlet pairing vertex is then given by

Γpqst (k,k
′, ω) =

[
3

2
U sχRPA

s (k− k′, ω)U s +
1

2
U s (5.6)

− 1

2
U cχRPA

c (k− k′, ω)U c +
1

2
U c

]tq
ps

.

The scattering of a Cooper pair from the state (k,−k) to the state (k′,−k′) on the

Fermi surface is determined by the projected interaction vertex

Γ(k,k′, ω) =
∑
stpq

atν(−k)asν(k)Γpqst (k,k
′, ω)

× ap,∗ν′ (k′)aq,∗ν′ (−k′), (5.7)

where indices ν and ν ′ refer to the eigenvectors of the TB Hamiltonian with the cor-

responding energy eigenvalues close to the Fermi level. As the strength of the pair-

ing interaction is defined by a frequency integral of the imaginary part of Γ(k,k′, ω)

weighted by ω−1, it is sufficient to consider the real part of Γ(k,k′, ω = 0) according to
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the Kramers-Kronig relation:∫ ∞
0

dω
Im[Γ(k,k′, ω)]

πω
= Re[Γ(k,k′, ω = 0)]. (5.8)

If the superconducting gap is decomposed into an amplitude ∆ and a normalized gap

function g(k), the latter can be evaluated from the following eigenvalue equation

−
∮ dk′||

2π

1

2πvF (k′)
Γsymm(k,k′)g(k′) = λg(k). (5.9)

Here,

Γsymm(k,k′) =
1

2
Re
[
Γ(k,k′, 0) + Γ(k,−k′, 0)

]
(5.10)

is the symmetric part of the full interaction and

vF (k) = |∇kEν(k)| (5.11)

is the Fermi velocity at point k on the Fermi surface. The largest eigenvalue λ of

Eq. (5.9) determines the superconducting transition temperature and its corresponding

eigenfunction g(k) has the symmetry of the gap.

We have solved the eigenvalue problem (5.9) for the pure compound model TB1undoped

and doped compound model TB1loc. doped in the folded Brillouin zone of the supercell.

The folded Brillouin zone has been considered in both cases in order to ensure that the

eigenvalue equations are constructed under the same conditions, which is important when

the resulting pairing strengths are compared. The calculations have been performed for

the temperature kBT = 0.01 eV and we considered Coulomb repulsion U values that

range from 1.00 eV to 1.66 eV. Note that these values represent renormalized values of

the Hubbard U appropriate for RPA treatments and are smaller than bare U ’s [Bulut93].

We find that the doped Bi2Sr2CaCu2O8+δ model TB1loc. doped is characterized by a

larger value of the pairing strength λ compared to that of the Bi2Sr2CaCu2O8 model

TB1undoped. The pairing strengths for the two models are presented in Fig. 5.7 (a) as

a function of U . Below U ∼ 1.5 eV the two λ values are almost equal, but at larger U

values the pairing strength for the doped compound model grows faster and diverges at

U = 1.65 eV.

Fig. 5.7 (b) displays the gap functions g(k) of the pure and doped compound models,

corresponding to the leading eigenproblem solutions λ of Fig. 5.7 (a) at U = 1.64 eV.

The gap function g(k), as it is obtained from Eq. (5.9), is defined on the mesh of k-

points at the Fermi surface of the folded Brillouin zone. In Fig. 5.7 (b), the k-point
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Figure 5.7: (a) The pairing strength λ for the undoped (triangles) and doped (circles)
Bi2Sr2CaCu2O8+δ TB models as a function of Coulomb repulsion U . (b) The super-
conducting gap function g(k) on the k-point mesh at the Fermi surface of the undoped
Bi2Sr2CaCu2O8 unit cell for the undoped (triangles) and doped (circles) models. The
red (blue) color represents positive (negative) g(k) values, and the intensity of the color
is proportional to the absolute value of g(k). Half the nesting vector qnest is shown by

an arrow.

mesh was unfolded to the Brillouin zone of the pure compound unit cell in order to

allow a comparison of the Fermi surface behavior for the two systems with experiment.

One should note that in the case of the doped supercell such an unfolding is, strictly

speaking, not allowed and results in a tearing of the Fermi surface. Yet, since the

symmetry lowering effects caused by a dopant are small, the unfolding in this case is a

reasonable approximation. In particular, the unfolded way of presenting g(k) allows us

to observe that the symmetry of the pure compound model g(k) is dx2−y2 and that upon

doping it is roughly preserved, though slightly distorted4. We also note the characteristic

reduction of the norm of the nesting wavevector qnest.

To summarize, the gap equation calculations show that the TB model derived for

the oxygen-doped Bi2Sr2CaCu2O8+δ, TB1loc. doped, shows an enhanced superconduct-

ing pairing compared to the parent compound model TB1undoped. This model also

demonstrates the appearance of the (π, 0, 0) peak in the non-interacting static spin sus-

ceptibility. These two features of the doped model prove the suggested important role

of local crystal and electronic structure inhomogeneities due to doping for the local

superconducting properties of Bi2Sr2CaCu2O8+δ.

4Under the distorted d-wave form of the order parameter, it is meant that g(k) has the dx2−y2
symmetry, e. g., g(kx, ky) = −g(ky, kx), only within some error bars.
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It is important to note that the calculated pairing strength λ [Fig. 5.7 (a)] is an averaged

value of the corresponding spatially resolved quantity λ(r), whose spatial inhomogeneity

is the key assumption of the theory by Nunner et al. [Nunner05]. Therefore, our results

cannot be used directly to justify the local enhancement of superconducting pairing, yet

the local enhancement seems to be quite plausible when the average value is increased.

5.3 One-band versus three-band Hubbard Hamiltonians

Up to now, we have been concerned with developing and testing a method that al-

lows accurate characterization of electronic structure variations in the oxygen-doped

Bi2Sr2CaCu2O8+δ. The proposed method is based on DFT calculations of the

Bi2Sr2CaCu2O8+δ bandstructure, which is then mapped to a single-band TB model.

Calculations of superconducting properties of Bi2Sr2CaCu2O8 and Bi2Sr2CaCu2O8+δ

using their derived TB Hamiltonians show that the superconducting pairing strength is

enhanced in Bi2Sr2CaCu2O8+δ with respect to the parent compound.

Our results for the single-band Hubbard model are in agreement with the model calcu-

lations of Maśka et al. [Maśka07], which show that local dopant-induced variations of

the Cu 3dx2−y2 orbital on-site energies lead to enhancement of the local superexchange

interaction between Cu spins. We have shown, in particular, that this behavior is ro-

bust and remains upon improving the single-band model by taking into account local

modifications of hopping integrals.

On the other hand, model calculations performed on a three-band Hubbard model

[Foyevtsova09] in a manner analogous to the single-band model calculations of

Ref. [Maśka07] do not find the local spin superexchange coupling to be universally en-

hanced in the vicinity of a dopant. Instead, it is observed in Ref. [Foyevtsova09] that

depending on the dopant-induced relative shifts of the Cu 3dx2−y2 and O 2px/2py on-

site energies the superexchange coupling can be both enhanced as well as suppressed.

The possibility of the superexchange coupling suppression is confirmed by cluster-model

calculations [Johnston09], where the dopant-induced local variations of on-site energies

and hopping integrals of the three-band model were determined based on electrostatic

considerations.

This section presents a detailed discussion of the three-band model results. It also intro-

duces the underlying three-band Hubbard Hamiltonian together with the perturbation

expansion method used to derive the local effective spin interaction.
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5.3.1 Three-band Hubbard Hamiltonian in the presence of an oxygen

dopant

We consider the three-band Hubbard Hamiltonian Ĥ3b, which incorporates the

Cu 3dx2−y2 orbital and the two degenerate O 2p orbitals, O 2px and O 2py. The rel-

evance of this model for the high-Tc superconductivity was first discussed by Emery

in Ref. [Emery87]. In the hole representation, which is a convenient choice as in

Bi2Sr2CaCu2O8 the Cu 3d shell hosts nine electrons or, equivalently, one hole, Ĥ3b

can be written as

Ĥ3b =
∑
i,σ

(εd + Vi) d̂
†
iσd̂iσ +

∑
l,σ

(εd + ∆ + δl) p̂
†
lσp̂lσ

+
∑
<i,l>σ

tilpd

(
d̂†iσp̂lσ + h.c.

)
+

∑
<l,n>σ

tlnpp

(
p̂†lσp̂nσ + h.c.

)
+ Ud

∑
i

d̂†i↑d̂i↑d̂
†
i↓d̂i↓ + Up

∑
l

p̂†l↑p̂l↑p̂
†
l↓p̂l↓. (5.12)

In Eq. (5.12), d̂†iσ (d̂iσ) creates (annihilates) a hole with spin σ in the 3dx2−y2 orbital of a

Cu atom at site i. Correspondingly, p̂†lσ (p̂lσ) creates (annihilates) a hole with spin σ in

one of the two O 2p orbitals at site l. εd is the on-site energy of the Cu 3dx2−y2 orbital,

while ∆ is the difference between the Cu 3dx2−y2 and the O 2p energies in the pure

system. tilpd and tlnpp describe the nearest-neighbor Cu-O and O-O hoppings, respectively.

Only hoppings within the CuO2 plane are considered. The sign of tilpd and tlnpp depends

on the relative phase of the overlapping 3dx2−y2 and 2p orbitals. Ud (Up) is the on-site

Coulomb repulsion for a pair of holes on a Cu (O) atom. The presence of a dopant shifts

the atomic Cu and O energy levels in its neighborhood. We denote the energy shift for a

Cu atom at position i as Vi and for an O atom at position l between Cu ions at positions

i and j as δl = δij (see Fig. 5.8). In our model calculations on the three-band model,

we neglect local modifications of the hopping integrals tilpd and tlnpp. It is also assumed

that the dopant-induced atomic level shifts Vi and δl are much smaller compared to the

characteristic energies of the homogeneous system:

Vi, δl � ∆, Ud Up. (5.13)



5.3. One-band versus three-band Hubbard Hamiltonians 107

dε

∆
Vj

δ
δ

δ δ
ij
c2

c1

ij
ij

c3

ij

c4
δij

Vi

Cu

Cu

OO

O

O

O

i

j

ij ij

ij

ij

ij

c2

c1

c4

c3

Figure 5.8: Energy level diagram for a Cu2O5 cluster illustrating the notation used
for the dopant-induced shifts of Cu and O atomic energy levels. Each schematic energy
level is located beneath its corresponding atom and is accordingly colored [black for Cu

and cyan for O levels].

5.3.2 Application of the perturbation expansion

We calculate the local spin superexchange coupling Jij between spins of Cu 3dx2−y2 holes

at sites i and j from Hamiltonian Ĥ3b [Eq. (5.12)] by applying the Rayleigh-Schrödinger

perturbation theory. Within the Rayleigh-Schrödinger perturbation theory, we treat the

hopping terms of Ĥ3b as a perturbation Ĥ1,

Ĥ1 =
∑
<i,l>σ

tilpd

(
d̂†iσp̂lσ + h.c.

)
+
∑

<l,n>σ

tlnpp

(
p̂†lσp̂nσ + h.c.

)
, (5.14)

in order to determine interaction parameters of the effective spin Hamiltonian Ĥeff, which

is valid in the limit of strong electron (hole) localization, t� U .

With the perturbation defined as (5.14), the ground state of the unperturbed Hamil-

tonian Ĥ0 (Ĥ3b = Ĥ0 + Ĥ1) corresponds to all Cu atoms being occupied by one hole

each. This ground state is 2NCu-fold degenerate due to the various possible electron spin

distributions

|σ1 · · ·σNCu
〉 =

NCu∏
i=1

d̂†iσi |vac〉 , (5.15)

where σ1, . . . , σNCu
=↑ or ↓ and i runs over Cu sites.

The effective Hamiltonian Ĥeff is calculated as a perturbation expansion of Ĥ3b in powers

of Ĥ1 [Lindgren86, Takahashi77, Müller-Hartmann02]. For the set of states (5.15), we

can ignore many terms of the perturbation series by making use of the fact that the

terms containing P̂ Ĥ1P̂ , where the operator P̂ projects on the ground state manifold

Eq. (5.15), will all vanish since it is not possible to connect any two states out of the
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ground state manifold Eq. (5.15) by a single hopping process. This observation leads to

the following expression for Ĥeff , where expansion has been performed up to the fifth

order,

Ĥeff = E0P̂ + P̂ Ĥ1R̂Ĥ1P̂ + P̂ Ĥ1R̂Ĥ1R̂Ĥ1P̂

+ P̂ Ĥ1R̂Ĥ1R̂Ĥ1R̂Ĥ1P̂ −
1

2
P̂ Ĥ1R̂

2Ĥ1P̂ Ĥ1R̂Ĥ1P̂ −
1

2
P̂ Ĥ1R̂Ĥ1P̂ Ĥ1R̂

2Ĥ1P̂

+ P̂ Ĥ1R̂Ĥ1R̂Ĥ1R̂Ĥ1R̂Ĥ1P̂

− 1

2
P̂ Ĥ1R̂Ĥ1R̂

2Ĥ1P̂ Ĥ1R̂Ĥ1P̂ −
1

2
P̂ Ĥ1R̂Ĥ1P̂ Ĥ1R̂

2Ĥ1R̂Ĥ1P̂

− 1

2
P̂ Ĥ1R̂

2Ĥ1R̂Ĥ1P̂ Ĥ1R̂Ĥ1P̂ −
1

2
P̂ Ĥ1R̂Ĥ1P̂ Ĥ1R̂Ĥ1R̂

2Ĥ1P̂

− 1

2
P̂ Ĥ1R̂

2Ĥ1P̂ Ĥ1R̂Ĥ1R̂Ĥ1P̂ −
1

2
P̂ Ĥ1R̂Ĥ1R̂Ĥ1P̂ Ĥ1R̂

2Ĥ1P̂ , (5.16)

In Eq. (5.16), R̂ = (1− P̂ )/(E0 − Ĥ0) so that, for a state |φ〉�∈{|σ1 · · ·σNCu
〉},

R̂ |φ〉 =
1

E0 − Eφ
|φ〉 , (5.17)

where E0 is the ground state energy of Ĥ0 and Eφ = 〈φ|Ĥ0|φ〉.

Among the terms in Ĥeff , Eq. (5.16), we only need to consider those terms that are of

the form ∑
<i,j>,σ

d̂†iσd̂
†
jσ̄d̂jσd̂iσ̄, (5.18)

with σ̄ = −σ, since the corresponding prefactor determines Jij . The terms of interest

result from calculating the fourth-order term P̂ Ĥ1R̂Ĥ1R̂Ĥ1R̂Ĥ1P̂ and the fifth-order

term P̂ Ĥ1R̂Ĥ1R̂Ĥ1R̂Ĥ1R̂Ĥ1P̂ in Eq. (5.16). All other terms will only add a constant

energy term to the effective Hamiltonian. We denote the contributions of the fourth-

order and fifth-order terms to the exchange coupling Jij as, respectively, J
(4)
ij and J

(5)
ij .

It is convenient to derive expressions for J
(4)
ij and J

(5)
ij by making use of the graphical

representation of hopping processes (see examples in Fig. 5.9). All possible graphs

representing the fourth- and fifth-order hopping processes that result in the exchange

of spins between two Cu atoms are considered to be summed up for the corresponding

P̂ Ĥ1R̂Ĥ1R̂Ĥ1R̂Ĥ1P̂ and P̂ Ĥ1R̂Ĥ1R̂Ĥ1R̂Ĥ1R̂Ĥ1P̂ expressions.

5.3.3 Results: Effect of doping on local superexchange

We will now consider in turn dopant-induced variations of the local superexchange,

which is determined up to the fifth order in perturbation theory

Jij ≈ J (4)
ij + J

(5)
ij , (5.19)
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Figure 5.9: Graphs describing (a) the fourth- and (b) the fifth-order hole hopping
processes that result in the exchange of spins between two Cu atoms. Black (cyan) cir-
cles represent Cu (O) atoms. Arrows denote hopping processes, with the accompanying
number indicating the order, in which the hoppings occur. Symbols σ or σ̄ stand for

the spin of the hole.

contributed by the fourth- and fifth-order expansion terms. The fifth-order perturbation

expansion is apparently the highest that is still technically possible to perform as the

number of graphs grows fast and reaches 120 in the case of J
(5)
ij . On the other hand, it

is known from the homogeneous problem solution [Eskes93] that the fifth-order contri-

bution is of the same order of magnitude as the fourth-order contribution and that the

higher-order terms are required in order to obtain a quantitatively accurate result. Due

to this unfortunate property of the expansion series (5.16), the results of our fifth-order

perturbation expansion cannot be used for drawing firm conclusions as to the quanti-

tative variation of Jij but rather should provide an estimation of general trends in the

behavior of Jij .

The fourth-order term J
(4)
ij can be written as the homogeneous model result J (4) [Eskes93]

plus the dopant-induced correction ∆J
(4)
ij :

J
(4)
ij = J (4) + ∆J

(4)
ij , (5.20)

with

J (4) =
4t4pd
∆2

{
1

Ud
+

2

2∆ + Up

}
. (5.21)

In Eq. (5.21) as well as in the following, we adopt the simplified notation tpd = |tilpd|,
tpp = |tlnpp|.

There are 12 graphs contributing to the fourth-order term J
(4)
ij , one of which is shown in

Fig. 5.9 (a). In a homogeneous model, these 12 graphs reduce to only two terms in J (4)

[Eq. (5.21)]. In our inhomogeneous model with random atomic level shifts [Eq. (5.12)],

the terms in the sum for J
(4)
ij corresponding to hoppings that start from a Cu ion at site

i will differ from those corresponding to hoppings that start from a Cu ion at site j due

to different Vi and Vj . It is convenient to write the analytical expression for ∆J
(4)
ij as a



110
Chapter 5. Modulation of pairing interaction in Bi2Sr2CaCu2O8+δ by an oxygen

dopant

sum of two terms – ∆J
(4)
ij = η′ij + η′′ij – which are given as

η′ij =
4t4pd
∆2

× 1

Ud

a0 + a1Ud + a2U
2
d

(∆− vi)2(∆− vj)2
[
U2
d − (vj − vi)2

] , (5.22)

a0 = (vj − vi)2(∆− vj)2(∆− vi)2,

a1 =
1

2
(vj − vi)2(2∆− (vi + vj))∆

2,

a2 =
1

2
(∆− vj)2(2∆− vi)vi +

1

2
(∆− vi)2(2∆− vj)vj ,

and

η′′ij =
4t4pd
∆2

2

2∆ + Up

× b0 + b1Up
[(2∆− vi − vj) + Up] (∆− vj)2(∆− vi)2

, (5.23)

b0 = (∆− vj)2(∆2 + ∆(∆− vi) + (∆− vi)2)vi

+ (∆− vi)2(∆2 + ∆(∆− vj) + (∆− vj)2)vj

− 1

2
∆3(vj − vi)2,

b1 =
1

2
[(∆− vj)vi + (∆− vi)vj ]

×
[
∆

(
∆− vi + vj

2

)
+ (∆− vi)(∆− vj)

]
.

The terms n′ij and n′′ij can be viewed as corrections to the first and second summands in

the J (4) expression (5.21), respectively. In Equations (5.22) and (5.23), we have defined

vi = Vi − δij and vj = Vj − δij . It is easy to check that the correction terms η′ij and η′′ij

vanish when the impurity-induced potentials vi vanish.

The sign of ∆J
(4)
ij depends on the signs and magnitudes of vi and vj , i. e., the actual

energy separation between the dopant-shifted Cu and O levels. In particular, for vi, vj �
∆, ∆J

(4)
ij is proportional to vi + vj . In general, the behavior of ∆J

(4)
ij as a function of vi

and vj is shown diagrammatically in Fig. 5.10 for a typical set of model parameters in

Bi superconductors (Ud = 8.8 eV, Up = 4.1 eV and ∆ = 2.92 eV [Johnston09]). In the

space of vi and vj , negative and positive ∆J
(4)
ij contributions to J

(4)
ij are shown as white

and cyan areas, respectively. For the parameters considered in the cluster calculation

of Ref. [Johnston09], the correction ∆J
(4)
ij is negative (black dot d in Fig. 5.10) and

therefore J
(4)
ij is suppressed in that case.
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Figure 5.10: Sign(∆J
(4)
ij ) diagram for a typical set of the model parameters (Ud = 8.8

eV, Up = 4.1 eV and ∆ = 2.92 eV [Johnston09]) in the space of abscissa vi = Vi−δij and

ordinate vj = Vj − δij . White and cyan regions indicate negative and positive ∆J
(4)
ij ,

respectively. Points a-d denote the values of vi and vj used for generating diagrams
(a)-(d) in Fig. 5.11.

Now, let us discuss the fifth-order perturbation expansion term J
(5)
ij . Just as the fourth-

order term J
(4)
ij , it can be written as a sum of the homogeneous part J (5) [Eskes93],

J (5) =
4t4pd
∆2

{
1

Ud

8tpp
∆

+
2

2∆ + Up

8tpp
∆

+
4tpp
∆2

}
, (5.24)

and the dopant-induced correction ∆J
(5)
ij :

J
(5)
ij = J (5) + ∆J

(5)
ij . (5.25)

There are 120 graphs that contribute to the fifth-order spin exchange, all involving

hoppings to one of the four corner O ions. A typical fifth-order spin exchange hopping

process is illustrated in Fig. 5.9 (b). Since the corner oxygen ions participate in the

fifth-order spin exchange, ∆J
(5)
ij depends on the atomic level shifts δc1ij , δc2ij , δc3ij and δc4ij

of the corner oxygens (Fig. 5.8). As the analytical expression for ∆J
(5)
ij turns out to be

rather lengthy and does not give an immediate feeling of the ∆J
(5)
ij behavior, we only

write the (relatively short) correction to the first term of J (5) [Eq. (5.24)], µ′ij , in order
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to exemplify how the corner oxygen level shifts enter the ∆J
(5)
ij expression:

µ′ij = 4t4pdtpp

×

(
1

(∆ + δij − Vi)2

1

Ud + {Vj − Vi}

{
1

∆ + δc1ij − Vi

+
1

∆ + δc2ij − Vi
+

1

∆ + δc3ij − Vi
+

1

∆ + δc4ij − Vi

}

+
1

(∆ + δij − Vj)2

1

Ud − {Vj − Vi}

{
1

∆ + δc1ij − Vj

+
1

∆ + δc2ij − Vj
+

1

∆ + δc3ij − Vj
+

1

∆ + δc4ij − Vj

})
.

(5.26)

As one can observe, the sign of µ′ij depends on vi, vj , v
c1
i = Vi − δc1ij , vc2i = Vi − δc2ij ,

vc3j = Vj − δc3ij and vc4j = Vj − δc4ij 5. These six parameters define the sign of the total

fifth-order correction ∆J
(5)
ij as well.

With the increased number of v parameters, it more difficult to visualize the behavior of

∆J
(5)
ij than in the ∆J

(4)
ij case. In order to nevertheless perform some qualitative analysis

of the fifth-order correction to the spin exchange, we consider the case where vc1i = vc2i =

vci and vc3j = vc4j = vcj
6. For given vi and vj , one can in this case draw a phase diagram

of the sign of ∆Jij ≈ ∆J
(4)
ij + ∆J

(5)
ij in the space of vci and vcj . In Fig. 5.11, we present,

as an example, four such diagrams corresponding to different sets of vi and vj (the four

dots a, b, c and d in Fig. 5.10). For calculating these diagrams, we chose tpd=1.2 eV

and tpp=0.5 eV, as also considered in the cluster calculations of Ref. [Johnston09]. The

local Cu and O onsite energies calculated by Johnston et al. correspond to the choice

of vi=-0.13 eV and vj=0.08 eV in Fig. 5.11 (d). In Fig. 5.11 (d), we also indicate by

a black dot the values of vci and vcj that have been obtained in Ref. [Johnston09] from

electrostatic calculations. In agreement with the result of Ref. [Johnston09], we obtain

with this choice of parameters that the dopant-induced local correction to J is negative,

i. e., the spin exchange is suppressed in the vicinity of a dopant.

5.4 Discussion

We summarize the most important results on the microscopic modeling of oxygen doping

of the cuprate superconductor Bi2Sr2CaCu2O8 [Maśka07, Johnston09, Foyevtsova09,

5Alternatively, vc2j = Vj − δc2ij etc. could be considered.
6Such a symmetry is realized when the dopant atom is located on the line connecting the two Cu

atoms [Johnston09].
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(a) vi = −0.2, vj = 0.04 (b) vi = 0.3, vj = 0.3

(c) vi = −0.03, vj = 0.04 (d) vi = −0.13, vj = 0.08

Figure 5.11: Sign(∆Jij) diagrams in the space of abscissa vci and ordinate vcj . White
and cyan correspond to negative and positive values of ∆Jij , respectively. The point
vci = −0.23 eV, vcj = −0.05 eV in diagram (d) corresponds to the energy levels distri-

bution shown in Fig. 2 of Ref. [Johnston09].

Foyevtsova10].

� In a single-band Hubbard model for the CuO2 planes, the dopant-induced random

variation of the Cu 3dx2−y2 on-site energies always leads to an enhancement of

local superexchange interaction between Cu spins. This is shown in perturbation

theory calculations by Maśka et al. [Maśka07].

� When local modifications of transfer integrals are also considered in the inhomo-

geneous single-band Hubbard model in addition to the on-site energy variation,

the non-local RPA calculations find an enhancement of superconducting pairing

strength in the oxygen-doped Bi2Sr2CaCu2O8+δ [Foyevtsova10].

� The single-band model results of References [Maśka07] and [Foyevtsova10] provide

strong evidences that the presence of dopant-induced inhomogeneities in the single-

band Hamiltonian enhances superconductivity locally as well as on a macro-scale.

� The inhomogeneous three-band model, which includes the Cu 3dx2−y2

and O 2px/2py orbitals, was considered within the cluster-model calcula-

tions [Johnston09] and the fifth-order perturbation theory [Foyevtsova09]. In both

studies, the local spin exchange interaction is found to be suppressed in the vicin-

ity of an oxygen dopant in the case when electrostatically estimated values of the

local Hubbard model parameters are used.



114
Chapter 5. Modulation of pairing interaction in Bi2Sr2CaCu2O8+δ by an oxygen

dopant

� It follows from the perturbation expansion calculations [Foyevtsova09] that in the

three-band model the local superexchange can be both enhanced as well as sup-

pressed depending on the magnitudes and signs of the energy level shifts on Cu

and O ions.

Apparently, the universality of the dopant-induced enhancement of local superexchange,

which emerges in the single-band model calculations [Maśka07], is lost in the three-band

model. From the analysis of our results on the three-band model (Section 5.3), we

conclude that the key effect responsible for such a difference between the single- and

three-band models’ behavior is local modulation of the charge-transfer gap ∆ between

the Cu 3dx2−y2 and O 2px/2py atomic levels, which can take place only in the three-band

model. Such modulation of ∆ is just another side of the simultaneous variation of the

Cu 3dx2−y2 and O 2px/2py atomic levels by Vi and δij .

The importance of the local modulation of ∆ becomes clear when one considers the

following simple argument. One writes the local gap ∆ij as

∆ij = ∆− (Vi − δij). (5.27)

Then, in the limit |Vi − Vj | � (Vi − δij), the inhomogeneous solutions for J
(4)
ij and J

(5)
ij

can be obtained by simply replacing ∆ by ∆ij in Equations (5.21) and (5.24) so that

∆ij becomes the only parameter that determines the J variation7.

An adequate microscopic theory designed to explain the nano-scale inhomogeneities in

the Bi2Sr2CaCu2O8+δ STS spectra should not only model the superconducting gap en-

hancement in the vicinity of a dopant but also give a correct quantitative account of

the intensity of the superconducting gap modulation. In this respect, the 5% suppres-

sion of the local superexchange obtained within the three-band Hubbard model with

the electrostatically evaluated model parameters (Section 5.3) is too small to produce

a variation of the pairing strength required for the realization of the Nunner et al.

scenario [Nunner05]. On the other hand, the single-band model calculations of the non-

local RPA pairing strength λ give a 30% enhancement of λ in the doped compound

(Section 5.2), which agrees well with the STS measurements.

These observations bring us to a conclusion that there is still a possibility to obtain the

required enhancement of local superexchange in the inhomogeneous three-band Hub-

bard model by improving the accuracy of the model parameters evaluation. Indeed,

7In Fig. 5.10, the condition |Vi− Vj | � (Vi− δij) is fulfilled in the vicinity of the vi = vj line (on the

line, Vj − Vi = 0), and indeed J
(4)
ij increases in the first quarter and reduces in the third quarter of the

diagram. In the second and fourth quarters, the relative variation of the Cu ion levels, Vi−Vj , becomes
equally important.
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from the perturbation expansion we saw that there exist vast regions of the superex-

change enhancement in the v-diagrams of Figures 5.10 and 5.11. The parameter regime

appropriate for our problem can be determined more accurately when the inhomoge-

neous three-band model parameters are calculated within the DFT in the spirit of the

DFT-assisted single-band model parameterization presented in Section 5.1.

The ambiguity of the fitting method, which has become evident during parameterization

of the single-band TB model (Section 5.1), can pose an insurmountable obstacle when the

method is applied to the three-band model. Fortunately, the parameterization method

based on projecting onto Wannier functions does not suffer from this problem and is

expected to perform well in the three-band model case.

With the realistic parameters of the inhomogeneous three-band model at hand, one could

perform an RPA calculation for Bi2Sr2CaCu2O8 and Bi2Sr2CaCu2O8+δ in order to study

their non-local superconducting properties. Alternatively, it might be worthwhile to

refine the perturbation theory calculations of Section 5.3 by considering also the hopping

integrals variation in addition to the variation of the Cu and O on-site energies.





Chapter 6

Doped Mott insulator TiOCl

As discussed in Section 3.3, the experimentally observed insulating state in TiOCl that

survives electron doping [Sing11] is quite puzzling in view of our general understanding

of Mott insulators, which are expected to become metallic when doped (Chapter 1).

In this chapter, we wish to understand this unusual behavior by identifying doping in-

duced microscopic processes that are specific to TiOCl. By using the DFT methods,

we carefully analyze the electronic structural changes in Na-doped TiOCl cells at vari-

ous Na concentrations and compare our DFT results with the photoemission results of

Ref. [Sing11]. In addition, we carry out a similar analysis for TiOCl cells doped with V

(or Sc), F and S, so that our generalized molecular formula under doping is defined as

NaxTi1−yVy(Scy)O1−zFzCl1−wSw, where x, y, z and w are the doping concentrations

[see Fig. 6.1 (a)].

As a result, we find within the DFT that TiOCl would remain insulating for all Na con-

centrations studied and that the change of spectral weight at elevated Na concentration

is in good agreement with the photoemission results [Sing11]. The persistent insulating

state is shown to be a consequence of two Na+ induced effects:

(i) strong modification of the crystal field splitting of Ti 3d states and

(ii) induction of coexisting Ti3+ and Ti2+ ions, which are further stabilized by

long-range Coulomb interaction as usually observed in mixed-valence com-

pounds [Zhang05].

In the following, our analysis shall consist of a number of important computational steps.

First, we perform structural optimizations for all the considered doping cases:

� NaxTiOCl for six different values x=0, 1/8, 1/4, 1/2, 3/4, 1;

117
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Figure 6.1: Superlattices at six different concentrations of Na doping. (a) Undoped
case. The atoms where substitutions of Cl by S, O by F and Ti by V(Sc) are performed
are also specified. (b) 12.5 % Na doping: Na1/8TiOCl. The 8 Ti ions in the cell are
labeled by numbers 1 to 8. (c) 25 % doping: Na1/4TiOCl, (d) 50 % doping: Na1/2TiOCl,

(e) 75 % doping: Na3/4TiOCl, and (f) 100 % doping: NaTiOCl.

� TiO7/8F1/8Cl;

� TiOCl7/8S1/8;

� Ti7/8V1/8OCl and Ti7/8Sc1/8OCl.

For that purpose, we employ the Car-Parinello molecular dynamics method (Ref. [Car85],

Section 2.3) as implemented in the projector-augmented wave (PAW) code of Blöchl

[Blöchl94]. To approximately treat exchange and correlation effects within the DFT, we

use the GGA+U functional, with U = 4.5 eV and JH = 1.0 eV for the Ti 3d states.

This choice allows us to reproduce the correct insulating gap of 2 eV for undoped TiOCl.

In each doping case, structural relaxation is carefully converged with respect to lattice

parameters and atomic positions, with high energy cutoffs of 45 Ry and 180 Ry for the

wave functions and charge density expansion, respectively.

While the TiOCl cells doped with F, S and V (Sc) are constructed by simply replacing,

respectively, the O, Cl or Ti atom by the dopant, in the case of Na doping structural

optimization is more involved. Since no experimental data for the Na positions are

available, numerous possibilities have to be tested by ab initio molecular dynamics.

However, according to Pauling’s rule that the coordination number is determined by the
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radius ratio [Pauling29], the most probable Na positions are in the cages of five Cl and

one O, as shown in Figs. 6.1 (b)-(f). In fact, by performing ab initio molecular dynamics

starting from several different initial Na positions, we find that the Na atoms always

fall into this cage to reach the coordination number of six. The remaining uncertainty

is given by the various combinations of locating Na atoms into the eight cages of the

supercell1. We performed ab initio molecular dynamics for all the different combinations

at various doping concentrations and compared the total energies. Fig. 6.1 presents the

final stable lattice structures with lowest total energies for the six Na concentration

values x studied.

In the rest of this chapter, we will present the electronic structures of the variously doped

TiOCl cells (Section 6.1), which provide sufficiently clear information on the microscopic

origin of the persistent under doping insulating state, and propose an appropriate model

to effectively describe the behavior of doped TiOCl (Section 6.2). A major part of the

calculations have been carried out by Dr. Yu-Zhong Zhang, especially, the ab initio

molecular dynamics simulations and PAW electronic structure calculations. My contri-

bution consisted in parameterizing the effective TB model for Na-doped TiOCl supercells

using the downfolding technique (page 41) and the NMTO basis (Section 2.2.1).

6.1 Electronic structure of NaxTi1−yVy(Scy)O1−zFzCl1−wSw

For the discussion of orbital-resolved electronic states, we choose the local coordinate

frame as x ‖ b, y ‖ c and z ‖ a with dx2−y2 , dxz, dyz forming the t2g bands and dxy, dz2

the eg bands.

6.1.1 Na doping

In Fig. 6.2, we present the total DOS for the six Na-doped TiOCl cases considered.

The DOS of the undoped case [Fig. 6.2 (a)] is correctly reproduced, with an energy gap

around 2 eV and the peak close to the Fermi level predominantly of the dx2−y2 character.

With Na doping [Figs. 6.2 (b)-(f)], the whole spectral weight is suddenly shifted towards

lower energies, and an additional peak with weight 2x appears close to the Fermi level

as compared to the undoped case. The separation of the two Ti peaks is about 1 eV

for x = 1/8 and a gap always persists at the Fermi level in all Na-doped cases. All the

findings are consistent with the experimental observations [Sing11].

1We use a 2 × 2 × 1 supercell that is obtained by doubling the primitive unit cell in both a and b
directions.
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Figure 6.2: Total density of states at the six different concentrations of Na doping
shown in Fig. 6.1. (a) Undoped case: TiOCl, (b) Na1/8TiOCl, (c) Na1/4TiOCl, (d)

Na1/2TiOCl, (e) Na3/4TiOCl, and (f) NaTiOCl.

The insulating state in the Na-doped TiOCl results from the interplay of two effects

associated with Na intercalation. First, owing to the Hund’s rule coupling, the additional

electrons donated by the Na ions occupy the Ti 3dxz orbitals and not the Ti 3dx2−y2

orbitals that are already occupied by one electron. Second, the doped electrons would

end up trapped on the Ti atoms that are closest to the Na atoms because the latter are

strongly distorting their crystalline environment, which leads to a strong modification

of the crystal field splitting of the Ti 3d states.

The above asserted scenario can be deduced from examining the orbital-resolved DOS

for, e. g., a Na doping of x = 1
8 , shown in Fig. 6.3 (d). Indeed, close to the Fermi level,

both dx2−y2 and dxz orbitals contribute to the DOS. Some qualitative understanding of

this result can be gained from a rough energy estimation in the atomic limit when one

additional electron is added to the Ti t2g bands. While the change of total energy is

U + 2JH if the additional electron occupies the dx2−y2 orbital, it is U − JH + ∆ if the

electron occupies the dxz orbital, where ∆ is the orbital excitation from dx2−y2 to dxz.

Since ∆ ∼ 0.1 eV and JH ∼ 1 eV, adding the additional electron to the dxz orbital is

always preferable. This analysis indicates the importance of the Hund’s rule coupling in

the doping case.

The trapping of the additional electron on one of the Ti atoms becomes evident after

also inspecting the atom-resolved DOS in Fig. 6.3 (a) as well as comparing the crystal

field splitting of the undoped case with that of the 1
8 Na-doped case in Figs. 6.4 (a) and

(b) [in these figures, the Ti ions are labeled from Ti1 to Ti8 as shown in Fig. 6.1 (b)].

In the undoped case, all eight Ti ions in the supercell are equivalent and the orbital



6.1. Electronic structure of NaxTi1−yVy(Scy)O1−zFzCl1−wSw 121

D
O

S
 (

s
ta

te
s
/e

V
/u

n
it
 c

e
ll)

0

10

20

30
(a) Na 12.5%

−

Ti2
Ti2

(b) F 12.5%

−

Ti2
Ti2

(c) S 12.5%

−

Ti3
Ti3

0

1

2

-1 0 1 2 3

(d) Na 12.5%

energy (eV)

Ti2

dx2-y2
dxz
dyz
dxy
dz2

-1 0 1 2 3

(e) F 12.5%

energy (eV)

Ti2

-1 0 1 2 3

(f) S 12.5%

energy (eV)

Figure 6.3: Partial DOS for (a), (d) 12.5% Na doping: Na1/8TiOCl, (b), (e) 12.5%
F substitution: TiO7/8F1/8Cl, and (c), (f) 12.5% S substitution: TiOCl7/8S1/8. In (a),
(b) and (c) the total Ti-resolved DOS are shown. The orange curve denotes the DOS
for the Ti ion nearest to the doping ion (Ti2 for the Na- and F-doped cases, Ti3 for the
S-doped case). The blue curve denotes the DOS for the rest of Ti ions. In (d), (e), and
(f) the corresponding orbital-resolved DOS are shown. Below EF the contributions of

Ti2 for the electron-doped cases are explicitly marked.

excitations are the same. In the 1
8 Na-doped case, all Ti ions become inequivalent and

the crystal field splittings are different from site to site. Most importantly, the splittings

of t2g orbitals on the Ti2 (closest Ti to Na) become strikingly small, which makes it

possible to trap the additional electron into the dxz orbital on this Ti site. This is

consistent with the partial DOS in Figs. 6.3 (a) and (d) where the peaks near the Fermi

level are mainly contributions from the dx2−y2 and dxz orbitals of Ti2. The peak at

lower energies is from the rest of Ti ions (all denoted by Ti2̄) and is of purely dx2−y2

character. Further investigations of the crystal field splittings and partial DOS for the

other Na doping concentrations reveal that the same mechanism can be applied to the

observed insulating states, i. e., each Na ion strongly modifies the lattice structure

locally, reduces the crystal field splitting of the t2g orbitals on the closest Ti ion and

leads to localization of the doped electron, which reduces the Ti3+ (3d1) to Ti2+ (3d2)

and prevents conduction. Furthermore, long-range Coulomb repulsion becomes effective

due to the appearance of a mixed-valence state of Ti3+ and Ti2+ and further stabilizes

the symmetry-breaking insulator. Within the point-charge approximation [Sing11], the

combination of crystal field splitting and the long-range Coulomb interaction can account

for the gap of 1 eV.
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Figure 6.4: t2g crystal field splitting energies obtained from GGA calculations. The
horizontal axis denotes 8 Ti ions in the supercell labeled by numbers from 1 to 8 as
shown in Fig. 6.1 (b). (a) TiOCl, (b) Na1/8TiOCl, (c) TiO7/8F1/8Cl, (d) TiOCl7/8S1/8,

(e) Ti7/8V1/8OCl, and (f) Ti7/8Sc1/8OCl.

6.1.2 V (Sc), F and S doping

In all the doped cases where O is substituted by F [Fig. 6.3 (b), (e)], Cl by S [Fig. 6.3 (c),

(f)], and Ti by V or Sc (not shown) gaps still open at the Fermi level.

The DOS of the F-doped case [Fig. 6.3 (b), (e)] is similar to that of the Na-doped

case with a double peak structure below the Fermi level, since both are electron doping

processes. The similarities can be also observed in the crystal field splittings [Fig. 6.4 (c)].

However, in the F-doped case the Ti2 dx2−y2 and dxz orbitals are almost degenerate.

Substituting Cl by S implies taking out an electron from the dx2−y2 orbital (hole doping),

and one would expect the system to be metallic. However, from Fig. 6.4 (d), we find

that the on-site orbital energies of Ti3, which is closest to the substituted S ion, are

significantly raised due to the large distortion of the lattice structure, again leading

to a localized state for the doped hole. In this case, no spectral weight from the Ti3

3d orbitals is detected close to the Fermi level [Fig. 6.3 (c)]. Interestingly, the Ti1

dx2−y2 orbital energy is almost degenerate with the Ti7 dxz orbital energy, indicating

the importance of on-site Coulomb interaction which avoids double occupation on each

Ti ion. This leads to a DOS below the Fermi level of only dx2−y2 character [Fig. 6.3 (f)].

On the other hand, doping with S might result in the formation of S2−
2 ions, which are

isoelectronic to two Cl− ions and do not contribute to doping. The system will then

remain insulating.

Finally, substituting Ti by V (electron doping) and Sc (hole doping) we observe a similar

effect as seen in the previous electron- and hole-doped cases. The on-site orbital energies
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are much lower (higher) on the V (Sc) ion than on the Ti ion [Figs. 6.4 (e) and (f)],

which can again account for the localization of the doped electron (hole) and the absence

of a metallic state. However, the oxidations are all +3 (Ti3+, V3+, Sc3+), indicating

that the role of long-range Coulomb interaction is negligible.

6.2 Effective microscopic model

From the above analysis, we conclude that the appropriate microscopic model that

accounts for the persistence of the insulating state upon doping is given by a multi-band

ionic Hubbard model:

Ĥ =
∑

i,j,σ,mi,mj

t
mimj
ij ĉ†imiσ ĉjmjσ +

(
U + 2JH

)∑
i,mi

n̂imi↑n̂imi↓

+ U
∑

i,mi>m′i,σ

n̂imiσn̂im′iσ̄ +
(
U − JH

) ∑
i,mi>m′i,σ

n̂imiσn̂im′iσ

+
∑
i,σ,mi

∆i,mi n̂imiσ +
∑
i,j

Vijn̂in̂j . (6.1)

The first term describes the hopping between Ti sites i, j within the three t2g orbitals

(mi, mi), the second to fourth terms are the intra- and interorbital Coulomb interactions

and the Hund’s rule coupling, respectively, the fifth term the crucial on-site orbital ener-

gies ∆i,mi , and the last term the effective long-range inter-site Coulomb interaction Vij .

Upon Na doping, ∆i,mi differs from site to site which forms a local trapping potential

and leads to a coexistence of Ti3+ and Ti2+ stabilized by Vij . Then, a doping-induced

phase transition from undoped Mott insulator to doped insulator with charge dispro-

portionation occurs. While a similar transition has been extensively investigated in the

one-band case [Fabrizio99, Garg06, Kancharla07], inclusion of orbital degrees of freedom

may result in an even richer phase diagram [Medici09a, Lee10].

As has been shown before, upon Na doping the Ti 3dxz orbitals become occupied by the

additional electrons and, together with the Ti 3dx2−y2 orbitals, get involved into elec-

tron transfer, which necessitates the usage of the effective multi-band Hamiltonian (6.1).

Moreover, it turns out that the inclusion of the dxz orbitals results in switching the sys-

tem from the 1D interactions regime to the 2D regime. We arrive at this conclusion by

parameterizing the TB Hamiltonian [the first term in Eq. (6.1)] for several Na doped

TiOCl systems using the NMTO downfolding. The NMTO calculations have been per-

formed with the GGA functional for x = 1
8 , 1

2 and 1 concentrations of Na. After folding

down all the electronic states except for the three t2g orbitals, we find in each considered

case that the hopping integrals within dxz orbitals along a and within one TiO bilayer

are comparable to the hopping integrals within dx2−y2 orbitals along b.
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6.3 Discussion

Although our DFT calculations are only performed for several commensurate Na doping

cases, we argue that the scenario for this insulating state under doping can be applied to

all doping concentrations: the Na ion enters an individual cage consisting of five Cl and

one O ions and creates a trapping potential reducing the crystal field splitting of the t2g

orbitals on the closest Ti ion and resulting in a localized state for the doped electron

with the help of long-range Coulomb interaction.

With the understanding of the mechanism for the insulating state, we propose two ways

to metallize TiOCl by doping which would favor a possible superconducting state in a

doped Mott insulator by suppressing other symmetry-breaking states. The first idea is

to avoid the strong modification of crystal field splitting and the formation of a trapping

potential due to the lattice deformation induced by the cation or anion. Therefore,

a possible direction is to intercalate Na together with organic ligands to prevent the

doped Na from entering the cage, in the spirit of intercalating organosolvated Li into

β-HfNCl [Yamanaka98]. A second practicable way is to apply external pressure after

carrying out electron doping. Due to the appearance of the additional peak and the

reduction of the gap under doping, the doped system becomes much easier to metallize

under pressure than the undoped one.



Summary and outlook

In this work, we performed density functional theory (DFT) calculations for several Mott

insulators – Cs2CuCl4, Cs2CuBr4, Bi2Sr2CaCu2O8+δ and TiOCl – in order to derive

their microscopic models. From the analysis of the derived models (which in the case

of Bi2Sr2CaCu2O8+δ was performed quantitatively using many-body methods) we were

able to draw important conclusions as to the compounds’ microscopic behavior and the

connection between their electronic properties and experimentally observed macroscopic

properties.

In the case of Cs2CuCl4 and Cs2CuBr4, we found that the equilibrium crystal structures

obtained by structural relaxation of internal parameters within the DFT strongly depend

on the approximation to the exchange-correlation functional employed during the relax-

ation. Moreover, the evaluated parameters of the tight-binding (TB) and Heisenberg

models for Cs2CuCl4 and Cs2CuBr4 turn out to be extremely sensitive to fine structural

variations. The two dependencies result in the variation of the model parameters as a

function of the exchange-correlation functional used for the relaxation. As the various

exchange-correlation functionals that we used differed mainly in the accuracy of treating

electronic correlations and describing spin-polarized states, we conclude that electronic

correlations and magnetism play an essential role in defining the structural properties

of Cs2CuCl4 and Cs2CuBr4
2. Also, an important result on Cs2CuCl4 and Cs2CuBr4 is

the identification of a number of weak interlayer interactions in the microscopic model

that might play a stabilizing role for some of the compounds’ exotic magnetic phases.

Finally, we find a qualitative difference between the electronic structures of Cs2CuCl4

and Cs2CuBr4, namely, that in Cs2CuCl4 only one of the Cu t2g bands participates in

electron hopping whereas in Cs2CuBr4 all three t2g bands are involved.

Another topic that we address in this thesis is the electronic inhomogeneities in the

oxygen-doped Bi2Sr2CaCu2O8+δ superconductor. We were interested, in particular, in

2This situation is in fact not unique to Cs2CuCl4 and Cs2CuBr4. For instance, in many of the recently
discovered iron pnictide superconductors, structural relaxation with standard DFT approximations does
not give accurate enough results so that it is often a better choice to calculate electronic properties of
the pnictides with unrelaxed experimental structures.
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the superconducting properties of the compound, such as the Cooper pairing strength,

as a function of doping. In order to perform RPA calculations of the magnetic sus-

ceptibility and superconducting pairing strength, we derived single-band TB models for

both the pure and oxygen-doped superconductors by means of the DFT bandstructure

parameterization of the Cu 3dx2−y2 band. The high-quality correspondence between

the TB spectra and DFT bandstructures was achieved through the inclusion of effective

long-distance interactions as variable parameters in the model Hamiltonians. The band-

structure parameterization of the doped Bi2Sr2CaCu2O8+δ supercell, which otherwise

would be technically too involved, was carried out by introducing certain approximations

and thus reducing the number of variable parameters. As a result, the Cooper pairing

strength calculated in the framework of the RPA was found to increase by ∼ 30% in the

doped Bi2Sr2CaCu2O8+δ, compared to the pure compound. We also carried out model

calculations of the doping-induced effects on local superexchange for a three-band Hub-

bard model, with the O 3px and 3py bands included. We found that this model shows a

qualitatively different behavior. Depending on the parameter regime of the three-band

model, the dopant atom can induce both the enhancement as well as suppression of the

local superexchange coupling and – within the spin-fluctuation-exchange model – of the

local superconducting gap.

In the case of the layered Mott insulator TiOCl, our primary goal was to understand

on a microscopic level the nature of the insulating state of TiOCl that persists upon

doping. For this purpose, we compared the electronic structure of the undoped TiOCl

with the electronic structures of the Na-, F-, S-, V- and Sc-doped TiOCl. The compar-

ison of electronic structures was preceded by careful determination of the doped TiOCl

structural parameters by means of Car-Parrinello molecular dynamics simulations. In

agreement with photoemission experiments, the DFT finds TiOCl insulating in each

doping case. It also reveals that the insulating state is a result of the interplay between

the Hund’s rule coupling, which makes a doped electron occupy a new Ti 3d orbital, and

the dopant induced modification of the crystal field splitting of Ti states, which leads

to the trapping of the doped electron on a Ti ion. Using the downfolding technique, we

established that the doped TiOCl should be described in terms of a 2D multi-band ionic

Hubbard model.

As a general conclusion, the considered cases all point to the importance of an accurate

treatment of strong electronic correlations when the application of the DFT to strongly

correlated materials, e. g., transition metal compounds, is concerned. Due to the lack

of an exact expression for the exchange-correlation functional within the DFT, there is

always a certain amount of uncertainty in any DFT calculation regarding which should

be the most appropriate approximation to be used in each particular case. Sometimes,

in order to obtain reliable results, elaborate multi-step computational schemes have to
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be considered, as, e. g., in the case of Cs2CuCl4 and Cs2CuBr4. We find ourselves in a

position to reasonably state, however, that the LDA+DMFT method, which is the next

step beyond the LDA+U, should improve the situation considerably. Once we have the

method implemented and well tested, it would be interesting, for example, to perform

structural relaxations for Cs2CuCl4 and Cs2CuBr4 (as well as for the mixed compounds

Cs2CuCl4−xBr4) and compare the obtained structures to our earlier results. In fact,

the calculations for Cs2CuCl4 and Cs2CuBr4 that have been carried out so far are only

a small portion of what can be done within the DFT. Another DFT application could

be, for instance, the calculation of phonon spectra. Also in this case, the LDA+DMFT

approach is expected to provide more accurate results compared to the standard ap-

proximations. The second attractive direction of the future research is related to the

application of the projection technique for the TB model parameterization, which gives

us access to effective multi-band models of a broad variety of systems and enables to

solve many relevant open questions. As was already mentioned in the end of Chapter 5,

with the projection technique it is in principle possible to accurately and unambiguously

calculate TB parameters for supercells, such as the Bi2Sr2CaCu2O8+δ supercell, even in

the case of multiple bands. This technique is a powerful computational tool for studies

of inhomogeneity effects in strongly correlated systems.





Appendix A

Additional information for

Cs2CuCl4 and Cs2CuBr4

A.1 Computational details of the Cs2CuCl4 and Cs2CuBr4

crystal structure optimization

The DFT crystal structure optimizations for Cs2CuCl4 and Cs2CuBr4 are performed

with the FPLO code (Ref. [Koepernik99], Section 2.2.2), in the scalar relativistic ap-

proximation with up to 512 k-points in the full Brillouin zone.

The antiferromagnetic spin arrangement of the GGA[afm] and GGA+U[afm] optimiza-

tion schemes is shown in Fig. A.1, where the Cs2CuCl4 unit cell is doubled in the b

direction, along the Cu chains. In order to produce such an arrangement, the symmetry

of the supercell is lowered to the space group P21/c, with two inequivalent Cu atoms.

Our choice of this particular antiferromagnetic configuration is due to its resemblance to

the experimentally observed 120◦ ground state configuration [Coldea01]. The considered

antiferromagnetic configuration is collinear, which is beneficial in terms of computational

effort, and also fulfills the requirement that the strongest couplings J are satisfied and

the second strongest couplings J ′ are partially satisfied.

A.2 Experimental and relaxed crystal structures of

Cs2CuCl4 and Cs2CuBr4

Below, we provide the Cs2CuCl4 and Cs2CuBr4 relative atomic positions obtained after

structural optimization within different schemes. For a quick reference, we also cite
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b 

c 

Figure A.1: Cu spin configuration of a 1 × 2 × 1 supercell of Cs2CuCl4 adopted for
the structural optimization within the GGA+U[afm] scheme.

Ref. [Bailleul91] for the experimentally found structure of Cs2CuCl4 and Ref. [Morosin60]

for that of Cs2CuBr4.

In the case of Cs2CuCl4, for the experimental structure and structures relaxed with

non-spin-resolved and ferromagnetic calculations, the lattice constants are a = 9.769 Å,

b = 7.607 Å, c = 12.381 Å and the space group is Pnma. The structures relaxed with

antiferromagnetic calculations (GGA[afm] and GGA+U[afm]), for which the relaxation

was constrained by the symmetry of the P21/c space group in a supercell, were found to

eventually belong to the same space group P21/c but in a reduced cell, with the same

unit cell parameters as those of the original full-symmetry unit cell of the compound.

LDA[nm] relaxed structure of Cs2CuCl4

x y z

Cs(1) 0.1322 0.25 0.1005

Cs(2) 0.9837 0.75 0.3287

Cu 0.2322 0.25 0.4149

Cl(1) 0.0115 0.25 0.3692

Cl(2) 0.3494 0.25 0.5697

Cl(3) 0.2824 0.9772 0.3654
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GGA[nm] relaxed structure of Cs2CuCl4

x y z

Cs(1) 0.1329 0.25 0.1050

Cs(2) 0.9864 0.75 0.3321

Cu 0.2320 0.25 0.4165

Cl(1) 0.0045 0.25 0.3751

Cl(2) 0.3507 0.25 0.5743

Cl(3) 0.2878 0.9779 0.3615

GGA[fm] relaxed structure of Cs2CuCl4

x y z

Cs(1) 0.1318 0.25 0.1042

Cs(2) 0.9903 0.75 0.3308

Cu 0.2311 0.25 0.4178

Cl(1) 0.0039 0.25 0.3768

Cl(2) 0.3479 0.25 0.5764

Cl(3) 0.2918 0.9823 0.3588

GGA+U[fm] relaxed structure of Cs2CuCl4

x y z

Cs(1) 0.1321 0.25 0.1026

Cs(2) 0.9948 0.75 0.3302

Cu 0.2320 0.25 0.4175

Cl(1) 0.0043 0.25 0.3791

Cl(2) 0.3442 0.25 0.5779

Cl(3) 0.2961 0.9848 0.3556
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GGA[afm] relaxed structure of Cs2CuCl4

x y z

Cs(1) 0.1317 0.2503 0.1044

Cs(2) 0.9899 0.7504 0.3309

Cu 0.2312 0.2502 0.4177

Cl(1) 0.0037 0.2497 0.3765

Cl(2) 0.3483 0.2507 0.5762

Cl(3a) 0.2912 0.5181 0.3591

Cl(3b) 0.2916 0.9823 0.3595

GGA+U[afm] relaxed structure of Cs2CuCl4

x y z

Cs(1) 0.1321 0.2501 0.1029

Cs(2) 0.9946 0.7501 0.3302

Cu 0.2319 0.2501 0.4175

Cl(1) 0.0037 0.2499 0.3790

Cl(2) 0.3446 0.2501 0.5777

Cl(3a) 0.2959 0.5151 0.3558

Cl(3b) 0.2959 0.9851 0.3557

Experimentally determined structure of Cs2CuCl4

x y z

Cs(1) 0.1340 0.25 0.1031

Cs(2) 0.9433 0.75 0.3252

Cu 0.2302 0.25 0.4182

Cl(1) 0.0050 0.25 0.3820

Cl(2) 0.3433 0.25 0.5739

Cl(3) 0.2936 0.9881 0.3550
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In the case of Cs2CuBr4, the lattice constants are a = 10.195 Å, b = 7.965 Å, c =

12.936 Å and the space group is Pnma.

LDA[nm] relaxed structure of Cs2CuBr4

x y z

Cs(1) 0.1244 0.25 0.1030

Cs(2) 0.0142 0.25 0.6638

Cu 0.2345 0.25 0.4159

Br(1) 0.0090 0.25 0.3715

Br(2) 0.3497 0.25 0.5751

Br(3) 0.2882 0.5267 0.3649

GGA[nm] relaxed structure of Cs2CuBr4

x y z

Cs(1) 0.1272 0.25 0.1072

Cs(2) 0.0117 0.25 0.6619

Cu 0.2322 0.25 0.4168

Br(1) 0.0001 0.25 0.3756

Br(2) 0.3499 0.25 0.5787

Br(3) 0.2921 0.5257 0.3603

GGA[fm] relaxed structure of Cs2CuBr4

x y z

Cs(1) 0.1260 0.25 0.1059

Cs(2) 0.0060 0.25 0.6628

Cu 0.2312 0.25 0.4187

Br(1) -0.0002 0.25 0.3773

Br(2) 0.3456 0.25 0.5818

Br(3) 0.2977 0.5197 0.3570
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GGA+U[fm] relaxed structure of Cs2CuBr4

x y z

Cs(1) 0.1268 0.25 0.1044

Cs(2) 0.0030 0.25 0.6637

Cu 0.2326 0.25 0.4180

Br(1) 0.0004 0.25 0.3789

Br(2) 0.3435 0.25 0.5825

Br(3) 0.3004 0.5177 0.3542

Experimentally determined structure of Cs2CuBr4

x y z

Cs(1) 0.1290 0.25 0.1058

Cs(2) 0.0049 0.25 0.6694

Cu 0.2311 0.25 0.4187

Br(1) 0.0010 0.25 0.3819

Br(2) 0.3440 0.25 0.5797

Br(3) 0.2960 0.5138 0.3546

A.3 Tight-binding model for Cs2CuBr4

The bandstructures of Cs2CuBr4 that have been calculated using the experimental and

relaxed structural parameters (Fig. 4.7) are parametrized in terms of three-band TB

models by means of the Wannier function projection method (Section 2.5.1). The three-

band TB model includes the Cu 3dx2−y2 , 3dxz and 3dyz orbitals making up the t2g

states in the local coordinate frame, which we choose to be rotated by 45° around the

z axis with respect to the coordinate frame shown in Fig. 4.5 (c). With this choice, the

number of independent model parameters has been found to be minimal. The five sets

of the TB model parameters corresponding to the LDA[nm], GGA[nm], GGA[fm] and

GGA+U[fm] relaxed structures as well as to the experimental structure of Cs2CuBr4

are presented in Table A.1. In the case of the LDA[nm] relaxed structure, where the

Cu 3dx2−y2 band at the Fermi level is well separated, the parameterization is performed

for the single-band model, similarly to the Cs2CuCl4 case. To illustrate the excellent

agreement between the model and DFT bandstructures that can be achieved with the

projection method, we show in Fig. A.2 the model (red dashed lines) and DFT (black

solid lines) bandstructures of Cs2CuBr4, calculated using the experimental structural

data. The model bandstructure has been obtained from a model that includes 22 nearest



A.4. Calculation of exchange couplings for Cs2CuCl4 and Cs2CuBr4: Computational
details 135

 Y Γ           Z           U           X           Γ           T           Y           
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

E
n

er
g

y
 (

eV
)

E
F

Figure A.2: The DFT (black solid lines) and TB model (red dashed lines) bandstruc-
tures of Cs2CuBr4, calculated with the experimental structural data.

neighbors and has 151 independent model parameters that describe various intra- and

interorbital electron hopping integrals.

A.4 Calculation of exchange couplings for Cs2CuCl4 and

Cs2CuBr4: Computational details

For Cs2CuCl4 and Cs2CuBr4, we take into account seven important exchange cou-

plings corresponding to the first seven hopping integrals in Table 4.3, which are J ,

J ′, J ′′eff = J ′′ + J6, J1, J3, J7 and J8 [see Fig. 4.8]. This choice defines the number of

antiferromagnetic configurations to be calculated. The combined coupling J ′′eff is intro-

duced because the considered unit cell (which is a 2 × 2 × 1 supercell) does not allow

a separate calculation of the couplings J ′′ and J6 but only their calculation as a sum.

Since J ′′ is presumably larger than J6, J ′′eff gives an approximate value of J ′′.

The choice of the supercell is dictated by the peculiarities of the Cs2CuCl4 and Cs2CuBr4

magnetic sublattices. First, since the candidate for the largest coupling J connects Cu
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Table A.1: The TB model parameters in meV for the Cs2CuBr4 Cu 3dx2−y2 , 3dxz
and 3dyz bands, calculated from the various Cs2CuBr4 crystal structures by means of

the projection technique.

LDA[nm] GGA[nm] GGA[fm] GGA+U[fm] exp.

µ dx2−y2 ↔ dx2−y2 -19.1 -52.3 -45.4 -45.9 -41.0
dxz ↔ dxz -425.1 -329.2 -289.3 -310.0
dyz ↔ dyz -476.9 -410.4 -364.0 -393.9
dx2−y2 ↔ dyz 16.5 16.7 13.6 13.3

t dx2−y2 ↔ dx2−y2 57.3 46.0 38.3 33.5 30.6
dx2−y2 ↔ dxz 59.4 48.7 44.1 41.0
dx2−y2 ↔ dyz 0.4 0.6 0.8 0.8
dxz ↔ dxz 119.1 110.1 105.8 100.2
dxz ↔ dyz 1.4 0.6 0.5 0.7
dyz ↔ dyz 17.1 15.0 14.1 13.0

t′ dx2−y2 ↔ dx2−y2 17.0 20.4 22.7 23.7 23.7
dx2−y2 ↔ dxz 10.2 10.8 10.8 11.0
dx2−y2 ↔ dxz 11.9 15.7 17.4 17.0
dx2−y2 ↔ dyz 5.5 5.7 6.1 6.0
dx2−y2 ↔ dyz 15.2 16.9 17.6 17.1
dxz ↔ dxz 0.1 0.2 0.3 0.6
dxz ↔ dyz 2.9 4.2 4.9 5.0
dxz ↔ dyz 13.7 14.3 14.7 14.2
dyz ↔ dyz 3.5 4.8 5.5 5.4

t′′ dx2−y2 ↔ dx2−y2 3.9 0.6 5.8 6.4 7.2
dx2−y2 ↔ dyz 11.2 18.8 21.7 23.4
dx2−y2 ↔ dyz 6.4 7.7 8.2 8.4
dxz ↔ dxz 15.0 14.2 14.0 12.5
dyz ↔ dyz 2.2 1.5 1.6 1.0

t1 dx2−y2 ↔ dx2−y2 10.6 9.6 8.0 7.6 8.8
dx2−y2 ↔ dxz 5.3 4.1 3.8 5.1
dx2−y2 ↔ dyz 1.3 1.8 2.2 1.8
dxz ↔ dxz 3.0 2.3 2.2 2.8
dxz ↔ dyz 3.7 3.3 2.8 2.8
dyz ↔ dyz 11.6 10.6 10.1 9.9

t3 dx2−y2 ↔ dx2−y2 15.1 15.8 13.8 11.4 10.2
dx2−y2 ↔ dxz 4.1 4.8 5.5 5.4
dx2−y2 ↔ dyz 12.7 13.0 13.2 11.5
dxz ↔ dxz 5.6 7.8 8.5 8.4
dxz ↔ dyz 26.3 27.7 27.7 27.0
dyz ↔ dyz 50.5 49.2 48.0 46.9
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Figure A.3: Labeling of the Cu atoms in the 2 × 2 × 1 supercell of Cs2CuCl4 or
Cs2CuBr4. The black and gray circles denote Cu atoms that belong to adjacent Cu
layers, parallel to the bc plane. Since the supercell contains two unit cells along the a
axis, the black and gray Cu lattices are doubled, which is not visible in the bc projection.
The two encircled figures, one on top of the other, label the Cu atoms that have common
y and z coordinates, but whose x coordinates differ by the lattice constant a such that

the top figure refers to the Cu atom with larger x coordinate.

atoms that belong to adjacent primitive unit cells in Cs2CuCl4 and Cs2CuBr4, the primi-

tive unit cell has to be doubled in the b direction. Otherwise, J would be always canceled

in any EFM − EAFM
i difference. Also, in order to be able to discern the inequivalent

couplings J1 and J3, we double the unit cell once more in the a direction and thus end up

with a 2× 2× 1 supercell. In the supercell, we set eight out of 16 Cu atoms inequivalent

in order to be able to arrange the required seven antiferromagnetic configurations within

the same unit cell space group, which is P-1. It is important to stay within the same

space group during total energy calculations for Cs2CuCl4 and Cs2CuBr4 as in these

compounds the exchange couplings are small and integration over differently sampled

Brillouin zones can affect the accuracy of the results.

Given that the Cu atoms in the 2×2×1 supercell of Cs2CuCl4 or Cs2CuBr4 are labeled

as shown in Fig. A.3, the seven antiferromagnetic (or ferrimagnetic) spin configurations,

considered in order to calculate exchange couplings J , J ′, J ′′eff, J1, J3, J7 and J8 by the

total energy difference method, are the following:
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Cu1 Cu2 Cu3 Cu4 Cu5 Cu6 Cu7 Cu8

conf. 1: ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
conf. 2: ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓
conf. 3: ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓
conf. 4: ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓
conf. 5: ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↑
conf. 6: ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↑
conf. 7: ↑ ↓ ↓ ↓ ↓ ↑ ↑ ↑

Each of these spin configurations leads to a corresponding equation:

2J +2J ′ + J1 + J3 +4J8 = E1/4,

2J ′ + J ′′eff +2J8 = E2/8,

2J ′ + J ′′eff + J1 +2J8 + J7 = E3/4,

J ′′eff + J1 + J3 +2J8 +2J7 = E4/4,

2J +2J ′ + J ′′eff + J1 + J3 +2J8 +2J7 = E5/4,

4J ′ + J ′′eff + J1 + J3 +2J8 +2J7 = E6/4,

4J +8J ′ +6J ′′eff +3J1 +3J3 +8J8 +4J7 = E7,

where Ei = EFM − EAFM
i , i = 1, . . . , 7, with EFM being the energy of the supercell in

the ferromagnetic configuration of Cu spins and EAFM
i being the energy of the supercell

in the antiferromagnetic configuration i.

The total energy calculations were performed with the FPLO code. Test calculations

with Wien2k confirm the results. In the FPLO code, we chose a 5 × 4 × 3 mesh of

k-points for the supercell Brillouin zone integration and kept other settings at default.

The scheme to compute magnetic exchange for a given structure consisted of a series of

total energy calculations within the AMF version of the GGA+U, with U = 4, 6 and

8 eV and J = 1 eV in all cases. This scheme was applied to the experimental structures

of Cs2CuCl4 and Cs2CuBr4 as well as to their GGA[nm], GGA[fm] and GGA+U[fm]

relaxed structures.
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[Blöchl94] P. E. Blöchl. Projector augmented-wave method. Phys. Rev. B

50, 17953–17979 (1994).

[Bohm53] David Bohm and David Pines. A Collective Description of Elec-

tron Interactions: III. Coulomb Interactions in a Degenerate Elec-

tron Gas. Phys. Rev. 92, 609–625 (1953).

[Born27] M. Born and R. Oppenheimer. Zur Quantentheorie der Molekle.

Annalen der Physik 84, 457–484 (1927).

[Bulut93] N. Bulut and D.J. Scalapino. The effective electron-electron inter-

action in the 2D Hubbard model. Journal of Physics and Chemistry

of Solids 54, 1109 – 1113 (1993). Special Issue Spectroscopies in

Novel Superconductors.



142 BIBLIOGRAPHY

[Buzdin80] Aleksandr I. Buzdin and L. N. Bulaevskii. Spin-Peierls transition

in quasi-one-dimensional crystals. Soviet Physics Uspekhi 23, 409

(1980).

[Caimi04] G. Caimi, L. Degiorgi, N. N. Kovaleva, P. Lemmens and F. C.

Chou. Infrared optical properties of the spin-1
2 quantum magnet

TiOCl. Phys. Rev. B 69, 125108 (2004).

[Car85] R. Car and M. Parrinello. Unified Approach for Molecular Dynam-

ics and Density-Functional Theory. Phys. Rev. Lett. 55, 2471–

2474 (1985).

[Carlin85] Richard L. Carlin, Ramon Burriel, Fernando Palacio, Rachel A.

Carlin, S. F. Keij and David W. Carnegie. Linear chain antiferro-

magnetic interactions in Cs2CuCl4. J. Appl. Phys. 57, 3351–3352

(1985).

[Ceperley80] D. M. Ceperley and B. J. Alder. Ground State of the Electron Gas

by a Stochastic Method. Phys. Rev. Lett. 45, 566–569 (1980).

[Chao77] K. A. Chao, J. Spalek and A. M. Oles. Kinetic exchange interac-

tion in a narrow S-band. Journal of Physics C: Solid State Physics

10, L271 (1977).

[Chung03] Chung-Hou Chung, Klaus Voelker and Yong Baek Kim. Statistics

of spinons in the spin-liquid phase of Cs2CuCl4. Phys. Rev. B 68,

094412 (2003).

[Claeson74] Tord Claeson and Stig Lundqvist. The Microscopic Theory of

Superconductivity – Verifications and Extensions. Physica Scripta

10, 5 (1974).

[Coldea96] R. Coldea, D. A. Tennant, R. A. Cowley, D. F. McMorrow,

B. Dorner and Z. Tylczynski. Neutron scattering study of the

magnetic structure of Cs2CuCl4. Journal of Physics: Condensed

Matter 8, 7473–7491 (1996).

[Coldea01] R. Coldea, D. A. Tennant, A. M. Tsvelik and Z. Tylczynski. Ex-

perimental Realization of a 2D Fractional Quantum Spin Liquid.

Phys. Rev. Lett. 86, 1335–1338 (2001).

[Coldea02] R. Coldea, D. A. Tennant, K. Habicht, P. Smeibidl, C. Wolters

and Z. Tylczynski. Direct Measurement of the Spin Hamiltonian



143

and Observation of Condensation of Magnons in the 2D Frus-

trated Quantum Magnet Cs2CuCl4. Phys. Rev. Lett. 88, 137203

(2002).

[Coldea03] R. Coldea, D. A. Tennant and Z. Tylczynski. Extended scatter-

ing continua characteristic of spin fractionalization in the two-

dimensional frustrated quantum magnet Cs2CuCl4 observed by

neutron scattering. Phys. Rev. B 68, 134424 (2003).

[Cong11] P. T. Cong, B. Wolf, M. de Souza, N. Krüger, A. A. Haghighi-
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[Krüger10] N. Krüger, S. Belz, F. Schossau, A. A. Haghighirad, P. T. Cong,

B. Wolf, S. Gottlieb-Schoenmeyer, F. Ritter and W. Assmus. Sta-

ble Phases of the Cs2CuCl4−xBrx Mixed Systems. Crystal Growth

& Design 10, 4456–4462 (2010).

[Kugel82] Kliment I. Kugel and D. I. Khomskii. The Jahn-Teller effect and

magnetism: transition metal compounds. Soviet Physics Uspekhi

25, 231 (1982).

[Kuntscher06] C. A. Kuntscher, S. Frank, A. Pashkin, M. Hoinkis, M. Klemm,

M. Sing, S. Horn and R. Claessen. Possible pressure-induced

insulator-to-metal transition in low-dimensional TiOCl. Phys.

Rev. B 74, 184402 (2006).

[Laasonen91] Kari Laasonen, Roberto Car, Changyol Lee and David Vanderbilt.

Implementation of ultrasoft pseudopotentials in ab initio molecu-

lar dynamics. Phys. Rev. B 43, 6796–6799 (1991).

[Lang02] K. M. Lang, V. Madhavan, J. E. Hoffman1, E. W. Hud-

son, H. Eisaki, S. Uchida and J. C. Davis. Imaging the

granular structure of high-Tc superconductivity in underdoped

Bi2Sr2CaCu2O8+δ. Nature 415, 412–416 (2002).

[Langreth83] David C. Langreth and M. J. Mehl. Beyond the local-density ap-

proximation in calculations of ground-state electronic properties.

Phys. Rev. B 28, 1809–1834 (1983).

[Lee06] Patrick A. Lee, Naoto Nagaosa and Xiao-Gang Wen. Doping

a Mott insulator: Physics of high-temperature superconductivity.

Rev. Mod. Phys. 78, 17–85 (2006).

[Lee10] Hunpyo Lee, Yu-Zhong Zhang, Harald O. Jeschke, Roser Valent́ı

and Hartmut Monien. Dynamical Cluster Approximation Study

of the Anisotropic Two-Orbital Hubbard Model. Phys. Rev. Lett.

104, 026402 (2010).

[Lemmens04] P. Lemmens, K. Y. Choi, G. Caimi, L. Degiorgi, N. N. Kovaleva,

A. Seidel and F. C. Chou. Giant phonon softening in the pseudo-

gap phase of the quantum spin system TiOCl. Phys. Rev. B 70,

134429 (2004).

[Liang88] J. K. Liang, S. S. Xie, G. C. Che, J. Q. Huang, Y. L. Zhang

and Z. X. Zhao. Crystal structure and superconductivity of

Bi2Sr2CaCu2O8 compound. Mod. Phys. Lett. B 2, 483 (1988).



149

[Lichtenstein98] A. I. Lichtenstein and M. I. Katsnelson. Ab initio calculations of

quasiparticle band structure in correlated systems: LDA++ ap-

proach. Phys. Rev. B 57, 6884–6895 (1998).

[Lieb68] Elliott H. Lieb and F. Y. Wu. Absence of Mott Transition in

an Exact Solution of the Short-Range, One-Band Model in One

Dimension. Phys. Rev. Lett. 20, 1445–1448 (1968).

[Lindgren86] I. Lindgren and J. Morrison. Atomic Many-Body Theory.

Springer-Verlag, Berlin (1986).

[Madsen05] G. K. H. Madsen and P. Novák. Charge order in magnetite. An

LDA+U study. EPL (Europhysics Letters) 69, 777 (2005).

[Maeda88] Hiroshi Maeda, Yoshiaki Tanaka, Masao Fukutomi and Toshi-

hisa Asano. A New High-Tc Oxide Superconductor without a Rare

Earth Element. Japanese Journal of Applied Physics 27, L209–

L210 (1988).

[Mahan81] Gerald D. Mahan. Many-Particle Physics. Plenum Press, New

York (1981).

[Maitra07] Tulika Maitra and Roser Valent́ı. Orbital Order in ZnV2O4. Phys.

Rev. Lett. 99, 126401 (2007).

[Markiewicz05] R. S. Markiewicz, S. Sahrakorpi, M. Lindroos, Hsin Lin and

A. Bansil. One-band tight-binding model parametrization of the

high- Tc cuprates including the effect of kz dispersion. Phys. Rev.

B 72, 054519 (2005).

[Martin88] S. Martin, A. T. Fiory, R. M. Fleming, L. F. Schneemeyer and

J. V. Waszczak. Temperature Dependence of the Resistivity Ten-

sor in Superconducting Bi2Sr2.2Ca0.8 Cu2O8 Crystals. Phys. Rev.

Lett. 60, 2194–2197 (1988).
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Zero-Field Incommensurate Spin-Peierls Phase with Interchain

Frustration in TiOCl. Phys. Rev. Lett. 95, 097203 (2005).

[Ruckenstein87] Andrei E. Ruckenstein, Peter J. Hirschfeld and J. Appel. Mean-

field theory of high-Tc superconductivity: The superexchange

mechanism. Phys. Rev. B 36, 857–860 (1987).

[Saha-Dasgupta04] T. Saha-Dasgupta, R. Valent́ı, H. Rosner and C. Gros. TiOCl,

an orbital-ordered system? EPL (Europhysics Letters) 67, 63

(2004).

[Scalapino86] D. J. Scalapino, E. Loh and J. E. Hirsch. d-wave pairing near a

spin-density-wave instability. Phys. Rev. B 34, 8190–8192 (1986).

[Scalapino95] D. J. Scalapino. The case for dx2−y2 pairing in the cuprate super-

conductors. Physics Reports 250, 329–365 (1995).

[Seidel03] Alexander Seidel, Chris A. Marianetti, F. C. Chou, Gerbrand

Ceder and Patrick A. Lee. S = 1
2 chains and spin-Peierls transi-

tion in TiOCl. Phys. Rev. B 67, 020405 (2003).
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