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We consider the dynamics of a charged particle (e.g., an electron) oscillating in a laser field in flat 

spacetime and describe it in terms of the variable mass metric. By applying Einstein’s equivalence 

principle, we show that, after representing the electron motion in a time-dependent manner, the variable 

mass metric takes the form of the Friedmann–Lemaître–Robertson–Walker metric. We quantize a pseudo-

scalar field in this spacetime and derive the production rate of electrically neutral, spinless particles. We 

show that this approach can provide an alternative experimental method to axion searches.

 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

It is well known that particle-production phenomena can occur 
in a curved or dynamic spacetime [1]. For example, thermal ra-
diation can arise from particle production near the event horizon 

of a black hole, an effect commonly known as the Hawking radia-
tion [2,3]. This is a quite general fact, not confined to black holes. 
As hypothesized by Davies, Unruh and Fulling [4–6], an observer 
in a uniformly accelerated frame experiences the surrounding vac-
uum as filled with thermal radiation with temperature TDU =

h̄a/2πkBc = 4.05 ×10−23a K, where a is the acceleration (in cm/s2) 
and kB is the Boltzmann constant. The expansion of the universe 
also gives rise to a curved metric called the Friedmann–Lemaître–
Robertson–Walker (FLRW) metric: ds2 = dt2−h2(t)dx2 . Here h(t) is 
the scale factor which quantifies the relative expansion of the uni-
verse. In the FLRW metric, particles are spontaneously produced 

as a result of the expansion of the universe [7–10]. Of particular 
interest is the inflationary period, from 10−36 s until 10−32 s af-
ter the big bang. During this time, it is thought that the universe 
expanded exponentially, and spacetime was highly curved and dy-
namic. Understanding particle production during and after inflation 

[11–14] may help answer major questions like why the universe 
today is isotropic and flat, and why there is more matter than an-
timatter [15,16].

The latter is an example of a spontaneously broken symme-
try that may require the existence of particles beyond the stan-
dard model. The axion is one of such particles, a pseudo Nambu–
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Goldstone boson which arises from the spontaneously broken 

Peccei–Quinn symmetry [17]. Both astrophysical bounds from stars 
and galaxies [18,19] as well as laboratory searches [20,21] have 
provided limits for the mass and coupling constants of these hy-
pothetical particles. While experimental searches so far have not 
yet identified an axion candidate, the parameter space left to ex-
plore is still large and there is a need of more sensitive probes 
before the axion existence can be confidently ruled out.

Recent advancements in ultra-high intensity lasers [22] have 
stirred interest in the possibility of detecting both the Schwinger 
effect and dynamic spacetime phenomena [23–26]. Projects under 
development include the European Extreme Light Infrastructure 
[27], which will provide radiation beams of intensities exceeding 
1023 W/cm2; the X-ray free electron lasers (XFEL) based at DESY 

Hamburg, and the LCLS (Linac Coherent Light Source) facility at 
SLAC, where highly tunable x-ray pulses with narrow bandwidth 

and high intensity are already available. Over the last few years, a 
series of studies have been performed to assess the possibility of 
using collisions of high intensity lasers as a probe for axion-like-
particles [28–32].

In the current letter, we propose a mechanism for pseudoscalar 
particle production in a laser field, whereby the variation of the 
metric around a charged particle oscillating in the laser field gives 
rise to spontaneous particle production. In fact, the model pre-
sented here is not restricted to accelerated charged observers, and 

it can be also applied to any accelerated frame. For example, neu-
tral particles could be accelerated using radiation pressure from a 
laser beam [33], but the details of such mechanisms are outside 
the scope of the current paper.

https://doi.org/10.1016/j.physletb.2017.12.039
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We start with the Lagrangian density of a free, massive, 

minimally-coupled real pseudo-scalar field φ(x) under the FLRW 

metric gμν = h2(η)ημν , where ημν = diag(1, −1, −1, −1) is the 

Minkowski metric and h(η) is the scale factor [34]:

L =
1

2

√

−det gμν

[

gμν(∂μφ)(∂νφ) −m2φ2
]

. (1)

Here x0 = η is the conformal time (not to be confused with the 
Minkowski metric ημν ) which is related to the physical time t
by dt/dη = h(η). Natural units (h̄ = c = ǫ0 = 1) are used in all 
the derivations, and conversion to physical units will be explic-
itly mentioned. We notice that while the field φ(x) is assumed 

to describe a pseudoscalar particle (that is, an axion or axion-
like particle), the Lagrangian density (1) applies equally well to 

a scalar particle of mass m. This ambiguity means that, if both 

pseudoscalar and scalar particles of mass m are allowed by the 
underlying model (whatever theory beyond the standard model of 
particle physics may be), then the axion density in this dynami-
cal spacetime is only a fraction P ≤ 1 of the total number of the 
created particles.

The equation of motion of the field is the one that extrem-

ises the action functional S =
∫

d4xL . The extremisation condition 

is equivalent to Euler–Lagrange equation, giving for our case the 

Klein–Gordon equation. The next step consists in the procedure 

of canonical quantisation of the field φ to provide a framework 

for particles to be created and annihilated. In FLRW spacetime, 

however, the vacuum states at different times, |0〉η0
and |0〉η1

are 

different, and a notion of particle number that is consistent at all 

times is unattainable. To circumvent the ambiguity about the vac-

uum state, we first assume the existence of a preferred particle 

model that provides time-independent creation/annihilation oper-

ators from which we can construct a reference vacuum state. Such 

conditions are fulfilled, for example, when looking at the solu-

tion of the Klein–Gordon equation at asymptotic times (η → ±∞)

[35–37]. These are used to define time-dependent creation and an-

nihilation operators, related to the asymptotic ones by Bogoliubov 

transformation. The procedure outlined above corresponds to the 

kinetic approach to quantum field theory, leading to the so called 

quantum Vlasov equation [36,38]. We obtain (see e.g., [37]),

dNk

dη
(η) =

ω̇k(η)

2ωk(η)

η
∫

η0

dη′ ω̇k(η
′)

ωk(η′)
[1+ 2Nk(η

′)]

× cos[2	k(η) − 2	k(η
′)],

(2)

where Nk is the time-dependent number of pairs of spatial 

mode k,

ω2
k = k2 +m2h2 −

ḧ

h
, (3)

with the dot notation representing differentiation by η (i.e., ḧ =

d2h/dη2) and

	k(η) =

η
∫

dη′ ωk(η
′). (4)

The time η0 is defined such that Nk(η0) = 0. As we will see 
later on, the time η0 refers to the time the laser pulse starts. In 

principle, a non-zero population of cold axions may be already 
present due to vacuum realignment in the early universe [39]. 
Assuming that these axions are the main constituent of dark mat-
ter, the current upper limit on their comoving density is ρdm =

9.6 × 10−12 eV4 [40], which is orders of magnitude less than one 
axion on average in the four-volume of a laser pulse.

The quantum Vlasov equation, eq. (2), is formally similar to 

the one obtained by Kluger et al. [36] and Schmidt et al. [41] for 
bosonic pair production in flat spacetime under an oscillating elec-
tron field. However, in our case, it has been specialized such that 
there is no explicit presence of an electric field and the spacetime 
is more generally defined by the FLRW metric. This is in fact the 
case for field theories in background fields. Since the particle num-
ber operator does not, in general, commute with the interaction 

Hamiltonian, one must be cautious interpreting results at interme-
diate times. Different particle number definitions that coincide at 
asymptotic times, may disagree by orders of magnitude at interme-
diate times (this phenomenon has been recently studied using the 
superadiabatic basis to analyse the Schwinger effect [42]). We note 
the quantum Vlasov equation’s non-Markovian character [43]: the 
term 1 + 2Nk(η

′) in the integral means that the equation is non-
local in time, i.e., the production rate of pairs is dependent on the 
history of the system.

Having obtained the particle production rate in an expand-

ing spacetime, we now describe the dynamics of a particle in a 

laser field with an alternative metric that, as we shall see, bears 

many resemblances with the FLRW metric. In our approach we do 

not quantise the laser electromagnetic field nor the metric, which 

will be treated classically as existing in the background. Following 

closely the derivation by Crowley et al. [44,45], we consider the 

dynamics of a free particle of mass m0 under the variable mass 

metric [46]. The name of the metric derives from the appearance 

of the “variable mass” hm0 in the place of the rest mass m0 in 

dynamical equations that are similar to flat spacetime equations. 

We have, for the variable mass metric, gμν = h2(x)ημν , where 

ημν is the Minkowski metric and h(x) is a spatial field. In gen-

eral relativity, the dynamics of a free particle of mass m0 in a 

spacetime with metric gμν is determined by its Lagrangian [47]

L = −(gμν v
μvν)1/2m0 , where vμ = dxμ/dx0 is the 4-velocity. The 

Lagrangian for the variable mass metric is thus [44], L = −hm0/γ , 

where γ = (1 − v2)−1/2 . The canonical 3-momentum is given by 

p = ∂L/∂v = γ hm0v, and the Hamiltonian is then H = p · v − L =

γ hm0 . Using Hamilton’s equations one then obtains:

H = (p2 + h2m2
0)

1/2, (5)

and

a = v̇ = −
1

γ 2

∂ lnh

∂x
, (6)

where we have used the fact that the Hamiltonian has no explicit 
time dependence.

Let us now consider the dynamics of a charged particle, with 

charge q and mass m0 , oscillating, with frequency ν , in a laser 

pulse in flat spacetime, ημν . The Lagrangian for this particle is 

L = −m0/γ + qv · A, which gives us the canonical momentum 

p = γm0v + qA and the Hamiltonian H = [(p − qA)2 + m2
0]

1/2 . 

We can decompose the momentum into parallel and perpendic-

ular components with respect to A, that is p = p‖ + p⊥ . Thus if 

v0 is the velocity of the particle due to the influence of the laser 

field, and any remaining components are sufficiently small, we ap-

proximately have (p‖ −qA)2 ≈ γ 2
0 m

2
0v

2
0 , with γ0 = (1 − v20)

−1/2 . We 

notice that |p| ∼ |p⊥| ≈ γ1γ0m0v1 , where γ1 = (1 − v21)
−1/2 is cal-

culated with respect to a particle velocity v1 which is not associ-

ated to the motions induced by the laser field (that is, v1 = v − v0 , 

and v1 ⊥ v0). This holds under the condition that either v0 ≪ 1 or 

v1 ≪ 1. Hence,

H = (p2 + γ 2
0 m

2
0)

1/2, (7)
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and

a = −
1

γ 2
1

∂ lnγ0

∂x
. (8)

We immediately notice that, if we make the substitutions γ0 → h

and γ1 → γ , these last two equations are the same as (5) and (6). 
Einstein’s equivalence principle asserts that an observer cannot dis-
tinguish between his frame’s acceleration in flat spacetime and a 
metric field whose geodesic has equal acceleration, i.e., the physics 
is the same in both cases. Hence, the dynamics of the charged 

particle oscillating in the laser field in flat spacetime may be equiv-
alently described by the variable mass metric Hamiltonian of a free 
particle.

The idea that electromagnetic acceleration can give rise to dy-
namics that can be equivalently described by the variable mass 
metric will now be used to represent h in a time-dependent func-
tional form so that it becomes equivalent to the scale factor of 
the FLRW metric. This key result will allow us to employ the field 

quantisation formalism developed earlier and obtain the particle 
production rate with the quantum FLRW-Vlasov equation. In the 
frame of the charged particle the vacuum acquires a finite number 
of particles of mass m. As discussed in the introduction, if allowed 

by the underlying theory, the vacuum is filled by both scalar and 

pseudoscalar particles of the same mass. The fraction of axion par-
ticles is given by P , a free parameter of the underlying theory. Let 
us assume for the time being P = 1.

The fact that the vacuum is filled by pseudoscalars has an ob-

servable signature in the laboratory frame only if the vacuum in 

the accelerated frame couples with a detector [48]. To accomplish 

this, we assume that the accelerated motion occurs in the pres-

ence of an external magnetic field, B, aligned with the velocity of 

the charge. We can then modify the Lagrangian density by an ex-

tra term which describes the coupling of an axion field with the 

photons, given by [18,49]

La =

√

−det gμν
1

M
E · Btotal φ, (9)

where 1/M ≡ αgγ /π fa is the coupling constant for QCD axions 

(while this is not required, assuming QCD axions allows us to per-

form numerical estimates), with α the fine structure constant, gγ

a coefficient of order unity which depends on the details of the ax-

ion model, and fa the axion decay constant [18]. There are several 

interactions described by this term:

E · Btotal = EEE · B+EEE · BLaser + ELaser · B

+ Ee− · B+ Ee− · BLaser, (10)

where EEE is the electric field of emitted photons, BLaser is the mag-

netic field of the laser, and Ee− the electric field of the accelerated 

electron. All other terms are zero because i) the laser is a plane 

wave; ii) for the constant magnetic field, E = 0 or iii) Be− (the 

magnetic field of the accelerated electron) is negligible. This final 

point is shown by considering the Lenard–Wiechert potential of 

an accelerated electron [50], whose magnetic field is a factor β

smaller than the electric field, and in our treatment β ≪ 1 (where 

β = v0/c). Furthermore, we will neglect the effect of the electric 

Coulomb field of the electron because we are in the perturbative 

regime of ξ ≪ 1 (where ξ is the laser intensity parameter, see be-

low), and the energies of the produced axions can be, at the most, 

of the order of eV, corresponding to a minimum Compton wave-

length of the order of a micron. This means the axion wavefunc-

tion would sample regions of the Coulomb field that are mainly 

much less than the laser background field strength (at a distance of 

1 μm, the electric field of an electron has a strength ≈ 10 V/cm). 

In addition, we will also neglect axion regeneration due to the 

laser background. To justify this we compare the two quantities:

CB =

(

BL

m0

)2

; CE = (ξ�)2 ,

which occur in expressions for regeneration in a magnetic field 

and a plane-wave laser respectively (here m0 is the electron rest 
mass, and we use � = ντ , where ν is the laser frequency and τ
its pulse duration). Then a 50 kG magnetic field of length 1 m gives 
CB ≈ 108 and a 1019 W/cm2 optical laser of duration 100 fs gives 
CE ≈ 4 × 105 . Neglecting the laser contribution is consistent with 

other approximations made throughout this work. On the other 
hand, we consider the acceleration of the electron to be entirely 
due to the laser pulse because the magnitude of the force due to 

the magnetic field is of the order βB . This is expected to be much 

less that the acceleration due to the laser field since: i) β ≪ 1
and ii) the magnetic field to be employed for regeneration is much 

weaker than the electric field of the laser pulse.

Therefore we take E · Btotal ≈ EEE · B. In the accelerated frame, 

the pseudoscalar particles forming the vacuum couple with the 

external magnetic field to produce photons, which would be an 

observable signature. If we assume that the photon and the ax-

ion fields propagate with the same direction and phase, then the 

additional term in the Lagrangian density leads to a modified dis-

persion relation (3) (see, e.g. [51]),

ω2
k = k2 +

[

m2 +
B2

M2

(

1+
k2

m2

)]

h2 −
ḧ

h
. (11)

Only axions that interact with the external magnetic fields are 
the ones that are observed in the laboratory frame. The external 
magnetic field is the same both in the laboratory and accelerated 

frames.

We now describe the acceleration of a charge particle on mass 

m0 in a strong laser pulse, and in presence of a much weaker, 

constant, external magnetic field B (see above). We thus assume 

that the motion of the charged particles is determined by the laser 

field only. We take a laser pulse of frequency ν , four-wavevector 

̹ , phase ϕ = ̹ · x, duration τ and intensity parameter ξ [52] to be 

represented at the focus by a vector potential

A =
m0ξ

q
exp

[

−
( ϕ

�

)2
]

cosϕ ẑ, (12)

where � = ντ and ẑ is the unit vector in the z-direction. We limit 

the analysis to non-relativistic electron motion (γ0 ≈ 1), by speci-

fying that ξ ≪ 1. Assuming the particle begins at the origin with 

zero momentum in the infinite past, the velocity component in the 

field direction is ẋ · ẑ = qA/m0 , which gives:

h =
(

1 − v20

)−1/2
=

[

1− (qA/m0)
2
]−1/2

≈ 1+
q2A2

2m2
0

.

We see that h ≥ 1, meaning that space expands when the electric 
field is non-zero. This can be interpreted as the result of the in-
creased energy density of free space due to the presence of an 

electric field. In other terms, the electron acquires an effective 
mass meff = hm0 . The idea of an effective mass to describe the 
motion of electrons in intense laser beams is not new, and it is 
associated with the frequency shift of the radiation emitted by a 
particle in an intense electromagnetic field [53].

With this time-dependent form of h, the variable mass met-
ric becomes equivalent to the FLRW metric. We can thus use the 
quantum field formalism developed earlier to estimate the particle 
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production by integrating the FLRW quantum Vlasov equation (2). 
In doing so, we note that the field mass m appearing in equation 

(11) for the frequency ωk is not necessarily the same as the mass 
m0 of the oscillating particle. We assume that the test particle be-
ing accelerated by the laser field has mass m0 and charge q (e.g., 
an electron for practical calculations), while the particles that are 
being produced as a result of the transformed metric have mass m
and no charge.

Next, in the low density regime, that is, when the laser electric 

field is much smaller than the Schwinger’s critical field, we make 

the approximation [54]

Nk(η0,η) ≈
1

2

η
∫

η0

η′′
∫

η0

dη′′dη′ ω̇k(η
′)

ωk(η′)

ω̇k(η
′′)

ωk(η′′)
×

cos[2	k(η
′) − 2	k(η

′′)],

where we have assumed that Nk(η0) = 0. The integrand is sym-

metric with respect to the exchange η′ ↔ η′′ , which means it is 

symmetric about the line η′ = η′′ . Hence [55]

Nk(η0,η) ≈
1

4

∣

∣

∣

∣

η
∫

η0

dη′ ω̇k(η
′)

ωk(η′)
exp[2i	k(η

′)]

∣

∣

∣

∣

2

, (13)

where we have used the fact that the antisymmetry of the factor 
sin{2	k(η

′) − 2	k(η
′′)} with respect to the exchange η′ ↔ η′′ has 

null contribution to the integral [54,55].

From (11) we then have:

ωkω̇k =

[

(k2 +m2)
B2

M2m2
+m2

]

hḣ −
h
...
h − ḣḧ

2h2
(14)

The change in the metric perturbation depends only on the exter-

nal field, so we have h = h(ϕ), but on the other hand we wish 

to integrate over the conformal time, η. In general, the depen-

dency η(ϕ) can be complicated, but for a plane-wave background 

we can write d/dη = �−1d/dϕ where � = ̹ · p/m0 is the particle 

energy parameter [56]. As previously mentioned, of experimen-

tal relevance are the asymptotic values of observables for times 

long after the laser pulse has passed through the seed electrons 

[42]. For this reason, we integrate to finite phases, and in the fi-

nal calculated observables, take the asymptotic limit. In this vein, 

Nk(−�R, �R) ≈ 1
4 |Ik(R)|2 where:

Ik(R) =
1

ω2
k
�

R
∫

−R

[

M
2hḣ −

h
...
h − ḣḧ

2h2

]

e2i	k dϕ, (15)

where for brevity of notation we defined:

M
2 = (k2 +m2)

B2

M2m2
+m2

Let us then define Nk = limR→∞ Nk(−�R, �R). By assuming the 

hierarchy m0 ≫ m0ξ ≫ � ≥ M and expanding to lowest order in 

�−1 , terms in pre-exponents of order O (M2ξ4�) and O (ξ4�3), 

O (M2ξ2�/�2) were neglected in the integration. The leading-

order terms were then:

Nk ≈
πξ4�2(M2 + 2�2)2

27ω4
k

[

e
− �2

�2 (ωk−�)2
+ e

− �2

�2 (ωk+�)2
]

.

Integrating over all modes k gives the total particle density:

N =

∫

d3k

(2π)3
Nk(η)

=
�2ξ4m3

28π

[

(m2 + 2ν2)2

m4
I2(m,ν,τ )

+
2B2(m2 + 2ν2)

M2m4
I4(m,ν,τ ) +

(

B2

M2m2

)2

I6(m,ν,τ )

]

,

(16)

In(m,ν,τ ) =

∞
∫

0

dy yn

(y2 + 1)2

[

e−τ 2(ωk−ν)2 + e−τ 2(ωk+ν)2
]

,

(recalling � = ντ ) and we have approximated ω2
k

= m2(1 + y2)

(where y = k/m) inside the integral, and we have assumed the 

particle starts at rest, so � = ν . If one assumes � ≫ 1, then the 

integrals I2n can be approximated using the asymptotic Laplace 

method [57]. Let us take B2 ≪ M2m3τ , meaning that lower pow-

ers of B contribute more to N ≡ Nφ . The leading contribution to 

the axion number comes from the integral I2 , which in the regime 

� ≫ 1 gives:

N
(1)
φ ≈ P

ξ4ν3�

26π1/2
, (17)

where we have reintroduced via the statistical factor P the pos-
sibility that not all particle of mass m in accelerated vacuum are 
pseudoscalars.

The dependency of the axion particle production on its mass 
(with P = 1) is given in Fig. 1.

We recall that only pseudoscalar particles that have interacted 

with the external magnetic field and converted into photons are 

the ones that are observed in the laboratory frame. Thus the 

leading-order contribution to N is from I4 . This would give a num-

ber density of observed photons in the laboratory frame:

N
(1)
γ ≈ P

ξ4ν3�

26π1/2

B2

M2m2
. (18)

A question which immediately arises is how this mechanism 

of axion particle production compares, for example, with the pre-

dicted axion flux from the Sun. We take the coupling coefficient 

to be 1/M = 2 × 10−19 (m/eV) eV−1 [59]. Consider axion-like par-

ticles produced incoherently by ∼ 1014 oscillating electrons con-

fined in laser focal spot of radius w0 ∼ 0.5 mm, conditions that 

are achievable in high-power laser experiments. Then let us define 

the number of detectable photon-converted axion per laser shot 

Nγ = Nγ πw2
0τ . Then we find:

N
(1)
γ ≈ 10−4

P

(

Ne

1014

)

( w0

0.5 mm

)2 ( τ

100 fs

)2

×

(

B

50 kG

)2 (

IL

1019 W/cm2

)2

,

(19)

where IL is the laser intensity (in W/cm2). As discussed earlier, P
is a free parameter that cannot be determined a-priori from the 
theory discussed here. An experiment, on the other hand, could 

potentially be used to set a limit on this.

One can compare this with the number of invisible axions pro-

duced every seconds by the Primakoff process in the Sun is given 

by [18]

NSun ≈ 8.7× 1042
( m

eV

)

, (20)



392 M.A. Wadud et al. / Physics Letters B 777 (2018) 388–393

Fig. 1. Mass dependency of mN
(1)
φ /ν4 for fixed ξ = 0.1. Shaded regions indicate pseudoscalar particle masses not ruled out by cosmological and astrophysical bounds on 

axion masses [58]. Left: as � is reduced, I1 becomes flat, indicating a dependency 1/m. Right: As � is increased, the heaviest particle mass to which the method is sensitive, 
decreases.

which is much larger that Nγ . However, suppose axions are emit-

ted isotropically, a detector on Earth of area Ad would receive (the 

helioscope experiment, CAST, recently published new limits on the 

axion coupling and axion mass [59])

Nhelioscope ≈ 3× 1016
(

Ad

m2

)

( m

meV

)

. (21)

Of those, only a tiny fraction will be regenerated into photons 
(through the 1/M coupling). This is because axion-like-particle 
masses are predicted to lie in the sub-eV range, and we take the 
range to be 0.1 meV < m < 100 meV based upon current cosmo-
logical and astrophysical limits [58] (although note the recent lim-
its predicted from a calculation in QCD of 50 μeV < m < 1.5 meV
[60]). While in the above estimates we have taken the axion cou-
pling, 1/M , to be set at the QCD scale, other coupling mechanisms 
are also possible for axion-like particles. One example would be to 

take the leading-order interaction between the pseudoscalar parti-
cle and the magnetic field in the dispersion relation Eq. (10), which 

gives Nφ ∝ P(B/Mm)2 and Nγ ∝ P(B/Mm)4 in line with other 
light-shining-through-the-wall experiments [61]. Another example 
is the production of axions via the coupling between the laser 
electric field and the constant magnetic field. Also in this case, 
due to the extra axion interaction vertex, the mechanism is sup-
pressed with a factor of the coupling squared, giving a dependency 

Nγ ∝ P(B/Mm)4 ≪ N
(1)
γ . The effective number of measurable in-

visible axions that the laser-based set-up produces is potentially 
superior to sun-based searches. Moreover, if the laser repetition 

rate is significantly higher than a few Hz (as feasible in the fore-
seeable future), then an axion search of the type proposed here 
could become competitive against other possible laser-based ap-
proaches [62,61,63].
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