
1

Sparse Representation for Wireless
Communications

Zhijin Qin1, Jiancun Fan2, Yuanwei Liu3, Yue Gao3, and Geoffrey Ye Li4
1Lancaster University, Lancaster, UK

2Xi’an Jiaotong University, Xi’an, China
3Queen Mary University of London, London, UK

4Georgia Institute of Technology, Atlanta, GA, USA

Abstract—Sparse representation can efficiently
model signals in different applications to
facilitate processing. In this article, we
will discuss various applications of sparse
representation in wireless communications, with
focus on the most recent compressive sensing
(CS) enabled approaches. With the help of the
sparsity property, CS is able to enhance the
spectrum efficiency and energy efficiency for
the fifth generation (5G) networks and Internet
of Things (IoT) networks. This article starts
from a comprehensive overview of CS principles
and different sparse domains potentially used
in 5G and IoT networks. Then recent research
progress on applying CS to address the major
opportunities and challenges in 5G and IoT
networks is introduced, including wideband
spectrum sensing in cognitive radio networks,
data collection in IoT networks, and channel
estimation and feedback in massive MIMO
systems. Moreover, other potential applications
and research challenges on sparse representation
for 5G and IoT networks are identified. This
article will provide readers a clear picture of
how to exploit the sparsity properties to process
wireless signals in different applications.

Keywords: Wireless communications, com-
pressive sensing, sparsity property, 5G, Internet
of Things.

I. INTRODUCTION

Sparse representation expresses some signals
as a linear combination of a few atoms from a
prespecified and over-complete dictionary [1].
This form of sparse (or compressible) structure
arises naturally in many applications [2]. For
example, audio signals are sparse in frequency

domain, especially for the sounds representing
tones. Image processing can exploit a sparsity
property in the discrete cosine domain, i.e.
many discrete cosine transform (DCT) coeffi-
cients of images are zero or small enough to be
regarded as zero. This type of sparsity property
has enabled intensive research on signal and
data processing, such as dimension reduction
in data science, wideband sensing in cognitive
radio networks (CRNs), data collection in large-
scale wireless sensor networks (WSNs), and
channel estimation and feedback in massive
MIMO.

Traditionally, signal acquisition and trans-
mission adopt the procedure with sampling
and compression. As massive connectivity is
expected to be supported in the fifth generation
(5G) networks and Internet of Things (IoT) net-
works, the amount of generated data becomes
huge. Therefore, signal processing has been
confronted with challenges on high sampling
rates for data acquisition and large amount of
data for storage and transmission, especially in
IoT applications with power-constrained sensor
nodes. Except for developing more advanced
sampling and compression techniques, it is
natural to ask whether there is an approach
to achieve signal sampling and compression
simultaneously.

As an appealing approach employing sparse
representations, compressive sensing (CS) tech-
nique [3] has been proposed to reduce data
acquisition costs by enabling sub-Nyqusit sam-
pling. Based on the advanced theory [4], CS
has been widely applied in many areas. The
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key idea of CS is to enable exact signal re-
construction from far fewer samples than that
is required by the Nyquist-Shannon sampling
theorem provided that the signal admits a sparse
representation in a certain domain. In CS, com-
pressed samples are acquired via a small set
of non-adaptive, linear, and usually randomized
measurements, and signal recovery is usually
formulated as an l0-norm minimization prob-
lem to find the sparsest solution satisfying the
constraints. Since l0-norm minimization is an
NP-hard problem, most of the exiting research
contributions on CS solve it by either approx-
imating it to a convex l1-norm minimization
problem [4] or adopting greedy algorithms,
such as orthogonal match pursuit (OMP).

It is often the case that the sparsifying trans-
formation is unknown or difficult to determine.
Therefore, projecting a signal to its proper
sparse domain is quite essential in many appli-
cations that invoke CS. In 5G and IoT networks,
the identified sparse domains mainly include
frequency domain, spatial domain, wavelet do-
main, DCT domain, etc. CS can be used to
improve spectrum efficiency (SE) and energy
efficiency (EE) for these networks. By enabling
the unlicensed usage of spectrum, CRNs exploit
spectral opportunities over a wide frequency
range to enhance the network SE. In wideband
spectrum sensing, spectral signals naturally ex-
ploit a sparsity property in frequency domain
due to low utilization of spectrum [5], [6],
which enables sub-Nyquist sampling on cog-
nitive devices. Another interesting scenario is a
small amount of data collection in large-scale
WSNs with power-constrained sensor nodes,
such as smart meter monitoring infrastructure in
IoT applications. In particular, the monitoring
readings usually have a sparse representation
in DCT domain due to the temporal and spatial
correlations [7]. CS can be applied to enhance
the EE of WSNs and to extend the lifetime
of sensor nodes. Moreover, massive MIMO is
a critical technique for 5G networks. In mas-
sive MIMO systems, channels corresponding to
different antennas are correlated. Furthermore,
a huge number of channel coefficients can be
represented by only a few parameters due to

a hidden joint sparsity property caused by the
shared local scatterers in the radio propagation
environment. Therefore, CS can be potentially
used in massive MIMO systems to reduce the
overhead for channel estimation and feedback
and facilitate precoding [8]. Even though vari-
ous applications have different characters, it is
worth noting that the signals in different sce-
narios share a common sparsity property even
though the sparse domains can be different,
which enables CS to enhance the SE and EE
of wireless communications networks.

There have been some interesting surveys
on CS [9] and its applications [10]–[12]. One
of the most popular articles on CS [9] has
provided an overview on the theory of CS as
a novel sampling paradigm that goes against
the common wisdom in data acquisition. CS-
enabled sparse channel estimation has been
summarized in [10]. In [11], a comprehen-
sive review of the application of CS in CRNs
has been provided. A more specific survey on
compressive covariance sensing has been pre-
sented in [12] that includes the reconstruction
of second-order statistics even in the absence
of prior sparsity information. These existing
surveys serves different purposes. Some cover
the basic principles for beginners and others
focus on specific aspects of CS. Different from
the existing literature, our article provides a
comprehensive overview of the recent contri-
butions on CS-enabled wireless communica-
tions from the perspective of adopting different
sparse domain projections.

In this article, we will first introduce the
basic principles of CS briefly. Then we will
present the different sparse domains for signals
in wireless communications. Subsequently, we
will provide CS-enabled frameworks in various
wireless communications scenarios, including
wideband spectrum sensing in CRNs, data col-
lection in large-scale WSNs, and channel es-
timation and feedback for massive MIMO, as
they have been identified to be critical to 5G
and IoT networks and share the same spirit by
exploiting the sparse domains aforementioned.
Within each identified scenario, we start with
projecting a signal to a sparse domain, then in-
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troduce the CS-enabled framework, and finally
illustrate how to exploit joint sparsity in the CS-
enabled framework. Moreover, the reweighted
CS approaches for each scenario will be dis-
cussed, where the weights are constructed by
prior information depending on specific appli-
cation scenarios. The other potential applica-
tions and research challenges on applying CS
in wireless networks will also be discussed and
followed by conclusions.

This article gives readers a clear picture on
the research and development of the applica-
tions of CS in different scenarios. By identi-
fying the different sparse domains, this article
illustrates the benefits and challenges on apply-
ing CS in wireless communication networks.

II. SPARSE REPRESENTATION

Sparse representation of signals has received
extensive attention due to its capacity for ef-
ficient signal modelling and related applica-
tions. The problem solved by the sparse rep-
resentation is to search for the most compact
representation of a signal in terms of a linear
combination of the atoms in an overcomplete
dictionary. In the literature, three aspects of
research on the sparse representation have been
focused:

1) Pursuit methods for solving the optimiza-
tion problem, such as matching pursuit
and basis pursuit;

2) Design of the dictionary, such as the K-
SVD method;

3) Applications of the sparse representa-
tion, such as wideband spectrum sensing,
channel estimation of massive MIMO,
and data collection in WSNs.

General sparse representation methods, such
as principal component analysis (PCA) and
independent component analysis (ICA), aim to
obtain a representation that enables sufficient
reconstruction. It has been demonstrated that
PCA and ICA are able to deal with signal
corruption, such as noise, missing data, and out-
liers. For sparse signals without measurement
noise, CS can recover the sparse signals exactly
with random measurements. Furthermore, the
random measurements significantly outperform

measurements based on PCA and ICA for the
sparse signals without corruption [13]–[15]. In
the following, we will focus on the principles of
CS and the common sparse domains potentially
used in 5G and IoT scenarios.

A. Principles of Standard Compressive Sensing

The principles of standard CS, such as to be
performed at a single node, can be summarized
into the following three parts [3]:

1) Sparse Representation: Generally speak-
ing, sparse signals contain much less infor-
mation than their ambient dimension suggests.
Sparsity of a signal is defined as the number of
non-zero elements in the signal under a certain
domain. Let f be an N -dimensional signal of
interest, which is sparse over the orthonormal
transformation basis matrix Ψ ∈ RN×N , and s
be the sparse representation of f over the basis
Ψ. Then f can be given by

f = Ψs. (1)

Apparently, f can be the time or space domain
representation of a signal, and s is the equiva-
lent representation of f in the Ψ domain. For
example, if Ψ is the inverse Fourier transform
(FT) matrix, then s can be regarded as the
frequency domain representation of the time
domain signal, f. Signal f is said to be K-sparse
in the Ψ domain if there are only K (K � N)
out of the N coefficients in s that are non-zero.
If a signal is able to be sparsely represented
in a certain domain, the CS technique can be
invoked to take only a few linear and non-
adaptive measurements.

2) Projection: When the original signal f
arrives at the receiver, it is processed by the
measurement matrix Φ ∈ RP×N with P < N ,
to get the compressed version of the signal, that
is,

x = Φf = ΦΨs=Θs, (2)

where Θ = ΦΨ is an P ×N matrix, called the
sensing matrix. As Φ is independent of signal
f, the projection process is non-adaptive.

Fig. 1 illustrates how the different sensing
matrices Θ influence the projection of a signal
from high dimension to its space, i.e., mapping
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s ∈ R3 to x ∈ R2. As shown in Fig. 1,
s =

(
s s 0

)
is a three-dimensional signal.

When s is mapped into a two-dimensional

space by taking Θ1 =

(
1 −1 0

0 0 1

)
as the

sensing matrix, the original signal s cannot be
recorded based on the projection under Θ1.
This is because that the plane spanned by
the two row vectors of Θ1 is orthogonal to
signal s as shown in Fig. 1(a). Therefore, Θ1

corresponds to the worst projection. As shown
in Fig. 1(b), we can also observe that the

projection by taking Θ2 =

(
1 0 0

0 0 1

)
is not

a good one. It is noted that the plane spanned
by the two row vectors of Θ2 can only contain
part of information of the sparse signal s, and
the sparse component in the direction of s2
is missed when the signal s is projected into
the two-dimensional space. When the sensing

matrix is set to Θ3 =

(
1 1 0

0 0 1

)
, as shown

in Fig. 1(c), the signal s can be fully recorded
as it falls into the plane spanned by the two row
vectors of Θ3. Therefore, Θ3 results in a good
projection and s can be exactly recovered by
its projection x in the two-dimensional space.
Then it is natural to ask what type of projection
is good enough to guarantee the exact signal
recovery?

The key of CS theory is to find out a stable
basis Ψ or measurement matrix Φ to achieve
exact recovery of the signal with length N
from P measurements. It seems an undeter-
mined problem as P < N . However, it has
been proved in [4] that exact recovery can be
guaranteed under the following conditions:

• Restricted isometry property (RIP): Mea-
surement matrix Φ has the RIP of order
K if

1− δK ≤
‖Φf‖2`2
‖f‖2`2

≤ 1 + δK (3)

holds for all K-sparse signal f , where δK
is the restricted isometry constant of a
matrix Φ.

• Incoherence property: Incoherence prop-
erty requires that the rows of measure-

ment matrix Φ cannot sparsely represent
the columns of the sparsifying matrix Ψ
and vice verse. More specifically, a good
measurement will pick up a little bit in-
formation of each component in s based
on the condition that Φ is incoherent with
Ψ. As a result, the extracted information
can be maximized by using the minimal
number of measurements.

It has been pointed out that verifying both
the RIP condition and incoherence property is
computationally complicated but they could be
achieved with a high probability simply by
selecting Φ as a random matrix. The com-
mon random matrices include Gaussian matrix,
Bernoulli matrix, or almost all others matrices
with independent and identically distributed
(i.i.d.) entries. Besides, with the properties of
the matrix with i.i.d. entries Φ, the matrix
Θ = ΦΨ is also random i.i.d., regardless of the
choice of Ψ. Therefore, the random matrices
are universal as they are random enough to be
incoherent with any fixed basis. It has been
demonstrated that random measurements can
universally capture the information relevant for
many compressive signal processing applica-
tions without any prior knowledge of either
the signal class and its sparse domain or the
ultimate signal processing task.

Moreover, for Gaussian matrices the num-
ber of measurements required to guarantee
the exact signal recovery is almost minimal.
However, random matrices inherently have two
major drawbacks in practical applications: huge
memory buffering for storage of matrix ele-
ments, and high computational complexity due
to their completely unstructured nature [16].
Compared to the standard CS that limits its
scope to standard discrete-to-discrete measure-
ment architectures using random measurement
matrices and signal models based on standard
sparsity, more structured sensing architectures,
named structured CS, have been proposed to
implement CS on feasible acquisition hardware.
So far, many efforts have been put on the design
of structured CS matrices, i.e., random demod-
ulator [17], to make CS implementable with ex-
pense of performance degradation. Particularly,
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Fig. 1: Projection of a sparse signal with one non-zero component with different sensing matrices.

the main principle of random demodulator is
to multiply the input signal with a high-rate
pseudonoise sequence, which spreads the signal
across the entire spectrum. Then a low-pass
anti-aliasing filter is applied and the signal is
captured by sampling it at a relatively low rate.
With the additional digital processing to reduce
the burden on the analog hardware, random
demodulator bypasses the need for a high-rate
analogue-to-digital converter (ADC) [17]. A
comparison of Gaussian sampling matrix and
random demodulator is provided in Fig. 2 in
terms of detection probability with different
compression ratios P/N . From the figure, the
Gaussian sampling matrix performs better than
the random demodulator.

3) Signal Reconstruction: After the com-
pressed measurements are collected, the orig-
inal signal should be reconstructed. Since most
of the basis coefficients in s are negligible, the
original signal can be reconstructed by finding
out the minimal set of coefficients that matches
the set of compressed measurements x, that is,
by solving

ŝ = arg min
s
‖s‖`p subject to Θs = x, (4)

where ‖·‖`p is the `p-norm and p = 0 cor-
responds to counting the number of non-zero
elements in s. However, the reconstruction
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Random demodulator

Gaussian distributed matrix

Fig. 2: Detection probability versus compres-
sion ratio with different measurement matrices.
In this case, the signal is one-sparse and the
simulation iteration is 1000.

problem in (4) is both numerically unstable and
NP-hard [3] when `0-norm is used.

So far, there are mainly two types of relax-
ations to problem (4) to find a sparse solution.
The first type is convex relaxation, where `1-
norm is used to substitute `0-norm in (4).
Then (4) can be solved by standard convex
solvers, e.g., cvx. It has been proved that `1
norm results in the same solution as `0 norm
when RIP is satisfied with the constant δ2k <√

2 − 1 [18]. Another type of solution is to
use a greedy algorithm, such as OMP [19], to
find a local optimum in each iteration. In com-
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parison with the convex relaxation, the greedy
algorithm usually requires lower computational
complexity and time cost, which makes it more
practical for wireless communication systems.
Furthermore, the recent result has shown that
the recovery accuracy achieved by some greedy
algorithms is comparable to the convex relax-
ation but requiring much lower computational
cost [20].

B. Reweighted Compressive Sensing

As aforementioned, `1-norm is a good ap-
proximation for the NP-hard `0-norm problem
when RIP holds. However, the large coefficients
are penalized more heavily than the small ones
in `1-norm minimization, which leads to per-
formance degradation on signal recovery. To
balance the penalty on the large and the small
coefficients, reweighted CS is introduced by
providing different penalties on those large and
small coefficients. A reweighted `1-norm mini-
mization framework [3] has been developed to
enhance the signal recovery performance with
fewer compressed measurements by solving

ŝ = arg min
s
‖Ws‖`1 subject to Θs = x,

(5)

where W is a diagonal matrix with w1, . . . , wn

on the diagonal and zeros elsewhere.
Moreover, `p-norm, e.g. 0 < p < 1,

is utilized to lower the computational com-
plexity of signal recovery process caused by
the `1-norm optimization problem. Iterative
reweighted least-square (IRLS) based CS ap-
proach has been proposed in [21] to solve (4)
in a non-convex approach as

ŝ = arg min
s

N∑
i=1

wisi subject to Θs = x,

(6)

where wi =
∣∣∣s(l−1)

i

∣∣∣p−2
is computed based on

the result of the last iteration, s(l−1)
i .

It is worth noting that (4) becomes non-
convex when p < 1. The existing algorithms
cannot guarantee to reach a global optimum and
may only produce local minima. However, it

has been proved [22], [23] that under some cir-
cumstances the reconstruction in (4) will reach
a unique and global minimizer [24], which is
exactly ŝ = s. Therefore, we can still exactly
recover the signal in practice.

C. Distributed Compressive Sensing

The distributed compressive sensing
(DCS) [25] is an extension of the standard one
by considering networks with M nodes. At the
m-th node, measurement xm can be given by

xm = Θmsm, ∀m ∈M, (7)

whereM is the the set of nodes in the network.
As stated in (2), Θm is the sensing matrix
deployed at the m-th node, and sm is a sparse
signal of interest. DCS becomes a standard CS
when M = 1.

In the applications of standard CS, the signal
received at the same node has its sparsity
property due to its intra-correlation. While for
the networks with multiple nodes, signals re-
ceived at different nodes exhibit strong inter-
correlation. The intra-correlation and inter-
correlation of signals from the multiple nodes
lead to a joint sparsity property. The joint spar-
sity level is usually smaller than the aggregate
over the individual signal’s sparsity level. As
a result, the number of compressed measure-
ments required for exact recovery in DCS can
be reduced significantly compared to the case
performing standard CS at each single node
independently.

In DCS, there are two closely related con-
cepts: distributed networks and distributed CS
solvers. The distributed networks refer to net-
works that different nodes perform data acqui-
sition in a distributed way and the standard
CS can be applied at each node individually to
perform signal recovery. While for DCS solver
as proposed in [25], the data acquisition pro-
cess requires no collaboration among sensors
and the signal recovery process is performed
at several computational nodes, which can be
distributed in a network or locally placed within
a multiple core processor. Generally, it is of
interest to minimize both computation cost and
communication overhead in DCS. The most
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popular application scenario of DCS is that all
signals share the common sparse support but
with different non-zero coefficients.

D. Common Sparse Domains for CS-enabled
5G and IoT Networks

CS-enabled sub-Nyquist sampling is possi-
ble only if the signal is sparse in a certain
domain. The common sparse domains utilized
in CS-enabled 5G and IoT networks include
frequency domain, wavelet domain, discrete
cosine domain, angular domain, to name a few.

1) Frequency domain: due to low spectrum
utilization, the wideband spectrum signal
shows a sparse property when it is con-
verted into the frequency domain.

2) Discrete cosine domain: due to temporal
correlation, signals in some applications,
such as environment information mon-
itoring, show a sparse property in the
discrete cosine domain as the readings
normally do not change too much within
a short period.

3) Spatial domain: as the number of paths
as well as the angle-of-arrival are much
smaller than the number of antennas in
massive MIMO systems, the channel con-
ditions can be represented by a limited
number of parameters. In this case, the
spatial domain turns into the angular do-
main.

For multi-node cases, due to the spatical
correlation, the joint sparsity is exploited to
apply DCS in spatial-x domains, where ‘x’
can be any of the aforementioned domains.
Here, we give some examples on how the joint
sparsity is utilized in different scenarios in 5G
and IoT networks:

1) Spatial-frequency domain: An illustration
of the DCS-enabled cooperative CRN is
given in Fig. 3, where the joint sparsity in
the spatial-frequency domain is utilized.
Specifically, each column represents the
signal received at each location, which
is sparse in frequency domain as only
a few channels are occupied. At differ-
ent locations, the same frequency bands

Joint sparsity

... ...

Unoccupied Occupied

...

J sensors at different locations

... ...

I 
ch

an
ne

ls

Fig. 3: Spatial-frequency correlation.

may be occupied, but the signal pow-
ers for each frequency band are various
due to fading and shadowing. Therefore,
different columns of the matrix share
the common sparse support though each
node operates without cooperation. With
the DCS framework, each node performs
sub-Nyquist sampling individually first
and then the original signals can be re-
covered simultaneously. More details on
this issue will be discussed in Section III.

2) Spatial-temporal domain: In WSNs, sen-
sor nodes are deployed to periodically
monitor data and to send the compressed
data to the sink. Then the sink is respon-
sible for recovering the original reading
by CS algorithms as the readings across
all sensor nodes exhibit both spatial and
temporal correlations, as we can see from
the discussion in Section IV.

3) Angular-time domain: Massive MIMO
channels between some users and the
massive base station (BS) antennas ap-
pear the spatial common sparsity in both
the time domain and the angular domain,
as we will discuss in detail in Section V.

Different sparse domains and their applica-
tions in 5G and IoT networks are summarized
in Table I, where ‘WT’ is short for wavelet
transform. In addition to the listed sparse do-
mains and their applications, it is worth noting
that the core of applying CS is to identify
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how to exploit the sparse property in 5G and
IoT networks. In the following, we discuss
three major applications of CS in 5G and IoT
networks.

III. COMPRESSIVE SENSING ENABLED

COGNITIVE RADIO NETWORKS

In this section, we introduce the applications
of CS in CRNs. Radio frequency (RF) spectrum
is a valuable but tightly regulated resource due
to its unique and important role in wireless
communications. The demand for RF spectrum
is increasing due to a rapidly expanding mar-
ket of multimedia wireless services while the
usable spectrum is becoming scarce due to the
current rigid spectrum allocation policies. How-
ever, according to the reports from the Federal
Communications Commission (FCC) and the
Office of Communications (Ofcom), localized
temporal and geographic spectrum utilization is
extremely low and unbalanced in reality. Cog-
nitive radio (CR) has become a promising solu-
tion to solve the spectrum scarcity problem, by
allowing unlicensed secondary users (SUs) to
opportunistically access a licensed band when
the licensed primary user (PU) is absent. In
order to avoid any harmful interference to the
PUs, SUs in CRNs should be aware of the spec-
trum occupancy over the spectrum of interest.
Spectrum sensing, which detects the spectrum
holes, the frequency bands that are not utilized
by PUs, is one of the most challenging tasks
in CR. As the radio environment changes over
time and space, an efficient spectrum sensing
technique should be capable of tracking these
fast changes [26]. A good approach for detect-
ing PUs is to adopting the traditional narrow-
band sensing algorithms, which include energy
detection, matched-filtering, and cyclostation-
ary feature detection. Here, the term narrow-
band implies that the frequency range is suffi-
ciently narrow such that the channel frequency
response can be considered as flat. In other
words, the bandwidth of interest is less than
the coherence bandwidth of the channel [27].

While the present spectrum sensing algo-
rithms have focused on exploiting spectral op-
portunities over a narrow frequency band, fu-

ture CRNs will eventually be required to exploit
spectral opportunities over a wide frequency
range from hundreds of megahertz (MHz) to
several gigahertz (GHz), in order to improve
spectrum efficiency and achieve higher oppor-
tunistic throughput. As driven by the Nyquist-
Shannon sampling theory, a simple approach
is to acquire the wideband signal directly
by a high-speed ADC, which is particularly
challenging or even unaffordable, especially
for energy-constrained devices, such as smart
phones or even battery-free devices. Therefore,
revolutionary wideband spectrum sensing tech-
niques become more than desired to release the
burden on high-speed ADCs.

A. Standard Compressive Spectrum Sensing

Recent development on CS theory inspires
sub-Nyquist sampling, by utilizing the sparse
nature of signals [3]. Driven by the inborn
nature of the sparsity property of signals in
wireless communications, e.g., the sparse uti-
lization of spectrum, CS theory is capable of
enabling sub-Nyquist sampling for wideband
spectrum sensing.

1) Energy Detection based Compressive
Spectrum Sensing: CS theory has been applied
to wideband spectrum sensing in [28], where
sub-Nyquist sampling is achieved without loss
of any information. A general framework for
compressive spectrum sensing with the energy
detection method is summarized as shown in
Fig. 4, where the analog signal at the receiver,
r (t) has a sparse representation sf in the
frequency domain. The received signals are
then sampled at a sub-Nyquist rate. Due to
low spectrum utilization, sf can be recovered
from the under-sampled measurements. Then
the energy of each channel can be calculated,
and therefore the spectrum occupancy can be
determined.

Lately, it has been identified in [29] that
the CS-enabled system is somewhat sensitive
to noise, exhibiting a 3 dB SNR loss per oc-
tave of subsampling, which parallels the classic
noise-folding phenomenon. In order to improve
robustness to noise, a denoised compressive
spectrum sensing algorithm has been proposed
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TABLE I: Common sparse domains and their applications in 5G and IoT networks.
Sparse domain Sparsifying

transform
Applications Why sparse? Sparsity property

Frequency
domain

FT Wideband spectrum
sensing

Low spectrum utilization in
practice

Single sparsity

Spatial domain - Channel estimation in
massive MIMO

Number of paths is much
fewer than the number of an-
tennas

Single sparsity

Discrete cosine
domain

DCT Sensor data gathering Temporal correlation Single sparsity

Wavelet domain WT Sensor data gathering Temporal correlation Single sparsity
Spatial-frequency
domain

FT Cooperative wideband
spectrum sensing

Spatial correlation and low
spectrum utilization

Joint sparsity

Spatial-discrete
cosine/wavelet
domain

DCT/WT Active node
detection/data gathering

Spatial and temporal correla-
tion

Joint sparsity

Angular-time do-
main

- Channel estimation in
massive MIMO

Number of paths and degrees
of arrival are much fewer than
the number of antennas

Joint sparsity

in [6]. The sparsity level is required in advance
in order to determine the lower sampling rate
at SUs locally without loss of any information.
However, sparsity level is dependent on spec-
trum occupancy, which is usually unavailable
in dynamic CR networks. In order to solve
this problem, a have proposed a two-step CS
scheme has been proposed in [30] to minimize
the sampling rates when the sparsity level is
changing. In this approach, the actual spar-
sity level is estimated first and the number
of compressed measurements to be collected
is then adjusted before sampling. However,
this algorithm introduces extra computational
complexity by performing the sparsity level
estimation. In order to avoid sparsity level
estimation, Sun et al. [31] have proposed to
adjust the number of compressed measurements
adaptively by acquiring compressed measure-
ments step by step in continuous sensing slots.
However, this iterative process incurs higher
computational complexities at the SU as (4)
has to be solved several times until the exact
signal recovery is achieved. A low-complexity
compressive spectrum sensing algorithm has
been proposed in [5] by alleviating the itera-
tive process of signal recovery. More specif-
ically, geolocation data can provide a rough
estimation of the sparsity level to minimize
the sampling rates. Subsequently, data from
geolocation database is utilized as the prior

information for signal recovery. By doing so,
signal recovery performance is improved with
significant reduction on the computational com-
plexity and minimal number of measurements.

2) Compressive Power Spectral Density Es-
timation: Different from the aforementioned
approaches that concentrate on spectral estima-
tion with perfect reconstruction of the origi-
nal signals, compressive power spectral density
(PSD) estimation provides another approach for
spectrum detection without requiring complete
recovery of the original signals. Compressive
PSD estimation has been widely applied as
the original signals are not actually required
in many signal processing applications. For
wideband spectrum sensing applications with
spectrally sparse signals, only the PSD, or
equivalently the autocorrelation function, needs
to be recovered as only the spectrum occupancy
status is required for each channel.

Polo et al. [32] have proposed to reconstruct
the autocorrelation of the compressed signal to
provide an estimate of the signal spectrum by
utilizing the sparsity property of the edge spec-
trum, in which the CS is performed directly on
the wide-band analog signal. Nevertheless, the
compressive measurements are assumed to be
wide-sense stationary in [32], which is not true
for some compressive measurement matrices.
Subsequently, Lexa et al. [33] have proposed
a multicoset sampling based power spectrum
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Fig. 4: Framework of compressive spectrum sensing with energy detection.

estimation method, by exploiting the fact that
a wide-sense stationary signal corresponds to
a diagonal covariance matrix of the frequency
domain representation of the signal. Addition-
ally, Leus et al. [34] have solved the power
spectrum blind sampling problem based on a
periodic sampling procedure and have further
proposed a simple least-square (LS) reconstruc-
tion method for power spectrum recovery.

3) Beyond Sparsity: For spectrum blind
sampling, the goal is to perfectly reconstruct
the spectrum and sub-Nyquist rate sampling
is only possible if the spectrum is sparse.
However, sub-Nyquist rate sampling can be
achieved in [34] without making any constraints
on the power spectrum, but the LS recon-
struction requires some rank conditions to be
satisfied. Leus et al. [35] have further proposed
an efficient power spectrum reconstruction and
a novel multicoset sampling implementation by
exploiting the spectral correlation properties,
without requiring any sparsity constraints on
the power spectrum. More recently, Cohen and
Eldar [36] have developed a compressive power
spectrum estimation framework for both sparse
and non-sparse signals as well as blind and non-
blind detection in the sparse case. For each one
of those scenarios, the minimal sampling rate

allowing perfect reconstruction of the signal’s
power spectrum is derived in a noise-free envi-
ronment.

B. Cooperative Spectrum Sensing with Joint
Sparsity

In spectrum sensing, the performance is de-
graded by noise uncertainty, deep fading, shad-
owing and hidden nodes. Cooperative spectrum
sensing (CSS) has been proposed to improve
sensing performance by exploiting the col-
laboration among all the participating nodes.
In CRNs, a CSS network constructs a multi-
node network. As aforementioned, joint spar-
sity property and low-rank property can be
utilized to recover the original signals simul-
taneously with fewer measurements and the
DCS is utilized as it fits the CSS model per-
fectly. In the existing literature, cooperative
compressive spectrum sensing mainly include
two categories: i) centralized approaches; ii)
decentralized approaches.

A centralized approach involves a fusion cen-
ter (FC) performing signal recovery by utilizing
the compressed measurements contributed by
the spatially distributed SUs. In [6], a robust
wideband spectrum sensing algorithm has been
proposed for centralized CSS. Specifically, each
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SU senses a segment of the spectrum at sub-
Nyquist rate to reduce the sensing burden.
With the collected compressive measurements,
CS recovery algorithms are performed at the
FC in order to recover the original signals
by exploiting the sparse nature of spectrum
occupancy. It is worth noting that the sparse
property of signals received at the SUs can be
transformed into the low-rank property of the
matrix constructed at the FC. In the case of CSS
with sub-Nyquist sampling, the measurements
collected by the participating SUs are sent to
the FC, where the joint sparsity or low-rank
property is exploited to recover the complete
matrix.

A typical decentralized approach has been
proposed in [37], in which the decentralized
consensus optimization algorithm can attain
high sensing performance at a reasonable com-
putational cost and power overhead by utiliz-
ing the joint sparsity property. Different from
the centralized approach, signal recovery or
matrix completion is performed at each indi-
vidual node in the decentralized approaches.
Compared with the centralized approaches, the
decentralized ones are more robust as it adopts
a FC-free network structure. Another advantage
of the decentralized approaches is that they
allow the recovery of individual sparse com-
ponents at each node as well as the common
sparse components shared by all participating
nodes.

Furthermore, the privacy and security is-
sues in CSS have been investigated in [38]
by exploiting joint sparsity in the frequency
and spatial domains. In [38], measurements
corrupted by malicious users are removed dur-
ing the signal recovery process at the FC so
that the recovery accuracy and security of the
considered networks can be improved.

C. Compressive Spectrum Sensing with Prior
Information

In conventional compressive spectrum sens-
ing, only the sparsity property is utilized. Cer-
tain prior information is available in some sce-
narios and can be exploited to improve perfor-
mance of wideband spectrum sensing in CRNs.

For example, in the case of spectrum sensing
over TV white space (TVWS), where the PUs
are TV signals and the transmitted waveforms
are determined by the standard, this prior infor-
mation together with the specifications dictated
by the spectrum regulatory bodies, i.e., carrier
frequencies, bandwidths, can be also utilized to
enhance the signal recovery performance. Thus,
it is reasonable to assume that the PSD of the
individual transmission is known up to a scaling
factor.

As discussed in II-B, reweighted CS nor-
mally introduces weights to provide different
penalties on large and small coefficients, which
naturally inspires the application of reweighted
CS in wideband spectrum sensing with avail-
able prior information. In [39], the whole
spectrum is divided into different segments
as the bounds between different types of pri-
mary radios are known in advance. Within
each segment, an iteratively reweighted `1/`2
formulation has been proposed to recover the
original signals. In [5], a low-complexity wide-
band spectrum sensing algorithm for the TVWS
spectrum has been proposed to improve the sig-
nal recovery performance, in which the weights
are constructed by utilizing the prior informa-
tion from the geolocation database. For exam-
ple, in the TVWS spectrum, there are 40 TV
channels and each channel spans over 8 MHz
that can be either occupied or not. Hence, the
TV signals show a group sparsity property in
the frequency domain as the non-zero coeffi-
cients show up in clusters. A more efficient
approach has been developed in [40] by uti-
lizing such group sparsity property. Moreover,
the signals in wideband spectrum sensing have
the following two characteristics: i) the input
signals are stationary so that their covariance
matrices are redundant; ii) most information
in practical signals is concentrated on the first
few lags of the autocorrelation. Inspired by
these characteristics, a spectral prior informa-
tion assisted structured covariance estimation
algorithm has been proposed in [41] with low-
computational complexity, which especially fits
in application on low-end devices.
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D. Potential Research

We have reviewed some research results in
CS-enabled CRNs. There are still many open
research issues in the area, especially when
practical constraints are considered. In this sec-
tion, we will introduce a couple of important
ones.

1) Performance Limitations under Practical
Constraints: Although there exist many re-
search contributions in the field of compressive
spectrum sensing, most of them have assumed
some ideal operating conditions. In practice,
there may exist various imperfection, such as
noise uncertainty, channel uncertainty, dynamic
spectrum occupancy, and transceiver hardware
imperfection [11]. For example, the centralized
compressive spectrum sensing normally consid-
ers ideal reporting channels, which is not the
case in practice. This imperfection may lead to
significant performance degradation in practice.
Another example comes from the measurement
matrix design. As shown in Fig. 2, the Gaussian
distributed matrix achieves better performance
but with a higher implementation cost. Even
through some structured measurement matrices,
such as random demodulator, with a lower cost
and acceptable recovery performance degrada-
tion, have been proposed to enable the imple-
mentation of CS as a replacement of high-
speed ADCs, the nonlinear recovery process
limits its implementation. Therefore, it is a
big challenge to further investigate compressive
spectrum sensing in the presence of practical
imperfection and to develop a common frame-
work to combat their aggregate effects in CS-
enabled CRNs.

2) Generalized Platform for Compressive
Spectrum Sensing: The existing hardware im-
plementation of sub-Nyquits sampling system
follows the procedure that the theoretic al-
gorithm is specifically designed for the cur-
rent available hardware devices. However, it
is very difficult or sometimes even impossible
to extend the current hardware architectures to
implement other existing compressive spectrum
sensing algorithms. Thus, it is desired to have
a generalized hardware platform, which can be
easily adjusted to implement different compres-

sive spectrum sensing algorithms with different
types of measurement matrices and recovery
algorithms.

IV. COMPRESSIVE SENSING ENABLED

LARGE-SCALE WIRELESS SENSOR

NETWORKS

WSNs provide the ability to monitor di-
verse physical characteristics of the real world,
such as sound, temperature, and humidity, by
incorporating information and communication
technologies (ICT), which are especially impor-
tant to various IoT applications. In the typical
setup of WSNs, a large number of inexpensive
and maybe individually unreliable sensor nodes
with limited energy storage and low compu-
tational capability are distributed in the smart
environment to perform a variety of data pro-
cessing tasks, such as sensing, data collection,
classification, modeling, and tracking. Cyber-
physical systems (CPSs) merge wireless com-
munication technologies and environment dy-
namics for efficient data acquisition and smart
environments control. Typically, a CPS consists
of a large number of sensor nodes and actuator
nodes, which monitor and control a physical
plant, respectively, by transmitting data to an
elaboration node, named local controller (LC)
or FC.

Traditional environment information moni-
toring approaches take sensing samples at a pre-
defined speed uniformly at power-constrained
sensor nodes and then report the data to a
LC/FC, which is normally powerful and is
capable of handling complex computations. The
data transmitted to the LC/FC usually have
redundancies, which can be exploited to reduce
power consumption for data transmission. A
common and efficient method is to compress at
each individual sensor node and then transmit.
However, data compression introduces addi-
tional power consumption for individual sensor
node although the power consumption on data
transmission is reduced. Furthermore, this ap-
proach is unsuitable for real-time applications
owing to the high latency in data collection
and the high computational complexity to ex-
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ecute a compression algorithm at the power-
constrained sensor node.

It is noted that most natural signals can be
transformed to a sparse domain, such as dis-
crete cosine domain or wavelet domain, where
a small number of the coefficients can represent
most of the power of the signals that used to
be represented by a large number of samples
in their original domains. In fact, the data
collected at each sensor node show a sparsity
property in the discrete cosine domain or the
wavelet domain due to the temporal correlation.
Inspired by this, CS can be applied at each
sensor node to collect the compressed measure-
ments directly and then send to the LC/FC or
the neighbour nodes. As a result, fewer mea-
surements are sampled and transmitted and the
corresponding power consumption is reduced
significantly.

Power consumption of sensor nodes mainly
comes from sensing, data processing, and com-
munications with the LC/FC. In a large-scale
WSN, the sensor nodes with low power level
would wish to take samples at a lower speed
or even turn themselves into the sleep mode
in order to extend lifetime. As the signal re-
ceived at each sensor node shows temporal
correlation and neighboring nodes show spatial
correlation, the joint sparsity can be exploited
to recover signals from all sensor nodes even
though samples from part of the participating
sensor nodes are missed. The active sensor
nodes can be pre-selected according to their
power levels, therefore, with invoking of CS in
WSNs, lifetime of sensor nodes and the whole
network can be extended.

The existing work on CS-enabled WSNs
mainly falls into the aforementioned two cate-
gories: data gathering and active node selection,
which will be introduced subsequently.

A. Data Gathering

In the traditional setting up of data gather-
ing, there are a large number of sensor nodes
deployed in a WSN to collect monitoring data.
Each sensor node generates a reading periodi-
cally and then sends it to the LC/FC, which is
normally powerful and capable of conducting

complex computation. As the sensor nodes are
generally limited in computation and energy
storage, the data gathering process in WSNs
should be energy efficient with low overhead,
which becomes very challenging in IoT scenar-
ios where a huge number of sensor nodes are
deployed. Taking the temperature monitoring
as an example, the adjacent sensors will gen-
erate the similar readings as the temperatures
of nearby locations are similar. Furthermore,
for each sensor node, the readings from ad-
jacent snapshots are close to each other. The
above two important observations indicate the
temporal-spatial correlations among tempera-
ture readings, which enables the application of
CS to reduce the network overhead as well as to
extend the network lifetime. Moreover, such a
joint sparsity is smaller than the aggregate over
the individual signal sparsity, which results in
a further reduction in the number of required
measurements to exactly recover the original
signals.

Instead of applying compression on the data
after it is sampled and buffered, each sensor
node collects the compressed measurements
directly by projecting the signal to its sparse
domain. At each individual sensor node, one
can naively obtain separate measurements of
its signal and then recover the signal for each
sensor separately at the LC/FC by utilizing
the intra-signal correlation. Moreover, it is also
possible to obtain compressed measurements
that each of them is a combination of all signals
from the cooperative sensor nodes in a WSN.
Subsequently, signals can be recovered simulta-
neously by exploiting both the inter-signal and
intra-signal correlations at the LC/FC.

1) Measurement Matrix Design: When
adopting CS techniques for data gathering in
WSNs, sampling at uniformly distributed ran-
dom moments satisfies the RIP if the sparse
basis Ψ is orthogonal. For an arbitrary sensor
node i, the P×N measurement matrix can be a
spike one that only has P number of non-zero
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items, as shown by

Φi =


0 1 0 0 . . . 0

0 0 0 1 . . . 0

. . .

0 0 0 0 . . . 1

 . (8)

Sensor node will take a sample at the moment
when the corresponding item in Φi is one.

However, random sampling is not proper for
practical WSNs since two samples may be too
close to each other, which becomes very chal-
lenging for the cheap sensor nodes. In order to
solve this issue, Chen and Wassell [7] have pro-
posed a random sampling scheme by utilizing
the temporal correlation of signals received at a
sensor node. In the proposed scheme, the sensor
node will send a pseudorandom generator seed
to the FC and then send out the samples that
are obtained at an affordable highest rate until a
sampling rate indicator (SRI) is received from
the FC. Here, the SRI is decided based on
the recovery accuracy calculated at the FC.
Once the recovery accuracy goes out the re-
quired range, the sensor node will gradually
increase its sampling rate until the recovery
error becomes acceptable. By adopting such a
scheme, the sensor node can adjust its sampling
rate adaptively without the knowledge of the
sparsity level. In order to further reduce the
sampling rate at sensor nodes, spatial correla-
tion is exploited in combination with temporal
correlation. Therefore, joint sparsity property
can be exploited at the FC to reduce the number
of required measurements.

More recently, a big data enabled WSNs
framework has been proposed in [42], which
invokes CS for data completion with a min-
imal number of samples. The proposed data
collection framework consists of two core com-
ponents: i) at the cloud, an online learning
component predicts the minimal amount of data
to be collected to reduce the amount of data
for transmission, and these data are considered
as the principal data and their amount is con-
strained by CS; ii) at each individual node, a
local control component tunes the collection
strategy according to the dynamics and unex-
pected environment variation. Combining these

two components, this framework can reduce
power consumption and guarantee data quality
simultaneously.

2) Abnormal Sensor Detection: In the CS-
enabled data gathering processing, abnormal
sensor readings may still lead to severe degra-
dation on signal recovery at the LC/FC even
if CS shows robustness to abnormal sensor
readings as it does not rely on the statistical
distribution of data to be preserved during run-
time. This is because that the abnormal readings
will damage the sparsity property of signals,
as shown in Fig. 5. Therefore, it is critical to
find out those abnormal sensors to guarantee the
security of WSNs and make it abnormality-free.

Generally, abnormal readings are caused by
either internal errors or external events ac-
cording to their specific patterns. Abnormal
readings due to internal errors fail to represent
the sensed physical data, thus they should be
removed at least. But the abnormal readings
caused by the external events should be pre-
served as they reflect the actual scenarios of
WSNs.

Inspired by recovering data from over-
complete dictionary, an abnormal detection
mechanism has been proposed to enhance the
compressibility of the signals. First, the abnor-
mal values are detected with the help of recov-
ering signal from an over-complete dictionary.
Second, the failing sensor nodes are categorized
into different types according to their patterns.
Thirdly, the failing nodes caused by the internal
errors are removed and then the data recovery
is carried out to obtain the ordinal data.

B. Active Node Selection

In large-scale WSNs, the events are rela-
tively sparse in comparison with the number
of sensor nodes. Due to the power constraint,
it is unnecessary to activate all sensor nodes at
all the time. By utilizing the sparsity property
constructed by the spatial correlation, the num-
ber of active sensor nodes in each time slot
can be significantly reduced without scarify-
ing performance. Taking the smart monitoring
system as an example as shown in Fig. 6, the
number of source nodes is N , and there are K
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(a) Original signal (b) Discrete cosine transform of original signal

(c) Abnormal signal (d) Discrete cosine transform of abnormal signal

Fig. 5: Effect of abnormal readings on the sparsity level of temperature readings in discrete cosine
domain.

(K � N) sparse events that are generated by
the N source nodes. By invoking CS, only M
(M ≤ N) active sensor nodes are required to
capture the K sparse events.

1) Centralized Node Selection: A central-
ized node selection approach has been proposed
in [43] by applying CS and matrix completion
at the LC/FC with the purpose of optimizing the
network throughput and extending the lifetime
of sensors. As a node is either active or sleep-
ing, the state index for a node becomes binary,
i.e., X ∈ {0, 1}. While conventional node
selection in WSNs only exploits the spatial
correlation of sensor nodes, Chen and Was-
sell [44] have exploited the temporal correlation
by using the support of the data reconstructed
in the previous recovery period to select the

active nodes. Specifically, the FC performs an
optimized node selection, which is formulated
as the design of a specialized measurement
matrix, where the sensing matrix, Φ, consists
of selected rows of an identity matrix as shown
in (8).

The sensing costs of taking samples from
different sensor nodes are assumed to be equal
in most of the node selection approaches. How-
ever, in WSNs with power-constrained sensor
nodes, this assumption does not hold due to
the different physical conditions at different
sensor nodes. For example, it is preferred to
activate sensor nodes with adequate energy
rather than those almost running out of energy
to extend the lifetime of WSNs. Therefore, a
cost-aware node selection approach has been
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Fig. 6: Node selection in compressive sensing based wireless sensor networks.

proposed in [45] to minimize the sampling cost
of the whole WSNs with constraints on the
reconstruction accuracy.

2) Decentralized Node Selection: Different
from the DCS, which normally conducts signal
recovery at the FC by utilizing the data col-
lected from the distributed sensing sources via
exploiting the joint sparsity, decentralized CS-
enabled WSNs approach aims to achieve in-
network processing for node selection. A de-
centralized approach has been proposed in [46]
to perform node selection by allowing each ac-
tive sensor node to monitor and recover its local
data only, by collaborating with its neighboring
active sensor nodes through one-hop commu-
nication, and iteratively improving the local
estimation until reaching the global optimum. It
should be noted that an active sensor node not
only optimizes for itself, but also for its inactive
neighbors. Moreover, in order to extend the
network lifetime, an in-network CS framework
has been developed in [47] by enabling each
sensor node to make an autonomous decision
on the data compression and forward strategy
with the purpose of minimizing the number of

packets to be transmitted.
Generally speaking, the drawbacks for dis-

tributed node selection approach come from the
following two aspects: i) the optimized node
selection requires an iterative process, which
may require a long period; ii) the flexibility
to vary the number of active sensor nodes is
limited, especially according to the dynamic
sparsity levels or the channel conditions, which
could be time-varying. While for the centralized
approach, extra bandwidth resource and power
consumption are required to coordinate active
sensor nodes.

C. Potential Research

Even though extensive research has been
carried out to investigate the application of
CS in WSNs, most of them have focused on
reducing power consumption at sensor nodes
and extending the network lifetime. However,
in large-scale WSNs for different IoT applica-
tions, big data should be exploited to enhance
CS recovery accuracy in addition to further
reduce the power consumption.
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1) Machine Learning aided Adaptive Mea-
surement Matrix Design: The core concept
for sparse representation is the same even
though different applications bring different
constraints. Therefore, it is straightforward to
ask if there is a general framework for the
sparse representation of the data in different
5G and IoT applications for urban scenarios. In
order to take the minimal number of samples
from the set of sensor nodes with the best ca-
pability, i.e., highest power levels, the measure-
ment matrix should be properly designed. It has
been demonstrated that machine learning can be
an efficient tool to aid the measurement matrix
design so that the lifetime of the whole network
as well each individual sensor node can be
extended to the most. Furthermore, it should
be noted that when designing a measurement
matrix, the possibility of implementation in real
network is one of the most critical factors to be
considered. We believe that extensive research
work in this direction is highly desired.

2) Data Privacy in CS-enabled IoT Net-
works: The sensing data collected from a
variety of featured sensors in IoT networks,
our daily activities, surroundings, and even the
physical information, can be recorded and an-
alyzed, which at the same time greatly inten-
sifies the risk of privacy exposure. There are
few effective privacy-preserving mechanisms in
mobile sensing systems. In order to provide
privacy protection, privacy-preserving noise has
been proposed to be added to the original data
to guarantee effective privacy. The added noise
will dominate the data when the original sparse
data points are zero or near zero, thus reducing
the data sparsity. However, CS aims to achieve
kind of efficiency for sparse data processing.
Then it comes into a conflict countable between
privacy and efficiency during big data process-
ing in CS-enabled IoT networks. Therefore,
extensive research work is expected in this area.

V. CHANNEL ACQUISITION AND

PRECODING IN MASSIVE MIMO

To satisfy high data rate requirements caused
by increasing mobile applications, a lot of ef-
forts have been made to improve transmission

SE. An effective way is to exploit the spatial
degrees of freedom (DoF) provided by large-
scale antennas at the transmitter and the re-
ceiver to form massive MIMO systems [48].
It has been shown in [48] that the spatial
resolution of a large-scale antenna array will
be very high and the channels corresponding
to different users are approximately orthogonal
when the number of the antennas at the BS are
very large. Consequently, linear processing is
good enough to make the system performance
to approach optimum if the CSI is known at the
BS.

Accurate CSI at the BS is essential for
massive MIMO to obtain the above advantage.
Due to the large channel dimension, down-
link CSI acquisition in massive MIMO sys-
tems sometimes becomes challenging even if
uplink CSI estimation is relatively simple. In
time-division duplexing (TDD) systems, the
downlink CSI can be easily obtained by ex-
ploiting channel reciprocity. However, most of
the practical deployed systems mainly employ
frequency-division duplex (FDD), where the
channel reciprocity does not hold any more.
In this situation, the downlink channel has to
be estimated directly and then fed back to the
BS, which will result in the extremely high
overhead.

To address CSI estimation and feedback
issue in FDD systems, sparsity of massive
MIMO channels must be exploited. Some CS-
enabled CSI acquisition methods for FDD mas-
sive MIMO have been proposed, where the cor-
relation in massive MIMO channels has been
successfully exploited to reduce the amount of
training symbols and feedback overhead.

In this section, we focus on the CS-enabled
channel acquisition and its related applications.
We will first introduce the channel sparsity
feature and then discuss channel estimation and
feedback, and precoding and detection sub-
sequently. It should be noted that mmWave
communications are often used with massive
MIMO techniques since short wavelength here
makes it very easy to pack a large number of
antennas in a small area. The channel acquisi-
tion and precoding based on CS in mmWave
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massive MIMO will be also included in the
following discussion even if mmWave channels
are slightly different from the traditional wire-
less channels.

A. Sparsity of Channels

In the channel acquisition and precoding
schemes based on CS, the key idea is to use the
channel sparsity. Although the channel sparsity
in massive MIMO generally exists in the time
domain, the frequency domain, and the spatial
domain, we mainly focus on the spatial domain
channel sparsity in this section.

In conventional MIMO systems, a rich-
scattering multipath channel model is often
assumed so that the channel coefficients can
be modelled as independent random variables.
However, this assumption is not true any more
in massive MIMO systems. It has been shown
that the massive MIMO channel is spatial
correlated and has a sparse structure in the
spatial domain. This correlation and sparsity is
due to two reasons: the exploitation of high
radio frequency and the deployment of large-
scale antenna arrays in future wireless com-
munications. In high frequency band, the chan-
nels have fewer propagation paths while more
transmit and receive antennas will make the
distinguished paths to be much fewer than the
number of channel coefficients, which makes
the rich scatters to become limited or sparse.

As shown in Fig. 7, a classical channel model
with limited scatterers at the BS is often used
in the literature [49]. In this model, different
user channels have a partially common spar-
sity support due to the shared scatterers and
an independent sparsity support caused by the
individual scatterers in the propagation environ-
ments. By using this sparsity structure, many
CS-enabled channel acquisition and precoding
schemes have been proposed, as we will discuss
in the following.

B. Compressive Pilot Design

In order to obtain a good channel estimation,
the length of the orthogonal training sequence
must be at least same as the number of transmit

antenna elements. Due to a huge number of
antennas at the BS in massive MIMO systems,
the downlink pilots occupy a high proportion
of the resources. Consequently, the traditional
pilot design is not applicable here. It is nec-
essary to design specific pilots to reduce the
training overhead in FDD massive MIMO sys-
tems. It has been shown that channel spatial
correlation or sparsity can be used to shrink the
original channel to an effective one with a much
lower dimension so that low-overhead training
is enough in massive MIMO systems. Based on
this principle, CS-enabled pilot design schemes
have been proposed in [50].

When exploiting the CS theory to acquire the
CSI in the correlated FDD MIMO systems, how
much training should be sent is a very important
question. Once the amount of the training is de-
termined, the training symbols can be designed
by using of the channel common or/and indi-
vidual sparsity in the correlated massive MIMO
systems. Besides using the common support,
a new pilot structure with joint common and
dedicated support has been proposed in [50],
where the common one is used to estimate
the common channel parameters of the related
users in multi-user massive MIMO systems
while the dedicated one is used to estimate the
individual channel parameters of each user.

Besides the general massive MIMO sys-
tems, a compressed hierarchical multiresolution
codebook has also been designed specially for
mmWave massive MIMO systems to construct
training beamforming vectors [51]. Based on
this idea, a lot of different hierarchical multires-
olution codebooks have been proposed from
different angles. For example, in [52], a com-
pressive beacon codebook with different sets
of pseudorandom phases has been designed.
In [53], a common codebook satisfying the
conflicting design requirements as well as val-
idating practical mmWave systems has been
proposed through utilizing the strong directiv-
ity of mmWave channels. In [54], a multi-
resolution uniform-weighting based codebook,
with similar to an normalized DFT matrix, has
been proposed to reduce the implementation
complexity, where the estimation of the angle
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Fig. 7: Channel model with limited scatters, where A is the spatial correlation matrix.

of arrival (AoA) and angle of departure (AoD)
will have a much lower training overhead.
Therefore, the codebook based beamforming
training procedure can achieve a good balance
between complexity and high performance for
the practical systems.

C. Compressive Channel Estimation and Feed-
back

CS can be used to reduce the cost of the
channel estimation and feedback by exploiting
the channel sparsity. The existing CS based
channel estimation and feedback schemes can
be divided into the following three categories
according to exploiting sparsity in different
domains.

1) With Time Domain Sparsity: It has been
shown that the channel is slowly-varying in
various applications so that the prior channel
estimation result can be still used to reconstruct
the subsequent channels, as illustrated in Fig. 8.
By using the structure in the figure, several CS
algorithms have been proposed in [8], [55], [56]
to recover massive MIMO channels.

Exploiting the common time-domain sup-
port, a CS-enabled differential CSI estimation
and feedback scheme has been proposed in
[55]. The scheme in [56] further combines

LS and CS techniques to improve estimation
performance. In this scheme, the LS and CS
techniques can be used to estimate a dense
vector obtained by projecting into the previous
support and a sparse vector obtained by project-
ing into the null space of the previous support,
respectively. Since the current channel vector
has only a small number of non-zero elements
outside the support of the previous channel, the
proposed scheme can reduce the pilot overhead
and improve the tracking performance of the
channel subspace. Since the quality of the prior
support information will affect the estimation
accuracy, a greedy pursuit-based approach with
the prior support information and its quality
information has been developed in [8], where
the prior support information is adaptively ex-
ploited based on its quality information to
further improve the channel estimation perfor-
mance.

Besides channel estimation, several channel
feedback schemes have been also proposed in
[55] and [49]. To exploit the common sup-
port, a CS-enabled differential CSI feedback
scheme has been developed in [55] by using
the temporal correlation of MIMO channels.
The proposed scheme can reduce the feedback
overhead by about 20% compared with the
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direct CS-enabled channel feedback. In [49],
a robust closed-loop pilot and channel state
information at the transmitter (CSIT) feedback
resource adaptation framework has been devel-
oped by using the temporal correlation of mul-
tiuser massive MIMO channels. In this frame-
work, the pilot and feedback resources can be
adaptively adjusted for successful CSIT recov-
ery under unknown and time-varying channel
sparsity levels.

2) With Spatial Domain Sparsity: In prac-
tice, the antenna spacing in massive MIMO is
usually set to be half-wave length to keep the
array aperture compact. Furthermore, the BS
with a large-scale antenna array is generally
deployed at the top of high buildings such that
there are only limited local scatters [57]. In this
case, the large-scale MIMO channels exhibit
strong angular-domain sparsity or spatial spar-
sity. This channel sparsity property can be used
to reduce the channel estimation and feedback
overhead in FDD massive MIMO systems.

In [58], a block optimization algorithm is
employed to extract the common angular sup-
port information from the channel matrices.
The extracted common support information is
then used to form the weighted factors and
design a weighted block optimization algorithm
to estimate the channel matrix. In [59], a spa-
tial sparsity-based compression mechanism has
been proposed to reduce the load of the channel
feedback. In this mechanism, random projec-
tion with unknown sparsity basis and direct
compression based on known sparsity basis
are used. Since the spatial sparsity will reduce

channel rank, a dictionary learning method,
which captures the communication environment
and the antennas property, has been proposed
to obtain the compressed channel estimation.

After the compressed hierarchical multireso-
lution codebook is designed in [51]–[54], the
corresponding channel estimation schemes can
be developed. In these schemes, the hierarchi-
cal multi-resolution codebook can be capable
of generating variable beam width radiation
patterns to facilate the usage of robust adap-
tive multipath channel estimation algorithms.
Meanwhile, the exploitation of adaptive com-
pressive sensing algorithm will also reduce im-
plementation complexity and estimation error.

3) With Spatial-Temporal Sparsity: In the
above schemes, the temporal-domain sparsity
and the spatial-domain one are independently
exploited. In practice, they can be jointly used
to further reduce the cost of channel estimation
and feedback.

In [60], a structured-CS enabled differential
joint channel training and feedback scheme has
been proposed, where a structured compressive
sampling matching pursuit (S-CoSaMP) algo-
rithm uses the structured spatial-time sparsity of
wireless MIMO channels to reduce the training
and feedback overhead. In [61], a Bayesian CS
based feedback mechanism has been proposed
for time-varying spatially and temporally corre-
lated vector auto-regression wireless channels,
where the feedback rate can be adaptively ad-
justed.

4) With Spatial-Frequency Sparsity: Be-
sides the spatial-temporal sparsity, the spatial-
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frequency one can also be exploited to reduce
the cost of channel estimation and feedback.
In [62], the sparsity in the spatial-frequency
domain is first exploited and an adaptive CS-
enabled feedback scheme is correspondingly
proposed to reduce the feedback overhead. In
this scheme, the feedback can be dynamically
configured based on the channel conditions to
improve the efficiency. Due to sharing sparse
common support for the adjacent subcarriers
in orthogonal frequency division modulation
(OFDM), an approximate message passing with
the nearest neighbor sparsity pattern learning
(AMP-NNSPL) algorithm has been developed
to adaptively learn the underlying structure to
obtain better performance.

D. Precoding and Detection

The precoder design based on the estimated
CSI is a very important problem in massive
MIMO systems, especially in the mmWave
wideband systems. Since wideband mmWave
massive MIMO channel generally exhibits fre-
quency selective fading, the precoder design
based on the estimated CSI will become chal-
lenging. Generally, the sparse structure of
mmWave massive MIMO channels in angle
domain or beam space can be used to sim-
plify the precoder design [63], [64]. In [63],
compressive subspace estimation is used to get
the full channel information and then design
the precoder to maximize the system SE. In
order to reduce the CSI acquisition cost and
address the mismatch between few radio fre-
quency chains and many antennas, the hybrid
precoding design with baseband and radio fre-
quency precoders has been used in mmWave
massive MIMO systems. However, this hybrid
precoding will introduce performance loss. In
order to mitigate performance loss, an iterative
OMP has been utilized to refine the quality
of hybrid precoders [64]. Meanwhile, a limited
feedback technique has also been proposed for
hybrid precoding to reduce the feedback cost.

CS can be also used in signal detection of
massive MIMO with spatial modulation (SM).
In massive SM-MIMO, the maximum likeli-
hood (ML) detector has a prohibitively high

complexity. Thanks to the structured sparsity
of multiple SM signals, a low-complexity sig-
nal detector based on CS has been introduced
to improve signal detection performance. In
[65], a joint SM transmission scheme for user
equipment and a structured CS-enabled multi-
user detector for the BS have been developed,
the proposed detector can reliably detect the
resultant SM signals with low complexity by
exploiting the intrinsical sparse features.

In the above, we mainly discuss CSI acqui-
sition and precoding based on CS theory in
FDD massive MIMO systems. In practice, the
CS theory can be also applied to TDD massive
MIMO systems. A channel estimation approach
based on block-structured CS has been devel-
oped in [66], where the common support in
sparse channels and the channel reciprocity in
TDD mode are used simultaneously so that the
computational complexity and pilot overhead
can be reduced significantly.

E. Potential Research

As we can see from the above discussion, CS
has been successfully used in massive MIMO to
improve the performance of channel estimation
and precoding. However, there are still many
open topics before implementing CS in massive
MIMO systems. We will discuss some of them
in this section.

1) Effect of Antenna Deployment: Due to
space limitation, large-scale antenna may be
deployed at various topologies, i.e., central-
ized or distributed. Since the different antenna
topologies corresponding to different channel
sparsity, the effect of antenna configuration on
the performance of CS-enabled channel estima-
tion is still open.

2) Measure of Channel Sparsity: As men-
tioned before, the channel sparsity is very im-
portant to CS-enabled channel estimation. In
the current research works, various sparsity
models have been assumed and exploited in
channel acquisition. Many of these assumed
sparsity models lack of verification by mea-
surement results. It is desired that either the
sparsity model or the CS-enabled approach can
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be confirmed by some measurement results
under different propagation conditions.

3) Channel Estimation and Feedback with
Joint Support: In the above channel estimation
and feedback schemes, one or two of the three
types of channel sparsity are used to improve
the channel estimation performance and reduce
the feedback overhead. If all three types of
channel sparsity are used, can we further im-
prove performance? How much performance
gain can be achieved if possible?

4) Channel Estimation and Feedback with
Unknown Support: Channel sparsity directly
affects CS-enabled channel estimation perfor-
mance. However, it is still a challenging prob-
lem how to get the information on channel
sparsity support. At the same time, it is also
worth to study how channel estimation and
feedback schemes should be designed without
channel sparsity support.

VI. OTHER COMPRESSIVE SENSING

APPLICATIONS

In addition to the aforementioned applica-
tions, CS has been applied in various other
areas in wireless communications. Some of
them are introduced in this section.

A. Compressive Sensing Aided Localization

In a multiple target localization network, the
multiple target locations can be formulated as
a sparse matrix in the discrete spatial domain.
By exploiting the spatial sparsity, instead of
recording all received signal strengths (RSSs)
over the spatial grid to construct a radio map
from targets, only far fewer number of RSS
measurements need to be collected at run-
time. Subsequently, the target locations can
be recovered from the collected measurements
through solving an `1 minimization problem.
As a result, the multiple target locations can be
recovered accordingly.

B. Compressive Sensing Aided Impulse Noise
Cancellation

In certain applications, such as OFDM, im-
pulsive noise will degrade the system perfor-

mance severely. OFDM signal is often pro-
cessed in the frequency domain. Even if im-
pulse noise only lasts a short period of time,
it affects a wide frequency range. By regarding
impulse noise as a sparse vector, CS technique
has been exploited to mitigate such type of
impulse noise [67].

C. Compressive Sensing Aided Cloud Radio
Access Networks

Cloud radio access networks (C-RANs) has
been proposed as a promising technology to
support massive connectivity in 5G networks.
In C-RAN, the BSs are replaced by remote
radio heads (RRHs) and connected to a central
processor via digital backhaul links. Thanks
to the spatial and temporal variation of the
mobile traffic, it is feasible to switch off some
RRHs with guarantee on the quality of service
in green C-RANs. More specifically, one RRH
will be switched off only when all the coeffi-
cients in its beamformer are set to zeros. Such
a group sparsity property inspires us to apply
CS to active RRH selection in green C-RANs to
minimize the network power consumption [68],
[69]. Additionally, in the uplink of C-RANs,
the channel estimation from the active users
to the RRHs is the key to achieve the spatial
multiplexing gain. Generally, the number of
active users is low in C-RANs, which makes it
possible to apply CS to reduce the uplink train-
ing overhead for channel estimation. Moreover,
the correlation among active users at different
RRHs exhibit a joint sparsity property, which
can further facilitate the active user detection
and channel estimation in C-RANs [70].

VII. CONCLUDING REMARKS

This article has provided a comprehensive
overview of sparse representation with applica-
tions in wireless communications. Specifically,
after introducing the basic principles of CS,
the common sparse domains in 5G and IoT
networks have been identified. Subsequently,
three CS-enabled networks, including wideband
spectrum sensing in CRNs, data collection in
IoT networks, and channel estimation and feed-
back in massive MIMO systems, have been
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discussed by exploiting different sparsity prop-
erties. From the above discussions, it has been
concluded that by invoking of CS, the SE and
EE of 5G and IoT networks can be enhanced
from different perspectives. Furthermore, po-
tential research challenges have been identified
to provide a guide for researchers interested
in the sparse representation in 5G and IoT
networks.
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