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Abstract. We describe a method for recording the Rabi nutation of nuclear spin polarized 3He by optically
pumped cesium magnetometers. The measurement is performed by detecting the time-dependent magnetic
field produced by the 3He magnetization. The observed signals are compared to theoretical models and the
results are used to precisely trace the evolution of the magnetization. This procedure represents a convenient
way to control and measure the Rabi flip angle and the degree of spin polarization in experiments using 3He
magnetometers. The method requires only very coarse knowledge of the applied magnetic field’s magnitude.

1 Introduction

Many of today’s fundamental physics experiments require
the precise and accurate measurement and tuning of an
applied magnetic field. Atomic magnetometers are well
suited for this task, since the (sensor volume averaged) fre-
quency of the field-induced precession of the atomic spin
polarization (at the Larmor frequency ωL) is related to
the magnetic field modulus by a constant, the gyromag-
netic ratio γ = ωL/|B0|. An accurate field measurement
thus calls for a precision frequency measurement com-
bined with a precision knowledge of the gyromagnetic
ratio. The nuclear spin of 3He atoms is a proven candidate
for magnetic field standards [1,2], since its gyromagnetic
ratio γHe is known to very high precision [3]. The pre-
cession frequency of 3He can be measured indirectly in
a non-perturbative manner through the detection of the
rotating magnetic field produced by the precessing 3He
magnetization. Different methods can serve for this mea-
surement, their applicability depends on the experimental
circumstances. In strong magnetic fields and at high 3He
gas pressures, simple induction coils are efficiently used
to detect the free spin precession (FSP) [4]. At low pres-
sures of ∼1mbar and weak magnetic fields of ∼1μT the
induced voltage (∝ Larmor frequency, pressure) drops
and a sensitive magnetometer, such as a superconduct-
ing quantum interference device (SQUID) [1] or an atomic
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magnetometer becomes the solution of choice [5]. The lat-
ter are advantageous in many applications since they are
compact and operate at standard ambient temperatures.

Experiments searching for a permanent electric dipole
moment of the neutron (nEDM) [6] require an accurate
field control, for which 3He magnetometers are well suited
[7]. In that context the detection of the FSP of nuclear
spin polarized 3He gas by optically-pumped cesium mag-
netometers (CsOPMs) was recently demonstrated [8]. It
was shown that, within restrictions imposed by the applied
field’s stability, the precision level of field measurements
this type of magnetometer can achieve reaches the funda-
mental limit imposed by information theory, the so called
Cramér-Rao-lower-bound [9]. Measurements of a ∼1μT
magnetic field with ∼5 × 10−8 relative precision in 100 s
integration time were reported. The sensitivity of the
combined magnetometer concept was also theoretically
investigated [10].

2 Measurement principle

A measurement with a 3He-FSP magnetometer generally
consists of three steps: optical pumping, spin flipping, and
free-precession monitoring.

High degrees of nuclear polarization p ∼ 80% can be
conveniently achieved using metastable exchange optical
pumping (MEOP) [11]. Pumping can be either done in
situ, in the magnetometer vessel or ex situ using a suit-
able external polarizer unit [12]. Either process leaves the
3He in the magnetometer vessel polarized along the direc-
tion of the applied magnetic field B0 ‖ S. Since precession
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Fig. 1. Experimental geometry of the Cs⊥ group. The 3He cell
(center sphere, blue) and the CsOPMs (smaller surrounding
spheres, green) are shown. The holding field B0 points along
ẑ and the time dependent field B1(t) used to flip the mag-
netization oscillates along ŷ. For the CsOPMs shown in this
figure, the kCs of the Cs-D1 pump light is in the x̂–ẑ plane as
indicated for Cs3 (small arrow, green). In each sensor kCs is
perpendicular to the square plates around the Cs bulbs car-
rying the rf-coils. CsOPMs belonging to Cs‖ are displayed as
transparent spheres.

only occurs when S×B0 �= 0, either the spin polarization
or the holding field has to be flipped to initiate the spin
precession, and hence the magnetometer operation. Both
methods have their respective merits and drawbacks. Flip-
ping the field has the advantage that it can be done very
reproducibly and the procedure is widely independent on
the magnetic field conditions during the pumping. How-
ever, this approach is not possible when other parts of
the experimental apparatus require the field to be at a
fixed direction for operation. If, on the other hand, the
spin is flipped, the holding field B0 remains static at all
times, and a weak (B1 � B0) oscillating spin-flip field
B1(t) ⊥ B0 is applied for a short time tflip. The angle θflip
by which the 3He polarization is flipped then depends on
the field magnitudes B0 and B1, the frequency ωsf and the
duration tflip. Many experiments require a reproducible
flip by a well defined angle θflip. The envisioned nEDM
application calls for a π/2 flip with an accuracy on the
level of Δθflip ≈ 1mrad in order to minimize a systematic
perturbation of the neutrons’ precession created by a 3He
magnetization component along B0 [13]. For this reason
it is important to precisely measure and tune the flip-
ping angle. Below we will show that the combined 3He/Cs
magnetometer concept allows a high precision measure-
ment of θflip during normal magnetometer operation, so
that knowledge of the flip angle can be inferred without
causing additional experimental effort.

3 The experimental apparatus

A detailed description of the 3He/Cs magnetometer’s
design is given in references [8,10]. It consists of a ∼70mm
diameter spherical glass cell filled with ∼1mbar of high
purity 3He gas. It is surrounded by eight CsOPMs, oper-
ated as laser-pumped double-resonance magnetometers in

Fig. 2. Experimental geometry of Cs‖ group (smaller sur-
rounding spheres, orange). For the CsOPMs shown in this
figure the kCs of the Cs-D1 pump light is in the ŷ–ẑ plane
as indicated for Cs2 (small arrow, orange). CsOPMs belonging
to Cs⊥ are displayed as transparent spheres.

the Mx configuration [14]. Each CsOPM consists of a
paraffin-coated spherical glass cell filled with cesium vapor
that is traversed by a circularly polarized laser beam res-
onant with the Cs-D1 transition. The 895 nm light was
produced by a commercial extended cavity diode laser sys-
tem and delivered to each sensor via a multimode fiber.
The power of the transmitted beam is measured by a
photo-diode. Every CsOPM is further equipped with a
pair of Helmholtz coils which produce a magnetic field
oscillating at a constant frequency ωrf,Cs. This field drives
a magnetic resonance in the vapor cell, which has the effect
that the detected power acquires a component oscillating
at the rf frequency ωrf,Cs. The amplitude and phase ϕ
(of the photodiode signal with respect to the rf drive) of
this oscillation depend on δωCs = ωrf,Cs − ωL,Cs. When
ωrf,Cs ≈ ωL,Cs, any small change ΔB0 of the magnitude
of the magnetic holding field will yield a small phase
change Δϕ ∝ ΔB0. This phase is measured by demodu-
lating the (transimpedance-amplified) photo-diode signal
at ωrf,Cs using a digital lock-in amplifier. The holding
field applied for the experiments reported below was B0 ≈
1μT, yielding Larmor frequencies of ωL,Cs/(2π) ≈ 3.5 kHz
and ωL,He/(2π) ≈ 32.4Hz for Cs and 3He, respectively.
The CsOPMs are nominally located on cones around

the B0 direction originating from the 3He cell’s center.
By design the half-opening angles of these cones should be
θ = 45◦, since at these positions the 3He precession signal
detected by the CsOPMs is maximized [8]. The nominal
design distances of all CsOPMs from the 3He cell-center
are identical, d = 50mm. Deviations of the real setup from
design and effects thereof on the measurement data will
be addressed in detail in Section 4.2.

For reasons detailed in Section 4.4 it is reasonable to
further distinguish two groups of CsOPMs. For the first
group, that we refer to as Cs⊥ group, the propagation
direction of the Cs pump light kCs lies in the x̂–ẑ plane
(cf. Fig. 1). For the second group, referred to as Cs‖ group,
the kCs-vectors lie in the ŷ–ẑ plane (cf. Fig. 2). The angu-
lar coordinates (θi, φi) of all magnetometers (in standard
spherical coordinates) and the group they are associated
with are summarized in Table 1.
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μ̂(t) =
1

Ω2

⎛⎝−ω1δω(1− cosΩt) sinωsft+ ω1Ω sinΩt cosωsft
ω1δω(1− cosΩt) cosωsft+ ω1Ω sinΩt sinωsft

δω2 + ω2
1 cosΩt

⎞⎠ , (1)

Table 1. Angular coordinates of CsOPMs. The values δθ
refer to mechanical design uncertainties shown in Figure 4.

CsOPM Group θi φi

Cs1 ⊥ π/4 + δθ π
Cs3 ⊥ π/4 + δθ 0
Cs6 ⊥ 3π/4− δθ 0
Cs8 ⊥ 3π/4− δθ π

Cs2 ‖ π/4 + δθ π/2
Cs4 ‖ π/4 + δθ 3π/2
Cs5 ‖ 3π/4− δθ 3π/2
Cs7 ‖ 3π/4− δθ π/2

4 Signal modeling

In our previous publications [8,10] we have described how
the magnitude B0 = |B0| of the applied magnetic holding
field can be inferred from the 3He-FSP signal. Here we
focus on the time period preceding the FSP proper, during
which the 3He spins are flipped by an oscillating magnetic
field.
The CsOPMs do, of course, also monitor the 3He spin

dynamics during this spin-flip phase. In order to model
the expected signals, we first calculate the time evolution
of a magnetic moment μ(t) exposed simultaneously to a
static holding field B0 = B0ẑ and an oscillating orthog-
onal magnetic field B1(t) = 2B1 cos(ωsft)ŷ. We consider
the dynamics in a coordinate frame that rotates around ẑ
at the angular frequency ωsf and apply the rotating wave
approximation, yielding an effective field with components
(0, B1, B0 − ωsf/γHe). We solve the Bloch equations and
the solution in the laboratory frame are obtained by an
inverse rotation. Since the decay of the 3He’s spin polar-
ization is very slow in sufficiently homogeneous magnetic
fields we neglect relaxation effects on the typical timescale
(tens of seconds) of the spin flip duration. Assuming a
magnetic moment initially oriented along ẑ and defining
the detuning δω = ωL,He − ωsf, the magnetic moment’s
orientation evolves according to

see equation (1) above

where we have introduced the 3He Rabi nutation fre-
quency

ω1 = γHeB1, (2)

and the effective Rabi nutation frequency

Ω ≡
√

δω2 + ω2
1 . (3)

Fig. 3. The magnetization of the 3He sample is initially aligned
with B̂0 and evolves under the influence of the applied static
and oscillating fields on the sphere indicated by the dashed
line. Precession (fast) is occurring in the x̂–ŷ plane while nuta-
tion (slow) causes the time dependence of the flipping angle
θflip(t) which can be either understood as the angle between

the magnetization μ(t) and B̂0, or equivalently between the

spin polarization vector S(t) and the negative B̂0 direction.
The inset shows the magnetic dipole field created by the 3He
magnetization in the ẑ-ŷ plane for a fixed moment in time
when μ lies in that plane. The CsOPM, located in the same
plane under the angle θCs with respect to B̂0, measures (to first
order) the projection of the dipole field at its position onto the

B̂0 direction.

Equation (1) describes the evolution of μ on a sphere.
The CsOPMs will detect the magnetic field produced by

the 3He magnetization. The magnetic far field produced
by a 100% nuclear spin polarized gas of NHe atoms con-
tained in a spherical volume centered at the origin is given
by

BHe(r) =
μ0μHe

4π
NHe

3r(μ̂ · r)− μ̂ |r|2
|r|5 , (4)

where μHe is the 3He nuclear magnetic moment.
A quick estimation shows, that for a gas pressure of

1mbar the field in close vicinity of the 3He cell is on the
order of pT. Combining equations (1) and (4) yields the
time dependent magnetic field

BHe(t) ≡ BHe[μ̂(t)], (5)

produced by the 3He magnetization which evolves under
the influence of the static and oscillating fields. Based on
equation (5) we now model the actual signal of a CsOPM
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Fig. 4. Schematic cut through the apparatus along the ŷ–ẑ
plane (not to scale, compare Fig. 2). The apparatus consists
of two halves fixed with respect to each other along the plane
indicated by the dashed line. The design positions and real
position are shown in gray and red, respectively. The reduced
distance between the two halves implies errors on the θi angles,
as illustrated for Cs2 and Cs5.

detecting this time-dependent magnetic field. Qualita-
tively, the expected signals can be deduced by simple
reasoning (compare also Figs. 3 and 5, top row). In the
beginning of the measurement the 3He is magnetized along
B0. No precession occurs, but the static field produced by
the 3He sample adds to the holding field at the CsOPM’s
position. When the flip-field is switched on, the 3He mag-
netization is gradually driven out of the B0 direction, and
the transverse components of the magnetization precess,
leading to an oscillating magnetic field at the CsOPM’s
position. This oscillation gains in amplitude the further
the magnetization is flipped and reaches its maximum at
a flip angle of π/2, at this point the static component of
the field created by the 3He magnetization vanishes. From
there on the oscillation amplitude decreases again until the
flip angle reaches π, at the same time a static component
with reversed sign builds up. When the magnetization has
completely reversed direction the oscillation vanishes (no
precession) and the magnitude of the static component is
maximal again.
In practice, when these fields are detected by a CsOPM,

a number of additional effects have to be taken into
account to correctly interpret the observed signals. In the
following we list all effects that we have considered and
that are included in the final expression which is then
used to fit the experimental data.

4.1 Vector component magnetometry

By virtue of their operating principle, the CsOPMs
are scalar magnetometers, that measure the
modulus |B0 +BHe| of the total magnetic field averaged
over the Cs-cell volume. Since the field created by the
precessing 3He magnetization is much smaller than the
holding field (BHe � B0), a Taylor expansion of the last
expression shows that the CsOPMs are, to first order,
only sensitive to the component, BHe,z(t), of BHe(t) along
the holding field B0. Assuming that the oscillating field
B1(t) is switched on at time t = 0, the detected vector
component of the 3He field is thus given by

BHe,z(t) = BHe(t) · B̂0

=
NHeμHeμ0

8πd3Ω2
[(1 + 3 cos 2θ)

(
ω2
1 cosΩt+ δω2

)
+3ω1 sin 2θ{Ω cos(ωsft− φ) sinΩt

+ δω(cosΩt− 1) sin(ωsft− φ)}]. (6)

Here d, θ, and φ are the spherical coordinates of any
given Cs-sensor cell. Evaluating equation (6) explicitly
for the coordinates (d, θi, φi) of each CsOPM, Csi (i =

1, . . . , 8), yields eight expressions B
(i)
He,z(t) that describe

the expected z-components of the magnetic field at the
sensor positions.

4.2 Mechanical imperfections and degree of
polarization

Due to mechanical imperfections, the real apparatus may
deviate from its design geometry, e.g., the radial and
angular positions of the CsOPMs, which will affect the
measurement data. Equation (4) shows that the strength
of the magnetic (dipole) field created by the 3He sam-
ple drops with 1/d3. As a result the amplitude of the
observed oscillation signal is very sensitive to the spacing,
d(i), between ith CsOPM and the 3He cell. The ampli-
tude of the signal further depends on the degree of spin
polarization PHe of the gas sample which is not known a
priori. We take both effects into account by introducing
an effective distance parameter

(
d′(i)

)3

=

(
d(i)

)3
PHe

, (7)

in the model.
The dependence of the signal on the angular coordi-

nates is more delicate, as we can see from equation (6).
The φ(i) coordinate produces a phase shift between 3He
FSP-signals measured on different sensors, an effect which
can be exploited in the context of common-mode noise
suppression (CMNR) [8]. Slight deviations of the φ(i) coor-
dinates from their design values may affect the CMNR
but their influence on the measurement data remains
restricted to the abovementioned phase shift which will
not hamper the analysis.
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Fig. 5. Time series of magnetometer Cs3 data (black dots, foreground), and fit (red, background). The rectangular insets show
closeups on the data at the positions specified by the dashed lines. The times at which an exact π/2-flip has occurred are shown
as solid vertical lines in the second and rightmost closeup. The upper row illustrates the trajectory of the 3He’s Bloch vector
during the flipping.

Deviations of the θ(i) coordinates from design, on the
other hand, cannot be neglected. The combined 3He/Cs
magnetometer is assembled from two symmetric halves,
one comprising the sensors Cs1–Cs4, and the other one the
sensors Cs5–Cs8, the x̂–ŷ plane being shared by the two
assembled halves. In the measurements described here, the
spacing between the two halves was slightly smaller than
its design value because a smaller-than-design 3He cell was
used and priority was given to minimizing the distance
between the 3He cell and the CsOPMs. Figure 4 illustrates
this geometrical mismatch which implies a considerable
deviation of the θ(i) coordinates from their design values

θ̃(i). Based on coordinate measurements (compare Tab. 1)
of the assembled apparatus we estimate the average devi-

ation to be δθ = |θ̃ − θ| ≈ 3.0(4)◦. To take this effect into
account, the θ(i) angle will be a free parameter in the fit
function to be defined in Section 4.6 and its exact value
will be inferred by the fit routine.

4.3 Bandwidth limitation

To correctly model the expected signals another impor-
tant property of the CsOPM has to be taken into account.
As discussed, e.g., in [15] the response of the CsOPM
exhibits a first order low-pass characteristic in the fixed-
frequency mode of operation which applies here. The
transfer function of this low-pass is given by

T (f)(i) =

√
1

1 + (2πf τ (i))2
, (8)

where τ (i) = 1/Γ
(i)
2 is the lifetime and Γ

(i)
2 the trans-

verse relaxation rate of the cesium polarization in the
cell of the ith CsOPM. The −3 dB cut-off frequency f3dB
of this filter is typically ≈5Hz for the CsOPMs used in
this study [16]. Inspection of equation (6) reveals compo-
nents oscillating at frequencies ωsf ≈ ωL,He ≈ (2π)37Hz

and
√

(ωL,He − ωsf)2 + ω2
1 ≈ ω1. The measured amplitude

of the component oscillating at ωsf will be significantly
reduced by the atomic low-pass filter (LPF) effect. How-
ever, for a weak flipping field (B1 � B0), the Rabi
frequency ω1 ≈ 100mHz is very slow compared to the
Larmor frequency and its amplitude is virtually not
affected by the atomic LPF. We take this effect into
account by introducing, in equation (6), transmission fac-
tors T (i)(ωsf) ≡ T (i), in front of all terms oscillating at ωsf,
i.e., by making the replacements

cos(ωsft− φ(i)) ⇒ T (i) cos(ωsft− φ(i)), (9)

and

sin(ωsft− φ(i)) ⇒ T (i) sin(ωsft− φ(i)). (10)

4.4 Parasitic detection of the rf spin-flip field

The CsOPM signals are also affected by the applied B1(t)
field and may acquire components oscillating at ωsf and
2ωsf. The ωsf component arises from a nonzero projection
of the B1(t) field on the B̂0 direction at the CsOPM’s
position which may occur due to a misalignment or inho-
mogeneities of the two fields. The 2ωsf component can
be explained by the fact that the CsOPM measures the
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Table 2. Individual pick-up amplitudes obtained in cali-
bration measurement. For Cs7 the amplitude could not be
determined due to a DAQ problem. The values in brack-
ets are inferred by the fit of the real measurement data
described in Section 6.

CsOPM Group B
′(i)
1ω (pT) B

′(i)
2ω (pT)

Cs1 ⊥ 0.63 0.19
Cs3 ⊥ 0.13 0.19
Cs6 ⊥ 1.42 0.31
Cs8 ⊥ 1.90 0.31

Cs2 ‖ 7.31 0.28
Cs4 ‖ 6.82 0.23
Cs5 ‖ 6.53 0.24
Cs7 ‖ (6.75) (0.24)

modulus of the total magnetic field, by virtue of which
a component of B1(t) oscillating at ωsf that is trans-
verse to B0 will produce a 2ωsf component. In order to
quantitatively assess this pick-up effect for each individual
CsOPM, a calibration measurement was performed during
which the CsOPMs were exposed to the same oscillating
B1(t) field that was later used for actual data taking,
but the 3He being unpolarized. The pick-up amplitudes

were inferred by fits of a function B
′(i)
1ω sin(ωsft + φ

(i)
1ω) +

B
′(i)
2ω sin(2ωsft + φ

(i)
2ω) to these data and are displayed in

Table 2. It can be seen that the magnetometers of Cs‖
systematically measure a larger oscillation amplitude B

′(i)
1ω

compared to those of Cs⊥ which motivates the distinc-
tion of the two groups made in Section 3. The reason
for this distinct difference is most likely to be sought
in inhomogeneities of the B0 and B1(t) fields produced
by Helmholtz coils wound around the ẑ and ŷ direc-
tion respectively. The geometry of the inhomogeneities
expected in such a system qualitatively explains a system-
atically increased pick-up amplitude for the Cs‖ group as
compared to the Cs⊥ group.
We take the pick-up effects into account by adding a

phase-shifted oscillatory term B
′(i)
1ω sin(ωsft+φ

(i)
1ω +φ

(i)
0 )+

B
′(i)
2ω sin(2ωsft + φ

(i)
2ω + φ

(i)
0 ) in the model expression for

the ith CsOPM signal. For Cs7 the calibration measure-
ment failed due to an unresolved DAQ problem. In the

fits of this CsOPM’s signals, B′1ω
(7)

and B′2ω
(7)

therefore
remained free parameters. When the initial values of these
fit parameters are appropriately chosen, the fit converges

with B′1ω
(7)

and B′2ω
(7)

parameter values that are compa-
rable to the ones observed for the other members of the
Cs‖ group. The different magnitudes of the pick-up lead to
qualitatively different shapes of the signals observed dur-
ing the 3He spin-flip that become apparent in Figures 7
and 8.

4.5 Holding field inhomogeneity

The ith CsOPM will detect the magnetic oscillation

B
(i)
He,z(t) superposed on a constant background field given

by the magnitude of B0(ri) at its position. We account

Fig. 6. FFT spectra of the CsOPM signal (black, background)
and the fit residuals (red, foreground) of magnetometer Cs3.
The full dataset was used to calculate the spectrum.

for possible field inhomogeneities by using B
(i)
0 = |B0(ri)|

for the ith sensor as a free fit parameter.

4.6 Fit function

Taking all the above into account, the model expression for

the time-dependent magnetic field B
(i)
exp(t) that is detected

by the ith CsOPM during the 3He spin-flip reads

B(i)
exp(t) = B

(i)
0 +B′1ω

(i)
sin(ωsft+ φ

(i)
1ω + φ

(i)
0 )

+B′2ω
(i)

sin(2ωsft+ φ
(i)
2ω + φ

(i)
0 )

+
NHeμHeμ0

8π(d′(i))3Ω(i) 2

[(
1 + 3 cos 2θ(i)

)
×
(
ω
(i) 2
1 cosΩ(i)t+ δω(i) 2

)
+3T (i)ω

(i)
1 sin 2θ(i)

{
Ω(i) cos(ωsft− φ(i))

× sinΩ(i)t+ δω(i)
(
cosΩ(i)t− 1

)
× sin(ωsft− φ(i))

}]
, (11)

which represents the fit function after substituting ω
(i)
1

with equation (2), Ω(i) with equation (3) and δω(i) =

ω
(i)
L,He − ωsf. The quantities T (i), B′1ω

(i)
, B′2ω

(i)
, φ

(i)
1ω, φ

(i)
2ω,

φ(i) and NHe, μ0, μHe, ωsf are predefined constants for
each CsOPM and global constants for all fits, respectively.

The quantities d′(i), ω(i)
L,He, B

(i)
0 , φ

(i)
0 , B

(i)
1 and θ(i) are free

parameters of the fits. As discussed in Section 4.2, the θ(i)

angle of the CsOPMs’ positions deviates from the optimal
geometry and is therefore included in the free parame-
ter set and its exact value inferred by the fit routine.
The fits of the experimental data presented in the fol-
lowing actually yield values δθmean(1–4) = 3.24(48)◦ and
δθmean(5–8) = 3.09(60)◦ for the two halves of the mag-
netometer assembly, respectively. This process produces
stable results which agree with the expectations arising
from geometrical examinations of the apparatus.
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Fig. 7. Recorded time series (black points), fit function (red, background) and fit residuals (green, foreground) of signals from
Cs⊥ group magnetometers recorded during 3He spin flip. Excellent quantitative agreement is found. The inset in the upper left
graph shows a closeup on the data in the time interval 0.8 s<t< 1.1 s on a stretched timescale.

5 Method

The measurements presented in the following were per-
formed inside the magnetically shielded room BMSR-2
of Physikalisch Technische Bundesanstalt, Berlin, one of
the world’s magnetically most quiet and stable environ-
ments. The magnetometer was immersed in a homoge-
neous magnetic field B0 ‖ ẑ with |B0| ≈ 1μT. Both,
B0 and B1(t) were produced by large Helmholtz coils
[17]. Prior to polarizing the 3He, the magnitude of the
magnetic field at the 3He cell-center was estimated. This
was done by measuring the resonance frequencies of all
eight CsOPMs and calculating their average ωMean

L,Cs . Using

the relation ωL,He ≈ ωmean
L,Cs γHe/γCs, the spin flip fre-

quency ωsf was chosen accordingly. A weak gas discharge
was ignited in the magnetometer cell and the 3He was
nuclear spin polarized by MEOP [11] using a laser reso-
nant with the C9 transition. After the 3He sample was
polarized, the discharge and pump-laser were switched
off. The sinusoidal oscillating spin-flip field B1 ‖ ŷ with
a ∼2 nT amplitude was switched on for ∼12 s using a
square wave gated function generator and the CsOPM
phase signals ϕ(i)(t) were recorded during the 3He Rabi
nutation. Recording was done at 14 bit resolution and
450Hz sampling rate1 using the built in logging func-
tionality of the digital lockin amplifiers. All CsOPMs
were driven at the same constant frequency ωrf,Cs, and
the phase data were scaled to magnetic units according
to

S(i)(t) =
1

γCs

⎛⎝ωrf,Cs − Γ
(i)
2

tan
[
ϕ(i)(t)− ϕ

(i)
0

]
⎞⎠ , (12)

1 For the sensor Cs6 the acquisition rate was 900Hz due to an
error in the settings of the DAQ system.

where ϕ
(i)
0 is a magnetometer-specific phase offset that

was determined by a separate calibration measurement.
Finally, equation (11) was used to fit the magnetometer
data S(i)(t).

6 Results and discussion

In Figure 5 a discrete time series of Cs3 data (black
dots) is shown, together with the fitted function (red solid
line) given by equation (11), several selected sections are
displayed on a stretched timescale. One sees a remark-
able agreement between the data and the fit. Figure 6
shows the FFT spectrum of that time series (black, back-
ground), together with a spectrum of the fit residuals (red,
foreground). A large DC component and prominent oscil-
lations at ωsf and 2ωsf are clearly visible in the data. The
spectrum of the residuals shows no structure, which fur-
ther proves that the fit function adequately models the
signal.
The data and fits of all 8 CsOPMs are shown in Fig-

ures 7 and 8 for the Cs⊥ and Cs‖ groups, respectively.
The qualitative difference between the signals from Cs⊥
and Cs‖ is that for the latter the fast oscillation is more
prominent at all times because of the larger oscillating
B1(t) field pick-up by those sensors. It can nonetheless
be seen that equation (11) does adequately reproduce the
observed behavior for both – qualitatively quite different
– types of signals. In the following we will address a num-
ber of specific features and perform a more quantitative
analysis of the results.

6.1 Holding field

From the fits we can extract different independent values
of the magnetic holding field B0.
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Fig. 8. Measurement data (black points), fit function (red, background) and fit residuals (green, foreground) of signals from
Cs‖ group magnetometers. The qualitative difference to Figure 7 is visible but the fit function adequately describes both cases.

– First, we get 8 values of the 3He Larmor frequency

from the 8 fit parameters ω
(i)
L,He, which are individ-

ually fit for each CsOPM. Since these are all simul-
taneous measurements of the same time-dependent
field from the precessing 3He magnetization – and
thus represent the field in the center of the 3He
magnetometer cell [18] – we expect them to agree
within their uncertainties. Inspection of the data
shows that the parameter uncertainties calculated
by the fit routine are too small to explain the scat-
ter of the measured values. This underestimation of
the experimental errors is to some extend expected
since the fit routine will only produce realistic error
estimates for a (flat) white Gaussian noise spectrum.
In our case, however, the noise spectrum is deformed,
e.g., due to the low-pass filter involved in the lock-in
detection. To take this effect into account we up-
scale the uncertainties provided by of the fit routine
by a common factor (∼6) to make them consistent
with the observed scatter. The magnetic field values

are calculated from B0 = ω
(i)
L,He/γHe and are shown,

together with their weighted mean, in the left graph
of Figure 9.

– Each fit also yields 8 values of the magnetic field

from the fit parameters B
(i)
0 (= Cs Larmor frequen-

cies) at the position of each of the 8 CsOPMs. These
results are shown in the right graph of Figure 9 as
blue dots and their mean is given by the upper (blue)
line. The data from the left graph are repeated for
convenience. Comparison shows that the two mean
fields agree within ∼20 pT. Absolute equality is only
expected in case of a perfectly homogeneous field,
or in case where the field has only linear gradients.
Any higher order field gradient or geometrical imper-
fection of the apparatus will result in deviations of
the two means. Additional reasons for the inequality
may be systematic errors of the inferred Cs Larmor

frequencies (∝B
(i)
0 ) due to Bloch–Siegert shifts, light

shifts or errors of the initial phase settings [19].

6.2 Degree of polarization

The fits also yield the 8 effective distance parameters d′(i)

introduced in Section 4.2, whose average value is

d′(mean)
= 55.3(1.8)mm. (13)

The uncertainty of the above value is caused by the scatter
of the set of eight measurements, the individual uncertain-
ties being much smaller (∼0.05mm). Since all components
of the magnetic field in equation (4) scale with μ/d3,
effects of increased CsOPM distance and reduced 3He
polarization are hard to distinguish. The apparatus is con-
structed such that the 3He cell and the CsOPM cells
actually touch, which assures that their (radial) spac-
ings are in agreement with the design value. Variations
of the distances between their individual centers may still
occur due to the fact that the glass cells for 3He and
Cs are actually hand-crafted. Previous, independent mea-
surements had suggested the presence of such deviations
of ∼±1mm [19] which agrees well with the spread found
in equation (13). We use (13) to calculate the degree of
polarization of the gas sample and find

PHe =

(
d

d′(mean)

)3

= 0.74(7). (14)

This value is well in accordance with previous results,
demonstrating the consistency of this method with ear-
lier studies [10]. As noted above, the scatter of the cell
distances dominates the error on the determination of the
degree of polarization. We estimate that if the uncertainty
on the (true) cell distance could be reduced to ∼0.1mm,
e.g., by the construction of a mechanically more precise
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Fig. 9. Measurements of the holding field. Left : Holding field at the 3He cell position calculated from the 3He Larmor frequencies

ω
(i)
L,He (points with error bars) and their weighted mean (red horizontal line) with error band. Right : Values of B

(i)
0 at the centers

of the Cs OPMs extracted from the fits (blue squares) together with their mean (blue line) and standard deviation (blue band).

The ω
(i)
L,He data from the left graph is also shown for comparison.

apparatus, this would allow determination of the degree
of polarization with an uncertainty <1.

6.3 Rabi frequency and flip-angle

A central goal of the analysis presented in this paper was
the precision prediction of the 3He spin-flip angle’s time
dependence. The fit of each CsOPM signal produces one

value B
(i)
1 and one value ω

(i)
L,He, thus yielding one value,

Ω(i), of the effective Rabi frequency. The measured Rabi
frequencies for all eight CsOPMs are shown, together with
their weighted mean, in Figure 10.
Using the relation

θ
(i)
flip(t) = arccos(μ(i)

z (t)), (15)

derived from equation (1) allows calculating θ
(i)
flip for any

given time t by inserting the fitted parameter values. The
precision at which these parameters are known defines the
precision of the θflip determination and scales inversely
with the length of the calibration measurement. This
dependency is shown in Figure 11, where the uncertainty
of the calculated flip angle is plot as a function of mea-
surement time. It can be seen that after the (arbitrarily
chosen) flipping time of ∼11.9 s the uncertainty on the
flip angle reaches the δθflip ∼ 4mrad level required for the
nEDM application.
Assuming time-independent experimental conditions,

one can use the result of a (long) calibration measure-
ment to determine the appropriate flipping time needed
to achieve any desired flipping angle. In many experimen-
tal situations one wishes to achieve a flip angle θflip = π/2
(‘π/2-pulse’), e.g., to maximize the magnetometric sen-
sitivity and minimize static field components created by
a longitudinal 3He magnetization along ẑ. The time at

Fig. 10. Effective Rabi frequencies Ω(i) of the 3He spin flip as
measured simultaneously by the eight CsOPMs. The horizon-
tal blue line and band represent their weighted mean and its
uncertainty Ω(mean) = 0.4234(4) rad/s.

which θflip = ±π/2 is reached2 can be found by solving

μ
(i)
z (t±π/2) = 0 in equation (1), yielding

tπ/2 = ±arccos(−δω2/ω2
1) + 2nπ

Ω
, (16)

with n ∈ {0, 1, 2, 3, 4, . . .}. The smallest (positive) times
for which this condition is fulfilled are

tπ/2 = +
arccos(−δω2/ω2

1)

Ω
for θflip = +π/2, (17)

2 We note that we use the nomenclature +π/2 and −π/2 to iden-
tify the cases in which the condition θflip = π/2 is approached from
smaller (e.g., first occurence) and larger (e.g., second occurence)
angles, respectively.
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Fig. 11. Calculated flip angles θflip (upper plot) and their
uncertainties δθflip (lower plot) as a function of the measure-
ment time. The data from all eight CsOPMs was used. The two
times at which a π/2 flip is achieved are shown as vertical lines.
The horizontal lines in the lower figure mark the uncertainty
of the θflip determination for the first and second occurence of
a π/2 flip.

Table 3. Times at which a flip of the 3He magnetiza-
tion by θflip = +π/2 (first occurrence) and θflip = −π/2
(second occurrence) is reached.

CsOPM t+π/2(s) t−π/2(s)

Cs1 3.71(1) 11.13(2)
Cs3 3.73(1) 11.16(2)
Cs6 3.71(1) 11.12(3)
Cs8 3.69(2) 11.07(6)
Cs2 3.71(2) 11.11(6)
Cs4 3.71(1) 11.11(3)
Cs5 3.71(1) 11.12(3)
Cs7 3.70(2) 11.10(6)

Mean 3.713(3) 11.129(10)

and

t−π/2 = −arccos(−δω2/ω2
1) + 2π

Ω
for θflip = −π/2,

(18)
respectively. Table 3 gives predictions for the t+π/2 and
t−π/2 flip-times based on the analysis of the individual
CsOPMs’ signals. The errors of the calculated Rabi fre-
quencies and flip times are strongly dominated by the
uncertainties of the B1 estimation, uncertainties of the
ωL,He parameter playing a negligible role.

7 Conclusion

We have demonstrated a consistent way of interpreting
measurements of the time dependent magnetic field cre-
ated by a sample of nuclear spin-polarized 3He during a
spin-flip initiated by an external oscillating magnetic field.
Our model allows us fitting these data and inferring –
from the fit results – the effective Rabi frequency, thus
a relation between the flipping time and the flip angle of
the 3He spin can be established. The method is a con-
venient means for measuring and controlling the spin-flip
angle in experiments using 3He/Cs magnetometers and
requires only a coarse knowledge of the applied (static
and oscillating) magnetic fields. In such an experiment one
would typically perform a (long) Rabi nutation measure-
ment and analyze it along the lines demonstrated above
in order to characterize the system parameters. Assum-
ing that the magnetic environment does not change with
time, this knowledge can be used to calculate the flip-
ping time needed to achieve any flip angle desired for the
experiment. Moreover, the data recorded during the flip-
ping used to prepare the 3He for an actual experimental
run can be used a posteriori to check whether the desired
flip angle was really achieved. In this context our analy-
sis suggests that it might be beneficial to do a −π/2 flip
rather than a +π/2 because of the improved precision of
the θflip determination for longer measurement times. The
technique will be most profitable for the accurate moni-
toring of the static magnetic field in experimental searches
for an nEDM. Our results show that measurements of the
flip angle at a precision level of ∼4mrad, sufficient for
the nEDM application are feasible. Even better results,
e.g., a scaling of the uncertainties with 1/

√
nCs can be

expected by deploying an increased number nCs of read-
out CsOPMs. Our method further provides access to the
3He’s degree of spin polarization PHe. With a mechan-
ically improved apparatus a polarization measurement
with uncertainty below 1% seems feasible.
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