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In the present work high energy resolution off-resonant X-ray spectroscopy (HEROS) was employed at a
synchrotron to study a silica supported Ta(V) bisalkyl catalyst activated in hydrogen. The Ta La1 HEROS
spectra were measured during oxidation of the starting complex and the relative species’ concentration
was successfully retrieved as a function of time using the fingerprint HEROS spectra measured for the
unoxidized and the oxidized catalyst. Based on the experimental data and theory-based calculations, it
was shown that oxidation of the active Ta catalyst leads to the formation of mono- and di-meric species
on the SiO2 surface. The obtained results were compared to those of the previously reported time-
resolved HEROS study on an inactive silica supported Ta(V) bisalkyl catalyst’s concentration evolution
during its oxidation Błachucki et al. (2015). The study allowed observation of an immediate transition
of the active Ta catalyst from its unoxidized form to the oxidized one. This finding is dissimilar to the
result of the study on the inactive Ta catalyst, where the oxidation led through an intermediate step.

1. Introduction

High energy resolution off-resonant X-ray spectroscopy
(HEROS) is a method of determining the density of unoccupied
electronic states [1–3]. HEROS is an alternative to the existing
X-ray absorption spectroscopy (XAS) methods and opens the way
for new studies not achievable before. HEROS makes use of high
energy resolution X-ray emission spectroscopy (XES) to study
spectra of inelastically scattered photons in off-resonant condi-
tions, i.e., for incident photon energies below the atomic core level
binding energy of interest. It has been shown that such spectra
carry information on the occupancy of the discrete valence elec-
tronic states as well as the states above the ionization threshold
(in the continuum) [4–7]. Provided that the incident photon beam
energy bandwidth is smaller than the initial state lifetime broaden-
ing and a high resolution wavelength-dispersive detection system
is used, HEROS allows to probe the density of unoccupied states
with high energy resolution. This is possible because in the

off-resonant inelastic X-ray scattering process the scattered
photons’ spectra are not broadened by the lifetime of the core hole
associated to the investigated absorption edge. Further, in HEROS
the sample is irradiated with a monochromatic X-ray beam of
energy fixed below the given ionization threshold and the crystal
spectrometer (in the von Hamos or Johansson geometry), equipped
with a position sensitive detector, allows recording emission spec-
tra in one shot with covered energy ranges of typically tens of eV.
This scanning-free arrangement thus allows to probe the density of
unoccupied states with time resolution limited only by the exper-
imental setup’s efficiency. The swift way of probing the electronic
structure of matter, provided by HEROS, is highly desirable in time-
resolved spectroscopic studies on dynamically changing chemical
systems. This also makes HEROS a method of choice in case of
extremely bright pulsed X-ray sources such as X-ray free electron
lasers (XFELs), where the target is damaged after every pulse and
the beam intensity variations severely limit the usability of con-
ventional XAS methods [8]. Moreover, the HEROS spectral profiles
are not modified by the self-absorption effect [9].

The ability of the HEROS method to perform time-resolved
studies on chemically dynamic systems has already been used to
follow the time course of such chemical processes as oxidation,
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reduction and compound decomposition [1,10,11]. It has been
shown that, despite the low fluorescence yield of off-resonant exci-
tations, HEROS allows the observation of changes in the density of
unoccupied states caused by the evolving chemical environment of
the probed atoms with a high temporal resolution reaching 1 s or
less. Moreover, the insensitivity of HEROS to the self-absorption
effect [9] makes it a reliable tool to perform quantitative chemical
speciations under reaction conditions.

2. Theory

As reported by Tulkki and Åberg [5], the photon scattering cross
section for the off-resonant excitation well below the ionization
threshold is correlated to the density of unoccupied states. Assum-
ing that the fluorescence yield IXES is proportional to the scattering
cross section and the oscillator strength distribution for electron
excitation IXAS to the density of unoccupied states, one can refor-
mulate the Tulkki and Åberg formula to retrieve the XAS data from
the off-resonant XES data and vice versa [1,6]. In the present work,
the density of unoccupied states of Ta atoms is measured through
the detection of the photons emitted in the L3 ! M5 decay channel
in off-resonant conditions. In this case, the Tulkki and Åberg for-
mula has the following form:

IXES �hx2ð Þ / R1
0 ½�hx2

�hx1

EL3j j� EM5j jð Þ Eþ EL3j jð Þ
Eþ EL3j j��hx1ð Þ2þC2

L3
=4

� CM5

�hx1��hx2� EM5j j�Eð Þ2þC2
M5

=4

�IXAS Eð Þ�dE;

ð1Þ

where EL3 and EM5 represent the electron binding energies in the ini-
tial and final states, respectively, and �hx1 and �hx2 stand for the
energies of the incident and emitted photons. The initial and final
state lifetime broadenings are denoted by CL3 and CM5 . The IXAS Eð Þ
function is proportional to the linear photoabsorption coefficient
lph as a function of the excitation energy (Eþ EL3

�� ��). The off-
resonant XES data IXES �hx2ð Þ retrieved from the IXAS Eð Þ function by
means of Eq. (1) is proportional to the intensity of emitted photons
as a function of their energy. It can be noted first that
IXES �hx2ð Þ ¼ IXES �hx1 � EM5

�� ��� E
� �

according to the energy conserva-
tion law for the resonant inelastic X-ray scattering (RIXS) [5,6]
and secondly that for incident energies tuned about 15 eV below
the L3 edge, like in the present experiment, the XES intensity given
by Eq. (1) is nearly insensitive to the initial state width CL3 .

3. Samples and experimental method

The measurements were carried out at the SuperXAS beamline
of the Swiss Light Source of the Paul Scherrer Institut, Switzerland.
The collimated synchrotron beam was monochromatized by
means of a double Si(111) crystal monochromator and focused
with a toroidally bent Rh mirror to a 100 � 100 lm2-spot size on
the target. First, a Ta foil was used as the target to calibrate in
energy the incident beam and the spectrometer. Then the investi-
gated Ta complex was loaded into a quartz capillary reactor cell in
a glove box and exposed to 20 ppm O2 at room temperature. Two
silica supported Ta complexes were studied, Ta(V) bisalkyl com-
plex (Complex 1) and Ta hydride (Complex 2), i.e., more
specifically:

Complex 1 : �SiO2ð ÞTa ¼CHtBuð Þ CH2tBuð Þ2
� �

;

Complex 2 : �SiO2ð ÞTaH3½ �:
The quartz capillary reactor cell was mounted on the sample

holder and connected to a remotely switchable gas system which
allowed applying a gas flow through the target on line. Two gases

were used: Ar to flush residual gases out of the reactor and
10% H2/He mixture to activate the Ta complex. The temperature
of the Ta complex was adjusted with an air blower and a
thermometer placed on two sides of the reactor.

The induced fluorescence was detected in the energy range
around the Ta La1 emission line (8.146 keV) by means of a
wavelength-dispersive von Hamos-type spectrometer consisting
of two cylindrically curved segmented-type Si(444) crystals [12]
and a two-dimensional PILATUS 100 K detector [13]. Two crystals
were employed to increase the solid angle of the spectrometer.
The latter was operated in the vertical dispersive geometry. The
two crystals were oriented so that they cover exactly the same
Bragg angular range. However, they were slightly tilted to each
other about a vertical axis so that the photons diffracted by the
two crystals were detected by two different regions of the PILATUS
detector. An acquisition time of 40 s per image was used. For each
time interval of 40 s, the HEROS spectrumwas obtained by project-
ing the sum of the two 2D images onto the dispersion axis of the
spectrometer. From the full width at half maximum (FWHM) of a
Gaussian fit to the elastic scattering peak a total experimental res-
olution of 1.6 eV was found. A 30-cm-long, helium filled, ionization
chamber was placed upstream the target to normalize the detected
fluorescence yield as a function of the beam intensity.

4. Results and discussion

The Ta La1 HEROS spectra measured at an incident beam energy
of 9.863 keV during oxidation of Complex 1 are presented in Fig. 1
(a). The reaction took place at room temperature and it caused an
increase in the fluorescence intensity as well as a shift of the
detected spectral structure towards lower energies. In the case of
Complex 2, the Ta La1 HEROS spectra, which are shown in Fig. 1
(b), were collected at an incident beam energy of 9.867 keV. Com-
plex 2 was obtained by activating Complex 1 in hydrogen. This was
achieved by exposing Complex 1 to a 10% H2/He gas mixture
between 1300 s and 3200 s while rising the temperature from
20 �C to 150 �C. During activation, a slight gradual displacement
of the detected spectral structure towards lower energies was
observed. Further oxidation of Complex 2 led to a sudden spectral
shift and increase in intensity of the emitted fluorescence.

As shown in Fig. 2(a), oxidation of Complex 1 caused a shift of
the detected spectral structure towards lower energies by about
1 eV as well as an increase in the fluorescence intensity. It also gave
rise to the evolution of another spectral structure on the low
energy side of the main peak. Fig. 2(b) presents fingerprint Ta
La1 HEROS spectra measured for Complex 2 at three different
stages: before the formation of Complex 2 from Complex 1
(through activation of Complex 1 in hydrogen), before reaction of
the formed Complex 2 with oxygen and after Complex 2 turned
into its oxidized form. During activation, a slight gradual displace-
ment of the detected spectral structure towards lower energies (by
about 0.5 eV) was observed. Further oxidation of Complex 2 led to
a sudden spectral shift and an increase in intensity of the emitted
fluorescence. The shape of the spectrum recorded for the oxidized
Complex 2 reveals formation of another peak situated slightly clo-
ser in energy to the main peak as compared to the spectrum
recorded for oxidized Complex 1.

The evolution during oxidation of the second peak in the HEROS
spectra suggests the formation of Ta = oxo dimeric surface species
with octahedral coordination [14], which is consistent with calcu-
lations of Ta L3 edge XAS spectra and off-resonant Ta La1 XES spec-
tra for a monomeric and a dimeric Ta species (see Fig. 3). The
absorption spectra were computed using the FEFF program [15]
and the emission spectra were obtained using the Kramers-
Heisenberg formula modified by Tulkki and Åberg [4,5] with the
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result from FEFF as the input data. As it can be seen in Fig. 3(b), the
calculated spectra reproduce satisfactorily the overall shapes of the
experimental HEROS spectra but theory overestimates the widths

of the experimental spectra, in particular for the dimeric species.
The observed discrepancies originate probably from the FEFF
calculations and not from the values of the parameters used in

Fig. 1. The measured Ta La1 HEROS spectra as a function of time for Complex 1 (a) and Complex 2 (b). The spectra in (a) and (b) were recorded for an incident beam energy of
9.863 keV and 9.867 keV, respectively (i.e., 18 eV and 14 eV below the Ta L3 edge, respectively).

Fig. 2. The fingerprint Ta La1 HEROS spectra measured before and after oxidation of Complex 1 (a) and Complex 2 (b). The plot in (b) also shows the fingerprint HEROS
spectrum of Complex 2 before its formation, i.e., before activation of Complex 1 in hydrogen.

Fig. 3. (a) The Ta L3 XANES calculated with FEFF [15] for a monomeric and a dimeric Ta species. The lower panel shows the distribution of the Ta atoms’ d-states which are
contributing the most to the absorption spectra (DOS stands for density of states). (b) Off-resonant Ta La1 emission spectra calculated from the XAS data (a) using Eq. (1). The
values for EL3 and EM5 were taken from Ref. [17] and the values for CL3 and CM5 from Ref. [18]. The data points come from the measurements of the fingerprint HEROS spectra
for Complex 2 before and after its oxidation. The lower panel in (b) presents the density of unoccupied states from (a) converted into the emission energy scale using the
resonant inelastic X-ray scattering (RIXS) energy conservation law.
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Eq. (1) which are all quite accurate (uncertainties of about 1 eV for
energies and 0.2 eV for the final state lifetime broadening). The XAS
spectra in Fig. 3(a) show that Ta L3 XANES is dominated by one
peak in the case of monomeric species and by two peaks in the case
of dimeric species. The electronic states that contribute most to the
absorption spectra are in both cases the 5d orbitals of Ta atoms. As
shown in Fig. 3(b), there is a significant difference in the shape of
the off-resonant XES spectra calculated for monomeric and dimeric
Ta species, and it resides mainly in the presence of a doublet in the
case of the latter. The performed calculations thus confirm that the
evolution of the second peak in the Ta La1 HEROS spectra measured
during oxidation of Complex 1 and Complex 2 is caused by forma-
tion of dimeric Ta species. However, the ratio of the two peaks’
intensity is different for the spectrum calculated for a dimeric Ta
species and the one measured for the oxidized Complex 2 and
Complex 1 [16]. This result suggests that both monomeric and
dimeric Ta species are present in the samples after oxidation.

For both studied complexes the fingerprint Ta La1 HEROS spec-
tra were recorded before and after oxidation to determine tempo-
ral changes in the species’ concentration. As can be seen in Fig. 4
(a), during reaction of Complex 1 with oxygen only about 20% of
the sample first turned into its oxidized form and the remaining
80% transformed afterwards. In the light of the apparent formation
of dimeric Ta species during oxidation, one may suppose that the
demonstrated step-wise transition is an effect of different reaction
rates for oxidation and dimerization. Such a behavior was not
observed in the case of Complex 2 oxidation, as shown in Fig. 4
(b), where at about 6800 s all the sample was suddenly oxidized.

5. Conclusions

In the present work high energy resolution off-resonant spec-
troscopy (HEROS) was used at a synchrotron to study temporal
changes in the density of unoccupied states of Ta atoms in silica
supported catalysts during oxidation. The catalysts under study
were: inactive Ta(V) bisalkyl catalyst and Ta(V) bisalkyl catalyst
activated in hydrogen. The active site in catalysis, postulated to
be Ta hydride, was found to be very susceptible to oxygen and
its detection was not reported in any earlier work. Analysis of Ta
La1 HEROS spectra measured with 40 s-time resolution showed
that oxidation of both catalysts (the inactive one and the active
one) leads to the formation of monomeric and dimeric Ta surface
species. The catalysis was found to be irreversible. Calculations
done with FEFF software [15] and the Kramers-Heisenberg formula
modified by Tulkki and Åberg [4,5] revealed that the electronic
states contributing most to the measured HEROS spectra come
from the Ta d-band. The present work is therefore the first to depict

the electronic structure of the d-orbitals (directly involved in the
catalysis) of Ta grafted catalysts. Finally, the evolution of the active
Ta catalyst’s concentration during oxidation was extracted from
the measured HEROS spectra and was compared to the previously
reported data from a time-resolved study with HEROS following
oxidation of an inactive silica supported Ta(V) bisalkyl catalyst
[16]. The comparison showed that the oxidation of the active Ta
catalyst occurs suddenly, which is different from the stepwise evo-
lution of the inactive Ta catalyst oxidation.
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