Published in "Journal of Antimicrobial Chemotherapy doi: 10.1093/jac/dkx428, 2017" which should be cited to refer to this work.

Emergence of an MDR Klebsiella pneumoniae ST231 producing **OXA-232 and RmtF in Switzerland**

Stefano Mancini¹⁻³*, Laurent Poirel¹⁻³, Marie-Lise Tritten⁴, Reto Lienhard⁴, Cécile Bassi⁵ and Patrice Nordmann^{1–3,6}

¹Emeraina Antibiotic Resistance Unit. Medical and Molecular Microbiology, National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland; ²INSERM European Unit, LEA/IAME Paris, France; ³Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland; ⁴ADMED Microbiologie, 2300 La Chaux-de-Fonds, Switzerland; ⁵Médecine Interne, Hôpital du Jura Bernois, 2610 St-Imier, Switzerland; ⁶Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland

*Corresponding author. Medical and Molecular Microbiology, University of Fribourg, CH-1700 Fribourg, Switzerland. Tel: +41 26 300 9583; E-mail: stefano.mancini@unifr.ch

The increasing incidence of carbapenem-resistant Klebsiella pneumoniae is a major challenge to public health. Despite the fact that the prevalence of carbapenemases among carbapenemresistant K. pneumoniae varies geographically, the incidence of OXA-48-like enzymes has soared in recent years and is particularly high in some European countries, such as Spain and France (74% and 78% among carbapenemase-producing K. pneumoniae, respectively). A significant number of OXA-48 variants have been reported in the last decade. This includes OXA-232, a carbapenemase firstly identified in France in 2011² and thereafter found in several countries.^{3,4} Recently, an MDR K. pneumoniae ST231 co-producing OXA-232, the ESBL CTX-M-15 and the 16S rRNA methyltransferase RmtF conferring broad-spectrum resistance to aminoglycosides has emerged as a successful epidemic clone in South-East Asia, with related outbreaks being reported in Singapore and in Brunei Darussalam between 2013 and 2015.^{5,6} Here, we report on a nosocomial spread of this emerging resistant strain in Switzerland.

Six K. pneumoniae clinical isolates with reduced susceptibility or resistant to carbapenems were recovered from February to April 2017 from five different patients, namely three hospitalized in the medicine ward of a regional hospital in Western Switzerland, and two non-hospitalized at the private Ear, Nose and Throat (ENT) centre located near to the hospital (Table 1) and were sent to the Swiss National Reference Center for Emerging Antibiotic Resistance for further characterization. All the patients reported no

recent travel abroad. Clinical and epidemiological analyses failed to detect any obvious route of transmission for those isolates.

Antimicrobial susceptibility testing was performed by disc diffusion assay (Sanofi-diagnostic Pasteur, France) and MICs were determined using Etest (bioMérieux, France) and broth microdilution techniques, with susceptibility defined according to CLSI breakpoints (https://clsi.org/standards/products/microbiology/docu ments/m100/). Four isolates were resistant to penicillins, broadspectrum cephalosporins, meropenem and ertapenem and showed intermediate resistance to imipenem. The remaining two isolates displayed a typical ESBL phenotype, with resistance towards all penicillins, to expanded-spectrum cephalosporins (antagonized by β-lactamase inhibitors) and to ertapenem, and susceptibility to imipenem and meropenem. Interestingly, one isolate presenting carbapenemase activity and one exhibiting an ESBL phenotype had been recovered from a single patient (Table 1). All six K. pneumoniae isolates also exhibited broad-spectrum resistance to aminoglycosides and were additionally resistant to sulphonamides, fluoroquinolones, trimethoprim/sulfamethoxazole, chloramphenicol, tetracycline and to the recently developed ceftolozane/tazobactam combination. Notably, all six clinical isolates were susceptible to colistin and to the ceftazidime/avibactam combination.

Multiplex PCRs performed to detect Ambler class A, B and D carbapenemases and 16S rRNA aminoglycoside resistance genes^{7,8} followed by sequencing revealed that all six isolates possessed the rmtF 16S rRNA methyltransferase gene, and that the four carbapenem-resistant isolates possessed the bla_{OXA-232} carbapenemase gene. In addition, all the isolates possessed the ESBL bla_{CTX-M-15} and the bla_{TEM-1} gene (Table 1). Transferability of the bla_{OXA-232}, bla_{CTX-M-15} and rmtF genes was attempted by matingout assays using the azide-resistant Escherichia coli J53 as a recipient strain. Transconjugants were obtained on azide (100 mg/L) and either amikacin/gentamicin (50 mg/L each) or ceftazidime (1 mg/L), but not imipenem (1 mg/L), indicating the transferability of the plasmids harbouring the rmtF and bla_{CTX-M-15}, but not that one carrying the bla_{OXA-232} gene. Analysis of the plasmid content by using the Kieser technique revealed the presence of several plasmids in all isolates. The bla_{OXA-232} was carried on a 6141 bp plasmid identical to that identified by Potron et al., 2 as further supported by sequence analysis performed as previously reported.⁶ Noticeably, the rmtF and bla_{CTX-M-15} genes were located on the same 160 kb plasmid. PFGE of the SpeI-digested genomic DNA obtained from the six K. pneumoniae isolates revealed that they were clonally related. MLST showed that they belonged to ST231 (https://cge.cbs.dtu.dk/services/MLST/).

In an attempt to unravel the genetic factors contributing to the emergence and spread of this multiresistant pathogen, WGS of genomic DNA from isolate Kp1 (KP06-2017) was performed using a MiniSeq system (Illumina, USA), generating a total of 13 078 950 reads with an average length of 145.8 bp. Reads were de novo assembled using CLC Genomics Workbench version 7.5.1 (Qiagen, France). The draft genome revealed a size of 6 015 778 bp, with an average GC content of approximately 57%. The antimicrobial resistome was identified using ResFinder⁹ and comprises genes

Table 1. Characteristics of the Klebsiella pneumoniae isolates under study

							MIC (mg/L)					
					β-	Ai	carbapenems			novel cephalosporin/β-lactamase inhibitor combinations		
Isolate	Ward	Specimen	Date of isolation	ST	Lactamases identified by PCR	Approximate sizes of plasmids (kb)	IPM	MEM	ETP	colistin	ceftolozane/ tazobactam	ceftazidime/ avibactam
Kp1	ENT	sinus swab	28/02/17	231	bla _{OXA-232} , bla _{CTX-M-15} , bla _{TEM-1b}	3.6, 6.1, 9, 70, 160	2	8	>256	2	>256	2
Kp2	ENT	sinus swab	09/03/17	231	bla _{OXA-232} , bla _{CTX-M-15} , bla _{TEM-1b}	3.6, 6.1, 9, 70, 160	2	8	>256	2	>256	2
Кр3	Medicine	urine	21/03/17	231	bla _{CTX-M-15} , bla _{TEM-1b}	3.6, 4.8, 9, 70, 160	0.38	0.25	2	2	>256	2
Кр4	Medicine	rectal swab	23/03/17	231	bla _{OXA-232} , bla _{CTX-M-15} , bla _{TEM-1b}	3.6, 6.1, 9, 70, 160	2	8	>256	2	>256	2
Kp5	Medicine	rectal swab	29/03/17	231	bla _{CTX-M-15} , bla _{TEM-1b}	3.6, 4.8, 9, 70, 160	0.38	0.25	2	2	>256	2
Кр6	Medicine	rectal swab	10/04/17	231	bla _{OXA-232} , bla _{CTX-M-15} , bla _{TEM-1b}	3.6, 6.1, 9, 70, 160	2	8	>256	2	>256	2

IPM, imipenem; MEM, meropenem; ETP, ertapenem.

conferring resistance to aminoglycosides (*rmtF*, aadB, aadA2 and aacA4), β-lactams (*bla*_{OXA-232}, *bla*_{CTX-M-15}, *bla*_{TEM-1b}), fluoroquinolones [aac(6')Ib-cr], macrolides, lincosamides and streptogramin B (MLS) [erm(B) and mph(A)], phenicols (catA1 and catB4), sulphonamides (sul1), trimethoprim (dfrA12) and rifampicin (arr-2) (Table 1). Plasmid finder¹⁰ revealed the presence of IncFIB(pQil), IncFII(k), IncFII(pRSB107), IncFIA and ColKP3 replicons; the latter two present in the plasmids carrying the *rmtF/bla*_{CTX-M-15} and bla_{OXA-232} genes, respectively.

Overall, to our knowledge, we report here the first occurrence in Europe of an MDR *K. pneumoniae* ST231 clone, so far geographically confined in South-East Asia. This represents an important and worrying step toward the rise of another epidemic clone as a global public threat.

Accession number

The draft genome sequence of the *K. pneumoniae* KP06–2017 has been deposited in GenBank under accession number NTFP00000000.

Funding

This work was funded by the University of Fribourg, by the Swiss National Reference Center for Emerging Antibiotic Resistance (NARA) and by the Swiss National Science Foundation (project FNS-31003A_163432).

Transparency declarations

None to declare.

References

- **1** Lee CR, Lee JH, Park KS et al. Global dissemination of carbapenemase-producing *Klebsiella pneumoniae*: epidemiology, genetic context, treatment options, and detection methods. *Front Microbiol* 2016; **7**: 895.
- **2** Potron A, Rondinaud E, Poirel L *et al.* Genetic and biochemical characterisation of OXA-232, a carbapenem-hydrolysing class D β-lactamase from Enterobacteriaceae. *Int J Antimicrob Agents* 2013; **41**: 325–9.
- **3** Lahlaoui H, Bonnin RA, Moussa MB *et al.* First report of OXA-232-producing *Klebsiella pneumoniae* strains in Tunisia. *Diagn Microbiol Infect Dis* 2017; **88**: 195–7.
- **4** Yin D, Dong D, Li K et al. Clonal dissemination of OXA-232 carbapenemase-producing *Klebsiella pneumoniae* in neonates. *Antimicrob Agents Chemother* 2017; **61**: e00385–17.
- **5** Abdul Momin MHF, Liakopoulos A, Phee LM *et al*. Emergence and nosocomial spread of carbapenem-resistant OXA-232-producing *Klebsiella pneumoniae* in Brunei Darussalam. *J Glob Antimicrob Resist* 2017; **9**: 96–9.
- **6** Teo JW, Kurup A, Lin RT *et al*. Emergence of clinical *Klebsiella pneumoniae* producing OXA-232 carbapenemase in Singapore. *New Microbes New Infect* 2013: **1**: 13-5
- **7** Bercot B, Poirel L, Nordmann P. Updated multiplex polymerase chain reaction for detection of 16S rRNA methylases: high prevalence among NDM-1 producers. *Diagn Microbiol Infect Dis* 2011; **71**: 442–5.
- **8** Poirel L, Walsh TR, Cuvillier V *et al.* Multiplex PCR for detection of acquired carbapenemase genes. *Diagn Microbiol Infect Dis* 2011; **70**: 119–23.
- **9** Zankari E, Hasman H, Cosentino S *et al.* Identification of acquired antimicrobial resistance genes. *J Antimicrob Chemother* 2012; **67**: 2640–4.
- **10** Carattoli A, Zankari E, García-Fernández A *et al. In silico* detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. *Antimicrob Agents Chemother* 2014; **58**: 3895–903.