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A touchscreen is a commonly used medium for the interaction between a user
and a device. Response to user’s action is often indicated visually on the screen
after a certain delay. This interface latency is inherent in any computer system.
Studies indicate that the latency has a major contribution on how users perceive
the interaction with the device. While modern commercial touchscreen devices
manifest latencies ranging between 50 ms and 200 ms, research indicates that the
user performance for tapping tasks deteriorates at considerably lower levels and
users are able to discern the latency as low as 3 ms.

In this Thesis we present a novel solution for Android operated mobile devices to
expose factors behind the feedback latency of a tap event. We start by reviewing
the main components of the Android operating system. Next we describe the
internal system elements which partake in the interaction between the user’s
touch input event and its corresponding visual presentation on the screen of the
device. Propelled by the obtained information, we implement an a↵ordable, fully
automated system that is capable of collecting both temporal and environmental
data.

The constructed measurement system provided revealing results. We discovered
that most of the feedback latency on a mobile device is accumulated by the
internal components which are involved in presenting the visual feedback to the
user. We also identified two main user action patterns which impose a huge
e↵ect upon system’s responsiveness. Firstly, the location of touch is reflected in
the amount of feedback latency. Secondly, the interval between two consecutive
touch events might cause even unexpected results. Our study demonstrated that
the latency can vary a lot between di↵erent devices by ranging from no e↵ect on
one device to a five-fold di↵erence on another device.

The study concludes that, despite the feedback latency is a↵ected by multiple
factors, the latency can be measured very precisely with the system that can be
built even by an average Joe.
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Kosketusnäyttö on yleisesti käytetty kanava käyttäjän ja laitteen välisessä vuo-
rovaikutuksessa. Järjestelmän palaute käyttäjän antamaan syötteeseen esitetään
usein visuaalisesti laitteen näytöllä. Vasteen tuottamisessa syntyy kuitenkin jon-
kin verran viivettä eli latenssia. Tutkimusten mukaan viiveellä on suuri vaikutus
käyttäjäkokemukseen. Nykyisten kosketuslaitteiden latenssi vaihtelee yleensä 50
ja 200 millisekunnin välillä. Kosketuspohjaisten tapahtumien suorittamisen on
todettu heikentyvät jo huomattavasti pienemmän viiveen johdosta ja jopa alle
kolme millisekuntia kestävä viive on vielä havaittavissa.

Tässä diplomityössä esitetään Android-pohjaisille mobiililaitteille luotu edullinen
järjestelmä, jonka avulla pystytään mittaamaan käyttäjän näytölle luoman kos-
ketuksen ja sitä vastaavan järjestelmän antaman visuaalisen palautteen välistä
viivettä. Työssä esitetellään ensin Android-käyttöjärjestelmän komponentit, jot-
ka osallistuvat tämän tapahtumaketjun suorittamiseksi vaadittaviin toimintoihin.
Tietojen pohjalta luodaan järjestelmä, jolla voidaan kerätä automaattisesti da-
taa viiveen eri syntykohdista ja sen ympäristöön littyvistä seikoista. Datan avulla
pystytään aiempaa paremmin arvioimaan viiveen syntyyn vaikuttavia tekijöitä.
Saatua tietoa voidaan hyödyntää yleisesti viiveen hallitsemiseen tähtääviin toi-
menpiteisiin ja siten lopulta käyttäjäkokemuksen parantamiseen.

Järjestelmällä mitatuista tuloksista selviää, että suurin osa tapahtumaketjun la-
tenssista syntyy käyttäjälle esitettävän visuaalisen palautteen vaatimiin toimen-
piteisiin. Lisäksi työ tuo esille kaksi käyttäjän syötteen antamiseen liittyvää toi-
mintatapaa, joilla on suuri vaikutus latenssiin. Kosketuksen sijainti ruudulla ja
kahden peräkkäisen kosketuksen välinen aika vaikuttavat vasteaikaan. Latenssi ei
aina muodostu suoraviivaisesti ja se voi ilmentää jopa yllättäviä piirteitä eri lait-
teiden välillä: toimintatapa yhdessä laitteessa ei vaikuta tulokseen, mutta saattaa
toisessa laitteessa näkyä moninkertaisena erona.

Vaikka latenssin syntyyn vaikuttaa monta eri tekijää, sitä voidaan onneksi mita-
ta erittäin tarkasti järjestelmällä, jonka jopa Matti Meikäläinen pystyy rakenta-
maan.

Asiasanat: Kosketusnäyttö, vasteaika, Android, Teensy, Arduino

Kieli: Englanti
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Abbreviations and Acronyms

ADC Analog-to-Digital Converter
ADB Android Debug Bridge
AFE Analog Front-End
AOSP Android Open Source Project
API Application Programming Interface
ART Android RunTime
Ashmem Anonymous Shared Memory
ASIC Application-Specific Integrated Circuit
CPU Central Processing Unit
DSP Digital Signal Processor
DVM Dalvik Virtual Machine
GPS Global Positioning System
HAL Hardware Abstraction Layer
HID Human Interface Device
HWC Hardware Composer
I2C Inter-Integrated Circuit
IEEE Institute of Electrical and Electronics Engineers
IPC Inter-Process Communication
IRQ Interrupt Request
ITO Indium Tin Oxide
JNI Java Native Interface
JVM Java Virtual Machine
LCD Liquid Crystal Display
NDK Native Development Kit
OEM Original Equipment Manufacturer
OLED Organic Light Emitting Diode
OTG On-The-Go
PIN Positive Intrinsic Negative
RTT Round-Trip-Time
SD Standard Deviation
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SPI Serial Peripheral Interface
TIA TransImpedance Amplifier
UI User Interface
USB Universal Serial Bus
VSYNC Vertical synchronization
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Chapter 1

Introduction

A touchscreen is a display capable of recognizing a touch to its surface area.
It is currently most widely used in mobile devices. Users can interact with
mobile applications in touchscreen devices by performing various gestures on
the screen. The major interaction method to date is a single tap: A finger
is touched on a specific interface object briefly (tap down) and removed (tap
up) to select or activate the element. This research focuses on the tap down
part of the touch event.

Touch responsiveness is subject to some degree of latency which is inher-
ent in all computer systems. Since mobile devices are basically computers,
the processing introduces delay into the interaction. The end-to-end touch
latency describes the delay between the user’s action on the screen and the
corresponding feedback on the screen provided by the system. It is a cu-
mulative e↵ect of the individual latencies along the end-to-end path. This
latency originates from various elements pertaining to the input device, the
operating system, user application and the output device.

Long latency can render the user experience useless. Studies on touch-
screen devices indicate that a delay of 580 ms holds the upmost barrier after
which the user experience is considered unacceptable [1]. Latency has a
strong negative e↵ect on user’s performance in task completion already at
the level of 75 ms [33]. However, users can perceive latency even at levels un-
der 3 ms [40]. Current commercial touch devices exhibit latencies estimated
in the range of 50 ms to 200 ms [40] which is far from the level of perception
the users are capable of. To establish an understanding of how to control and
improve the negative impact caused by the latency, a procedure to measure
the latency is needed.

Various methods to address the latency have been studied. Until the
recent years the use of an external high-speed camera has been the most
common procedure to measure the end-to-end latency. However, accuracy of
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CHAPTER 1. INTRODUCTION 10

the method depends on the frame rate of the camera. Due to the manual ef-
fort, post-processing the data frame by frame is time-consuming and subject
to errors. High precision industrial systems are often unreachable, not least
because of the amount of capital needed for the investment. Low-cost solu-
tions capable of extracting latency data have been introduced very recently.
Some approaches require active user-interaction throughout the measurement
process which comes at the expense of increased user e↵ort and achievable
measurement accuracy.

The ability to split the end-to-end latency into smaller parts is vital for
establishing an understanding of the elements contributing to latency. Infor-
mation about the origins of latency is needed for the grounds in assessing the
potential e↵ect on user experience. Conceptually this idea is not unique and
some research and implementations on the subject have already been estab-
lished. However, to the best of our knowledge, none of the currently proposed
solutions provide an unattended mechanism that allows measurement of the
end-to-end latency in finer detail combined with collection of environmental
data. Thus, this thesis mostly focuses on developing a system capable of
measuring the end-to-end latency of a tap event on Android operated mobile
devices.

1.1 Problem statement

In this work we aim to answer the following inter-related research questions:

• Which factors contribute to touch latency on a mobile device?

• How these factors can be measured?

1.2 Objectives

Our first goal is to create a low-cost system that is capable of collecting data
on the end-to-end latency of a tap down event on Android operated mobile
devices. The system should be able to collect latency data for individual
elements along the end-to-end path and provide also the combined end-to-
end latency result. In addition extraction of environmental data such as the
current CPU utilization for each measurement is required. After initial setup
the system should not need to interact with a human-operator and should
reach total accuracy of under 1 ms.

With the aid of the constructed measurement system our second goal is
to study which factors contribute to the system latency of a touch event.
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1.3 Structure

The rest of this Master’s thesis is structured as follows. Chapter 2 presents
the background and related work. Chapter 3 provides an overview of the en-
vironment in which the measurement system is operated. Chapter 4 describes
the developed implementation. Chapter 5 discusses about the evaluation of
the built system and provides measurement results. Chapter 6 concludes the
thesis by revisiting the main contributions.



Chapter 2

Background

In this chapter we provide a review of related work focusing on two fields. In
the first section we examine studies on human perception which demonstrate
the value in reducing the latency. Human factors and performance related
to the end-to-end latency are also discussed. Next we introduce past e↵orts
done by other researches in the field of measuring the end-to-end latency.

2.1 Perception of end-to-end latency

End-to-end latency can be defined as the elapsed time between a user initiat-
ing an activity and the system presenting a response [49]. It has been studied
at least since the 1960s when Miller [37] described the threshold levels of hu-
man attention to computer responsiveness in the three orders of magnitude.
He stated that a response time of 100 ms is vieved as instantaneous. Re-
sponse times under 1 second are fast enough for users to percieve that they
are interacting freely with the information. User’s attention is completely
lost for response times over 10 seconds. Anderson et al. [1] studied the
amount of acceptable level of latency when performing common tasks with
touchscreen devices. They reported that delays exceeding 580 ms were con-
sidered unacceptable for most of the users. MacKenzie et al. [33] measured
the e↵ects of latency on user’s performance in motor-sensory tasks on inter-
active systems. They reported a strong degradation of user’s performance
in movement time and error rate even at levels as low as 75 ms. Studies on
user’s response to latency conducted by Jota et al. [24] indicate a correlation
between reduced latency and improved performance. They observed that
even though the minimum threshold level at which a user is able to discrimi-
nate the di↵erence between di↵erent touch latencies is 20 ms, most users are
not able to notice improvements in latency under 40 ms. Results by Deber
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CHAPTER 2. BACKGROUND 13

et al. [12] indicate similar results providing the detectable threshold levels
for tapping and dragging as 69 ms and 11 ms, respectively. Ng et al. [40]
discovered that the latency on dragging events is still perceivable at levels
under 3 ms when comparing against a 1 ms referent.

Human perception of latency is influenced by multiple factors. Deber et
al. [12] observed that the latency of a system’s response to direct-touch input
(such as a touchscreen) is easier to detect than the latency in response to
indirect input (for example a mouse). A reason, as discussed by Ng at al.,
is that the perception of latency in indirect touch relies in the comparison
of motion-to-visual perception which is considerably slower than using only
the visual sensing modality [40]. With direct input users can observe the
finger and it’s graphical response simultaneously thus establishing a unified
comparison point to perceive the visual di↵erence easier than with indirect
touch [12]. Sight plays an essential role also in performance. Jota et al.
noticed that the size of a target a↵ects on the performance. Under high
latency small targets are harder to hit and users have to rely more on the
feedback to ensure accuracy [24]. Ng et al. [41] made an observation that
the perception of latency may be influenced also by the level of cognitive
demands and the attention required to complete the task.

Latency perception for tapping and dragging mechanics has been char-
acterized by Deber et al. Their results indicate that the trailing e↵ect on
the screen caused by the increased latency while dragging provide more vis-
ible manifestation of latency than the momentary di↵erence between a tap
and it’s graphical response [12]. As the threshold level for the perception
of latency is lower for dragging events, the desire to hide the latency from
the user is frequently regarded as a catalyst to favor tap-based interaction
primitives on interactive applications [24].

The importance of low system response has been widely acknowledged.
As outlined by previous studies, latency should be lower than the current
commercial values of 50-200 ms as reported by Ng et al.[40]. Considering the
proposed threshold levels we target to achieve the accuracy of under 1 ms
with our measurement tool.

2.2 Related work

Various di↵erent methods to measure the end-to-end latency have been pro-
posed. Studies [26][40] have utilized an external high-speed camera to capture
the time between the physical user action on the input device and the corre-
sponding response on the screen. A vast amount of manual work is required
to obtain results. Setting up the system and counting the frames one by
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one to extract the latency requires a lot of time. Precision of the method
is constrained by the speed of the camera. Also proper lightning conditions
and a careful camera placement are needed to ensure proper measurements
as outlined by Casiez et al. [7].

Cattan et al. [9] created a method that is based on prediction of finger
movement and the ability of the operator to perceive a mismatch between the
finger and the lagging response. This method requires the operator to move
the finger at a constant speed in straight lines on the screen. Despite not
needing an external device, an active user-operator is needed to accomplish
the measurement task.

Solutions utilizing software and hardware components have emerged re-
cently. All of them provide means to simulate a touch electronically and use
a photosensor to detect the system’s visual response. Introduced by Beyer et
al.[4] and followed by Grau [19], microcontroller based setups were introduced
to aid with collection of end-to-end latency data.

Instead of using a coin to inject a touch event on the screen (like [4][19]),
the approach developed by Deber et al [11] created a touch generation module
using a piece of brass contact attached to a mechanical relay. The reported
accuracy of the tool is 1 ms. The approach generates only one measure
to express the end-to-end latency (also like [4][19]) and therefore prevents
inspecting the latency in finer detail.

The WALT [18] provided by Google is capable of measuring latency for
various elements including tap, drag, screen draw, audio and MIDI. The
overall end-to-end latency value is not provided because the approach uses
di↵erent setups for testing the input and output latency. A tap is gener-
ated by a human-operator with a special stylus that is equipped with an
accelerometer. Contact on the surface of a display considered when a shock
above 3G is sensed. The output latency is monitored with a photodiode. The
tool is capable of extracting the latency between various measurement points
in the operating system level. Google has open-sourced the code which has
inspired us to complement our approach with similar data collection points.
The tool is not able to characterize the origins of the latency by means of
environmental data, requires constant manual input and does not allow to
measure the end-to-end latency in a single operation.

The method presented recently by Casiez et al [8] uses a vibration sen-
sor attached to user’s finger to simulate a touch. The approach is reported
to allow a collection of intermediate events (such as the reception of the
HID reports) via external toolkit libraries. Collection of data from di↵er-
ent locations on the screen is made flexible by separate sensor modules. A
human-operator is required to operate the system thus not allowing induction
of touch signals in a precise, automated manner.
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While the reviewed methods provide latency measures, they either require
high amount of human interaction or lack measures to establish a connec-
tion between the latency and its contributing factors. We believe that there
is a need for an a↵ordable, fully automated solution which can help us to
understand the main factors behind the feeback latency. With the aid of
additional information our aim is to have a better control on the latency and
to improve the user experience.



Chapter 3

Environment

This chapter provides an introduction of the components involved in the
input touch event processing in the Android operating system. First we
start by introducing Android and then delve deeper into the input event
processing flow on Android.

The end-to-end touch event flow in Android is as follows. A touch on
the screen of a device is sensed by the underlying touchpanel hardware. It
signals the Linux kernel to transform the resulted device specific messages
into generic input events. Android decodes and dispatches the input events to
the focused user application window. The application requests the operating
system to present a visual feedback to the user through the display of the
device. More detailed information is provided in the following sections.

Figure 3.1: Interaction between user and application.

3.1 Android Architecture

Android is an open-source mobile operating system developed by Google. It
is built on top of the Linux kernel and is designed primarily for resource con-
strained embedded platforms such as mobile smartphones and tablet com-
puters. The core Android platform, known as the Android Open Source
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CHAPTER 3. ENVIRONMENT 17

Project (AOSP), contains the Android source code which is freely available
for everyone [16]. Each version of the Android platform is identified by an
Application Programming Interface (API) level which identifies the unique
revision of the o↵ered framework API [15]. That helps developers to man-
age application compatibility across di↵erent Android versions. Information
outlined in this thesis is mainly based on the version 7 (Nougat). Android
operating system is structured into di↵erent layers as depicted in Figure 3.2.

Figure 3.2: The Android architecture (modified from [56])

Applications are computer programs designed to help users to perform an
activity. Android provides a set of core applications (for example Contacts,
Phone, Calendar). Applications are developed mainly in the Java program-
ming language. The Android platform is exposed to applications by the Java
framework APIs which o↵er a set of components and services for building
and running applications. [15]

Each Java application is executed in a restricted environment to ensure
high control over the actions performed by the application. Resource con-
strained environments (such as mobile devices) introduce high demand for
minimal memory footprint, low battery usage and e↵ective usage of resources.
Google has developed a specialized virtual machine for Android because the
Java Virtual Machine (JVM) is not an optimal solution for embedded sys-
tems. Dalvik Virtual Machine (DVM) was the default runtime environment
in Android until the version 5.0 (API level 21) after it was replaced by An-
droid RunTime (ART) [15].

Android contains C/C++ based native libraries which are required by
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many components built from native code. Some of the functionality pro-
vided by these libraries is exposed through the Java framework APIs. Code
written in C/C++ can be integrated into native libraries with the Native
Development Kit (NDK) and accessed from the Java code through the Java
Native Interface (JNI) framework. [15]

In modern operating systems (like Android) the system memory is usu-
ally divided into two distinct regions: the kernel-space and the user-space.
The core operating system components are executed in the kernel-space with
full access to the whole environment. User processes are executed in a re-
stricted user-space with no direct access to the underlying hardware or kernel
memory. [51] The user-space environment of the Android platform covers all
components on top of the Linux kernel-space. Android has introduced the
Hardware Abstraction Layer (HAL) to allow user-space applications to com-
municate with kernel device drivers. A HAL provides a standard interface
between the Android framework and the hardware-specific software allowing
Android to be agnostic about lower-level driver implementations. [15][56]

Linux kernel is the heart of the Android architecture and exists at the
very bottom of the Android software stack. Linux kernel manages the com-
puter resources such as memory, processes, file system, network, security
and power. It also provides device drivers as a communication layer be-
tween hardware and software components. Android is based on Linux kernel
version 2.6. Mobile devices are typically battery-driven and have limited
resources such as memory and processing power. To overcome these limita-
tions Android has introduced several modifications to the Linux kernel. The
Android Power Manager component provides aggressive power management
to preserve the battery state. It instructs the kernel to go to sleep as soon
and as often as possible. Wakelocks prevent Android devices from entering
into power saving mode during critical tasks. The Low-Memory Killer pre-
vents the system from running out of memory by eliminating processes of
the hosting components that are not high priority and haven’t been used for
a long time. Binder is an integral part of Android. It handles inter-process
communication (IPC) thus allowing applications to interact with each other
and Android system components. Ashmem (Anonymous Shared Memory) is
another IPC mechanism that uses shared memory regions to share data be-
tween processes. The alarm mechanism in Android is capable of waking the
system even during the power save mode. Log events are stored into circular
memory bu↵ers instead of files thus enabling rapid logging even through the
read-only filesystem types. [56]
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3.2 From touch to display

Components involved in transforming a physical touch into a visual feedback
on the screen of an input device can be categorized into three major parts:
the touch panel, the system software and the display as illustrated in Figure
3.3. The touchpanel identifies several characteristics of the physical touch
and exposes the resulted signals for the operating system. The Android
framework acts as the orchestrator between the components. Visual response
is actualised by the display system.

Figure 3.3: The touch ecosystem in Android. [45]

3.2.1 Touch panel

Most users interact with the phone through its touchscreen. A touchscreen
is often perceived as an interactive display that is able to detect and respond
to user input. From a technical perspective display and touch detection
mechanisms are separate subsystems. The term touchpanel used in this
thesis describes the electronic subsystem that detects and processes user
touch input into a computer readable format. The term touchscreen however
is used to cover the combination of a touchpanel and a display. A touch is
sensed by a touchpanel which typically consists of three main components:
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a touch sensor, a controller and a driver interface to interact with the host
system.

3.2.1.1 Touch sensor

A touch sensor is a transparent touch sensitive surface which enables the mea-
surement of user touch inputs. The sensor resides between a protective top
layer and the display component. There are various touch sensing technolo-
gies on the market, each utilizing a di↵erent method to detect touch input.
The most common touch sensing technologies in today’s smartphones exploit
the resistive and capacitive methods. Operation of the resistive touchpanel
is based on voltage di↵erence at the location of touch. [30]

Unlike for the resistive touch sensor, no pressure force is needed for the
capacitive sensor to detect touch. It is sensitive to changes in electrostatic
capacitance and exploit electronical properties of a human body. Capaci-
tance is formed across electrode plates. [30] Capacitance is the ability of a
component to store an electrical charge. Energy can be stored by separating
conductive plates with an insulating material. The amount of capacitance is
a↵ected by the surface area of the plates as well as the distance and the di-
electric material used between the plates. [38] Capacitance (C) is a measure
of the charge (Q) stored in a capacitor at a given voltage (V) formulated as:

C =
Q

V
(3.1)

The generalized equation of capacitance in a parallel-plate capacitor is
formed as:

C = "r"0
A

d
(3.2)

where

• C is the capacitance (farad, F)

• "r is the relative static permittivity (dielectric constant) of the material
between the plates

• "0 is the electric constant (permittivity of free space) (⇡ 8.854 ⇥ 10�12

Fm�1 )

• A is the overlapping surface area of the plates

• d is the distance between the plates
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Projected capacitive technology has become the most widespread capac-
itive touch sensing method used on smartphones. [30]. There are multiple
di↵erent constructions available and various materials to form a projected
capacitive sensor. Typically the sensor is constructed of a dielectric layer
coated with conductive electrode lines on each side. The electrodes may also
be etched on the same layer using a dielectric material to separate the over-
lapping electrodes. The electrodes are often made of highly transparent and
conductive materials such as Indium Tin Oxide. The horizontal electrodes,
usually on the top side, are linked to the Y-axis and are called the sensing
electrodes. The transmitting electrodes on the other side contribute to the
X-axis in the perpendicular (vertical) direction. [30] The electrode pattern
geometries are an important factor in the overall resolution and touch sensi-
tivity of the sensor [31][42]. A common approach to interleave the electrode
layers and provide an optimal surface area and higher touch sensitivity is to
use a single-layer diamond shaped electrode grid pattern as shown in Figure
3.4.

Figure 3.4: Capacitive touch sensor electrode layout. [14]

Touch detection in projected capacitive technologies is based on mea-
suring the capacitance at each addressable electrode in the panel. A finger
approaching an electrode causes a disturbance in the electromagnetic field
projected above the electrode altering the capacitance on the electrode. The
change in capacitance is sensed by the electronics and transformed into touch
data. There are two types of capacitive sensing systems, self-capacitance and
mutual capacitance [30]. Self-capacitance is the ratio of electrostatic charge
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to a voltage potential and is exhibited by any object that can be electrically
charged. Mutual capacitance (also known as leakage and parasitic capaci-
tance) is the proportional factor by which a charge on a conductor at di↵erent
electronic potential is induced on another conductor in close proximity as in
response to the voltage potential di↵erence. [39] The key di↵erence between
the two methods is how the electrodes are measured. The self-capacitance
method is based on measuring the capacitance of a single electrode, one at a
time. When a finger approaches an electrode, the self-capacitive load on the
electrode increases due to the additional human-body capacitance with re-
spect to ground (Figure 3.5 (a)). However, measurement of the capacitance
level in the mutual capacitance method is made between a pair of electrodes.
A finger near an intersection of electrodes causes some of the mutual capac-
itance between the row and column electrodes to couple with the finger thus
reducing the capacitance at the intersection (Figure 3.5 (b)). [30]

Figure 3.5: Self-capacitance and mutual capacitance touch sensing
methods.[30]

The self-capacitance method is not ideal for a multi-touch functionality
because of the inability to provide unambiguous touch coordinates if the
screen is touched with two or more fingers that are diagonally separated.
This problem known as ghosting is demonstrated in Figure 3.6. The more
commonly utilized mutual capacitance method allows an unlimited number
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of unambiguous touches, produces higher resolution and is less sensitive to
electromagnetic interference [3].

Figure 3.6: Touch coordinate detection.[30]

Many manufacturers combine the two methods by extracting multi-touch
and location data with the mutual capacitive method and sense proximity
using a self-capacitive solution [35].

3.2.1.2 Touch Controller

A touch controller is an application-specific integrated circuit (ASIC) de-
signed for driving the touch sensor electrodes, measuring sensor node capaci-
tance changes and exchanging touch data with the host computer. Figure 3.7
illustrates the basic components in a mutual-capacitance based touchpanel
controller.

Figure 3.7: Mutual capacitance touchpanel controller.[30]

Typically a touch controller scans the touch panel one row at a time,
starting from the top of the panel. The sensor transmits an excitation pulse
alternately to each X electrode. Capacitance at the intersection of the ex-
cited X electrode and each Y electrode is measured by an analog front-end
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(AFE). A touch is reflected as an increased capacitance level around the
touch location. An analog-to-digital converter (ADC) transforms the analog
values to a digital format. A digital signal processor (DSP) uses complex
algorithms such as interpolation [42] to convert the array of digital capaci-
tance values into touch specific data such as coordinate positions and touch
strength values. [30]

The report rate at which processed touch events are published by the de-
vice firmware depend on several aspects. A large sensor needs usually more
time to scan because more electrodes are required to provide a high touch
detection resolution. The touch controller has the task to suppress noise
injected by the components around the touch panel. The use of filters im-
proves signal-to-noise ratio at the cost of increased latency. Also the number
of fingers used simultaneously on the screen a↵ect on the rate.[45] A typical
report rate is in the range of 60 Hz and 140 Hz. [40][45][47]

A touch controller might enter into a sleep mode when the touch panel
is not used for some time. Reduced scan frequency helps to save power but
increases tap latency usually by 50 ms to 200 ms [45].

3.2.2 Input Subsystem

3.2.2.1 Linux input pipeline

The open-source Linux kernel provisions the foundation upon which the An-
droid OS is built. Linux provides a well-maintained platform to access the
under-lying peripherals. Devices are usually accessed through special hard-
ware interfaces (such as serial ports, SPI, I2C and USB), which are protected
and managed by the kernel. The Linux kernel input subsystem is an ab-
straction layer which interacts between the input hardware and user space
applications by exposing the user input to user space in a device-independent
way through a set of various interfaces. The input subsystem, standardized
in Linux kernel version 2.6, is composed of input device driver, input core
and input event handler layers (Figure 3.8) [21].

Figure 3.8: Linux kernel input subsystem
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A hardware device issues an interrupt request (IRQ) to the host device
CPU when data are ready to be processed by the kernel [36]. The CPU
responds to the interrupts by calling the kernel which will invoke a callback
to the respective device driver to claim the interrupt. The input device drivers
act between the hardware and Linux kernel input core by responding to the
respective interrupts and abstracting low-level hardware signals into standard
input event messages. The Linux kernel provides drivers for a wide variety
of peripheral input devices (especially for HID compliant devices) but for
some built-in embedded devices such as touchscreens the original equipment
manufacturer (OEM) must often provide custom drivers. [16] A touch driver
processing a single touch pointer data on the 400kHz I2C bus introduces a
latency of a few milliseconds [45].

Data management within the input subsystem is done through input
event messages [21]. Device specific signals are translated by device drivers
into a standard input event format to provide a uniform event structure for
components outside the kernel [16]. The input event message structure as
shown in Listing 3.1 as defined in the Linux input protocol specification [53].

struct i nput event {
struct t imeva l time ;
u16 type ;
u16 code ;
s 3 2 value ;

} ;
Listing 3.1: Input event structure

Time defines the timestamp when the event was generated in the kernel.
Type identifies the generic type of value (like a key press or an absolute
motion) which subsets a group of codes applicable for the input event. Code
defines the precise type of event (such as the axes being manipulated) and
value contains the actual event data value raised by the device. Time is
generated by the evdev driver ([17] EventHub.h) and other values are supplied
by the calling input device driver. A single hardware event generates multiple
input events. For example a touch event consists of separate X and Y-
coordinate events and data about various touch properties. A special event
type EV SYN is used as a marker to tag input events occurring at the same
moment into separate input data packets. Each input event contains new
value of a single data item. Events are emitted only when values of event
codes have changed. [29] Table 3.1 provides an example of input events
generated for a single-touch hardware event.

Input drivers report input events to the kernel Input core to be passed
to associated event handlers [21]. In Linux a special device file is used to
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Time Type Code Value Description
1493395433.732284 EV KEY BTN TOUCH 1 physical touch

1493395433.732284 EV ABS ABS PRESSURE 42 contact pressure

1493395433.732284 EV ABS ABS X 355 X-axis value

1493395433.732284 EV ABS ABS Y 841 Y-axis value

1493395433.732284 EV SYN 0 0 data end

1493395434.002979 EV KEY BTN TOUCH 0 no touch

1493395434.002979 EV ABS ABS PRESSURE 0 contact pressure

1493395434.002979 EV SYN 0 0 data end

Table 3.1: Report of input events of a single-touch press and release.

allow user space applications to interact with device drivers via standard
system calls (like read and write) just like processing regular files [36]. The
device files are typically located under the /dev/input folder where evdev,
the generic input event handler interface eventually exposes input events to
[29].

3.2.2.2 Android input framework

The Android input framework consists of a set of classes that transform
raw input events into Android specific events and deliver them to interested
targets. The main components managing incoming events in the Android
InputManager system service are the EventHub, the InputReader and the
InputDispatcher.

Figure 3.9: Android input event flow.

The EventHub component detects and reads input events from the kernel
through the evdev interface associated with each input device [16]. It aggre-
gates input events received across all known input devices on the system and
keeps track of the capabilities of individual input devices such as the class
and supported key codes ([17] EventHub.h).

The InputReader acquires the raw events from the EventHub and con-
verts them based on input device specific policies into a stream of ”cooked”
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Android input events [16]. For example initial filtering and categorization on
input events and translation of touch screen coordinates into display coordi-
nates is performed ([17] InputReader.h).

The InputDispatcher delivers input events received from the InputReader
to all active input targets registered for the events such as the currently
focused window [16].

3.2.3 Application

An activity is a fundamental building block of an Android application. It
presents a single screen with a user interface thus providing an entry point
for interacting with the user. All elements in the user interface are built
using View and ViewGroup objects as demonstrated in Figure 3.10. Views
are responsible for drawing on the screen and handling events. The layout
of the user interface is defined by the ViewGroup that is a container of child
views and view groups. [15]

Figure 3.10: View hierarchy in Android.

Android provides several ways for an application to capture the events
from a users’s interaction. An Event Listener is an interface that is used
to catch a notification when a specific event occurs. The Event Listener is
associated with an Event Handler method which will be called by the Android
framework when the respective action occurs for the registered View. For
example the onTouch() callback method included in the OnTouchListener
interface is called when the user performs a touch event on the associated
item. [15]

Touch events are wrapped as MotionEvent objects. The MotionEvent
class provides many methods to query the properties of the object, such as
the type and a set of axis values. [15]
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3.2.4 Graphics framework

Each activity is given a Window which is a rectangular area attached with
a single view hierarchy. There can be one or more windows on the screen
such as the status bar on top of the screen, the navigation bar at the bottom
or side and the application user interface. Each window is associated with a
Surface onto which the contents of the window are rendered. [16] Graphics
data processing flow in Android is depicted in Figure 3.11.

Figure 3.11: Graphics data flow.

Rendered data is populated into a bu↵er and returned to the bu↵er queue.
The Bu↵erQueue for a viewable Surface is typically configured with three
bu↵ers but bu↵ers are allocated on demand to minimize memory consump-
tion. There might be only two allocated bu↵ers in the queue if the bu↵ers
are populated slowly enough. [16]

Composition of the surfaces is orchestrated by SurfaceFlinger. Frequency
of processing the surfaces is limited by the refresh rate of the display. The dis-
play contents are updated only between the refresh cycles to prevent tearing
the image. The display issues a periodic vertical synchronization (VSYNC )
signal to the system stating the moment when it’s safe to update the con-
tents. Typically the signal is generated at the rate of 60 Hz. Timing op-
erations are coordinated by the Choreographer. Applications always start
drawing and SurfaceFlinger operations are initiated when the VSYNC signal
arrives. SurfaceFlinger collects all bu↵ers of processed data for visible layers
and interacts with the Hardware Composer HAL (HWC) to determine the
most e�cient way to composite and pass the bu↵ers to the display through
the hardware driver. The HWC abstracts objects and helps to o✏oad some
work that would normally be done with OpenGL.[16]

The interval defined by the VSYNC rate sets the boundary for the ap-
plication to complete the execution of its internal logic and frame drawing.



CHAPTER 3. ENVIRONMENT 29

Exceeding the boundary will add the overall latency by another 16.7 ms be-
cause the application has to wait for the next VSYNC to start processing
the next frame. A drop in the frame rate will result stuttering in the output
visualization resulting in a bad user experience.

3.2.5 Display

At the end the image processed by an application is presented to user on a
display. The most common technologies used for the displays in the current
smartphones are Liquid Crystal Display (LCD) and Organic Light Emitting
Diodes (OLED). [5]

Several aspects pertain to latency originating from the display side. The
response time describes the time needed to transition a pixel from one gray
value to another. The gray value defines the intensity of the pixel ranging
between 0% (black) and 100% (white). [5] Typical response times of the
LCD displays di↵er between 2 ms and 100 ms whereas the OLED displays
tend to react considerably faster, usually within a few microseconds. [45]

Another matter is the internal refresh rate that describes the interval be-
tween the times the display redraws its contents. The refresh rate is typically
about 60 Hz which translates roughtly to 16.7 ms. [5]

An internal frame bu↵er can be used on the display to store the latest
frame data. The benefit of using the memory bu↵er is the need for the
host to transmit data to the display only at times when the content of the
frame has changed. The lower amount of data transfer helps to reduce power
consumption. However, additional memory storage introduces another bu↵er
to fill before the frame can be displayed yielding an additional latency of 16.7
ms. [45]



Chapter 4

Implementation

At this point we have defined the top-level end-to-end flow and the elements
that comprise the flow. In this chapter we describe the implementation and
related design considerations of our measurement instrument. The measure-
ment setup is depicted in Figure 4.1.

Figure 4.1: Measurement setup for end-to-end delay analysis.

30
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4.1 Theory of operation

The goal of the implementation is to accurately measure the time consumed
between a triggered touch event and its corresponding visual counterpart on
the screen. The tool traces the end-to-end path and provides latencies for
both the individual elements along the event flow and the total cumulative
end-to-end latency value. Variability in latency is expected due to timely
inconsistent factors such as the injection time of the touch signal and the
constantly alternating utilization rate of the CPU. The variability can not
be explained comprehensively with only a single end-to-end measure and
therefore the tool collects also environmental data (such as the CPU utiliza-
tion and battery state) during latency measurement.

Measurement is applicable once the application is installed on the in-
spected device. The application is automatically started right after the device
is attached to the measurement instrument via a USB connection. The touch
signalling and photosensor modules are placed on top of the device. User is
given an option to choose a measurement program and select the amount
of measurements performed per each measurement cycle. The end-to-end
program collects latency data along the whole end-to-end path. The phone
application acts as the host and interacts with the measuring instrument
during the whole measurement cycle.

At the beginning of each measurement cycle the screen is analysed to ob-
tain reference values for the black and white brightness levels. This is needed
to define appropriate threshold values for the visual feedback detection. Time
synchronization between the phone and the instrument is performed auto-
matically during the measurement cycle to ensure a high control over the
inherent drift in time between the devices. Data collection is started after
the initialization phase has finished. At first the instrument activates the
touch pad to inject a touch signal on the screen of the inspected device.
Timestamp corresponding the time of touch initiation is recorded and the
instrument starts monitoring the screen with the photosensor to detect a
visual response. Once the operating system has processed and delivered the
corresponding touch event to the application, the framework is instructed to
provide a visual feedback by changing the color of the background from black
to white. In addition the phone collects timestamps at intermediary collec-
tion points which are detailed later in this chapter. The instrument records
timestamps when a change in screen brightness is detected and transmits
the collected data to the application. At the end of each measurement the
application collects environmental data such as the usage, frequency and
temperature of the CPU. After each measurement the need for time syn-
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chronization is verified and an arbitrary delay is added to generate timely
variation between consecutive touch signals. After the measurement cycle
has finished the operator is provided an option to receive the collected data
wirelessly.

4.2 Hardware implementation

Creating an artificial touch signal, capturing feedback from the display and
providing accurate timestamps for the captured events raise a requirement to
harness external hardware components to generate the needed functionalities.
In this section we describe the hardware implementation of the measurement
instrument.

4.2.1 Microcontroller

Functions must be operated in a precise, controlled manner. A Teensy 3.5
development board [50] featuring a 32-bit 120 MHz ARM Cortex-M4 proces-
sor was chosen because it is very easy to program, contains an e↵ective CPU
enabling a high-resolution data sampling, provides a native USB interface
and in addition is very a↵ordable.

The USB interface in Teensy was initialized to appear as a serial device
type to enable date exchange with Android using the bulk transfer com-
munication type. The Analog-to-Digital converter (ADC) was configured
to output data as an average of 8 samples (analogReadAveraging) in the
12-bit resolution (analogReadRes). This combination defines the required
processing time needed to extract photodiode data values from an analog
input (analogRead). The obtained duration of 17µs (⇡ 58 kHz) is used as a
dimensioning parameter for the feedback detection module.

4.2.2 Touch generation

Various methods in creating an artificial touch signal have been proposed by
other researchers. Attaching a conductive object (typically a small copper
plate or a coin) on the screen hooked with a wire to a controlling unit appears
to be the most common solution. Some methods involve movement, such as
poking the screen with a conductive object either manually [8][18] or using a
robotic arm. The moment when a moving object touches the screen surface
can be detected with various sensors such as a vibration sensor [8] or an
accelerometer [18]. Resolving the relation between the location of touch and
it’s respective latency profile is considerably easier if touch signals can be
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injected in a controlled manner always exactly to the same physical location
of the screen. For that reason we pursued to implement a stationary, yet a
flexible solution.

As discussed in the previous chapter, the basis of capacitive touch detec-
tion is the ability to identify a change in capacitance. Altering capacitance
is relatively straightforward. Since capacitance depends on the amount of
charge as defined by formula 3.1, a change in capacitance can be achieved by
dissipating charge via a conductive material [44].

We examined various di↵erent materials and shapes during the develop-
ment process of the touch signal contact. Grau [19] used copper tape to
trigger a touch signal on an iPhone. Based on our experiments with Sam-
sung S4 even a tiny piece of copper tape itself, without an attached signalling
wire, resulted in a reported touch event. Our trials with a copper coin (used
in [4][19][27]) revealed a high amount of dispersion in location among the
resulted touch events. Therefore the characteristics of a coin, such as the rel-
atively large, rugged surface contact area, were considered to be non-optimal
for the purpose.

We noticed big di↵erences in touch sensitivity among di↵erent mobile
devices. Sensitivity is a↵ected by the amount of capacitance and in the
context of capacitive touch detection the magnitude of change introduced
by a touch is on the order of picofarads or only hundreds of femtofarads
[20][42]. Managing sensitivity becomes a bigger challenge when a conductive
material is attached onto the contact pad to establish a path to a control
unit for signal generation. Often even a short wire alone, with the other
end of the wire disconnected, was enough to trigger a touch signal. This
was also remarked by Deber at al [11]. The more sensitive the touch sensor
is, the more attention must be paid on the materials used. Also the length
of the connection wire should be kept at the bare minimum to prevent an
unintentional dissipation of charge and also to diminish electrical noise.

We obtained most promising results with a brass contact (like [12]) of 8
mm in diameter and 1 mm thick. Brass is recognized as a suitable material
also in many other display testing systems [13][46]. We paid special atten-
tion on attaining a well polished contact surface to limit the distribution of
injected signals into a narrow spot on the pad.

Due to aforementioned sensitivity considerations there was a need for
a switching component capable of enabling and disabling the signal reli-
ably. Multiple components such as solid-state switches, transistors and ana-
log relays were examined. Unfortunately components providing lowest level
switching-times (in the nanosecond-level) could not be utilised because they
were leaking too much current and thus caused unintentional touch signals.
We obtained the best results with an Omron G5V-2-H1 [43] electromechani-
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cal relay. Although the sensitivity issue was tackled and the signal production
was very reliable, a new issue emerged with the relay. Due to the mechanical
nature of the selected component, the switching delay of the relay was close
to 6ms. This time is needed to energize a coil to magnetically actuate an
iron contact inside the relay [23]. The relay holds two switches which are
controlled simultaneously by a single coil. This enabled us to feed one pole
of the relay to the touch pad while the other pole was attached to the micro-
controller allowing an accurate way to deduct the actual delay in every single
measurement. The contacts of a relay have a tendency to bounce on closing
[23]. That produces rapid vibrations in the signal over a short period of time.
Based on our measurements an average bounce time of ±59µs (SD=70 µs,
N=1000) was introduced, allowing us ignore the impact of the bounce time.

Our contact pad produced pretty stationary touch signals. Approxi-
mately 99%, 99.8% and 99.9% of all triggered touch signals were within
±1, ±2 and ±10 pixels apart from each other, respectively. Considering
the pixel density of 441 pixels per inch in our test device (Samsung S4), the
width of 3 and 5 pixels yield respective signal dispersion diameters of approx-
imately 0.17 mm and 0.29 mm. The implemented solution was considered
very reliable also because no unintended touch signals occurred during the
operation.

4.2.3 Feedback detection

The feedback is visualised as a change in background color on the phone
display. The change in brightness can be detected with a photosensor com-
ponent coupled with analog and digital signal processing as depicted in Figure
4.2.

Figure 4.2: Change detection block diagram (modified from [52])

A Vishay BPW34 PIN photodiode [54] was selected to detect changes
in brightness because it provides a wide spectral sensitivity, fast response
time (the reported rise and fall time of 100ns) and comes in a flat packaging.
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The low-level current sourced by the photodiode must be amplified and trans-
formed into a voltage in order to enable measurement using a microcontroller.
This type of conversion is usually implemented using a Transimpedance am-
plifier (TIA) circuit which typically consists of a photodiode, an amplifier
and a resistor/capacitor feedback pair. An LTC1050 operational amplifier
[32] was chosen due to excellent characteristics such as low input bias current,
o↵set voltage, noise and voltage drift. Figure 4.3 presents the TIA circuit
diagram used in our application.

Figure 4.3: Photodiode amplifier circuit diagram.

Amplification of the photodiode current is defined by the value of the
feedback resistor Rf . The maximum light brightness on a smartphone display
is typically around 250-750 cd/m2 [22][25] thus the circuit was dimensioned
covering the operation range between 0 and 1000 cd/m2. According to the
photodiode datasheet [54] current IPDmax produced by the photodiode at the
maximum dimensioned level is 75 uA. The maximum voltage VOUT fed into
the microcontroller should be in the range between 0 and 3.3V. The nearest
standard resistor value of 47k⌦ was selected for the feedback resistor Rf on
the basis of the theoretical value calculated using formula 4.1.

Rf (Ohm) =
VOUTmax

IPDmax

=
3.3V

75µA
= 44k⌦ (4.1)

A cuto↵ frequency defines the point after which energy flow through the
device starts to reduce thus preventing it from working as designed. The
frequency depends on the used feedback resistor and capacitor values based
on formula 4.2
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fop(Hz) =
1

2⇡RfCf

(4.2)

The analog voltage signal produced by the circuitry is processed by the
ADC of the microcontroller. Value of the feedback capacitor Cf when us-
ing the maximum operation frequency of about 58 kHz fbase as used in our
experiments is

Cf (F ) =
1

2⇡Rffbase
=

1

2⇡47k⌦58kHz
⇡ 58.4pF (4.3)

However, the capacitor value of 30 pF was selected to leave some room for
further testing. The photodiode was capped to limit the ambient light from
entering the sensor. The light emission of the display on measured devices
was set at the maximum brighness level to achieve a stronger detection signal.
A small amount of noise was picked by the sensor. That was expected because
the wire used to connect the sensor to the microcontroller was not properly
shielded. The e↵ect of noise was managed programmatically to ensure that
only valid readings were accepted.

4.3 Application

In this section we report the software part of implementation. We start with a
discussion about the USB because the application starts automatically when
a device to be inspected is connected via the USB connection. Next the main
parts of the user interface are described. Finally the measurement cycles are
detailed.

4.3.1 Data communication

Data communication between the phone and the measurement instrument
is performed over the USB connection. The Universal Serial Bus (USB) is
a standard for a serial communication interface. Communication is made
between the host and one or more client devices. The USB is a polled bus,
where the host initiates all data communication. A smartphone acts normally
as the USB client device. The On-The-Go (OTG) is a standard that enables
mobile devices to act as a host. [2] A smartphone can be equipped with
the OTG support by utilizing an external OTG adapter cable to allow data
communication with a microcontroller.

Android phone acts as the USB host when communicating with Teensy.
USB connection establishment is initiated in the onCreate() method of the
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main activity. An instance of UsbManager class is obtained to access the
state of USB and establish connection with USB devices. A HashMap con-
taining all currently attached USB devices is iterated to discover and retrieve
the desired UsbDevice. UsbInterface of the device object containing Teensy
specific device vendor ID is accessed to map separate UsbEndpoints for send-
ing and receiving data. Finally an instance of UsbDeviceConnection is cre-
ated to open the device for synchronous data transfer. The bulkTransfer()
method is used to perform data transfer for both directions.

An intent action ACTION USB DEVICE ATTACHED is broadcasted by
Android when a USB accessory is connected to the USB bus. This intent
contains the UsbDevice object of the connected device. Main activity of
the application is mapped with an intent filter for the same USB attached
action. The intent is processed in the onResume() method. Main activity is
started automatically if the vendor ID attribute conveyed in the UsbDevice
object corresponds with the vendor ID of Teensy defined in application’s
manifest file. Permission to communicate with the USB device is obtained if
the user grants the application to handle the intent in the initial USB device
connection establishment dialog with the user.

4.3.2 User interface

The user interface allows user to interact with the application. Applica-
tion contains only one activity, the main activity (MainActivity). The user
interface window (depicted in figure 4.4) consists of a ScrollView and two
TextView elements, Button widgets and RadioButtons. The ScrollView ele-
ment is used for providing textual feedback to user, TextView elements for
user touch detection and response visualisation. The amount of measure-
ments made in each measurement cycle is specified by the radio buttons.
The time between consecutive touch events can be defined in steps of 1µs,
10µs and 100µs.

The screen was triggered at and measured from various di↵erent coordi-
nate positions during the development process. Each UI element was there-
fore constructed into separate components to provide a flexible way to change
the layout of UI components during our experiments. When the end-to-end
latency was measured, the touch detection and response UI elements were
combined to enable placing both sensor modules next to each other in the
middle of the screen.
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Figure 4.4: The user interface and design components.

4.3.3 End-to-end latency measurement

Measurement process starts with an analysis of screen reference values (de-
tailed in chapters covering touch generation and feedback detection) and the
clock synchronization followed by automated data collection.

The measurement program is accessed though the user interface. An On-
TouchListener is registered on the RUN button object in the Main activity.
When the button is pressed the system executes the code written in onClick
on the main thread. A new thread is instantiated at start of the code thus
releasing the main thread for other activities. Two separate threads are used
to execute the measurement: the main (UI) thread is responsible for updat-
ing the user interface and handling touch event callback procedures whereas
the other thread executes the rest of the activities. At first new objects
are instantiated to store measurement values. The current battery level is
queried from the BatteryManager class via an intent filter created for the
ACTION BATTERY CHANGED action.

4.3.3.1 Time synchronisation

Syncronization of time is performed at the beginning of each measurement cy-
cle. Each event is mapped with a distinct timestamp at the time of the event.
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The monotonic nanoTime method is used in Android and elapsedMicros in
Teensy to extract current timestamps. Timestamps originating from di↵er-
ent sources can not be compared directly per se, so a mechanism is needed to
synchronize the clocks between external sources. To our knowledge there is
no robust method for providing a sub-millisecond precision in synchronizing
clock signals between a microcontroller and a host node without the need
to access an external network or the GPS. Our solution implements time
management between the devices through the USB connection.

Time synchronization through the USB interface is based on measuring
the minimum Round-Trip-Time (RTT) which identifies the time needed to
transmit a USB packet from phone to Teensy and back. The RTT process is
managed by the phone application and is performed as follows:

1. The current timestamp phone
start

is stored and immediately after that
a byte of data is transmitted to Teensy. Teensy responds with it’s
current timestamp teensy

time

.

2. The current timestamp phone
end

is stored immediately after reception
of the response. The RTT is calculated (phone

end

- phone
start

) and
stored.

3. The RTT cycle is performed 1000 times. A random delay of 2-5 ms is
applied between each transmission to prevent message accumulation in
the USB bu↵er and therefore an evident distortion in results.

Response processing time in Teensy is subtracted from the elapsed RTT
to extract an estimate of the USB data transfer delay. After the RTT cycle
has finished, timestamps mapped to the smallest RTT are used for defining
the reference time point, all relative to the same point in time, as follows:

• RTT = phone
end

- phone
start

- teensy
processing

• phone
reference

= phone
start

+ RTT

2

• teensy
reference

= teensy
time

When measuring the latency, the timestamps are converted into duration
calculated from the reference times. This allows us to link the timestamps
originating from di↵erent sources. The minimum RTT defines the tolerance
level of accuracy when estimating the actual teensy timestamps. Received
Teensy time can be is estimated as teensy

phone time

= phone
reference

± RTT

2 .
However, latency is likely asymmetric due to asymmetric nature of the USB.
Based on our measurements an average minimum RTT (excluding processing
time in Teensy) was 173 µs (N=500, SD=12.1 µs) yielding a typical time
synchronisation di↵erence of ±87 µs between the two devices.
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Most electronic devices are equipped with a hardware oscillator to create
a signal with a precise resonance frequency to provide a stable clock signal.
Accuracy of the oscillator is defined as ppm (parts per million) which in-
dicates the maximum deviation of device’s crystal from the nominal value.
Due to variation in clock frequency, separate clock signals will drift apart over
time. Our application compensates clock drift by performing time synchro-
nization throughout the measurement cycle. A typical stability requirement
for mobile phones is about 10 ppm [28]. As the frequency tolerance of the
crystal used in Teensy is 18 ppm [34], the maximum clock drift of 90 µs is
ensured by performing time synchronization every 5 seconds.

4.3.3.2 Data collection

We have identified six data collection points which allow us to split the end-
to-end path into five sections as illustrated in Figure 4.5.

Figure 4.5: End-to-end latency split into sections in the data collection se-
quence.

Touch to kernel delay is the time between a touch signal is activated on
the screen and the corresponding touch event is created in the kernel.

Kernel to callback defines the duration between the kernel event times-
tamp and when the touch event was dispatched to application via the on-
Touch() callback method.

Callback to frame specifies the delay between the time the touch event
was dispatched to application via the onTouch() callback method and the
time when rendering a display frame started. The display frame is processed
as a consequence to the request to change the background color for the view.

Frame to detect states the period that is spent between the graphics
framework initiated by the frame draw and when a change on the display
color is detected.
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Detect to display represents the duration needed to draw the frame on
the display.

End-to-end latency provides the overall delay between the moment the
touch signal is activated on the screen and the time the corresponding visual
feedback has been drawn on the display.

The following items were recognized as potential factors to have an influ-
ence on the end-to-end latency:

• Action: Position of touch

• Action: Position of feedback detection

• Action: Time interval between consecutive touch signals

• Data: The CPU (utilization, frequency and heat)

• Data: The level of available charge in the battery

• Collect: Phone attributes (the manufacturer, the model, the OS ver-
sion)

The items prefixed with ”Action” are based on di↵erent user action pat-
terns. The items marked with ”Data” were collected for each measurement
and their relationship with the latency was analysed. The ”Collect” item
states the characteristics which we believe are essential in characterizing the
constant environmental factors which should be collected as a part of the
measurement phase and reported along the measurement results. Tests and
results for the assessed item are reported in the next chapter.

The end-to-end measurement cycle is depicted in Figure 4.6. The steps
of the cycle are described in the following sections.

4.3.3.3 Touch generation

Generation of a touch signal is the first step in the measurement cycle. A
digital output pin on the microcontroller is connected to the relay. Changing
the pin to high state energizes the relay. However, operation of the relay is
not instant and therefore needs to be monitored in order to determine the
exact moment when the switch has actually closed. A change in signal is
reflected simultanously in both poles of the relay. Therefore monitoring can
be done with an analog input port connected to the other pole of the relay.
A connection to signal ground is needed to initiate touch generation. To
detect the ground signal, the input port is initiated by the INPUT PULLUP
mode, setting the pin signal state to high. Immediately after the relay is
triggered, the analog port is monited for change. The closure of the switch has
actualized once the ground signal level is identified. The current timestamp
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Figure 4.6: The end-to-end measurement cycle.

is identified as the physical touch activation time. Next the Teensy proceeds
to the feedback detection phase.

4.3.3.4 onTouch and frame callback

When user touches the screen, Android delivers the resulted touch event to
registered input targets. An OnTouchListener is registered for the touch
detection view element to receive touch events. A callback to the onTouch()
method is invoked by Android when touch events are dispatched to the reg-
istered view. Therefore all application logic related to touch event handling
is implemented in the overridden onTouch() method.

At first the type of the event is obtained. If the event action code equals to
MotionEvent.ACTION DOWN, denoting the touch going down, the current
timestamp is stored (callback time). Immediately after that the setBack-
groundColor method is used to change the background color to white for the
view.

The time when the next frame started being rendering (frame time), is
obtained with a callback to the doFrame method.

The o�cially documented MotionEvent.getEventTime() method provides
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time data only in the millisecond resolution. Therefore the hidden Motion-
Event.getEventTimeNano() method was preferred to retrieve the kernel level
event time (kernel time).

4.3.3.5 Feedback detection

Response to touch is presented as a change in the screen brightness level.
Our application utilizes the transition from black to white but in practise
a change between any levels can be used. To detect change between two
states, reference values for the corresponding levels must be acquired. This
acquisition is performed before a run of measurements is executed. The
average value of the white level, sampled for the period of 100 ms, was used
as the threshold value for the white level. However, the control for the black
level required more e↵ort.

The signal analysis conducted at the time of development revealed a small
amount of noise and random irregular peaks in the signal level measured for
the black state. That was probably caused by the unshielded cables used for
prototyping the instrument. These issues could not be addressed at the time
of the development phase, raising a special need for the detection algorithm.

With the constraints in mind we implemented a novel approach for detect-
ing change in the black level. At the initialization phase the black screen is
first sampled for the period of 300 ms to extract the mean, the maximum and
the standard deviation of the sample. The standard deviation (SD) provides
a measure to quantify the amount of variation or dispersion between values
in a set of data. Only a random sample of the population is studied because
it is not possible to sample every member within the entire population. The
corrected sample standard deviation is calculated using the formula 4.4

s =

vuut 1

N � 1

NX

i=1

(xi � x)2 (4.4)

, where xi is one sample value, x is the sample mean and N is the sample
size.

The process is considered out of control if a data point exceeds the control
limit [10]. The control limit for the maximum black screen value is defined
as maxValue + L*SD where maxValue is the maximum value seen in the
sample and the sigma limit L is equal to 3 as in the design of the Shewhart
control chart limits [10].
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Accuracy of the implemented algorithm was validated manually. We com-
pared the di↵erence of the timestamps between the data point reported by
the algorithm and the first actual occurrence in the sample exceeding the
maxValue value. The obtained accuracy of 0.08 ms (SD 0.03 ms, N=100)
was considered adequate. No false alarms were reported during the use of
the instrument.

Detection of the white level is illustrated in Figure 4.7 which demon-
strates the luminance curve of the AMOLED display used in the inspected
Samsung S4. For large gray transitions, the final level is obtained only in
the subsequent time frames [6]. This is shown as an intermediate gray level
which is visible in Figure 5.1. Timestamps of the generated touch event and
the detected screen transition events are sent to phone immediately after the
white level has been detected.

Figure 4.7: Luminance curve at the transition from black to white. Illus-
trated time frames are drawn since the time of detection. Sampled at the
rate of 58 kHz.

4.3.3.6 Environmental data

Data for the CPU utilization is collected in each measurement. The amount
of time the CPU has spent performing work is measured in clock ticks and is
available in the /proc/stat file. The monotonically increasing numbers in the
file are aggregated per type of work since the system boot time and contain
separate events for each CPU core. Delta between the statistics collected
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at the start and end of each round denote the amount of work being made
during the collected samples. The CPU load is a percentage of the CPU’s
capacity over time which is used by the CPU for processing instructions other
than waiting for input/output operations (iowait) or entering the low-power
(idle) mode.

The CPU load level alone does not provide enough information on the
full utilization of system resources. Depending on the workload the operating
frequency of CPUs may be scaled down. The CPU usage in /proc/stat is
reported with respect to the scaled operating frequency. The CPU load value
must be normalised with respect to full CPU potential by taking into account
the amount of time spent in each frequency state. Normalized CPU load is
calculated as [48]

CPUload
weightedFrequency

maximumFrequency
(4.5)

The amount of time consumed per frequency is extracted from time in state
file. Statistics from the file are collected along with corresponding CPU load
data and delta times are calculated. Relative usage percent of each frequency
is calculated by dividing frequency specific delta time over the total consumed
delta time. Frequency values are multiplied by corresponding relative usage
percentage. Weighted frequency is the sum of resulting values. Maximum
operating frequency of the CPU is read from cpuinfo max freq. Normalized
CPU load is calculated separately for each CPU core. In case a core is of-
fline the time in state file might not be available and thus corresponding
normalized CPU load is reported as a value of 0.

Temperature data of all available thermal zones is read next. Current
temperature is provided by the thermal framework. Separate data files for
each thermal zone are available through the sysfs under /sys/class/ther-
mal/thermal zone directories. The type of thermal zone is declared in the
type file. Current temperature in (milli)degree Celcius as reported by each
thermal zone sensor can be read from the temp file.

4.3.3.7 Data assurance

Based on our findings the location of touch impacts on the touch to kernel
delay. To ensure a better control over the location of induced signals on the
screen, only samples within ±3 pixels apart from the inspected center point
were accepted at the measurement phase.

The interval between consecutive touch events on the screen has an im-
pact on the latency. The e↵ect was discovered for the intervals below 660
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ms. A random delay between each measurement was applied to ensure the
distribution of touch signals over the interval range of 150 ms and 1000 ms.

At the end of each measurement round the state of time synchronization
is validated. The current time is compared against the last synchronization
time and another synchronization step is executed if the maximum allowed
unsynchronized time limit is exceeded.



Chapter 5

Evaluation and results

In this chapter we describe how our implementation was evaluated and dis-
cuss the obtained results based on the data collected with the developed
system.

5.1 Validation

Operation accuracy of the measurement tool was validated with a high-speed
camera Sony NEX-FS700E. A run of 10 consecutive end-to-end measure-
ments was performed while recording the operation with the camera at the
speed of 800 frames per second (equals to 1.25 ms per frame). Figure 5.1
illustrates the most essential phases of the measurement cycle. The led in
the microcontroller was illuminated between the moment the touch signal
was initiated (step 1) and the time when the threshold value for the white
level was reached (step 4). The frames displaying the illuminated led were
counted for each measurement and the resulting frame time was compared
against the data collected by our measuring instrument.

Accuracy of the validation was limited by the frame rate of the video
equipment. The duration of a single frame is significantly longer than the
time needed by the microcontroller to detect change and to control the led.
Due to this limitation the validation involves an uncertainty of two camera
frames (2.5 ms). All measured samples and their corresponding frame coun-
terparts were within one frame duration of each other (N=10, mean 0.41 ms,
SD 0.28 ms). Correlation between the variables in the two data sets was cal-
culated with the Pearson’s correlation coe�cient. The obtained R value of
0.9995 indicates almost a perfect positive correlation between the data sets.
The results gave us confidence of the accuracy of our device and spurred us
to start exploiting the full potential of the tool by collecting data.

47
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Figure 5.1: Measuring the end-to-end latency. Step 1: The state when a
touch was triggered. Step 2: A change in the black level occurs. Step 3:
A change in the white level occurs. Step 4: The detection cycle has just
completed.

5.2 Accuracy and testing considerations

Accuracy of the developed system is composed mainly by the elements in-
terfacing between the application and the external measurement apparatus.
The USB communication introduces an average latency of ±87 µs (SD=12.1
µs). The maximum delay of 90 µs is adduced in the cycles of 5 secods as the
consequence of the task in compensating the potential clock drift between
the phone and the microcontroller. The average bounce time in the relay
used for triggering a touch signal was measured as ±59µs (SD=70 µs). The
method used for detecting the change on the initial black level on the screen
was identified to achieve the precision of ±80 µs (SD=30 µs). Accuracy on
detecting the white level is evaluated based on the validation made with the
high-speed camera. Bearing in mind the uncertainty factor of 2.5 ms as in-
troduced by the limited frame rate of the camera, the calculated precision
of 0.41 ms (SD=0.28 ms) was reached. In the light of aforementioned mea-
surement results, we can conclude that the initial requirement of the overall
accuracy of under one millisecond was achieved.

The time synchronisation phase is executed frequently during all measure-
ments to ensure precise timing between the connected devices. However, the
synchronization procedure introduces varying delay between individual mea-
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surements. The delay sourced by the USB connection latency was controlled
automatically between measurements by limiting the maximum round-trip-
time to 200 µs (±100 µs). As discussed next in this chapter, the latency
of touch events is heavily influenced by the time interval between consecu-
tive touch signals. To ensure control on valid results, the first set of data
after each time synchronisation phase was therefore discarded in the tests
regarding the touch location and the inter-touch interval.

Measured devices were Samsung S4 (Android 5.0.1) and Huawei Nexus
6P (Android 8.0.0).

5.3 Results

In this section we discuss the results and make conclusions about the main
aspects a↵ecting the end-to-end touch latency. Our measurement results are
shown in Table 5.1.

Samsung S4 Nexus 6P
Avg SD Avg SD

Touch to kernel (ms) 15.4 1.0 29.5 1.2
Kernel to callback (ms) 1.8 0.4 1.8 0.4
Callback to frame (ms) 8.8 1.5 8.7 0.9
Frame to detection (ms) 40.8 0.8 39.2 1.5
Screen update (ms) 17.6 0 17.5 0.1
End-to-end (ms) 84.4 2.0 96.6 2.2

Table 5.1: End-to-end latency. 1000 x 10 pcs. Inter-touch interval max 200
ms.

5.3.1 Frame processing

The results indicate clearly that most of the end-to-end latency originates
from frame display processes. This observation is shared also by other re-
searchers [8][27]. The result was already anticipated because frame processing
is tightly coupled with the amount of utilized frame bu↵ers and the vertical
refresh rate of the display. The use of multiple bu↵ers helps in ensuring a
smooth visualization of moving images but comes at the expense of increased
delay.
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5.3.2 Detection location

The position where the inspected object is located on the screen introduces a
delay which is directly proportional to the vertical position of the object and
the refresh rate of the display. To examine the e↵ect on the latency, the photo
detection module was placed at each corner of the screen. The physical size
of the module introduces a constraint on measuring the absolute minimum
and maximum coordinate locations (0,0), (xmax,0), (0,ymax) and (xmax,ymax).
As a consequence the latency range between the measured top and bottom
locations is smaller than the full potential of the actual screen resolution.

Position Avg SD
Top left 33.4 ms 0.2 ms
Top right 33.4 ms 0.2 ms
Bottom left 49.1 ms 0.2 ms
Bottom right 49.1 ms 0.2 ms

Table 5.2: The relation between detection location and frame processing.
(Samsung S4, N=1000).

The results as shown in Table 5.2 demonstrate the operation of the dis-
play. The display draws the given data in vertical direction at the speed
dictated by the refresh rate. Depending on the location of the inspected ob-
ject, the delay of up to one full draw is introduced which is approximately
16.7 ms at the refresh rate of 60 Hz.

There is no set standard on which location the measurement should be
performed on the screen. It is essential to position the photo detection mod-
ule at the same location on the screen to obtain comparable results. We
believe that the average screen draw latency is generally produced at the
center of the screen and therefore all of our measurements were obtained
from that location.

5.3.3 Light intensity

The di↵erence of gray values (the lightness of color) in transition between the
initial and the final colors defines how quickly the transition occurs on the
display. Figure 5.2 demonstrates the di↵erence. Transition from black (0%
gray) to white (100% gray) took approximately 18.0 ms while transition from
middle gray (50% gray) to white was reached in only 1.3 ms. The di↵erence
of 16.7 ms corresponds roughly to the VSYNC pulse duration.
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Figure 5.2: Luminance curve at di↵erent base levels of gray value in transition
to white (Samsung S4, sample rate 58 kHz).

5.3.4 Touch location

Touch input processing has a major role in the overall end-to-end latency
distribution and is mostly determined by the location of touch and the time
between consecutive touch events. This section concentrates on the location
of touch.

Induction of a touch signal initiates the end-to-end latency path. Touch
signals are often fed onto the system at the center of the screen [4][11][19][27].
Discussion about the e↵ect of touch location is however often disregarded. We
experimented the impact of location by injecting touch signals at the corners
of the display. 10 series of run were taken at each location. A single run
consisted of 1000 samples. The interval between consecutive touch signals
was kept constant at 100 ms.

Our results reveal that the latency is dependent on the touch location
and is induced mainly by the touch panel. The relation was already expected
because a touchpanel is typically scanned line by line starting from one side
of the panel and collected samples are processed only after the entire panel
has been completely scanned. While experimenting with Samsung S4 we
anticipated that the screen scanning would occur in vertical direction thus
resulting the smallest delay at the bottom of the screen. However, the results
(as shown in Table 5.3) indicate that touch signal scanning is performed
horizontally in that particular device, starting from the top left corner. As



CHAPTER 5. EVALUATION AND RESULTS 52

indicated by the results, the latency decreases along the x-axis being at the
minimum on the right side of the panel. In vertical direction the di↵erence
was considerably smaller.

Phone Position (X,Y) Average range Mean SD
Samsung S4 (57,61) 16.0 - 27.1 ms 21.3 ms 2.9 ms
Samsung S4 (58,1863) 15.8 - 26.9 ms 21.1 ms 3.0 ms
Samsung S4 (1020,55) 7.9 - 19.0 ms 13.0 ms 2.9 ms
Samsung S4 (1025,1873) 8.1 - 19.2 ms 13.2 ms 2.9 ms
Samsung S4 (540,960) 14.0 - 21.2 ms 17.6 ms 2.0 ms

Table 5.3: Touch-to-kernel times measured at each corner of display using
the inter-touch interval of 80 ms. (Samsung S4 [1080x1920], N=1000).

The latency jitter describes the range between the minimum and max-
imum latency values. The jitter measured for Samsung S4 varied usually
between the range of 10 ms to 11.1 ms which correspond roughly to the op-
eration frequencies of 100 Hz and 90 Hz, respectively. The jitter was not
a↵ected by the location of touch or the time between two consecutive touch
signals. Similar observation was made by Vu et al. [55]. They injected touch
signals onto a touchpanel at the rate of 1 kHz. Their experiment revealed
that 98% of the time the resulted latency jitter was less than 40 ms. The
limit is probably introduced for practical reasons to accomodate the maxi-
mum possible event rate that can be generated by a human [55].

An unexpected behavior requiring future research was observed. The
latency jitter of 7.2 ms, measured at the center screen coordinate on Samsung
S4, is considerably smaller than the jitter for the other measured locations as
shown in Table 5.3. Similar behavior was not observed with Huawei Nexus
P6.

The duration of one panel scan, performed by the touch controller, can
be estimated based on the di↵erence of the latency jitter values between the
farthest corners of the display. The time di↵erence of 8.0 ms, as measured
for Samsung S4, implies the touch scanning frequency of 120 Hz. However,
considering an estimated average time of 1 ms [45] required for signalling
operations between the touch controller and the kernel, the actual scanning
frequency is probably closer to 140 Hz. Without access to the datasheet
of the touch controller (Synaptics S5000B) we were not able to verify our
estimated touch scan rate.
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5.3.5 Inter-touch interval

Based on the literature [45] a touch controller is likely to enter into a power-
saving mode when a device hasn’t been actively used for a certain amount of
time. This function is reflected in the touch controller as a slower operating
frequency which appears as a longer touch event reporting delay.

We examined the e↵ect of the power-save mode by feeding the touch panel
with signals at di↵erent intervals. Location of the touch signal contact was
carefully placed at the center of the screen. Touch signals were produced
in multiple batches, each at a fixed interval. At first the range of 1 s to
5 s was examined in one second intervals. Next the range between 100 ms
and 1000 ms was measured in steps of 100 ms. A run of 200 measurements
was executed for each interval. Data were analysed after each run to find
any deviation between the samples. Another set of measurement runs was
conducted in steps of 10 ms for the ranges in the close proximity of deviating
time intervals. Finally a run of 1000 measurements was performed for the
intervals having distinct characteristics.

Results obtained from our test devices were not foreseen. We did not
observe a di↵erence in the latency jitter on Huawei Nexus P6 across the
inspected interval range as the jitter remained at a constant level of 29.4 ms.
However, we discovered peculiarities in the results reported by Samsung S4
for the intervals between 350 - 410 ms and 650 - 660 ms as depicted in Figure
5.3. The measurement results are provided in Appendix A. Interestingly the
fastest average delay of 14.8 ms resulted as the response for the inter-touch
interval of 400 ms. The longest results of 45.1 ms were obtained at the
interval of 650 ms.

Unfortunately we could not test another copy of S4 to conclude whether
the phenomenom is the result of an extraordinary design or just an indication
of a defective touch sensor. However, based on our results measured for S4
at the inter-touch interval of 200 ms, the obtained end-to-end latency of 84.4
ms (SD 2.0 ms) is very similar to the result of 85 ms reported by Beyer et
al. [4].

5.3.6 CPU usage

CPU utilization during the latency measurement cycle in a normal system
condition was typically at around 40%. To find the relationship between
latency and CPU usage, a method to simulate high CPU usage up to the
level of 100% is needed. Our test device Samsung S4 (model GT-I9506)
contains four processor cores. As one process can utilize only one core at
a time, three additional concurrent processes are required to reach the full
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Figure 5.3: Inter-touch interval vs. touch to kernel latency (Samsung S4,
measured at 540x960).

processing potential of the CPU.
A batch of 500 end-to-end measurements was executed. Each batch con-

tained 10 samples. Utilization on the CPU was increased in three phases
during the measurement to simulate increase in the CPU usage. The adb
tool was used to connect wirelessly to the phone and to execute a while loop
to increase the CPU usage. The Android Debug Bridge (adb) is a command-
line tool that enables communication with the device [15].

Results shown in Table 5.4 and depicted in Figure 5.4 present a strong
relationship between the CPU usage and the latency. During the first 200
measurements the average end-to-end latency remained at around 84.5 ms
(SD 2.9 ms). A major increase in latency can be observed at the point when
CPU utilization reached the average level of 80%. Similarly higher latency
is reflected at the next CPU utilization phase when all four CPU cores were
being utilized.

Measurements CPU % Avg SD
1-76 39.2 % 84.4 ms 3.4 ms
77-199 61.6 % 84.6 ms 2.6 ms
200-279 81.5 % 91.7 ms 9.1 ms
280-500 94.5 % 105.4 ms 15.6 ms

Table 5.4: CPU utilization vs. end-to-end latency.
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Figure 5.4: CPU % vs. end-to-end latency distribution (Samsung S4).

Measurement results for the extracted sections of the end-to-end latency
are shown in Table 5.5. The results indicate that the higher the CPU uti-
lization is, the more time is needed to dispatch touch events to application
(kernel to callback). Results pinpoint that up to 50 % of the overall latency
increment may fall upon the Android input framework. The touch input
processing side, including touch controller and driver, was not considerably
a↵ected (touch to kernel). As expected, CPU usage does not seem to have
any e↵ect on the screen redrawing time (screen update).

39.2% 61.6% 81.5% 94.5%
Avg SD Avg SD Avg SD Avg SD

Touch to kernel 15.1 1.0 15.0 1.0 15.6 1.2 16.4 1.9
Kernel to callback 2.5 2.3 2.8 1.8 6.9 6.8 12.9 11.6
Callback to frame 8.2 1.7 8.3 1.8 9.1 2.2 11.4 6.2
Frame to detection 40.9 0.5 40.9 0.7 42.6 2.7 47.0 5.6
Screen update 17.7 2.5 17.7 0.1 17.6 0 17.6 0

Table 5.5: CPU utilization % vs. end-to-end latency distribution (ms).

The operation of dynamic frequency scaling (CPU throttling) is also
demonstrated in Figure 5.4. The normalized CPU utilization, which con-
siders also the operating frequency of the CPU, shows clearly that throttling
is increased at both transition points of CPU utilization, starting at the
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point of 81.5%. As a consequence, the normalized CPU utilization remains
approximately at the same level even though CPU utilization increases. The
frequency is decreased to conserve power and to produce less heat.



Chapter 6

Conclusions

Touchscreens are a commonly used medium for the interaction between a
user and a device. Response to user action is often provided by the means
of a visual response on the screen. The corresponding response time is sub-
ject to the inherent delay induced by the system actions performed along
the end-to-end processing path in accomplishing the interaction. Studies in-
dicate that the latency has a major contribution on how users perceive the
interaction with the device. While modern commercial touchscreen devices
manifest latencies ranging between 50 to 200 ms, research indicates that user
performance for tapping tasks deteriorate at considerably lower levels and
user’s are able to discern latency as low as 3 ms. The need to reduce the
delay has been widely acknowledged and several methods for characterizing
the latency have been introduced. Even though current solutions may be
capable of extracting the delay in the finer details, some constrains do apply.
They either lack the ability to conduct the measurement process without
a human-operator or are not capable of retrieving additional environmental
data to help assessing the factors behind the latency.

In this Thesis we presented a novel solution for Android operated mobile
devices to expose factors behind the feedback latency of a tap event. We
started by reviewing the main components of the Android operating sys-
tem. Next we described the internal system elements which partake in the
interaction between the user’s touch input event and its corresponding visual
presentation on the screen of the device. Propelled by the obtained informa-
tion, we implemented an a↵ordable, fully automated system that is capable
of collecting both temporal and environmental data. The system was utilized
to examine which factors contribute to touch latency on a mobile device.

We found that most of the end-to-end latency is composed by the pro-
cesses involved in presenting the visual feedback to user. This output latency
is mainly dictated by frame rendering and bu↵ering elements which can con-
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tribute over half of the overall latency. The amount of delay imposed by
drawing the final image on the screen is dependent on the refresh rate of
the display and the location where the item is observed at. The incurred
delay was at its smallest at the top of the display and increased along the
vertical direction. Also the amount of light intensity in transition between
one background color to another might a↵ect on latency.

Touch input processing is another major source of latency. We identified
two main contributing user action patterns. Latency induced by the touch-
panel is directly proportional to the location of touch in conjunction with the
operation rate of the touch controller. Also the interval between two consec-
utive touch events was demonstrated to impose unexpected results ranging
from having no e↵ect on one device to resulting in a five-fold di↵erence in
the latency on another device.

Our study pinpointed that high CPU usage has most e↵ect on event
dispatching. Delay of that latency section was shown to increase by five-fold
and eventually contribute up to 50% of the overall latency increment.

We hope that the proposed system and the results provided in this Thesis
help to develop even better interactive applications and create more positive
user experience.
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Appendix A

Results: Inter-touch interval

Phone Interval Result range Mean SD
Samsung S4 (540x960) 100 - 350 ms 14.0 - 21.2 17.6 2.0
Samsung S4 (540x960) 360 - ms 24.9 - 41.7 35.6 2.9
Samsung S4 (540x960) 370 - ms 19.4 - 32.8 25.3 3.2
Samsung S4 (540x960) 380 - ms 9.6 - 23.6 15.5 3.2
Samsung S4 (540x960) 390 - ms 9.6 - 27.4 20.6 3.8
Samsung S4 (540x960) 400 - ms 9.6 - 21.3 14.8 2.9
Samsung S4 (540x960) 410 - 640 ms 13.9 - 24.4 18.8 2.2
Samsung S4 (540x960) 650 ms 14.3 - 52.3 35.9 14.6
Samsung S4 (540x960) 660 ms 33.2 - 48.0 40.4 3.4
Samsung S4 (540x960) 670 - 5000 ms 23.6 - 37.9 29.8 3.3

Table A.1: Inter-touch interval vs. touch to kernel latency. (Samsung S4,
measured at 540x960).
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