-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Aaltodoc Publication Archive

Aalto University
School of Engineering

Samu Viitanen

Creation of a Building Operating System: Holistic Approach

Master’s Thesis

Department of Built Environment
School of Engineering

Aalto University

Espoo, 1 December 2017

Bachelor of Science in Technology
Samu Viitanen

Supervisor: Professor Seppo Junnila
Instructor: Professor Timo Seppala


https://core.ac.uk/display/145239565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Insindoritieteiden www.aalto.fi

A Aalto-yliopisto Aalto-yliopisto, PL 11000, 00076 AALTO
W korkeaiouly Diplomityén tiivistelma

Tekija Samu Viitanen

Tyon nimi Rakennuksen kayttojarjestelman luonti: kokonaisvaltainen ldhestymistapa

Koulutusohjelma Kiinteistétalous

Paa-/sivuaine Kiinteistotekniikka Koodi M3007

Tyon valvoja Professori Seppo Junnila

Tyon ohjaaja(t) Professori Timo Seppala

Paivamaara 1.12.2017 Sivumaara 85 Kieli englanti

Tiivistelma

Taman diplomityon tarkoituksena on tutkia rakennuksen kayttojarjestelman holistisia
vaatimuksia. Laaja kirjallisuuskatsaus tehtiin aiheen ymmartamiseksi, joka tutkii
kayttojarjestelmien evoluutiota rinnakkain tietojenkasittelyn historian kanssa,
tarkoituksena hahmottaa Kkayttojarjestelmidn Kkasitettd. Lisdksi, eri rakennusten
tietojarjestelmis, mukaan lukien rakennusautomaatiojarjestelmii ja esineiden internet -
jarjestelmida  kaytiin  ldpi ymmartiddkseen nykyisia ja  tulevia trendeja
rakennusteknologiassa. Edelleen kirjallisuuskatsaus tutkii televiestintda ja sahkoista
tunnistautumista niiden kehityksen ja standardisoinnin kautta kohti yhteentoimivuutta,
tarjoten tietoa siitd, miten yhteentoimivuutta voitaisiin kehittda rakennusjarjestelmissa.

Haastattelututkimus tehtiin diplomityon empiirisend osuutena, jonka tarkoituksena oli
laajentaa tyon teoreettista viitekehysta. Tusina rakennusten digitalisaation asiantuntijaa
haastateltiin, joilta kysyttiin rakennusjarjestelmien nykytilasta ja tulevaisuudesta.
Lahemmin, keskustelut Kkaisittelivit avoimia jarjestelmia, avointa dataa, alustan
omistajuutta, disruptiota, menestyssovelluksia, kayttdjakeskeisyyttd sekd Suomen
kansainvilistd potentiaalia rakennuksen kaytt6jarjestelman nikokulmasta.

Rakennuksen kayttojarjestelma vaatii rakennuksen sisilld olevien eri teknologioiden
yhteenliittimisen, sekd yhteistyotd rakennusta kiyttavien ja hallinnoivien osapuolten
valilla. Jarjestelman pitdisi hyodyntdd avoimia standardeja ja mahdollistaa avoimen
datan kayton. Kayttdjakeskeistd suunnittelua pitdisi kannustaa loppukéayttdjien etuja
suosien. Jarjestelméan taytyy levitd globaalisti saavuttaakseen kriittisen massan ja
ottaakseen kayttoon sen koko potentiaalin. Jokaisella samankaltaisella rakennuksella
taytyisi olla kdytossdan yhtildiset ominaisuudet, mahdollistaen samojen palveluiden ja
sovellusten kiayton missa tahansa kiyttojarjestelmaa kayttavassa rakennuksessa, tiaten
mahdollistaen siirrettavyyden. Jarjestelmd vaatii sopivat ohjelmointirajapinnat,
abstraktiot ja ohjelmistokehykset sovellus- ja palvelukehittijien tarpeita varten. Laaja
kehitysyhteis6 vaaditaan alustan levittamiseksi ja sovellustarjonnan laajentamiseksi.

Avainsanat digitalisaatio, kiyttojarjestelma, kiinteist6- ja rakentamisala, dlykas
rakennus, rakennusautomaatio




Insindoritieteiden www.aalto.fi

A Aalto-yliopisto Aalto-yliopisto, PL 11000, 00076 AALTO
W korkeaiouly Diplomityén tiivistelma

Author Samu Viitanen

Title of thesis Creation of a Building Operating System: Holistic Approach

Degree programme Degree Programme in Real Estate Economics

Major/minor Real Estate Planning Code M3007

Thesis supervisor Professor Seppo Junnila

Thesis advisor(s) Professor Timo Seppala

Date 1.12.2017 Number of pages 85 Language English

Abstract

Purpose of this thesis is to examine requirements for a building operating system from a
holistic perspective. To understand the context of the subject, an extensive literature
review was carried out which explores the evolution of operating systems alongside the
history of computing, unravelling the concept of an operating system. In addition, various
building information systems, including building automation systems and internet of
things systems are reviewed in order to understand modern and future trends of building
technology. Furthermore, literature review investigates telecommunications and digital
identity authentication through their evolution and standardisation towards
interoperability, to provide knowledge on how to achieve interoperability in building
systems.

An interview study was conducted as the empirical part of the study in order to
complement the theoretical framework of the thesis. A dozen building digitalisation
experts were interviewed, inquiring their insights on the current and future situation of
building systems. More closely, open systems, open data, platform ownership, disruption,
killer applications, user-centredness, and Finland’s opportunities were discussed in
respect of the building operating system.

Building operating system requires connection between various technology inside a
building, and collaboration between various parties who use and manage the building.
The system should exploit open standards and enable open data. User-centred
development should be encouraged for the benefits of end users. The system needs to
expand globally to achieve critical mass and unleash its full potential as a platform. Each
building with similar properties should have the same features, being able to use same
services and applications in any building with an operating system, thus enabling
portability. The system requires convenient software development kits, application
programming interfaces and abstractions for the needs of software and service
developers. A vibrant developer community is required to expand the platform and enable
a wide range of services and applications.

Keywords digitalisation, operating system, real estate, construction, smart building,
building automation




Foreword

Biggest thanks belong to my thesis advisor, Timo Seppéld, who suggested this interesting
thesis topic last spring. Idea of a building operating system is an intriguing one which has
not received much discussion before. Also, thank you for enduring my super-tight schedule
and guiding me throughout the whole process. Furthermore, I thank my supervisor Seppo
Junnila for giving his busy time to review my thesis.

Thank you to everyone who agreed to be interviewed for this thesis. I would have hoped for
more of you, but circumstances did not allow for it this time.

Another big thank you goes to my boss and advisor behind the scenes, Teemu Lehtinen at
KIRA-digi project, who has given great advice and insights about the thesis and the whole
digitalisation scheme of built environment sector. KIRA-digi project has been a real eye-
opener, giving me a spectacular outlook of the whole built environment sector and its
development. I also want to thank other members of KIRA-digi, especially Minna and Virve
at the Ministry of Environment, who have been utmost kind towards me and my hurries with
this thesis. Our journey with KIRA-digi will continue for another year at least.

Entire journey towards graduation has been a blast. For half a year, I had the chance to visit
University of Tokyo as an exchange student, where I learned Japan’s language, culture and
land use planning, played in student orchestras and travelled around the country. In
Otaniemi, I have had the chance to play in Retuperdn WBK and Polyteknikkojen Orkestert,
participating in dozens of concerts and gigs during the past five years. I have also had the
honour to be a founding member of the Aalto University mahjong club. Thank you to
everyone whom I have met during these five and a half years. Hopefully, our journey
continues in the future.

Finally, I want to thank my family and dearest friends.

In the Southern Border of Rainy and Gloomy Vantaa, December 2017

Dlrmae Vlotanen



il

Table of Contents

Tiivistelma
Abstract
FOT@WOT ...ttt ettt b e st e et e saeesaeeas 1
Table Of CONENLS ....eeuiiiiitieieeieee ettt ettt il
ALCTOTLYIIIS ...eeitieeeiiieeeiieeeeitee e eteeestteeetaeeetaeesssaeesssaeesssaeansseeessaeanssaeanssaeansseesssseensseeensseennes i1
I INETOAUCTION .ottt ettt et b ettt et e e s 1
.1 Background .........c.oooiiioiiiceeeee et e e 1
1.2 Research questions and SCOPE ......coueeriieriieeiieiiiecieeite e eree et et see b e seaeeeee s 4
1.3 MEhOAS ..ottt et 4
1.4 Structure Of the TheSiS......ccceeiiriiriiienieieeeeee s 5
2 Evolution of Operating Systems and COMPUING.........cc.ceevverercrieerieeeririeerreeeevee e 6
2.1 Early History of COMPULING .......c.cevuiiiiieiiiiiieiieeie ettt 6
2.2 Age of Transistors, Mainframes, Minicomputers and Chips ...........cccceceeeueennee. 7
2.3 Early Operating SYSTEMS ......cc.cevcviiriieeiieiieeieeriee et esiteeveesieeeveeseeeeseesseeesseenenas 8
2.4  The Tidal Wave of Personal COmpPULers ..........cceeveieiienieiiiienieeieesie e 10
2.5 Surfing the Web.....oooiiiiiiiec e et 17
2.6 MODIIE DEVICES. .. .eiiiiiiiieiieeeee ettt ettt et 21
2.7  Mobile Operating SYSIEMS .......cccvirerieriieiieiieeieereeereesteeiee e ereesseeeseesaneenne 23
2.8  Enterprise Resource Planning ..........ccccooceeiiiiiiiiiieiienieeiee e 25
3 Overview of Building Automation SYSteMS ...........cceeeveeriierieriiienieeieenieeveeneeeenns 29
3.1  Structure and Purpose of Building Automation Systems..........ccccceceerueeruennnene 29
3.2 Hierarchy and Structure of Building Automation Systems............c.ccccveeveenne. 30
3.3 Building Automation Communication Protocols ........c..cccceeeeneininiicnienennne. 33
3.4 BAS 2.0: Building Operating SYStemS..........cccveerueerieenienieeiienreeieesneesveenenes 34
3.5 Internet Of TRINGS ..cc.eeiiiiiiiiiee e 35
3.6  Commercial Markets ..........cooceevieriiiiiieiieeeeeeee e 37
4 Interoperability in Telecommunications and Authentication.............ccccecervenuennnen 39
4.1  Telecommunications Standards..........c..cceeeeriiiriiniiiinieneeeee e 39
4.2 Electronic AUthentiCatioN ..........cccuieriieriieriieniieriie ettt 42
S INEEIVIEW STUAY .eeieiiiiiiiiiece ettt e e e e e e 45
5.1  Synthesis of LIterature.........ccccocveviiririeniinirieneeceecseeeeese e 45
5.2 Overview of Real Estate and Construction Industry ...........ccceevevevevciveinieennen. 45
5.3 MethodOIOZY ....oouviriiiiiiiiiiieiee e 47
5.4  Objective and Implementation ...........ccccveeiieeeiieeeiieeeie e 50
0 RESUILS .t sttt 53
6.1  Interoperability: Open or Closed SyStem ........ccccveeevuieeriiieeniiieeriie e 53
6.2 OPEn Data......c.cooiiiiiiiiiiii s 54
6.3  Who Owns the Platform .........cccccoooiiiiiiiiiieeee e, 55
6.4  Disruption from the Outside..........cooeriiriiiiniiniiiiicece e 56
6.5 Killer App: BOS Services and Applications ...........cceeevuveerveeenciieeniieeeniee e, 57
0.6 USEI-CENLIEANESS ..c..eeuviriiiiiiieeiierieeie ettt sttt s 59
6.7  Finland’s Potential in Creating BOS ..........cccoviiiiieiieeeeee e, 60
6.8  When Will It Happen?........cccooiiiiiiiieteeee et 61
6.9  Summary and Reflections to Literature...........ccccceeevveeeiiieniieeeie e, 61
7 Discussion and SUZZESTIONS .......ccvieriierieeiienieeniieeieesteeteeseteereesaeesseessneeseesnseenne 65
8 CONCIUSION ...ttt ettt st s 72

L2 10) FT0Tea 1 0] 1| USROS PRRUPRORUSUPRRPI 74



Acronyms

AIOTI
API
ARPA
ATIS
BA
BAS
BOS
CLI
CRM
DDC
DOJ
ERP
ES
ETSI
EU
FCC
1/2/3/4/5G
GSM
GUI
HVAC
ICT

IE
IEEE
IoT

IT
ITU
JCL
MRP
MRP II
oS

PC
RECS
SDK
SOA
SRI
UCLA
UCSB
Ul
UXx
W3C
WWW

il

The Alliance for Internet of Things Innovation
Application Programming Interface

Advanced Research Projects Agency, USA
Alliance for Telecommunications Industry Solutions
Building Automation

Building Automation System

Building Operating System

Command Line Interface

Customer Relationship Management

Direct Digital Controller

United States Department of Justice
Enterprise Resource Planning

Enterprise System

European Telecommunications Standards Institute
European Union

Federal Communications Commission, USA
Wireless mobile telecommunications technology generations
Global System for Mobile Communications
Graphical User Interface

Heating, Ventilation and Air Conditioning
Information and Communications Technology
Internet Explorer

Institute of Electrical and Electronics Engineers
Internet of Things

Information Technology

International Telephone Union

Job Control Language

Material Requirements Planning

Manufacture Resource Planning

Operating System

Personal Computer

Real Estate and Construction Sector

Software Development Kit

Service-Oriented Architecture

Stanford Research Institute

University of California, Los Angeles
University of California, Santa Barbara

User Interface

User Experience

World Wide Web Consortium

World Wide Web



1 Introduction

1.1 Background

Digitalisation has taken industries, governments and consumers by storm during the past
two decades after the emerge of ubiquitous internet. Companies in all industries are trying
to cope with the demands digitalisation is posing. Especially now, the Industry 4.0 trends
are driving the shift from product- to service-oriented business, and the necessity of
organisational development in addition to technological has been realised (Lasi et al.
2014). Geissbauer et al. (2016) point out in their Industry 4.0 survey that the annual digital
revenue increases 2.9 % on average. Digitalisation is hoped to bring cost reductions
enabling shorter operational lead times, higher asset utilisation and maximal product
quality. However, promised cost reductions are not the only factors why digitalisation is
rapidly expanding into every aspect of life. Value co-creation, enhanced user experience,
user-driven development and other customer-centred eases and enhancements are also in
the core of digitalisation paradigms (Lenka et al. 2016; Jungner 2015; Geissbauer et al.
2016).

More closely in the global construction sector, digitalisation is still taking its baby steps.
McKinsey made a research on the levels of digitisation in different industries, where
construction was in the last place (Gandhi et al. 2016). The research included 22 industry
sectors, including media, oil & gas, mining, government and healthcare. Other
digitalisation surveys imply the same, including a paper on the Industry 4.0 related
technologies pursued in the construction industry, an older PwC digitisation survey and
a recent Nordic survey on digitalisation (Oesterreich & Teuteberg 2016; Friedrich et al.
2011; Magenta Advisory 2017). As for global real estate sector, McKinsey’s research
placed it on the 12 place out of 22 industries, thus having a mediocre digitalisation level.

Puhto et al. (2016) discovered that the traditionally conservative sectors of real estate and
construction are still taking their first steps in digitalisation in Finland. The average grade
that the companies gave themselves was 5,2 (in a scale from 1 to 10). Moreover,
digitalisation is seen mostly as a tool to boost current business, not create new business.
Organisations do not see themselves enough agile and competent to develop digitality,
and the advantages of digitalisation are not sufficiently explicit to them yet. Likewise,
Snellman (2016) concludes with similar results in her thesis. Piikkild et al. (2016) point
out how important digital information management is for the success of construction
projects, considering their complexity and intricateness. A recent report about the quality
of built environment in Finland gave a grade of 7- (on a scale of 4 to 10) to digital
solutions in the built environment sector, mentioning that the digitalisation of the industry
has progressed, yet there are many opportunities in digitalisation that are still utilised
limitedly. Furthermore, report expresses special critique for the lack of process evolution
towards digitalisation, demanding the utilisation of joint data sources and the use of
building information models in facility management for example (ROTI 2017).

Like digitalisation, construction sector has also been a laggard in productivity
development. According to McKinsey and The Economist, construction industry’s
productivity has not risen since 1995, while manufacturing productivity has almost
doubled (The Economist 2017; Changali et al. 2015). In Finland, construction
productivity has remained the same for over 40 years (Lohilahti 2017). Data from
Statistics Finland (2016) implies similar productivity shortcomings in Finland, offering
even worse figures for real estate sector than construction sector, shown in Figure 1.



Compared to 1975, construction productivity has remained the same and real estate
productivity has dropped, while manufacturing has over doubled, and finance, insurance,
agriculture, forestry and fishery has over tripled.

Reasons for productivity stagnation in construction industry include fragmented structure
of the industry, dominated by a majority of small, independent and specialised
contractors; low investment in research and development, poor organisation, inadequate
communication, missed connections, poor short-term planning and contractual
misunderstandings (The Economist 2017; Changali et al. 2015). In Finland, one reason
for the situation has been the overly confidence of builders, believing that the customers
will pay for the construction in any case. Fragmented structure of the industry has also
fragmented construction projects, carried out by separate designers, contractors,
subcontractors and consults which easily leads to quarrelling (Lohilahti 2017). Clearly, a
solution is needed to connect and unite the industry in order to boost its productivity.

400

350 >4 e Agriculture, Forestry and
Fishery

300 / Manufacturing

250
Construction

200
Delivery and Storing

150

100 Finance and Insurance

50 Real Estate
0

1975 1980 1985 1990 1995 2000 2005 2010 2015

Figure 1. Productivity of Different Industries Based on Added Value (Statistics Finland 2016).

Consequently, it appears that RECS is in the beginning of its digital revolution. This a
major opportunity for digitalists and digital disruptors, considering the facts that built
environment in Finland is 80 % of national wealth, 13 % of employment, 20 % of GDP
and 99 % of time spent (ROTI 2017). We are all heavy users of built environment, but its
digital potential still remains mostly in hiding.

Perhaps the most prominent digitalisation trend currently in RECS is smart buildings.
Global smart building market size is expected to reach $36 billion by 2020, expanding
beyond fivefold from 2014 to 2020 (GlobeNewswire 2017). Likewise, couple concepts
related to smart buildings are found from the hype cycle, including Connected Home, loT
Platform and Smart Workspace (Gartner 2016). The world is already dreaming,
developing and creating smart buildings, considering the substantial amount of
newspaper articles found on the internet discussing smart buildings and its hyponyms.
Also, major companies are moving up in smart buildings, including Cisco, Schneider
Electric, IBM, Panasonic and Hitachi. Dozens of smart building start-ups are also
emerging around the world, for example in Finland companies like Cozify, 720°, Houm
and Leanheat are creating sensor, loT and building automation solutions.



In building automation and internet of things, the lack of interoperability and integration
has remained as a problem (Al-Fuqaha et al. 2015; Domingues et al. 2016; Kastner et al.
2005; Dawson-Haggerty et al. 2013; Al-Fuqaha et al. 2015; Borgia 2014; Li et al. 2014).
Various building automation systems have continued to exist in silos, with the difficulty
of managing them together. Thus, an operating system is needed to knit various IoT and
building automation systems, abstracting the details of their hardware devices and
communication protocols. Furthermore, this type of operating system enables the eased
production of applications and services for smart buildings which can truly yield added
value to users, residents, tenants and owners of buildings.

Built environment aside, ICT has reshaped nearly every aspect of our life in the past three
quarters of a century. Computers have evolved from warehouse-sized industrial machines
into day-to-day commodities of digital comfort and pleasure. Since the 1990s, the internet
has shaped ICT even further with its disruptive potential in communicating and
connecting. Especially after the so-called second phase of smartphones when the iPhone
was released in 2007 (Sarwar & Soomro 2013). Today, nearly half of the people in the
world use the internet (Internet World Stats 2017; Internet Live Stats 2017).

Telecommunications industry have succeeded to develop several universal open
standards, in order to enable interoperability and communication between various
heterogeneous telecommunication devices. Most notably, in the 2G era, GSM became the
first global universal standard, initially expanding through joint efforts between European
countries and later diffusing across the world. GSM was one of the first standardisation
schemes to utilise open standardisation and modular problem solving, enabling
competition between service providers and mobile manufacturers (Funk 2009). Currently,
LTE used in 4G technologies have followed a similar path of standardisation development
as GSM, driven by inter-governmental support and open standardisation policies.

Another major revolutioniser of computing in addition to the internet has been operating
systems. Operating system in short is a software that enables applications to interact with
a computer’s hardware (Deitel et al. 2004). In other words, operating system provides
user applications clean abstract of the resources instead of having to deal with messy and
complex hardware directly (Tannenbaum 2009). Operating systems started to universalise
after the introduction of GUI-enabled and more user-friendly OS starting from the 1980s.
1980s and 1990s were times of intense PC competition between Apple, Microsoft, IBM
and Commodore. In the PC market, IBM PC compatibles claimed victory during the
1980s (Dediu 2017). Biggest competitors in the IBM PC operating system market were
IBM OS/2 and Microsoft Windows. Microsoft Windows cornered OS/2 quickly in the
1990s, thus becoming the most popular operating system on desktop computers. Today,
Microsoft is the third largest public company by market value globally (Forbes 2017).

Another major step in consumer computing was the emerge of mobile computing and
their operating systems. In the early 1990s, the recently emerged cellular phone started to
evolve from a mobile telephone into a mobile computing device (Hall & Anderson 2009).
Mobile phones started to feature text messages and small built-in applications such as
calendar and address book in addition to voice connectivity (Sorensen et al. 2015). Bit by
bit, more applications and gadgets were connected to the mobile phone which facilitated
the evolution of mobile telephones into mobile computing devices. The smartphone era
escalated with the release of iPhone in 2007, after which phones became personal
computers on a mobile device. Currently, two major operating system platforms for
mobile devices exist, namely Apple’s i10S and Google’s Android, which have succeeded



to build large and successful application marketplaces with vibrant developer
communities and numerous value-adding applications (Sorensen et al. 2015).
Smartphones, their mobile operating systems, digital distribution platforms and
applications have completely disrupted the whole ICT industry and computer usage.

1.2 Research questions and scope

The object of this study is to determine the holistic requirements of a building operating
system. To find these requirements, it is necessary to investigate the purpose and
evolution of various operating systems such as computer operating systems and mobile
operating systems. Additionally, enterprise resource planning systems are reviewed
which function as operating systems for enterprise management.

Literature review also covers various information systems used in buildings, including
building automation systems and IoT systems, in order to understand modern ICT used
in buildings. Furthermore, previous research on building operating system prototypes is
reviewed. Purpose of the building ICT review is to give an understanding of how
contemporary building systems function and how do they need to be developed further in
order to create a building operating system.

In addition to computing and building ICT literature, standardisation development in
telecommunications and electronic authentication is reviewed. Current building
information systems lack interoperability; thus, an examination of telecommunications
and electronic authentication standardisation is carried out to give insights about their
possible key success factors in interoperability, integration and universal diffusion
through standardisation. Furthermore, successful standardisation schemes in other
industries can give suggestions on how to achieve interoperability and universality in
building operating systems.

With this framework of literature research, scope of the study is framed into one main
research question and four auxiliary research questions:

I. What are the holistic requirements for a building operating system?

What is an operating system, what are their purpose and how have they evolved?
What information systems are currently used in buildings?

What kind of development does the contemporary building ICT require in order
to create a building operating system?

How can interoperability be achieved with a building operating system?

o nwp

This study will find answers to these research questions in a holistic fashion. In order to
answer the questions, the thesis will use literature from the fields of information and
communications technology, building automation, communication protocols,
construction and real estate, digitalisation, identity authentication, platform economy and
computer architecture.

1.3 Methods

This thesis provides answers to the research questions through a literature review and an
interview study. Literature review provides answers to all research questions by
contemplating evolvement of computers, computer operating systems, enterprise resource
planning systems, building information systems, telecommunications protocols and
electronic authentication. More closely, auxiliary question A is examined through a



literature review on computer and operating system evolution, question B and C is
examined by reviewing contemporary and prospective building ICT and question D is
explored through a standardisation development review of telecommunications and
electronic authentication. Main research question is investigated through the whole
literature review.

To assist the literature review, an interview study is carried out where both present and
future state of building ICT is discussed with building digitalisation experts. Primarily,
interview study provides additional answers to auxiliary questions B, C and D and the
main research question. With the combination of literature review and interview study,
discussion and suggestions for the research questions are conducted and a framework for
the main research question is compiled.

1.4 Structure of the Thesis

This thesis is divided into eight chapters. First chapter introduces the study in question,
laying out a background for the research and defines research questions and methods for
the purpose of the thesis. Second chapter covers the evolution of computers and operating
systems, going through the development of computers, mobile devices, the internet,
mobile and desktop operating systems and enterprise resource planning systems. Third
chapter gives an overview of building automation systems, including their structure,
architecture, purpose and standardisation. Furthermore, third chapter discusses internet of
things, market structure of building ICT and building operating systems depicted in other
studies. Fourth chapter discusses interoperability in telecommunications and electronic
authentication with the aid of standardisation, following the evolvement of NMT, GSM,
TUPAS and Mobiilivarmenne, among other things. Fifth chapter gives background on
the real estate and construction sector and lays out the interview study methodology,
objective and implementation. Sixth chapter reviews the results of the interview study
and reflects it toward the theoretical framework. Seventh chapter discusses and suggests
answers for the research questions and the eighth chapter concludes the thesis.



2 Evolution of Operating Systems and Computing

Operating systems, computing devices, the internet and mobile devices have changed
profoundly in the last century. In this chapter, cruxes along the evolution of computers
including mobile devices and operating systems are examined. Also, evolution of internet
and enterprise resource planning systems are discussed.

This chapter lays out an extensive overview of operating systems and computing devices
from an evolutional perspective. Chapter discusses how operating systems have
developed historically, why do they exist, what are their purpose, what types of operating
systems there are, which operating systems have prospered, and what benefits do they
offer. In order to comprehend the evolution and context of these operating systems, an
overview on the history of computing and software engineering is laid out alongside the
operating system literature. Additionally, enterprise resource planning systems are
discussed in the last subchapter as the operating systems of enterprise management.
Altogether, this chapter gives context to operating systems and provides implications on
what an operating system would stand for in a building.

2.1 Early History of Computing

Computer-like machines have been built since the 17" century when Blaise Pascal built a
mechanical calculating machine to aid his father in his tax collecting (Tanenbaum 2006). The
next major milestone happened in the 19" century when Charles Babbage, a mathematics
professor at University of Cambridge built a so-called difference engine which could compute
tables of numbers useful for naval navigation. This machine could only run a single algorithm.
Later, Babbage started to build the analytical engine which could read computing instructions
from punched cards and carry them out. In other words, the machine was general purpose and
it was programmable with simple software. For this purpose, Babbage hired a young woman
named Ada Augusta Lovelace who became the first computer programmer.

George Boole introduced Boolean logic in 1847, a fundamental paradigm in the
development of digital electronics, and Claude Shannon who showed that Boolean
algebra could be used to make simpler circuits and telephone routing switches (O’Regan
2016). Virtually all digital circuits today use electronic representations of Boolean logic
functions in their logic gates.

The Second World War brought the first wave of large general-purpose digital
computers. Before digital computers, computers were already being built from levers
and gears (mechanical computers) and switches and relays (electro-mechanical
computers). Eventually, first digital computers built from vacuum tubes were created
during the Second World War. Quickly after the war, first commercial digital computers
came to the market.

A major turning point towards modern computing in the post-war era was the introduction
of von Neumann architecture, name after the interdisciplinary scientist John von
Neumann. The architecture was uncovered in the middle of the 1940s, when J. Presper
Eckert and John Mauchly started to envision the stored-program concept to ease the use
of computers. Idea of the stored-program concept is that both machine instructions and
data are stored in a single store i.e. in single memory (O’Regan 2016). In 1945, John von
Neumann wrote a report on their stored-program concept computer where the so-called
von Neumann architecture was described for the first time, carrying the design ideas of
stored-program concept further. Eckert and Mauchly had been designing hardware
constructions of the idea but von Neumann described the machine in terms of its logical



structure which clarified and gave form to the von Neumann architecture. (Ceruzzi 2003,
Stallings 2010.)

The key advantages of von Neumann architecture over the previous computer
architectures were that it was far simpler to reconfigure the computer to perform a
different task. Before von Neumann architecture, computers were fixed program
machines that were designed to do one specific task. If the machine was required to run
a different algorithm, it was required to rewire physically, evidently being an arduous
task. With the use of von Neumann architecture, machines were reprogrammable so that
if the computer was needed to operate other instructions, it was only required that new
machine instructions were entered to computer memory, whereupon no physical rewiring
was required. (O’Regan 2016, Ceruzzi 2003.)

The legacy of von Neumann architecture is substantial in making computing more
flexible and efficient. Both von Neumann architecture and stored-program concept have
led to the establishment of programming and software design and making them separate
from hardware design. The basic design of von Neumann architecture has persisted until
the middle of the 1990s. (Ceruzzi 2003.)

2.2 Age of Transistors, Mainframes, Minicomputers and Chips

Transistor was invented at Bell Labs in 1948 by John Bardeen, Walter Brattain and
William Shockley. Within ten years of invention, transistors revolutionised computers
completely and in the 1960s vacuum tube computers were already obsolete (Tanenbaum
2006). Compared to vacuum tubes, transistors are smaller, cheaper and they dissipate less
heat but still can be used similarly as vacuum tubes to construct computers. Vacuum tubes
require wires, metal plates and a glass capture, whereas transistors are solid-state devices
which are made from silicon (Stallings 2010). Vacuum tubes could burn similarly to light
bulbs, which meant that vacuum tube computers were non-functional as long as there
were burnt tubes in the computer (O’Regan 2016). Therefore, transistor computers
brought many advantages over vacuum tube computers.

Transistors did not reach the commercial computer market until the end of the 1950s.
Early transistor computers manufactured were still prototypes used and tweaked by
research institutes and the government. Then in the end of the 1950s, first commercial
transistor computers came into the market. IBM’s turning point in the transition from
vacuum tubes to transistors was the introduction of the often-noted classic mainframe
computer, IBM 7090 (Ceruzzi 2003).

In 1958, scientist named Jack Kilby at Texas Instruments invented the integrated circuit
which allowed many transistors to be combined on a single chip, aiding the evolution of
computing. Original IC created by Kilby was made of germanium but later in 1960 Robert
Noyce of Fairchild Semiconductors built an IC with silicon which is the material used
today for semiconductors. (Ceruzzi 2003, O’Regan 2016.)

The IC is extremely compact, especially compared to a circuit made of independent
components, and it further accelerated the reduction of size and cost of electronics
(Ceruzzi 2003). Throughout the years, ICs have gone through several generations, starting
from small-scale integration in the early 1960s when chip had less than 30 transistors.
Today, an integrated circuit can have more than ten billion transistors (see 24-core AMD
EPYC 7401P microprocessor). The growth of the number of transistors on a chip was
observed in 1965 by Intel’s co-founder Gordon Moore who predicted that the number of



transistors on a chip would double every 18 months for the next ten years. In fact, this
phenomenon called Moore’s Law still stands today, but it is likely that the growth in
transistor density will slow to a doubling of density every 3 years by 2015 (O’Regan
2016). Moore’s Law is also affiliated with the exponential growth of processor speed,
memory capacity and other capability advancements of digital electronic devices.

It took a while before IC computers started influencing the commercial computer market,
as they were an expensive technology prior to mass production. Initially, IC computers
made its largest commercial impact on the minicomputer market and on embedded
systems. United States aerospace community was especially interested in IC, and its
projects of Minuteman missiles and Apollo Guidance Computer launched the volume
production for ICs (Ceruzzi 2003). Likewise, minicomputers paced the march of ICs with
the launch of the first IC minicomputer PDP-8 by DEC in 1965.

Minicomputers arose from the traditional massive-sized mainframes during the 1960s.
As was mentioned, the development of minicomputers was hastened by the introduction
of integrated circuits. Minicomputers differed from the original mainframes that they
were smaller (hence the name) and cheaper. In the 1960s, they were described as the
smallest general-purpose computers (O’Regan 2016). Minicomputers were not direct
competitors to the mainframes, instead they opened new markets as a personal interactive
device which gave the chance to directly interact with a computing machine for people,
particularly engineers and scientists in the early days. Later, minicomputers paved road
for the personal computers in the 1970s (Ceruzzi 2003).

2.3 Early Operating Systems
Primitive Operating Systems and IBM System/360

In the inception of digital computers in the 1940s, no operating systems were used.
Machines at the time were such rudimentary that programmers generally typed their
programs one bit a time first with mechanical switches and later with punched cards
(Tanenbaum 2009). Because writing pure bits into computers was rather difficult,
programming languages started to emerge; first low-level assembly languages which
were converted to machine code via an assembler (O’Regan 2016). Assembly languages
uses short abbreviations to represent the basic operations of a computer.

In the 1950s, first “operating systems” were created. First operating system was
implemented for the IBM 701 computer by General Motors Research Laboratories (Deitel
& Deitel et al. 2004). 1950s computers typically executed one job at a time which meant
running a certain computational task with a set of program instructions. Changing through
jobs with the mainframe was a tedious task, so it was streamlined with the batch-
processing system. Batch system essentially collected a certain amount of jobs into one
batch (hence the name) by a computer and then the batch of jobs was executed in one go
by another computer. The software interpreting the batches was the operating system
which could distinguish jobs and their instructions from each other in the batch.

Batch-processing systems evolved in the 1960s by running several jobs at once. For this
it was needed to develop a concept called multiprogramming, in which many jobs were
saved into memory at once and they used computers resources in a particular order
(O’Regan 2016). Furthermore, one job could use the computer’s processor and another
job could use the input and output devices at the same time (Deitel & Deitel et al. 2004).
This timesharing of computer resources was operated by a primitive operating system



called the multi-batch system. Addition to multi-batch systems, an operating system
called Compatible Time-Sharing System (CTSS) was introduced in 1961 at MIT, which
was a variant of multiprogramming where each user has an online terminal (Tanenbaum
2009). This created the concept of interactive computing because timesharing computers
could provide fast, interactive service for several users through online terminals beside
running large batch jobs.

In 1964, the IBM System/360 family of computers were introduced. The various
computer models in the 360 family were designed to be hardware compatible and they all
used the same OS/360 operating system. The OS/360 was a multi-batch system which
used multiprogramming and it had three variants for different types of program
processing. They all used the same application programming interface (API) and job
control language (JCL).

Historically, OS/360 was very ambitious operating system and ultimately it spent half
billion dollars of IBM (Moumina 2001). It was the biggest and most complex program
built at the time, consisting of hundreds of program components and including more than
million lines of code. The operating system was introduced in 1964 but it took three years
before it was launched into the market. At most, more than 1000 people were working on
the operating system. OS/360 was later redeveloped for the IBM 370 and 390 series.

Roots of Software Engineering and the Garmisch Conference

Through the early post-war era, software engineering was still taking its first steps. After
the introduction of assemblers, other more high-level programming languages were
introduced, most notably FORTRAN to the IBM 704 in 1957. It was a major success
among IBM customers and the language has continued to live to the present time.
FORTRAN had a relatively easy-to-use syntax resembling ordinary algebra, it had
functional and distinct user manuals and its compiler generated machine code rather
efficiently. Aside from FORTRAN, a business-oriented programming language COBOL
was introduced in the US a couple of years after FORTRAN. Also, a more rigorous
alternative for FORTRAN named ALGOL was introduced in Europe in the turn of the
decade. (Ceruzzi 2003.)

Software engineering hit a critical point in 1968, when a conference called “Software
Engineering” was held in Garmisch, Germany. The idea of the conference was to bring
software creation to the level of engineering, in a way that programmers would have the
theoretical foundations and disciplines found in traditional fields of engineering such as
program users could trust the program in the same way as we trust a skyscraper to keep
standing because of the trusted civil engineers. This manner of rigid and certificated
programming was never actually implemented but it gave the surge for the rise of
software industry and the necessity of trusted and functional software. Quickly after the
conference, IBM decided to unbundle their software and services from hardware which
issued the need to distinguish software and hardware. Other prominent proposals were
made at the conference, including the development of more structured programming
regimes and more sophisticated programming languages. (O’Regan 2016, Ceruzzi 2003,
Moumina 2001.)

UNIX — First Portable Operating System

The Turing Award winning operating system UNIX was designed and developed at Bell
Labs by Ken Thompson and Dennis Ritchie in the early 1970s. UNIX has influenced



10

every aspect of computing in the 1990s (Salus 1994). There are several reasons suggested
why UNIX was as popular, including that it has a simple user interface, it is written in
high-level programming language (C), it uses a hierarchical file system, it uses a
consistent format for files, it provides a simple consistent interface to peripheral devices,
it is a multi-user, multiprocess system and it hides the machine architecture from the user
(Bach 1986). Key reasons why UNIX became so popular stems from its simplicity and
consistency.

UNIX’s roots go back to the Multics operating system which came to design also at the
Bell Labs in the middle of the 1960s. Multics was originally designed for the mainframe,
and eventually it was discovered that Multics would be a colossal and costly system to
develop, thus the project was cancelled in 1969. From its ashes, a less ambitious system
rose, namely UNIX. Funding for the Multics operating system ended with its cancellation,
so UNIX was initially developed on a smaller-scale minicomputer PDP-7. First version
of UNIX was written in assembly language by Thompson but later Ritchie joined the
project and helped rewriting UNIX in the C programming language in 1973.
Interestingly, the C programming language was designed by Ritchie and was first released
in 1972 for the purpose of programming UNIX with it. C programming language is
another success story which became widely used by the industry and influenced later
programming languages such as C++ and C#. (Bach 1986, Moumina 2001, O’Regan
2016, Ceruzzi 2003.)

The use of C made UNIX portable to various computers, thus becoming a widely-used
operating system. Initially, the operating system was sold at a nominal price and without
advertising, marketing nor supporting the system because it was owned by AT&T, a
government monopoly back then, which prohibited its marketing of computer products
(Bach 1986). Nonetheless, UNIX began to rise in popularity, first in universities and the
US government, and later in all sides of business and industry. By 1984, there were
approximately 100,000 UNIX systems installed in the world (Bach 1986). UNIX started
to surface many UNIX-like operating systems, including Berkeley UNIX (BSD) in the
early days, and later on it has evolved into numerous operating systems, including two
prominent operating systems: Linux and macOS. The original inventors did not make real
money with UNIX, including their mother-company AT&T, because it was an “open”
system in a sense and was essentially given away (Ceruzzi 2003).

2.4 The Tidal Wave of Personal Computers

Launch of the Microprocessors and the first PCs

The rise of the personal computers (PC) started with the emerge of microprocessors.
Perhaps the greatest breakthroughs in the microprocessor market were made by Intel
which was established in 1968. In 1971, Intel created the world’s first microprocessor,
the Intel 4004 which was the first chip to contain all the components of a CPU on a single
chip (Stallings 2010). Intel 4004 had the same computing power as the 1940s room-sized
ENIAC computer, thus the size difference was immense. After 4004, Intel released 8008
in 1972 and 8080 in 1974. Intel 8080 became the industry standard which made Intel the
industry leader in 8-bit microprocessor market. Intel 8080 also played an important role
in starting personal computer development, especially because the hobbyist-friendly
Altair 8800 was built with it (O’Regan 2016). IBM PCs and their clones used mostly Intel
microprocessors which made Intel the market dominator by the end of the 1980s.



11

The timesharing mainframes and minicomputers, especially the PDP computers had
brought the concept of interactive computing. Finally, in the middle of the 1970s, waves
from the shrinking and power-growing microprocessors, more-capacious memory chips
and the rise of interactive computing with timesharing computers had begun the
revolution of personal computing. Often noted as the first real personal computer, Altair
8800 was launched in 1974. Altair 8800 became a big hit amongst computer scientists
and hobbyists because it was ten times cheaper than computers that day and it was easily
tweakable. In fact, the Altair 8800 was not very useful at its own but computer hobbyists
could design and build all they wanted with the “starting kit” it supplied, giving the
possibility for computer enthusiasts to develop add-on features, attach extra memory and
peripherals and write own personalised software for the PC. Altair 8800 was sold in two
different versions: build-it-yourself kit which was cheaper and aimed for hobbyists and
an assembled version. (Ceruzzi 2003, O’Regan 2016.)

Altair 8800 was also the igniter for the establishment of Microsoft in 1975. Back then,
Bill Gates was still studying in Harvard University when his high school friend Paul Allen
noticed a cover representing the new Altair 8800 after which they decided to write a
BASIC compiler for the machine. Before BASIC, Altair could only be programmed with
certain switches on the frontboard. BASIC is an easy-to-learn high-level programming
language which had not been used on else than mainframes back then. Ultimately, Bill
Gates and Paul Allen developed an interpreter and 4k/8k versions of BASIC for the
machine and it was released in July 1975. The Altair BASIC product was sold separately
and it cost an additional $60/$75. With this first product by Allen and Gates, Microsoft
was established. (Ceruzzi 2003, O’Regan 2016.)

Another important initiation in the personal computer industry was the Xerox Alto which
was introduced in early 1973. The Alto PC was the first computer to work on a graphical
user interface (GUI) and it later influenced the creation of Apple Lisa and Macintosh.
Before and also quite long after the Alto, computers used command line interface (CLI).
Alto cost $18,000 to build so it was never marketed for personal use because of its grand
price. Alto used a mouse and windows similarly as a modern GUI desktop computer.
Xerox later launched a commercialised version of Alto named Xerox Star which was also
too expensive compared to other PCs at the time, thus failing to have a significant impact
on the markets (Ceruzzi 2003, O’Regan 2016, Deitel & Deitel et al. 2004.)

CP/M and DOS, Forerunners of PC Operating Systems

In the end of the 1980s, the Intel 8080 based PC operating system industry was led by
CP/M, an OS created by Gary Kildall in 1974. CP/M was originally made as an operating
system for the Intel 8080 PCs when Kildall was a consultant for Intel. In the beginning,
Intel lost interest of the OS and it was used only by few customers (Cringely 1996). After,
Kildall resigned from Intel and continued developing CP/M in his own company named
Digital Research. The critical year for CP/M was 1977, when Kildall was confronted by
IMSAI who wanted to license CP/M for its PCs. For this purpose, Kildall added a
specialized code called BIOS (Basic Input/Output System) into the system. Depending
on the hardware, the specialized BIOS code was only required to be customised and the
else of the OS was common code. Consequently, the BIOS addition standardised the OS
making CP/M the choice of operating system for Intel 8080 PCs (Ceruzzi 2003).

Through these developments, the computer industry was ripe for the emerge of the IBM
PC ecosystem. Right before, Intel was offering its Intel 8080 for PC manufacturers and
most of them were packed with the CP/M operating system. Many computers also offered



12

Microsoft’s BASIC on a read-only-memory from which Microsoft collected a royalty fee.
Software development was also starting to thrive and they were developed and distributed
through CP/M operated eight-inch floppy disk drives. After Altair, PCs also started to
come with standardised ports in order to plug various peripheral devices, including
printers, keyboards and cassette tape recorders. (Ceruzzi 2003.)

The arrival of DOS was stimulated by the preparation of IBM PC. In the end of the 1970s,
Microsoft was still mostly famous because of its BASIC implementation marketed in
various PCs, including Altair, Commodore and many CP/M PCs. Then in 1980, IBM
finally decided to enter the PC market with its IBM PCs. Traditionally, IBM was a
bureaucratic company with long passage times for projects. Exception for this was the
IBM PC project. The project was also exceptional, because the IBM PC was not to be
equipped with hardware and software made only by IBM. First, the microprocessors for
the IBM PCs were chosen to be Intel 8088s. As for software, IBM wanted Microsoft to
offer their BASIC implementation to use for their machine powered with Intel 8088.
(O’Regan 2016, Ceruzzi 2003, Cringely 1996.)

Microsoft was initially approached for the operating system of IBM PC, but in fact
Microsoft did not yet have an operating system at the time. Because of this, Gates led
IBM to Kirdall’s Digital Research company and its CP/M operating system. However,
Digital Research and IBM did not reach an agreement on the licensing. There are a few
stories why Digital Research never succeeded to seal the deal, one telling that when IBM
was visiting Digital Research to license the operating system for their PC, Kirdall’s wife
(who handled the company’s administrative work) was the only one available, who
refused to sign IBM’s nondisclosure agreement. (O’Regan 2016, Ceruzzi 2003, Cringely
1996, Moumina 2001.)

In the end, Gates seized the opportunity and acquired their own operating system which
they offered for IBM. This system named DOS (Disk Operating System) was launched
on the IBM PC in 1981 under the name PC-DOS. Microsoft held the rights to market their
DOS operating system elsewhere under the name MS-DOS. DOS was based on a system
called 86-DOS or QDOS (Quick and Dirty Operating System) which was written by Tim
Paterson of Seattle Computer Products on the Intel 8086 chip (Ceruzzi 2003). IBM
wanted certain modifications for the original DOS, so Gates hired Paterson to make the
changes to the system (Tanenbaum 2009). The first version of DOS was compatible with
CP/M and they resembled each other (O’Regan 2016). MS-DOS became highly lucrative
for Microsoft later on when IBM PC clones started to show up in the markets, due to DOS
being the dominating operating system on the IBM PC (Moumina 2001).

The Beginning of Apple

Slightly before IBM PCs and after Altair 8800, Apple was established by Steve Jobs and
Steve Wozniak in 1976'. Goal for Apple was to develop a user-friendly computer that
would be an alternative for the mainframes and minicomputers of the era. Wozniak did
the development of hardware and software, whereas Jobs oversaw marketing. Quickly
after the formation, Apple I was released in 1976. Apple 1 was still a computer for
computer hobbyists and engineers because it was only an assembled motherboard without

! Ronald Wayne was also one of the founders, although he sold his shares when Apple Computer Inc. was
established in the beginning of 1977 (Luo 2013).



13

peripherals, monitor or a case. Inexpensive MOS Technology 6502 processor was used
for the computer.

In 1977, Apple II was released which was significantly more elegant than its predecessor.
Apple II came with a monitor, keyboard and a case and was one of the earliest computers
to come preassembled. It also had a colour display. The aspects of Apple II’s user-
friendliness, flexibility, consumer-aimed attitude and relative performance made it a high-
selling personal computer (Ceruzzi 2003; Cringely 1996). It achieved a considerable
market share between 1977 and 1981, and continued to sell moderately until the end of
the 1990s (Dediu 2017). Initially, Apple II only supported cassette tapes but later a 5 Va-
inch floppy drive was introduced (Ceruzzi 2003).

An important step in the success of Apple II was the introduction of the VisiCale
application in 1979. VisiCalc was initially released on the Apple II and it was the first
spreadsheet application on any computer platform (Cringely 1996). VisiCalc was created
by Daniel Bricklin and Robert Frankston, who formed the software company Software
Arts in 1979. Ultimately, VisiCalc became so popular that it received the Killer
application status, which in other words meant that the computer itself was often sold
because it had VisiCalc (Ceruzzi 2003). Thus, VisiCalc helped Apple II to become a
profitable PC (O’Regan 2016).

IBM PC and Its Clones

The greatest market disruptor for PCs came with the IBM PC which was released in late
1981. Amazingly, IBM PC (and its clones) captured over 75 per cent of the PC market
share by 1989 (Dediu 2017). Nobody could expect the massive popularity of IBM PCs
but some key elements can be captured which made the IBM PC and its compatibles
extremely popular: open architecture (and platform), cheapness and vast software
collection. Arguably, IBM’s status on the computer market also had an effect on the
positive reception of the IBM PC. Ironically, in the end IBM lost its grasp on its own
product to IBM PC cloners such as Compaq and Dell. By the 1990s, the old IBM PC was
overcome by the PC cloners, whose processors were mainly made by Intel, and the clones
ran Microsoft’s operating system and other software.

IBM PC was initially planned as a proprietary PC with IBM’s own hardware and
software, as was the case for IBM products before with mainframes and minicomputers.
This became a problem because the PC market was evolving rapidly and the IBM projects
usually took several years to complete. Because of the pressures from the fast-growing
PC market, IBM had to find a way to build their own PC fast. Thus, they assembled a
small team which objective was to get a personal computer to the market as fast as
possible, and without the hassle of IBM bureaucracy. Eventually, IBM PC was actualised
in one year. (O’Regan 2016, Ceruzzi 2003, Tanenbaum 2006.)

Because of the timeframe, IBM had to make compromises so they decided to build the
machine with open architecture. This meant, that the computer was assembled from
commercial hardware from several manufacturers. As for the microprocessor, Intel was
chosen as the supplier. Similar act was made with software and peripherals which meant
that other manufactures could produce them for the IBM PC. IBM also published the IBM
PC Technical Reference Manual which included complete circuit schematics, IBM ROM
BIOS source code and other information on the machine. The use of open architecture
later led to the rise of IBM PC clones. (Cringely 1996, O’Regan 2016, Tanenbaum 2006.)



14

When IBM PC was announced in August 1981, it was not a major advancement on the
existing technology. IBM PC employed Intel 8088 (a successor of 8080), integrated
BASIC, ASCII character encoding, three options of OS (Pascal-based system by
University of California, PC-DOS by Microsoft and CP/M-86 by Digital Research) and
similar peripherals used before. PC-DOS quickly became the dominating OS because the
Pascal system was only bought by few customers and CP/M-86 was not available until
1982. (Ceruzzi 2003.)

Many important software concerning word processing, accounting and games were made
available for the IBM PC. The killer application of Apple II, spreadsheet software
VisiCalc also received its rival on the IBM PC. This software called 1-2-3 by Lotus
Development was released in 1982, and the combination of both the system and the
software quickly overtook Apple II on the PC market (Ceruzzi 2003). IBM PC collected
a considerable application base in its first year, having four times more applications than
Macintosh after its first year of release (Watt & McGeever 1985).

Since IBM PC had most of its hardware, software and peripherals made by other
manufacturers, the only proprietary part of the whole system was the basic input-output
system (BIOS) firmware. The idea of IBM’s BIOS was same to Kildall’s BIOS in CP/M,
meaning that the BIOS linked the generic operating system for specific hardware. This
gave an opportunity for to build an IBM compatible PC if they had their own BIOS. A
company called Compaq was the first company to put it into practice, reverse-engineering
the IBM BIOS and with legal tricks creating their own IBM PC compatible with “their”
BIOS, offering it cheaper than the original IBM PC. Subsequently, Phoenix Technologies
started selling BIOS chips separately which made the building of an IBM-compatible PC
even easier. This began the wave of IBM PC compatibles which later took over the whole
PC market. (Cringely 1996, Ceruzzi 2003, O’Regan 2016.)

IBM PC vs Macintosh vs Commodore vs Atari

In 1982, Time chose PC as their Person (this time Machine) of the Year. At the time,
various PCs were competing on which would be the number one PC, including IBM PC
and its compatibles, Apple II, Commodore 64, Atari 400/800 and TRS-80. Relatively fast
the answer was clear; IBM PC and its compatibles had taken over 50 % of market share
in 1987, over 75 % in 1990 and over 90 % by the turn of the millennium (Dediu 2017).

Commodore and Atari also produced highly popular PCs in the late 1970s and early
1980s. Most notably, the Atari 400 and 800 introduced in 1979 and Commodore 64
introduced in 1982. All of these machines incorporated the MOS 6502 chip and were
popular for playing games and producing advanced graphics and sound (O’Regan 2016).
Today, Commodore 64 retains its popularity in demoscene and retro culture (Swenson
2017).

Apple’s answer to conquer IBM PC was the Apple Macintosh released in 1984. Key
advantage for the Macintosh was its GUI which had not entered the consumer PC market
yet at the time. Development of Macintosh had already begun in 1979, two years after the
release of Apple II. Reportedly, inspiration for the GUI came from Xerox PARC GUI-
enabled computers, where the aforementioned Xerox Alto was introduced six years
before. (Ceruzzi 2003, O’Regan 2016.)



15

Before Macintosh, Apple released another GUI-enabled computer named Lisa in 1983
which failed in the market mainly because of its high price (around $10,000). Finally in
1984, the Macintosh was released with a flashy commercial. The Macintosh was more
user-friendly with its GUI, thus being a far easier to use than IBM PC. However,
Macintosh failed to capture the market, mainly because it was more expensive and it had
fewer software than the IBM PC and its compatibles. (Ceruzzi 2003, O’Regan 2016.)

0S/2 vs Windows

In the 1980s, Microsoft’s DOS was the leading operating system for the IBM PC
compatibles which in turn reigned the PC industry later on. In 1985, Microsoft launched
its Windows operating environment which was a graphical operating system shell made
on top of the MS-DOS operating system. Windows was initially a response to
Macintosh’s GUI operating system. The first versions of Windows were not much of a
success until the launch of Windows 3.0 in 1990.

Interestingly, at the same time as Microsoft was developing its own GUI-enabled
operating system Windows, IBM announced their own operating system called OS/2 in
1987. The operating system was designed by IBM yet it was programmed by Microsoft.
In effect, Microsoft was developing both their rival OS and their own. (Cringely 1996.)

0S/2 1.0 was released in 1987. Microsoft continued to develop OS/2 jointly with IBM
until their breakup in 1990. The breakup of Microsoft and IBM is a controversial story
which will not be discussed deeply here. Consecutive versions of OS/2 continued to
disappoint and sell poorly, whereas Windows thrived and led on as the successor of DOS.
Windows and OS/2 fought until the release of Windows 95 which virtually blew OS/2
out of the market. Many reasons for the failure of OS/2 have been presented, including
the already dominative status of DOS with its abundance of software (which were later
inherited by Windows); and for this reason, OS/2 was made compatible with DOS which
in turn did not encourage the development of OS/2 applications resulting in the lack of
software made exclusively for OS/2. Another reason suggested has been the inability of
IBM to market OS/2 properly, whereas Microsoft marketed Windows fiercely and had
them bundled with many IBM PC compatibles.

Since the 1990s, Microsoft has continued to launch successive operating systems of
Windows every couple of years. Latest Windows release is Windows 10, introduced in
2015. Since the 1990s, Windows has been the most used operating system on desktop
PCs. Today, it is estimated that Windows is used in over 80 % of desktop PCs around the
world. The trend seems to be going down, since in 2010 Windows was estimated to be
used in over 90 % of PCs. Main competitor for Windows on desktop PCs is the MacOS
(previously Mac OS X) which succeeded the classic Mac OS in 2001. MacOS has slightly
over 10 % of market share. Linux has two to three per cent market share on desktop PCs
(StatCounter Global Stats 2017a; Statista 2017a; NetMarketShare 2017).

Linux from Finland

In 1991, Linux was created as a hobby by Linus Torvalds, a student at the time at the
University of Helsinki. Linux was initially developed as an improvement to the Minix
Unix-like operating system which was an educational OS with public source code (Deitel
& Deitel et al. 2004). Interested in creating an improved Minix, Torvalds coded his Linux
version 0.01 and published it at a Minix newsgroup in September 1991, with all its source
code public. First version of Linux had 9300 lines of C and 950 lines of assembler code



16

(Tanenbaum 2009). The name of Linux is derived from Torvalds first name and
aforementioned OS UNIX.

After launch, Linux quickly began to generate a community around the operating system,
gathering people around the world testing the operating system and investigating its
source code. Computer enthusiasts began sending bug reports, feedback and suggestions
to Torvalds, who then reviewed them and made proper improvements. In October 1991,
version 0.02 was published with the help of community feedback and suggestions. (Deitel
& Deitel et al. 2004.)

Over time, Linux and its community continued to grow ever more and it began to phase
out from its initial hobby stage. Linux gradually grew into a full UNIX clone with modern
features. Linux originally ran on the Intel 80386 chip but it was promptly ported to other
platforms as well. Linux version 1.0, the first viable alternative for UNIX, was released
in 1994 which had 165,000 lines of code. Furthermore, the new version attracted even
more people into the Linux development community. (Deitel & Deitel et al. 2004;
Tanenbaum 2009.)

By 1996, version 2.0 grew Linux kernel to over 400,000 lines of code (Deitel & Deitel et
al. 2004). The developer community of Linux was also growing and there were already
thousands of developers debugging and modifying the operating system. Quickly after in
1998, many major companies such as IBM, Compaq and Oracle announced their support
for Linux. Afterwards in the turn of the millennium, Linux continued to grow through its
active development community with several 2.x versions.

In the beginning, Linux suffered from its complicatedness which made it difficult for
normal users to install and utilise it on their computers. To ease the problem, different
organisations and companies started to create Linux distributions (distro in short), which
included Linux kernel, system applications, user applications and tools to ease the
installation process (Deitel & Deitel et al. 2004). Today, there are over 300 Linux
distributions for the PC systems (DistroWatch 2017).

In the present day, Linux is used in various computer systems, including PCs,
supercomputers, server machines, embedded devices and mobile devices. Most notably,
the most popular mobile operating system Android uses Linux kernel. Linux also
dominates the market share of server and supercomputer OS.

Special for Linux is that it is open software (Tanenbaum 2009). Most of the market
dominating operating systems in computing devices, including Microsoft Windows and
Apple macOS are proprietary OS. Linux is not owned by any company and it is developed
by a volunteering community. In formal sense, Torvalds does not have any authority over
Linux, although he still has the influence and leadership to keep Linux intact. All in all,
Linux has been a cornerstone of open source movement which has gotten more and more
steam in the present day.

Naturally Linux has received criticism. Especially Bill Gates has stated in the past that
free or open software does not properly reward developers for their hard work (Ceruzzi
2003). Same can be asked about Linux; if it is free who pays for its development?
Although Linux itself is free, it is utilised by many businesses who benefit from it greatly.
In fact, Linux is supported by various companies financially but also through



17

development. There are several large companies such as Intel, Red Hat, IBM, Oracle and
Google developing Linux (Brodkin 2015).

2.5 Surfing the Web

Before the Boom

Internet and the Web have a crucial role in today’s technology and society. Arguably,
most people have PCs and smartphones today mainly for web use. Especially the
smartphone and social media era since the late 2000s has brought internet even more into
our lives. Today, almost half of the world uses the internet, there are over 1 billion
websites, and over 2 billion Google searches are made and YouTube videos are watched
daily (Internet Live Stats 2017).

Before diving to the massive expansion of the Net in the 1990s, it is essential to briefly
review the early history of internet, Ethernet, ARPANET and World Wide Web. First
developments concerning the internet started in the US in the Cold War period. In 1962,
ARPA determined to interconnect main computers in the Department of Defense through
a global, dispersed network (Cohen-Almagor 2011). Later, the same idea evolved into
connecting ARPA research investigators with few large mainframes across the country,
which enabled cost-effective sharing of hardware and software. In 1965, ARPANET
project was officially initialised by an initial funding of $1 million.

ARPANET was launched by Bolt Beranek and Newman in 1969 (Cohen-Almagor 2011).
The network was created with Interface Message Processors (IMP) which were
minicomputers handling all switching and communications functions between
mainframes in the network. First IMPs were delivered to UCLA, SRI, UCSB and
University of Utah. For now, the ARPANETs network had been deployed but
communicating properly between the computers was still unsolved and required
appropriate protocols (Kleinrock 2010). Quickly in September 1969, the first host-to-host
message was sent on October 1969 using the Network Control Program (NCP) protocol.
NCP was the first protocol stack to run on the ARPANET and was later replaced by
TCP/IP in the first half of the 1980s. TCP/IP is still used as a fundamental protocol in
the contemporary internet.

In the first years of the internet, another important part of the modern internet ecosystem,
Ethernet was invented at Xerox-PARC in 1973 by Robert Metcalfe and David Boggs.
Whereas internet connects computers around the nation and globe, Ethernet was meant
for local networking, connecting single-user/personal computers, printers, mass storage
et cetera to each other. In the early implementation of Ethernet, different computers were
connected through one cable or bus. Computers in the Ethernet were listening to the cable,
in other words computer sent its data while the cable was free and if the cable was
occupied, computer backed off and tried to resend the data later after a random interval.
Ethernet had its initial impact on workstations, and later it expanded to the PC market.
(Ceruzzi 2003.)

Local area networks and their connection to the internet were first available in office
environments and later they expanded to home computers. Similarly, how workstations
replaced mainframes and their terminals in the 1970s, workstations were replaced by
networked PCs in the office in the 1980s. Then in the following years, locally networked
PCs were connected to other locally networked PCs, creating a network of networks,
commonly called the internet. (Ceruzzi 2003.)



18

A major part of the internet history is the development of World Wide Web (WWW)
started in 1989 by Tim Berners-Lee. Initial purpose of WWW was to allow
communication between computers and software of various types, and to have an
information space on the internet where people and machines could share information
with one another (Ceruzzi 2003). For these purposes, Berners-Lee created Universal
Resource Identifier (URI) which acts as a reference to a resource on the network;
Hypertext Transfer Protocol (HTTP) which enables hyperlink-included data exchange in
the Web; and Hypertext Markup Language (HTML) which provides a simple way for
creating web page documents. With the definition of URI, HTTP and HTML, Berners-
Lee wrote the first WWW client (browser) and most of the communications software
(Cohen-Almagor 2011).

Components for the modern and commercialised internet were now laid out; ARPANET,
TCP/IP (among other internet protocols), Ethernet and WWW served as the backbone for
modern internet. ARPANET supplied the basis and initial infrastructure, TCP/IP enabled
understandable communication between parties, Ethernet provided numerous LAN
networks to be interconnected and WWW helped the navigation and viewing of internet
resources.

Internet Becomes a Commodity

Internet witnessed a massive expansion in the 1990s. ARPANET project was officially
terminated in 1990 and the control of the public internet was given to the National Science
Foundation. In 1991, the global Internet Society was formed. In these years, internet
started to expand immensely. Cohen-Almagor (2011) argues that the reasons for the
remarkable growth were internet’s accessibility, flexibility, technological creativity,
multi-application and decentralised nature. People were also curious and wanted to be
part of the fast-expanding scene now available for ever more people. From 1992 to 1997,
number of hosts in the internet grew from 1 million to 19.5 million and the number of
websites from 50 to 500 000 (Gromov 2002).

After the WWW was introduced, there was an imminent need for an easy-to-use and
visually appealing browser. The first commercially successful browser Netscape had its
roots in a browser named Mosaic which began development in 1992 amongst Marc
Andreessen and Eric Bina in joint with the University of Illinois. Later in 1994, Jim Clark
persuaded Andreessen to commercialise the browser yet Illinois University objected this.
Consequently, Andreessen and Clark founded their own company which later became
Netscape Communications Corporations. They released the first version of Netscape in
1994. Mosaic continued development under Illinois University, nevertheless Netscape
quickly overthrew its position as the most popular web browser. (Ceruzzi 2003.)

In 1995, the American internet was privatised. Before, commercialisation of internet
became a major debate which was discussed in a series of conferences by National
Science Foundation. Consequently, Merit Network, IBM and MCI Communication
received a contract to manage and modernise the internet backbone, and three additional
contracts were given to Network Solutions, AT&T and General Atomics. Finally in 1995,
National Science Foundation was shut down completely and the privatisation was
fulfilled. (Cohen-Almagor 2011.)



19

In 1995, Microsoft was thriving in the software market with its operating system
Windows and Office bundle?. The ecosystem of Windows and Office equipped in cheap
Intel-equipped IBM PCs was an important factor for Microsoft in competing with IBM
and Apple at the time (Ceruzzi 2003). Even though Apple had the same package of
hardware and software with more elegant design, Microsoft had cheaper software inside
cheaper and more widely-used hardware which quickly turned the market in favour for
Microsoft. By 1995, IBM PC compatibles with Windows (and Office) and Intel was
already the definite PC standard. Expectedly, this persuaded software developers to create
their applications for the most widely-used and accepted system, regardless of it was
better or not.

Microsoft also entered the internet market in 1995. A famous memo was sent about it by
Bill Gates in May 26™, 1995 called the The Internet Tidal Wave. In this 9-page memo,
Gates (1995) proclaims that Microsoft will focus going online and “assign the Internet
the highest level of importance”. Gates continues that the internet is “the most important
single development to come along since the IBM PC was introduced in 1981.” Indeed,
Microsoft did enter the internet boom with their own browser Internet Explorer which
was initiated five months before the Gates memo. Microsoft paid a web browser called
Spyglass for a license to use it for Microsoft’s own web browser. Internet Explorer 1.0
was introduced in 1995 as an accessory (Ceruzzi 2003).

Internet Explorer became an arduous competitor for Netscape. Often referred to as the
beginning of the end for Netscape was the introduction of IE 4.0 in the autumn of 1997
(Ceruzzi 2003). Because IE 4.0 was integrated with Windows, it quickly started gaining
popularity, thus Netscape began to lose its usage share. Eventually, IE became more
popular in the turn of the millennium and Netscape gradually perished, eventually
discontinuing in 2008 (Cooper 2014).

Concerning the browser wars of IE and Netscape, there was a major antitrust law case
between US Department of Justice and Microsoft between 1998 and 2001. DOJ accused
Microsoft of abusing its monopoly-like position in operating systems to manipulate
browser sales. More closely, the bundling of Windows and IE allegedly restricted the
market of web browsers, cutting off the air supply of Netscape particularly (Ceruzzi
2003). In 2000, it was ruled that Windows had been unlawfully tied with IE and a few
months later it was required that Microsoft would be needed to split up. Later in 2001,
the judge was removed from the case and the splitting of Microsoft was avoided.
Ultimately, it was ruled that the parties agreed to settle without breaking up the company,
requiring Microsoft to abide by a consent decree for five years. The consent decree forbid
Microsoft from creating exclusive deals with PC manufacturers, in other words obliging
them to work only with Microsoft software developers. Also, Microsoft was required to
open access to its application programming interfaces which are necessary in order to
make applications work under Windows. Decree was extended twice, and it expired in
2011 (Chan 2011).

Addition to the DOJ case, the European Commission of the European Union also had a
similar case against Microsoft for the abuse of its dominant position. Preliminary verdict
for the case was given in 2003 where Microsoft was ordered to offer a Windows version
without Windows Media Player and to reveal low-end servers’ technical details for
Microsoft competitors, in order for them to achieve full interoperability with Windows

2 Office bundle includes several Microsoft applications, such as word-processing software Word,
spreadsheet application Excel, presentation software PowerPoint and database management system Access.



20

(Fried 2003). Later in 2004, the final verdict was given, which included the
aforementioned remedies and a €497 million fine (European Commission 2004). During
2005 and 2006 EU fined Microsoft an additional 281€ million because they did not
comply with the remedies in a timely manner as was requested. Also in 2008, EU fined
Microsoft with an extra €899 million because Microsoft failed to comply in providing
sufficient information for other companies to interoperate with Windows. Later in 2012,
the General Court reduced the fine to €860 million (Kanter 2012). In total, Microsoft was
fined a total of €1.7 billion.

Roughly from 1997 to 2002, the dot-com bubble period occurred. During this period, the
internet market expanded immensely after its commercialisation in the middle of the
1990s. In order to profit from the swiftly growing internet userbase, numerous internet
businesses were established and many of them were taken public. Ultimately, the internet
companies acquired excessive speculation for their pricing until the bubble burst after the
beginning of the millennium. Many major IT companies, including Microsoft, Apple,
Intel, Amazon and eBay suffered from the crash. Nasdaq index was record high in March
2000 at 5048.62, after it dropped to 1114.11 by October 2002, losing almost 80 % of its
index value (EconStats 2017).

After the dot-com bubble burst, a new concept of Web 2.0 emerged. O’Reilly (2007)
summarises Web 2.0 to seven core competencies:

- Services, not packaged software, with cost-effective scalability

- Control over unique, hard-to-recreate data sources that get richer as more people

use them

- Trusting users as co-developers

- Harnessing collective intelligence

- Leveraging the long tail through customer self-service

- Software above the level of a single device

- Lightweight user interfaces, development models and business models.

Essentially, Web 2.0 does not depict the technical advancement of the Web, rather it lays
out the canvas of how it should be used and designed so that it would deliver rich user
experiences.

Continuing with web browsers, IE received another competitor from the ashes of
Netscape, namely Mozilla Firefox. The legacy of Mozilla begins in 1998, when Netscape
was released as free software or in modern terms as open source (Krishnamurthy 2009).
The Mozilla Organization was established then to create an internet suite, supporting the
Netscape web browser ecosystem. Later in 2003, Netscape’s parent company AOL
started to back off from Netscape, after which the Mozilla Foundation was established in
July 2003 in order to assure the continuity of Mozilla without Netscape (Goodger 2006).
In 2003, Mozilla began to focus on creating a standalone browser Firefox and the e-mail
client Thunderbird instead of Mozilla Suite. Firefox was initially named Phoenix and
Firebird but the name was changed promptly to Firefox. Firefox version 1.0 was released
on November 9, 2004.

From 2004 to 2010, Firefox grew steadily competing with IE. Firefox reached its peak in
web browser usage in 2010, having approximately 30 per cent of the usage share,
compared to IE having 50 to 60 per cent of the usage share (StatCounter Global Stats
2017b). In 2008, first version of Google Chrome was released which quickly gained
steam in the web browser market. In the middle of 2012, Chrome became the most used



21

web browser overcoming IE. Currently, Chrome has 55-57 %, Firefox 5-9 % and IE 3-11
% usage share of web browsers on any platform (StatCounter Global Stats 2017b;
W3Counter 2017). Evidently, IE has gradually lost its leader position in the web browser
market since 2004. Reasons for the continuing fall of IE included its outdatedness and
lack of features. As for why Chrome became the most successful browser, possible
reasons can be Google’s highly positive image, rich ecosystem and up-to-date features
(Jones 2015). Similarly to Firefox, Most of Chrome’s source code is open and it is
released in the Chromium open-source project.

West & Mace (2009) has depicted the development of mobile internet from the
perspective of iPhone in detail. According to them, iPhone was the first mobile device to
deliver the real internet for consumers instead of building a separate and independent
mobile internet, aiding the initial success of iPhone. Such mobile internet has
subsequently become the norm in mobile devices, giving momentum to the overall
expansion of the internet. In 2016, mobile web browsing traffic surmounted desktop
browsing for the first time (Gibbs 2016). Mobile internet has also amplified the principles
of Web 2.0 demanding more serviceability and value creation for example.

Social media is an important driver of the contemporary internet movement. Since the
beginning of internet, it has been a tool for communication and socialisation; at first by
e-mail, IRC and BBS, and later by contemporary social media including Facebook,
Twitter, Instagram, Snapchat, Reddit, WhatsApp and YouTube. Due to its high popularity
within consumers, social media has amassed major markets with several billion dollar
companies.

2.6 Mobile Devices

History of mobile computing devices starts from the early days of telecommunications,
sending information over a distance to a receiver. Earliest telecommunication has been
archaic fire, smoke and drum signals used before contemporary civilisations. The first
postal system was created in the Persian Empire in the sixth century BCE, later which
Egyptian and Roman civilisations created similar systems. First semaphore system was
devised by the Greeks in the fourth century BCE. (O’Regan 2016.)

Telegram and later telephone were invented during and slightly after the Industrial
Revolution. First telegraph, initially optical system was built in France by the Chappe
brothers in the late 18" century. It was used to send information from one high tower to
another and it reminded of a ship semaphore system. Later in the early 19" century,
Samuel Morse constructed the Morse code which allowed letters to be represented in on-
off tones. This built the foundation for the commercial transatlantic electrical telegraphs
which sent Morse code through electrical lines. (O’Regan 2016.)

Telephone was invented by Alexander Graham Bell in 1876. First telephones were
hardwired, connecting only two telephones, for example from home to the office. First
commercial telephone exchangers, i.e. switching callers were introduced in the late
1870s. First transcontinental call was made by Bell in 1915. Phone brought a paradigm
shift in communication, providing direct communication between two people
instantaneously. Telephones were first used by business and affluent people of the

society, but it quickly expanded to all social classes in the Western world. (O’Regan
2016.)



22

Marconi introduced a wireless transmission system of sounds in 1896 which began to
enable swift communication between ships and coastal radio stations. Later, the
technology evolved into radiocommunication. Later, image transmission through radio
signals were developed, enabling long-distance wireless transmission for electronic
television. (O’Regan 2016.)

First mobile phones were introduced for automobiles in 1946. Some commercialised
automobile mobile phone systems existed, including AT&T’s Mobile Telephone Service
introduced in 1946 and its successor Improved Mobile Telephone Service after 1964
(Farley 2005). Finland also had its own automobile mobile phone system called
Autoradiopuhelin (ARP), launched in 1971 and expanded to the whole country by 1978.
Similarly to other mobile systems of the day, ARP was only operational in its own
domain, Finland (Heikkila et al. 1999).

Later in 1973, first handheld cellular mobile phone call was made by Martin Cooper of
Motorola and Joe Engels at Bell Labs. This was based on a cellular system which consists
of a network of small geographical areas called cells. Each cell has one base station
transmitter and central switch controlling cell traffic. Later, commercial cellular
deployment expanded rapidly in the late 1970s and continued into the early 1980s,
bringing cellular networks for handheld mobile phone usage. First cellular service in
Europe was introduced in 1981, when the Nordic Mobile Telephone System began
operations in Finland, Sweden, Denmark and Norway, also being the first multinational
cellular system. (Farley 2005.)

Systems mentioned in the previous paragraph were using analogue transmission, but the
need for digital transmission emerged in the 1980s. Analogue cell phone period is often
referred to as first generation or 1G era. For transmitting digital radio signals, Global
System for Mobile Communications (GSM) standard was developed in Europe in a new
radio band. The first commercial GSM network was launched in Finland by Radiolinja
consortium in July 1991. Nokia supplied the phone equipment for GSM applications.
GSM system included short messaging services (SMS) and subscriber identity module
(SIM) cards. GSM also incorporated increased level of security, encrypting
communication between the subscriber and base station. Afterwards, GSM became the
global standard for digital cellular mobile phone radio service. GSM had several rivals,
including CDMA, D-AMPS, TDMA and PDC. (Farley 2005; Heikkild et al. 1999;
O’Regan 2016.)

Digital cellular era, often called as the second generation or 2G era was widely dominated
by GSM standard and its applications. Later, GSM networks evolved into GPRS (2.5G)
which became available in 2000 (O’Regan 2016). Later, GPRS further evolved into
broadband multimedia communication standards of 3G, 4G and the upcoming 5G. At
present, G-terms are often used in spoken language for the speed varieties of mobile
internet, for example 4G being faster than 3G. O’Regan (2016) expresses this evolvement
of mobile technology, how it has transformed the earlier paradigm of communication
between places to communication between people. Today, transferring large amounts of
data is one of the main goals of telecommunications.

As for mobile phone development, a fundamental change happened in the middle of the
1990s. First Nokia Communicator was introduced in 1996, providing a typical GSM
mobile phone with extended computing abilities. The device had a QWERTY keyboard
and several applications, including word processing, calendar, e-mail and limited-access



23

internet (Farley 2005). Nokia Communicator is often thought as the first influential
personal digital assistant (PDA). PDAs were the predecessors of modern smartphones
which extended the capabilities of normal mobile phones.

In the middle of the 1990s, mobile phones were still optimised only to transfer speech,
not data. This quickly changed and data transmission became the top priority in tele
industry (O’Regan 2016). Especially after the emerge of commercial Web, solutions for
mobile internet were sought for. First, mobile internet was mainly built based on new
mobile-specific solutions especially in the western countries during 1997-2007. Such
technologies as Wireless Application Protocol (WAP) were used to create a separate
mobile internet with the limitations of mobile data transmission of the time. However,
Japan developed mobile internet services that exploited the existing wired internet but
with limited capabilities, tackling the problems of limited data transmission. Mobile
internet was later revolutionised by iPhone and its killer app; the web browser which
could access the same internet as was already available on PCs (West & Mace 2010).

With the fast evolution of data speed and mobile devices, the era of smartphones was
dawning. Smartphones arose from the existing mobile device and PDA technology.
Smartphones became more than just calling devices, essentially being touch-based
computers on a phone with operating system, internet access and third-party software
(O’Regan 2016). Features that smartphones offer include camera, maps, games, word and
spreadsheet tools, social media, video streaming and more.

One of the forerunner devices including PDA and mobile phone features was the IBM
Simon introduced in 1993. Simon offered fax, e-mail, address book, calendar and
calculator applications. In the same year, Apple Newton was introduced as the first PDA.
Xerox PARC had also created a prototype PDA in the 1970s called Dynabook. Other
smartphone predecessors included the aforesaid Nokia Communicator, Qualcomm pdQ
and Blackberry. (O’Regan 2016.)

2.7 Mobile Operating Systems

First common mobile device operating systems started to emerge in the early 2000s.
Before, mobile devices had simple hard-coded operating systems that were only usable
on a specific device. Finally, hardware manufacturers Nokia, Ericsson, Panasonic and
Samsung agreed to collaborate on one operating system running on their devices, namely
Symbian. Symbian’s roots were in EPOC32 operating system, developed by British
company Psion since the end of the 1980s. The first Symbian device, Nokia 7650
smartphone was launched in 2002, four years after Symbian started its development.
(Tilson et al. 2011; Hall & Anderson 2009.)

Symbian continued development through the 2000s, while Nokia produced several
smartphones with Symbian OS, most notably Nokia E61, N95 and 5800. With the support
of hardware manufacturers, Symbian achieved a dominating position in the mobile OS
industry, covering over 50 % of the market share until 2008 (West & Mace 2010). Despite
the popularity, Symbian was suffering from serious deficiencies, mainly in application
development. Different Symbian devices had their own unique Uls tailored by the
manufacturer which fragmented the UI compatibility. Furthermore, Symbian was
difficult for developing applications, using a difficult-to-program non-standard derivative
of C++ (Ocock 2010).



24

In 2007, a notorious competitor emerged in the smartphone industry: iPhone. iPhone had
distinct features compared to other mobile and smartphones of the era, including a large
touchscreen for video viewing and a universal web browser for browsing the entirety of
the Web in the same way as on a desktop device. Also, iPhone included music streaming
similarly to an iPod and it did not have a user-changeable battery or memory card. iPhone
also required a purchased mobile data service plan, yet iPhone did not have 3G support
which was already supported by many Japanese and European smartphones. (West &
Mace 2010; West & Mace 2007.)

The first iPhone was highly praised for its user friendliness and product design, collecting
a desirable number of users. Criticism was also presented for the high price ($600), slow
data speed without 3G network, operator lock and the prevention of third-party
applications. Hacker community bypassed these problems, creating a grey market for
unlocked iPhones. (West & Mace 2010.)

Although the first iPhone did not allow third-party software, Apple encouraged web-
based application development for the iPhone browser. There was a critical problem
however, because the mobile web browser did not support Flash and could not run many
standard web applications. Later in 2008, Apple started allowing third-party software.
(West & Mace 2010.)

Situation in the smartphone application sector started to change in 2008, when Apple
allowed third-party software on iPhone and launched the iPhone App Store right before
iPhone 3G. App Store initially had 500 applications, which were built with the software
development kit released four months prior to release. Quickly after, app store began
gathering steam swiftly. After first six months, App Store had more than 15,000
applications and 500 million downloads, and three months after that the numbers had
doubled to 30,000 applications and 1 billion downloads. (West & Mace 2010.)

iPhone’s App Store quickly started to gather rivalry. Nokia stepped up in 2008, when it
purchased the Symbian company to itself. In response, Symbian Uls were unified and
operating system was turned into open source software. In 2009, Nokia launched its own
application marketplace called Ovi Store. Software development was also improved in
2010, when the old SDKs were replaced by standard C++ using Qt. Nevertheless,
Symbian started losing its market share. Tilson et al. (2011) argues, that Symbian failed
because Nokia did not pursue an app centric ecosystem, resulting in the lack, difficultness
and low quality of applications. Obviously, strategic actions and technological
development influenced the outcome of Symbian, having to deal with its legacy in
architecture and accumulated complexity. In 2011, CEO of Nokia declared that the
company was battling with “burning platform” and had to make drastic moves. A few
days later, Nokia announced liaison with Microsoft, adopting Windows Phone 7 as
Nokia’s main smartphone operating system.

Since 2008, another major competitor in the OS market emerged, namely Android.
Android was a mobile OS project started in 2003 by Andy Rubin and other associates.
Later in 2005, Android was acquired by Google. Finally in 2008, first Android version
was released. Android initially had problems finding device manufacturers to deploy
Android, but later Motorola and Samsung started using Android as their operating system
(Tilson t al. 2012). Today, Android devices are manufactured by Samsung, ZTE, Huawei,
ASUS, Acer, Motorola, Dell and many more.



25

Android is based on a modified Linux kernel. Essentially it is the same as a Linux kernel,
but several drivers and libraries have been modified or added to allow Android run more
efficiently and effectively on mobile computing devices. Android also utilises an Android
specific application framework, therefore, Android is a complete solution stack, including
the OS, middleware components and applications (Heger 2012). Linux kernel acts as the
hardware abstraction layer in Android. Android’s source code is open under an open
source license, although most Android devices ship with open and proprietary software.

Quickly, Android started to seize the mobile OS market. In 2009, Symbian still had over
half of the market share, but already in the early 2011, Android had overthrown Symbian
with 36 % of the market share. In 2013, Android already had 80 % of the market share,
dominating the markets. Respectively, 10S has kept a 10-20 % market share since 2009.
(Statista 2017b.)

Other mobile OS have also been introduced, most notably Windows Phone and
BlackBerry OS. Yet, their market share has continued to decrease, whereas Android and
10S have captured the users with their wide platform ecosystems. That is to say, Apple
and Google’s smartphone app platforms captured the eyes of developers, attaining the
active, sizeable and diverse application marketplaces they incorporate today. Evidently,
a key success factor for both have been their ability to mobilise software developers with
serviceable SDKs and APIs (Sorensen et al. 2015). Yoo (2012) argues, that companies
like Google, Apple and Facebook have created platforms which can be used to build
products and services that grow beyond their realm of business.

2.8 Enterprise Resource Planning

Enterprise resource planning (ERP) means the management of functional areas in a
business. Functional areas include product planning, production planning, manufacturing,
marketing and sales, materials management, inventory management, retail, shipping and
payment and finance. This thesis concentrates in the software applications available for
enterprise resource planning, which ease the management of company resources.

ERP systems or enterprise systems (ES) are software systems for managing business.
Management can tackle areas of business such as planning, sales, marketing, distribution,
accounting, human resource management, project management, e-business,
transportation et cetera. These different modules ought to be able to share information
between one another, allowing horizontal integration of processes inside an enterprise. In
a sense, enterprise resource planning systems are operating systems for enterprise
management. Several definitions of ERP have been collected in Rashid et al. (2002)

paper.

The term ERP was initially suggested in the early 1990s by the Gartner group. Enterprise
systems did exist before ERP but the new term added a notion that the software should
be integrated through different functional domains of an enterprise. The roots of ERP
stem from 1960s and the first material requirement planning (MRP) systems. In the 1960s,
lowering costs in product-based manufacturing was the key success factor in market
competition. In the late 1960s, an MRP software was created for the planning and
scheduling of materials for complex product manufacture. The first solutions of MRP in
the 1960s and 1970s were large, unwieldy and expensive, similarly to computers of the
time. MRP software ran on a mainframe computer, requiring significant amount of human
labour. Related to early enterprise systems was also IBM’s COPICS (Communications
Oriented Production Information and Control System) software which enabled integrated



26

computer-based manufacturing. Also in the 1970s, software companies which later
conquered the ERP market were already established, namely SAP, Lawson and Oracle.
(Jacobs & Weston 2007.)

In the 1970s, enterprise software was still feebly integrated. When a need for a new IT
application appeared, it was built as a separate discrete system. If it had common ground
with other formerly implemented enterprise systems, it was possibly interfaced with
them. As such, combining data from two IT systems was troublesome and error prone.
Analysing data from the early enterprise systems was also rudimentary, enabling only
summary level analysis. Creating an advanced analysis required specific ad hoc
programming and laborious effort. Likewise, separate systems included similar same data
elements, resulting in incoherent data and irregular overlaps. As such, “one-company,
one-system” was not achieved. (Markus & Tanis 2000.)

Later in 1980s, MRP II was introduced. The MRP term was also rephrased to
manufacturing resource planning and with the roman two in the end, it identified the
improved features of the newer systems. Similarly, competitive factors in the markets
shifted from lowering cost to quality improvement. MRP II systems included novel
features such as enhanced shop floor reporting and detailed cost reporting features.
COPICS system was also updated at the time, setting off a new term of CIM (Computer
Integrated Manufacturing). CIM framework supported three levels of enterprise
functions, including functions such as marketing, engineering and research, production
planning, business management, administrative support, application development
support, database and communications and presentation tools. Integration of several
enterprise functions was already occurring in the enterprise software market, giving a lead
to the soon emerging ERP. (Jacobs & Weston 2007.)

As for the interoperability of enterprise systems, 1980s and 1990s brought improved
solutions. Several major ES companies, including SAP, PeopleSoft and Baan, were
building integrated software packages which shared a common database, enabling the
passage of a single transaction between enterprise functions. These software suites
acquired the name ERP, coined in the 1990s. In the 1990s, ERP software packages started
replacing old, often in-house developed legacy enterprise software. Especially the Y2K
problem boosted large companies to start implementing ERP. Accordingly, ERP systems
began integrating all domains of business functions. (Markus & Tanis 2000; Rashid et al.
2002; Jacobs & Weston 2007.)

In 2000, ERP II term was coined. The improved ERP II was to answer for the needs of
enterprises transforming from vertically integrated into agile and core-competency
focused organisations. New-age organisations are increasingly engaging in B2B and B2C
electronic commerce but also in collaborative commerce. ERP II addresses these
transforming trends, providing “a business strategy and a set of industry-domain-specific
applications that build customer and shareholder value by enabling and optimizing
enterprise and inter-enterprise, collaborative operational and financial processes”. (Bond
et al. 2000.)

By 1999, IBM’s dominance in the enterprise software market had been taken by J.D.
Edwards, Oracle, PeopleSoft, Baan and SAP. Later in 2002, Baan dropped out of the
competition. In 2003, PeopleSoft and J.D. Edwards merged, and later in 2005 they were
bought by Oracle (Jacobs & Weston 2007). After 2005, two major competitors Oracle
and SAP have remained in the ERP market, although recently they have faced new



27

competitors. In 2013, SAP had 24 %, Oracle 12 %, Sage 6 %, Infor 6 %, Microsoft 5 %
and other vendors including IBM had 57 % of the market share (Columbus 2014). In
2017, SAP had 19 %, Microsoft 16 %, Oracle 13 %, Infor 13 % and other vendors 39 %
of the market share (Panorama Consulting 2017). Interestingly, Microsoft’s ERP software
Dynamics has overtaken Oracle in the ERP market. Seemingly, ERP market does not
have a single dominating vendor currently, although SAP is still slightly in the lead.

ERP implementation has changed substantially in the 2000s. In the beginning of the
millennium, ERP systems replaced the old unintegrated legacy systems with a single
backbone system. In the middle of the 2000s, enterprises implemented one vendor ERP
suites, in order to achieve higher levels of integration, improve customer care and improve
supply chain efficiency. Also in the middle of the 2000s, ERP evolved into extended ERP
which included add-ons such as planning and scheduling (APS), customer relationship
management (CRM) and supply chain management (SCM). Recently, alternative
approaches for ERP deployment have been emerging, including cloud-based solutions,
subscription-based pricing and Software as a Service. Expansion of mobile computing
has also expanded ERP applications to smartphones. Nevertheless, vision of ERP has
remained the same. (Shaul & Tauber 2013; Rashid et al. 2002.)

ERP systems have been infamous for their long implementation times and failure stories.
Implementation problems can result in additional costs, utilisation hindrances and
maintenance problems. According to Chang (2004), 90 % of ERP implementations are
late or over budget, 67 % of enterprise initiatives fail in achieving corporate goals and are
considered negative or unsuccessful and more than 40 % of all large-scale projects fail.
Factors why ERP implementations fail include unrealistic expectations, over-
customisation of software, timeline flexibility, corporate culture and inherent complexity
of ERP implementation (Barton 2001). Umble et al. (2003) mentions that the biggest
reason for ERP implementation failure is poor planning or management. Shaul & Tauber
(2013) argue that the planning phase of ERP implementation is often disregarded, albeit
important decisions are made in this phase, concerning business cases, user requirements,
usage scenarios, operational requirements and system requirements. Also, the selection
process of an ERP system should be made comprehensively in order to find the best-
fitting system. Likewise, ERP implementation projects should understand one’s
complexity, size and scope, enterprise leaders should be fully committed to the project,
extensive training should be afforded and ERP users should be involved in the
implementation to ensure that the system works for their needs (Shaul & Tauber 2013).

ERP implementation projects cost considerably, ranging in one or two million.
Implementation of an ERP system takes over a year, often nearly two years or even more.
Benefits that ERPs fulfil include availability of information, improved productivity and
efficiency, integration of business operations, reduced direct operating or labour costs and
improved lead time. (Panorama Consulting 2017.)

Companies invest in ERP because they hope it will increase efficiency and productivity,
and will help in answering to customers’ needs (Conteh & Akhtar 2015). Critical success
factors of ERP have been researched broadly (Shaul & Tauber 2013). Two major benefits
of ERPs are a unified view of the enterprise comprising of all business functions and
departments, and a common database of the company where all business activities are
entered, recorded, processed, monitored and reported. In order to implement ERP
successfully, enterprises require clear understanding of strategic goals, commitment by
top management, excellent project management, organisational change management, a



28

great implementation team, data accuracy, extensive education and training and focused
performance measures (Umble et al. 2003).

Interoperability is also an issue often addressed in enterprise management. Enterprise
information systems, including enterprise resource planning are key features for
enterprise interoperability (Panetto & Cecil 2013). Indeed, in the new environment of IT
enterprises ought to collaborate (Panetto et al. 2016). Future of enterprise systems also
require information integration and interoperability, allowing business of all sizes share
data with suppliers, distributors and customers. Furthermore, further enterprise
application integration within the company and across companies would enable a
seamless exchange of information within a whole supply chain of several companies (Xu
2011). As for technology, service-oriented architecture helps with the coordination of
heterogeneous information systems, further improving interoperability by transitioning
enterprises systems from silo-based to service-oriented. (Serrano et al. 2014).



29

3 Overview of Building Automation Systems

Building automation (BA) has existed in one form or another since the early 20" century.
Traditionally, BA has been used to control heating, ventilation and air conditioning
(HVAC) of a building. Building automation controls were based on pneumatics which
were later replaced by electric and analogue electronic circuits and finally by
microprocessors (Kastner et al. 2005). In the recent days, building automation systems
has been associated more and more with smart buildings, connecting and automating all
the intelligence inside a building, including HVAC systems, central control and
monitoring systems, lighting and shading, life safety, IoT devices and more. Originally,
BA has been the purpose of optimising indoor conditions and comforting building
management but today, building automation is giving tools for connected and controllable
smart buildings.

This chapter gives an overview of different building information systems, including
building automation systems, building operating system prototypes and IoT systems,
reviewing their purpose, architecture, market structure and use cases. Chapter focuses on
the management level of building automation, exploring different building management
systems including building operating systems.

In the context of this thesis, the chapter lays out current status of building ICT systems
and also depicts their anticipated future. Altogether, overview and trends of building ICT
systems are examined in order to apprehend what kind of development a building
operating system would require in the status quo.

3.1 Structure and Purpose of Building Automation Systems

A building automation system controls and monitors mechanical and electrical equipment
inside a building, including HVAC, security, fire, power, water supply and elevator
systems. As the name states, BAS automates building equipment and device management,
coordinating various electrical and mechanical devices interconnected through a control
network (Domingues et al. 2016). BAS can be utilised in various kinds of buildings,
including commercial, factory, warehouse, office and residential buildings.

The typical promise of building automation is increased user comfort at a reduced
operation cost (Kastner et al. 2005). BAS uses optimised control routines to have the
perfect conditions for HVAC, lighting, shading and so on. Thus, energy efficiency and
management has had a large role in BAS ensuring that the building is environmentally
friendly. Installing BAS results in a higher construction cost, but considering its savings
in the whole life cycle of the building it can bring significant savings in energy and water
consumption.

In order to make building conditions supportive for human comfort or industry
requirements, building services are required. Building services include climate control,
visual comfort, safety, security and transportation. Building services can be perceived as
passive technical infrastructure such as water management and active controllable
systems such as HVAC (Kastner et al. 2005). Evidently, different buildings have different
requirements for certain building services. For example, residential and office buildings
need adequate climate control whereas storages might not need any climate control at all.
Also, more complex buildings usually require more sophisticated building automation to
enable sufficient and functional building services.



30

A good example of a BAS is the automated HVAC. Heating and cooling can be managed
with convectors running hot or cold water. If a convection is fan-assisted, it is called a
fan-coil unit (FCU). Different electric heating elements can also be used alternatively to
convectors. If a building uses forced ventilation, heating and cooling is usually
accompanied with the supply air system. In this type of system, central air handling units
(AHU) regulate and circulate air in the building, controlling the temperature, purity and
humidity of the air. Goal of the HVAC systems is to enable comfortable indoor climate
with minimal energy consumption.

In addition to HVAC systems, buildings often include other separate building automation
systems including lighting, safety alarm, security alarm, water management and elevator
systems (Kastner et al. 2005). Main problem lies with the separation of all these systems.
The systems are built and maintained by separate companies, most of them having their
own proprietary systems controlling them. Thus, different automation parts are not
interoperable with each other and are difficult to be used in cooperation. The increase of
interoperability, interdependency and integration of currently diverged building
automation segments is highly supported in the building automation literature (Dietrich
2010, Dawson-Haggerty et al. 2013, McGibney & Ploennings 2016, Domingues et al.
2016, Salo 2017). Kastner et al. (2005) suggests that the number of interaction points at
the highest system level should be kept at the necessary minimum, while keeping the
system flexible for future integrations of additional subsystems.

3.2 Hierarchy and Structure of Building Automation Systems

The hierarchy of building automation can be constructed in three levels, as seen in Figure
2. On the top is the management level which includes human interface devices such as
workstations and other user access devices, building monitoring units and webservers.
Information from the whole system can be accessed from the management level, for
example, automation level values can be accessed and modified from the management
level. System data presentation, forwarding, trending, logging and archival can be
handled from management level. (Kastner et al. 2005; Domingues et al. 2016.)

On the middle is the automation level, consisting of autonomously executed sequences.
It consists of direct digital controllers (DDC) and unit controllers which receives inputs
from the field level systems and returns outputs to the field level according to their control
logic. Automation level devices processes the data and measurements given by the field
level, executes control loops and activates alarms. (Kastner et al. 2005; Domingues et al.
2016.)

On the bottom is the field level, where the building automation system interacts with the
physical world through sensors and actuators. Field level collects sensor data such as
measurements, counting and metering and transforms it to machine-readable data.
Likewise, field level is also controllable using actuators to change the speed of airflow
pushed by a variable air volume device or control the lights. (Kastner et al. 2005;
Domingues et al. 2016.)

As the architecture suggests, BAS is a distributed system, consisting of various devices
working in cohesion. In it, sensors and actuators are connected to controllers via
standardised interfaces or field network. Controllers, such as DDC control the processes,
handling inputs and outputs of field level devices. In the management level, a server
station supervises controllers, logs and trends their data flow. Finally, a human interface



31

device such as a workstation displays the server station data from a convenient user
interface.

Kastner et al. (2005) suggests that a trend toward a flatter hierarchy is arising. Automation
level functions are often executed by adjacent levels, for example data aggregation and

supervision is done in the management level whereas continuous control is operated in
the field level.

Management level

Human Interface Device,
Building Monitoring Unit,
Webserver

Automation Level

DDC and Unit Controllers

Field Level

Hardware Modules, Sensors, Actuators

Figure 2. Building Automation Hierarchy (Kastner et al. 2005).

General setup of BAS field level consists of actuators, sensors and hardware modules
which are connected by a backbone fieldbus. Actuators react to signals with closing
circuits or differentiating electric loads, to control lighting for example. Sensors collect
data from the physical reality, converting physical phenomena to measured signals.
Hardware modules have actuators and sensors connected to their input and output ports,
receiving measurements and readings from them and giving commands to them. Fieldbus
enables the connections and communication between field level devices, including
controllers, sensors and actuators. A similar data channel exists in the management level
aggregating data via a common (often [P-based) backbone. The combination of field level
fieldbuses and the backbone is often referred to as control network. Main standards today
used for the control network include BACnet, KNX, LonWorks and Modbus.
(Domingues et al. 2016.)



32

Controllers manage the interaction between devices through a certain control logic. In
BAS, control typically consists of an application-specific hardware with embedded
software which controls actuators according to sensor data or received commands
(Domingues et al. 2016). For example, a movement sensor detects movement which is
registered by the controller, which afterwards gives a command to the light actuators to
turn on the lights. Controllers can vary in their complexity, some being able to run more
than one control program and being able to communicate with other controllers via
fieldbus. According to control function logic, controllers can often be divided to
Programmable Logic Controllers (PLC) or Direct Digital Controllers (DDC). Control
functions can also be generated in the management level through a server software, which
can collect data from various segments of the system in order to create aggregations and
sophisticated solutions for controlling the system.

Efficient building automation hardware and software stack enables the abstraction of low-
level hardware devices, so they can be utilised effortlessly in software applications.
Abstractions hide low-level details, offering a simpler model of low-level functions to
higher levels. Especially in computer architecture, abstraction allows programmers to
concentrate on software without having to know how the hardware operates (Hennessy
& Pattersson 2014). Domingues et al. (2016) provides a comprehensive illustration of the
full stack of BAS. Briefly described here, hardware segment of the stack consists of
physical devices (lighting, air ventilators, sensors) and their simple logic-based interfaces
which are connected to a grouped hardware module. Hardware module controls the
physical devices through a microcontroller. Software stack consists of various drivers,
including the fieldbus network drivers (implements network protocol stack and provides
abstraction) and hardware module drivers.

Device drivers, including the hardware module drivers are parts of the system that
controls the devices and provides a layer of abstraction on top of them. Higher in the
stack, hardware module drivers are connected to software device drivers which in turn
consists of application programming interfaces, enabling the interaction of applications
and devices. Software device drivers converts electric signals into suitable data structures
that can be read by software applications, and vice versa. The software device drivers act
as the software abstraction layer, providing data from the devices in a software-utilisable
form. In the top of the stack, high-level abstractions of devices are provided as objects
which are more easily understood and manipulated by applications. (Domingues et al.
2016.)

Datapoints are a set of elementary data elements that the BAS represents itself to the
software layer. Datapoints represent the physical process of devices in a logical way.
Datapoint can be a room temperature, state of a lighting switch or something more
abstract. Datapoints can be categorised into physical and abstract points. Every datapoint
has their own metadata which lays out the set of rules how the datapoint is accessed and
interpreted, including access type, datatype, installed location, influence zone et cetera.
Datapoints typically offer three ways of access: read, write or both. (Kastner et al. 2005;
Domingues et al. 2016.)

Devices are often grouped or zoned in the BAS. Device groups are a set of devices
identified in a logical fashion. Device group can be a device collection, for example all
devices in a room. Device group can also be a command group which is a set of devices
with compatible interfaces recognising same commands or providing the same type of



33

datapoints. Devices are grouped for the purpose of commanding them together, for
example turning all the lamps on in one floor. (Domingues et al. 2016.)

Spaces can be arranged to sub-spaces, namely zones. A zone can be a room, floor or any
other convenient area of a space. Zones can also be part of larger zones, in other words
parent and child zones can exist. Zone’s metadata consists of zone name, space usage
profile, boundaries and location. Zones help perceiving BAS spatial structure, and it is
also useful for users to understand, recognise and navigate the controlled area.
(Domingues et al. 2016.)

Other functionalities in BAS in addition to grouping and zoning include event
notification, alarm notification, historical data access, scheduling and scenarios
(Domingues et al. 2016). An event occurs whenever the system’s state changes, for
example, when a light switch is turned on or a door is opened. Alarms are exceptional
events that often announce a malfunction or another special event that the system must
be notified of. Historical data access or logging provides data from the system. Logs can
contain information about events, processes, alarms and user interactions. Logs are
crucial for the purposes of data analysis. Schedules are for executing certain tasks based
on a timetable, for example turning on the heaters in the morning or turning off the lights
after working hours. Scenarios are desired statuses of devices or device groups, which
conduct a desired outcome for a particular purpose. For example, a studying scenario can
be a situation where lights are brightened in the workspace or a party scenario would
increase the amount of ventilated air.

3.3 Building Automation Communication Protocols

Several building automation communication protocols exist in the building automation
market. Proprietary and ad hoc solutions have traditionally dominated the industry, yet
open systems have become more demanded (Kastner et al. 2005). Most protocols today
are open (Schneider Electric 2015). Open protocols include BACnet, LonWorks and
KNX, which are the three most used open protocols in building automation. Standard
technologies employ common concepts together such as datapoints, grouping and zoning,
however their functionalities are often defined and implemented differently. Domingues
et al. (2016) argues that current protocols do not include all the functionalities required
from a BAS, therefore BAS vendors fill the missing functionalities with custom made,
proprietary and often ad hoc solutions. These issues supposedly are the main reasons for
the heterogeneity problem occurring in BAS market.

Open building automation protocols include BACnet, LonWorks, KNX, ZigBee,
Modbus, DALI, OPC UA and several web services. From the aforementioned, only
ZigBee is a wireless protocol and the rest are wired protocols. Web service protocols,
including REST API, KNX WS and BACnet/WS are mainly used in the management
level. Domingues et al. (2016) groups web service protocols into management service
frameworks, which are used in BA to integrate various devices from various vendors and
to offer their abstracted form to external applications. Ultimately, management service
frameworks including web services connect various building automation technologies to
client applications. Web services connect BA to the internet which also enables the
coordination of BA and IoT.

The spread and variety of different BA protocols are not examined in depth here. Several
comparison analyses can be found from BA literature (Kastner et al. 2005; Domingues et
al. 2016; Salo 2017; Schneider Electric 2015). It should be noted, that BA protocols are



34

rarely interoperable with each other. Nonetheless, devices and systems that can employ a
mutual protocol are interoperable. This gives pressure to BA vendors to develop devices
that support all or most of the widely-used protocols (Schneider Electric 2015).

3.4 BAS 2.0: Building Operating Systems

In building automation research, concept of a building operation system has already been
proposed (Dawson-Haggerty et al. 2013; Weng et al. 2013; Fierro & Culler 2015; Dixon
etal. 2012 McGibney et al. 2016). Notably, Dawson-Haggerty et al. (2013) have proposed
a new kind of building automation system which makes buildings programmable.
According to them, existing building systems do not offer enough abstraction, resulting
in complicated software development for building automation technology. Furthermore,
they suggest that the control systems (or automation systems) of buildings should be
fundamentally re-architected into secure, modular, extensible and networked systems.

In Dawson-Haggerty et al. (2013) report, a prototype called Building Operating System
Services (BOSS) was built. The prototype was used in a 13,000 sqm building at the UC
Berkeley campus. BOSS uses hardware presentation and abstraction layer to abstract the
hardware stack for the use of applications. Furthermore, the system enables application
portability. Field level devices are accessed through query requests which are expressed
in metadata tags. The metadata-enabled query interface makes it possible to select objects
based on their type, attributes and functional or spatial relationships. Different field-level
devices have general functions addressed to them. For example, a variable air volume
device can have functions such as “set airflow” or “set temperature”. Furthermore,
specific vendor-dependent devices can have additional functions. A couple of
applications were developed for BOSS, including a HVAC optimization, personalized
control system and an energy saving auditing application. BOSS application developers
felt that the system gave them power to concentrate on actual problem solving, such as
how to visualise building data, i.e. they did not need to dwell on low-level hardware
specifications and communication issues because of the provided abstraction.

Other building operating systems have also been designed and implemented primarily for
research purposes. Fierro & Culler (2015) have a comparison analysis of such systems,
including BOSS, BeMOSS, BAS, HomeOS, SensorAct, Building Depot v2 and XBOS.
The building operating systems are evaluated in six main categories:

- Hardware presentation layer (HPL)

- Canonical metadata definition, storage and usage

- control process management

- building evolution management

- security

- Scalable user experience (UX) and application programming interfaces (API)

Hardware presentation layer hides the complexity of BA hardware device spectrum,
presenting them in uniform datapoints, such as thermostat temperature readings.
Canonical or standardised metadata with widely-used naming conventions gives context
to devices, informing their location, zone, type, function and other properties. Control
process management enables the control of BA controllers in a scenario-like manner.
Building evolution management takes care that the software operating on the building
recognises changes and adapts based on them. Security is a critical aspect of building
automation communication, so it cannot be tampered by cyber criminals. Lastly, UI and
APIs provide the interfaces to connect with the building system, thus providing the



35

ultimate user experience and holistic view of the building automation. (Fierro&Culler
2015; Dawson-Haggerty et al. 2013.)

3.5 Internet of Things

Internet of Things means the connection of physical objects to the internet. These objects
can be BA devices, refrigerators, toasters, doors, watches, cars or virtually anything that
can be connected to the internet with themselves or through add-ons. Through internet,
such objects can communicate and interact together without human intervention.
Formally and generally IoT has been defined by the European Research Cluster on the
Internet of Things (2017) as “a dynamic global network infrastructure with self-
configuring capabilities based on standard and interoperable communication protocols
where physical and virtual “things” have identities, physical attributes, and virtual
personalities and use intelligent interfaces, and are seamlessly integrated into the
information network”.

IoT can transform traditional objects to smart objects, enabling them to see, hear, think
and perform tasks together. Use cases for [oT have been expected in home and business
especially, improving the quality and easiness of life. Smart home applications include
automatic coffee and food preparations, indoor climate improvements, TV management
et cetera. In order to achieve the real potential of IoT, different applications and devices
are required for these purposes. Also, efficient and compatible protocols are required for
the communication of numerous heterogenous IoT devices. (Al-Fuqaha et al. 2015.)

Several applications are depicted and already implemented for IoT. IoT applications can
be divided to three domains: industrial, health well-being and smart city (Borgia 2014).
Industrial domain includes applications in industrial processing, agriculture and logistics,
where specific use cases can be industrial plant monitoring, luggage management,
irrigation monitoring, warehouse management and shopping operation. Health well-being
domain includes medical & healthcare and independent living, drawing use cases in smart
hospital services, elderly assistance and medical equipment tracking. Smart city domain
consists of smart mobility & smart tourism, smart grid, smart home/building and public
safety & environment monitoring. Examples of smart city applications are traffic
management, road condition monitoring, energy management, sustainable mobility,
comfortable living, video surveillance, building automation management and personnel
tracking. Altogether, IoT has an immense amount of use case potential.

IoT can be depicted through certain building blocks and characteristics. Al-Fuqaha et al.
(2015) categorises 10T elements to six domains: identification, sensing, communication,
computation, services and semantics. Identification is a key element for IoT devices to be
able to recognise them in the wide network. Identification is typically performed with
object IDs (name) and addresses (IP). Second key element for 10T is sensing which means
the collection data from the physical objects, such as a thermometer reading or a
refrigerator content. Communication is needed for the interaction and data transmission
of devices in the network with one another or a server. Third element is computing which
means the processing ability of 10T, being able to make computations in IoT devices or
in the server or cloud. Evidently, [oT is not just devices but it requires applications for
creating added value for users. Last element is semantics which means that the knowledge
and data of various devices must be extracted in a convenient way so it can provide
required services.



36

Architecture of IoT can be depicted in several ways. Al-Fugaha (2015) presents four
different IoT architectures collected from previous IoT literature, including three-layer,
middleware based and service-oriented architecture. Li et al. (2015) depicts a service-
oriented architecture with four layers, including sensing, network, service and interface
layer. Addition to these, Borgia (2014) shows a three-layer architecture of collection,
transmission and process, management and utilisation phase.

Borgia’s (2014) three-layer representation of IoT will be described in more depth here,
since it best depicts the IoT architecture in a conceptual level. As was mentioned, this
architecture consists of three layers or phases: collection (1), transmission (2) and process,
management & utilisation (3). Collection phase consists of sensing devices, such as
RFID, sensors, actuators, thermostats or GPS terminals. On top of them are short-range
communication technologies, including ZigBee, Bluetooth and NFC. Overall, collection
phase is the phase of sensing physical data with sensors and collecting it with short-range
transmittance.

The transmission phase consists of mechanisms that deliver the collected data of
collection phase devices to applications and servers. The data is transmitted through
various gateways and heterogeneous technologies, including wired, wireless and satellite.
Transmission phase is divided to gateway access and network. (Borgia 2014.)

Last phase is the process, management and utilisation (PMU) phase which processes and
analyses the data coming from IoT devices. After crunching, the data can be sent to
applications and services for external use. The phase also enables two-sided
communication, providing feedback to control applications which give commands to IoT
devices. Other management work is also done by the PMU phase, including device
discovery and management, data filtering and aggregation, semantic analysis and
information utilisation. PMU phase supplies the abstraction of lower-level hardware and
protocol specifications which enable high-level data and control management needed for
relieved application development (Borgia 2014.)

IoT incorporates an abundant amount of different communication protocols and
standards. Several organisations and consortia have tried to acquire more harmonised loT
communication and operation, including IEEE, W3C, ETSI, ITU, AIOTI and Open
Group. Close to the physical devices, various communication protocols and technologies
are used, including IEEE 802.15.4 (ZigBee), IPv4/v6, Wi-Fi, broadband cellular (2.5G,
3G, 4G), Z-Wave, NFC and Bluetooth. Several application or management level
protocols are also used, including Constrained Application Protocol (CoAP), Message
Queue Telemetry Transport (MQTT) and Advanced Message Queuing Protocol (AMQP).
(Borgia 2014; Al-Fuqaha et al. 2015; Li et al. 2014; Robert et al. 2016.)

Recently, two IoT messaging standards have been defined, namely O-MI (Open
Messaging Interface) and O-DF (Open Data Format). They are published by Open Group.
The purpose of these standards has been to fill the interoperability gap present in IoT.
These standards tackle the high-level requirements of IoT standardisation. O-MI and O-
DF combination compares itself to HTTP and HTML protocols of internet, where HTTP
enables the transmission of data and HTML defines how the content should be formatted.
O-MI and O-DF have a similar goal in IoT as HTTP and HTML in internet, where O-MI
enables universal communication between loT devices and O-DF gives a format for
presenting data and payload. Both O-DF and O-MI are specified in XML Schema. (Robert
et al. 2016; Open Group 2017.)



37

More closely, O-MI follows peer-to-peer communication model, where an O-MI node
can act as both server or a client. O-MI messages can be transported by any low-level
communication protocols that can handle XML documents or strings. O-MI messages
have four operations: read, write, subscribe and cancel. O-DF represents payload received
from IoT objects in a standardised fashion, that the data could be understood and
exchanged universally in all information systems. O-DF only defines how information
should be expressed of IoT objects, not how to communicate it (O-MI covers
communication). O-DF is specified in XML Schema. O-DF can be used with the O-MI
protocol, but O-MI can transport payloads in other formats also. (Robert et al. 2016; Open
Group 2017.)

IoT wave has just began and several issues need to be solved in the future. Al-Fuqaha et
al. (2015) addresses eight key challenges: availability, reliability, mobility, performance,
management, scalability, interoperability and security & privacy. Availability means that
IoT should be able to provide services anytime and anywhere for users. Reliability is
required for IoT, so that the devices and their systems communicate, response and deliver
with certainty. Mobility must be taken into account, so that IoT implementations can be
used on the go through mobile devices. Performance is required to achieve an efficiently
working system of networked devices. Considering management, the abundant amount
of IoT devices requires light-weight management protocols that can handle the whole
spectrum of IoT networks. Scalability is required for the purpose of IoT spectrum
expansion. Similarly, interoperability is highly demanded for IoT, so that the wide range
of heterogeneous devices, their systems, platforms, protocols and conventions can be used
in harmony. Last but not least, security and privacy are and will be tremendous challenges
for 10T, keeping personal information and crucial devices out from the hands of criminals
and third parties.

3.6 Commercial Markets

Currently, commercial building automation devices and systems are produced by various
vendors, including Honeywell, Tridium, ABB, Schneider Electric, Siemens, Johnson
Controls, Bosch, Cisco, Delta Controls, Distech, Echelon and Philips. Commercial
systems and devices often support most of the conventional BA communication
protocols. Similarly, IoT business has an abundant number of vendors in both software
and hardware, including Amazon Web Services, AT&T, Bosch, Cisco, Dell, Google,
Huawei, IBM, Intel, Microsoft and Samsung. The competition is fierce in loT markets
right now, attracting major ICT companies. It should also be noted, that numerous start-
ups around the world are rivalling in IoT and smart building business.

Contemporary building automation solutions enable IoT and cloud solutions as well,
following a similar trend that building operating system research has compiled. For
example, Intel markets a building management platform which connects cloud-based
building applications with traditional building automation devices and also IoT devices.
Similarly, Tridium develops their Framework infrastructure which enables the creation
of web-enabled applications that can be used to access, automate and control BA and IoT
devices. Furthermore, integration and better UX have evidently become key selling points
for BA companies when inspecting their products.

In 2016, total market value of building automation and controls market was
approximately $50 billion. It has been estimated, that the market would nearly double to
the vicinity of $100 billion by 2022 (Atkinson 2017). Focusing on the smart building



38

market of BA, it is expected to grow from $5.73 billion in 2016 to $24.73 billion by 2021.
Likewise, in the IoT market, a major growth has been anticipated. Forecasts include
$933.62 billion by 2025 (Industrial 1oT), $267 billion by 2020 (Business to Business [0T)
and $724.2 billion by 2023 (global) (Grand View Research 2017; Columbus 2017;
Research Nester 2017).



39

4 Interoperability in Telecommunications and
Authentication

This chapter gives an overview of telecommunications standards and electronic
authentication. More closely, electronic authentication is discussed on mobile and non-
mobile computing platforms, giving an insight on Finnish e-authentication methods;
specifically TUPAS, a strong digital authentication method supported by Finnish banks
and Mobiilivarmenne, a mobile signature solution supported by all major Finnish mobile
network operators. Telecommunication standards are discussed on general level, focusing
on their evolution and provided benefits. Altogether, chapter concentrates on how

interoperability has been achieved through standardisation and collaboration in these
fields.

In the context of the thesis, this literature chapter attempts to discover solutions for
achieving interoperability in a building operating system. As was discovered in the last
chapter, current building automation systems are fairly closed systems with weak
integrability. Thus, answers for enhancing interoperability are sought from
telecommunications and electronic authentication standardisation development.

4.1 Telecommunications Standards

Evolution of telecommunications, specifically mobile phones and the internet has been
generally described in chapters 2.5 and 2.6. This chapter tackles the standardisation aspect
of telecommunications, trying to find implications between harmonisation of such
technologies and collective benefits through interoperability.

In the manufacturing industry, standard can be interpreted as a mutual set of quality norms
or criteria. When considering ICT standards, it is important to perceive the characteristics
of information goods. First, ICT depends highly on heterogenous technology systems
built from various devices by various manufacturers. Connecting this device entity
requires compatibility and interoperability between components. Second, switching of
goods and services in the ICT 1is costly. For example, transferring from 2G to 3G
technologies require an immense amount of investment in labour and money. Third,
network effects are a key factor in ICT standard policy and they play a substantial role in
industry competition. Network effects mean that when more people adopt a certain
technology, benefits for the whole user base grow greater. Also, ICT encompasses new-
emerging multi-sided markets, where two or more users interact and perform business
through a platform. These platforms can obtain significant market share and become de
facto standards, for example Android and iOS have become de facto standards in mobile
phone operating system market. (Shin et al. 2015.)

Historically, ICT standards have stemmed from government regulative endeavours.
Governments have seen a need to assign regulative standards for suppliers in order to
prevent monopoly abuse and permit the widest possible choice of providers and features.
Without standards and regulations, full potential of technology might have been lost with
fragmented and non-interoperable technologies, scattering the markets. Development of
competition usually consists of initial phase of monopoly dominance, followed by the rise
of many small competitors, and ending in the perseverance of a few strong companies.
(Maeda et al. 2006.)



40

In the United States, Europe and Japan, government presence in ICT standardisation has
varied. In Japan, NTT exercised a domestic-oriented policy in telecommunications
industry, implementing proprietary domestic standards which hampered the export of
Japanese telecommunications technologies but also made difficult for other technologies
to enter the Japanese markets. In the US, market-induced standardisation has been the
primary driver. US telecommunication carriers have not been government owned,
although they have been highly regulated by the government. The Federal
Communications Commission (FCC) encouraged market-based competition, permitting
the resale and sharing of monopoly services and fighting against the AT&T monopoly.
FCC also took into account of the possible issues of fragmented markets with the AMPS
system, requiring interoperability between providers. Overall, FCC policies were
effective and stimulated competition, resulting in dropped prices for mobile services. In
Europe, both market- and government-driven strategies have been implemented in
individual countries, however a trend towards privatisation can be observed. In general,
less pressure has occurred for the deregulations of telecommunications standardisation in
Europe, possibly because co-European governmental efforts have succeeded, for example
with GSM standard. (Maeda et al. 2006.)

Funk (2009) has collected a historical framework of standard setting in mobile phone
industry. According to him, changes in technology have brought new problem-solving
methods, and the evolution of problem solving and standard setting has been circular
rather than unidirectional. Traditionally, problem solving in telecommunication was
integral, where regulated monopolies determined all standards and specifications in order
to conserve integrity. Similarly, standardisation was quasi-vertical, developed by a single
administration and implemented vertically in their own domain. This type of quasi-
vertical, integral and government monopolised situation occurred until the late 1970s.

Later, problem solving has evolved into modular style and standard setting has become
an open process. In the 1970s and 1980s, governments and corporations started to realise
that specifications for technologies could be provided by others than government
monopolised service providers and that the markets could be opened for competition. In
1978, telecommunications markets were opened in the US, where consumers can buy
phones from any approved manufacturers, and the manufacturers were allowed to
determine their own specifications and designs for the phones, as long as they conformed
to the open interface assigned by FCC. Later, FCC introduced AMPS which followed
similar modular strategy in analogue mobile solutions. (Funk 2009.)

Aside from the US, Europe and particularly the Nordic countries have also exploited
modular problem solving and open standard setting successfully similarly to FCC in the
1970s. Nordic countries were the forerunners in such methodologies when the Nordic
Mobile Telephone (NMT) system was erected in the 1980s. In other European countries,
analogue mobile systems did not obtain a similar growth as NMT, because of the lack of
open standards and competition. In Japan, Germany, France and Italy for example, mobile
systems were quasi-vertically integrated, where the standards were controlled by national
service providers, and there was a lack of competition between service providers or
mobile manufacturers.

Later in the digital mobile era, similar policies were deployed in the GSM system.
Scandinavian countries, including their service providers and manufacturers such as
Ericsson and Nokia had an important role in the successful implementation of GSM,
convincing Germany, France and other European countries to adopt an open standard



41

European-wide. Evolutional climax occurred in 1988, when the European
Telecommunications Standards Institute (ETSI) was established. Together with the
mobile industry, ETSI started developing the GSM standard which started as a de jure
standard in Europe and later became the global standard (Funk 2009). Overall, ETSI
combined the former fragmented market of country-level government monopolies and
opened the markets with an inter-European standardisation system (Robin 1994).

The success of GSM became a prime example of how open standardisation and modular
problem solving could succeed in the global telecommunications market. A GSM alliance
was established for the globalisation of GSM standard, and later it was integrated with
the International Telephone Union (ITU). In the turn of the millennium, the evolution also
made an impact on the isolated Japan which was still using national proprietary standards
in the 2G era. Finally, when 3G era arrived, Japanese government demanded that their
dominant mobile operator NTT Docomo would either adopt or create a global standard.
(Funk 2009.)

In the third generation, two noteworthy technology standards have been implemented,
namely UMTS and CDMA2000. UMTS is developed and maintained by the 3rd
Generation Partnership Project (3GPP) and is mainly used in Europe, Japan and China.
UMTS has evolved from GSM, following a similar path of development and
implementation as GSM. UMTS was not considered as a replacement of GSM at first,
but as a complement. Later, ETSI took an initiative to make UMTS the 3G universal
standard with similar steps as GSM was adopted: make UMTS the European standard,
use same frequency bands in the Euroarea, and promote inter-European policies for
acquiring network diffusion and its coverage (Fuentelsaz et al. 2008). Furthermore,
UMTS incorporates the whole 3GPP group of seven telecommunication organisations
from all over the world, including ETSI, TTC and ATIS. UMTS’s competitor
CDMAZ2000 is developed and maintained by the 3rd Generation Partnership Project 2
(3GPP2) and is mainly used in North America and South Korea.

Fourth-generation telecommunication technologies are dominated by 3GPP’s Long-Term
Evolution (LTE) standard. LTE technology enables 100 Megabit per second mobile data
rates. LTE formerly competed with the Ultra Mobile Broadband (UMB) standard
managed by 3GPP2, but UMB’s development was discontinued in 2008 when its main
sponsor Qualcomm announced that they would cease its development and switch to LTE
technologies (Reuters Staff 2008). Recently, LTE’s roadmap has been extended to
develop LTE-advanced (LTE-A), which will offer data rates beyond 1 Gigabit per second.
Furthermore, 5G technologies are already discussed, requiring a paradigm shift that
includes higher bandwidths, expanded base station and device densities, and more
antennas in order to support the enormous volume of data traffic in the future (Alsharif
& Nordin 2017).

Different conventions in telecommunications standard development have been researched
widely. David & Steinmuller (1994) have compared US and European conventions in
standard development, where US standards have developed through more pure
competition, whereas in Europe more harmonised, central-coordinated and consolidated
standardisation has been strived via collaborative organisations. Blind & Gauch (2008)
suggest that both formal standardisation by standardisation organisations and informal
standardisation by industry consortia is recommended, since they can complement and
synergise each other and offer dividual benefits. Informal standardisation enables more
flexible and grassroots standardisation, whereas formal standardisation actuates wider



42

deployment. Likewise, Leiponen (2008) argues that informal standardisation matters for
standard setting in telecommunications. Gruber & Verboven (2001) concludes, that
competing and singular standards can both have advantages and disadvantages, but a
single analogue standard helps develop markets significantly faster which is consistent
with the presence of network effects and the economies of scale. Similar conclusions are
implicated to digital standards, including GSM. Similarly, Shin et al. (2015) concludes
that standardisation supports both technology or market-based competition, achieving
interoperability of complementary products and services. Standards enable integration of
telecommunication commodities, and they can help promote innovation and enhance
market expansion.

4.2 Electronic Authentication

Electronic authentication is the process of verifying an individual’s identity
electronically. Different information systems can use the authenticated identity to qualify
if a person is authorised to do a specific electronic transaction (Burr et al. 2013).
Identifying personalities remotely in an open network, namely internet is a major
challenge. Benefits that reliable electronic authentication offer are greater security,
reliability, integrity and transparency (Spyrelli 2002). Also, time and costs can be saved,
when signing papers and performing public office errands is possible online. Electronic
authentication systems rely on cryptographic methods, for the purpose of retaining
messages in secret when communicating in the open internet.

In the United States, electronic authentication is an important part in digitalising the
government, making it more efficient, flexible and easier to access. Nationwide, the
Federal Chief Information Officer of the United States leads the electronic authentication.
Guidelines for electronic authentication are provided by the National Institute of
Standards and Technology (NIST). NIST categorises electronic authentication in four
levels based on the required assurance: Level 1 requires no identity proofing, Level 2
provides single factor remote network authentication, Level 3 provides multi-factor
remote network authentication (at least two) and Level 4 provides the highest practical
remote network authentication assurance. Level 4 requires special cryptographic tokens,
for example the Personal Identity Verification (PIV) authentication key. (Burr et al.
2013.)

Furthermore, the Office of Management and Budget (OMB) in the US gives guidance in
a 5-step process on how agencies should meet their electronic authentication assurance
requirements (Bolten 2003):

1. Conduct a risk assessment of the government system
Map identified risks to the appropriate assurance level
Select technology based on e-authentication technical guidance
Validate that the implemented system has met the required assurance level
Periodically reassess the information system to determine technology refresh
requirements

Nl

In the EU, electronic authentication is instructed by the EU regulation no. 910/2014 on
electronic identification and trust services for electronic transactions in the internal
market. More commonly this regulation is called the eIDAS regulation. eIDAS conducts
the following (European Union 2014):
a. lays down the conditions under which Member States recognise electronic
identification means of natural and legal persons falling under a notified electronic
identification scheme of another Member State;



43

lays down rules for trust services, in particular for electronic transactions; and

c. establishes a legal framework for electronic signatures, electronic seals, electronic
time stamps, electronic documents, electronic registered delivery services and
certificate services for website authentication.

EU used to have another regulation for electronic authentication, the Electronic
Signatures Directive 1999/93/EC. eIDAS was decreed in order to amend the old
legislation, where two main problems were addressed. First, citizens of EU cannot use
their electronic ID in another member state, since the e-ID solutions are national, thus
providing access only in its own domain. Accordingly, this problem was addressed and
cross-border identification was suggested. Second, the new eIDAS legislation included
other trust services than signatures to be used in electronic authentication, including
electronic seals, stamps, documents registered delivery services and certificate services
for website authentication. (Cujipers & Schroers 2014.)

According to Huhnlein (2014), eIDAS guidelines are well suited for service-oriented
identification system, i.e., providing Identification as a Service. Furthermore, Morgner et
al. (2016) conclude that the eIDAS transaction system is an easy and practical method in
authenticating transactions, and it provides strong assurance with powerful cryptography
technologies.

In Finland, eIDAS was carried out in national legislation by amending the law Act on
Strong Electronic Identification and Electronic Signatures 7.8.2009/617. The amended
electronic ID legislation came into force in July 2016.

In practice, strong electronic identification (e-ID) is carried out in a couple of ways in
Finland. The most successful and used e-ID method is the TUPAS strong digital
authentication. TUPAS comes from Finnish words Tunnistuspalvelu Standardi which
means identification service standard in English. TUPAS is provided and maintained by
Finance Finland, which is an interest group of Finnish banks, insurance companies,
finance companies, investment fund companies and other finance sector employers. For
identification, TUPAS uses bank customers’ electronic user identifiers such as a
username and a PIN code, and also a transaction authentication number (TAN). Most
commonly, TANs are provided in paper passcode lists of one-time use PIN numbers.
With both PIN and TAN, two-factor authentication is achieved and it can be used as a
strong electronic identification method in Finland. TUPAS method can be described as
PIN/TAN scheme (Kerttula 2015).

Currently, TUPAS is the de facto standard of strong electronic identification and it covers
over 90 % of Finnish electronic identification activities, being used approximately 70
million times per year for identification. Recently, TUPAS authentication cost 50 cents
per use for the service provider, but since May 2017 authentication cost was reduced to
10 cents per use by a legislative demand. No definitive promises have been made, that
the reduced costs from the service provider are not transferred to bank customers (Parviala
2017). Indeed, TUPAS provides a strong electronic identification method but using it
requires effort and costs.

Other strong electronic identification methods in Finland include electronic ID card and
mobile certificate. Electronic ID cards have not managed to diffuse successfully, mainly
because their deployment and use have been cumbersome. Especially, electronic ID cards
need a separate card reader which undoubtedly complicates its use; however, in 2017, the



44

situation changed when the cards became readable by NFC-enabled smartphones
(Vaestorekisterikeskus 2016). Finnish electronic ID cards can be described as a
certificate-based authentication scheme, and currently they are the only qualified
certificates available for electronic authentication in Finland, however Finnish mobile
certificate meets all the requirements to become a qualified certificate, only missing the
official status (Kerttula 2015).

Mobile certificate or Mobiilivarmenne in Finnish enables strong electronic identification
via a mobile phone. Mobile certificate is supported by all the major Finnish operators,
DNA, Elisa and Telia. These three operators work in a Circle of Trust, a cooperative
framework, where operators accept electronic IDs created by each other, allow co-
accepted IDs to roam on their networks and let anyone in the Circle of Trust to utilise
each other’s agreements in collaboration. This Circle of Trust is based on ETSI standards
and standardised Web-service interfaces, and is unique globally as a mobile signature
scheme. (Kerttula 2015.)

Guidelines for mobile certificate implementation is nationally given by the FiCom union,
which is an organisation promoting interests of telecommunications and IT businesses.
FiCom guidelines are based on ETSI MSS TS 102 204, TR 102 206 and TS 102 207
standards. Other technologies include XML Schema, SOAP, XMLSignature, WSDL,
PKCS#7 and SAML. Certificate is located in the phone’s SIM card, and it has to be
activated by the network operator. Currently, mobile certificate works in over 1000
Finnish online services. Mobile certificate does not require a username or a password to
be used for authentication, only your mobile phone and a PIN number. (Mobiilivarmenne
2017; FiCom 2014; Pulkkis et al. 2013.)

Finnish mobile certificate uses a two-factor, two-channel model. Each user has their
tamper-proof universal integrated-circuit card (SIM card) and a personal secure PIN, i.e.,
a two-factor authentication is utilised. Two-channel means that service channel is
separated from that used for signature. Authentication can be done in two-terminal model,
where the authentication occurs on a mobile device and the service is accessed from a
desktop device. One-terminal model is also possible, where both service and
authentication is processed on a mobile device. (Kerttula 2015.)

Kerttula (2015) argues, that mobile signature scheme is superior to PIN/TAN (TUPAS),
one-time password (OTP) token, EMV Card+Reader, Mobile SMS-OTP and Public Key
Infrastructure (PKI) Smart Card+Reader authentication schemes. Features that were
compared include security, easy-to-use, mobility, usage cost, distribution cost, and
maintenance.

Finnish mobile certificate system has been tried two times in the past. In 1999, a SIM-
card based pilot was carried out, but the time was too early, mainly because sufficient
amount of capable devices were not utilised yet and the legislation was inadequate. Later
in 2005, another proper attempt was put out, but the law at that time required police
department to issue strong identification, which resulted in difficult registration process
and the attempt failed again. The latest effort started in 2011, providing better
coordination, adequate legislation, diffusion of compatible mobile devices, better
standards and wider network of service providers (Kerttula 2015). Today, mobile
certificate is still lagging in user rates, only being used by approximately 200 000 people
in Finland. A reason for the slow deployment of mobile certificate might be that its use
costs on some operators (Niskanen 2016).



45

5 Interview Study

5.1 Synthesis of Literature

Theoretical background for the thesis is reviewed in chapters 2, 3 and 4. Chapter 2
discusses the evolution of computers and operating systems, including the general history
of mechanical computers, general-purpose computers, digital computers, mainframes,
minicomputers, transistors, integrated circuits, personal computers, the internet and
mobile devices. Chapter concentrates in the evolution of operating systems. Last segment
of 2" chapter gives an overview of enterprise resource planning systems and their
evolution. Second chapter provides definition, purpose and context for operating system
and gives implications what it would be in the context of a digitalised building.

Chapter 3 gives an overview of building automation, building automation systems,
building operating systems and internet of things. More closely, purpose of building
automation and the architecture and structure of building operating systems are covered,
review of building operating systems depicted in previous research is carried out,
overview of internet of things is laid out, and a brief report of building automation and
IoT market is given. Third chapter reviews building ICT’s contemporary status and
anticipated trends, attempting to find the developmental path and requirements for a
building operating system.

Chapter 4 goes over telecommunications and electronical identity authentication
standardisation.  Telecommunications section follows the generations of
telecommunications history from 1G to 5G, describing how different technologies have
developed through standardisation. Furthermore, standardisation policies and their
evolution in Europe, USA and Japan are discussed, especially concentrating in the
evolution of Nordic and European telecommunications standards. Electronic
authentication section gives an overview of electronic authentication in USA and Europe,
concentrating on legislation, guidelines and standardisation. Also, electronic
identification standards developed and utilised in Finland are described in depth. Fourth
chapter strives to find resolution for the interoperability issue of current building
automation systems.

5.2 Overview of Real Estate and Construction Industry

Construction industry accounts for a considerable portion of 