

Aalto University
School of Science
Master’s Programme in Computer, Communication and Information Sciences

Toni Karttunen

Utilization of prototyping methods in
user-centered design process

Using prototypes to support fast-paced product development in
an agile software development project

Master’s Thesis submitted in partial fulfillment of the requirements for the
degree of Master of Science in Technology.

Espoo, November 26, 2017

Supervisor: Professor Marko Nieminen, Aalto University
Advisor: Kalle Ikkelä, M. Sc. (Tech.), MBA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/145239514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

Aalto University
School of Science
Master’s Programme in Computer, Communication and Information Sciences

ABSTRACT OF MASTER’S THESIS
Author: Toni Karttunen
Title: Utilization of prototyping methods in user-centered design process
Date: November 26, 2017 Pages: vii + 87
Major: Software and Service Engineering Code: SCI3043
Supervisor: Professor Marko Nieminen
Advisor: Kalle Ikkelä, M. Sc. (Tech.), MBA
To stay competitive in the rapidly evolving business environment,
organizations need to be able to create innovations. Novel new products are
often created with experimentation, which means that organizations need
to use practices that support experimentation. Prototyping is one such
practice. Agile software development embraces changing requirements,
which makes it suitable for experimentation-driven product development.
The overall research problem considers how different types of prototyping
approaches can support fast-paced product development in an agile
software development project. Research questions include:

1. How to improve prototyping for fast-paced agile software
development?

2. How can prototyping support agile requirements engineering?

The research consists of two main parts: literature review and empirical
research, which includes action research and interviews.
 Prototyping could be improved for the purposes of fast-paced agile
software projects by using simplified prototypes and small focused
prototypes to make it possible to iterate the design of user interface
elements faster. Additionally, low-fidelity prototyping and participatory
design could be useful for agile projects. To make large high-fidelity
prototypes faster to iterate, better tooling is needed. Prototyping can
support agile requirements engineering e.g. by acting as documentation,
facilitating communication and by making big picture clearer.
Keywords: prototype, prototyping, agile requirements engineering
Language: English

 iii

Aalto-yliopisto
Perustieteiden korkeakoulu
Master’s Programme in Computer, Communication and Information Sciences

DIPLOMITYÖN TIIVISTELMÄ
Tekijä: Toni Karttunen
Työn nimi: Prototypointimenetelmien käyttö käyttäjäkeskeisessä
suunnitteluprosessissa
Päiväys: 26. marraskuuta 2017 Sivumäärä: vii + 87
Pääaine: Software and Service Engineering Koodi: SCI3043
Työn valvoja: professori Marko Nieminen
Työn ohjaaja: Kalle Ikkelä, diplomi-insinööri, MBA
Pysyäkseen kilpailukykyisinä nopeasti kehittyvässä liiketoimintaympäris-
tössä organisaatioiden pitää kyetä luomaan innovaatioita. Uudenlaiset
tuotteet saadaan usein aikaiseksi kokeilujen avulla, mistä johtuen on
käytettävä käytäntöjä, jotka tukevat kokeilujen tekemistä. Prototypointi on
yksi tällainen käytäntö. Ketterä ohjelmistokehitys ottaa halukkaasti vastaan
muuttuvat vaatimusmääritykset, joten se soveltuu kokeiluita hyödyntävään
tuotteiden kehitykseen. Tutkimusongelma tarkastelee, kuinka erilaiset
prototypointitavat tukevat nopeatempoista tuotekehitystä ketterässä
ohjelmistokehitysprojektissa. Tutkimuskysymykset ovat:

1. Kuinka prototypointia voidaan kehittää nopeatempoista ketterää
ohjelmistokehitystä varten?

2. Kuinka prototypointi tukee ketterää vaatimusmäärittelyä?

Tutkimus sisältää kaksi pääosaa: kirjallisuuskatsauksen ja kokeellisen
osan, joka koostuu haastatteluista ja toimintatutkimuksesta.
 Prototypointia voidaan kehittää nopeatempoisten ketterien
ohjelmistoprojektien tarpeisiin käyttämällä yksinkertaistettuja
prototyyppejä sekä pienempiä ja fokusoituneempia prototyyppejä
käyttöliittymäelementtien designin iteroinnin nopeuttamiseksi. Matalan
tarkkuuden prototyypit ja osallistava suunnittelu voivat myös olla avuksi
ketterissä projekteissa. Isojen korkean tarkkuuden prototyyppien
iteroinnin nopeuttaminen vaatii uusien työkalujen kehittämistä.
Prototypointi voi tukea ketterää vaatimusmäärittelyä esim. toimimalla
dokumentaationa, helpottamalla kommunikaatiota ja tekemällä ns. ison
kuvan selvemmäksi.
Avainsanat: prototyyppi, prototypointi, ketterä vaatimusmäärittely
Kieli: englanti

 iv

Acknowledgements

Creating this thesis was a long journey, which included some challenges.
Writing the thesis required significant effort, which would not have been
possible without support from my thesis supervisor professor Marko
Nieminen and advisor Kalle Ikkelä. Additionally, I would like to thank my
workplace RND Works for their support for my thesis and our client company
Veikkaus that provided environment for conducting the empirical part of the
thesis.

While writing this paper, I am finishing my Master’s degree studies. When I
started my studies in Otaniemi, I could not have imagined how many
memorable experiences I would gain during my studies. I want to thank all the
fellow students and university employees that I met during that time.

Additionally, I would like to thank my family and friends who have
supported me throughout my studies.

Espoo, November 2017

Toni Karttunen

 v

Contents

Chapter 1 Introduction ... 1

1.1 Background ... 1
1.2 Research problem and research questions ... 3

1.2.1 Research problem ... 3
1.2.2 Research questions ... 3

1.3 Scope .. 5

Chapter 2 Literature review ... 6
2.1 Methodology for literature review .. 7

2.1.1 Data collection ... 7
2.1.2 Literature selection criteria ... 9

2.2 Definition of prototypes and prototyping .. 10
2.3 Motivation: benefits of prototyping ... 10
2.4 Problems and challenges .. 11
2.5 Prototype fidelity.. 13

2.5.1 Low-fidelity prototyping .. 13
2.5.2 High-fidelity prototyping ... 15
2.5.3 Multi-fidelity prototyping ... 15

2.6 Agile methodology ... 17
2.7 Agile requirements engineering ... 17

2.7.1 Agile requirements engineering practices .. 18
2.7.2 Agile requirements engineering challenges 19

2.8 How to improve prototyping for fast-paced agile software development? 21
2.9 How can prototyping support agile requirements engineering? 25

Chapter 3 Empirical research .. 27
3.1 Overview of the project.. 27
3.2 Empirical research design overview .. 27
3.3 Interviews .. 28

 vi

3.3.1 Methodology for interviews .. 28
3.3.2 Participants ... 29

3.4 Action research ... 30

Chapter 4 Results ... 33
4.1 Agile .. 33

4.1.1 Definition of agile ... 33
4.1.2 Benefits of agile ... 34
4.1.3 Drawbacks of agile .. 35
4.1.4 Definition of requirements engineering .. 36
4.1.5 Definition of agile requirements engineering 37
4.1.6 Requirements engineering in our project ... 38

4.2 Prototyping .. 39
4.2.1 Definition of prototyping ... 39
4.2.2 Interviewees’ previous experience with prototyping 39
4.2.3 Benefits of prototyping ... 40
4.2.4 Drawbacks of prototyping .. 41
4.2.5 Prototype fidelity .. 42
4.2.6 Small focused prototypes vs. large prototypes 42
4.2.7 Prototyping for different audiences .. 43

4.3 Agile requirements engineering with prototyping 45
4.3.1 Requirements of fast-paced agile development for prototyping 45
4.3.2 How to improve prototyping for fast-paced agile software
development ... 46
4.3.3 How prototyping impacts agile requirements engineering 47
4.3.4 How prototyping helps with agile requirements engineering
challenges .. 49

4.4 Action research results .. 55

Chapter 5 Discussion ... 60
5.1 Methodology for analysis ... 60

5.1.1 Analysis process ... 60
5.1.2 Method evaluation ... 61

5.2 RQ1: How to improve prototyping for fast-paced agile software
development? ... 64
5.3 RQ2: How can prototyping support agile requirements engineering? 67
5.4 Model of agile requirements engineering with prototyping 70

 vii

5.4.1 Current model .. 70
5.4.2 New improved model ... 72

Chapter 6 Conclusions .. 75
6.1 Analysis of research problem .. 75
6.2 Conclusions and recommendations... 77
6.3 Future research needs .. 78

Bibliography ... 79

Appendix A. Interview questions .. 82

Appendix B. Letter of informed consent .. 86

Chapter 1 Introduction

1.1 Background

Modern software development organizations face rapidly evolving
competition. Additionally, fast changes in technology landscape and time
pressure cause challenges, which today’s product development teams have to
face. Due to the constantly changing requirements, traditional requirements
engineering approach that tries to discover all the requirements upfront is not
feasible in many software projects nowadays. (Boehm, 2000)

To succeed in the harsh competition, product development teams must be
able to elicit, analyse, validate and refine requirements quickly. Agile
requirements engineering faces these challenges with a set of practices that
attempt to solve the challenges of the fast-paced business and technology
environment; these practices include prototyping, iterative requirements
engineering, face-to-face communication, extreme prioritization, constant
planning and reviews and tests (Ramesh, Cao, & Baskerville, 2010).

Experiment-driven problem solving can give competitive advantage to
organizations that attempt to be create innovations. A typical approach to
problem solving when creating novel products is to create a simplified model
of a product (e.g. in form of a prototype) and find out through trial and error if
it works. If it is noticed that the design does not work, the model is refined
iteratively until it works. The benefit of the approach of using simplified
models instead of the design of the whole product is that a simplified model
does not need to include those parts of the product that are not relevant in
terms of the problem to be solved. (Thomke, von Hippel, & Franke, 1998)
Coming up with successful novel ideas is difficult by just analysing and
studying a phenomenon; experimentation-driven approach is more likely to
yield good results (Ries, 2011).

CHAPTER 1. INTRODUCTION

2

Applicability of experimentation-driven problem solving is not limited to
organizations that attempt to be innovative. For example, prototyping can act
as a tool for managing risk (Schrage, 1993), which can be useful for risk-averse
organizations. Prototypes are usually faster to build than a real product, which
makes it possible to evaluate the product with relevant stakeholders before
committing resources to building the real product.

Prototyping, an agile requirements engineering practice, can be useful for
various reasons: for example, it enables early validation of designs (Drews,
2009) and early involvement of users and customers in product development
process (Brown, 2008). Prototyping facilitates communication between
product development team and customer (Käpyaho & Kauppinen, 2015).
Moreover, many agile projects have replaced written documentation with
prototypes (Ramesh et al., 2010).

CHAPTER 1. INTRODUCTION

3

1.2 Research problem and research questions

1.2.1 Research problem

As it was stated previously in section 1.1, creating innovative new products at
a rapid pace is important for organizations that want to remain competitive.
Organizations need to be able to iterate their product designs fast in order to
respond to rapid changes of business needs and technology landscape. Many
organizations have moved to agile approaches in their requirements
engineering process to support creation of digital products in rapidly changing
business and technology environments. The overall research problem
considers how different types of prototyping approaches can support
fast-paced product development in an agile software development
project.

Fast-paced agile landscape causes some unique challenges to prototyping,
such as need to be able to modify a prototype frequently due to frequent
requirement changes. Due to the popularity of agile methodology in software
development projects nowadays, it is necessary to discover how prototyping
should be practiced in agile projects in order to be efficient. It is also useful to
consider how prototyping can support agile requirements engineering.

Prototyping can be done with various approaches and the choice of approach
can influence e.g. the speed of creating and modifying the prototypes (Houde
& Hill, 1997). Therefore, it is important to consider, which approach is used so
that the goals of fast-paced software development projects can be met and
prototyping serves the purposes of the project instead of acting as a bottleneck.

1.2.2 Research questions

Prototyping is approached from multiple angles in this research. The main
research questions include:

RQ1: How to improve prototyping for fast-paced agile software
development?

Prototyping can be challenging in agile software projects. Constantly changing
requirements require ability to create and refine prototypes quickly. Minimal
documentation can make it difficult to understand what the prototype should

CHAPTER 1. INTRODUCTION

4

even prototype if customer is not able to participate in the project actively to
clarify the requirements. Focus on short-term time-to-market planning can
make it difficult to understand what features will be needed in the future
(Ramesh et al., 2010)

Conventional knowledge of prototyping implies that low-fidelity prototypes
can be created faster than high-fidelity prototypes, which makes them more
suitable for situations when it is necessary to explore a large number of
alternative designs or when it is desirable to be able to create prototypes at a
rapid pace (Snyder, 2003). During the recent years, a plethora of new high-
fidelity prototyping tools have entered the market, which begs us to question
if high-fidelity prototyping has become viable for fast-paced agile projects.

Prototype fidelity is not the only factor that affects suitability of prototyping
for fast-paced agile software development; e.g. the focus of the prototype may
have an effect on how the prototype is perceived by customer and end users
and how fast the prototype can be created (Houde & Hill, 1997). Overall,
finding the adequate balance of different factors is important when utilizing
prototyping in agile projects.

RQ2: How can prototyping support agile requirements
engineering?

When utilizing agile requirements engineering, multiple challenges may occur:
for example, a customer may not trust the product development team due to
not having comprehensive documentation and verifying the requirements can
be difficult when comprehensive documentation does not exist. Moreover,
because agile requirements engineering relies heavily on having good
communication, challenges in communication can have a negative impact on
an agile project. Additionally, understanding non-functional requirements can
be challenging and understanding the overall high-level goals of the project
can be difficult. (Ramesh et al., 2010)

Due to a plethora of challenges in agile requirements engineering, it is useful
to ask if agile requirements engineering practices, such as prototyping, could
be used to combat the previously mentioned challenges. Some of these ways
how prototyping can help with agile requirements engineering, such as acting
as documentation in place of written requirements documents are quite
obvious, but more research is needed to have a better understanding of how

CHAPTER 1. INTRODUCTION

5

prototyping can help with the agile requirements engineering challenges and
if the chosen prototyping approach has any effect on how prototyping can help.

1.3 Scope

The scope of the thesis is limited to design of graphical user interfaces in
software products. The empirical study focuses on using the prototyping
methods for designing a mobile application user interface, although it is
assumed that the majority of the results that are gathered in the case study are
applicable to graphical user interfaces on at least some other platforms, such
as conventional web user interfaces. When discussing prototyping, the main
focus is on user interface prototyping, but some other forms of prototypes,
such as technical proof-of-concept prototypes are mentioned in those
situations where is considered useful to compare user interface prototypes
with other types of prototypes.

The empirical part of this thesis was done at one agile project at a Finnish
company, in which I was designing a mobile gaming application. Because the
empirical research only covers one project at one company, there are some
limitations related to the generalizability of the findings.

Some types of experimental graphical user interfaces, such as virtual reality
and augmented reality user interfaces, are left out of this study because they
will probably require using different prototyping tools instead of those tools
that are popular for designing user interface prototypes for conventional
mobile applications. Moreover, it was not possible to prototype such user
interfaces in the empirical study project due to the constraints of the project
environment.

Chapter 2 Literature review

This chapter presents an overview of the existing scientific knowledge of
prototyping and agile requirements engineering. To make it easier to
reproduce the results of the literature review, section 2.1 describes how data
was collected and how the literature was selected for the literature review.

Because prototypes can be defined in multiple different ways according to
different sources, a definition of the topic is provided in section 2.2 to make it
clear how prototypes are defined in this study so that it is possible to
understand that if some other study has defined prototypes in a different way,
the results of the study may be different due to a different definition. To
understand why prototyping is done, section 2.3 describes the benefits of
prototyping. To provide a balanced view of the topic, the drawbacks of
prototyping are described in the following section 2.4. Prototyping can be done
with different levels of fidelity and the chosen level of fidelity can impact how
fast prototypes can be created and modified and therefore prototype fidelity
can affect how well prototyping works in a fast-paced agile software
development project, in which requirements change frequently. Prototype
fidelities are presented in section 2.5.

To provide a brief introduction to the agile way of thinking to those readers
who are unfamiliar with the topic, a short description of agile methodology is
available in section 2.6. Agile requirements engineering is used to face the
problems that are caused by the challenges of many today’s software projects:
rapid changes in technology and customer’s and user’s needs and limited
amount of time (Cockburn, 2002; Ramesh et al., 2010). The practices that agile
requirements engineering utilizes to face these challenges are described in
section 2.7.1. Unfortunately, applying the agile requirements engineering
practices also cause some problems; these problems are presented in section
2.7.2.

CHAPTER 2. LITERATURE REVIEW

7

To summarize the answers to the research questions based on the literature,
the chapter ends with description of how to improve prototyping for agile
software development and how prototyping can support agile requirements
engineering.

2.1 Methodology for literature review

To improve reproducibility of literature review, a systematic approach of
identifying and analysing relevant literature was needed. Staples & Niazi
describe how to conduct a literature review by using systematic review
guidelines similarly as it is often done in other fields of science (e.g. medicine),
in which it is systematic literature review guidelines are more established than
in software engineering research (Staples & Niazi, 2007). The review process
that Staples & Niazi described was modified for this thesis to better fit the
needs and requirements of a typical Master’s thesis. The modified version of
the systematic literature review process that I used is described in sections
2.1.1–2.1.2.

2.1.1 Data collection

The literature search consisted of two phases. The first phase, initial literature
search, was done by using a large number of potential search terms
(“keywords”) to understand which search terms could return enough relevant
results so that they could be used for this study. The second phase, final
literature search was done by using the search terms that are listed in table 2.1.
The literature search was conducted by querying Aalto Learning Centre
databases, Elsevier Mendeley literature search tool and Google Scholar.

When relevant primary articles were found, additional literature was
searched by using the references of the primary articles and by searching the
other publications of the author of the primary articles (i.e. by using the
commonly known “snowballing” technique for finding literature).
Additionally, a small amount of literature was added by using the course
material literature of Aalto University usability courses and service design
courses.

CHAPTER 2. LITERATURE REVIEW

8

Table 2.1: Search terms that were used for searching literature.

Search term
prototyping
prototype
prototyping AND “user interface”
prototype AND “user interface”
software prototyping
prototyping AND fidelity
prototype AND fidelity
“paper prototyping”
“paper prototype”
“low-fidelity prototyping”
“low-fidelity prototype”
“high-fidelity prototyping”
“high-fidelity prototype”
“mixed-fidelity prototyping”
“mixed-fidelity prototype”
“multi-fidelity prototyping”
“multi-fidelity prototype”
prototyping AND mobile
prototype AND mobile
agile AND UX
agile AND “user experience design”
“requirements engineering”
agile AND “requirements engineering”
“agile requirements engineering”
“agile requirements engineering” AND challenges
prototyping AND “requirements engineering”
prototyping AND agile AND “requirements engineering”
“agile software development”

CHAPTER 2. LITERATURE REVIEW

9

2.1.2 Literature selection criteria

After search results were received from a search query, the first step was to
discard clearly irrelevant articles, in which even the title did not include
relevant topics. Then, the abstracts of the articles were read to evaluate
whether the article at hand was potentially relevant. Finally, the contents of
the articles were evaluated to decide if the articles were relevant for this study.

When reviewing the results of the search queries, more value was given to
articles that high citation counts (unfortunately, this information was only
available in certain search tools and therefore the citation counts were not
examined for all the literature). If two similar articles were found and one of
them was peer-reviewed and the other was not, the peer-reviewed article was
considered more trustworthy and it was chosen based on that evaluation
criteria.

CHAPTER 2. LITERATURE REVIEW

10

2.2 Definition of prototypes and prototyping

Before starting to explore prototypes and prototyping in more detail, it is
useful to define what they mean because different sources have somewhat
different definitions for the topic; some definitions are quite narrow and strict,
whereas other definitions are broader and more ambiguous. Therefore, it is
important to have a clear definition of the topic to avoid misunderstandings
when comparing the results of this thesis with the results of other research
about the topic.

Handbook of human-computer interaction (Houde & Hill, 1997) has a very
broad definition of a prototype: according to the handbook, a representation
of a design idea is a prototype, regardless of the implementation medium of
the prototype. Therefore, a prototype can be defined in multiple ways and it
can mean different things to different groups of people; for instance, an
interaction designer may call "a simulation of onscreen appearance and
behaviour" a prototype, whereas a user researcher may call a storyboard a
prototype.

In Snyder’s book Paper Prototyping (2003), a prototype is defined more
narrowly; according to Snyder, e.g. a storyboard is not a prototype because it
is not possible for a user to interact with a storyboard; according to Snyder,
[paper] prototyping is a form of usability testing. Houde & Hill (1997) state
that a storyboard can be a prototype because it shows a design idea in a
concrete way and facilitates discussion about design problems. Due to the fact
that this thesis discusses the applicability of using prototypes for requirements
engineering, not just for usability testing, this thesis follows Houde & Hill’s
(1997) definition of the topic. Prototyping is defined as the activity of creating
prototypes in this thesis.

2.3 Motivation: benefits of prototyping

The goal of making prototypes is to get answers to design questions. Prototypes
enable exploring various design alternatives. Prototypes help facilitating
design discussions around a concrete artefact. (Houde & Hill, 1997; Schrage,
1993) Prototypes can also act as a means for exploring new design questions
(Schrage, 1993).

CHAPTER 2. LITERATURE REVIEW

11

Because it is usually faster to make a prototype than the real product,
prototyping supports early user involvement in product development process
(Brown, 2008). Early validation of designs can help manage risks by detecting
problems before making commitment to a flawed design (Drews, 2009;
Schrage, 1993). Prototypes help organizations test more ideas than they could
by implementing the real product without doing a prototype first (Schrage,
1993). Testing multiple design alternatives is useful, because when users can
view multiple alternatives, they give more realistic (i.e. more critical) feedback
in usability tests than when viewing just one design alternative (Tohidi,
Buxton, Baecker, & Sellen, 2006).

Prototypes are essentially simplified models of a real product that do not
need to contain all those details of the real product that are expensive to model
and potentially not relevant to the design task at hand. Due this
simplification—leaving out irrelevant information—prototypes can be easier to
analyse than the real product. (Thomke et al., 1998)

In agile software projects, it can be challenging to manage requirements with
very little written documentation. Prototypes can help with this challenge by
acting as a form of documentation and by acting as a tangible artefact to
facilitate discussion about requirements. When used as documentation,
prototypes can reduce ambiguity of requirements and create trust between the
customer and product development team. (Käpyaho & Kauppinen, 2015)

Prototypes can help having quality communication with customer, which is
important in agile projects that rely heavily on having good communication.
(Käpyaho & Kauppinen, 2015) Using prototypes in participatory design can
help involving a multidisciplinary team in the design process (Snyder, 2003).

Additionally, updating prototypes can feel more motivating than updating
written documentation. Moreover, if prototypes are implemented with the
same technologies as the final product, prototypes can save time when
implementing the final product. (Käpyaho & Kauppinen, 2015)

2.4 Problems and challenges

Houde & Hill (1997) argue that due to the complexity of creating prototypes of
interactive computer systems, it can be challenging or even impossible to
prototype a whole design. Therefore, successful prototyping often requires
finding suitable focus for the prototype and communicating the focus and

CHAPTER 2. LITERATURE REVIEW

12

limitations of the prototype to various stakeholders, such as other members of
a design team, users, product managers and business stakeholders.
Unfortunately, it can be difficult to explain which parts of the system
correspond to the actual artefact. There is a chance that the effects of the other
interrelated parts of the product that affect user experience of the whole
product are not understood when evaluating a prototype that focuses on
certain aspects of the product. Moreover, as Houde & Hill (1997) explain,
prototypes are not always self-explanatory, which may cause challenges if a
prototype is presented without sufficient explanation about its purpose and
what it is supposed to prototype. Additionally, it is possible that a prototype
does not correspond the actual artefact realistically enough from
user’s/customer’s point of view, which may lead to misunderstandings.

Additionally, Houde & Hill (1997) state that focusing on only a certain part
of the system may not yield correct results when evaluating the user experience
of the product, because interactive computer systems consist of a large number
of interrelated parts, which affect the user experience of using the product.

In some organizations, the organization's culture may only view certain
types of prototypes valid or prototypes’ purpose is to make a point instead of
acting as a mean for facilitating discussion. (Schrage, 1993) In such
organizations, all the benefits of prototyping cannot be accomplished.

If prototyping media (or prototyping tools) are chosen so that the prototypes
are difficult and slow to modify (prototypes become “untouchable works of
art”), prototyping does not encourage exploration of new ideas so well as
prototyping media that enables easy and rapid modification of the prototypes.
The quantity of prototypes that an organization is able to produce and the
speed of how fast an organization can produce a prototype tell about how fast
the organization is able to explore new ideas. If creating a prototype takes very
long time, it is likely to be treated as an end result of thinking process instead
as a means for exploring opportunities. (Schrage, 1993)

Putting lots of focus on visual user interface prototyping can be harmful for
system architecture and lead to putting not enough focus on non-functional
requirements and quality issues. Moreover, the speed of creating prototypes
may cause non-technical customers to have too high expectations for
development speed of the real product. (Käpyaho & Kauppinen, 2015)

If prototype is implemented in code, there is a temptation to use prototype
code in a real product to speed up the development process. Because
prototypes are usually not implemented as robustly as real products, prototype

CHAPTER 2. LITERATURE REVIEW

13

code may cause risks when used in production because prototypes are likely
not as secure, scalable and robust as real products. (Ramesh et al., 2010)

2.5 Prototype fidelity

As described by Houde & Hill (1997), prototype fidelity means how finished
the behaviour and the visual look of the prototype are i.e. how close the design
of the prototype is to the eventual design of the actual product. According to
their definition, prototype fidelity does not mean the amount of detail; the
term that is used to describe the amount of detail is resolution.

It is important to note that prototype fidelity is not a measure of the
completeness and readiness of a design. As an example, Houde & Hill (1997)
mention that a high-fidelity prototype may be used for market research during
the early stages of the design process, whereas a low-fidelity prototype may be
used to evaluate the structure of the user interface in the later stages of the
process. Additionally, it is worth noting that the level of fidelity may not
correspond to the complexity of the open design question that the prototype is
supposed to answer; sophisticated questions may be answered with the help of
a simple prototype (Schrage, 1993).

2.5.1 Low-fidelity prototyping

Paper prototyping, perhaps the most well-known form of low-fidelity
prototyping, is a platform-agnostic method for designing, creating and testing
user interfaces. It can be also useful for ideation (co-design and brainstorming)
and communication with various stakeholders. (Snyder, 2003)

As defined by Snyder (2003), paper prototyping means usability testing, in
which the user performs realistic tasks with a paper-based version of the user
interface. In this form of usability testing, a human “acts as a computer” by
simulating the tasks that the user performs with the paper-based interface. In
a test session, there is typically a facilitator that conducts the test session and
other team members observe the session and take notes. In the test session, it
is not supposed to explain to the user how the user interface is supposed to
work—rather, the purpose is to simulate the computer’s actions based on user’s
input and observe how the user interacts with the user interface. Even though
paper prototypes are usually created for the purposes of usability testing,

CHAPTER 2. LITERATURE REVIEW

14

Snyder (2003) mentions that paper prototypes can also be useful for other
purposes, e.g. internal reviews.

A paper prototype can consist of screenshots or hand-drawn sketches of the
user interface. The presentation medium of the prototype can be e.g. paper or
a whiteboard. According to Snyder’s definition, storyboards, wireframes, and
compositions (“comps”) are not paper prototypes, even though it is possible to
turn them into paper prototypes. Compositions are usually used for product
design organization’s internal communication about visual design and they
often contain placeholder content that makes them unsuitable for usability
testing. Similarly, wireframes usually only contain placeholder content,
because their purpose is to describe page layout and navigation. Storyboards
are essentially flowcharts, which describe the flow of user’s tasks and how the
user interface supports accomplishing the tasks. Because it is not possible for
users to interact with storyboards, storyboards are not paper prototypes.
(Snyder, 2003)

According to Snyder (2003), paper prototyping has several benefits. Because
it is fast and easy to create paper prototypes, paper prototyping supports rapid
iterative development and examination of multiple alternative versions of a
user interface. Additionally, the speed of paper prototyping makes it possible
to receive feedback from users during the early in the development process
without making investment into any specific implementation.

Due to its simple and easy-to-use nature, paper prototyping can be useful for
multidisciplinary product development teams because it enables people to
participate in the design process regardless of their educational and
professional backgrounds. Moreover, paper prototyping can support
communication within the team and between the team and stakeholders.
(Snyder, 2003)

Low-fidelity prototyping has various benefits. According to Houde & Hill
(1997), low-fidelity prototyping makes it possible to focus on high-level goals,
such as overall functionality of a product instead of paying lots of attention to
implementation or look and feel.

Unfortunately, low-fidelity prototyping has some drawbacks, too. Because
low-fidelity prototypes are not always self-explanatory, some stakeholders
may misunderstand the purpose and focus of the prototype and they may
spend their attention on commenting on irrelevant details of the prototype that
are not even supposed to correspond the eventual artefact that is being
prototyped. (Houde & Hill, 1997)

CHAPTER 2. LITERATURE REVIEW

15

2.5.2 High-fidelity prototyping

There are some advantages in using high-fidelity prototypes when compared
with low-fidelity prototypes. Houde & Hill (1997) argue that because the visual
design of high-fidelity prototypes is closer to the real artefact that is being
designed, they are suitable for gathering feedback from people with various
backgrounds. They claim that high-fidelity prototypes can be useful when
presenting the prototype to people who are unfamiliar with prototypes.
Additionally, because high-fidelity prototypes correspond to the real artefact
that is being designed better, the likelihood that people misunderstand the
prototype can be lower than with low-fidelity prototypes (when evaluating low-
fidelity prototypes, people may not understand what is supposed to be “real”
and in the focus of the prototype if the purpose of the prototype is not clearly
communicated). If we generalise this notion of high-fidelity prototypes being
useful for situations when it is challenging to communicate the purpose of the
prototype to the user, we can understand why high-fidelity prototypes can
useful for e.g. market research and remote (unmoderated) usability testing.

In addition to the previously mentioned situations, high-fidelity prototypes
can be useful for some purposes for which low-fidelity prototypes are
completely inapplicable, such as evaluating the look and feel of the artefact
before having to make a decision to commit to developing it for real. If a high-
fidelity prototype is done as an implementation prototype, it can also help
assessing technical feasibility or performance of the product to act as a proof-
of-concept type demonstration. (Houde & Hill, 1997)

2.5.3 Multi-fidelity prototyping

Creating a clear distinction between fidelity levels is not practical at times. For
example, it is possible that some aspects of a prototype need to have very high
fidelity (e.g. correct data and logic), whereas it may not be necessary to
implement the other aspects of the prototype (e.g. visual look and feel) with
high fidelity. In these cases, it can be difficult to categorize a prototype as a
high-fidelity prototype or a low-fidelity prototype. (McCurdy, Connors, Pyrzak,
Kanefsky, & Vera, 2006)

Sometimes, a mixture of multiple prototype fidelities is the most convenient
choice. When involving stakeholders with various backgrounds in the
prototyping process, it is likely that the different stakeholders have varying

CHAPTER 2. LITERATURE REVIEW

16

prototyping skills: some members may only be able to do prototyping with
pencil and paper, whereas some other stakeholders may be able to create
polished digital prototypes. In these scenarios, it may not be always a good idea
to limit the whole team to the lowest common denominator but use an
approach that takes into account the prototyping skills of different people
better. It is possible to do prototyping with tools that combine sketches and
digital drawings to support multiple fidelity levels within a prototype. (Coyette,
Kieffer, & Vanderdonckt, 2007)

It is also possible to take the idea of Coyette, Kieffer and Vanderdonckt
further by enabling in-situ participatory design with end users by creating a
mixed-fidelity prototype that runs on mobile devices and utilizes active data
collection (e.g. in the form of experience sampling) or passive data collection
(e.g. logging) (de Sá, Carriço, Duarte, & Reis, 2008). Traditional paper
prototyping requires having a usability test facilitator, which can limit its
applicability to certain situations. “Paper on screen” mixed-fidelity
prototyping can be useful in those scenarios because it does not require a
facilitator. (Bolchini, Pulido, & Faiola, 2009)

Another approach to multi-fidelity prototyping is creating a partial medium-
fidelity wireframe prototype for a usability test and utilizing participatory
design with users who are asked to imagine what should be in some parts of
the prototype that are intentionally left blank. (Still & Morris, 2010)

CHAPTER 2. LITERATURE REVIEW

17

2.6 Agile methodology

Agile software development emphasizes reacting to changes instead of trying
to follow a plan. Additionally, agile software projects aim at delivering working
software at frequent intervals instead creating documentation. According to
agile principles, achieving better customer satisfaction and co-operation
between development team and business stakeholders is more important than
spending time for negotiating contracts. (Agile Alliance, 2001; Paetsch,
Eberlein, & Maurer, 2003)

2.7 Agile requirements engineering

Traditional requirements engineering process consists of a few key activities:
requirements elicitation, requirements analysis and negotiation, requirements
documentation, requirements validation and requirements management.
(Paetsch et al., 2003; Ramesh et al., 2010)

In agile requirements engineering, requirements elicitation happens
iteratively, whereas traditional requirements engineering attempts to find all
the requirements upfront at the start of the project. In agile requirements
engineering, requirements analysis and negotiation emphasizes prioritizing,
changing and refining requirements, whereas in traditional requirements
engineering the focus of this activity is on solving conflicts in requirements.
Traditional requirements engineering attempts to create comprehensive and
complete documentation, but in agile requirements engineering
documentation is minimal and there is no formal requirements
documentation activity. Agile requirements engineering tries to evaluate if the
requirements meet user needs in the requirements validation activity, whereas
traditional requirements engineering focuses on creating a complete and
consistent document in the requirements validation activity. (Ramesh et al.,
2010)

CHAPTER 2. LITERATURE REVIEW

18

2.7.1 Agile requirements engineering practices

Time pressure, evolving requirements and rapidly changing technology are
common challenges in agile projects (Cockburn, 2002; Ramesh et al., 2010).
These challenges are the reason why the following six practices are used in
agile requirements engineering (Ramesh et al., 2010):

Iterative requirements engineering: Requirements emerge during the
whole product development process; there is no intention to capture all the
requirements of the product at the beginning of the project. Some high-level
analysis of the requirements is carried out during the early phases of the
project, but the purpose of this planning is to gather requirements for the first
releases of the product instead of documenting all the requirements for the
whole duration of the product development project. (Ramesh et al., 2010)

Constant planning: Reacting to change in the environment constantly
during the product development process is emphasized. Typically, two types of
requirement changes can occur: (1) some features are dropped or added and
(2) existing features are modified. (Ramesh et al., 2010)

Prototyping: Prototypes are used as a means of communication with the
customer instead of traditional requirements documents. Requirements
validation and refinement are done based on prototypes. (Ramesh et al., 2010)

Face-to-face communication: Traditional requirements documents are
replaced with face-to-face communication between customer and product
development team in agile projects. When written documentation is used, it
usually appears in the form of user stories or other simple techniques. An
exception is mission-critical systems, such as banking software, in which
formal written oral documentation may be needed. (Ramesh et al., 2010)

Extreme prioritization: Features with the highest business impact are
developed first. Requirements prioritization is done frequently during the
project, not just at the beginning of the project like in traditional requirements
engineering. (Paetsch et al., 2003; Ramesh et al., 2010)

CHAPTER 2. LITERATURE REVIEW

19

Reviews and tests: In review meetings, project’s progress is demonstrated
to understand if the project is moving towards the desired goal, to learn about
potential problems early enough and to increase customer’s trust in the project
(Paetsch et al., 2003; Ramesh et al., 2010). Acceptance tests are used as a
means of requirements validation and verification. Acceptance Test-Driven
Development (ATDD) and Test-Driven Development (TDD) are commonly
used in agile projects. (Ramesh et al., 2010)

2.7.2 Agile requirements engineering challenges

Utilization of the previously mentioned six agile requirements engineering
practices leads to various challenges, which are described below.

Minimal documentation can cause challenges when some team members
leave the project or new people join the project. Additionally, it is difficult to
do formal verification when traditional requirements documentation does not
exist. Moreover, some customers may not trust the process due to only having
small amounts of written documentation. (Ramesh et al., 2010)

Constant requirements engineering work can be challenging in terms of
motivation (Bjarnason, Wnuk, & Regnell, 2011). Additionally, some
developers may not be accustomed to applying the testing methods that are
commonly used in agile software development (Ramesh et al., 2010).

Having to make changes to inadequate system architecture during the late
stages of the project, difficulty to estimate project’s schedule and cost and
spending vast amounts of effort for refactoring are common problems in agile
projects (Ramesh et al., 2010). These issues may be a sign of missing big
picture.

Because agile projects emphasize good quality communication instead of
documentation, having sufficient customer access and participation are
necessary, but often there are problems with getting customer involved in the
project actively enough (Paetsch et al., 2003; Ramesh et al., 2010). Sometimes,
getting multiple customer groups to agree on requirements can be challenging,
too. (Ramesh et al., 2010)

CHAPTER 2. LITERATURE REVIEW

20

Because requirements are prioritized based on business value, often with
heavy time-to-market focus, it is possible that there is not enough focus on
non-functional requirements in many agile projects (with exception of
usability). (Ramesh et al., 2010)

Prototyping itself can cause some problems. Customers may have too high
expectations based on user interface prototypes. Additionally, using prototype
implementation of a feature in a real product can cause quality issues. (Ramesh
et al., 2010)

CHAPTER 2. LITERATURE REVIEW

21

2.8 How to improve prototyping for fast-paced
agile software development?

There are numerous challenges that must be faced when doing prototyping in
fast-paced agile software development projects. Naturally, fast-paced projects
require that prototyping can be done quickly so that prototyping does not slow
down the fast speed of the project. Moreover, because agile methodology
emphasizes “responding to change over following a plan” (Agile Alliance,
2001), it is essential for prototypes to be able to be modified quickly after
frequent requirement changes. Minimal documentation can cause issues
whenever there is a problem with communication, such as not having access
to right customer representatives or difficulty of knowing requirements when
a team member leaves the project or new people join the project. Moreover,
focusing on short-term time-to-market planning may cause a need for
laborious changes later during the project to modify the product for the new
requirements, which had not been anticipated earlier. Time pressure may also
cause teams to use prototype implementations of products is real production
software (Ramesh et al., 2010)

Luckily, it is possible to improve prototyping for fast-paced agile software
projects in various ways. A summary of how to improve prototyping for fast-
paced agile projects is available below.

Choose a focus for your prototype when it makes sense: Due to the
complexity of modern computer systems, creating a prototype that represents
a whole system can be laborious and time-consuming. Based on the notion that
prototypes are a tool for studying design problems and assessing solutions,
Houde & Hill (1997) recommend that the focus of the prototype should be
based on what the most significant open design questions are. If a prototype
focuses on a certain aspect of the product that is being designed, a vital part of
successful prototyping is to communicate which parts of the prototype
correspond to the artefact and which do not.

According to Houde & Hill (1997), a prototype can focus on either the role of
the product in users’ lives, implementation or look and feel. Focusing on the
role can be useful, if the purpose is to create some new functionality and the
open design questions are related to what the role of the product is supposed
to be in users’ lives and what features could potentially support it. When the
task at hand is to present some functionality of an already known role in a new

CHAPTER 2. LITERATURE REVIEW

22

way, the focus can be on the look and feel of the product. Focusing the
implementation can be relevant in those cases when a new technique is used
as a basis of the functionality of the artefact.

Sometimes, approaching a design problem from a single point of view does
not yield good results. Therefore, Houde & Hill (1997) recommend creating
multiple prototypes (potentially with different focus) to approach a design
problem from multiple viewpoints.

However, after testing the effect of focused prototypes on a design problem,
it is also important to test how the whole system works together,
because the interactions of the interrelated pieces of a complex system may
affect the results. (Thomke et al., 1998)

Use different levels of prototype fidelity based on the needs: Low-
fidelity paper prototyping is fast and therefore it supports rapid iterative
development and exploration of multiple alternative versions of a user
interface. Because paper prototypes can be created very quickly, they make it
possible to get feedback from users even during the very early phases of
development process. (Snyder, 2003)

According to Houde & Hill (1997), low-fidelity prototyping makes it possible
to focus on high-level goals, such as overall functionality of a product.
Therefore, it can be useful when thinking of the big picture, which can be a
challenge in agile projects. Snyder (2003) argues that a simplified model of a
user interface can be easier to analyse than a prototype that contains lots of
detail. Moreover, simplified prototypes can be suitable for keeping customer’s
expectations of development speed realistic, which can be a challenge is agile
projects (Käpyaho & Kauppinen, 2015).

Requirements change iteratively and frequently in agile projects (Ramesh et
al., 2010). Due to the constant change of requirements, it can be difficult to
keep a large high-fidelity prototype up-to-date. Thus, low-fidelity prototypes
and focused prototypes can be easier to keep up-to-date in agile projects.
Snyder (2003) argues that after a high-fidelity prototype has been created,
there is a tendency to avoid modifying it because it can take a lot of time to
modify a high-fidelity prototype.

However, high-fidelity prototypes also have some advantages when
compared with low-fidelity prototypes. Since the visual look and feel of high-
fidelity prototypes resembles the design of the real artefact more closely, they
are more suitable than low-fidelity prototypes for those occasions when

CHAPTER 2. LITERATURE REVIEW

23

prototypes are shown to people with versatile backgrounds. (Houde & Hill,
1997)

When choosing the focus and the level of fidelity of the prototype, it is vital to
understand to whom the prototype is shown, because the expectations of these
people (perhaps based on the culture of the organization) can affect how they
view the prototype. To mitigate the problems that may arise when showing
low-fidelity prototypes to people, it is a good idea to explain clearly what design
problem you are trying to solve and perhaps even more importantly, what
aspects you are not trying to solve so that the people to whom the prototype is
shown can focus their attention on those issues that you are interested in.
(Houde & Hill, 1997) To support rapid exploration of design alternatives (one
of the main purposes of prototyping), prototyping media should be chosen so
that it is easy and quick to modify the prototypes (Schrage, 1993).

When speed of learning based on experiments is important, it is a good idea to
utilize parallel experimentation (test multiple prototypes at once) instead
of utilizing serial experimentation (test one prototype at a time and only start
doing a new prototype after testing the previous one). (Thomke et al., 1998)
Parallel experimentation can also produce more critical (i.e. realistic) feedback
in usability testing (Tohidi et al., 2006).

Utilize participatory design: In agile software development projects,
comprehensive requirements documentation does not usually exist and due to
the constant changes of requirements it can be difficult to keep track of the
requirements (Ramesh et al., 2010). Therefore, it can be challenging for the
person who creates the prototype to understand all the requirements
thoroughly. Collaborative prototype-driven problem solving can be used to
engage various stakeholders in the prototyping process (Bogers & Horst,
2014). Snyder (2003) suggests that paper prototyping is a good approach for
multidisciplinary design work because paper prototyping does not require any
technical skills from people who want to participate in the prototyping process.

Treat prototypes as disposable experiments and communicate it
clearly: If prototypes are created as implementation prototypes (with some
actual technical implementation), it is advisable to treat them as disposable
experiments. Otherwise, the prototype implementation that is included in the

CHAPTER 2. LITERATURE REVIEW

24

actual product can become challenging to maintain and develop further.
Moreover, the user interfaces of implementation prototypes may not be
properly designed and if they are not redesigned to make them good enough
for actual production usage, the user experience may suffer. (Houde & Hill,
1997) It is a common problem in agile projects that prototype code is used in
production software due to time pressure (Ramesh et al., 2010). Because all
the non-technical stakeholders do not always understand that prototypes are
usually supposed to be disposable experiments, it is necessary to communicate
very clearly that a prototype is not a final product.

CHAPTER 2. LITERATURE REVIEW

25

2.9 How can prototyping support agile
requirements engineering?

Prototyping can support requirements engineering in several ways. Given that
the purpose of creating prototypes is to get answers to design questions and
act as a communication facilitator between designers, developers and other
stakeholders (Houde & Hill, 1997; Schrage, 1993), it can be concluded that
prototypes can be useful for eliciting and validating requirements.

Prototyping can help with various agile requirements engineering
challenges. A summary of the findings is available below.

Prototypes can act as documentation. Many agile projects have decided
to replace traditional requirements documents with prototypes as a means for
communicating with customer (Ramesh et al., 2010). Prototypes can help the
customer trusting the process and doing formal requirements verification
(Käpyaho & Kauppinen, 2015).

Prototypes can help with motivating the team for constant
requirements engineering work. Keeping prototypes up-to-date can be
more motivating than updating written documentation. However, prototyping
does not solve all the motivation issues that are related to agile requirements
engineering work; for example, software developers may lack experience or
motivation to do Test-Driven Development or Acceptance Test-Driven
Development (Käpyaho & Kauppinen, 2015).

Prototyping has some effect on improving communication with
customer. When multiple customer groups have different opinions,
prototyping can have some effect on finding a commonly accepted opinion.
Prototyping can also have some effect on the challenges of getting customer to
be present often enough and ensuring that customer has good enough
understanding of their role in the project. (Käpyaho & Kauppinen, 2015)

Prototyping has very little effect on understanding the big picture.
Prototyping does not help understanding the big picture during the early
phases of the project or finding out deep system-level problems at the late
stages of the project. Prototyping does not have an impact on instability that is

CHAPTER 2. LITERATURE REVIEW

26

caused by constant requirement changes or on problems with estimating
project’s schedule or cost. (Käpyaho & Kauppinen, 2015)

Prototyping does not help with neglected non-functional
requirements. Non-functional requirements are not taken into account
properly in agile projects. Prioritization on time-to-market basis can cause
challenges with quality. Prototyping does not solve any of these challenges.
(Ramesh et al., 2010).

It is worth noting that prototyping cannot solve all the problems that are
related to agile requirements engineering. It is often useful to complement
prototyping with other practices and methods. To understand business
requirements, quality requirements and the big picture, it can be useful to keep
track of them with other means (Käpyaho & Kauppinen, 2015).

Based on the case study of Kauppinen & Käpyaho (2015), building
acceptance tests based on prototypes can be useful for linking requirements
and testing. Similarly, it is reported in a study of Acceptance-Test-Driven
Development (ATDD) as an agile requirements engineering practices that
linking requirements with ATDD can be useful (Haugset & Stålhane, 2012).

Reaching sufficient customer presence can be a problem in agile projects
(Ramesh et al., 2010). Having enough quality communication with the
customer can be challenging if the customer is not able to participate actively
enough in the process. Käpyaho & Kauppinen (2015) suggest that some
customer company representatives may need education about agile practices
and the responsibilities of e.g. product owner.

It is also good to understand that even though prototyping can help solving
some agile requirements engineering challenges, it can also bring some
problems of its own to the process. Prototyping can cause non-technical
stakeholders to have unrealistic expectations of development speed (Käpyaho
& Kauppinen, 2015). Additionally, using prototype code in real software
products can be risky (Ramesh et al., 2010).

Chapter 3 Empirical research

3.1 Overview of the project

The empirical research was carried out in an agile software development
project, in which I had been involved for more than one year. The purpose of
the project was to design and develop a mobile gaming application for
Veikkaus, the Finnish national lottery company. Design and development of
the product had started in December 2015. During the empirical research
phase of the project, my role was to act a user experience designer of the
product. Earlier, I had also acted as a software developer in the project. In
addition to me, the core team included 4–6 software developers, a scrum
master, a product owner, and 1–3 software testing specialists (the number of
people fluctuated during the project) during the empirical research phase of
the study. Additionally, there were many other stakeholders that were involved
in the project, such as user experience specialists and business stakeholders.

3.2 Empirical research design overview

The empirical research phase of this study was carried out with two research
methods: semi-structured interviews and action research. Method
triangulation (i.e. using multiple research methods) was used because if only
one method was used and it was based on a biased sample or was analysed
incorrectly, the flaw might have stayed completely unnoticed.

Analysis of the data that was gathered from empirical research is described
in section 5.1.1 Analysis process. Evaluation of the chosen research methods is
presented in section 5.1.2 Method evaluation.

CHAPTER 3. EMPIRICAL RESEARCH

28

3.3 Interviews

3.3.1 Methodology for interviews

Interviews were conducted as semi-structured interviews. According to Wood
(1997), semi-structured interviews are suitable for gathering data about expert
knowledge. The interviews lasted 44–72 minutes (average interview duration
was 59.6 minutes).

Semi-structured interviews proceed by assuming very little about expert’s
knowledge and use information that the interviewees provide as a foundation
for discovering more information about the topic with help of further
questioning (Wood, 1997). Before asking specific questions about how the
interviewees perceived in the use of prototyping and agile in the project, they
were first asked to define these concepts in their own words. This
understanding that the interviewees had was used to ask further questions and
adjust some interview questions based on the knowledge of each interviewee.

In the interviews, the questions could be asked in a different order, some
questions were not asked from all the participants (e.g. if the participant told
that they did not have experience of using a specific prototyping approach) and
additional questions were asked when it was considered useful. Even though
there is a numbering for the interview questions in appendix A, the numbering
is only used to make it easier to refer to specific questions in this study and to
explain the purpose of asking certain questions. Based on the expertise of each
interviewee, each interview was customized so that there was more focus on
the topics that the interviewee had deep understanding about and less focus
was given to topics that the interviewee was not familiar with.

In the interviews, the interviewees were first asked typical background
information, such as age and amount of experience in working in the software
industry (this information was asked so that it would be possible to notice if
there were some differences between the knowledge of the interviewees based
on the amount of experience they had in the software industry).

The interviewees were encouraged to tell their own interpretations about the
topics of the interview and they were told that there were no right or wrong
answer to the questions.

To put it simply, the main goal of the interviews was to get answers to
research questions. The interview questions were crafted so that questions 12
and 20 aim at getting answers to the research questions (they are essentially

CHAPTER 3. EMPIRICAL RESEARCH

29

the same as the research questions). Question 21 aims at getting more detailed
information about research question 2. The other questions serve as
introduction to the research problem and research questions.

The default order of the interview questions was chosen so that it would
support natural flow of conversation. In the early phases of the interview, there
were some easy warm-up questions to get the conversation started. The
questions that discussed prototyping (which was a tangible and relatively easy-
to-understand topic to the interviwees) were asked first, and the other main
theme, agile requirements engineering, which is more abstract topic, was
discussed later to avoid overwhelming the participants with lots of questions
about an abstract topic in the beginning of the interview. If difficult questions
were asked about an abstract topic during the early phases of the interview, the
interviewees might have felt uncomfortable during the rest of the interview.
Questions 4–12 are related to prototyping and questions 13–21 mainly focus
on agile requirements engineering.

Similarly to the example that was described by Wood (1997), the interviews
aimed at understanding the current practices that were used in the project
(how prototyping and agile requirements engineering were used in the
project). Based on the understanding of the current practices that was gathered
in the empirical part of the study and the potential improvements to these
practices that were discovered in the empirical research and in literature, an
improved model of the practices is introduced in section 5.4.2.

The researcher asked feedback about each interview from the participants
so that potential flaws in interviews questions could be found and to improve
the interview questions if it was discovered that some interview questions
might have left room for some improvement.

The interviews were recorded with an audio recorder application and the
recordings were archived for the purposes of this study. The researcher agreed
not to give access to any third party to the original audio recording files. Notes
were written during the interview sessions.

3.3.2 Participants

Interview participants included 4 RND Works Oy employees and 1 customer
organization (i.e. Veikkaus) employee. All the interviewees were part of a team
that was responsible for designing and developing a mobile application for the
customer organization. Except for one interview participant, who had

CHAPTER 3. EMPIRICAL RESEARCH

30

participated in the development of the product since November 2016, all the
interviewees had participated in the development or/and design of the product
since December 2015. The interviewees had 4–10 years of work experience in
the software industry. 100% of the interviewees were male. The average age of
the interviewees who wanted to disclose their exact age was 31 years (one
interviewee did not want to disclose his exact age).

Because all the participants were from two companies, the generalizability
of the empirical part results is not as good as in the case if the research
participants were recruited from a higher number of companies. Additionally,
all the participants were from Finland, which may make the results less
generalizable than in case if the participants represented multiple
nationalities.

Before the start of the interview, all the interview participants signed a letter
of informed consent (the letter can be found in Appendix B). They were
informed about how the data that was collected was used in this study. If an
interview participant accidentally revealed some classified project-related
information, which could not be published as part of a public Master’s thesis
document, it was removed from the interview notes.

Additionally, the participants were informed that they had a right to quit the
interview at any time if they wanted to do so and they did not have to answer
to all the interview questions.

3.4 Action research

In addition to interviewing product development team members, another
empirical research method was needed to add method triangulation to the
study. The chosen method was action research. The main value of action
research for this study was making observations about how prototyping and
agile requirements engineering were practiced in the organization under study
and comparing the results of observations with the results of the interviews.
While interviewing is a useful method for gathering data about the researched
phenomena, interviewees may not be able to articulate their tacit knowledge
about the topic, which may leave some gaps in the data. Observation made it
possible to fill the potential gaps in the data that was collected from interviews.

Action research is a suitable research method for investigating complex
phenomena in social settings, because reducing social settings for study is

CHAPTER 3. EMPIRICAL RESEARCH

31

difficult. In action research, a researcher observes a phenomenon and takes
part in the researched phenomenon. Typically, action research includes five
phases: (1) analysing the current state (“diagnosis”), (2) planning the action,
(3) taking the action, (4) evaluation and (5) specifying learning. (Baskerville,
1999) Phases 1–3 are described in this section and phases 4–5 are described in
section 4.4 Action research results.

Analysis of the current state: The project that was being studied was a
typical agile software development project in terms of the requirements
engineering challenges that the product development team encountered.

While discussing the current state of the project with core team members
and observing the project, it became apparent that the team had faced similar
requirements engineering challenges that had been described to the typical in
agile projects according to academic literature. Namely, the team members
reported that the big picture of the project was somewhat ambiguous
occasionally, the team had to manage their requirements engineering work
with small amount of written documentation, and due to frequent requirement
changes and focus on business-critical time-to-market prioritization, it had
been challenging to find time for focusing on non-functional requirements
(e.g. performance). Additionally, it was mentioned by client organizations’
own user experience specialists that the project could benefit from more
frequent requirements validation with end users in the form of more frequent
usability testing.

Action planning: Because prototyping was reported to help with some of the
previously mentioned agile requirements engineering challenges based on
literature (Käpyaho & Kauppinen, 2015), the researcher wanted to observe the
effect of prototyping on agile requirements engineering in the project.
Additionally, the researcher wanted to observe if there was any difference in
how different fidelity levels (low-fidelity paper prototyping and high-fidelity
prototyping) and focus (small focused prototypes vs. large epic-level
prototypes) supported agile requirements engineering work.

Action taking: This study utilizes observations from creating prototypes for
a redesign of a feature of a mobile application (the name of the feature cannot
be mentioned in this thesis because the redesigned feature has not been
published yet).

CHAPTER 3. EMPIRICAL RESEARCH

32

Multiple prototypes were created for the redesigned feature. One of them
was a low-fidelity paper prototype, which was used in a co-design experiment
in a usability test to help target users describe what content they wanted to
view within the feature. Additionally, there were three clickable high-fidelity
prototypes, which were used for evaluating different ways to interact with the
feature on a real smartphone device. One of the high-fidelity prototypes was
created in code instead of a prototyping tool because creating a coded
prototype made it possible for the end user to rearrange user interface
elements in a way that felt realistic from end user’s point of view (even though
the prototype was created with a different technology as the real product). The
other two clickable prototypes were created with a visual user interface
prototyping tool. The visual prototyping tool made it easy to and quick to
create polished-looking prototypes that felt almost like the real product.

The prototype that was created in code can be called a focused prototype
because it only included content reordering and content selection functionality
but no other functionality. The other clickable prototypes were large epic-level
prototypes. The paper prototype can be called a focused prototype because it
focused on content selection.

All the previously mentioned prototypes were used in a usability test session.
The main purposes of creating the prototypes were to gather feedback from
end users and also facilitate discussion within the development organization
about the feature by visualizing various alternative designs. Implementing the
prototypes with different approaches (low-fidelity prototype vs. high-fidelity
prototype, small focused prototype vs. large epic-level prototype) and tools
also made it possible to compare the benefits of drawbacks of the various
prototyping approaches.

The author of this thesis created all the previously mentioned prototypes.

Chapter 4 Results

This chapter includes the results of the empirical part of the study. Sections
4.1–4.3 present interview results and section 4.4 presents action research
results.

4.1 Agile

4.1.1 Definition of agile

The most commonly mentioned aspects of agile were dividing development
tasks to short cycles (e.g. sprints in Scrum), doing frequent changes to
prioritization of tasks and not having a list of all the requirements in the
beginning of a project (unlike in more traditional software development
projects that they had done in the past for other companies).

Interviewees I1, I2, I3 and I4 described that in contrast with traditional
software development projects, an important part of agile was division of
design and development activities to sprints or some other form of cycles. As
interviewee I4 described, the goal of this approach was to focus on what makes
the biggest benefit for the end user and customer’s business needs, doing a
small set of features based on those needs and measuring how well the
implemented features satisfied those needs. Additionally, he mentioned that it
was important that this small set of features formed a meaningful
combination. According to interviewee I1, in an agile project, the team and the
customer check the outcome gradually, not only after the product is ready.
According to interviewee I1, design, development and planning activities have
some overlap in terms of scheduling; different activities are not done in
separate phases in agile projects.

 Interviewee I3 expressed an organizational view of agile development
organizations: according to him, “agility comes from developers being close to

CHAPTER 4. RESULTS

34

designers, stakeholders and end users”. According to him, efficient agile
software development requires that a team (as an organizational unit) can
make decisions up to a certain point without having to wait for approval for
every small decision. Additionally, interviewee I3 mentioned that in his
opinion, agile meant having “low architecture” i.e. not doing lots of upfront
planning for software architecture.

Interviewee I1 mentioned that a typical attribute of agile was having little or
no documentation, which caused a few challenges that are described in section
4.1.3 Drawbacks of agile.

Interviewee I1 considered TDD (Test-Driven Development), BDD
(Behaviour-Driven Development) and ATDD (Acceptance Test Driven
Development) to be agile practices.

Interviewee I5 mentioned that the definition of agile was somewhat unclear
to him; he only mentioned that based on his experience it meant making fast
decisions and going forward in the projects based on those decisions.

4.1.2 Benefits of agile

Division of the project to small chunks was seen as a positive attribute because
it allowed the team to gather feedback from customer and end users at regular
intervals. After each short cycle, it was easy to make adjustments to the course
of the project if end users or customer felt that some aspects of the product
needed improvement. As interviewee I4 mentioned, not doing all the features
at once allowed the team to realize earlier during the development of the
product if some things that were designed and/or implemented did not make
sense. Additionally, short development cycles allowed the team to keep track
of the status of the project in small pieces instead of only having a good overall
picture of the project at the very end of the project that had happened in some
earlier non-agile projects.

Communication inside the team and between the team and the customer was
perceived to be better in agile projects. Agile activities, such as Scrum dailies
and frequent oral communication made it easy to keep track of the project’s
progress. Interviewee I2 mentioned that communication depends on the size
of the project: if the project is large enough and even if it follows agile
methodology, it is difficult to all the project participants to have a clear
understanding of the whole project; developers mostly know about the code
that they write but not so much about the other aspects of the project, such as

CHAPTER 4. RESULTS

35

how marketing for the product is done. However, he also mentioned that it was
not important for a software developer to know lots of details about e.g. how
the daily marketing activities of the product are handled. According to
interviewee I2, small software projects and large software projects look
different regardless of the project management methodology and the size of
the project may have a more significant difference to e.g. communication than
whether the project follows agile methodology or not.

Interviewee I5 mentioned that flexibility was a key benefit of agile because it
was not necessary to know every requirement and detail at the beginning of
the project.

4.1.3 Drawbacks of agile

Interviewee I1 reported that having small amounts of documentation caused
some inefficiency, because especially some new software developers had lots
of questions before they were able to become familiar with the codebase. Due
to the small amount of documentation, deep understanding of the codebase
and about the products in general is concentrated to a small number of
individuals who had been members of the organization for a long time.

Interviewees I1, I3 and I5 mentioned that handling new feature requests and
change requests was challenging in agile software development. A large
number of various stakeholders made prioritization of features challenging
occasionally. Interviewee I1 wondered if there should be more explicit and
stricter criteria for deciding, which changes should be accepted. Interviewee I2
mentioned that it was important that there was a dedicated customer
representative who would make the final decision about requirement changes.

Interviewee I3 felt that sometimes there was a feeling that the structure of
the development process was missing in agile projects (this was a general
comment about agile, not specific to the project in which he was working).

Interviewee I1 mentioned that agile software development does not always
work optimally, if only some agile practices are followed (e.g. TDD is often used
in agile projects so that tests are used as documentation, but if TDD is not
practiced, then the need for documentation increases).

According to interviewee I2, some “basic” challenges exist in every software
project regardless of project management method, e.g. understanding what is
the current overall progress of the project.

CHAPTER 4. RESULTS

36

Interviewee I2 mentioned that fast-paced agile software development made
it challenging to reserve enough time for maintenance of software that was
necessary for maintaining the quality of the codebase. Moreover, interviewee
I5 said that he did not have enough time for thinking of non-functional
requirements. However, they also mentioned that the challenge was not so bad
at the time of the interview as it had been in the past. Additionally, they
mentioned that due frequent changes to requirements and lack of large
milestones that typically exist in traditional waterfall software projects, they
had a feeling that software is never “ready”.

4.1.4 Definition of requirements engineering

Requirements engineering was generally understood as creating some form of
specification of what the software product is and what it should do.
Requirements engineering work starts when there is discussion about a
potential project with a customer. In this phase, it is common according to the
interviewees to do a user interface prototype or a technical proof-of-concept-
prototype to facilitate discussion about the potential project, its budget and
scope. According to interviewee I3, the goal is to provide as compact package
(set of features) as possible that satisfies the most critical customer and end
user needs instead of promising to implement all the features that all the
stakeholders would like to have. In these early phases of the project, prototypes
are used to make the discussions less abstract and validate the main
assumptions of the customer organization about the product.

During the actual product development project, requirements engineering
includes elicitation of feature and change requests, validating if the requests
should be implemented and managing the features in the backlog. Validation
of requested new features or changed requirements can occur with a prototype
(paper prototype or high-fidelity prototype), usability evaluation,
technological feasibility evaluation, analytics or A/B tests (or other data-driven
approaches). Additionally, validation includes discussions within the core
development team, design team and with product owner.

Interviewee I4 had a slightly different view of requirements engineering
when compared with the other interviewees. In his opinion, requirements
should only contain goals and metrics, not any listings of concrete features.
After defining goals and metrics, it is the job of the product team to figure out,
which features are needed to reach the commonly agreed goals. According to

CHAPTER 4. RESULTS

37

this interviewee, creating traditional requirements specifications that contain
lists of product features are just waste of time.

4.1.5 Definition of agile requirements engineering

The difference between traditional and agile requirements engineering was
understood by the interviewees so that agile does not require specifying all the
features of the product upfront in the beginning of the project. New
requirements and changes to existing requirements can emerge at any given
time during the project.

In agile requirements engineering, features are prioritized frequently and
iteratively during the project (usually in sprint planning sessions or Scrum
dailies). Product owner has an important role in the prioritization process as a
decision maker.

To make agile requirements engineering work well, it was suggested by
interviewee I4 that the whole team should participate actively in validating
new requirements or changes to existing requirements. In his experience, it is
possible that if only one person (for example, a product owner) is active in the
validation process, the outcome may be implementing more features than it is
necessary to reach the goals of the project. For this reason, he stressed out that
the whole team should have very clear understanding of the goals and metrics
of the project. Unfortunately, based on his experience on working for various
companies, defining explicit goals and metrics is usually difficult at most
companies. Interviewee I1 commented that the most efficient way to validate
requirements is to create a prototype or some other model of the requirements
and ask feedback from the person who requested the feature (and potentially
from end users). The person who requested the feature is usually a domain
expert and can clarify the requirements if it is clear based on the prototype or
model that the requirement was misunderstood or if some important details
are missing.

Interviewee I1 commented that requirements should be ideally stored in a
backlog (either in a digital backlog tool or on a physical wall of Post-It notes).
He mentioned that written requirement documents will be out of date as soon
as they are written and therefore they are not optimal for agile projects, in
which requirements change frequently.

CHAPTER 4. RESULTS

38

4.1.6 Requirements engineering in our project

Interviewees commented that requirements usually came from various
stakeholders. Sometimes, new requirements or changes to existing
requirements were added based on customer feedback, analytics or core
development teams’ own ideas.

Developers handled the technical side of requirements validation, and user
experience designers and business stakeholders evaluated the impact of the
requirements to user experience and business. For large features, the product
owner made the final decisions about whether the new feature or change to an
existing feature was made. For bug fixes and very small changes, the core team
usually made the decision if the feature or change was made and when it was
made.

Due to the large size of the customer organization and small size of the core
development team, requirements prioritization was very important because
the team received feature requests from a large number of stakeholders.
Interviewee I2 expressed that it was good to have a product owner who had
enough decision-making power in the organization to do the prioritization
without having to ask for approval from other people.

There were two options for storing requirements: an electronic backlog tool
and a physical wall of notes. Both of them were in active use, although some
members of the team preferred to use the physical wall of Post-It notes because
the physical wall was faster to use when making small changes.

CHAPTER 4. RESULTS

39

4.2 Prototyping

4.2.1 Definition of prototyping

According to the interviewees, the main purpose of prototyping is to test
quickly if a suggested idea makes sense before creating the real product or
feature, which takes more time and costs more money than a prototype.
Interviewee I2 commented that prototypes should be created so that they can
be thrown away; creating the prototype should take a minimal amount of time
and no emotional bond should be left to the throwaway prototype. He added
that prototypes can reveal if the idea works at all. Interviewees I1, I2, I3
commented that it is also possible to use prototypes to explore multiple
alternative solutions and evaluate which alternative (or a combination of some
elements from multiple alternatives) works best.

Interviewees I3 and I4 stressed out that a prototype should focus on the most
important features and user paths in the product; they thought that at least in
the early stages of new product development process it is crucial to understand
what is the minimum number of features that are truly necessary. Interviewees
I3, I4 and I5 commented that prototypes could be used for estimating budget
before making commitment to developing a product or feature.

4.2.2 Interviewees’ previous experience with prototyping

The definitions that the interviewees had for prototyping varied slightly based
on their experience with prototyping. Interviewee I4 only talked about user
interface prototypes. The other interviewees had more experience with
technical proof-of-concept prototypes, but they were also familiar with user
interface prototypes and they had created some user interface prototypes in
code.

Interviewee I4 told that prototypes were used at the beginning of every large
project and when making significant changes to existing products. Prototypes
were not used for small incremental changes or when making changes to
features on less frequently used user paths.

Interviewees I1, I2 and I3 mentioned that prototypes had been used for sales
and marketing. Interviewees I1, I3 and I4 mentioned that they had used

CHAPTER 4. RESULTS

40

prototypes for requirements elicitation and validation. Validation was done in
usability tests and/or by asking feedback from customer.

All the interviewees except I4 had used prototypes to validate assumptions
about technical feasibility of new technologies by creating technical proof-of-
concept prototypes.

4.2.3 Benefits of prototyping

All the interview participants mentioned that prototyping is fast and cheap
when compared with creating the real product first and realising only after that
that there was some problem with the product (e.g. a usability problem or if
the product consisted of features that were completely unnecessary to end
users). Interviewee I3 mentioned that it was really eye-opening to see in
usability tests that two almost identical user interfaces can lead to two
completely different end results.

Interviewee I4 commented that prototyping can bring the whole team
together, including designers, software developers and product owner, so that
they can understand what the team is supposed to accomplish together.

Interviewees I1, I2, I3 and I5 said that proof-of-concept prototypes had been
helpful for testing if a certain technology was ready for actual production usage
and for evaluating what introduction of a new technology requires from
stakeholders, such as DevOps (Development and Operations) or QA (Quality
Assurance) specialists.

Interviewee I1 had some recent experience of using prototyping as ideation
tool. Usage of prototyping during development of a new product had yielded a
completely different product than what the initial thoughts of the customer
about the product had been.

Interviewee I2 mentioned that prototyping made it easier to gather feedback
about the product from real end users; otherwise end users’ point of view might
not be taken into account so strongly.

When a new product is implemented with new technologies, it can take a
while before the development team can get the development process up and
running. Interviewee I2 commented that creating a prototype with a design
tool can help the project to a fast start. Additionally, he mentioned that
creating prototypes with design tools helps non-coders discuss the product
with developers and make their ideas less abstract and closer to how the
product works in reality.

CHAPTER 4. RESULTS

41

All the interviewees mentioned that prototypes can help estimating the
amount of work that is required for the actual product.

4.2.4 Drawbacks of prototyping

Interviewees I2, I3 and I4 commented that prototypes are easy to fall in love
with and all the stakeholders may not understand that prototypes are usually
supposed to be thrown away. Interviewee I4 commented that sometimes some
people are not willing to throw away a fancy prototype even if it does not work
well (e.g. it has usability problems or it is not technically or financially
feasible). Additionally, all the interviewees commented that polished high-
fidelity prototypes can create unrealistic expectations especially to non-
technical stakeholders. Therefore, it is important to communicate that a
prototype is a throwaway version of the product and it will take more time to
implement the real product.

Interviewee I2 commented that it is possible for designers to create
technically infeasible prototypes with design tools. Therefore, a designer must
take into account the limitations of the target platform when creating
prototypes.

According to interviewee I4, everything cannot be tested with a prototype or
if it is implemented with such technologies (e.g. coded HTML prototypes) that
it is possible to prototype the small nuances and microinteractions of the
product, the prototype will probably take such a long time to make that the
benefit of saving time and money with prototyping is lost.

Products that display lots of personal user-specific data and dynamic user
interfaces that change their state based on user input are usually difficult to
prototype with design tools. Interviewee I4 mentioned that using mock data
can make the prototypes feel unrealistic in usability tests because average end
users do not see a difference between content and the user interface; if the
content is unrealistic, the feeling of simulating real product usage with a
prototype is lost.

Interviewee I5 commented that because prototypes are usually created
quickly to save time, usage of prototype may lead to introduction of new bad
practices because the prototypes were created in a hurry. Additionally, he
mentioned that the drawback of coded prototypes is the temptation to use
prototype code in a real product to save time (even though prototype code will
be most likely more difficult to maintain).

CHAPTER 4. RESULTS

42

4.2.5 Prototype fidelity

Interviewees I3 and I4 were most positive about using paper prototyping as
part of a design process. The other interviewees felt that clickable prototypes
were easier to understand and they were hesitant about the idea of showing
paper prototypes to end users. Specifically, interviewee I5 said that it was
difficult to understand how the flow of the user interface and how different
screens are related to each other from the paper prototypes. However,
interviewees I1 and I5 said that paper prototypes could be useful as product
development organization’s internal tool for discussing the requirements. The
difference between the opinions of I3 and I4 and the rest of the interviewees
can most likely be explained by the fact that I3 and I4 had more experience
with paper prototyping than the other interviewees.

Interviewees I3 and I4 said that there was a mostly linear timeline for the
usefulness of different prototype fidelities; low-fidelity prototypes were more
useful in the early stages of new product development, whereas high-fidelity
prototypes were more suitable for later stages of product development process.
Interviewee I3 considered that the best usage situation for paper prototypes
was concept design phase of a new product. Interviewee I4 commented that
paper prototyping becomes difficult as soon as the prototype needs to contain
any interaction. Interviewee I3 thought that high-fidelity prototypes would be
more suitable when modifying existing features, because earlier versions of the
design are already available in digital format and modifying them will probably
take less time than creating a new low-fidelity prototype from scratch.

Despite having a positive attitude towards low-fidelity prototypes, I3 argued
that because using a high-fidelity prototype feels almost the same as using a
real product, it is better to use high-fidelity prototypes if there is enough time
to create them.

4.2.6 Small focused prototypes vs. large prototypes

The interviewees were asked about how they felt about the difference between
small focused prototypes and large prototypes. In this context, a focused
prototype means a prototype that presents a single feature or component or
some other small part of the user interface. A large prototype means a
prototype that presents a whole product or an epic.

CHAPTER 4. RESULTS

43

Interviewees I3, I4 and I5 emphasized that it was important to understand
the big picture first and only after that spend time on refining smaller pieces
of the user interface if necessary. If small parts of the user interface were
iterated as small focused prototypes, it was considered important to only focus
on the most important choices that the users have to make and the most
frequently used paths and not spend time on refining unimportant things.
Interviewee I3 took the discussion to a more fundamental level: if it is detected
that there is a problem with a certain user interface element, perhaps it is
useful to consider if the element should exist at all or if it should be located in
a different place instead of trying to improve the design of a problematic
element by iterating the design.

Interviewee I4 mentioned that iterating a small piece of a user interface
separately can be useful if it is understood based on usability tests, customer
feedback, analytics or some other means that there is a problem in a certain
small piece of the user interface. After iterating the small piece of a user
interface as a focused prototype, it was considered important to bring it back
to the large user interface prototype so that it was easy to use it in usability
tests.

Software developers commented that because user interfaces are modelled
as components in code, it would be best to handoff prototypes to developers as
focused component-level prototypes so that they can understand more easily
how each component should work. However, it is also necessary to have an
image or a large prototype that shows where the component is located in the
user interface.

4.2.7 Prototyping for different audiences

The interviewees were asked how they perceived the role and suitability of the
prototype when it was used product development organizations’ internal
purposes (e.g. discussing new features within the team and with stakeholders
or creating a design handoff from designers to developers) or external
purposes (e.g. usability testing with end users).

Interviewees I1, I2 and I5 would have preferred to only show high-fidelity
prototypes to end users because they felt that paper prototypes were more
difficult to understand. Interviewees I3 and I4 felt that it was alright to show
paper prototypes to end users, even though they mentioned that paper
prototypes have many limitations and they work best during the early phases

CHAPTER 4. RESULTS

44

of the design process. Interviewee I4 emphasized that regardless of prototype
fidelity, a prototype should not be iterated inside the development
organization for extended periods of time and it would be necessary to receive
frequent feedback from end users. For development organization’s internal
communication about features and the overall structure of the user interface,
it was acceptable to use a paper prototype according to all the interviewees.

According to the interviewees, focused prototypes were suitable for team’s
internal discussions and stakeholder communication, but they preferred large
(product-level or epic-level) prototypes for usability testing because they
thought that it would be difficult for an outsider to understand a small focused
prototype because end users would not know the context of feature-level or
component-level prototypes unlike the insiders of the organization.

For design handoffs from designers to software developers, the interviewed
software developers preferred small component-level prototypes, even though
they said that it would be important to have another prototype or picture that
shows the context in which the component is used.

For sales and marketing purposes, the interviewees who mentioned this
usage purpose of prototypes preferred clickable product-level high-fidelity
prototypes for the same reasons why some interviewees preferred high-fidelity
prototypes and product-level or epic-level prototypes for usability testing with
end users.

CHAPTER 4. RESULTS

45

4.3 Agile requirements engineering with
prototyping

4.3.1 Requirements of fast-paced agile development for prototyping

In fast-paced agile software development, some challenges are caused by both
the fast pace and agile. According to interviewees I1, I3 and I4, fast pace in a
project typically simply limits the number of prototyping rounds. Additionally,
interviewees I1 and I3 mentioned that fast-paced projects are challenging for
from the point of view of prototyping and other forms of experimentation,
because time pressure may lead a development team to discard the most
experimental and risky ideas to maintain the velocity of the project, even
though the ideas that have high risks typically have high rewards if the idea is
successfully implemented.

Interviewee I1 mentioned that agile method Scrum, which emphasizes strict
time-boxing of development sprints and strict prioritization of features makes
doing experiments difficult because it can be difficult to evaluate time that an
experiment requires before making the experiment.

Frequently changing requirements in agile projects cause a need for frequent
reviewing of the changed requirements. Interviewees I1, I3 and I4 mentioned
that prototyping should be done more frequently if it was supposed to be used
as a tool for evaluating the new requirements. Interviewee I4 stated that if a
prototyping tool does not have good support for keeping the prototype up-to-
date easily after requirement changes, it can be time-consuming and
frustrating to update the prototype. If prototypes are not up to date, they
cannot be used as documentation for developers and stakeholders.

Due to small amount of written documentation in agile projects, the
prototypes need to describe functionality very clearly if they are used as a
replacement for written documentation. Interviewees I1, I2 and I5 preferred
to view high-fidelity prototypes because high-fidelity prototypes are clearer
and less ambiguous than paper prototypes.

Understanding big picture can be challenging in agile projects. Due to this
reason, multiple interviewees wanted to have some large product-level
prototypes to understand the big picture of the product.

CHAPTER 4. RESULTS

46

4.3.2 How to improve prototyping for fast-paced agile software
development

In order to be useful for fast-paced agile projects, prototyping needs to adapt
so that prototypes are fast to create and easy to modify. Interviewee I4 argued
that it is important to create lots of prototypes fast because it makes it possible
to have frequent contact with end users and receive frequent feedback about
the product from them. If time constraints limit the number of prototypes that
can be created, interviewee I4 suggested that it would be best to focus on those
paths in the user interface that are interacted by a really high percentage of end
users. Interviewees I1 and I2 argued that it was important to do prototyping
and usability testing frequently because doing it rarely may result in discarding
the most experimental and risky ideas (that typically have high rewards when
successfully implemented when compared with “safe” ideas) without even
trying if those ideas could work.

An improvement that was mentioned while discussing prototyping with
interviewees I3, I4 and I5 was selecting a clear focus for a prototype.
Interviewee I4 stated that if it was clearly understood that there was a problem
with a certain piece of a prototype, it could be useful to iterate the design of
that piece of the user interface as a small focused prototype to save time.
Interviewees I3 and I5 mentioned that it would be more convenient for
software developers to receive design handoffs from designers as small
component-level prototypes instead of large product-level or epic-level
prototypes because user interfaces are usually modelled as components in
code. However, they also mentioned that design handoffs should also include
some sort of explanation of how the components are used as part of the user
interface (e.g. a picture of the user interface and a flowchart of different user
interface states). Interviewee I5 commented that it would be good if each
prototype would focus on one thing only so that it would be faster to create the
prototype and easier to understand it.

Prototyping user interfaces that contain user-specific personal data was
discovered to be slow and cumbersome according to interviewee I4. Moreover,
interviewee I4 reported that using mock data in prototypes caused challenges
in usability tests because users felt that the prototypes that contained mock
data that was not personalised made the experience of using a prototype not
feel realistic enough. If it was necessary to create prototypes for multiple user
segments for usability tests to make the experience feel more realistic, it

CHAPTER 4. RESULTS

47

required to create one prototype per user segment with segment-specific mock
data for each segment. Needless to say, creating multiple versions of the same
prototype with different content was considered unsuitable for fast-paced agile
projects with strict time-boxing of design tasks. Interviewee I2 suggested that
there should be a lightweight development environment that could be used for
creating coded prototypes without all the complex logic code that is needed for
real production software.

One way of tackling the challenges of agile requirements engineering that
came up in interviews was creating simpler and lower fidelity prototypes.
Keeping detailed high-fidelity prototypes up-to-date after frequent
requirement changes was considered a challenge by interviewee I4. Simpler
prototypes that would not contain such many details would be easier to keep
up-to-date. Additionally, low-fidelity prototypes would be faster and cheaper
to create. Moreover, all the interviewees mentioned that polished high-fidelity
created unrealistic expectations of development speed, which could cause even
more time pressure on the team than it was normal in a fast-paced agile
project. Interviewee I4 suggested that prototyping and user experience design
should be adjusted to a more lightweight format for fast-paced agile projects;
for example, the evaluation of prototypes with end users could be done as
lightweight “guerrilla usability testing” instead of as traditional usability tests
at a usability laboratory.

Because information is often exchanged through oral communication in
agile projects, it is necessary to involve the relevant people in the prototyping
process so that they understand why each prototype is created and what design
problems it aims to solve. Interviewee I3 argued that there should be at least
one software developer involved at each design sprint or workshop where
prototypes are created so that developers can understand the purpose of the
prototypes and they can give their own input to the prototyping process.

4.3.3 How prototyping impacts agile requirements engineering

The role of prototypes in the process of eliciting and refining requirements was
considered important by interviewees I1, I3 and I4. They also mentioned that
prototypes were good for making stakeholders’ abstract ideas more concrete
and facilitated discussion about the ideas. Additionally, interviewee I3
mentioned that prototypes were effective in removing stakeholders’ potential
fears and misunderstandings about if the features that they requested were not

CHAPTER 4. RESULTS

48

going to be implemented in a way that they had hoped. Moreover, interviewees
I1, I3 and I4 mentioned that prototypes made it easier to evaluate suggested
requirement changes by making it easy to do usability testing and gather
feedback from domain experts within the product development organization.
Interviewees I2, I3 and I4 mentioned that prototypes could be used as a risk
management tool by making it possible to understand problems in a suggested
requirement change before commitment was made to spend lots of time and
money for developing a feature. In the early phases of product design,
prototypes could also have a more fundamental effect in validating or refuting
fundamental assumptions about what the product should be all about.

Interviewee I4 commented that in his experience, prototyping was a useful
practice for requirements engineering because if prototypes were created and
evaluated with end users and within the product development organization, a
fewer number of unnecessary features were implemented. Not doing
prototyping usually resulted in developing an excessive number of useless
features without critical evaluation of the features.

Several interviewees mentioned that prototypes could be used as
requirements documentation in place of traditional written requirements
documents; they thought that prototypes were useful for documenting user-
facing features. However, prototypes did not support understanding and
documenting all the non-functional requirements.

In interviewee I3’s opinion, prototypes (regardless of being created with a
design tool or in code) could help developers write less buggy code because
prototypes helped developers have a clearer understanding of requirements:
what was supposed to be included in a feature and what should not be
included. Additionally, interviewees I3 and I5 commented that large product-
level or epic-level prototypes could help developers forecast upcoming features
and choose adequate system architecture for future needs.

Interviewees I2 and I3 mentioned that in addition to facilitating discussion
about user interface, prototypes were useful for evaluating technical feasibility
of ideas, if the prototypes were implemented as coded prototypes with same
technology stack as the actual product. Additionally, prototypes could help
assessing the effect of new features to the technical aspects of the product, such
as performance.

When comparing requirements engineering with or without prototyping,
interviewee I5 mentioned that prototypes made it easier for software
developers to understand user interface requirements. He said that prototypes

CHAPTER 4. RESULTS

49

were better for explaining requirements than static images or written
documents because prototypes made it easier to understand the flow of the
user interface and see how different screens were related to each other.
Interviewee I5 mentioned that the way how prototypes are implemented is
crucial for creating “self-documenting” prototypes: he felt that clickable high-
fidelity prototypes (regardless of being implemented with a design tool or in
code) were best for explaining requirements; in his opinion, paper prototypes
were more difficult to understand and did not explain the flow of the interface
adequately.

4.3.4 How prototyping helps with agile requirements engineering

challenges

Little documentation: Prototyping can help with challenges that are caused
by only having small amounts of documentation in agile projects. Interviewees
I2, I3, I4 and I5 stated that prototypes can act as documentation. Interviewee
I4 commented that prototypes can be very detailed and they can be more useful
documentation for the user interface than written requirements specifications;
according to him, written documents are not very useful for describing how a
user interface should work.

Interviewee I3 commented that if prototypes are used for specifying
requirements, it can be problematic sometimes because changing the
prototype later may require re-negotiation of requirements. Avoiding making
the prototypes very detailed can make this problem less prominent, but lack of
detail can also make the prototype so ambiguous that some people
misunderstand the requirements.

According to interviewee I2, the usefulness of the prototype as a tool for
documenting requirements depends on who creates the prototype. If the
prototype is created by a user experience specialist, it can document the
requirements properly. The reasoning behind his opinion is that because user
experience specialists know end users’ needs and stakeholders’ needs well and
because they have thorough understanding (from studies and experience) of
how different design choices affect usability and other relevant issues, the
prototypes that they create can act as useful documentation of software’s user-
facing features. He mentioned that an average programmer does not have such
a broad understanding of different factors that affect the requirements and
therefore prototypes that are created by programmers are usually not useful

CHAPTER 4. RESULTS

50

for documenting requirements. However, he stated that software developers
could create technical proof-of-concept prototypes that can document
technological requirements of a software product. However, he mentioned that
for documenting technical requirements traditional software documentation
is probably more useful and some traditional software documentation needs
to be created anyway for making software development work convenient.

Interviewee I5 pointed out that if a prototype is used as user interface
documentation, a clickable prototype will be preferable because it shows the
flow of the user interface and how different screens are related more clearly
than a paper prototype. Instead of using prototypes as user interface
documentation, slideshows or screen compositions could serve a similar
purpose in his opinion.

Motivation issues to do constant requirements engineering work:
Generally speaking, the effect of prototyping towards motivation issues to
doing constant requirements engineering work received mixed reactions from
the interviewees.

Interviewees I3, I4 and I5 stated that prototypes can help making it clear
which requirements have changed, provided that the prototypes are always
kept up-to-date. If the prototypes are out of date, they can make the issue
worse by causing confusion.

Interviewee I3 mentioned that creating prototypes frequently and
versioning the prototypes can make it easier to trace when a certain change
was made and thus make it easier to notice when some problematic change to
requirements was made in the past. Still, because prototypes are not self-
explanatory, prototypes are not very useful for explaining why a certain change
was made. Interviewees I1 and I3 commented that the most significant reason
that caused loss of motivation towards requirements engineering work is if the
reasons behind changes are not explained properly.

Interviewee I1 mentioned that making frequent changes to requirements can
be tiring in agile projects sometimes, but experimenting with different ideas
by prototyping is good because by making experiments and changing the
requirements based on experiments the product gets better over time and the
team can also learn something during the process of experimentation.

Interviewee I2 commented that to keep the motivation to doing constant
requirements engineering work it is important to make the prototypes so fast
that having to throw away a prototype does not feel bad. If prototypes take too

CHAPTER 4. RESULTS

51

much effort and time to make, having to throw away a prototype due to
changed requirements can affect motivation negatively.

Achieving quality communication with customer: According to
interviewees I1 and I4, prototyping can help communication with customer
and various stakeholders by making abstract ideas more concrete. If a
prototype can be shared in electronic format (e.g. via a link that can be opened
in a web browser or mobile app), prototype can help busy customer
representatives keeping track of the project’s progress and make it easy to
them to give feedback about the product even if they do not have possibility to
attend all the regular meetings with the product development team. Still, it is
useful to have some customer representatives that can participate in the daily
activities of the team and prototypes cannot replace these face-to-face
communication activities completely; active customer’s participation is
necessary in a successful agile software development project.

Interviewee I3 commented that prototypes can facilitate discussions with
some stakeholders who may have an abstract view of the product. However, he
commented that if a communication challenge is caused by lack of time to meet
team members and discuss the requirements with them, prototyping is quite
heavy solution to the problem (because making prototypes can take a long time
sometimes) and other more lightweight solutions could be more applicable for
facilitating communication.

Interviewee I5 had a more pessimistic view of the topic and he felt that
prototypes were not very useful for overcoming potential communication
challenges in agile projects.

Missing big picture: If prototypes are done as large product-level
prototypes or epic-level prototypes, prototyping can help understanding the
product-level big picture. Unfortunately, these product-level and epic-level
prototypes do not help creating a deep understanding of how the product is
linked to company’s strategy or vision. However, interviewee I1 pointed out
that prototyping could have some effect on making vision less abstract by
framing the vision to a concrete product.

According to interviewees I2 and I3, prototyping is especially useful at the
beginning of the development process of a new product. Additionally,
prototyping can help the team understanding what the product could be in the
future even if the ideas that are portrayed by the prototype might not be

CHAPTER 4. RESULTS

52

feasible in the short-term future. According to interviewees I2, I3 and I5,
prototypes that help forecasting the future could be useful for software
architecture design, provided that the prototypes are broad enough so that
they show the whole product or at least the most important parts of it so that
the overall structure of the product is clear. However, because frequent
changes to requirements are common in agile projects, forecasting the long-
term future can be challenging, as it was mentioned by interviewee I4.

According to interviewee I1, it can be challenging to understand how
individual feature requests affect the big picture of the product. He mentioned
that adding these individual features to a prototype that contains the whole
product could help the team understand the effect of individual changes to the
big picture better.

Interviewee I4 stated that prototyping has significant impact to cost and
schedule estimation because it is easy to see from the prototype e.g. how many
views the user interface contains, which components are needed and how
complex logic is needed for keeping track of the state of the user interface. If
requirements specification is done as a traditional list of features, it is difficult
to guess how much time is needed to implement each feature because a written
specification does not tell how complex the user interface is.

Interviewee I1 commented that experimentation-driven iterative agile
development that includes prototyping will most likely result in a different type
of technical implementation than a more plan-driven approach, but he also
mentioned that it is not possible to know all the requirements beforehand in a
typical software project. Prototyping can at least help anticipating some
upcoming changes to make it easier to maintain good system architecture.

Interviewee I4 mentioned that before prototyping can help understanding
big picture, it is always necessary to define the goal of the product. Prototyping
and other similar practices are simply just means to get towards the goal.

Not enough emphasis on non-functional requirements: Prototyping
can have some effect on understanding non-functional requirements. For
example, interviewees I3 and I5 said that user interface prototypes help
thinking of performance requirements. Additionally, he mentioned that
technical proof-of-concept prototypes can help exploring new good practices
for e.g. security.

CHAPTER 4. RESULTS

53

However, the effect of prototyping on taking non-functional requirements
into account is limited. Interviewees I2 and I4 stated that the effect is small or
at least not very obvious.

Challenges with prototyping itself: Risks of using prototype code in
production software were well known by all the interviewees and they had
gained some experience with the problem in the past. The interviewees
commented that maintenance of prototype code was typically more difficult
than maintenance of normal production code. The root causes of the problem
were described as insufficient communication about the purpose of the
prototype (it was supposed to be a temporary experiment) and tight schedules
in fast-paced software projects. Interviewee I4 commented that the same issue
is had occurred when doing some A/B tests (test code might not have been
cleaned from the codebase after A/B tests were over). Interviewee I5 suggested
that the risk of using prototype code in production could be mitigated by
creating prototypes with design tools instead of in code so that it would be
impossible to reuse any parts of the prototype in real production software.

The challenge of creating unrealistic expectations of development speed was
acknowledged by all the interviewees. Just like the problem with using
prototype code in production software, the issue with unrealistic expectations
was mainly seen as a communication problem. To mitigate the issue,
interviewees I1, I4 and I5 suggested adding some visual cues to the prototype
to make it clear that the product is far from ready. Interviewee I5 believed that
creating the prototypes with a design tool would make it clear that the
prototype is only a drawing and the actual implementation of the product will
take much longer time. In contrast, interviewee I2 believed that user interface
design tools that allow creating finished-looking prototypes quickly are more
likely to create unrealistic expectations of development speed than coded
prototypes.

 Interviewee I4 mentioned that polished prototypes can make users censor
their honest opinions in usability tests, which will result in unrealistically
positive usability test results.

CHAPTER 4. RESULTS

54

Summary of how prototyping helps with agile requirements
engineering challenges according to interviewees’ opinions

Table 4.1: Effect of prototyping on agile
requirements engineering challenges.

Agile requirements
engineering challenge

Effect of prototyping

Little documentation Prototypes can act as user interface
documentation.

Motivation issues to do
constant requirements
engineering work

Prototyping can have some effect but cannot
solve the issue completely. To be useful for
motivating the team for constant requirements
engineering work, prototypes themselves need
to be kept up-to-date.

Achieving quality
communication with
customer

Prototyping can have some effect on this issue
but prototyping cannot solve all the potential
communication issues.

Missing big picture Large product-level or epic-level prototypes
can help understanding the product-level big
picture. However, prototypes are not effective
in explaining how the product is aligned with
company’s strategy and vision.

Not enough emphasis on
non-functional
requirements

Prototyping can help with some non-functional
requirements because it makes it clear to
developers how the product is supposed to
work and after knowing how the product works
it is easier to focus on non-functional
requirements. However, prototyping does not
solve this challenge completely.

Challenges with
prototyping itself

Risks of using prototype code in production
and creating unrealistic expectations with
prototypes are understood by the team based
on previous experience. To solve these issues,
good communication is needed to explain the
purpose of prototyping.

CHAPTER 4. RESULTS

55

4.4 Action research results

The results of action research are reported here according to the Action
Research Cycle that is described in Baskerville’s (1999) article.

Evaluation: When comparing the different prototyping approaches that were
used in the project (high-fidelity prototyping vs. low-fidelity prototyping, small
focused prototypes vs. large epic-level prototypes), it became apparent that
there were upsides and downsides in each approach. The low-fidelity
prototype was the fastest of all the prototypes to create and it allowed the end
users to participate in ideation of how the redesigned feature could work
without requiring any previous experience of prototyping. Therefore, one
might think that the paper prototype was most suitable for the purposes of a
fast-paced agile software project solely based on how fast it was to create.
However, the limits of the paper prototype were reached quickly when there
was a need to simulate complex user interactions and microinteractions.
Clickable prototypes were considered more useful for those purposes by
creator of the prototypes and the team members. Additionally, clickable
prototypes could include some attributes that were difficult to implement in a
paper prototype, such as animations and view transitions. Additionally, the
possibility to share the clickable prototypes via a link that could be opened in
a web browser or a mobile app was considered useful by the team members.
To interact with the paper prototype, it was necessary for the team members
to visit the same room where the prototype was located.

Large epic-level clickable prototypes were considered useful for
understanding the redesign of the feature as a whole and getting the big picture
of the epic’s overall future direction. Unfortunately, the large prototypes that
contained all the important user-facing features of the epic were slow to modify
when team members and the creator of the prototype came up with new ideas
of how the feature could work. Therefore, it can be said that these large
prototypes were not ideal for a fast-moving agile project, in which
requirements changed frequently. The problem was most significant in those
clickable prototypes that were created with a design tool. The coded prototype
was slightly easier to modify afterwards; for example, rearranging the user
interface elements to a new order was a matter of changing the order of
function calls in code and removing a user interface element that appeared in
the middle of the prototype was just a matter of deleting some code.

CHAPTER 4. RESULTS

56

Additionally, if there would have been a need to customize the contents of the
prototype for different end user segments, it would have been quite easy.

The reason why modifying the clickable prototypes with the design tool was
slow was that the tool required the designer to draw all the combinations of
the different user interface states that the prototype was supposed to simulate.
Because the prototypes consisted of a quite large number of user interface
elements that could appear in almost any order, creating the prototypes was
quite slow. Additionally, if a change to one user interface component was made
with a drawing tool, the change had to be uploaded manually to all the screens
that contained the component (even if the updated components could be
uploaded to the prototyping tool with a plugin of the drawing tool, the process
was quite time-consuming). However, the most difficult problem with the
prototyping tool was that the touch targets on each screen were linked to the
coordinates of the user interface elements, not to the elements themselves.
When a user interface element that appeared in the middle of the prototype
was deleted, all the touch targets for the elements that appeared below the
removed element had to be moved manually to their new vertical position. Due
to the time pressure and frequent requirement changes in in fast-paced agile
projects, the creator of the prototypes felt that creating large prototypes with
lots of detail that could get soon out of date was a bit risky.

Customizing the clickable prototypes for different user segments with the
design tool would have required creating multiple copies of the same prototype
and modifying them. This was impractical for an agile project, in which
requirements changed frequently and updating the prototypes after a
requirement change would have required updating all the copies of the
prototype manually.

To sum up, creating the clickable prototypes quickly (to make high-fidelity
prototyping more suitable for a fast-paced agile project) would have required
a prototyping tool that would have supported a component-based model of
creating user interfaces and some automation for time-consuming routine
tasks.

Regardless of the downsides of high-fidelity prototyping, it was possible to
save time in high-fidelity prototyping by using earlier created versions of a
prototype as a basis for new versions (with paper prototypes, creating two
different versions of the same prototype would have required duplicate work
when compared with creating just one paper prototype.

CHAPTER 4. RESULTS

57

The focused prototype that was designed to simulate a small number of
specific interactions was faster to create than the large epic-level prototypes.
Additionally, it was slightly more immune to frequent requirement changes in
an agile project because the prototype only focused on a small part of the user
interface and if changes occurred in some other parts of the user interface, the
changes did not need to be updated to this prototype because the features did
not exist in this prototype. Therefore, it can be said that small focused
prototypes are suitable for agile fast-paced software projects, in which changes
happen frequently. Because the focused prototype did not take so much time
to create as large epic-level prototype, the creator of the prototype did not feel
that lots of effort was wasted if the prototype had to be thrown away.

Even though focused prototypes have benefits when considering their
suitability for supporting agile requirements engineering, it is worth noting
that at least in the case of the prototype in this study, it was also necessary to
create at least one large epic-level prototype so that end users and the team
could understand the big picture of the epic.

Creating multiple prototypes for one usability test session i.e. applying
parallel experimentation was considered useful because it enabled exploring
multiple design alternatives at once. Each prototype had some strengths and
weaknesses from end user’s point of view and evaluating all the prototypes at
once made it easier for the team to understand the upsides and downsides of
each option and make informed decisions for further refinement of the feature.

During the process of prototype creation and validation, the prototypes
facilitated discussing several potential design alternatives within the team and
helped the team understand the desired future direction of the epic. Because
the prototypes only focused on one epic, the prototypes did not help
understanding wider product-level big picture or how the epic was related to
strategy or vision. Anyway, regardless of how well the big picture was
understood, the prototype was considered as useful user interface
documentation by designers and developers.

Because the prototypes were evaluated with end users, the team seemed to
be motivated to consider making the changes that were suggested by the
prototype. However, it is possible that the motivation was not affected by the
prototype itself; some other practice that would have involved end users in the
design process might have had the same impact.

As it was believed when planning to start doing more prototyping, addition
of prototyping resulted in more frequent validation of requirements with end

CHAPTER 4. RESULTS

58

users than previously. It is possible that end user involvement could have
happened without prototyping with the help of some other practices, but it can
be said that prototyping provided a natural way to engage end users in
requirements validation. Additionally, prototyping acted as a way to add
slightly more experimentation to the user experience design process.

Even though the prototypes did not explain directly any requirements that
were related to other systems than the one that the team was developing itself,
the team understood quickly that implementing all the functionality of the
prototype would have required some changes to backend software that were
not feasible in the short-term future. Therefore, creating the prototype before
starting to do the technical functionality of the epic may have saved the team
some effort by helping the team understand the requirements that the epic had
to external systems.

The potential challenge of using prototype code in production software did
not happen in the case of this study, neither did the prototype cause any
unrealistic estimates of development speed for the feature because the purpose
of the prototypes was communicated clearly.

Specifying first cycle of learning: The prototype was created by one user
experience designer from start to end. It was realised while discussing the
prototype with the team that a few other team members would have had some
ideas that could have been useful for the prototype. Unfortunately, many team
members were quite busy at the time when the prototype was created and the
prototype was created by only one person to save time.

To improve prototyping, it would be useful to involve multiple team
members and other stakeholders in the prototyping process. Because agile
software projects do not usually have extensive requirements documentation,
it is unlikely that one designer will know all the requirements independently.
Therefore, it would be useful to do some form of participatory design during
the design process. This could happen as a collaborative sketching workshop
and ideation session at the beginning of the design process.

Because detailed prototypes are quite difficult to maintain in an agile project,
in which requirements changes frequently, it could be useful to do simplified
prototypes that do not have such a high level of detail.

Summary: Prototyping can be improved for fast-paced agile software
development by using more simplified prototypes, focused small prototypes

CHAPTER 4. RESULTS

59

and by carefully considering when to use each prototype fidelity. Additionally,
it is useful to involve multiple team members and stakeholders in the
prototyping process. Making high-fidelity prototyping more suitable for fast-
paced agile projects requires better tooling. Testing multiple designs in one
usability test session can help evaluating multiple alternative design directions
at a rapid pace.

Prototyping can support agile requirements engineering by acting as
documentation, facilitating communication and motivating the team for
constant requirements engineering work. Prototyping can also have some
effect on understanding product-level big picture.

Chapter 5 Discussion

5.1 Methodology for analysis

This section describes how data was analysed. Because it is also important to
understand the limitations of the used methods, an evaluation of the methods
that were used in this study is presented in section 5.1.2.

5.1.1 Analysis process

Analysis was done in two phases:

The first phase was done using bottom-up approach that consisted of
labelling concepts in interview notes and observation notes and categorizing
the concepts. During this phase, the notes were read through and the interview
recordings were listened to multiple times. While reading the notes and
listening to the recordings, concepts that were considered important were
added to Post-It notes. Those Post-It notes that listed a similar concept were
grouped together. Additionally, when it was discovered that there was a link
between categories, the link was drawn between the categories. The categories
were not predefined before the analysis so that it would be possible to notice if
unanticipated categories emerged from data.

As a whole, the first phase of the analysis process was similar to using
grounded theory. Grounded theory is a qualitative research method, in which
a theory is formed from concepts that are present repeatedly (or absent to a
great extent contrary to expectations) in interviews or observations to create a
theory that is grounded in reality (Corbin & Strauss, 1990).

The second phase was analysing the data with top-down approach, using
research questions and literature review as a basis of analysis. The data from
the empirical part of the study was compared with the findings from literature.

CHAPTER 5. DISCUSSION

61

5.1.2 Method evaluation

Method triangulation (i.e. using multiple research methods) was used to
improve the quality of the research; if one research method gave biased data,
it would be possible to notice that the potentially biased data was not similar
to the data that was gathered with the other research methods.

Evaluation of the research methods that were used for literature review and
empirical research is available below:

Literature review: Section 2.1 of this thesis defines the data collection and
literature selection criteria clearly. The thesis followed a modified (less strict)
version of systematic literature review guidelines that were described in
Staples & Niazi’s study (2007). In this regard, the literature review was
conducted with clearer methodology than an average Master’s thesis in the
field of Computer Science and Engineering at Aalto University.

There were two reasons for modifying the literature review to be less strict
than in the study of Staples & Niazi. On one hand, doing a systematic literature
review is very time-consuming and it would have increased the workload of the
thesis too much to be feasible. On the other hand, using the systematic review
guidelines as described by Staples & Niazi would have required knowing a lot
about the topic beforehand to be able to finalize the research questions before
doing the literature search. Using a slightly less strict way of conducting a
literature review allowed me to learn new views about the topic and improve
my research questions during the process of writing the thesis. I considered
that the iterative approach of improving research questions and searching for
more literature during the whole process provided me with a broader
understanding of the topic than I would have gained by deciding all the
research questions in the beginning of the process and not modifying them
along the way. The downside of my approach is that it makes the literature
review slightly more difficult to reproduce, but I consider that the upsides of
my approach were more important than the downsides.

Empirical research: The empirical research only covered one project of one
product development team in one corporate environment. Examining an effect
in one unit, one setting or one context is a threat to external validity of research
(Shadish, Cook, & Campbell, 2002).

CHAPTER 5. DISCUSSION

62

Answering to the research questions required dealing with complex
phenomena that were related to human behaviour and organizational
characteristics. For researching such phenomena, social and educational
scientists have developed qualitative research methods (e.g. interviewing) that
try to tackle these challenges that are hard to research with quantitative
methods (Seaman, 1999). It is also worth noting that due to the small size of
the team whose methods and practices were being studied, it would have been
difficult to get lots of data for making quantitative analysis.

Theories that interact with social psychological phenomena are difficult to
reproduce since reproducing the exact conditions of the original study is
difficult. However, raising the abstraction level of describing the phenomena
with concepts makes the theory more generalizable. (Corbin & Strauss, 1990)

Action researchers usually have some prior knowledge (preunderstanding)
of the topic of their research. While having prior knowledge can be beneficial
(e.g. an action researcher may know which people have some useful
information about a certain topic), having too much prior knowledge may lead
an action researcher to assume too much about the researched phenomena.
Additionally, having both the organizational role and researcher role may
affect the relationships of the action researcher with the other members of the
organization. (Coghlan, 2001) A typical problem that is faced with action
research is that repeatability, reductionism and refutation are not very good
(Baskerville, 1999).

Using semi-structured interviews may have made the challenge of assuming
too much about the data due to being close to data less significant, because as
described in chapter 3, semi-structured interviews are done by assuming very
little about the knowledge of the interviewee and using the information that
the interviewee supplies as a foundation for making further questions to reveal
more information about the topics of the interview. (Wood, 1997) In contrast,
fully structured interviews might have suffered more from researcher’s
assumptions, because in fully structured interviews all the questions are
written beforehand and additional clarifying questions are not asked during
the interview regardless of whatever information the interviewees tell during
the interview.

In the interviews, feedback about the interviews and interview questions was
asked at the end of the interview, which made it possible to improve the
interview questions in case if an interviewee noticed a flaw in interview
questions or if some useful information was not asked for in the interview.

CHAPTER 5. DISCUSSION

63

In an ideal case, analysis of interview data should be done iteratively so that
theory building happens iteratively during each interview so that the data that
is gathered from a new interview is compared with the theory that is built
based on the concepts that have been discussed in the earlier interviews
(Corbin & Strauss, 1990). Unfortunately, the schedule for arranging interviews
was so tight that there was not enough time for doing thorough analysis of the
interview data between the interviews.

Doing both interviews and action research with observation was useful.
Observation allowed the researcher to see how prototyping and agile
requirements engineering were done in the project, whereas interviews
provided a chance to ask project participants why these things were done in a
certain way. In some cases, interviewees were not able to describe all the
aspects of requirements engineering work and prototyping. Observation
allowed the researcher to fill the gaps in the information that was gathered
with interviews.

The empirical study examined the researched the topic retrospectively. In
retrospective research, it is possible that some participants do not remember
all the details of the experiments and some memories may have been distorted
over time.

CHAPTER 5. DISCUSSION

64

5.2 RQ1: How to improve prototyping for fast-
paced agile software development?

Fast-paced agile software development poses many challenges for prototyping.
Prototypes need to be easy to modify to support frequent requirement changes
and fast to create so that they do not slow down the pace of the project.
Additionally, agile projects usually have very little documentation and they
rely heavily on informal communication, which can make it difficult to have a
good overall picture of all the requirements that the prototypes are supposed
to model. Prototyping can be improved for fast-paced agile software
development in several ways, which are described below.

Use large product-level or epic-level prototypes to make big picture
clear: Understanding the big picture was reported to be a problem in agile
projects according to literature and empirical research. The results of
empirical research indicate that large product-level or epic-level prototypes
can help understanding the big picture up to the level of the product itself.
However, product-level or epic-level prototypes do not help understanding
how the product is aligned with company’s strategy and vision. To solve this
issue, it is possible to e.g. arrange workshops to review the strategy and vision
with the team and create a simple prototype with high-level of abstraction that
explains how the strategy and vision are related to the product.

Use focused prototypes to iterate quickly: Speed to create and modify
prototypes are essential for efficient usage of prototyping in fast-paced agile
projects. Small focused prototypes are faster to create and modify than large
product-level or epic-level prototypes and therefore they can be useful for
iterating a design of some specific interactions or user interface elements. It is
worth noting that before starting to iterate a design as a focused prototype, it
is important to consider what is the right focus of the prototype; spending time
to iterate design of those parts of the user interface that are not along the most
important user flows is usually just waste of time. However, iterating the
design of the most important user flows (e.g. problematic parts of payment
process in an online store) as focused prototypes makes sense and can save
time when compared with creating a large prototype that contains the same
features.

CHAPTER 5. DISCUSSION

65

Because focused prototypes only contain some specific interactions and user
interface elements, frequent changes of requirements in agile projects do not
cause a need to modify the prototype after every requirement change; if the
changed requirement is not in the focus of the prototype, it prototype does not
need to be modified.

Software developers commented in interviews that they would prefer to
receive design handoffs as component-level prototypes because software is
usually modelled as components in code.

Empirical research participants commented that while focused prototypes
are useful for product development organization’s internal discussions
(because people within the organization know the context of the prototype),
they would be hesitant to use focused prototypes in usability tests because end
users do not usually know the context of the focused prototype.

Use appropriate prototype fidelity and simplified prototypes: Low-
fidelity prototypes are usually fast to create and therefore they can be useful
for fast-paced agile projects. However, depending on the used tools, high-
fidelity prototypes can be quite fast to modify and some parts of a high-fidelity
prototype can often be used as basis for creating a new version of the prototype.
When dynamic prototypes with personalized content are needed, coded high-
fidelity prototypes can be the most viable option if it is necessary to make the
content that is displayed in the user interface feel realistic e.g. for the purposes
of usability testing.

Simplified prototypes and low-fidelity prototypes can be useful for keeping
the expectations of development speed realistic; empirical research and
literature suggest that polished high-fidelity prototypes can cause too high
expectations of development speed. Additionally, simplified prototypes and
low-fidelity prototypes do not suffer so much from frequent requirement
changes in agile projects as detailed high-fidelity prototypes because if the
prototype does not contain the information that needs to be modified after a
requirement change, there is no need to spend time for modifying the
prototype.

Efficient usage of prototyping in agile projects requires utilization of multiple
prototyping approaches (large prototypes, small focused prototypes and
different prototype fidelities); there is no one-size-fits-all approach that would
be efficient for all the situations.

CHAPTER 5. DISCUSSION

66

Involve core team and relevant stakeholders in the prototyping
process: Agile projects do not usually have detailed written requirements
specifications. Additionally, information about the requirements is often
exchanged in form of oral communication. These aspects make it difficult for
a single person (e.g. a user experience designer) to know all the requirements
thoroughly. It was noticed in the action research that involving more people in
the prototyping process might have resulted in a better end result. For
example, the prototyping process could be started with a workshop, in which
team members and relevant stakeholders sketch various ideas on paper and
then create a paper prototype together. Then, a higher fidelity prototype could
be created by a user experience designer or a front-end developer if necessary.

Improved tooling is needed: It was discovered in interviews and action
research, that prototyping dynamic user-specific personal data is difficult and
slow with typical visual prototyping tools. Better new tools would be needed
for customizing the prototypes for different end users for the purposes of
usability testing. As a workaround, it is possible to create coded prototypes that
can be personalized more easily, but it would be useful to also make it easier
to customize the prototypes for different users in visual tools, because it would
make it easier for non-developers to create prototypes that display realistic
content.

Utilize parallel experimentation: When the speed of the design process is
critical (as it is in fast-paced agile projects), creating multiple prototypes at
once and testing them can help evaluating multiple design ideas at a rapid
pace. Additionally, using multiple prototypes in usability testing can help
receiving more realistic feedback about the prototypes.

Treat prototypes as disposable experiments and communicate it
clearly: Time pressure in fast-paced agile projects can lead to utilization of
prototype implementations of product in production software, which may lead
to costly quality issues later. Moreover, non-technical stakeholders may not
understand that prototypes are supposed to be disposable experiments. To
mitigate the issue, it is necessary to communicate the purpose of the
prototypes clearly.

CHAPTER 5. DISCUSSION

67

5.3 RQ2: How can prototyping support agile
requirements engineering?

According to literature and empirical research, agile requirements engineering
practitioners have to face several challenges. Prototyping can help with some
of these challenges, but it is not a panacea that can solve all the problems of
agile requirements engineering. For each main challenge, the effect of
prototyping is described below. A summary of the findings of available in table
5.1.

Table 5.1: Effect of prototyping on agile requirements engineering
challenges based on literature and empirical research.

Agile requirements
engineering challenge

Effect of prototyping

Little documentation Clear positive effect
Motivation issues to do constant
requirements
engineering work

Positive effect

Achieving quality communication
with customer

Some positive effect

Missing big picture Some positive effect on product-level
big picture

Not enough emphasis on non-
functional requirements

Small positive effect or clear negative
effect, depends on how the prototype
is created and what is the focus of the
prototype

Challenges with prototyping itself Clear negative effect, can be mitigated
with good communication

Little documentation: In agile projects, the amount of documentation is
usually quite small, which may make it difficult for a customer to trust the
product development team without explicit knowledge of the desired end
result of the process beforehand. Moreover, it can be difficult to verify if the
product satisfies the requirements. Because prototypes can act as user

CHAPTER 5. DISCUSSION

68

interface documentation, prototypes can make it easier to understand the
requirements when comprehensive written documentation does not exist.

Motivation issues to do constant requirements engineering work:
Agile methodology embraces frequent change of requirements, which requires
the team to do constant requirements engineering work. Keeping visual user
interface documentation up-to-date is regarded as more motivating than
updating written documentation according to literature an empirical research.
Keeping the changed the requirements properly synchronized with tests and
acceptance tests is challenging. In literature, it is suggested that acceptance
tests can be based on prototypes.

Achieving quality communication with customer: Agile requirements
engineering relies heavily on having good communication with customer.
Prototypes can help visualizing the design of the product to make
communication easier and to visualize the effect of suggested requirement
changes that stakeholders propose. However, active customer presence is still
needed to reach good communication and prototypes cannot solve all the
potential communication challenges.

Missing big picture: Focusing on time-to-market prioritization and short-
term planning can make it difficult to understand the big picture in agile
projects. It was discovered in the empirical research that large product-level
prototypes and epic-level prototypes can help the team understanding
product-level big picture. However, these prototypes do not help the team
understanding how the product is supposed to support company-level strategy
and vision. Therefore, prototyping cannot solve the challenge of not having a
clear big picture completely.

Not enough emphasis on non-functional requirements: Even though
some interviewees commented that prototypes can help understanding some
non-functional requirements at least in certain cases, prototyping does not
solve the problem of ignoring or forgetting non-functional requirements
completely. In fact, prototyping can make the issue worse if prototypes only
focus on short-term planning of user-facing features.

CHAPTER 5. DISCUSSION

69

Challenges with prototyping itself: Prototyping, a commonly used agile
requirements engineering practice, can also cause some problems itself. Quick
creation of polished high-fidelity prototypes may cause non-technical
stakeholders to have unrealistic expectations of product development’s speed.
When creating prototypes in code, there is a temptation to ignore quality
requirements and save development time by using prototype code in
production software. To mitigate these issues, good communication is needed
to explain that prototypes are supposed to be quick experiments and designing
and developing the real product will take longer time than creating a prototype.

CHAPTER 5. DISCUSSION

70

5.4 Model of agile requirements engineering with
prototyping

As a result of analysis of empirical research and literature review, a model was
created to describe current usage of prototyping with agile requirements
engineering (section 5.4.1). Based on findings from literature and empirical
research, a new improved model in presented in section 5.4.2.

5.4.1 Current model

The current model of requirements engineering within product development
iterations (figure 5.1) consists of four main phases: elicitation, analysis,
representation and validation. Prototyping is used for requirements
representation and validation.

Figure 5.1: Current model of agile requirements
engineering with prototyping.

CHAPTER 5. DISCUSSION

71

Requirements elicitation: Ideas of new features (or modification of
existing features) are usually discussed at a sprint planning session with the
customer. These sessions are usually attended by the whole core team so that
all the team members understand what the team is supposed to accomplish
during the sprint. The features are typically listed on a backlog (i.e. a
prioritized list of features), which is separated to a sprint backlog (a list of
features for the current sprint) and a product backlog (a list of features for the
upcoming sprints). Ideas for requirements can be based on product
development organization members’ ideas, customer feedback, analytics or
some other source.

Requirements analysis: Analysis of requirements is usually done at the
sprint planning session. To understand what implementing the requirement
would require and to decide if the feature will be implemented, feasibility of
the suggested requirements is analysed from multiple points of view: financial
feasibility, technical feasibility and potential effects on user experience.
Requirements are also prioritized.

Requirements representation: In its simplest form, a backlog item can be
represented as e.g. a user story, a name of a code module or some other textual
form. For requirements that involve user interface changes, it is usually
necessary to model it in a visual form: in these cases, the requirement can be
modelled as a prototype or a user interface composition (an image of how the
user interface will look like). Depending on the need, the prototypes are usually
clickable high-fidelity prototypes or low-fidelity paper prototypes. When
prototypes are used, one prototype usually models a whole epic or product.

Requirements validation: First, the requirement is validated internally
within the product development organization. The internal validation phase
usually includes discussion with product owner, user experience specialists,
software developers and potentially other relevant stakeholders.

After the internal validation, the requirement can be validated externally
with end users. Typically, external validation happens in the form of usability
testing or A/B testing.

If a problem is noticed with a prototype during the validation phase (e.g. it
is noticed that the prototype has usability issues), the prototype is modified.
The modifications are validated internally at first. If the modifications are large

CHAPTER 5. DISCUSSION

72

enough, the prototype will go through a new round of external validation.
Sometimes, if the estimated effort that is needed to modify a prototype is
considered too large, the design is iterated in the form of user interface
compositions instead of as a prototype.

After validation, the actual technical implementation of the requirement can
be done. Design handoffs that explain user interface requirements to
developers are usually done with a design tool plugin that can export user
interface specifications so that software developers can inspect the attributes
of each user interface element by simply clicking the elements on the screen.
If it is necessary to document animations or transitions to developers, the
design handoff may include a prototype, a video of the animations or
transitions and written instructions that include timing properties of the
animations or transitions.

Understanding big picture: In the beginning of a new product
development project, the initial goals of the new product are defined and the
initial feature set that supports the goal is planned. Due to this planning of
iterations based on the goals of the product, the product development team
has at least some understanding of the big picture. However, as time goes by
and new features are added, the understanding of the big picture becomes
more ambiguous when the team focuses on thinking of features that are
needed in the near future.

5.4.2 New improved model

For the most part, the new improved model of agile requirements engineering
with prototyping (figure 5.2) is the same as the current model. However, the
new model contains the following differences:

More versatile usage of different prototyping approaches: When a
problem is noticed with a prototype in requirement validation, the design of
the problematic part of the user interface can be iterated quickly as a small
focused prototype or a low-fidelity prototype. The designs of the focused
prototypes and low-fidelity prototypes can be discussed internally within the
product development organization (internal evaluators do not need to see all
the details of the product because they know the context of the prototype).
Then, when the iterated user interface pieces have been validated internally,

CHAPTER 5. DISCUSSION

73

the modified designs can be brought back to the large prototype for the
purposes of external validation.

For product development organization’s internal discussions, it can be
useful to use more low-fidelity prototypes and focused prototypes. Simplified
prototypes and low-fidelity prototypes can be used to keep the expectations of
non-technical stakeholders realistic.

Because the interviewed software developers indicated in the empirical
research phase that they would like receive user interface specifications in the
form of component-level prototypes, it might be useful to include small
component-level prototypes in design handoffs to explain the user interface
requirements clearly to developers.

Figure 5.2: New model of agile requirements
engineering with prototyping.

Understanding big picture: To keep the big picture clear during the whole
project, it would be useful to arrange regular reviews of the big picture with the

CHAPTER 5. DISCUSSION

74

core team. These reviews could be arranged in the form of workshops or design
sprints, as it was suggested by the interview participants. At least one software
developer should attend each of these sessions so that the technical team
members would have better understanding of the high-level goals of the
project. After the big picture has been reviewed, it would be useful to model it
as a simplified prototype or some other similar form.

Taking non-functional requirements into account more explicitly:
Because non-functional requirements are often forgotten in agile
requirements engineering, it would be useful to review the non-functional
requirements regularly. For example, each sprint planning session could
include a quick review of the non-functional requirements of all the
requirement changes that are suggested to be included in the sprint. Where
applicable, prototypes could also be used in the review process of non-
functional requirements.

Linking user interface requirements and acceptance testing: After
user interfaces are modelled as prototypes or user interface compositions, it
would be useful to create acceptance tests based on the prototypes or user
interface compositions. This explicit linking of requirements and acceptance
testing would ensure that features that have been acceptance tested
correspond to the user interface requirements that have been modelled by a
user experience designer.

Chapter 6 Conclusions

6.1 Analysis of research problem

The research problem of this thesis was defined as follows:

How can different types of prototyping approaches support fast-paced
product development in an agile software development project?

The results of this study indicate that the chosen prototyping approach affects
how well prototyping can be utilized in agile software development projects.
There is no one-size-fits-all approach that is the most suitable approach for all
the situations; a combination of multiple approaches is needed in order to
utilize prototyping effectively in fast-paced agile projects.

Prototyping can help with various agile requirements engineering
challenges. A prototype can act as documentation and it can help with
communication challenges. Additionally, prototyping can have some effect on
motivating product development team to constant requirements engineering
work by making it clear, which requirements have changed and how they have
changed. Large product-level or epic-level prototypes can also help with
understanding product-level big picture. Prototyping can also have some effect
on other agile requirements engineering challenges, such as neglected non-
functional requirements, but the effect is not so prominent as with the
previously mentioned challenges.

Unfortunately, prototyping can also be harmful from the point of view of
requirements engineering. If prototypes focus on short-term user-facing
features with heavy time-to-market prioritization, prototyping can have
various negative effects: non-functional requirements may be forgotten and

CHAPTER 6. CONCLUSIONS

76

the team may lose clear understanding of the big picture. Moreover,
prototyping may cause unrealistic expectations to non-technical stakeholders
and quality requirements may be ignored when using prototype code in
production software in order to save development time.

Because the speed of prototype creation and modification is essential in fast-
paced agile projects, it is important to consider, how different prototyping
approaches affect the speed of creating and modifying the prototypes. Even
though large product-level and epic-level prototypes have their benefits for
understanding the big picture, they are not always a good solution for fast-
paced projects; small focused prototypes can be faster to create and iterate.
Additionally, large prototypes that contain lots of features may need to be
modified often in agile projects, in which requirements change frequently.
Focused prototypes that only contain some specific interactions or features do
not need to be modified if the changed requirements do not belong to the focus
of the prototype.

Low-fidelity prototypes and simplified prototypes share some of the same
benefits that the focused prototypes have: they are usually fast to create and if
they do not contain the details that are included in the changed requirements,
they do not need to be modified in order to stay up-to-date with the latest
requirements. However, low-fidelity prototypes and simplified prototypes
have their limitations: sometimes, it is necessary to use high-fidelity
prototypes and complex detailed prototypes. Additionally, when creating new
versions of existing digital high-fidelity prototypes, some parts of the existing
prototypes can usually be reused easily. Moreover, digital (high-fidelity)
prototypes can usually be shared easily with stakeholders, whereas sharing a
paper prototype with a large number of stakeholders can be cumbersome.

It was noticed in the empirical research phase that creating prototypes that
display personalized user-specific content was quite slow with even the latest
commercial prototyping tools. Improved tooling is needed to make
prototyping of personalized software applications work better in fast-paced
software projects.

CHAPTER 6. CONCLUSIONS

77

6.2 Conclusions and recommendations

Prototyping can help with many agile requirements engineering challenges.
However, it is not a panacea for all the challenges that are faced regularly in
agile software development projects. It is a good idea to complement
prototyping with other practices and methods to deal with those situations
where prototyping is not helpful.

A new model for agile requirements engineering with prototyping is
introduced in section 5.4.2. The new model suggests doing prototyping with
more versatile approaches based on their suitability for each particular
situation, reviewing big picture regularly and creating an explicit link between
acceptance tests and prototypes.

The main idea of the model of improving prototyping for fast-paced agile
projects is to use a dual model that includes large prototypes that help with
understanding the big picture and small focused prototypes that make
iterating the design of specific interactions or user interface elements fast so
that prototyping does not slow down the velocity of fast-paced software
projects. Moreover, this study recommends utilization of participatory design
to involve the whole product development team (and relevant stakeholders) in
the prototyping process.

The results of the empirical study are very similar to the ones that are
described in literature. When comparing this study with the study of Käpyaho
& Kauppinen (2015), the main difference is that according to this study,
prototyping can support understanding product-level big picture if large
product-level or epic-level prototypes are used. According to Bjarnason et al.,
(2011), not having an understanding of big picture can be a problem during the
early phases of a project. In this study, it was noticed during the interviews that
big picture was clearer during the early phases of the project because arranging
design sprints at the beginning of the project could help understanding the big
picture. This difference in the findings of this study and in the study of
Bjarnason et al. may be caused by two reasons. First, Google Ventures 5-Day
Design Sprint method that we use for our design sprints was introduced in
2016 (Knapp, Zeratsky, & Kowitz, 2016), five years after the study of Bjarnason
et al. Secondly, it is also possible that Bjarnason et al., focused more on a
technology-centered view of big picture, whereas the empirical phase of this
study focused more on the user experience designers’ point of view of
understanding big picture (from technological point of view, not knowing all

CHAPTER 6. CONCLUSIONS

78

the future requirements can be a difficult challenge in terms of system
architecture, whereas from user experience designers’ point of view the
problem may not be so significant).

6.3 Future research needs

Because the empirical research phase of this thesis only covered one project, it
is necessary to test generalizability of findings in more projects in the future.

One approach to prototyping that is described in literature by Schrage (1993)
that may be useful for agile software projects (but which was not tested in the
empirical phase of this study due to limited resources) is continuous
prototyping. In more matured fields of design, such as automotive design and
mobile phone hardware design, prototypes are produced periodically so that a
recently created prototype, which matches the latest design, is always
available. In fact, this approach to prototyping is very similar to usage of
Continuous Integration (CI) and Continuous Deployment (CD) in the field of
software development, which guarantee that a recent version of production-
ready software is always available and can be deployed easily. Given the wide
use of CI and CD in modern software projects, it is quite surprising that
continuous prototyping has not already gained wide adoption in design of
computer user interfaces.

Bibliography

Agile Alliance. (2001). Agile Manifesto - Manifesto for Agile Software

Development. The Agile Manifesto, 2001.
https://doi.org/10.1177/004057368303900411

Baskerville, R. L. (1999). Investigating Information Systems with Action
Research. Communications of the Association for Information Systems,
2(3), 1–32. Retrieved from
http://portal.acm.org/citation.cfm?id=374476

Bjarnason, E., Wnuk, K., & Regnell, B. (2011). A case study on benefits and
side-effects of agile practices in large-scale requirements engineering. In
Proceedings of the 1st Workshop on Agile Requirements Engineering -
AREW ’11 (pp. 1–5). https://doi.org/10.1145/2068783.2068786

Boehm, B. (2000). Requirements that handle IKIWISI, COTS, and rapid
change. Computer, 33(7), 99–102. https://doi.org/10.1109/2.869384

Bogers, M., & Horst, W. (2014). Collaborative prototyping: Cross-fertilization
of knowledge in prototype-driven problem solving. Journal of Product
Innovation Management, 31(4), 744–764.
https://doi.org/10.1111/jpim.12121

Bolchini, D., Pulido, D., & Faiola, A. (2009). Paper in screen prototyping: an
agile technique to anticipate the mobile experience. Interactions, 16(4),
29–33. https://doi.org/10.1145/1551986.1551992

Brown, T. (2008). Design thinking. Harvard Business Review, 86(6).
https://doi.org/10.1145/2535915

Cockburn, A. (2002). Agile software development. ELearning, 5(1), 97.
https://doi.org/10.1109/2.947100

Coghlan, D. (2001). Insider Action Research Projects Implications for
Practising Managers. Management Learning, 32(1), 49–60.
https://doi.org/10.1177/1350507601321004

Corbin, J., & Strauss, A. (1990). Grounded Theory Research: Procedures,
Canons and Evaluative Criteria. Zeitschrift Fuer Soziologie, 19(6), 418–
427. https://doi.org/http://dx.doi.org/10.1007/BF00988593

Coyette, A., Kieffer, S., & Vanderdonckt, J. (2007). LNCS 4662 - Multi-
fidelity Prototyping of User Interfaces. LNCS.
https://doi.org/10.1007/978-3-540-74796-3_16

de Sá, M., Carriço, L., Duarte, L., & Reis, T. (2008). A mixed-fidelity
prototyping tool for mobile devices. In Proceedings of the working
conference on Advanced visual interfaces - AVI ’08 (p. 225).
https://doi.org/10.1145/1385569.1385606

Drews, C. (2009). Unleashing the Full Potential of Design Thinking as a
Business Method. Design Management Review, 20(3), 38–44.
https://doi.org/10.1111/j.1948-7169.2009.00020.x

Haugset, B., & Stålhane, T. (2012). Automated acceptance testing as an agile

BIBLIOGRAPHY

80

requirements engineering practice. In Proceedings of the Annual
Hawaii International Conference on System Sciences (pp. 5289–5298).
https://doi.org/10.1109/HICSS.2012.127

Houde, S., & Hill, C. (1997). What do prototypes prototype? Handbook of
Human Computer Interaction, 1–16. https://doi.org/10.1016/B978-
044481862-1.50082-0

Käpyaho, M., & Kauppinen, M. (2015). Agile requirements engineering with
prototyping: A case study. In 2015 IEEE 23rd International
Requirements Engineering Conference, RE 2015 - Proceedings (pp.
334–343). https://doi.org/10.1109/RE.2015.7320450

Knapp, J., Zeratsky, J., & Kowitz, B. (2016). Sprint: How To Solve Big
Problems and Test New Ideas in Just Five Days. Simon & Schuster.

McCurdy, M., Connors, C., Pyrzak, G., Kanefsky, B., & Vera, A. (2006).
Breaking the Fidelity Barrier - An Examination of our Current
Characterization of Prototypes and an Example of a Mixed-Fidelity
Success. Proceedings of the International Conference on Human
Factors in Computing Systems (CHI’06), 1233–1242.
https://doi.org/10.1145/1124772.1124959

Paetsch, F., Eberlein, A., & Maurer, F. (2003). Requirements engineering and
agile software development. WET ICE 2003. Proceedings. Twelfth IEEE
International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2003., 308–313.
https://doi.org/10.1109/ENABL.2003.1231428

Ramesh, B., Cao, L., & Baskerville, R. (2010). Agile requirements engineering
practices and challenges: an empirical study. Information Systems
Journal, 20(5), 449–480. https://doi.org/10.1111/j.1365-
2575.2007.00259.x

Ries, E. (2011). The Lean Startup. Book, 336. https://doi.org/23
Schrage, M. (1993). Culture(s) of Prototyping. Design Management Journal

(Former Series), 4(1), 55–65. https://doi.org/10.1111/j.1948-
7169.1993.tb00128.x

Seaman, C. B. (1999). Qualitative methods in empirical studies of software
engineering. IEEE Transactions on Software Engineering, 25(4), 557–
572. https://doi.org/10.1109/32.799955

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and
Quasi-Experimental Designs for Generalized Causal Inference.
Handbook of Industrial and Organizational Psychology, 223, 623.
https://doi.org/10.1198/jasa.2005.s22

Snyder, C. (2003). Paper Prototyping: The Fast and Easy Way to Design
and Refine User Interfaces. Paper Prototyping: The Fast and Easy Way
to Design and Refine User Interfaces. https://doi.org/10.1016/B978-1-
55860-870-2.X5023-2

Staples, M., & Niazi, M. (2007). Experiences using systematic review
guidelines. Journal of Systems and Software, 80(9), 1425–1437.
https://doi.org/10.1016/j.jss.2006.09.046

Still, B., & Morris, J. (2010). The blank-page technique: Reinvigorating paper
prototyping in usability testing. IEEE Transactions on Professional
Communication, 53(2), 144–157.
https://doi.org/10.1109/TPC.2010.2046100

Thomke, S., von Hippel, E., & Franke, R. (1998). Modes of experimentation :
an innovation process — and competitive — variable. Research Policy,
27(3), 315–332. https://doi.org/10.1016/S0048-7333(98)00041-9

Tohidi, M., Buxton, W., Baecker, R., & Sellen, A. (2006). Getting the Right

BIBLIOGRAPHY

81

Design and the Design Right. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (pp. 1243–1252). New York,
NY, USA: ACM. https://doi.org/10.1145/1124772.1124960

Wood, L. E. (1997). Semi-structured interviewing for user-centered design.
Interactions, 4(2), 48–61. https://doi.org/10.1145/245129.245134

Appendix A. Interview questions

This appendix contains interview questions that were used in the empirical
part of the study. The interviews were held in Finnish because all the
interviewees spoke Finnish as their native language.

APPENDIX A

83

Interview questions

Interview duration: 44–72 minutes (average duration: 59.6 minutes)
Interview type: semi-structured interview
Subjects: 4 software developers, 1 user experience design specialist

Introduction:

- Tell the themes (prototyping and agile requirements engineering) of
the interview to the person who is being interviewed.

- Encourage interviewees to tell their own understanding and
interpretations about the topic. Tell that there are no right or wrong
answers to the questions.

- Ask permission to record the interviews with a voice recording app.
Ask interviewees to sign letter of informed consent (appendix B).
Inform interviewees about the purpose of the interviews and how the
interview notes and recordings are stored. Tell that the names of
interviewees are not shown in the Master’s thesis.

Interview questions:

- Questions 1–3 gather background information and for “warm-up”.
- Questions 4–12 focus on prototyping.
- Questions 13–21 focus on agile software development and agile

requirements engineering.
- Questions 12, 20 and 21 aim at finding answers to research questions.

Other questions serve as introduction to the topic and support
conversation about the research problem and research questions.

- Questions 22–23 are targeted at improving interview questions
iteratively during the empirical research phase and for asking
feedback about the interview from the person that is being
interviewed.

1. Taustatiedot
a. Ikä
b. Sukupuoli
c. Työtehtävä / rooli
d. Työkokemuksen määrä ohjelmistoalalla

2. Kertoisitko lyhyesti, millaisia tehtäviä työhösi sisältyy?
3. Kertoisitko hieman tyypillisestä työpäivästäsi ja viimeisimmästä

projektistasi?
4. Millaisissa tilanteissa olet käyttänyt prototyyppejä?

a. Oletko joskus ollut itse mukana prototyypin tekemisessä?
5. Miten määrittelisit käsitteen prototypointi omin sanoin?

APPENDIX A

84

6. Mitä hyötyjä prototyyppien käytöstä on mielestäsi ollut tässä
projektissa?

7. Onko prototyyppien käyttämisestä aiheutunut jotain negatiivisia
puolia?

8. Onko prototyypeistä ollut mielestäsi hyötyä ohjelmistoprojektin
vaatimusten ymmärtämisessä?

9. Prototyyppejä voidaan tehdä monella tavalla, esimerkiksi
klikkailtavina prototyyppeinä tai paperiprototyyppeinä. Loppukeväällä
käytimme klikkailtavia prototyyppejä ja paperiprototyppiä
käytettävyystesteissä. Mitä mieltä olet näiden kahden erilaisen
prototypointitavan hyvistä ja huonoista puolista?

10. Oliko jompikumpi prototyyppi parempi käyttöliittymää koskevien
vaatimusten ymmärtämiseksi? Millä tavoin? Miksi?

11. Millä tavoin prototypointia voitaisiin mielestäsi parantaa siihen
nähden, miten sitä on käytetty tässä projektissa?

12. Projektimme on ollut ajoittain varsin nopeatempoinen.
(RQ1): Olisiko prototypointia mielestäsi mahdollista kehittää
siten, että se tukisi paremmin nopeatempoista
ohjelmistokehitystä?

13. Onko ketterä ohjelmistokehitys käsitteenä tuttu?
14. Miten määrittelisit ketterän ohjelmistokehityksen omin sanoin?
15. Mitä eroa ketterällä ohjelmistokehityksellä on perinteiseen

ohjelmistokehitykseen verrattuna?
a. Oletko osallistunut molemman tyylisiin projekteihin?

16. Mitä hyviä ja huonoja puolia ketterässä ohjelmistokehityksessä on
mielestäsi?

17. Oletko huomannut jotain haasteita ketterien ohjelmistoprojektien
vaatimusten määrittelyssä?

a. Mitkä ovat olleet mielestäsi suurimpia haasteita tässä
projektissa? Millaiset asiat voisivat auttaa näiden haasteiden
ratkaisemisessa?

18. Kertoisitko hieman siitä, miten ohjelmistoprojektin vaatimuksia on
määritelty tässä projektissa?

a. Miten vaatimusten muutokset ja tarkentaminen tapahtuvat?
19. Millä tavoin voisimme mielestäsi parantaa ohjelmiston vaatimusten

määrittelyä?
20. (RQ2): Onko prototyypeistä ollut hyötyä projektin

vaatimusten määrittelyssä? Entä onko siitä ollut haittaa?
Millä tavoin? Miksi?

21. Keskustellaan muutamasta aiheesta, joiden on huomattu olevan
haasteellisia ketterien ohjelmistoprojektien vaatimusten määrittelyn
kannalta. Onko prototypoinnilla vaikutusta seuraaviin asioihin
liittyen? Jos on, onko vaikutus positiivinen vai negatiivinen vai
neutraali (ei selkeästi positiivinen tai negatiivinen)?

a. Vähäisestä dokumentaatiosta johtuvat projektinhallinnan
haasteet, esim. asiakkaan vaikeudet luottaa projektiin, josta ei

APPENDIX A

85

ole olemassa selkeää ”speksiä” tai vaikeus tehdä ohjelmiston
hyväksymistestausta (acceptance testing), kun ohjelmiston
vaatimuksia ei ole kirjattu selkeästi ylös.

b. Tiimin motivointi jatkuvaan vaatimusmäärittelytyöhön ja
siihen, että vaatimukset muuttuvat usein.

c. Riittävän laadukas kommunikaatio asiakkaan kanssa (koska
ketterät projektit korostavat suullista kommunikaatiota
muodollisten vaatimusmäärittelydokumenttien laatimisen
sijaan, kommunikaatio on tärkeää projektin onnistumisen
kannalta).

d. Ei selkeää ymmärrystä isosta kuvasta.
e. Ei-toiminnallisten vaatimusten ja laatuvaatimusten määrittelyn

unohtuminen tai liian vähäinen painoarvo, mikä voi vaikuttaa
esim. ohjelmiston arkkitehtuuriin tai suorituskykyyn.

f. Prototypointiin liittyvät haasteet:
i. Ei-teknisen asiakkaan liian suuret odotukset

ohjelmistolle hienoista lopullisen näköisistä
prototyypeistä johtuen.

ii. Prototyyppiä varten luodun koodin käyttö lopullisessa
tuotanto-ohjelmistossa.

22. Tuleeko mieleen jotain sellaisia tähän aiheeseen liittyviä kysymyksiä,
joista minun olisi ollut hyödyllistä kysyä, mutta en kysynyt?

23. Avoin palaute haastatteluun liittyen.
Jos sinulla on jotain kysyttävää haastatteluun liittyen, voit kysyä nyt
vapaasti haluamistasi asioista tai esittää kommentteja haastattelun
teemoihin liittyen.

Appendix B. Letter of informed
consent

Interview participants were asked to sign the letter of informed consent. A copy
of the letter of informed consent is available on the following page. The letter
is in Finnish because all the interviewees spoke Finnish as their native
language.

APPENDIX B

87

SUOSTUMUS TUTKIMUKSEEN OSALLISTUMISESTA

DIPLOMITYÖ

Toni Karttunen, tekn. kand.
Master’s Programme in Computer, Communication and Information Sciences
Aalto-yliopisto, Perustieteiden korkeakoulu
toni.karttunen@aalto.fi

Opinnäytetyön valvoja:
Professori Marko Nieminen
Aalto-yliopisto, Perustieteiden korkeakoulu
marko.nieminen@aalto.fi

Allekirjoittamalla tämän dokumentin annan luvan haastatella minua Aalto-
yliopiston tietotekniikan opiskelija Toni Karttusen diplomityötä varten.
Haastateltavien henkilöiden nimiä ja haastatteluissa mahdollisesti
mainittujen henkilöiden nimiä ei mainita diplomityössä, ellei siihen pyydetä
erillistä lupaa. Haastatteluista tehdyt äänitallenteet ja kirjalliset
muistiinpanot arkistoidaan diplomityön tekemistä varten. Tiedot käsitellään
luottamuksellisesti.

Paikkakunta: _______________________
Päivämäärä: ___ / ___ 2017

________________________ ________________________
Haastateltavan allekirjoitus Diplomityön tekijän allekirjoitus

________________________ ________________________
Nimen selvennys Nimen selvennys

	Chapter 1 Introduction
	1.1 Background
	1.2 Research problem and research questions
	1.2.1 Research problem
	1.2.2 Research questions

	1.3 Scope

	Chapter 2 Literature review
	2.1 Methodology for literature review
	2.1.1 Data collection
	2.1.2 Literature selection criteria

	2.2 Definition of prototypes and prototyping
	2.3 Motivation: benefits of prototyping
	2.4 Problems and challenges
	2.5 Prototype fidelity
	2.5.1 Low-fidelity prototyping
	2.5.2 High-fidelity prototyping
	2.5.3 Multi-fidelity prototyping

	2.6 Agile methodology
	2.7 Agile requirements engineering
	2.7.1 Agile requirements engineering practices
	2.7.2 Agile requirements engineering challenges

	2.8 How to improve prototyping for fast-paced agile software development?
	2.9 How can prototyping support agile requirements engineering?

	Chapter 3 Empirical research
	3.1 Overview of the project
	3.2 Empirical research design overview
	3.3 Interviews
	3.3.1 Methodology for interviews
	3.3.2 Participants

	3.4 Action research

	Chapter 4 Results
	4.1 Agile
	4.1.1 Definition of agile
	4.1.2 Benefits of agile
	4.1.3 Drawbacks of agile
	4.1.4 Definition of requirements engineering
	4.1.5 Definition of agile requirements engineering
	4.1.6 Requirements engineering in our project

	4.2 Prototyping
	4.2.1 Definition of prototyping
	4.2.2 Interviewees’ previous experience with prototyping
	4.2.3 Benefits of prototyping
	4.2.4 Drawbacks of prototyping
	4.2.5 Prototype fidelity
	4.2.6 Small focused prototypes vs. large prototypes
	4.2.7 Prototyping for different audiences

	4.3 Agile requirements engineering with prototyping
	4.3.1 Requirements of fast-paced agile development for prototyping
	4.3.2 How to improve prototyping for fast-paced agile software development
	4.3.3 How prototyping impacts agile requirements engineering
	4.3.4 How prototyping helps with agile requirements engineering challenges

	4.4 Action research results

	Chapter 5 Discussion
	5.1 Methodology for analysis
	5.1.1 Analysis process
	5.1.2 Method evaluation

	5.2 RQ1: How to improve prototyping for fast-paced agile software development?
	5.3 RQ2: How can prototyping support agile requirements engineering?
	5.4 Model of agile requirements engineering with prototyping
	5.4.1 Current model
	5.4.2 New improved model

	Chapter 6 Conclusions
	6.1 Analysis of research problem
	6.2 Conclusions and recommendations
	6.3 Future research needs

	Bibliography
	Appendix A. Interview questions
	Appendix B. Letter of informed consent

