
Aalto University

School of Science

Master’s Programme in Computer, Communication and Information Sciences

Gaurav Bhorkar

Security Analysis of an
Operations Support System

Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science (Technology)

Espoo, November 25, 2017

Supervisor: Tuomas Aura, Professor
Advisor: Henri Laamanen, M.Sc. (Tech.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/145239513?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Master’s Programme in
Computer, Communication and Information Sciences

ABSTRACT OF
MASTER’S THESIS

Author: Gaurav Bhorkar

Title: Security Analysis of an Operations Support System

Date: November 25, 2017 Pages: 81

Major: Mobile Computing, Services and Security

Supervisor: Tuomas Aura, Professor

Advisor: Henri Laamanen, M.Sc. (Tech.)

Operations support systems (OSS) are used by Communications service providers
(CSP) to configure and monitor their network infrastructure in order to fulfill,
assure and bill services. With the industry moving towards cloud-based deploy-
ments, CSPs are apprehensive about their internal OSS applications being de-
ployed on external infrastructure. Today’s OSS systems are complex and have a
large attack surface. Moreover, a literature review of OSS systems security does
not reveal much information about the security analysis of OSS systems. Hence,
a security analysis of OSS systems is needed.

In this thesis, we study a common architecture of an OSS system for provisioning
and activation (P&A) of telecommunications networks. We create a threat model
of the P&A system. We create data flow diagrams to analyse the entry and exit
points of the application and list different threats using the STRIDE methodol-
ogy. We also describe various vulnerabilities based on the common architecture
that OSS vendors must address. We describe mitigation for the threats and vul-
nerabilities found and mention dos and don’ts for OSS developers and deployment
personnel.

We also present the results of a survey we conducted to find out the current
perception of security in the OSS industry. Finally, we conclude by stressing
the importance of a layered security approach and recommend that the threat
model and mitigation must be validated periodically. We also observe that it is
challenging to create a common threat model for OSS systems because of the lack
of an open architecture and the closed nature of OSS software.

Keywords: OSS, BSS, security analysis, telco, provisioning

Language: English

2

Acknowledgements

I would like to express my sincere gratitude to my supervisor Professor
Tuomas Aura and my advisor at Comptel Mr Henri Laamanen for their
feedback and guidance on the thesis.

I would also like to especially thank Comptel Corporation for giving me
an opportunity to work on the thesis. I appreciate my R&D team for bearing
with my absence and allowing me to focus on the thesis.

I want to thank my friend Manish Thapa for his constant encouragement
and support. I appreciate and will miss the countless discussions over tea,
lunch and dinner.

Finally, I want to thank my family and friends for all their support.
Thank you! Dhanyavad! Shukriya!

Espoo, November 25, 2017

Gaurav Bhorkar

3

Abbreviations and Acronyms

AES Advanced Encryption Standard
ADSL Asynchronous Digital Subscriber Line
API Application Programming Interface
AuC Authentication Center
ATIS Alliance for Telecommunications Industry Solutions
BSS Business Support System
BRAS Broadband Remote Access Server
CPE Customer Premise Equipment
CSP Communication Service Provider
CSRF Cross Site Request Forgery
CRM Customer Relationship Management
DES Data Encryption Standard
DFD Data Flow Diagram
DoS Denial of Service
DDoS Distributed Denial of Service
DSL Digital Subscriber Line
DSLAM DSL Access Multiplexer
EAI Enterprise Application Integration
ESB Enterprise Service Bus
FTP File Transfer Protocol
HLR Home Location Register
HTTP Hypertext Transfer Protocol
HTTPS HTTP Secure
IEC International Engineering Consortium
IPTV Internet Protocol Television
JMS Java Message Service
LDAP Lightweight Directory Access Protocol
MitM Man-in-the-Middle Attack
NE Network Element
NEI Network Element Interface

4

NMS Network Management System
NVD National Vulnerability Database
OWASP Open Web Application Security Project
OS Operating System
OSS Operations (or Operational) Support System
OM Order Management
P&A Provisioning and Activation
PII Personally Identifiable Information
RADIUS Remote Authentication Dial-In User Service
REST REpresentational State Transfer
SDLC Software Development Life Cycle
SNMP Simple Network Management Protocol
SOAP Simple Object Access Protocol
STRIDE Spoofing, Tampering, Repudiation, Information disclosure,

Denial of Service, Elevation of Privilege. A threat modelling
technique by Microsoft

SIM Subscriber Identification Module
SSL Secure Sockets Layer
Sync/Async Synchronous/Asynchronous
TCP Transmission Control Protocol
Telco Telecommunications Company
TL1 Transaction Language 1
TLS Transport Layer Security
TMF TM (TeleManagement) Forum
WSDL Web Services Description Language
XML eXtensible Markup Language
XSD XML Schema Definition
XSS Cross Site Scripting

5

Contents

Abbreviations and Acronyms 4

1 Introduction 9
1.1 Problem Statement . 10
1.2 Structure of the Thesis . 11

2 Background 12
2.1 What is an OSS System? . 12

2.1.1 OSS Applications . 13
2.1.1.1 Catalog System 13
2.1.1.2 Inventory . 13
2.1.1.3 Order Management 14
2.1.1.4 Provisioning and Activation 14
2.1.1.5 Network Elements 15
2.1.1.6 Field Service Management System 16
2.1.1.7 Other Components 16

2.1.2 OSS Architecture . 16
2.1.3 Example: Service Provisioning 16

2.2 Security Terminology . 19
2.3 Security Analysis . 20

3 Threat Model 21
3.1 Assets . 21

3.1.1 Information Assets . 21
3.1.2 Software Assets . 23
3.1.3 Physical Assets . 23
3.1.4 Intangible Assets . 23

3.2 Adversaries . 23
3.2.1 External Adversaries 24
3.2.2 Internal Adversaries 24

3.3 Diagramming and Threat Enumeration 25

6

3.3.1 Context Diagram (High Level) 26
3.3.2 User Interface . 27
3.3.3 Northbound Interface 29
3.3.4 Southbound Interface 30
3.3.5 Provisioning and Activation 32

4 Vulnerabilities and Security Risks 34
4.1 Default Username and Password 34
4.2 Poor Key Management . 35

4.2.1 Using pre-generated Keys 35
4.2.2 Keys Hard-coded in the Code 35

4.3 Passwords Stored in Plaintext 36
4.4 Insecure Authentication Practices 36
4.5 Use of Weak Cryptographic Algorithms 37
4.6 Open Ports on the OSS Host 37

4.6.1 SSH Port . 37
4.6.2 Other Ports . 37

4.7 Insecure BSS-OSS Interface 38
4.8 Insecure Browser-OSS Interface 39
4.9 Insecure OSS-NE Interface . 40
4.10 Sensitive Data Exposure on the UI 41
4.11 Logging of Sensitive Data . 42
4.12 Web Application Security Risks 42
4.13 Denial of Service . 44
4.14 Vulnerabilities in Message Queues 45
4.15 Tampering of Provisioning Logic 46

5 Mitigation and Validation 47
5.1 Mitigation Techniques . 47

5.1.1 Onion Model . 47
5.1.2 STRIDE Mitigation . 48

5.2 Interfaces . 50
5.2.1 Northbound Interfaces 50

5.2.1.1 SOAP Web Service 51
5.2.1.2 REST Web Service 52
5.2.1.3 Custom Connections 53

5.2.2 Southbound Interfaces 53
5.2.3 User Interface . 54
5.2.4 Other Interfaces . 55

5.3 Logging . 56
5.4 Host Security . 56

7

5.5 Validation . 58
5.6 Dos and Don’ts . 58

6 Discussion and Conclusion 60
6.1 Security Survey . 60
6.2 Observations and Challenges 61
6.3 Conclusion . 62

Bibliography 64

A Threat Enumeration 71
A.1 Context (High level) . 71
A.2 User Authentication . 73
A.3 Northbound Interface . 75
A.4 Southbound Interface . 77
A.5 Provisioning and Activation 79

B Survey: Security of OSS Systems 80

8

Chapter 1

Introduction

The telecommunications industry has played a crucial role in the advance-
ment of the information and the communication age. The industry has seen
tremendous transitions in the last century and continues to grow rapidly.
From offering telephone services traditionally, the industry has grown to offer
services including Mobile, Internet, IPTV, Cloud, and even mobile payments.
Such a vast array of services and an ever growing number of subscribers has
allowed telecommunication service providers to increase their revenues every
year. In 2015, Insight Research projected that the worldwide telecom ser-
vices revenue was $2.2 trillion and is expected to reach $2.4 trillion in 2019
[32].

Initially, telecommunications network infrastructure was not as complex
as it is today. As the types of services offered by a Communications Service
Provider (CSP) increase, so does the complexity of telecommunication net-
works. There is new infrastructure constantly deployed and old infrastructure
maintained to support legacy services. For example, at the time of writing
of this thesis, CSPs are gearing up for the upcoming 5th generation (5G) of
mobile networks but they still support and maintain the 2nd generation (2G)
legacy network infrastructure. CSPs need software systems to monitor, con-
figure and manage such a complex network infrastructure. Furthermore, in
order to cut costs and speed up processes, CSPs are reluctant to hire human
resources where the work can be automated by software. One such example is
the so-called swivel-chair integration, where a person re-keys request details
from one system, e.g., a Customer Relationship Management (CRM) system
to another system, e.g., a Network Management System (NMS). Therefore,
as the number of subscribers and the services increase, there is the need for
efficient integration of business software with the network infrastructure and
for supporting the end-to-end operations of a CSP seamlessly.

An Operations (or Operational) Support System (abbr. OSS), as the

9

CHAPTER 1. INTRODUCTION 10

name suggests, is a system of software components working together to sup-
port the operations of any enterprise. OSS systems are used in a variety
of fields including the telecommunications industry. Communication Service
Providers are one of the largest users of OSS systems because of the complex
landscape of network infrastructure and the services offered to their cus-
tomers. Telecommunications operators need OSS systems in order to man-
age, configure and monitor their networks. In addition, OSS systems also
perform service fulfillment, assurance and billing for the CSP’s customers.
In other words, besides monitoring networks, OSS systems orchestrate ser-
vices by configuring the necessary elements in a network.

Security is an important area of concern for telecommunication compa-
nies. Modern day security expectations require enterprises to protect the
privacy of their customers, prevent unauthorized access, provide uninter-
rupted service, etc. Many companies have annual security audits to improve
the security of their networks. OSS systems are no exception to such audits
either. Since OSS systems form a middleware between the customer-facing
software and the network elements in the infrastructure, a large amount of
sensitive information passes through them.

OSS products have been in use for the last 25 years and have undergone
numerous changes in architecture and features to support the changing net-
work landscapes. The security expectations that were there two decades ago
have changed considerably. Today’s OSS solutions are more complex and
have a larger attack surface. Many of the OSS systems are transitioning to
the cloud. Thus, OSS products are not internal to the enterprise anymore.
OSS vendors and customers must focus on strengthening the security of their
OSS solutions.

This thesis project has been carried out at Comptel Corporation, which
offers several OSS products including Provisioning and Activation, Catalog,
and Order Management. Considering responsibly the company’s disclosure
policies, we have tried to combine OSS expertise from the company and
security research to do a security analysis of the most common components
of the OSS architecture (Provisioning and Activation).

1.1 Problem Statement

A great many of today’s security technologies are “secure” only
because no-one has ever bothered attacking them [30].

Gutmann makes the above statement in his book about security engi-
neering. The quote holds true for most computer software, and OSS systems

CHAPTER 1. INTRODUCTION 11

certainly are exposed to cybersecurity threats. Most CSPs see OSS systems
as internal to the enterprise, meaning that the software is hosted and runs
within the borders of the enterprise intranet. Today, with the industry mov-
ing towards cloud-based solutions, it is imperative for OSS vendors to revisit
the security assumptions of their products. Furthermore, a literature review
on the security of OSS systems does not reveal much information. Perhaps,
a well-defined threat model and mitigation are needed.

The goal of this thesis is to do a security analysis of a typical OSS (Pro-
visioning and Activation) system. This includes the following:

1. Explain the importance of securing OSS systems

2. Create a threat model

3. Find out common vulnerabilities

4. Suggest mitigation techniques

1.2 Structure of the Thesis

This thesis is divided into six chapters in all. The reader is advised to read
the chapters sequentially.

Chapter 2 gives a background on OSS systems, their typical components
and an example of how service provisioning works. The chapter also explains
the different security terminologies used in the thesis.

Chapter 3 describes a threat model for a typical OSS (Provisioning and
Activation) system. We study the assets and adversaries, create diagrams
and analyse threats in this chapter.

Chapter 4 describes common vulnerabilities that could be present in an
OSS system.

Chapter 5 suggests mitigation strategies for OSS vendors.
Chapter 6 summarizes the important points in the thesis and draws

conclusions. We also discuss a survey we conducted to learn about the per-
ception of security in the OSS industry.

Chapter 2

Background

This chapter explains the background information required for the subse-
quent chapters. We explain what is an OSS system, its components, and
a common architecture in Section 2.1. Section 2.1.3 demonstrates a typical
provisioning and activation scenario on an OSS system, which would help
the reader understand the provisioning and activation process. Section 2.2
explains the required security terminologies. Finally, we describe the security
analysis process in Section 2.3.

2.1 What is an OSS System?

An Operations Support System (OSS) is used by Communications Service
Providers (CSP) to manage their networks. An OSS system supports several
functions that are required to manage a telecommunication network such as
service provisioning and activation, network inventory, fault management,
and network configuration. CSPs typically collaborate with OSS vendors to
customize their OSS systems depending on their network structure and ser-
vice portfolios. According to the TM Forum Business Process Framework for
Telecomunications Operators, an OSS system offers Fulfillment, Assurance,
and Billing of services [82].

An OSS system is usually accompanied by a Business Support System
(BSS), which acts as the customer-facing software and accepts service-related
requests from the customers or the operator. The requests are forwarded to
the OSS system for the actions to be performed on the network. It must be
noted that not all requests to OSS systems involve network configuration.

12

CHAPTER 2. BACKGROUND 13

2.1.1 OSS Applications

A CSP has different operational activities depending on the type of busi-
ness it operates. Accordingly, an OSS system consists of several different
application components based on the requirements of the communications
service provider. An OSS landscape of one CSP might be quite different
from its competitors. However, most of the OSS systems have a common
subset of application components. The International Engineering Consor-
tium (IEC) report [33] on OSS systems lists OSS applications for various
types of networks (e.g., Digital Subscriber Line (DSL), Global System for
Mobile Communications (GSM), and Internet Protocol Television (IPTV)).
The following sections list and explain the application components that are
used in a typical OSS system.

2.1.1.1 Catalog System

CSPs constantly need to come up with innovative product bundles with re-
gards to changing market scenarios. A Catalog System, also called as a
Service Catalog provides services to manage the various technical products
and bundles offered by a CSP. The Catalog System increases the system
modularity and reusability by using predefined service offerings. The TM
Forum’s Frameworx Standard for Information Framework (SID) defines dif-
ferent types of catalogs, viz., Product Catalog, Service Catalog, and Resource
Catalog, and explains the related information models [83].

An example of a product bundle in a Catalog System is a service plan of-
fered by a typical Telecom operator to its customers. For example, consider
a Home Plan which consists of several individual services such as a tele-
phone subscription with 200 minutes of inclusive calls, a 10 Mbps broadband
connection, and a basic IPTV subscription.

2.1.1.2 Inventory

An Inventory is a database that tracks and manages all the network related
resources used by a CSP [9]. Depending on the nature of the product, OSS
vendors use different names for this component such as Network Inventory,
Service Inventory, or Resource Inventory. The main task of the Inventory is
to manage and keep track of the telecommunications infrastructure (network,
resources and services). Thus the CSP has end-to-end stock-keeping of the
resource utilization in the infrastructure.

For example, the operator can query the Network Inventory to find out
the number of DSL Access Multiplexer (DSLAM) ports that are free in a
particular telephone exchange. The Inventory provides services to the order

CHAPTER 2. BACKGROUND 14

management or provisioning and activation components to check resource
availability before provisioning or activating a service.

2.1.1.3 Order Management

An Order Management (OM) system is used to manage order processing.
As per the TM Forum, an OM system handles the end-to-end lifecycle of
a customer’s request [81]. The order can be anything ranging from a re-
quest for configuring products and services to a trivial enquiry. The OM
system captures an order or a request from the northbound BSS system and
then decomposes the order into subsequent smaller requests according to the
product catalog information provided by the catalog system. The subsequent
requests are then sent to the provisioning and activation system. The OM
system implements a business workflow to handle the order processing.

The OM system has interfaces to several systems including northbound
CRM systems, Product Catalog, Inventory, and the provisioning and ac-
tivation system. Furthermore, it provides a user interface to the user to
graphically track the progress of the order processing.

In many cases, an OM system overlaps with the provisioning and activa-
tion system and also falls partially in the BSS area [81]. Some vendors try
to include the functionality of order management in their provisioning and
activation systems to simplify the system architecture.

2.1.1.4 Provisioning and Activation

A Provisioning and Activation (P&A) system is used to provision resources
and activate services on a telecommunications network based on the customer
requests. It automates the tasks of manually connecting to the network
elements and configuring them. As per the ATIS Telecom Glossary [19], a
provisioning process has several definitions as follows:

“The process of configuring hardware and software to activate a telecom-
munication service”

“The processes that supply a telecommunications service to the customer
including all equipment”

The process of provisioning might not always involve delivering hardware
equipment to the customer but in some cases it is necessary. Activation, on
the other hand is the process of configuring the network infrastructure so
that the customer can start using the service. During the activation phase,
the P&A system checks if the network is provisioned and then updates the

CHAPTER 2. BACKGROUND 15

network elements with appropriate configuration to enable the service. After
activation is complete, the system updates the necessary components such
as the Network Inventory and notifies the northbound BSS system of the
request status.

The P&A system has an important sub-component called as the provi-
sioning logic, which runs on every inbound request. The provisioning logic
determines important validations such as checking the inventory and ver-
ifying if the services are already provisioned. The provisioning logic also
determines the splitting of a request into smaller tasks in order to fulfill
the request. Furthermore, it manages the workflow for the execution of the
request. The provisioning logic is customized according to the network in-
frastructure and service portfolios of the CSP.

The P&A system is an important component in the OSS landscape of a
CSP from the point of view of reliability, performance, and security since it
forms a middle layer between the customer-facing BSS applications above and
the network infrastructure below. This leads to a high number of incoming
and outgoing connections to the system.

2.1.1.5 Network Elements

A Network Element (NE) provides networking facilities. Typically, these
devices route the data or provide supporting functionality for the same. For-
mally, the US Telecommunications act of 1996 defines an NE as, “A facility
or equipment used in the provisioning of a telecommunications service” [28].
The components of the GSM network switching subsystem such as Home Lo-
cation Register (HLR), Authentication Center (AuC), and Voicemail System
(VMS). are NEs as are the components of the broadband network such as
DSLAM, Broadband Remote Access Server (BRAS), and Remote Authenti-
cation Dial-In User Service (RADIUS) server. Devices such as Lightweight
Directory Access Protocol (LDAP) servers or generic servers running on the
network can also be termed as NEs.

In order to provision and activate a service, several NEs must be config-
ured. This configuration is done by the P&A system by connecting to each
NE and applying the configuration according to the service specifications.
Therefore, the P&A system maintains a template of operations according to
the NE type and the connection interface.

An NE can have multiple interfaces for configuration management. Some
of the common interfaces include a Command-line Interface (CLI), Trans-
action Language 1 (TL1) defined by Telcordia [80], Common Management
Information Protocol (CMIP) [34], Simple Network Management Protocol
(SNMP) [24], File Transfer Protocol (FTP), Representational State Transfer

CHAPTER 2. BACKGROUND 16

(REST), and Simple Object Access Protocol (SOAP). The traditional inter-
faces such as CLI and TL1 are explained by Mishra [54]. In some cases,
NE vendors have their own proprietary interfaces for which the OSS vendors
need to develop custom middleware interfaces [54].

2.1.1.6 Field Service Management System

A Field Service Management System is used for on-field services which re-
quire an employee of the CSP or a contractor to travel to customer premises
and install or fix equipment physically. Consider a DSL provisioning scenario
where the P&A system creates a manual task in the Field Service Manage-
ment System for a technician to install a DSL modem at the customer’s
premises.

2.1.1.7 Other Components

The components present in a CSP’s OSS landscape vary according to the
type of communication services offered. The above sections listed the most
common components. Examples of other components include Number Man-
agement Systems and Subscriber Directory Systems. The OSS system might
also internally contain sub-components such as EAI Middleware or Message
Queues (e.g. JMS).

2.1.2 OSS Architecture

As mentioned in the earlier section, the architecture of an OSS system de-
pends on the type of the CSP and the services provided by them. Some CSPs
go with a multi-OSS solution while others prefer a single OSS to manage their
entire service portfolio. In this section, we establish a common architecture
for an OSS solution with the focus on service provisioning. This architecture
will be used as a reference for further security analysis. Figure 2.1 shows
the components and the data connections in a typical P&A focussed OSS
system.

2.1.3 Example: Service Provisioning

In this section, we explain an example service provisioning process. In this
scenario, the customer creates a DSL service provisioning request in the CRM
system. The following points below specify the data flow and the provisioning
steps executed by the P&A system. The scenario is visualised in Figure 2.2.
Notice the connections and the data exchanged between the components,
which are important while considering the security implications.

CHAPTER 2. BACKGROUND 17

P&A

VMS Server
SoftSwitch

Router
DSLAM

SMSC

LDAP

BSS Client Billing CRM

Inventory

Field Service
System

OMAlarm/Incident
Management

Network Layer

BSS Layer

Catalog

Northbound Interfaces

Southbound Interfaces

Figure 2.1: P&A Architecture

1. As soon as the operator puts the customer request in the CRM system,
it sends a request to the P&A system for further processing.

The P&A system executes the next tasks according to a predefined pro-
visioning logic.

2. The P&A system queries the Network Inventory to check if there is free
capacity (free ports on DSLAM, hardware availability, etc.). If there is
capacity and equipment available, the Network Inventory is updated.

3. Configure the BRAS NE with appropriate parameters.

4. Create a manual task for the engineering staff to install the Customer
Premise Equipment (CPE) and connect the line to DSLAM manually.

CHAPTER 2. BACKGROUND 18

P&A

Customer
Equipment DSLAM

CRM Inventory

Field Service
System

OM

BRAS

PC

(1) Activate
ADSL (2) Check Inventory

(3) Configure BRAS

(4) Manual CPE
installation

(5) Installation OK

(6) Configure
DSLAM

(7) Configure
CPE

(8) Add
services

(9) Update Inventory
(10) ADSL
Activated

IPATMDSLEthernet

RADIUS

Operator
Services

Internet

LDAP

IP

Figure 2.2: DSL Provisioning Example

The P&A then waits for a confirmation of the manual task and keeps the
request pending.

5. If the status of the manual task received is complete (that is, all hard-
ware is installed), continue with the next steps.

6. Configure the DSLAM NE to activate the DSL connection for the cus-
tomer.

7. If required, configure CPE (customer’s modem) remotely

8. Create an entry in the LDAP/RADIUS NE if it does not exist. Add
the requested subscribed services, authorizations, etc.

9. Update the network inventory with the new capacity.

10. Send back a response to the CRM system the final status of the pro-
visioned service. Consequently, according to the configuration, send a
notification to the billing system in order to start billing.

CHAPTER 2. BACKGROUND 19

2.2 Security Terminology

In this section, we explain the security terminology that will give background
information to the reader for the subsequent chapters. A glossary of key in-
formation security terms is presented by Kissel [44] and in RFC 4949 [75].
Following are the most common definitions related to computer security dis-
cussed in this thesis:

Asset Any application, data, person, property, etc. that is important for an
organization or an individual [44].

Attack An unauthorized attempt to access services or information. An
attempt to destroy, disrupt, or deny services or information, etc. [44].

Adversary An entity that attacks a system or is a threat to the system [75].
An entity with a malicious intent.

Vulnerability A flaw or weakness that could be exploited to compromise
the system [75].

Threat Anything that can exploit a vulnerability in order to cause damage,
theft, denial of services or information, etc. [44].

Threat Model A threat model is a process by which potential threats can
be identified and enumerated in software.

Risk The level of impact on an organisation’s services, assets, individuals,
etc. from an information system operating, given the potential impact
of the threats and the likelihood of that threat occuring [44].

Spoofing “Pretending to be someone or something” [76]. Spoofing usu-
ally involves stealing an identity in order to pretend to be someone or
something.

Tampering Modifying anything that one is not authorized or supposed to
modify [76]. This includes modifying an information store or data flow.

Repudiation Claiming that one did not do something [76]. For example,
claiming that one did not use a service that was billed.

Information Disclosure Leaking information to someone who is not sup-
posed to see it [76]. For example, stealing financial data and making it
available to the public.

CHAPTER 2. BACKGROUND 20

Denial of Service A type of attack that leads to a service being unavailable
to users [76]. A disruption in services often causes significant financial
losses.

Elevation of Privilege Doing something that one is unauthorized to do
[76]. For example, a normal user modifying or accessing something
that only an administrator should do.

2.3 Security Analysis

The term Security Analysis is not well defined and often includes several al-
ternative terms such as Threat Modelling and Risk Assessment [45]. In gen-
eral, analysing the security of a software involves identification of threats,
vulnerabilities, risks, attacks, and countermeasures [45]. A structured ap-
proach for analysing the security is threat modelling [58]. In this thesis, we
create a threat model, identify vulnerabilities and countermeasures for an
OSS system.

A threat model helps to identify the most likely threats in a systematic
way. Myagmar et al. [55] explain why threat modelling should be considered
a basic security requirement. A system cannot be secured by merely using the
industry standard encryption and complex security jargon. The paper [55]
also explains the common high-level steps in threat modelling, viz., identifica-
tion of system characteristics, asset and entry points, and threats. Examples
of threat modelling techniques are the STRIDE methodology [79], PASTA
[84], and Trike [72].

The STRIDE methodology was described by Microsoft. It categorises
threats based on spoofing, tampering, repudiation, information disclosure,
denial of service, and escalation of privilege [79]. Refer to Section 2.2 for the
definitions of each STRIDE category.

We use the following four-step framework described by Shostack [76] for
security analysis. In addition, we also find out the common vulnerabilities
that are possible in the context of OSS systems.

1. Diagramming: Understanding the data flow in the system by drawing
a Data Flow Diagram (DFD).

2. Threat Enumeration: Classifying the threats using STRIDE.

3. Mitigation: Improving the system security by providing ways to re-
duce the threats.

4. Validation: Checking if the threats have been mitigated.

Chapter 3

Threat Model

In this chapter, we create a threat model for an OSS system for provisioning
and activation. We use the four-step framework described in Section 2.3
which involves diagramming, threat enumeration, mitigation and validation.
We also identify the assets in a typical OSS system in Section 3.1 and discuss
about adversaries in Section 3.2. The first two steps, diagramming and the
resulting enumeration of threats are described in Section 3.3. The diagrams
help to visualize the system and find out trust boundaries. As a result,
finding out potential threats becomes easier. Once we know the threats and
common vulnerabilities, we describe the next steps, mitigation and validation
in Chapter 5.

3.1 Assets

An asset is anything that has some value [79]. The STRIDE methodology is
not asset-centred but software-centred, which means that it focuses on the
processes and working of the software in order to find the threats. Never-
theless, an asset analysis gives a broader perspective of what needs to be
protected. Moreover, identifying critical assets helps in realising the impor-
tance of securing them. We have identified the following assets in an OSS
system:

3.1.1 Information Assets

Subscriber Identity: There is a high amount of personally identifiable
information (PII) that goes through an OSS system. Typically, this informa-
tion includes customer names, street addresses, phone numbers, and email
addresses. In some countries, CSPs are required by law to collect PII from

21

CHAPTER 3. THREAT MODEL 22

their customers [22]. This information is valuable information for both the
customer and the CSP. Any breach in this data is considered a serious secu-
rity incident.

Subscriber Data: The data that is linked to a subscriber includes infor-
mation such as details of subscriptions, billing, payment, and SIM card. Any
tampering to this information may directly affect the revenue from the cus-
tomer. OSS systems also carry sensitive authentication related information.
Examples include, the parameters to configure an authentication server (e.g.
RADIUS), and the GSM AuC parameters (e.g. KI). This sensitive informa-
tion, if leaked, can cause serious damages.

Network Information: A P&A system stores a model of the network.
This includes connection information such as usernames, passwords, crypto-
graphic keys, connection types, and the network structure. A breach of this
information will expose the network elements.

Provisioning Logic: The provisioning logic is a core component of a P&A
system to generate tasks for the network elements. Any tampering of the logic
will lead a faulty configuration of the network.

Northbound System Data: The BSS systems connect to the OSS system
in order to send requests and create orders. The latter also sends responses
to the former. OSS systems store connection information, e.g. credentials,
reply-to addresses, and other information related to the northbound systems.

Catalog and Inventory Data: The product catalog and inventory data
form a critical information store for P&A. Hence any tampering to this in-
formation will lead to disaster.

Archived Information: An OSS system is a system where information
flows through it rather than getting stored for a long time. However, for
several reasons including regulatory constraints, CSPs often archive the or-
ders, requests and tasks data. This passive data can reveal some important
information described in the above paragraphs.

User Data: The user database is used by the OSS system for authenti-
cation purposes to control access to monitoring and configuration functions.

CHAPTER 3. THREAT MODEL 23

This includes usernames, passwords, and phone numbers. This informa-
tion can either be internal to the OSS system or retrieved from an Identity
Provider (IdP).

3.1.2 Software Assets

Each component of the OSS system can itself be considered a software asset.
This typically includes the following: P&A system (and subcomponents such
as Network Manager, Logic Builder, internal queues, and its user interface),
Catalog system, databases, IdP systems, and Inventory system.

3.1.3 Physical Assets

The physical assets that are of concern in an OSS system are the hosts on
which the components are running. Furthermore, the network elements can
also be considered as physical assets (e.g. the Nokia DX200 HLR system).
Customer premise equipments such as modems and wired phones are also
physical assets which are handled through the Field Service Management
System.

3.1.4 Intangible Assets

The most important intangible asset for any CSP is its reputation. The cus-
tomer loyalty of any telecommunications company depends on its reputation
in the market. A company with a weak security policy and less regard for
customer protection cannot last long in such a competitive market. Hence,
CSPs focus on maintaining a good reputation in the market [22].

3.2 Adversaries

An Adversary (also interchangeably called an Attacker) is an entity with a
malicious intent. Adversaries prevent the system from achieving its goals.
Adversaries could steal, tamper, corrupt, spoof identity, deny service, and
perform various other malicious activities. It is important to “know your
enemies” while doing a security analysis. The following subsections explain
different adversaries in the context of an OSS system.

CHAPTER 3. THREAT MODEL 24

3.2.1 External Adversaries

External adversaries are untrusted entities who lie outside the boundaries
of the enterprise. External adversaries may be unknown to the enterprise,
e.g. a hacker. A hacker on the Internet can try to attack the system. The
intention of such attackers can include anything, such as trying to impress
others, for fun, or compromising the system for breaking into other systems
(i.e., making the system a part of a botnet). Examples include hacktivists,
terrorists, and organized criminals.

One should not neglect the possibility of competitor CSPs (or partner
CSPs) trying to attack the system remotely. Perhaps, partner CSPs trying
to use the system in ways they are not permitted to use. The intent might not
be malicious, but could well be to gain more from the system than permitted.
Example, a partner CSP trying to gain more capacity than allotted by the
host CSP.

The customers of a CSP can be considered as external adversaries. Cus-
tomers may try to exploit vulnerabilities in the system to their advantage.
For example, a customer may try to attack the system in order to get more
data capacity for the price paid. In some cases, customers try to bypass
restrictions such as blocked websites or daily call limits.

Government agencies can try to attack OSS systems in order to get cus-
tomer data. For example, intelligence or spy agencies may try to obtain
information by secretly attacking the system when the legal methods fail.
Foreign governments may also try to hack a CSP’s OSS system as a part of
developing cyber-attack capabilities.

3.2.2 Internal Adversaries

Internal adversaries are entities that may be known to the enterprise and may
work within the enterprise’s boundary. Internal adversaries usually have legal
access to the CSP’s enterprise network. Insiders can also have permissions to
use the OSS systems. Thus, it is easier for an insider to attack the system or
just steal information because they can exploit the trust between them and
the CSP or its systems. Several issues regarding insider threats have been
examined by Colwill [26].

An employee can perform tasks on the system that might be considered
a security violation. For example, an employee may copy subscriber infor-
mation from the request parameters while monitoring requests on the P&A
system. Or a curious employee modifying requests which could lead to a
faulty configuration of the network. Some employees may be interested in
finding out data about their friends and family. Employees stealing sub-

CHAPTER 3. THREAT MODEL 25

scriber data (such as phone numbers) is a serious problem.
Another case of insiders who could exploit a trust relationship are con-

tractors with malicious intent. CSPs may hire contractors or outsource full
or part of OSS system’s management to a separate company. In this case,
the CSP has to trust an external entity which could turn malicious.

3.3 Diagramming and Threat Enumeration

A DFD (Data Flow Diagram) helps understand the flow of data across the
whole system. Thus, we can find out the external and internal boundaries
of the system. A trust boundary is where principals with different privileges
interact [76]. A trust boundary presents an attack surface for malicious
entities to gain access or interact with an entity [5]. A DFD contains entities,
processes, data stores, and data flow as drawn in Figure 3.1.

Data Store Entity

ProcessData Flow

Trust
Boundary

Figure 3.1: DFD Elements [76]

For enumerating threats, each element in the DFD is analysed for STRIDE
threats using STRIDE-per-Element as described by Shostack [76]. According
to STRIDE-per-Element, some threats apply only to certain elements of a
diagram as per Table 3.1.

Table 3.1: STRIDE-per-Element

S T R I D E

External Entity X X
Process X X X X X X
Data Flow X X X
Data Store X ? X X

CHAPTER 3. THREAT MODEL 26

We use Microsoft’s threat modelling tool [16], which provides a simple
and efficient way to create a DFD for a system. We use the top-down ap-
proach by first studying the high-level system also called the context dia-
gram. Thereafter, we draw the level-1 diagrams which reveal more details of
the system. These diagrams, along with associated threats, are described in
subsequent Sections 3.3.1-3.3.4. Note that Appendix A contains the full list
of threats while the above sections mention only the most important threats
to consider.

3.3.1 Context Diagram (High Level)

Figure 3.2: Context Diagram of a typical OSS

Figure 3.2 refers to the data flow between the BSS systems, the OSS sys-
tem, and the NEs. Generally, all the systems are within a single enterprise-
wide network, which forms a trust boundary area. The access to the en-
terprise network is controlled by security gateways and firewalls. A host
trust boundary exists between the northbound BSS systems and P&A sys-
tem since the communication is between two different hosts. Similarly, a host

CHAPTER 3. THREAT MODEL 27

trust boundary is crossed when the P&A system sends configuration tasks
to NEs and receives responses. Likewise, when the P&A system connects
to other OSS components such as a Network Inventory system and Product
Catalog system, which run on different hosts, the communication crosses a
trust boundary. In a multi-host environment where OSS systems are repli-
cated across multiple hosts and communicate with each other to distribute
load and to synchronize data, the number of trust boundaries is even higher.

Based on the context DFD, Appendix A.1 lists the major threats. Fol-
lowing are the important threats to consider:

1. An attacker may spoof a BSS system or an external system such as
Inventory or Catalog. A malicious system posing as a BSS can disrupt
the network by sending incorrect configuration requests to the P&A
system.

2. If the attacker is able to spoof a system, it can mount a man-in-the-
middle (MitM) attack, which might lead to tampering of data or sniffing
of important information on the interfaces. Alternately, the attacker
might just passively listen to (sniff) the information on an interface.

3. An attacker may deny service to the BSS systems by flooding the P&A
system with requests or by compromising the northbound interface.

3.3.2 User Interface

A user interface is used for configuration and monitoring. In general, authen-
tication and authorization services are provided by an external authentication
server using Kerberos, LDAP, RADIUS, and other protocols. In some cases,
authentication and authorization are done locally. In our example, the user
interface is served by a web application, which is a sub-component of the
P&A system as shown in Figure 3.3. All the communication between the
web application and the user’s browser, the external authentication server,
and the database server passes through a host trust boundary.

We have analysed the threats based on the level-1 DFD for the user
interface (UI) in Appendix A.2. The important threats to consider are as
follows:

1. Cross-site scripting (XSS) in the user’s browser can lead to a num-
ber of security issues including elevation of privilege and information
disclosure. The web application might not validate user input properly.

CHAPTER 3. THREAT MODEL 28

Figure 3.3: User Interface

2. A lack of input validation can also allow the attacker to inject SQL
statements in the user input and to unauthorized information disclo-
sure.

3. An attacker may listen to the interface between the browser and the
web application and sniff valuable information such as passwords and
personal information. MitM attacks can be mounted by attackers.

4. In the case of a weak authentication, the attacker can brute-force com-
binations of username and passwords. Weak access control can lead to
unauthorized users getting access to protected information.

5. The communication between the identity provider and the web appli-
cation is an important attack surface. An attacker could steal authen-
tication tokens and session information by sniffing or by mounting a
MitM attack.

CHAPTER 3. THREAT MODEL 29

3.3.3 Northbound Interface

A P&A system provides northbound interfaces for receiving provisioning and
activation requests as well as for sending responses back to the BSS systems.
Figure 3.4 shows different types of northbound interfaces and the data flow to
the P&A system. There are several types of northbound interfaces generally
supported including SOAP, REST, and CORBA. Some vendors have their
own non-standard protocols over TCP. The responses can be synchronous or
asynchronous. In our example, we assume that each interface is a separate
component. Before a session is established, a BSS system is authenticated
based on pre-stored information (key, password, etc.) in the data store.
A trust boundary lies between the BSS system and the interface and also
between P&A system and the data store.

Figure 3.4: Northbound Interfaces

A full list of threats is enumerated in Appendix A.3. The important
threats to be considered are as follows:

CHAPTER 3. THREAT MODEL 30

1. Spoofing of the P&A system by the attacker can lead to the BSS sys-
tems sending login credentials and configuration requests to an illegit-
imate system. On the other hand, spoofing of the BSS system can
lead to a malicious entity breaching the trust boundary and sending
malicious requests to the P&A system, or the P&A system sending
responses to the malicious entity.

2. An attacker may be able to sniff the credentials used by the BSS systems
to authenticate with P&A. Data transfer in plaintext is vulnerable to
sniffing, which can reveal subscribers’ personal information and secret
network element parameters.

3. Vulnerabilities in the interface technology can be exploited by attackers.
If the interface is SOAP-based, there are threats such as XML Injection,
WSDL Scanning, and WS-Addressing spoofing [37]. Threats for REST-
based interfaces include XML injection, token thefts, cross-site request
forgery (CSRF), and SQL injection [61].

4. A weak authentication or authorization implementation in P&A can
lead attackers to determine BSS credentials using brute force and dic-
tionary attacks.

5. An attacker can deny service by using several techniques such as re-
source exhaustion by sending multiple login requests or a high number
of provisioning requests to the interface.

6. An SQL injection attack or sending faulty data may result in data
tampering, leading to wrong configuration, denial of service or even
corruption of the data store.

3.3.4 Southbound Interface

The southbound interface connects the P&A system to the NEs. Addition-
ally, Field Service Management Systems and ESB systems can also be consid-
ered NEs and connected to the southbound interface. Since there are various
protocols and communication technologies for NEs, a Network Element In-
terface (NEI) is used. Different NEIs are used for Secure Shell (SSH), Telnet,
TL1, and SOAP based NEs. The NEIs are a part of the P&A system and
hence lie within the same host trust boundary.

Figure 3.5 shows two different interfaces and the connected network el-
ements. The network model stores all the details of the network including
keys and credentials used to establish a session with the NEs. The network

CHAPTER 3. THREAT MODEL 31

model is queried by the P&A system for details required to connect to an
NE.

Figure 3.5: Southbound Interfaces

The threats generated upon an analysis of the DFD for southbound in-
terfaces are listed in Appendix A.4. Following are the prominent threats to
consider:

1. Similar to threats listed for other diagrams, sniffing of the data flow
from the NEI to the NE is an important threat to consider. If the
communication is not encrypted, an attacker might be able to deduce
sensitive information including passwords and personal information by
sniffing the P&A-NE interface.

2. Spoofing of an NE or the P&A system is a major threat. If the attacker
is able to spoof an NE, then P&A system will send sensitive information
to the illegitimate NE. If an attacker manages to get access to the P&A
host and replace (or spoof) an NEI component, then it is possible to
mount MitM attacks from the spoofed NEI.

3. If there is improper input validation, the attacker can use SQL injec-
tions in the request data to try to retrieve the credential information
for NEs from the network model. If the authentication scheme is weak
for the data store, malicious users can get hands on the network model
data.

CHAPTER 3. THREAT MODEL 32

4. If the network model data is disclosed, the attackers can try to decrypt
the NE credentials by several methods including brute force, rainbow
tables and dictionary attacks.

5. A weak key management scheme can be exploited by attackers. If the
encryption keys for encrypting the network model are stored on the
same P&A host, malicious users might be able to get access to it.

6. A disclosure of NE logs can reveal a lot of NE related secret information
as well as task information.

3.3.5 Provisioning and Activation

Figure 3.6 shows different components within a P&A system. The Request
Module stores incoming requests to be processed in the R-Queue, while the
Task Module stores the tasks to be sent to NEs in the T-Queue. The queues
act as a buffer for the incoming requests. Apache ActiveMQ [1] is an example
practical implementation of a message queue.

The Provisioning Logic Component is used to split the request into mul-
tiple tasks for several NEs depending on a stored logic. A data store is used
to keep track of requests, tasks, and monitoring information. All the compo-
nents except the BSS systems, database, and the NEs are within the trust
boundary of the host on which the P&A system is installed.

Similar to other diagrams, most of the common STRIDE threats apply
to this DFD as mentioned in Appendix A.5. Following are some of the
important threats to note:

1. If an attacker is able to break into the P&A host, they might spoof the
queues in order to get access to the request and task messages.

2. Components may be inadvertently exposed to outside the host because
of misconfiguration of firewalls. For example, the ports of R-Queue
and T-Queue exposed to the network. Attackers can mount denial of
service attacks on the ports.

3. An attacker could tamper provisioning logics in order to disrupt the
proper creation of task, eventually leading to improper network config-
uration.

4. If the request and NE logs are not maintained properly, it is difficult
to address repudiation claims.

CHAPTER 3. THREAT MODEL 33

Figure 3.6: Provisioning and Activation

5. Insecure access to logging data can disclose classified information. The
request log might contain important metadata for NEs as well as private
subscriber information.

Chapter 4

Vulnerabilities and Security Risks

In this chapter, we describe vulnerabilities that are common to P&A and
OSS systems in general. Most of the OSS systems serve their UI using a web
application and use components such as ActiveMQ [1] for queuing messages.
The application also opens several ports for accepting requests, communi-
cation between components, sending responses, providing a UI, etc. Taking
into account these common components, the subsequent sections explain the
various vulnerabilities that vendors must address in their products. Note
that the examples and figures mentioned in this chapter may have some
vendor-sensitive information removed considering responsible disclosure.

4.1 Default Username and Password

OSS products are usually shipped with a default administrator user with
credentials, which are easy to guess such as, admin/admin or administra-
tor/admin. This makes it easy for attackers to use dictionary attacks on the
administrator account. Often, the product documentation itself mentions
the default administrator credentials. Thus, in this case, it is trivial for an
attacker to obtain the default password. A default username and password is
convenient to have during the initial setup of the application. However, prod-
ucts often do not automatically prompt the user to change the password after
the first login. Thus, it is possible for the administrator account to remain
active with a default password. If the administrator account is compromised,
it could lead to situations such as the attacker modifying provisioning logics
secretly, changing the network configuration, stealing information, creating
new users, or even denying service.

34

CHAPTER 4. VULNERABILITIES AND SECURITY RISKS 35

4.2 Poor Key Management

4.2.1 Using pre-generated Keys

During the development phases, the developers might end up pushing the
keys generated for testing to the installation package for convenience. This
includes keys that are used for data encryption or transport layer security
(TLS). As a result, many OSS products do not generate new keys for each
installation and the same keys from the code repository are shipped in every
installation package. The product documentation usually mentions generat-
ing new keys manually after the installation is completed.

Except for the convenience that this practice provides, this is a serious
vulnerability. If an attacker gets access to one of the product installations,
then every installation is compromised. As a result, the attacker can perform
malicious activities on the processes where the keys are used including the
decryption of subscriber information and network element passwords. Ad-
dressing such a scenario can require a lot of work and can generate multiple
customer cases resulting in a chaotic situation. A similar vulnerability is
mentioned by Cisco regarding default SSH keys [29].

4.2.2 Keys Hard-coded in the Code

For data encryption (of passwords, subscriber keys, etc.), developers often
use symmetric encryption such as AES or Triple-DES. The keys are often
stored in the code as String variables.

Storing keys as String variables is a serious vulnerability since an at-
tacker can decompile the executable code to reveal the values of the vari-
ables. Even if the executable code is obfuscated, it is possible for an attacker
to retrieve the value of the required String, given the time and resources.
There are several tools available to decompile the executable code.

Figure 4.1 shows an example of decompiled Java code to reveal the key
string using the JD tool [6] by simply opening the .jar file in the decompiler.
It is also possible to reveal the key strings by running the executable in a
debugger such as jdb.

Since the keys are hard-coded in the code, every installation of the appli-
cation has the same keys. Thus, the attacker needs to compromise only one
installation in order to retrieve the key data to compromise all the installa-
tions.

CHAPTER 4. VULNERABILITIES AND SECURITY RISKS 36

Figure 4.1: String values revealed using Java Decompiler

4.3 Passwords Stored in Plaintext

Many components within the OSS system require authentication. For ex-
ample, ActiveMQ [1] authenticates clients before brokering the messages to
other clients. We found that organizations tend to use simple configurations
available for external components. In case of ActiveMQ, when the simple
authentication configuration is used, the client usernames and passwords are
stored in the settings file (activemq.xml) in plaintext. This is a security flaw.

Another case of a bad security design is the storage of NE credentials in
plaintext. NE passwords stored in the database or the file system in plaintext
is a high security risk.

4.4 Insecure Authentication Practices

Encrypting user passwords for authenticating users was a common practice
during the early years of the World Wide Web. However, storing passwords
in an encrypted format is not recommended as it would lead to massive in-
formation disclosure if an attacker gets access to the encryption key. Instead
of storing passwords in an encrypted format, the recommended way is to
store the hash value of the passwords. However, passwords not stored in a
salted hash format are vulnerable to dictionary attacks [43]. This applies
to passwords used for authenticating users as well as the northbound client
systems in an OSS system. Since OSS systems have been around for a long
time, legacy authentication practices might still be in use.

CHAPTER 4. VULNERABILITIES AND SECURITY RISKS 37

4.5 Use of Weak Cryptographic Algorithms

We found that OSS applications may use weak cryptography in their com-
ponents. According to a NIST report [20], several encryption and hashing
algorithms are considered insecure. We found that the DES and MD5 algo-
rithms are still used for encryption and hashing purposes respectively. These
algorithms are considered inadequate for modern security requirements. A
weak encryption algorithm is a critical security problem in an OSS system
since the encrypted data includes sensitive information.

4.6 Open Ports on the OSS Host

Ports that are open to the network can attract unnecessary attention from
malicious users. The more ports are open on a host, the wider the attack
surface. A deep port scan using Nmap [11] shows a list of open ports. At-
tackers can exploit vulnerabilities in the services running under the ports or
may mount attacks to deny services to legitimate users.

4.6.1 SSH Port

An open SSH port accessible from a bigger network or the Internet leads to a
variety of different attacks. Attackers can try to brute force login credentials
in order to guess the root or some other user’s password. A study by Owens
et al. [67] determines that SSH servers are the target of a variety of brute
force attacks.

Another risk is to allow login for any user including the root user. This
can lead to disastrous consequences since a compromised root user will allow
administrator access to the attacker. Owens et al. [67] mention that the
root user was targeted in 25% of all the malicious login attempts in their
experiments because root is always a valid username on Linux hosts.

4.6.2 Other Ports

An OSS system has multiple components. A typical P&A system opens
ports for external systems as well as internal components. Based on the
P&A components described in Section 3.3.5, a few use cases for opening
ports are:

1. The request module may open two ports for external systems, one for
accepting requests and the other for sending responses.

CHAPTER 4. VULNERABILITIES AND SECURITY RISKS 38

2. A management port for each component (Network, Service modules)

3. Ports for communicating with R-Queue and T-Queue

An NMap port scan of a host will show many open ports as shown in
Figure 4.6.2. From the output, we can determine that along with the ssh
port, there are several open TCP ports which are used for various purposes.
The attack surface is increased if the ports for internal communication are
made visible on the network. An attacker may try to connect to each of the
ports and exploit vulnerabilities associated with the respective service.

[user@host ~]$ sudo nmap -p- 192.168.122.1

Starting Nmap 6.40 (http://nmap.org) at 2017-08-15 15:48 +02

Nmap scan report for 192.168.122.1

Host is up (0.0000060s latency).

Not shown: 65480 closed ports

PORT STATE SERVICE

22/tcp open ssh

53/tcp open domain

111/tcp open rpcbind

44250/tcp open unknown

44253/tcp open unknown

44254/tcp open unknown

44255/tcp open unknown

44256/tcp open unknown

44257/tcp open unknown

...

Nmap done: 1 IP address (1 host up) scanned in 1.16 seconds

Figure 4.2: NMap Port Scan for a P&A host

4.7 Insecure BSS-OSS Interface

As described in the threat model (Section 3.3.3), the northbound interface
faces threats such as sniffing, spoofing, and denial of service (DoS). If the link
between the BSS and OSS systems is not encrypted, an attacker can sniff
data. An attacker can deliver a malicious packet sniffer to the target BSS
or the OSS host by several means such as via an email attachment, using
existing remote code execution vulnerabilities, or insider knowledge.

We used a Wireshark [15] instance running on a BSS system to sniff data
packets sent to the P&A system in order to replicate the same scenario. As

CHAPTER 4. VULNERABILITIES AND SECURITY RISKS 39

shown in Figure 4.3, we successfully retrieved the login credentials used by
the BSS system. Consequently, the credentials can be used to impersonate
the BSS system.

Figure 4.3: Sniffing BSS credentials using Wireshark

Attackers have several techniques at their disposal for a MitM attack
including ARP poisoning, and DNS spoofing. Ornaghi et. al. [57] describe
MitM attacks such as key manipulation, downgrading attack, and command
injection. The example described in Section 4.8 can also be used to remotely
sniff the BSS-OSS interface.

Moreover, the BSS-OSS interfaces are implemented in a variety of dif-
ferent technologies such as REST and SOAP. Vulnerabilities in REST and
SOAP implementations may allow remote code execution, SQL injection, and
other attacks. For SOAP services, there are several attacks such as WSDL
spoofing, Access control bypass, and XPath injection [36, 87]. REST-based
web services are prone to attacks such as Token theft, DDoS, and Buffer Over-
flows. References [37] and [61] describe attacks and mitigation for SOAP and
REST interfaces, respectively. Demonstration of each of these attacks is out
of the scope of this thesis.

4.8 Insecure Browser-OSS Interface

The Browser-OSS interface is vulnerable to the same attacks as mentioned
in Section 4.7 with respect to the BSS-OSS interface. In this section, we
demonstrate sniffing the login credentials of a user from a remote host in
the network as opposed to sniffing on one of the communicating hosts. If
the browser does not use HTTPS to communicate with the server, it gives
the attacker a chance to sniff the connection. We used ARP spoofing [86] to
poison the ARP cache with the MAC address of a malicious host (for sniffing).

CHAPTER 4. VULNERABILITIES AND SECURITY RISKS 40

Thus all the traffic from the web browser intended for the target P&A host
passes through the malicious host. We followed the following process:

1. Set up a malicious host in the same network as the target host (web
browser).

2. Start ARP spoofing using the Ettercap tool [4] to poison the ARP
cache both ways, that is, for the target host and the P&A system.

3. Start Wireshark [15] to sniff packets that flow through the malicious
host.

Figure 4.4: Sniffing User credentials with Wireshark

Figure 4.4 shows the sniffed credentials for an administrator user captured
from a malicious host on the same network as the user’s host.

If the communication is HTTPS, attackers can use protocol downgrade
attacks to downgrade the encryption protocol to a weaker version or to clear
text communication. One such example is SSLStrip [49] where the man-in-
the-middle replaces HTTPS links with HTTP so that sniffing and tampering
is possible. Marlinspike [50] describes several tricks to defeat SSL using
SSLStrip.

4.9 Insecure OSS-NE Interface

There are myriad of southbound interfaces used by a P&A system. The se-
curity of each interface depends on the type of interface, manufacturer, etc.
Newer interfaces such as SOAP, REST over TLS, and SSH are more secure
than older interfaces. One of the older interfaces still in use is TL1 over Tel-
net, which uses plaintext communication. The same technique as described

CHAPTER 4. VULNERABILITIES AND SECURITY RISKS 41

in Section 4.8 can be used to sniff the interactions between the P&A system
and the network element. Figure 4.5 shows a snapshot of login credentials
sniffed from an FTP-based interface (for NEs which accept file uploads). The
sniffing was possible since the NEI did not use transport layer security and
sent the credentials in plaintext. In some cases, the login credentials are en-
crypted but the rest of the communication is plaintext, which might contain
sensitive information. Southbound interfaces that use SNMP to configure
network elements can be compromised by exploiting vulnerabilities in the
SNMP protocol such as insecure settings, spoofing, and other vulnerabilities
in SNMP’s trap and request handling processes [38].

Figure 4.5: Wireshark capture of a P&A and an FTP based NE session

4.10 Sensitive Data Exposure on the UI

As described in Section 3.1.1, there are multiple information assets in an
OSS system. Some information assets are considered very sensitive. An
example of critical information is the encryption key which is configured in
the AuC system in the GSM core network infrastructure as well as in the
SIM card. The encryption key must be kept secret in order to prevent SIM
cloning. P&A requests for the configuration of the AuC system often contain
a KI parameter which carries the encryption key. OSS developers might not
hide the KI parameter while displaying the request data on the UI, thereby
leading to disclosure of sensitive data to unintended users.

Another case of sensitive data exposure is the display of NE credentials
on the UI. Once an NE’s connection details are created on the UI, the cre-
dentials are typically stored in the database in an encrypted form. NE pass-
words are stored because they are used later while establishing communi-
cation with NEs. However, the credentials might be shown on the UI in
plaintext while viewing or modifying the connection details. This vulnera-
bility may be prevalent in many OSS systems because of insecure design or
development practices.

CHAPTER 4. VULNERABILITIES AND SECURITY RISKS 42

4.11 Logging of Sensitive Data

OSS systems log high amounts of data, which includes request logs, provi-
sioning logic execution logs, user audit trails, NE logs, and component logs.
Apart from helping in finding faults in the application, logging also helps in
finding security breaches. Nevertheless, the high amount of data that goes
into OSS logs makes logging an important asset to secure. Figure 4.6 shows
sensitive data such as credentials and personal information found in logs of a
P&A system. Logs are often archived in insecure network storage. Attackers
can use a combination of attacks to get access to logs. An attack scenario
could include the use of an XSS or a CSRF attack to steal the log data
displayed on the UI. If there is a directory traversal vulnerability in the UI,
attackers can exploit it view log files.

$BEGIN$ 1_1

Task started at 20170829-160904

Parameters:

task_type = create

product_name = DX200

ne_type = HLR

ne_id = hlr1

MSISDN1 = 358991234567890

...

KI = 94764B49AF37AC9D21B0EEEFEFD65C6E

...

END 1_1

Figure 4.6: Network component logs revealing a sensitive parameter (KI)

4.12 Web Application Security Risks

As mentioned in Section 3.3.2, the UI component of many OSS systems is a
web application which communicates with other P&A components. If the UI
component is compromised, an attacker can compromise other components
by misconfiguring the system or creating backdoors. The following list de-
scribes the top 10 security risks that plague web applications as per OWASP
[65]. We have appended the list with OSS related examples.

1. Injection. An SQL injection sent from an input field or as a URL
parameter can reveal, corrupt or modify sensitive data.

CHAPTER 4. VULNERABILITIES AND SECURITY RISKS 43

2. Broken authentication and session management. A session hi-
jack is possible if session IDs are managed improperly such as putting
session IDs in the URL or non-HTTP-only cookies, using same session
IDs, or not timing out sessions. The authentication may be broken if
passwords are easily guessable and default passwords are not changed
(see Section 4.1).

3. Cross-Site scripting (XSS). If the application does improper input
validation, an attacker can insert malicious JavaScript code in the input
field. An XSS attack could be reflected or persistent depending on
where the input data is used. In a persistent attack, we were able to
send a malicious JavaScript code the login page which got stored in
the login audit trail. When an administrator viewed the audit trail,
the malicious JavaScript to steal the session ID was executed.

4. Insecure direct object references. In this case, a user with mali-
cious intent is able to view unauthorised objects by directly referencing
them. For example, in an OSS system, a user with regular privileges
might be able to view request data that only an administrator should
be able to view because of lack of proper control.

5. Security misconfiguration. Wrongly configuring security can lead to
the system being compromised even without the maintainers noticing
it. Allowing weak ciphers in the server’s SSL/TLS configuration is one
example [69].

6. Sensitive data exposure. For example, the sensitive data exposure
in UI and logs described in Sections 4.10 and 4.11 respectively. Data
backups are also quite vulnerable to exposure since databases and files
including logs are routinely backed up. Also consider the interfaces
which are vulnerable to sniffing (see Section 4.8).

7. Missing function level access control. This risk is a result of
incorrectly implementing access control. For example, the privileged
functionality is hidden on the UI but the server doesn’t check for priv-
ileges. Thus, an attacker can gain access by calling the server API, or
the URL, and thus bypassing the UI.

8. Cross-Site request forgery (CSRF). A CSRF attack exploits the
trust that the server has on the browser. Consider the scenario where
an attacker sends a carefully crafted phishing email message to the
P&A administrator with a link that creates a new BSS user. If the

CHAPTER 4. VULNERABILITIES AND SECURITY RISKS 44

administrator clicks the link when already logged in to the P&A system,
a new BSS user will be created with the administrator’s session.

9. Using components with known vulnerabilities. OSS develop-
ers often do not use the latest versions of third-party components to
maintain compatibility. For example, using older versions of ActiveMQ
vulnerable to many JMS-related attacks [40].

10. Unvalidated redirects and forwards. Attackers can redirect in-
nocent users to malicious websites if redirects and forwards are not
validated. For example, an attacker crafts a URL to forward the user
to a malicious URL which looks similar to the OSS system’s UI and
asks for passwords, such as,
http://osshost.company.com/redirect.jsp?next=evilhost.com

4.13 Denial of Service

An attacker can mount denial of service attacks on an OSS system via the
northbound interface, the UI or by exploiting the host’s open ports (Section
4.6). A common way of denying service is to overload the application causing
buffer overflows and crashing a component [85]. Examples of DoS attacks
include the Syn flooding attack [27], and HTTP request flooding [88]. DoS
attacks rose by 28% in Q2 2017 [17].

We were successfully able to block the propriety northbound interface of
a P&A system by flooding the request port with a high number of connection
requests using the tcpflood tool [14]. The output shows a high number of
ESTABLISHED TCP connections on the P&A host.

[pna@host ~]$ sudo netstat -tpn | grep 192.168.121.100

tcp 192.168.121.100:44253 192.168.121.102:45734 SYN_RECV

tcp6 192.168.121.100:44253 192.168.121.102:45576 ESTABLISHED

tcp6 192.168.121.100:44253 192.168.121.102:45490 ESTABLISHED

tcp6 192.168.121.100:44253 192.168.121.102:45538 ESTABLISHED

tcp6 192.168.121.100:44253 192.168.121.102:45624 ESTABLISHED

tcp6 192.168.121.100:44253 192.168.121.102:45650 ESTABLISHED

tcp6 192.168.121.100:44253 192.168.121.102:45822 ESTABLISHED

tcp6 192.168.121.100:44253 192.168.121.102:45762 ESTABLISHED

tcp6 192.168.121.100:44253 192.168.121.102:45542 ESTABLISHED

...

DoS attacks can also be targeted at the application layer instead of the
transport layer of the TCP/IP protocol. For example, in the Slow Read DoS

CHAPTER 4. VULNERABILITIES AND SECURITY RISKS 45

attack [68], the attacker sends an unusually small receiving window size (usu-
ally zero) to receive data slowly from the server and holds up the connection
and resources. We were successfully able to deny service on the Apache Tom-
cat Web Server [2] with the SlowHTTPTest tool [13] which uses techniques
similar to Slow Read DoS. Attackers can exploit these techniques to deny
service to the UI instance as well as HTTP based northbound interfaces.

4.14 Vulnerabilities in Message Queues

Message queues form an essential part of P&A and other OSS systems. In
a P&A system, a message queue is used to buffer incoming requests from
the northbound API as well as outgoing tasks for the NE. As described in
Section 3.3.5, message queues are separate components, and the P&A sys-
tem communicates with them via ports for sending and receiving messages.
Kaiser [40] explained vulnerabilities related to Java deserialization in JMS
implementations such as ActiveMQ [1]. In this section, we will describe
some vulnerabilities in ActiveMQ [1] which is one of the most popular JMS
implementations.

A misconfiguration can enable the ActiveMQ Web Console in production
environments. The Web Console is used for monitoring ActiveMQ. We were
able to log in to a P&A system’s ActiveMQ component through the Web
Console using the unchanged default administrator credentials and get access
to queue data and administrative controls. Moreover, ActiveMQ versions
before version 5.8.0 did not require any authentication (refer CVE-2013-3060
in NVD [10]).

Kalra [41, 42] analysed multiple vulnerabilities related to ActiveMQ. In
its basic authentication scheme, ActiveMQ requires the username and pass-
word to be stored in the configuration file in plaintext (see Section 4.3) and
provides no account lockouts for failed logins, thus being vulnerable to pass-
word guessing attacks. Several other vulnerabilities related to ActiveMQ
include XSS in the Web Console (refer CVE-2016-0782 in NVD [10]), and
directory traversal in file upload for blob messages (refer CVE-2015-1830 in
NVD [10]). Many of the vulnerabilities have been fixed in the latest ver-
sions (>5.15.0). However, OSS implementations may continue to use older
versions of ActiveMQ to maintain compatibility.

CHAPTER 4. VULNERABILITIES AND SECURITY RISKS 46

4.15 Tampering of Provisioning Logic

In a P&A system, the provisioning logic is a crucial component which deter-
mines the proper processing of requests based on pre-defined conditions (see
Section 3.3.5). There are several provisioning logics in a P&A system. The
system refers to the logic rules and the request parameters to run the required
logic on the request. The logic then dictates the workflow of the request and
the creation of sub-tasks for network configuration. P&A vendors imple-
ment the provisioning logic component differently. Some are template-based,
while others are flow-based systems [54]. The impact of a compromised pro-
visioning logic can be adverse and the detection is difficult. Usually, the
provisioning logic is stored in the file system and the logic rules are stored in
the database.

Vulnerabilities in other components can be exploited to tamper the pro-
visioning logic. If there is a directory traversal vulnerability in the UI appli-
cation, attackers can use it to reveal the logic. In case of improper validation
for file uploads, an attacker can create a malicious path to point to a tam-
pered logic or replace a logic with a tampered one. Logics which are stored
in the database are vulnerable to SQL injection in the fields which are not
validated properly. In other cases, tampering of the provisioning logic could
be possible because of improper implementation of authorization policies. A
non-administrative user may bypass authorization conditions and modify the
provisioning logic.

Chapter 5

Mitigation and Validation

In this chapter, we propose and discuss mitigations for our threat model
and the common vulnerabilities discussed in the previous chapters. This
chapter can also be considered as a checklist for auditing an OSS system’s
security configuration. When determining mitigation methods, we consider
the host trust boundary since all the components of an OSS application run
within a host. In addition, we consider the entry and exit points, that is,
the northbound interfaces, user interface, interfaces with other hosts, and
the interfaces to network elements. The OSS system and its entry and exit
points form the attack surface [47].

We describe the concept of layered defence and the standard STRIDE
mitigation in Section 5.1. Thereafter, we analyse the entry and exit points in
Section 5.2. We also discuss logging security in Section 5.3 and host security
in Section 5.4. Section 5.5 discusses validation. Finally, we mention dos and
don’ts for OSS professionals in Section 5.6.

5.1 Mitigation Techniques

5.1.1 Onion Model

Defense in Depth has been a military strategy since the age of the Romans
[23]. The basic concept of Defense in Depth or the Onion Model is to have
multiple layers of security instead of a single layer. The attacker has to break
several layers of security to reach the target. Applying the same approach to
OSS systems, security mechanisms are implemented at each of the network,
host, application, and data levels as demonstrated in Figure 5.1.

Telecommunications companies often put more focus on perimeter secu-
rity, that is, securing the borders of the enterprise network. Security of the

47

CHAPTER 5. MITIGATION AND VALIDATION 48

Data
OSS Application

OSS Host
Network

Figure 5.1: Onion Model

host and the applications is often a secondary concern. In case of a single-
layered approach, an OSS application is exposed to the attacker as soon as
the security boundary is breached. A layered security approach prevents such
attacks. Therefore, the following layers of security are important for an OSS
system.

1. Data Security: Data storage must be protected and any access must
be authenticated and authorized.

2. Application Security: Any OSS product must have proper authen-
tication and authorization. Mitigations for STRIDE threats must be
in place for entry and exit points.

3. Host Security: The host on which OSS applications are installed must
be security hardened. This means having a properly setup firewall and
access control.

4. Network Security: Perimeter security should still be present. Only
legitimate users and devices should get access to the network.

5.1.2 STRIDE Mitigation

Table 5.1 describes the standard mitigations applicable to STRIDE threats
suggested by Meier et al. [52]. The following paragraphs mention the tech-
niques that must be necessarily implemented while building an OSS applica-
tion. These techniques will be elaborated in subsequent sections depending
on the context.

Controlling access to the OSS system is a critical security requirement.
Access should be controlled for both UI users and the northbound BSS sys-
tems. Authentication can be based on username-password, certificates, or

CHAPTER 5. MITIGATION AND VALIDATION 49

Table 5.1: Standard Stride Mitigation [52]

Threat Countermeasures

Spoofing user
identity

Strong authentication.
Do not store secrets in plaintext.
Do not transmit credentials in plaintext.
Protect authentication and session cookies.

Tampering
with data

Data hashing and signing.
Digital signatures.
Strong authorization.
Use of tamper-resistant protocols.
Use of communication protocols that provide message
integrity.

Repudiation

Secure audit trails.
Digital signatures.
Timestamps.

Information
disclosure

Strong authorization.
Strong encryption.
Use of communication protocols that provide message
confidentiality.
Do not store secrets in plaintext.

Denial of
service

Resource and bandwidth throttling.
Input filtering and validation.

Elevation of
privilege

The principle of least privilege.

API keys depending on the context. The delivery personnel must verify that
the authentication is set up properly. Authentication for UI users and BSS
systems is described in Section 5.2 in detail.

Authorization is important for access control. Both UI users and BSS
systems must be subject to access control by categorising them. Management
of UI users and BSS systems should be separate. The principle of least
privilege should always be followed.

Data flow that crosses a trust boundary should always go through a secure
channel protected with latest security standards. For example, use SSL/TLS
(≥ TLS 1.0) for transmitting data over TCP.

OSS systems must use adequate logging for addressing repudiation claims

CHAPTER 5. MITIGATION AND VALIDATION 50

while preventing sensitive data exposure. Section 5.3 explains considerations
for logging data.

The use of firewalls to filter incoming traffic helps to harden the OSS
host’s security and reduces the attack surface. Host security is discussed in
Section 5.4.

5.2 Interfaces

In this section, we inspect the different security techniques used in various
interfaces of the OSS landscape and provide recommendations. As explained
in Chapter 3, the main interfaces are northbound, southbound, user, and
inter-component interfaces.

5.2.1 Northbound Interfaces

BSS systems send requests to the northbound interface for network config-
uration (see Section 3.3.3). Responses are sent back to the BSS systems
synchronously or asynchronously. We have the following general recommen-
dations for northbound interfaces:

1. Authenticate and authorize BSS systems. An access control for BSS
systems is recommended and can be based on the type of requests. For
example, a category to allow only ‘read’ requests for a BSS system that
is used for monitoring purposes. Thus the concept of least privilege [73]
can be implemented with an extra layer of control.

2. A username-password based authentication must be avoided. If it is
used then it is important to encrypt the wire with a sufficiently secure
algorithm (e.g. ≥ TLS 1.0). Passwords should be sufficiently long and
randomly generated and should have an expiry time. Instead, token
based or a certificate-based authentication is recommended.

3. A certificate-based mutual authentication is recommended to prevent
spoofing. Both the BSS and OSS system must authenticate each other.

4. The communication channel of the interface must always be encrypted
using protocols that support message integrity to prevent sniffing and
tampering.

5. For asynchronous responses, the reply-to address can be suspicious and
must be validated properly. The asynchronous response channel must
be encrypted. Furthermore, the OSS system must enforce that the

CHAPTER 5. MITIGATION AND VALIDATION 51

reply-to address specified in a request by the BSS system must be
already configured in the OSS system. This can ensure that responses
only get sent to trusted response handler systems.

6. The BSS system should authenticate asynchronous responses coming
from the OSS system in order to prevent unauthorized responses being
submitted by malicious systems.

7. The freshness of both requests and responses must be checked using
nonces or sequence numbers.

The subsequent subsections describe security features that are recom-
mended based on the technology used by a northbound interface.

5.2.1.1 SOAP Web Service

SOAP web services use the XML based SOAP protocol for messaging and
HTTP for transporting messages. The service description is published using
WSDL in a .wsdl file on the server. Most SOAP web service implementations
follow the WS-Security [56] standard for providing secure functionality. The
most common web service frameworks include Apache Axis2, Metro, and
Apache CXF which provide support for the WS-Security standard [78].

WS-Security provides end-to-end security which protects the data at the
message level instead of the transport level. Transport level security can
be achieved by using SSL/TLS. End-to-end security in WS-Security has a
higher performance cost than transport level security [77]. If there are no
intermediary nodes involved (which forward SOAP messages), then we sug-
gest SSL/TLS encryption for transport security. Message-based encryption
in WS-Security is relatively difficult to implement and may lead to security
bugs during development.

We recommend the following actions, based on, and in addition to the
best practices mentioned by OWASP [63] and WS-Attacks [87].

1. Use the latest version of the web service framework in the OSS product.

2. Do not publish WSDL unless required, in order to prevent WSDL dis-
closure. Some enterprises also recommend authentication for WSDL
retrieval.

3. Use strong rules for schema validation. The XSD should define maxi-
mum length, character set for all the input and output parameters for
the web service.

CHAPTER 5. MITIGATION AND VALIDATION 52

4. XML Entities should not be allowed in SOAP messages in order to
prevent DoS by an XML Bomb attack, external entity attack and other
attacks [35].

5. Disable determination of the operation from the SOAPAction HTTP
header in order to mitigate SOAPAction spoofing attack [36].

6. The web service should be WS-I Basic Profile [51] compliant at least.

5.2.1.2 REST Web Service

RESTful APIs offer manipulation of resources over HTTP with operations
that correspond to HTTP verbs (GET, POST, PUT, DELETE, etc.). The textual
data is returned in formats such as JSON, XML, or Text. HTTP is not
a secure protocol since the data is transported in plaintext format. Hence,
REST APIs must use HTTPS (RFC 2818) [71] for transport security. Similar
to SOAP, there are many frameworks available to deploy RESTful web ser-
vices. Few examples for Java include Jersey and Apache CXF frameworks.
Unlike SOAP, REST is not a standard but an architectural style. Unlike
WS-Security for SOAP, there is no complete security framework available for
REST but many components can be used to secure REST-based interfaces.

We recommend the following actions, based on, and in addition to the
best practices mentioned by OWASP [61].

1. Use the latest version of REST API library or framework, if used.

2. Use HTTPS (RFC 2818) [71] for securing the transport layer. Restrict
the usage of HTTP.

3. Basic Access Authentication (RFC 7617) [70] must be avoided. If a
username-password based authentication is required, we recommend
using Digest Access Authentication (RFC 7616) [74] with a strong hash-
ing algorithm such as SHA-256.

4. Use API keys or token-based authentication (for example, JSON Web
Tokens (RFC 7519) [39]). Use different profiles for BSS clients for
authorization. Provide mechanisms to revoke, refresh, and change au-
thorizations for API tokens/keys. Since REST APIs are stateless, au-
thenticate and authorize every API request.

5. For authorization, OSS vendors can implement OAuth 2.0 (RFC 6749)
[31]. OAuth 2.0 is generally used when a user of Application-1 wants
to give access to Application-2 to access their data in Application-1.

CHAPTER 5. MITIGATION AND VALIDATION 53

In the BSS-OSS use case, we have two different layers and the users
do not share data. OSS users only administer and monitor while BSS
users do not have access to the OSS. Hence, a two-legged OAuth 2.0
is relevant in which user interaction is not required for server to server
authorization [46].

6. Do not pass sensitive data in the URL. An example of an insecure
HTTP request with sensitive parameters in the URL is as follows:
POST /request/?key=abc&subscriber id=23 HTTP/1.1

Host: pa-host

7. Restrict or strictly authorize methods that alter the state such as POST,
PUT, and DELETE. Preferably, BSS systems should not be able to delete
requests but rather cancel requests.

8. Validate the request for malformed data and the Content-Type header.
Check the Accept header and reject the request if the format is not
supported. This will reduce unnecessary load on the application.

5.2.1.3 Custom Connections

Many OSS vendors design their own protocols for BSS to OSS communi-
cation. Some are simple connections that resemble a Telnet session while
others are complex protocols. We do not recommend implementing own se-
curity protocols for connections from the BSS system to the OSS system.
Well known and already established protocols must be used.

However, we suggest the use of a secure communication channel (SS-
L/TLS), mutual authentication, and nonces/timestamps for freshness, as a
bare minimum.

5.2.2 Southbound Interfaces

We mentioned in Section 3.3.4 that OSS systems (e.g. P&A) connect to
southbound systems or NEs in order to execute the tasks generated for the
requests received. Furthermore, Section 3.3.5 described that a P&A system
uses a network model to keep track of NEs and connection details. The
network model contains connection information, usernames and passwords,
and other details of NEs. Hence it is important to allow access to this
information only to privileged users.

The network element interface (NEI) component of a P&A system is
responsible for implementing the task on the NE. Hence, proper file permis-
sions must be set to make sure that NEI files cannot be tampered in order to

CHAPTER 5. MITIGATION AND VALIDATION 54

prevent scenarios where the NEI is replaced by a malicious NEI to perform
MitM attacks. Installation of new NEIs must be verified for authenticity of
the publisher. Addition and configuration of NEs in the network model must
be allowed only to users with administrative privileges.

Using a username and a password is one of the most common methods for
a P&A system to authenticate itself to an NE. The username and password
must be stored in an encrypted format using a strong encryption algorithm
(such as AES-128) [20] and keys must be stored in secure locations. These
practices will improve security with regards to vulnerabilities mentioned in
Sections 4.2 and 4.5. Once configured, the password shall never be displayed
on the user interface. The communication must always be carried over an
encrypted channel.

Avoid configuration of an NE by automating the user interface. For exam-
ple, many vendors develop NEIs that automate manual configurations over a
Telnet shell which leads to an insecure OSS-NE interface (see vulnerability in
Section 4.9). Shell access to an NE must always be protected with SSH. The
use of proper APIs is recommended, if available. Modern NEs provide APIs
using techniques such as REST, SOAP, or CORBA, which provide better
security provisions. If the former technique is used, the user interface should
show a warning in order for the administrators to take notice. For the latter
techniques, follow the best practices mentioned in Section 5.2.1.

The network security engineers must make sure that steps are taken to
prevent attackers from bypassing the OSS or P&A systems altogether to
reach the NEs. Configure the NEs to allow connections only from trusted
networks, that is, the network where the OSS system is running. Access to an
NE must be prohibited unless it is from a trusted network. If supported, the
login accounts on the NEs must be configured with different authorization
levels.

Sharing or leasing of NEs to other operators is a common practice. Other
operators should not be allowed to configure leased NEs directly, and all
requests for configuration must go through the main operator’s OSS sys-
tems. This reduces misuse and protects from threats arising from the other
operator’s network.

5.2.3 User Interface

Many OSS systems serve the UI as a web application and must address the
security risks described in Section 4.12. It is recommended to follow the
best practice guidelines from reputed sources such as the Mozilla Foundation
[12]. Enforce HTTPS by default for the UI by using HTTP Strict Transport
Security (HSTS) and disable HTTP. If not, a warning must be shown on the

CHAPTER 5. MITIGATION AND VALIDATION 55

UI that HTTPS must be configured for secure access. The UI should have
a proper access control to show the content according to the authorization
level of the users. Access control should be implemented on the server side
to prevent attackers bypassing the UI.

Exposure of sensitive data on the UI must be prevented. It is recom-
mended to mask sensitive parameters of requests and tasks on the UI and
allow only the administrator level users to view them. The system must
allow on a system-wide level, the addition and deletion of parameter names
that are considered sensitive. There must also be provisions to specify a sen-
sitive parameter that must be masked in the incoming request itself (e.g., by
specifying an extra attribute for the parameter).

All form input and URL parameters must be properly validated for ma-
licious input. Autocomplete must be disabled for forms that accept sensitive
data. Use parameterized queries and escape SQL statements in inputs to
prevent SQL injections. All input must be checked for maximum length in
order to prevent buffer overflows and code injections.

Any data added to the HTML must be escaped prior to outputting. This
includes escaping HTML, JavaScript, and CSS. There are several libraries
available for escaping data. Use HttpOnly attribute for sensitive cookies
that must be accessed only at the server. Use a strong content security
policy to prevent XSS. Special care must be taken to return appropriate
Access-Control-* headers to only entertain legitimate-origin requests.

Use CSRF tokens to mitigate CSRF. There are various frameworks that
provide CSRF mitigation. Apache Tomcat comes with a built-in CSRF filter
that must be configured. Note that any framework or external components
used must be updated to the latest versions periodically.

Furthermore, user management should be only allowed to an administra-
tor. User passwords must expire periodically and strong password policies
must be enforced.

5.2.4 Other Interfaces

Inter-component interfaces connect the sub-components of an OSS applica-
tion. Often such interfaces are provided by message queues such as Ac-
tiveMQ, for example, to pass messages from the service module to the task
module in a P&A system. Another example of inter-component interfaces is
Java RMI (remote method invocation). Communication across these inter-
faces should always be encrypted, especially if the components reside within
different trust boundaries. If an external component is used for interfacing
such as ActiveMQ, it should be configured with the recommended security
guidelines to prevent vulnerabilities described in Sections 4.3 and 4.14. For

CHAPTER 5. MITIGATION AND VALIDATION 56

example, instead of using the ActiveMQ simple authentication, certificate-
based authentication must be used.

Another important interface is the connection to the database compo-
nent. The communication must use a secure channel. The connection strings
containing the credentials and connection parameters must be stored in an
encrypted format.

There are interfaces to other OSS applications as well. The communi-
cation typically uses the northbound API of the target application. For
example, when a P&A system connects to a Catalog system, it uses the Cat-
alog system’s northbound API. The same guidelines from the northbound
interfaces apply when communicating from one OSS system to another.

5.3 Logging

OSS developers must use adequate logging for accounting purposes. Impor-
tant transactions should be logged in an audit trail with proper timestamps.
Audit trails are useful while addressing repudiation claims. For example,
P&A systems should have a request log, NE tasks log, BSS transaction log,
and a user audit trail. An audit trail for changes to provisioning logic is
useful while investigating the tampering of provisioning logics (see Section
4.15). In addition to addressing repudiation, logs help in finding faults and
determining security breaches.

However, due care must be taken not to log sensitive request or task pa-
rameters. Such data must be masked before logging. Chuvakin et al. describe
several aspects of what not to write into logs [25]. The same considerations
regarding sensitive data exposure as mentioned in Section 5.2.3 for the UI
should apply while logging data. Moreover, the request and task parame-
ters that are considered sensitive must be configurable in the system. The
configuration can be shared by the UI and the logger components.

5.4 Host Security

According to the Onion Model of security described in Section 5.1.1, a secure
OSS host strengthens the defence in depth. An out-of-the-box operating
system may be insecure by default [21] and must be configured correctly
before deploying the OSS solution. Security hardening reduces the host’s
attack surface. Essentially, a security hardening process generally follows
the principle of “if it is not permitted, it is forbidden” [48].

An effective way to reduce the attack surface is to use a firewall. OSS

CHAPTER 5. MITIGATION AND VALIDATION 57

applications open multiple ports for communication between its components.
These ports increase the attack surface and must be blocked from the external
network. Linux servers can make use of the iptables program to block
incoming requests from external networks. Use a “deny all, allow some”
policy by allowing only the required traffic into the host. For example, Figure
5.2 lists the iptables rules to only allow incoming packets for HTTP and
SSH while dropping all other packets. In case of a P&A system, the rules
must take into consideration ports related to northbound interfaces and other
ports for incoming traffic.

Chain INPUT (policy DROP)

target prot opt src dst

ACCEPT all -- * * ctstate RELATED,ESTABLISHED

ACCEPT tcp -- * * tcp dpt:ssh ctstate NEW,ESTABLISHED

ACCEPT tcp -- * * tcp dpt:http ctstate NEW,ESTABLISHED

Chain FORWARD (policy DROP)

target prot opt src dst

Chain OUTPUT (policy ACCEPT)

target prot opt src dst

ACCEPT all -- * * ctstate ESTABLISHED

Figure 5.2: iptables Example

Running an auditing tool to assess the security of a host is recommended.
A tool such as Lynis [7] lists the shortcomings in the security parameters of
a Unix-like host and suggests proper configuration. There are tools such
as Bastille-Linux [3] that help to automate security configuration based on
best practices. Furthermore, while setting up a server, it is recommended to
follow security guidelines by the Operating System (OS) vendor such as the
Red Hat Linux security guide [18] for Red Hat Linux.

Security auditing must be a continuous process since new vulnerabilities
are found periodically. Hence, system administrators must make sure to in-
stall latest patches for the OS and keep a note of security advisories. Firewall
and system logs must be monitored periodically in order to find out any sus-
picious activity. It is recommended for vendors to provide automated scripts
which check if the host’s security configuration is correct, before or after the
OSS application is deployed.

The OSS application must be installed with an OS user with only the
required authorizations. File permissions must be given considering the prin-

CHAPTER 5. MITIGATION AND VALIDATION 58

ciple of least privilege. Standard security guidelines must be followed in case
of networked storage.

5.5 Validation

Threat modelling is a continuous and iterative process. The validation pro-
cess involves validating the threat model. Any design changes to the OSS
solution must be incorporated in the threat model. Thus, during validation,
such left-out tasks are identified.

Along with validating the threat model, the mitigations must also be
validated. Testing for security vulnerabilities should occur along with the
usual testing activities or more often. Code reviews also help to identify if
mitigations are correctly applied.

Finally, use of testing guides such as OWASP Testing Guide [53] and
automated penetration testing tools such as Metasploit [8] or OWASP ZAP
[64] is recommended.

5.6 Dos and Don’ts

Following are a few guidelines for OSS developers and deployment personnel
to follow:

Don’t use the same keys for every installation. Every installation
should randomly generate new cryptographic keys. This prevents the possi-
bility of all installations being at risk if one of the installations gets compro-
mised.

Do validate all input. Developers must make sure to validate the length
of all inputs to the OSS system to prevent buffer overflows. Validate at the
server since any validation scripts at the client such as JavaScript can be
disabled.

Don’t store passwords unless required. User passwords must never
be stored, rather hashed using a randomly generated salt and a slow one-
way function [60]. This prevents brute force, dictionary, rainbow table, etc.
attacks. However, if password storage cannot be avoided, such as in case of
NE passwords, they must be encrypted (see Section 5.2.2).

Don’t keep sensitive information in plaintext. Sensitive information
should not be stored in plaintext, showed on the UI, or logged. Configuration

CHAPTER 5. MITIGATION AND VALIDATION 59

files used only for installation must be removed after installation as the files
may contain critical information such as database credentials.

Do configure TLS correctly. We have recommended the use of TLS as a
secure channel for interfaces in this thesis. However, TLS must be configured
correctly. This includes, enforcing use of versions ≥TLS 1.0, disabling weak
cipher suites, disallowing fallback to plaintext communication, use of strong
keys, and setting up correct certificates. The OWASP Testing Guide Chapter
4.10 [53] describes guidelines to test for an improper TLS configuration. We
recommend following the OWASP Transport Layer Cheat Sheet [62], which
mentions different rules that must be followed for a secure transport layer
configuration.

Do verify installation packages for integrity and authenticity. The
release process should be able to create installation packages that are signed.
Before installing, packages must be checked for authenticity and integrity.
For example, new NEIs packages should be verified before installing.

Do check the dependencies for disclosed vulnerabilities. Developers
must check the dependencies (e.g., frameworks and libraries) that have dis-
closed vulnerabilities. Preferably, this must be automated and the release
pipeline must be configured so that a scan for vulnerable dependencies is
run by the continuous integration system. An example of such a utility is
OWASP Dependency-Check [59].

Do have a proactive security policy. This includes incorporating se-
curity in the SDLC. Use code-reviews and static code analysis utilities for
finding potentially insecure code. Use automated security testing tools in
the continuous integration system. Follow well-known security guides such
as OWASP Proactive Controls [66].

Moreover, it is important to give priority to security fixes. Vendors of-
ten focus more on building functionality while product security becomes a
secondary concern.

Do publish a security guide as part of product documentation. It
is easy to misconfigure security parameters during deployment. Hence, it is
recommended for OSS vendors to publish a security guide for configuring the
security parameters of their OSS products correctly. The guide should at
the least mention the basic OS security requirements, user permissions, steps
for security configuration of the OSS product and the dependencies, and
basic testing guidelines. Besides, a security guideline document increases the
customer’s trust in the product.

Chapter 6

Discussion and Conclusion

In this chapter, we discuss our observations and draw conclusions. First,
we discuss a survey on security we conducted amongst OSS professionals in
Section 6.1. Section 6.2 discusses our observations and the challenges faced
over the course of this thesis. Finally, the concluding remarks are described
in Section 6.3.

6.1 Security Survey

One of the goals of this thesis is to realise the importance of security for
OSS systems. In order to find out the current situation and the expecta-
tions regarding security, we conducted a survey among professionals who
have worked in the deployment and sales of OSS systems in the telecommu-
nications industry. The survey questionnaire is listed in Appendix B and
had six questions. The survey did not ask any customer or vendor informa-
tion and the responses were anonymous. We received 11 responses to the
questionnaire. The following paragraphs analyse the responses.

18.2% of the respondents feel that OSS systems are vulnerable to attacks
only by malicious insiders. According to another 18.2%, external adversaries
are more likely to attack. However, a majority of the respondents answered
that an OSS deployment is threatened by all of the attacks, viz., malicious
insiders, customers, and external adversaries.

Over 50% of the respondents think that the security of OSS systems is
not prioritized by telecommunication companies in general. 63.3% of the
respondents answered that the security policies of telecommunication com-
panies concerning their information assets are prioritized based on threat
perception and risk management. However, 27.3% respondents still consider
that the budget is a factor that solely influences the security policy.

60

CHAPTER 6. DISCUSSION AND CONCLUSION 61

All the respondents think that there should be more security audits of
OSS solutions. One of the respondents commented that auditing efforts
should be continuous.

According to 63.6% of the respondents, the “Perimeter Security Model”
is prevalent in most of the telecommunication companies in the current OSS
landscape. Moreover, all the respondents answered that the “Onion Model”
should be given more emphasis in OSS solutions.

We also received the following additional comments by some respondents:

1. “Usually vendors do a security check based on available tools for which
they have paid the license of and that software might not have been
updated with the new threat which might got missed during application
security checks.”

2. “The biggest challenges are a) ageing systems and b) insiders being
sloppy/malicious.”

6.2 Observations and Challenges

The results from the survey questionnaire in Section 6.1 show that there is a
consensus amongst OSS professionals that the current security priorities by
both OSS vendors and customers are below expectations. We recommend
that there should be periodic security audits by the OSS vendors with up-
dated tools and information while following the threat mitigations diligently
during the development phase. The customers should focus on the security
of the network where the OSS solution is deployed and collaborate with ven-
dors. The security requirements should not come solely from the customers.
In such a scenario, vendors tend to simply fulfil the minimum requirements
just enough to sell the OSS solution. Vendors should pro-actively work on
improving the security of their products and make it a selling point.

The use of cloud services in the OSS landscape has been a point of dis-
cussion for several years now. The Software as a Service (SaaS) model is still
not preferred by telecommunication companies for their OSS requirements
mainly because of lack of trust in keeping their data with an external en-
tity. Specifically, systems which interface directly with the NEs such as P&A
systems are usually deployed in-premise, i.e., within the enterprise’s private
network, while the peripheral OSS applications such as Order Management
are deployed in the cloud. Thus, in such cases, the configuration of virtual
networks and hosts on the cloud must follow the layered security model we
described in Chapter 5.

CHAPTER 6. DISCUSSION AND CONCLUSION 62

The use of STRIDE methodology and the four-step framework described
in Section 2.3 for our threat modelling purposes is open to debate. The main
reason why we selected STRIDE is because it is easier to understand from
a non-security professional’s point of view. OSS customers usually do not
employ security experts, and therefore, it is important to use a method for
classifying threats that is easy to understand. Moreover, the use of DFDs
allowed us to visualize the data flow and identify the trust boundaries effi-
ciently.

Security is not a one-time fix for threats. There could be unknown vulner-
abilities that may be found in the future. The list of vulnerabilities described
in Chapter 4 should not be considered an exhaustive list. Brainstorming for
threats helps, but keeping track of security advisories and following guide-
lines from well-known sources is important. The vulnerabilities we explained
are some of the most commonly found vulnerabilities in computer software
and OSS systems.

In the mitigation phase, our goal was to secure the interfaces, the host,
and the network in accordance with the principle of a layered defence. Fur-
thermore, the mitigations mentioned are subject to re-evaluation as new
threats may be discovered. Hence it is recommended to continually assess,
correct and develop new mitigations if needed.

We faced some challenges during the course of this thesis. OSS products
are proprietary and closed-source software. As a result, it is difficult to find
an open architecture of such systems. The architecture that we described
is a generally accepted architecture of a P&A system derived by personally
communicating with software developers who have worked for several decades
in the industry. However, the reader must note that vendors develop their
own architectures and the threats and mitigations may vary accordingly.

6.3 Conclusion

In this thesis, we achieved the goals that were listed in Section 1.1. The
summary of goals in the same order as Section 1.1 is as follows:

1. The results from our survey, asset analysis, and the subsequent security
analysis done in this thesis, point towards the importance of securing
OSS systems.

2. We built a threat model for an OSS system for provisioning and activa-
tion in Chapter 3. The threat model helped us determine the different
threats using the STRIDE methodology. The DFDs helped us under-

CHAPTER 6. DISCUSSION AND CONCLUSION 63

stand the data flow through trust boundaries and to find out the entry
and exit points.

3. We described common vulnerabilities in Chapter 4 for OSS vendors to
address in their products. These vulnerabilities refer to the ones found
in typical web applications as well as the vulnerabilities from the point
of view of OSS systems.

4. We described mitigation in Chapter 5. The mitigation puts emphasis
on layered defence and focusses on the northbound and southbound
interfaces of the OSS systems. We also described general guidelines
in the form of dos and don’ts that can help OSS vendors to mitigate
threats.

Over the coming years, the OSS market is expected to grow in the tradi-
tional telecommunications field as well as other fields such IoT, cloud orches-
tration, and the energy industry. With new security and privacy regulations,
and the increasing customer’s concerns over the security of their software,
it is necessary for OSS vendors to address the security problems in their
products proactively.

Bibliography

[1] Apache ActiveMQ. http://activemq.apache.org/.

[2] Apache Tomcat. http://tomcat.apache.org/.

[3] Bastille Linux. http://bastille-linux.sourceforge.net/.

[4] Ettercap. http://ettercap.github.io/ettercap/.

[5] Introduction to Microsoft Security Development Lifecycle (SDL) -
Threat Modeling. https://download.microsoft.com/download/9/3/

5/935520EC-D9E2-413E-BEA7-0B865A79B18C/Introduction_to_Threat_

Modeling.ppsx. Accessed 14 June 2017.

[6] JD (Java Decompiler). http://jd.benow.ca/.

[7] Lynis. https://cisofy.com/lynis/.

[8] Metasploit Framework. https://www.metasploit.com/.

[9] Network Inventory - Gartner IT Glossary. http://www.gartner.com/it-
glossary/network-inventory/. Accessed 26 April 2017.

[10] NIST National Vulnerability Database. https://nvd.nist.gov/vuln/

search.

[11] Nmap (Network Mapper). https://nmap.org/.

[12] Security/Guidelines/Web Security - Mozilla Wiki. https://wiki.

mozilla.org/Security/Guidelines/Web_Security. Accessed 20 Septem-
ber 2017.

[13] SlowHTTPTest. https://github.com/shekyan/slowhttptest. Accessed
28 August 2017.

[14] tcpflood - TCP Established Flood Tool. https://github.com/zupper/

tcpcflood. Accessed 25 August 2017.

64

BIBLIOGRAPHY 65

[15] Wireshark (Network Protocol Analyzer). https://www.wireshark.org/.

[16] Microsoft Threat Modeling Tool. https://www.microsoft.com/en-us/

download/details.aspx?id=49168, 2016. Accessed 14 June 2017.

[17] Q2 2017 Akamai State Of The Internet. https://www.akamai.com/us/

en/about/news/press/2017-press/akamai-releases-second-quarter-

2017-state-of-the-internet-security-report.jsp, 2017. Accessed
25 August 2017.

[18] Red Hat Enterprise Linux 7 Security Guide. https://access.

redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/

Security_Guide/, 2017. Accessed 26 September 2017.

[19] ATIS. Glossary - Alliance for Telecommunications Industry Solutions,
2011.

[20] Barker, E., and Roginsky, A. Transitions: Recommendation for
transitioning the use of cryptographic algorithms and key lengths. NIST
Special Publication 800 (2011), 131A.

[21] Bauer, M. Linux server security. O’Reilly Media, Inc., 2005.

[22] Blackman, C., and Srivastava, L. Telecommunications regulation
handbook. World Bank and the International Telecommunication Union,
Washington, DC, 2011.

[23] Byres, E. Defense in depth. Control Engineering Asia June 2008
(2008).

[24] Case, J. D., Fedor, M., Schoffstall, M. L., and Davin, J.
Simple network management protocol (SNMP). RFC 1157, May 1990.
URL: http://www.rfc-editor.org/rfc/rfc1157.txt.

[25] Chuvakin, A., and Peterson, G. How to do application logging
right. IEEE Security & Privacy 8, 4 (2010), 82–85.

[26] Colwill, C. Human factors in information security: The insider threat
- Who can you trust these days? Information security technical report
14, 4 (2009), 186–196.

[27] Eddy, W. M. TCP SYN flooding attacks and common mitiga-
tions. RFC 4987, August 2007. URL: http://www.rfc-editor.org/

rfc/rfc4987.txt.

BIBLIOGRAPHY 66

[28] Federal Communications Commission. Telecommunications act of
1996. Public law 104, 104 (1996), 1–5.

[29] Gallagher, S. Two keys to rule them all: Cisco warns
of default SSH keys on appliances. Ars Technica. https:

//arstechnica.com/information-technology/2015/06/two-keys-to-

rule-them-all-cisco-warns-of-default-ssh-keys-on-appliances/,
2015. Accessed 04 August 2017.

[30] Gutmann, P. Engineering Security. 2014. URL: https://www.cs.

auckland.ac.nz/~pgut001/pubs/book.pdf.

[31] Hardt, D. The OAuth 2.0 Authorization Framework. RFC 6749,
October 2012. URL: http://www.rfc-editor.org/rfc/rfc6749.txt.

[32] Insight Research. The 2015 telecommunications industry review:
An anthology of market facts and forecasts. http://www.insight-corp.
com/reports/review15.asp, 2015.

[33] International Engineering Consortium. Operations Support Sys-
tems 2002: Enabling the Next Generation Network. Comprehensive Re-
port. International Engineering Consortium, 2002.

[34] ITU-T. Recommendation X.710 (10/97). Common Management Infor-
mation Service (1998).

[35] Jan, S., Nguyen, C. D., and Briand, L. Known XML vulnerabil-
ities are still a threat to popular parsers and open source systems. In
Software Quality, Reliability and Security (QRS), 2015 IEEE Interna-
tional Conference on (2015), IEEE, pp. 233–241.

[36] Jensen, M., Gruschka, N., and Herkenhöner, R. A survey of
attacks on web services. Computer Science-Research and Development
24, 4 (2009), 185–197.

[37] Jensen, M., Gruschka, N., Herkenhoner, R., and Lutten-
berger, N. SOA and web services: New technologies, new standards
- new attacks. In Web Services, 2007. ECOWS ’07. Fifth European
Conference on (Nov 2007), pp. 35–44.

[38] Jiang, G. Multiple vulnerabilities in SNMP. Computer 35, 4 (2002),
supl2–supl4.

BIBLIOGRAPHY 67

[39] Jones, M., Bradley, J., and Sakimura, N. JSON Web Token
(JWT). RFC 7519, May 2015. URL: http://www.rfc-editor.org/rfc/
rfc7519.txt.

[40] Kaiser, M. Pwning your Java messaging with deserialization vulnera-
bilities. White paper, 2016. Blackhat USA 2016.

[41] Kalra, G. S. A pentesters guide to hacking ActiveMQ-based JMS
applications. White paper, 2014. McAfee Inc.

[42] Kalra, G. S. Threat analysis of an enterprise messaging system. Net-
work security 2014, 12 (2014), 7–13.

[43] Kamp, P.-H., Godefroid, P., Levin, M., Molnar, D., McKen-
zie, P., Stapleton-Gray, R., Woodcock, B., and Neville-
Neil, G. Linkedin password leak: Salt their hide. ACM Queue 10,
6 (2012), 20.

[44] Kissel, R. Glossary of key information security terms. NIST Intera-
gency Reports NIST IR 7298, 3 (2013).

[45] Le Métayer, D. IT security analysis best practices and formal ap-
proaches. Lecture Notes in Computer Science 4677 (2007), 75.

[46] Liu, K., and Xu, K. OAuth based authentication and authoriza-
tion in open telco API. In Computer Science and Electronics Engineer-
ing (ICCSEE), 2012 International Conference on (2012), vol. 1, IEEE,
pp. 176–179.

[47] Manadhata, P. K., Tan, K. M., Maxion, R. A., and Wing,
J. M. An approach to measuring a system’s attack surface. Tech. rep.,
Carnegie Mellon University School of Computer Science, 2007.

[48] Mann, S., and Mitchell, E. L. Linux system security: an adminis-
trator’s guide to open source security tools. Prentice Hall Professional,
2000.

[49] Marlinspike, M. SSLStrip. https://moxie.org/software/sslstrip/.
Accessed 18 August 2017.

[50] Marlinspike, M. More tricks for defeating SSL in practice. Black Hat
USA (2009).

[51] McIntosh, M., Gudgin, M., Morrison, K. S., and Barbir, A.
Basic security profile version 1.0. WS-I Standard 30 (2007).

BIBLIOGRAPHY 68

[52] Meier, J., Mackman, A., Dunner, M., Vasireddy, S., Es-
camilla, R., and Murukan, A. Improving web application security:
Threats and countermeasures. Microsoft Corporation 3 (2003).

[53] Meucci, M., and Muller, A. The OWASP testing guide 4.0. Open
Web Application Security Project (2014), 30.

[54] Misra, K. OSS for Telecom Networks: An Introduction to Networks
Management. Springer Science & Business Media, 2004.

[55] Myagmar, S., Lee, A. J., and Yurcik, W. Threat modeling as
a basis for security requirements. In Symposium on requirements engi-
neering for information security (SREIS) (2005), vol. 2005, pp. 1–8.

[56] Nadalin, A., AmberPoint, G. T., BEA, P. D., BEA, H. L.,
CommerceOne, S. C., ContentGuard, T. D., ContentGuard,
G. L., ContentGuard, T. P., Commerce, S. S. C., Documen-
tum, G. V., et al. Web services security. SOAP Message Security.
Version 1 (2002).

[57] Ornaghi, A., and Valleri, M. Man in the middle attacks. In
Blackhat Conference Europe (2003).

[58] OWASP. Application Threat Modeling. https://www.owasp.org/

index.php/Application_Threat_Modeling. Accessed 09 June 2017.

[59] OWASP. Dependency Check. https://www.owasp.org/index.php/

OWASP_Dependency_Check. Accessed 26 September 2017.

[60] OWASP. Password Storage Cheat Sheet. https://www.owasp.org/

index.php/Password_Storage_Cheat_Sheet. Accessed 26 September
2017.

[61] OWASP. REST Security Cheat Sheet. https://www.owasp.org/index.
php/REST_Security_Cheat_Sheet. Accessed 24 July 2017.

[62] OWASP. Transport Layer Protection Cheat Sheet. https://www.

owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet. Ac-
cessed 26 September 2017.

[63] OWASP. Web Service Security Cheat Sheet. https://www.owasp.org/

index.php/Web_Service_Security_Cheat_Sheet. Accessed 12 September
2017.

BIBLIOGRAPHY 69

[64] OWASP. Zed Attack Proxy Project. https://www.owasp.org/index.

php/OWASP_Zed_Attack_Proxy_Project. Accessed 26 September 2017.

[65] OWASP. Top 10-2013. The Ten Most Critical Web Application Security
Risks (2013).

[66] OWASP. Proactive Controls. https://www.owasp.org/index.php/

OWASP_Proactive_Controls, 2016. Accessed 26 September 2017.

[67] Owens, J., and Matthews, J. A study of passwords and methods
used in brute-force SSH attacks. In USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET) (2008).

[68] Park, J., Iwai, K., Tanaka, H., and Kurokawa, T. Analysis
of slow read DoS attack. In Information Theory and its Applications
(ISITA), 2014 International Symposium on (2014), IEEE, pp. 60–64.

[69] Parkinson, S. Secure Crypto: Weak ciphers be gone! - RSA Blog.
https://blogs.rsa.com/secure-crypto-weak-ciphers-gone/. Accessed
23 August 2017.

[70] Reschke, J. The ‘Basic’ HTTP Authentication Scheme. RFC 7617,
September 2015. URL: http://www.rfc-editor.org/rfc/rfc7617.txt.

[71] Rescorla, E. HTTP over TLS. RFC 2818, May 2000. URL: http:
//www.rfc-editor.org/rfc/rfc2818.txt.

[72] Saitta, P., Larcom, B., and Eddington, M. Trike v1 methodology
document. Draft, work in progress (2005).

[73] Saltzer, J. H., and Schroeder, M. D. The protection of infor-
mation in computer systems. Proceedings of the IEEE 63, 9 (1975),
1278–1308.

[74] Shekh-Yusef, R., Ahrens, D., and Bremer, S. HTTP Digest
Access Authentication. RFC 7616, September 2015. URL: http://www.
rfc-editor.org/rfc/rfc7616.txt.

[75] Shirey, R. W. Internet Security Glossary, Version 2. RFC 4949,
August 2007. URL: http://www.rfc-editor.org/rfc/rfc4949.txt.

[76] Shostack, A. Threat modeling: Designing for security. John Wiley &
Sons, 2014.

BIBLIOGRAPHY 70

[77] Sosnoski, D. The high cost of (WS-)Security. https://www.ibm.com/

developerworks/library/j-jws6/index.html. Accessed 11 September
2017.

[78] Sosnoski, D. The state of web service security. https://www.ibm.com/
developerworks/java/library/j-jws19/j-jws19-pdf.pdf. Accessed 12
September 2017.

[79] Swiderski, F., and Snyder, W. Threat modeling. Microsoft Press,
2004.

[80] Telcordia. Operations Application Messages - Language For Opera-
tions Application Messages, 1996.

[81] TM Forum. Frameworx, Applications Framework, The Digital Services
Systems Landscape, 2017.

[82] TM Forum. Frameworx, Business Process Framework (eTOM), 2017.

[83] TM Forum. Frameworx, Information Framework (SID), Catalog Busi-
ness Entities, 2017.

[84] UcedaVelez, T., and Morana, M. M. Risk Centric Threat Mod-
eling: Process for Attack Simulation and Threat Analysis. John Wiley
& Sons, 2015.

[85] US-CERT. Understanding Denial-of-Service Attacks. Security Tip
(ST04-015). https://www.us-cert.gov/ncas/tips/ST04-015. Accessed
25 August 2017.

[86] Whalen, S. An introduction to ARP spoofing. https:

//packetstormsecurity.com/papers/protocols/intro_to_arp_

spoofing.pdf, 2001. Accessed 16 August 2017.

[87] WS-Attacks.org. Security Best Practices: Web Services. http:

//www.ws-attacks.org/Security_Best_Practices:_Web_Services. Ac-
cessed 18 August 2017.

[88] Zargar, S. T., Joshi, J., and Tipper, D. A survey of defense mech-
anisms against distributed denial of service (DDoS) flooding attacks.
IEEE communications surveys & tutorials 15, 4 (2013), 2046–2069.

Appendix A

Threat Enumeration

This appendix lists the threats obtained by applying Stride-per-Element on
each of the DFDs. We have combined the common threats in order to make
the list shorter.

A.1 Context (High level)

ID Title/Description Type

C1 Spoofing of external entity Spoofing
An external system (Inventory, Catalog, or a BSS) may be spoofed by an
attacker, thus leaking data to the attackers system instead of the intended
system.

C2 Spoofing of P&A Spoofing
The P&A may be spoofed which might leads the external entities sending
information to an illegitimate system

C3 Lack of input validation Tampering
Data flowing across the interfaces between OM/PA and external entities
may be tampered leading to processing wrong information

C4 External System denies receiving or sending
data

Repudiation

A NE, BSS, Inventory, or Catalog might deny receiving or sending data
to/from the OM/PA

C5 Information sniffing on the interfaces Information disclosure
Data flowing across the interfaces between OM/PA and external entities
may be sniffed leading to information getting leaked to the attacker

71

APPENDIX A. THREAT ENUMERATION 72

ID Title/Description Type

C6 OM/PA crashes or does not respond Denial of Service
An adversary makes OM/PA or an internal component crash or respond
slowly leading to a service outage

C7 Interruption of data flow to and from
OM/PA

Denial of Service

An adversary may interrupt the data flow between Inventory, Catalog,
BSS, NE and OM/PA

C8 Cross site request forgery Elevation of privilege
An attacker may exploit the trust between a BSS and OM/PA utilizing an
existing session to send unauthorized commands

C9 Elevation using impersonation Elevation of privilege
An attacker may used sniffed data to impersonate a legitimate BSS in
order to run privileged commands

APPENDIX A. THREAT ENUMERATION 73

A.2 User Authentication

ID Title/Description Type

U1 Spoofing of the external identity provider Spoofing
The external identity provider may be spoofed by an attacker which may
lead to the authentity and authorization requests being sent to the mali-
cious target

U2 Spoofing of the web-application Spoofing
The web application on the P&A host could be spoofed by an attacker
which may lead the browser to send requests to malicious target

U3 Spoofing of the browser Spoofing
The browser may be spoofed by the attacker which may lead to unautho-
rized access to the web application

U4 Lack of input validation by the web app Tampering
Requests coming from the browser to the web application may be tam-
pered by a malicious user leading to multiple security issues and data
discrepencies

U5 Repudiation by external entity Repudiation
External entities such as the identity provider or the browser might deny
sending or receiving data

U6 Sniffing of data on interfaces Information Disclosure
Data on interfaces to the web application to and from the browser, identity
provider and the data store could be possibly sniffed by an attacker leading
to a potential leak of valuable data

U7 SQL Injection Information Disclosure
An attacker may inject sql statements in the browser UI leading to tam-
pering or accessing unauthorized data

U8 Weak Authentication and Access control Information Disclosure
The web application might provide a weak authentication scheme allowing
attacker easily guess user passwords. If the authorization scheme is flawed
then attacker can view and change unauthorized data.

U9 Weak Credential Storage Information Disclosure
If in case of a data breach the stored credentials could be disclosed and
subject to a guessing or a brute force attack.

U10 Authorizaton Bypass Information Disclosure

APPENDIX A. THREAT ENUMERATION 74

ID Title/Description Type

If it is possible to reach the data store or the configuration files without
passing throught the web application. In this case the attacker might be
able to bypass all the authorization.

U11 Interruption of data flow Denial of Service
An attacker may stop communication to and from any of the components
by either flooding the component with requests or interrupting data flow
on the interfaces

U12 Denial of service by crashing component Denial of Service
An attacker may cause the identity provider or the web application to
crash thereby causing a denial of service

U13 Cross Site Request Forgery in the browser Elevation of Privilege
An attacker my utilize existing session of the an authorized user to send
unauthorized commands to the web application. The attacker might also
be able to steal the session and possibly change provisioning logics.

U14 Cross Site Scripting Elevation of Privilege
XSS is a common vulnerability in web applications enabling attackers to
inject client script scripts into web pages leading to a variety of security
implications

APPENDIX A. THREAT ENUMERATION 75

A.3 Northbound Interface

ID Title/Description Type

N1 Spoofing of P&A or BSS Spoofing
Attacker may spoof P&A or the BSS entity. If the P&A is spoofed, then
BSS requests may be sent to attackers malicious P&A. If BSS is spoofed,
P&A will receive requests from malicious BSS.

N2 Lack of input validation at interface Tampering
Lack of input validation at SOAP, REST, etc. interface may lead the
attacker to send tampered data. For example, malformed SOAP messages
may crash the SOAP interface and reveal sensitive information

N3 Corruption of data store Tampering
An attacker may use SQL injection in the requests or might tamper data
flowing across P&A and the data storage in order to corrupt the BSS
related data thereby breaking the integrity of BSS and request Data

N4 BSS denies sending/receiving data Repudiation
External BSS system may claim not sending or receiving data to or from
the P&A interface

N5 Weak authentication/authorization Information Disclosure
The interfaces might implement a weak authentication scheme such as
weak guessable passwords and weak credential change management. A
weak authorizaton leads to attackers getting access to unauthorized ser-
vices.

N6 SQL Injection Information Disclosure
An attacker may inject SQL statements in request messages on the nort-
bound interfaces. If data is not escaped properly, it might lead to disclosure
of critical information

N7 Weak credential storage Information Disclosure
If an attacker gets access to credential data, then attacker can try brute
force or rainbow table attacks to find valid credentials. A weak credential
storage can make this possible.

N8 Sniffing of interfaces Information Disclosure
An attacker may sniff data flowing across the BSS-P&A interface. If not
encrypted, this may result in the attacker getting access to critical data.

N9 Interruption in data flow Denial of service

APPENDIX A. THREAT ENUMERATION 76

ID Title/Description Type

Attacker may try to interrupt data flow between the BSS entities and the
interfaces by flooding the interface with requests (e.g. Login requests).

N10 Elevation using impersonation Elevation of privilege
A lower priviledge BSS may pretend to be a higher priviledge BSS in order
to gain access to unauthorized features. A weak authorization may lead
to such a scenario.

APPENDIX A. THREAT ENUMERATION 77

A.4 Southbound Interface

ID Title/Description Type

S1 Spoofing of Network Element or P&A Spoofing
If an attacker is able to spoof a network element then the P&A system
will send the tasks to the attacker’s system thereby revealing important
information. If the P&A is spoofed the attacker can impersonate it to gain
the trust of NE

S2 Lack of input validation of tasks Tampering
Attackers or malicious BSS systems may send provisioning requests with
tampered data to misconfigure the NEs. A lack of input validation at P&A
or the Network Interfaces will lead to misconfiguration

S3 Data repudiation by NEs Repudiation
A Network Element may claim that it did not receive a task from the
Network Element Interface or the P&A

S4 Disclosure of log data Information Disclosure
NE logs contain information related to tasks sent to Nes and the responses
received. This information is sensitive and can be useful for malicious
users.

S5 Weak authentication scheme for NEs Information Disclosure
A weak authenciation scheme for Network Elements such as encrypting
passwords using weak encryption may affect security of the system

S6 Data flow sniffing Information Disclosure
Data flowing from the NE interface to the Network Element may be sniffed
by an attacker leading to revelation of sensitive information. The same
applies to sniffing of data flow between P&A and the database

S7 Bypassing authentication/authorization Information Disclosure
A weak authentication/authorization in P&A may allow attackers to by-
pass P&A and directly send tasks to Network Elements. Or if the attacker
can tamper the Data Store, malicious tasks can be sent to Nes

S8 Weak Credential Storage Information Disclosure
Network Element access credentials are stored in the data store in en-
crypted form. If the credential storage is weakly encrypted, attackers
might be able to decrypt the credentials using a variety of methods such
as brute-force, rainbow tables, dictionary attacks.

S9 Component crash or data flow interrupted Denial of Service

APPENDIX A. THREAT ENUMERATION 78

ID Title/Description Type

A high number of requests or tasks may lead to crash of P&A or the NE
interface leading to denial of service. Tampered request data could also
lead to a crash because of lack of input validation

S10 Elevation using impersonation Elevation of Privilege
An attacker may impersonate the context of the P&A to gain access or
additional privilege to a network element.

S11 Remote Code Execution Elevation of Privilege
An attacker may try to send code in tampered request data and try to
execute it remotely. For example a Code Injection.

APPENDIX A. THREAT ENUMERATION 79

A.5 Provisioning and Activation

ID Title/Description Type

P1 Spoofing the request module Spoofing
If the attacker is able to spoof the request module it will lead to the BSS
sending requests to an illegitimate process

P2 Spoofing the queues Spoofing
An attacker may tamper with request and task modules to use a malicious
queue or spoof existing queues

P3 Lack of input validation Tampering
An attacker can tamper data flowing across BSS and request module or
NE and task module

P4 Tampering of provisioning logics Tampering
If an attacker tampers provisioning logic it will lead to wrong processing
of requests and potential create network configuration tasks of malicious
nature

P5 Insufficient auditing Repudiation
If audit logs are not maintained it is difficult to handle repudiation claims

P6 Sniffing request data Information Disclosure
Attackers can sniff important request data on the interfaces connecting
components to the data store

P7 Risks from logging Information Disclosure
Request logs can reveal critical information

P8 Denial of service by crashing component Denial of Service
An attacker may try to crash any of the component to deny service. Com-
ponents such as queues and the request module have open ports which
serve as an entry point for attacks.

Appendix B

Survey: Security of OSS Systems

This survey is conducted in order to find out the perception of security in
the telecommunications industry with respect to operations support system
(OSS) solutions. Please answer the following questions according to your
experience and observation of the OSS implementations, customers and ven-
dors.

1. According to you, what is the most critical security threat to an OSS
system?

◦ Malicious Insider

◦ Malicious Customer

◦ Competitors

◦ Remote Attackers (e.g. Hacker groups)

Comment:

2. Do you think that the security of OSS systems is prioritized by telecom-
munication companies in general?

◦ Yes

◦ No

◦ Not sure

Comment:

3. How do telecommunication companies prioritize security policies for
their information assets?

◦ Based on threat perception/risk assessment

80

APPENDIX B. SURVEY: SECURITY OF OSS SYSTEMS 81

◦ Budget

◦ Not sure

Comment:

4. Do you think that there should be more security audits of OSS solu-
tions?

◦ Yes

◦ No

Comment:

5. According to you, which security model is prevalent in most telecom-
munication companies (w.r.t. OSS) currently?

◦ Perimeter Security (Securing the enterprise-wide network’s bor-
ders)

◦ Onion Model (Securing every application and component)

◦ Other (please comment briefly)

Comment:

6. In your opinion, should there be more emphasis on application security
(Onion Model) by OSS vendors?

◦ Yes

◦ No

Comment:

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Structure of the Thesis

	2 Background
	2.1 What is an OSS System?
	2.1.1 OSS Applications
	2.1.1.1 Catalog System
	2.1.1.2 Inventory
	2.1.1.3 Order Management
	2.1.1.4 Provisioning and Activation
	2.1.1.5 Network Elements
	2.1.1.6 Field Service Management System
	2.1.1.7 Other Components

	2.1.2 OSS Architecture
	2.1.3 Example: Service Provisioning

	2.2 Security Terminology
	2.3 Security Analysis

	3 Threat Model
	3.1 Assets
	3.1.1 Information Assets
	3.1.2 Software Assets
	3.1.3 Physical Assets
	3.1.4 Intangible Assets

	3.2 Adversaries
	3.2.1 External Adversaries
	3.2.2 Internal Adversaries

	3.3 Diagramming and Threat Enumeration
	3.3.1 Context Diagram (High Level)
	3.3.2 User Interface
	3.3.3 Northbound Interface
	3.3.4 Southbound Interface
	3.3.5 Provisioning and Activation

	4 Vulnerabilities and Security Risks
	4.1 Default Username and Password
	4.2 Poor Key Management
	4.2.1 Using pre-generated Keys
	4.2.2 Keys Hard-coded in the Code

	4.3 Passwords Stored in Plaintext
	4.4 Insecure Authentication Practices
	4.5 Use of Weak Cryptographic Algorithms
	4.6 Open Ports on the OSS Host
	4.6.1 SSH Port
	4.6.2 Other Ports

	4.7 Insecure BSS-OSS Interface
	4.8 Insecure Browser-OSS Interface
	4.9 Insecure OSS-NE Interface
	4.10 Sensitive Data Exposure on the UI
	4.11 Logging of Sensitive Data
	4.12 Web Application Security Risks
	4.13 Denial of Service
	4.14 Vulnerabilities in Message Queues
	4.15 Tampering of Provisioning Logic

	5 Mitigation and Validation
	5.1 Mitigation Techniques
	5.1.1 Onion Model
	5.1.2 STRIDE Mitigation

	5.2 Interfaces
	5.2.1 Northbound Interfaces
	5.2.1.1 SOAP Web Service
	5.2.1.2 REST Web Service
	5.2.1.3 Custom Connections

	5.2.2 Southbound Interfaces
	5.2.3 User Interface
	5.2.4 Other Interfaces

	5.3 Logging
	5.4 Host Security
	5.5 Validation
	5.6 Dos and Don'ts

	6 Discussion and Conclusion
	6.1 Security Survey
	6.2 Observations and Challenges
	6.3 Conclusion

	Bibliography
	A Threat Enumeration
	A.1 Context (High level)
	A.2 User Authentication
	A.3 Northbound Interface
	A.4 Southbound Interface
	A.5 Provisioning and Activation

	B Survey: Security of OSS Systems

