
i

Aalto University

School of Science

Master’s programme in Computer, Communication and Information Sciences

Joni Makkonen

Performance and usage comparison between

REST and SOAP web services.

Master’s Thesis

Espoo 12.11.2017

Supervisors: Antti Ylä-Jääski

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/145239485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract of master's thesis

ii

AALTO UNIVERSITY

SCHOOL OF SCIENCE

Author Joni Makkonen

Title of thesis Performance and usage comparison between REST and SOAP web services.

Degree programme Master’s programme in Computer, Communication and Information Sciences

Thesis supervisor Antti Ylä-Jääski Code of professorship SCI3042

Major Computer Science

Thesis advisor(s)

Date 12.11.2017 Number of pages 7+44 Language English

REST and SOAP are web service technologies for solving the message delivery problem. The

choice between the two is not clear and comparison is difficult. This thesis tries to do the comparison

and ease the choice with the recommendations. Also the aim of this work is to research REST as a

replacement for SOAP for Seitatech Payment solution.

The definitions of SOAP and REST and the usage of both is described. The definition studies are

used to do the comparison in a conceptual and feature level. In addition, practical tests about the

performance of each technologies is made. A simple test setup is created using Seitatech provided

web service platform. Afterwards, the test results are analysed.

The test results show REST to outperform SOAP in terms of bandwidth usage and message

processing performance. During the test cases, performance issues was discovered when message

size grows, which indicates parser issues in Seitatech platform.

The comparison provided results of characteristic differences between SOAP and REST. The

recommendation of REST is made in most common cases, as it is less complex, less burdening

and easier to develop and use than SOAP. SOAP should only be chosen if particular functionality,

such as security options, is required.

Keywords REST, SOAP, comparison, web service, performance, usage

Diplomityön tiivistelmä

iii

AALTO-YLIOPISTO

PERUSTIETEIDEN KORKEAKOULU

Tekijä Joni Makkonen

Työn nimi: REST ja SOAP pohjaisien web-palveluiden käyttö ja suorituskyky

Koulutusohjelma Tieto-, tietoliikenne- ja informaatiotekniikan maisteriohjelma

Valvoja Antti Ylä-Jääski Koodi SCI3042

Pääaine Tietotekniikka

Ohjaajat

Päivämäärä 12.11.2017 Sivumäärä 7+44 Kieli Englanti

Web-palveluiden kehityksessä viestien kuljetus järjestelmässä on merkittävä ongelma. REST ja

SOAP ovat teknologioita, mitkä vastaavat tähän ongelmaan. Valinta näiden teknologioiden kesken

on vaikea, sillä REST ja SOAP ovat tyyliltään erilaisia ja haastavia verrata keskenään. Tämä työ

pyrkii tekemään vertailun näiden teknologioiden kesken ja helpottamaan tätä valintaa. Tämän työn

tarkoitus on myös tutkia REST pohjaisen web-palvelun potentiaalia korvaamaan SOAP pohjaista

palvelua.

Tässä työssä käydään läpi REST ja SOAP teknologioiden määritelmät. Näiden määritelmien avulla

vertaillaan järjestelmiä keskenään sekä määritelmä, että toiminnallisuus tasolla.

Määritelmävertailun lisäksi suoritetaan käytännön testejä, millä pyritään löytämään mahdolliset

suorituskykyerot. Näitä testejä varten Seitatech on tarjonnut alustan, mitä muokkaamalla testit

saadaan suoritettua.

Käytännöntestit osoittavat REST arkkitehtuurin suoriutuvan paremmin sekä viestien

prosessoinnissa että kaistankäytössä. Testien aikana saatiin myös tietoa Seitatechin alustasta,

missä huomattiin ongelmia viestien käsittelyssä kun viestien koko kasvoi suureksi.

Vertailun lopputuloksena osoitettiin REST pohjaisen järjestelmän sopeutuvan paremmin

yleisimmissä tilanteissa. Suorituskyvyn lisäksi REST määritellään yksinkertaisemmaksi ja

helpommaksi kehittää ja käyttää, kun taas SOAP on yleisesti rajoitetumpi ja raskaampi viestien

siirtoon. SOAP kuitenkin tarjoaa laajemmat työkalut ja laajennukset, jolloin se voi olla soveltuvampi

ratkaisu esimerkiksi turvallisuutta ja luotettavuutta vaativissa järjestelmissä.

Avainsanat REST, SOAP, vertailu, web-palvelut, suorituskyky

iv

Table of contents
Table of contents .. iv

Preface .. vi

Abbreviations ... vii

1. Introduction .. 1

Objective of the work and research questions ... 1

Structure of the work .. 2

2. Representational State Transfer (REST) .. 3

2.1 Definition of REST .. 3

2.1.1 Constraints .. 3

2.1.2 Data elements ... 5

2.1.3 Connectors .. 7

2.1.4 Components ... 8

2.1.5 Architectural views ... 8

2.2 Applying REST to Web Services ... 10

2.2.1 Resources and URIs .. 10

2.2.2 Addressability ... 11

2.2.3 Statelessness... 11

3. Simple Object Access Protocol (SOAP) ... 12

3.1 SOAP Messages ... 12

3.1.1 Message structure .. 12

3.1.2 Message exchange .. 14

3.1.3 Remote Procedure Calls ... 15

3.2 Nodes... 17

3.3 Processing model .. 18

3.3.1 “role” attribute ... 18

3.3.2 “mustUnderstand” attribute .. 19

3.3.3 “relay” attribute ... 20

v

3.4 Fault handling .. 20

3.5 Protocol binding .. 21

3.5.1 HTTP binding ... 22

4. Test cases .. 24

4.1 Background for Seitatech implementation ... 24

4.2 Test setup .. 26

4.2 Test results and analyzes... 29

5. Discussion .. 36

5.1 Differences of REST and SOAP .. 36

5.2 Choosing between REST and SOAP ... 39

6. Conclusions ... 40

References .. 41

vi

Preface
I thank the Professor Antti Ylä-Jääski for assisting with this thesis. I would also like to thank

Seitatech personnel for help and providing the required testing platform and ideas for test

cases.

vii

Abbreviations

API Application Programming Interface

FTP File Transfer Protocol

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

REST Representational State Transfer

ROA Resource Oriented Architecture

RPC Remote Procedure Call

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

URL Uniform Resource Locator

XML eXtensible Markup Language

1

1. Introduction
Web developers today have a burden of choosing the correct technologies for their solutions.

Not everything is done from the scratch, so even more complete options are used, thus

providing ease of creation of new software. At the same time the available software to choose

from is growing. Similarly to software, the design issues must be taken into account, requiring

additional level of decisions.

When creating web services, it is important to describe communications in a structural way.

The technologies used must be chosen and there are multiple choices to choose from. Two

popular options are SOAP and REST, which answer the communication question by providing

guidelines for creating messages and communication channels between the components of the

web service.

REST and SOAP have been targets for comparison and discussion for some time. Instead of

SOAP, many of the web services today use REST as the architecture approach, which was

originally proposed by Roy Fielding in his PhD dissertation. There are various differences

between the approaches and applying new is always risky. [1, 18, 23]

The comparison is difficult, as the SOAP and REST are not equally the same. REST is more of a

guideline for developers to give directions how to plan their web services, while SOAP is

standardized protocol. These two are still seen on a table when planning new API for web

service, so the need for comparison is real. This thesis tries to do the comparison and ease the

decision making between SOAP and REST.

Objective of the work and research questions

The purpose of this work is to review RESTful architecture and SOAP protocol, and compare

them when used to deploy web services. In addition, this work aims to find out when each of

the technologies should be used. Especially the point of view of payment web service is taken in

to account, where the Seitatech payment application is used as a testing platform.

In this study, we attempt to answer to the following questions:

- What are the advantages and disadvantages of RESTful architecture? These questions

are aimed for payment web service used by Seitatech.

- The REST in an architecture, while SOAP is a message delivery protocol. How the

comparison is possible?

- Which of the technologies should be chosen when developing new web service?

2

Seitatech has provided an SOAP interface, which is planned for rework. In this thesis, I am using

their provided web service platform to run practical tests for metrics to support the

comparison. The results from the tests are used together with similar studies to get information

of the performance between the technologies. Also, the results are used to give

recommendations for Seitatech for planned rework.

The technologies are analyzed in definition level to display weaknesses and strengths detailed

in specifications and creating an estimate based to only theoretical aspects. The results of these

analysis are targeted for the use of future projects and to enhance overall knowledge.

Structure of the work

The rest of the thesis is organized as follows. Chapter 2 provides the definition of the REST and

a way to apply it to a web service. Chapter 3 reviews the second main technology in the work:

SOAP. In chapter 4 we take a quick look to the Seitatech payment web service and the tests the

interface is used for. Before the conclusion, chapter 5 concentrates to compare the two

technologies using their definitions while also applying the payment application point of view.

Finally, the conclusions summaries the main points of the work and gathers the vital key

findings in this thesis.

3

2. Representational State Transfer (REST)
In this chapter we dive into the theoretical part of this study and review the definition of

Representational State Transfer (REST). We use the work of the Roy Thomas Fielding to get the

clear and compact explanation of the main points of the REST architecture. The second part of

the chapter introduces the concept of Resource Oriented Architecture (ROA), which is Leonard

Richardsons and Sam Rubys way to bring the potency of REST to practice. [1, 2, 31]

REST is a software architecture style bringing guidelines for creation of resource based web

services. As a commonly seen, web services require support for heavy load balancing, where

REST is able to answer the need with scalability as its strength. Also, the REST concentrates on

commonly used technologies, such as HTTP and JSON, which brings simplicity to the software

design and makes the use of the new architecture easier. In performance point of view the

REST is capable of giving more than more of the heavy weight competitors. [32]

2.1 Definition of REST

Fielding defines REST as “architectural style for distributed hypermedia systems” and the whole

definition consists of constraints and the architectural elements. Constraints is a set of

characteristics or rules the web service is fulfilling to bring up the strengths of REST. In addition

to constraints, the REST distinguishes three architectural element classes: Data elements,

connectors and components. Data elements define the structure of the information transferred

through the REST interface. This information receives definition how it should be presented in

RESTful web service. Connectors and components are the construction components of the

services. Architectural views are used to show the system as a whole using the previously

mentioned elements. [1]

2.1.1 Constraints

For REST architecture there are constraints defined to bring in the characteristics: Client-Server,

Stateless, Uniform interface, Cacheable, Layered system and Code on demand. These

constraints are meant to be the guidelines, which when followed, bring the advantages like

scalability and simplicity to your service. [29, 37, 40]

The first constraint, Client-Server, appoints the separation of user interface from server

systems. The main conceit of the constraint is to allow the designing of client and server parts

individually, thus forming portable interfaces and improving the scaling of server resources.

Also, the Client-Server constraint allows separate updating of the components, which creates

flexibility to development and upkeep of the software.

Stateless –constraint is related to the Client-Server style by forcing each request to contain all

of the necessary information to make it processable. The requests may not reference to any of

the previously run context. In practice, this means that the state is only kept with the client side

4

allowing server services to focus on single task at time. The constraint eases the designing and

development of the software by allowing server side functionality to be implemented

simultaneously. In addition, the constraint brings reliability and visibility to the request

handling, causing less error situations and makes them easier to solve while also making the

client side easier to develop. On the other hand, the constraint includes disadvantage of

increasing network traffic due the increased need for messages. [44]

Cacheable is the third constraint of the REST, which on the contrary of the Stateless -constraint

bring efficiency to network traffic by forcing responses to be tagged as cacheable or non-

cacheable. While the server must add the cacheable tag to response, it allows client to use the

response in future with the similar requests, thus reducing the amount requests sent to server.

The disadvantage in caching is the decrease of reliability as the use of deprecated data enables

possibility for unwanted situation. In practice, caching causes additional effort requirement to

software design, causing increased complexity and extra difficulty for development.

The next constraint, Uniform interface, is most likely the one of the most important

characteristic of the REST for the developer. The aim of the uniform interface is to simplify and

bring visibility to the interactions with the small disadvantage of efficiency caused by

standardization. The benefit of this constraint applies to developer as well as the user of the

web service, making it highly valued in web services. The downside in this is the minor

efficiency degradation, as the information is no longer sent in program specific format.

Table 2.1 Example of uniform and non-uniform interface functions.

Uniform interface Non-uniform interface

Get(URI) getCustomer()

Put(URI, Resource) updateCustomer()

Delete(URI) deleteCustomer(id)

The REST defines four aspects for interface to gain the advantage of uniform interface:

- identification of resources

- manipulation of resources through representation

- self-descriptive messages

- hypermedia as the engine of application state

In Table 2.1 is presented an example of similar interface with possible uniform and non-uniform

functions. In the example developer and the user can easily identify the action currently being

done, while the target of the action is added as parameter and uses the readability of URIs to

keep the interface readable. [41]

5

The next constraint is layered system. The layered system style separates the components even

more from each other by preventing them to see behind the other components. The

components interact with the components in the nearby layers and only with them. This

creates possibility to encapsulate the functionality of the system and to hide them from the

client side. This provides extra security and simplicity for software design, while also enabling

an easy way to add new functionality. The downside with extra layers comes with the overhead

and latency of processing.

The final constraint of REST is style of Code-on-demand. This means that REST software is

allowed to extend with the use of external code. This reduces the implementation time for

client side as the commonly used code may be downloaded and used. The disadvantages with

the constraint is the reduced visibility. The code-on-demand is the only optional constraint

defined for REST.

The constraints define the base of the REST. Each constraint can be applied separately, but to

create true RESTful application all of them must be used. The base idea of REST is to provide

integrity through these constraints and applying only subset of them may cause the loss of this

feature. The summary of the architectural design of REST can be found in table 2.2.

Table 2.2. Constraints of REST with short explanations.

Constraint Explanation

Client-Server Client interface is separated from server

Stateless Request contains all information to make it processable

Cacheable Responses may be used again in client side

Uniform interface Interface is defined using simple HTTP methods and URIs

Layered system System components are separated and layered

Code on demand Use of external code is allowed

2.1.2 Data elements

Data elements are the second key aspect of REST architecture and first of the architectural

elements. The communication between the components is created through the representations

of the resources. These representations are formed of the set of standardized data types that

are selected by the required functionality of service. The representations hide the details of

data type to provide a common interface for the resource transfer. The REST defines six data

elements, which are presented in table 2.3. [1, 37, 39]

6

Table 2.3. REST data elements.

Data Element Description Example

Resource Anything that can be addressed with
URI

A document, image

Resource identifier A name which identifies the resource,
URI

domain.example.com/document

Representation An entity which is sent between
clients and server.

HTML document

Representation
metadata

Description of representation Media type

Resource metadata Description of resource. Provides
information like location or
additional source identifiers.

Source link

Control data Defines the purpose of the message. If-Modified-Since, If-Match

To completely understand the REST as an architecture, the concept of a resource must be

defined. In REST, the resource is any kind of information or concept that can be named: a

document, an image, service, person, a set of any of these resources and so on. The only

requirement for the resource is that you must be able to target it and separate from other

resources. The resources can be dynamic or static type. The nature of dynamic type resource is

changing, meaning that accessing the dynamic resource may provide different resource in

different time of access. On the contrary, the static resource will always return the same

resource. For example, the “latest version” of a document is changed after a new version is

released, thus being dynamic type of resource. By referencing resource with “doc_version_0.9”,

the document remains unchanged as the new version is being named as “version_X.X” and we

are accessing it static way.

The ability to hide resource information behind the name of the resource enables key features

of web architecture. First, the generality is reached by the information of identifiers, which

allow identifying of resource without revealing the actual type of resource. Secondly, the

feature allows content to be bound to representation after reading the requirements of the

request. Third advantage comes with freedom of referencing the resource, which, when

identifiers are correctly used, removes the need to update the links when representation

changes.

In RESTful resource access, the unique identifier tells the type of the resource the client

requests. With web-based systems, the identifier is usually represented using Uniform Resource

Locator (URL). The naming of the identifier should be done to describe the nature and position

7

of the resource, thus creating visibility and understandability for the resource requested. The

following could be resources in web store –type service:

 www.example-store.com/customers

 www.example-store.com/12345/orders

 www.example-store.com/item/54321

The state of the resource is captured using the representations. The representation in REST is

form of way to describe the data of the resource and use it to transfer resources between the

components. The representation consists of the resource data, metadata and possibly some

form of message integrity data. JSON or XML in case of web services are commonly used

examples of representations for RESTful services.

Control data serves the way to give parameters to requests or responses and is used to perform

actions to messaging. For example, a request could include control data to disable caching

behavior.

2.1.3 Connectors

The second architectural element of the REST is connectors, which present the interfaces

between the components. The connectors manage the communication and resources for the

components, bringing abstraction by hiding the complex implementation. Roy Thomas Fielding

presents following types of the connectors: client, server, cache, resolver and tunnel. [1]

Through the abstraction, the connectors bring simplicity and effectiveness to the system. The

connectors allow component to exchange information between the requests increasing the

efficiency and responsiveness. As the connector hides implementation of communication

management, an individual system can be replaced without affecting the use of it.

The basic connectors are the server and client. These connectors perform like normal server-

client models: client sends requests and server listens for them. The commonly used Libwww -

library is an example for server and client connectors.

Cache is the next connector type, which can be used among the client or server connectors. As

the cache -connectors name states, the connector allows storing the responses for future use,

thus bringing the effectiveness to request handling through the reduced amount of sent

requests. Cache is usable in both client and server side to improve the latency for either. Client

caching is extremely beneficial as the response is received immediately without applying any

network traffic. Server caching can also bring latency improvements in internal networks, while

also providing less performance peaks on requests. For example, browser cache can be

described as client cache.

8

The fourth connector type, the resolver, translates resource identifier to network address to

create the connection to the requested resource. This can be implemented as hostname

translation to get the IP address of the server, or as resource identifier translation to get

changing resource using more static resource identifier.

2.1.4 Components

REST divides the components in four classes: origin server, user agent, proxy and gateway. The

components link to their proper connectors to communicate with each other.

The first component is origin server, which acts as a source of the resources in its namespace.

Using the server connector the origin server provides an interface for the resource accessing

and receives the requests through it for resource modifications.

The client-side component, user agent, serves as request initiator and receiver of response. As

the origin server uses server connector for its communication, similarly the user agent is tied to

the client controller.

The rest of the components, a proxy and gateway, forward the initiated requests and responses,

thus serving the end components both as a client and server side. A proxy is client-side packet

translator, providing data translation, performance and security. Proxy can also be used to

encapsulate other services for simplifying the client-side interface. A gateway provides similar

functionality as proxy, but serves in the server side. The difference between these components

lies in the way they are used: client side will decide when proxy is used, while server side always

uses gateway when it is present.

2.1.5 Architectural views

Roy Thomas Fielding [1] also describes architectural views to illustrate the REST as an

architecture. Three architectural views are described: process view, connector view and data

view.

The first view, process view, displays the data flow between the client and server components.

In figure 2.1 we can see a simple example of what in the process view can be included. The

example shows a client connected to server through multiple routes: direct access to server and

access through proxy and gateway. Here the server and client components are separated and

system layered, allowing adding of intermediaries affecting the system interfaces. The

intermediaries may be used for many reasons: data translation, performance improvement,

service encapsulation and so on. Note that all the data paths are independent and have no

interaction with each other, which is possible due the stateless nature of REST.

9

Figure 2.1. Process view of simple client-server architecture.

The communication between the components are described in connector views. The connector

view is close to interface view, where the protocols used are specified. The REST allows freedom

of choice to communication protocols, but still the interface between the components is

limited. For example, in picture 2.2 the communications are processed using HTTP, but

additional protocols FTP and STMP are also included to architecture.

Figure 2.2. REST architecture with multiple protocols used.

The last architectural view for REST displays the architecture as an application. The data view

shows the application as a structure of information and a system processing certain task with

some user input.

10

2.2 Applying REST to Web Services

The REST provides the guideline for designing a web service, but still requires more concrete

rules to actually build one. The Resource-Oriented Architecture (ROA) is an architecture, which

applies all the strengths of the REST and provides a way to turn the guideline into an

architecture. In their study, Richardson and Ruby define ROA as follows: “The ROA is a way of

turning a problem into a RESTful web service: an arrangement of URIs, HTTP, and XML that

works like the rest of the Web, and that programmers will enjoy using”. [2, 21, 22, 42]

The ROAs effective parts are the resources and more specifically, they are the names,

representation and the links between them. There are two main features of ROA: addressability

and statelessness, which along with URIs, HTTP and XML works as a RESTful service. By

capturing these strongpoints, we can apply them to web services’ ways to display and use the

resources efficiently. [2]

2.2.1 Resources and URIs

As defined earlier with the definition of REST, resource is anything that can be referenced with

a name. In ROA there is an additional requirement for resource to be a resource: it has to have

at least one address that represents the resource. In ROA, these addresses are identified using

URIs. If some resource in web does not have a URI, it is not accessible and does not actually

exist [3]. The examples of the resources and their URIs could be:

 www.example-service.com/logs/11-11-2015

 www.example-service.com/backup/2054

The resources can have multiple URIs. For example, the following URIs can point to the same

resources:

 www.example-service.com/logs/11-07-2015

 www.example-service.com/logs/11072015

Note that the URI can return the same data to client, but still point to different resources. For

example, the fetching from following similar URIs

 www.example-service.com/logs/11-7-2017

 www.example-service.com/logs/latest

may provide same byte stream to client, but the URIs are still pointing to different resources.

Technically URIs are not required to have any structure or clarity, but to have a good web

design a clear format is preferred. The main rule for URI is that it should be descriptive, which is

achieved by building the structure of the resources in predictable way. This brings freedom to

11

users and allows them to use your service in a more different way. For example, to search for a

product from a service provider we should not use URI like [4, 26, 28, 42]

 www.example.com/product/search/11526

but instead

 www.example.com/product/11526.

2.2.2 Addressability

Addressability is the first feature of the ROA. As REST constraint requires, addressability defines

the application to expose all of its significant data as a resource. As the ROA presents resources

using URI, every piece of data has at least one URI in the application.

For the end-users, addressable web services allows easier access to resource and even allows

new ways to use them. Addressability allows user to bookmark resources explored through the

web site and to return at them later. In addition, The URIs of the resources could be used as an

input to the other systems, which would not be possible for non-addressable services.

2.2.3 Statelessness

The second feature of ROA is the statelessness. The definition of statelessness is similar to the

REST constraint: the server of stateless application can handle the requests without need of

information from previous requests. In other words, the requests sent by client include all the

information to complete the request in server side.

Addressability states that every piece of significant data has an URI. By applying this to

definition of statelessness, we can say that in stateless application every state in server is a

resource and needs an URI of its own.

The statelessness adds stability and clarity to the web service as the server defines accepted

site using resources. Also, the stability is improved as there is no need for stable connection

between client and server. The server does not need to hold the state of the client and the

client

Servers using multiple devices to even out the load benefits the statelessness property. As the

requests are separated and the server does not need to worry about the state of the client, the

request handling could be distributed freely between server hardware. Also the caching

decisions are easier to implement in these systems due the possibility to check requests

separately.

12

3. Simple Object Access Protocol (SOAP)
In this chapter we go through the definitions and overview of the competitor of REST: Simple

Object Access Protocol (SOAP). After brief overview, we go through the definition of SOAP as it

is specified in W3C standardization. We also take advice from James Snell by following his

understanding of SOAP and how it is applied to create web services. [5, 6, 16, 34, 35]

SOAP is our second answer to designing API for web service, where the SOAP defines platform

free method to implement messaging [6]. The base of the SOAP relies on XML message format

and HTTP for communications. The SOAP definition mainly describes a one-way message

delivery, but it can be implemented to serve request-response communications, which is

common way of usage of SOAP.

Web services using SOAP can be referred as RPC-style web services, where the message is sent

in envelope and aims to carry out a task by running functions or methods. This RPC –styled

SOAP uses messages to call functions or methods and uses the message to carry the function

name and parameters, which after the return value is received. The alternative is to use SOAP

to deliver messages as a document –style. This application is called an Electronic Document

Interchange (EDI), which uses XML to hold documents like purchase orders or business

transaction. In this part, we focus on explaining the RPC –style. [5, 43]

SOAP has two important versions used in production: 1.1 and 1.2. The differences between

these versions are minor, but still the version mismatch causes problems with message

processing. The main problem occurs when different versioned message is processed in

another versions system. Version 1.2 can handle these situations better, as the system can

decide whether to process version 1.1 message or generate fault message. Version 1.1 systems

always generate fault when they receive version 1.2 messages. [5, 6]

3.1 SOAP Messages

3.1.1 Message structure

The messages in SOAP are formed by using the XML document format [7, 38, 43]. XML provides

human and machine -readable message structure, which has widely been used as a document

or data structure. The XML messages provide wide support for variety of applications, are easy

to create and use and straightforwardly usable over the internet. An example 3.1 displays an

example message of XML.

13

Figure 3.1. SOAP applications messaging through XML.

SOAP introduces messages with envelope element, which is the root element of the SOAP

message. The envelope includes the core elements of the message: header and body. Every

envelope must contain exactly one body element, while the header elements are optional. The

body element may still contain as many sub elements as required. The structure of SOAP

envelope is shown in figure 3.1.

Figure 3.2. Structure of SOAP message.

14

The header is the optional section of the envelope and provides application extensibility and a

way to add additional information. Including header allows application to create message

processing logic to be targeted to specific nodes along the way to the endpoint. The data

included in header usually contains information about the delivery and processing of the

message, such as routing settings, processing instructions and authorization, but may also

include message kind of data close to the actual message. The information added to header is

application specific and depends on design and use of the application. For example, the header

can include account number of a pay-per-use kind of service, where the intermediate node can

use this header data to confirm the access to the service requested.

The body is the actual data of the message, which is targeted to the ultimate receiver. The body

is mandatory and it may contain zero to any number of elements with the format specific to the

application. The content of the body is application specific and may be defined as the required

by the user. Simple example of SOAP message can be seen in example 3.1.

3.1.2 Message exchange

The most typical way to apply SOAP is the basic request-response message exchange between

two nodes. The conversation between these nodes can be modelled as a document style or as a

Remote Procedure Calls (RPC) as mention before. The choice between the styles is decided by

the needs of the application and design. The RPC style provides more programmatic behavior

and is used to directly invoke method or procedure calls, while the document style is more

common when there is a need for richer data types.

The syntax of SOAP message is based on the http://www.w3.org/2001/06/soap-envelope

namespace and is required to be included in envelope of SOAP message. This structure can be

seen in examples 3.1 and 3.2.

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <c:customer xmlns:c="http://www.examplestore.net/customers">
 <c:customerId> 1562754 </c:customerId>
 <c:customerName> Example Customer </c:customerName>
 </c:customer>
 </env:Header>
 <env:Body>
 <s:purchase xmlns:s="http://www.examplestore.net/store">
 <s:productName> Example product </s:productName>
 <s:productId> 12345 </s:productId>
 </s:purchase>

15

 </env:Body>
</env:Envelope>

Example 3.1. Document style request in web store

The example 3.1 presents the structure of the document -style SOAP message as a purchase

request in an online store. As explained earlier, the message starts with envelope with

namespace env="http://www.w3.org/2003/05/soap-envelope" introduced in it, which is

requirement for SOAP version 1.2 and must be introduced or the SOAP nodes do not

understand the message. The header of the example includes a namespace and the data of the

customer similar to account data to most of the web services. In addition, the header

introduces the role and mustUnderstand values, which are explained later in processing

chapter. The body as well includes its own namespace and the payload for the ultimate receiver

to process.

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <c:customer xmlns:c="http://www.examplestore.net/customers">
 <c:customerId> 1562754 </c:customerId>
 <c:customerName> Example Customer </c:customerName>
 </c:customer>
 </env:Header>
 <env:Body>
 <s:purchase xmlns:s="http://www.examplestore.net/store">
 <s:productName> Example product </s:productName>
 <s:productId> 12345 </s:productId>
 <s:purchaseResult> Success </s:purchaseResult>
 </s:purchase>
 </env:Body>
</env:Envelope>

Example 3.2. SOAP response in web store.

The response for the online store request is presented in example 3.2. The response is similar

to the request, except the added information to the body about the result of the purchase.

3.1.3 Remote Procedure Calls

SOAP applies the RPC procedure call protocol to enable complex structure for the message

exchange. In client-server model, the client is the caller for the procedure and the server

responds with the results.

16

SOAP 1.2 provides definition for packaging RPC in SOAP messages [6]. The RPC messages

include the name of the invoked method and extra information given as parameters for it. To

produce RPC message, the following information is needed:

 The address of the target SOAP node.

 The name of the procedure.

 All the input arguments required by the procedure or the output values in case of

response message.

 Control information to make sure the correct web resource is reached.

 A clear pattern, which is used to transfer the message between the destinations. In

practice, the HTTP method needs to be defined.

 Optional header data.

The structure of SOAP-RPC is presented in example 3.3. The example includes similar headers

as in document-style messages, but includes env:encodingStyle attribute for message encoding

specification. This attribute specifies the encoding scheme for the data structure, thus providing

information that the contents are serialized according to the SOAP encoding rules. The body

holds the actual RPC structure, which in this case invokes method processPurchase with

product name and id as parameters.

<?xml version='1.0' ?>
 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Body>

<s:processPurchase xmlns:s=http://www.examplestore.net/purchase
 env:encodingStyle="http://www.w3.org/2003/05/soap-encoding">
 <p:product xmlns:p="http://www.mywebstore.net/products">
 <p:productName> Example Product </s:productName>
 <p:productId> 12345 </s:productId>
 </p:product>
 <c:customer xmlns:c="http://www.mywebstore.net/customers">
 <c:customerId> 1562754 </c:customerId>
 <c:customerName> Example Customer </c:customerName>
 </c:customer>
</ s:processPurchase >

 </env:Body>
 </env:Envelope>

Example 3.3. SOAP-RPC request.

The RPC itself is always carried in body of the message. The process called is required to be

delivered in structure defined by SOAP data model, where the first element includes the name

of the procedure. The children of this element are the parameters. In example 3.3 the structure

is displayed with an example purchase from online store, where the name of the process is

17

“processPurchase” with two parameters added under it: “product” and “customer”. Example

3.4 shows the corresponding response for the request. Note that the parameters are also data

structures and may include any number of information fields. [8]

<?xml version='1.0' ?>
 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <t:transaction xmlns:c="http://www.examplestore.net/customers"
 env:encodingStyle="http:// www.examplestore.net /encoding"
 env:mustUnderstand="true">
 </t:transaction>
 </env:Header>
 <env:Body>
<s:processPurchaseResponse xmlns:s="http://www.examplestore.net/purchase">
 <p:resultCode xmlns:p="http://www.mywebstore.net/products">
 1
 </p:resultCode>
</ s:processPurchaseResponse >
 </env:Body>
 </env:Envelope>

Example 3.4. SOAP-RPC response.

3.2 Nodes

SOAP processing model defines node as the main system component. The nodes are

responsible for sending, receiving, forwarding and processing the messages sent in the system.

Every node in SOAP based system has an URI, which is used to identify them.

Depending on the role and functionality of the node, the SOAP nodes are divided in the

following types [6]:

 SOAP sender: Node that sends a message.

 SOAP receiver: Node that receives a messages

 SOAP intermediary: Node that receives the message and sends it. Also the intermediary

may process the message between receiving and sending.

 Initial sender: Node that is the original source of the message.

 Ultimate receiver: Node that is final receiver of the message.

18

Figure 3.3. Example message pathing using changing transport protocols.

The SOAP intermediaries are separated to two types: forwarding intermediaries and active

intermediaries. The forwarding intermediaries process the message according to the

information in message header before sending the message to the next node. Active

intermediaries perform the same procedure as forwarding intermediaries, but are also allowed

to modify the received message in a way not described in the message header. These

modification may have major impact on message handling in the following nodes.

3.3 Processing model

SOAP defines specific way for nodes to handle message processing. When node receives

message, the header part is read and provides information about the logical processing of the

message. When SOAP node receives message, the following actions are done to process the

message [6]:

1. Confirm the syntax of the message to match SOAP message structure.

2. Process required header blocks determined by the role attributes.

3. If the node is intermediary, resend the message.

4. If the node is ultimate receiver, process the body of the message.

While intermediary processes headers, the SOAP defines rules on how the header blocks are

forwarded. If intermediary processes header block, it is removed from the message, whereas

the non-processed headers are left untouched. In the special case where the intermediary does

not process the header block and the role attribute informs node to do so, the default behavior

is to remove the header block. Note that even if the header block is removed, it may still be

inserted back when processing the message.

SOAP defines three different attributes for the header blocks, which can be used to alter the

default header block processing behavior: “role”, “mustUnderstand” and “relay”.

3.3.1 “role” attribute

The header blocks node needs to process may be included with env:role attribute, which tell

the node if the header is required to be processed. When message is received and structure

confirmed, the role block is read for each header and if the node assumes the role pointed by

the env:role –attribute, the header block is processed. This allows skipping of headers and

19

targeting of header values certain nodes. The value of role can be customized by providing URI,

which the node will identify. In addition, SOAP 1.2 defines three standardized roles for the use:

 "http://www.w3.org/2003/05/soap-envelope/role/none”

 "http://www.w3.org/2003/05/soap-envelope/role/next"

 "http://www.w3.org/2003/05/soap-envelope/role/ultimateReceiver"

The processing requirements for the standardized roles can be found in table 3.1. For example,

if intermediary node receives message with header using env:role –attribute set as “none”, the

intermediary skips it and continues the processing.

Table 3.1. SOAP 1.2 standard roles and required actions by the nodes. [6]

Node/Role Not present “none” “next” “ultimateReceiver”

Initial sender not applicable not applicable not applicable not applicable

Intermediary no no yes no

Ultimate receiver yes no yes yes

The role attribute is not usable for body section, as the information of env:body is targeted for

ultimate receiver, thus being skipped by intermediates.

3.3.2 “mustUnderstand” attribute

In addition to the env:role attribute, the header blocks can be included with

env:mustUnderstand attribute, which applies additional processing for the nodes. If node

receives header block with env:mustUnderstand, it must process the data inside or generate

fault message. Env:mustUnderstand has a priority over other blocks, causing them to be

processed before other blocks and in case of fault stopping the further processing of message.

In example 3.5 the first header block includes both env:mustUnderstand and env:role

attributes. As the env:mustUnderstand is set to “true”, the block must be processed, regardless

of the env:role value.

<?xml version='1.0' ?>
 <env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 <t:transaction xmlns:c="http://www.examplestore.net/customers"
 env:role="http://www.w3.org/2003/05/soap-envelope/role/next"
 env:mustUnderstand="true">
 </t:transaction>
 </env:Header>
 <env:Body>

20

 <s:processPurchaseResponse xmlns:s="http://www.examplestore.net/purchase">
 <p:resultCode xmlns:p="http://www.mywebstore.net/products">
 1
 </p:resultCode>
 </ s:processPurchaseResponse >
 </env:Body>
 </env:Envelope>

Example 3.5.

3.3.3 “relay” attribute

The third of the SOAP 1.2 attributes is boolean -type of variable and indicates if the

intermediate must send the header block forward if it is not processed. By default, the SOAP

headers that are processed are removed from the message, so the “relay” -variable can be used

to make sure the header block reaches every node along the way. In addition, by combining the

“next” -role attribute with “relay”, makes sure the header is processed in every node that

receives the message.

3.4 Fault handling

The env:body has a separated attribute for handling error situations in SOAP messages:

env:Fault. When any node fails to process message, it creates a “fault” block as an child of

body. If the message already has “fault” block, new one should not be added. To be able to use

this, the underlying transport protocol must be able to handle the response delivery.

The structure of faulty SOAP message is presented in example 3.6. As shown in example, the

env:Fault has two mandatory elements: env:Code and env:Reason. In addition, the env:Code

includes mandatory env:Value, where SOAP has five standardized error codes:

 “VersionMismatch”: The SOAP envelope includes invalid namespace.

 “mustUnderstand”: Node could not understand the message with “mustUnderstand”

set as true.

 “Sender”: Error with processing the message.

 “Receiver”: Server error, where the contents of the message is not directly responsible

of.

 “DataEncodingUnknown”: The contents of the body or header block has unsupported

encoding.

The application is also allowed to create custom elements under these codes to create more

specific error information. For human readable error message, the env:Reason should be used.

In addition, the fault may have env:Detail for more application specific information or env:Node

to distinguish the creator node of the fault message. Also the role of the node may be added as

env:Role element.

21

 <?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
 xmlns:rpc='http://www.w3.org/2003/05/soap-rpc'>
 <env:Body>
 <env:Fault>
 <env:Code>
 <env:Value>env:Sender</env:Value>
 <env:Subcode>
 <env:Value>rpc:BadArguments</env:Value>
 </env:Subcode>
 </env:Code>
 <env:Reason>
 <env:Text>Processing error</env:Text>
 </env:Reason>
 <env:Detail>
 <e:myFaultDetails
 xmlns:e="http://www.examplestore.net/faults">
 <e:message>Invalid product</e:message>
 <e:errorcode>999</e:errorcode>
 </e:myFaultDetails>
 </env:Detail>
 </env:Fault>
 </env:Body>
</env:Envelope>

Example 3.6. Faulty SOAP Message of example store. The message in detail indicates the wrong

product id in the message.

3.5 Protocol binding

One of the features of SOAP includes the freedom to choose how the messages are delivered.

The SOAP specifies the delivery of messages between the intermediate nodes as protocol

binding. As the whole system is not bound to transport protocol, every node in the system can

choose the transport protocol used to deliver the message. [6, 24]

Protocol binding defines details of the transport protocol used, but also the form of the data

being delivered. This means that the SOAP messages in previous examples may be transformed

from human readable XML to packed or encrypted form. For example, intermediaries that

require extra security between the transfer, may encrypt the message transfer between them

and relay the message normally afterwards.

The definition of protocol binding provides ways for additional features to SOAP application.

The underlying protocol may not provide critical features required by the application, which still

22

may be implemented using SOAP headers. Using of headers also allows certain functionality to

be forced as end-to-end feature, which ensure feature is provided even if underlying protocol

does not provide in some point of message delivery.

Although the SOAP support any binding for message transport protocol, the SOAP 1.2 has

standardized HTTP as the underlying protocol.

3.5.1 HTTP binding

W3C provided SOAP definition explains HTTP as an example binding for SOAP. HTTP is greatly

suitable for request-response style communication, as it implicitly correlates the request

message with response. [6]

The usage of HTTP binding is divided in two patterns: SOAP response message exchange and

SOAP request-response message exchange. These two different patterns provide the World

Wide Web styled message exchange functionality. The response message exchange relies on

HTTP GET method to obtain the data of resource without altering it any way. The second

pattern, request-response message exchange, applies HTTP POST to send and receive

messages.

Similar to REST HTTP requirements, the SOAP 1.2 defines which of the two patterns should be

used in certain situations. The HTTP GET –bound pattern is supposed to be in use when

information is being retrieved only and no changes to database is applied, thus leaving

database in same state as before it is before the request. This is referred as safe and

idempotent method. The POST –method instead can be used in all situations, without

restrictions. [8]

The example 3.7 presents the HTTP GET simplified request, where the resource

“/www.examplestore.net/resource_name?param=1234” is requested. Note that the preferred

response representation can be set with “Accept” –field, which in the example is set to

application/soap+xml. The example 3.8 could be the response for the message, including both

HTTP headers and SOAP response message, where the requested resource data is added to the

body of the XML. Note that the RPC messages are not usable with GET –method, as the body

and required information is missing from the request message.

GET /www.examplestore.net/resource_name?param=1234 HTTP/1.1
Host: www.examplestore.net
Accept: text/html;q=0.5, application/soap+xml

Example 3.7. HTTP GET request for SOAP response

23

When request-response pattern is used, the POST method is required. Similarly to GET –

request, the POST adds the URI for the resource in first line of HTTP request. The SOAP

specification requires this value to be valid URI, but set no other restriction to it. Note that the

Content-Type –field must always have “application/soap+xml” –value when posting SOAP

message. The example of POST –request can be seen in example 3.9. The response to POST

request would be similar to the GET-request response seen in example 3.8 with the difference

of envelope being filled with application specific response data instead of the resource.

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=”utf-8”
Content-Length: nnnn

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

<env:Header>
...
</env:Header>
 <env:Body>
 ...
 </env:Body>

</env:Envelope>

Example 3.8. Response to example 3.7 request.

In case of SOAP fault, instead of returning error code 200 “OK”, the 500 “Internal Server Error”

should be returned. Also to the body of the XML response the “fault” block is added with

appropriate information as required by SOAP. This error code can be misleading as the error

happens in application level caused by client, but is still correct behavior by the definition. [9]

24

4. Test cases
In the first part of this chapter, we take a look to the interface provided by Seitatech, which is

used as a target to estimate the advantages and disadvantages between SOAP and REST. The

full functionality of the interface is not explained, but for simplicity we go through a simple

transaction handling service as an example to provide a concrete example for the analyzes. Also

the transaction handling is the most server burdening and the main task of the system, making

analyzing of it more valuable.

In the second part, the test procedure and results we ran using the Seitatech provided platform

are explained. The tests are simplified and aimed to enhance the performance of future

Seitatech solutions and to provide performance test results of this implementation. These tests

are the first part of the analytic part of this thesis, where second part is the theoretical

comparison in chapter after this.

4.1 Background for Seitatech implementation

The architecture of the system is described in figure 4.1. The incoming data is received from

payment terminals through the internet and received through the firewall to the first nodes.

The Payment Gateways work as both forwarding and processing nodes, depending on message

received. Also there is additional services where the messages may be forwarded. The

processor is the final receiver of the transaction messages, which in this work handles

authorizing the transactions and finally saving the completed transaction. The payment

terminal acts as a client for the service, and the possible payment platform and Seitatech

Payment Gateway act as an intermediaries before the message reaches the processor.

25

Figure 4.1. Architecture of Seitatech Payment Gateway.

The processing of transaction takes two messages: authorization and completion. Authorization

is received when the terminal has obtained all the necessary information to do the transaction

and requests now authorization from servers according the Finnish bank regulations. The

authorization servers respond with message and depending the results terminal sends

completion data. The completion data is checked and saved for later processing. This procedure

can be seen in figure 4.2.

Figure 4.2 A successful transaction message flow.

As the interface handles payment information, the most important attribute is security. For this

reason, all the messages are required to use SSL encryption. The second required property is

the load handling, as the amount of incoming messages will grow during the increasing number

26

of payment terminals. To avoid over burdening the services, the Payment Gateway services are

duplicated and the message flow distributed equally to both systems.

4.2 Test setup

Before the definition comparison, we do some practical testing to receive metrics of the

performance between SOAP and REST. To get results relevant to the interface provided by

Seitatech and also receive a straightforward comparison between SOAP and REST, we try to

keep the tests as simple as possible with the platform in use.

When planning the testing, we identified metrics which were essential for the Seitatech. The

chosen metrics we are interested in this practical testing are

 Bandwidth usage

 Processing time of the messages

Additional parameters, like CPU usage or memory usage, were considered, but to keep testing

cases less complex we chose only the most important parameters. Also, the importance of the

parameters were considered when doing this decision. The bandwidth was considered most

important to test, as its capacity is more difficult to expand in practice as compared to adding

additional hardware for extra CPU cycles or memory capacity. The processing time can still

provide relative information about performance between the compared technologies, so it is

less desired to know the actual usage of memory or processing performance.

To test these parameters in practice, we create a test web service and send simple messages to

it. The web service is built on Seitatech web service platform, which applies Jetty -web server as

a part of the web service solution. The web service supports both RESTful styled JSON

messaging and SOAP XML messaging, so it is possible to run the tests in same environment for

both technologies. The platform is created using Java and is fairly easy to modify and add the

test cases, while allowing to run the web service application on various computer platforms.

[17]

The tests are run by sending HTTP requests to the web service. For the metrics decided, two

kind of requests are made for testing: fetching of data and sending of data. The first test is a

light request with no heavy data included, which the web service is supposed to return a

response with the requested heavier payload in appropriate form. For testing purpose, the

request includes an amount of the data objects included in response, which allows us to

request increasing amount of data. The second the test case includes sending a request with

data similar of the first test case, which the server is supposed to parse and return a one line

response for success. For clear results and to try to minimize randomness, all the tests are run

27

multiple times and the results averaged. The results are affected by several sources, like the

current load of the web service machine or behavior of Java Virtual Machine.

The payload of the messages are random test data. The payload is created from objects

including two lines of arbitrary test data of 42 bytes. The object created to web service are

shown in example 4.1.

public class SoapTestData {

 private String Data1;
 private String Data2;

 public String getData1() {
 return Data1;
 }

 public void setData1(String Data1) {
 this.Data1 = Data1;
 }

 public String getData2() {
 return Data2;
 }

 public void setData2(String Data2) {
 this.Data2 = Data2;
 }
}

Example 4.1. Implementation of data object, which is used to increment size of the test

messages.

The platform is set on separate machine running Windows 10, as the Seitatech test servers

were not available for this work. The lightweight client application is run from the same

machine, keeping the message travel times minimal.

To receive the metrics from client side, a custom application was created. This application was

simple Windows Forms -application developed with C#, which allows use of different

28

parameters to allow flexible testing. For processing time, the application starts measuring time

when creation of request is started and stops when response to the request is received. The

message received is not parsed in client side. In addition, the application tracks the sent and

received bytes to measure the network traffic between the endpoints.

The server side creates an endpoint for both SOAP and JSON messages to handle incoming

requests. The endpoints receive the messages and parses them to the Java objects without

processing them any further. For the testing, the Java classes are created to hold the payload in

test messages. These classes are shown in examples 4.2 and 4.3. The SOAP parses the message

in objects using WSDL file, which is generated during the startup of the service from Java

classes. The JSON messages use google GSON to parse the received message to Java object and

vice versa [28]. The GSON provides easy to use interface for parsing, requiring only calls of

fromJSON- and toJSON- functions to switch the representation of the payload. The GSON is

selected as it is already used around in Seitatech platform web services.

The test cases were chosen to run in following pattern to provide required test results:

- Both JSON and SOAP do two tests: request for payload and send the payload.

- Tests were run in two test data sizes: 50 to 500 data objects and 1000 to 19000 data

objects. The size of the message alter from 10kb to 80kb and 150kb to 2,5 Mb.

- Each request is done 30 times and the average of their results is used.

The test sizes were chosen to match possible payment application messages, while also the

large message give us extra information about the performance of the platform.

public class TestResponse {

 private String responseCode;
 private List<SoapTestData> responseData;

 public String getResponseCode() {
 return responseCode;
 }

 public void setResponseCode(String responseCode) {
 this.responseCode = responseCode;
 }

 public List<SoapTestData> getResponseData() {

29

 return responseData;
 }

 public void setResponseData(List<SoapTestData> responseData) {
 this.responseData = responseData;
 }
}

Example 4.2. Java class implementation of the response sent from server to client

public class TestRequest {
 String requestId;
 List<SoapTestData> requestData = new ArrayList<>();

 public String getRequestId() {
 return requestId;
 }

 public void setRequestId(String requestId) {
 this.requestId = requestId;
 }

 public List<SoapTestData> getRequestData() {
 return requestData;
 }

 public void setRequestData(List<SoapTestData> requestData) {
 this.requestData = requestData;
 }
}

Example 4.3. Java class implementation of the request sent from client to server

4.2 Test results and analyzes

As the background for both technologies were studied, the RESTful approach was expected to

have advantage. The REST and JSON has been claimed to be more lightweight and more

efficient message carrier than SOAP. For example, study made by Hatem Hamad, Motaz Saad,

and Ramzi Abed show the performance of the REST to be better in terms of response time and

30

message size. Similarly P.A. Castillo has studied high-level application and resulted the REST to

be clearly faster compared to SOAP solution. However, the implementation of the platform and

parser choices makes it possible for differences in performance. [10, 11, 33]

The fetch request of data showed immediately difference between the SOAP and JSON. The

results of the fetch request test set with small data packet is shown in table 4.1 and time

comparison illustrated in figure 4.3. The results show the expected results terms of both packet

size and respond time. Even though the efforts of trying to minimize measurement errors, the

small packet size results clearly show random error appearing in results.

Table 4.1 Results of the fetch data –test with small payload size.

 SOAP fetch request JSON fetch request

Amount
of objects

Data sent
(bytes)

Time
(ms)

Received
data(bytes)

Data sent
(bytes)

Time
(ms)

Received
data(bytes)

100 296 1,951 14379 0 0,892 10640

150 296 1,795 21429 0 0,907 15940

200 296 2,149 28479 0 0,987 21240

250 296 2,21 35529 0 1,1 26540

300 296 2,362 42579 0 0,994 31840

350 296 2,169 49629 0 1,074 37140

400 296 2,687 56679 0 1,359 42440

450 296 2,586 63729 0 1,157 47740

500 296 2,154 70779 0 1,29 53040

31

Figure 4.3 Time comparison of fetch data –test.

After the fetching tests, sending of data objects was run. The results are shown in table 4.2 and

figure 4.4. Again, the results show the RESTful solution to handle the request faster, even

though the difference is lesser as when fetching the data. Also the numbers show a little

randomness being caused most likely by the test platform.

The small data tests show the major difference in message sizes, which was expected when

moving from SOAP XML to JSON. The JSON reduces the message size by 25%. It was noticed

that the

Table 4.2 Results of set data –test with small payload size.

 Soap set request JSON set request

Amount
of objects

Data sent
(bytes)

Time
(ms)

Received
data(bytes)

Data sent
(bytes)

Time
(ms)

Received
data(bytes)

100 14161 2,100 310 10942 2,056 23

150 21111 2,353 310 16392 1,983 23

200 28061 2,736 310 21842 2,052 23

250 35011 3,022 310 27292 2,506 23

300 41961 2,635 310 32742 2,522 23

350 48911 2,567 310 38192 2,548 23

400 55861 2,857 310 43642 2,402 23

450 62811 2,637 310 49092 2,392 23

500 69761 3,042 310 54542 2,322 23

0

0,5

1

1,5

2

2,5

3

100 150 200 250 300 350 400 450 500

Ti
m

e
(m

s)

Number of data elements

Small payload - Fetch data - Time comparison

Soap request

JSON request

32

Figure 4.4 Time comparison of set data –test.

After small payload tests, the same tests were run with the larger data size. The presentation of

the test results are shown in table 4.3 and figure 4.5.

Table 4.3 Results of fetch data –test with large payload size.

 SOAP fetch request JSON fetch request

Amount
of objects

Data sent
(bytes)

Time
(ms)

Received
data(bytes)

Data sent
(bytes)

Time
(ms)

Received
data(bytes)

1000 297 4,853 141279 0 2,036 106040

3000 297 5,726 423279 0 3,884 318040

5000 297 8,979 705279 0 5,937 530040

7000 297 10,986 987279 0 7,773 742040

9000 297 11,977 1269279 0 9,906 954040

11000 298 13,635 1551279 0 10,968 1166040

13000 298 15,884 1833279 0 13,835 1378040

15000 298 17,955 2115279 0 15,768 1590040

17000 298 21,604 2397279 0 18,183 1802040

19000 298 21,438 2679279 0 21,237 2014040

0

0,5

1

1,5

2

2,5

3

3,5

4

100 150 200 250 300 350 400 450 500

Ti
m

e
(m

s)

Number of data elements

Small payload - Set data - Time comparison

SOAP request

JSON request

33

Figure 4.5 Time comparison of fetch data –test with large payload.

Larger data amount when fetching data provides very similar data as when processing small

files. The JSON is clearly faster and provides smaller data packet sizes.

Table 4.4 Results of set data –test with large payload size.

 SOAP set request JSON set request

Amount
of objects

Data sent
(bytes)

Time
(ms)

Received
data(bytes)

Data sent
(bytes)

Time
(ms)

Received
data(bytes)

1000 139261 6,295 310 106038 21,667 23

3000 417261 8,757 310 318038 23,007 23

5000 695261 12,632 310 530038 186,266 23

7000 973261 17,112 310 742038 188,288 23

9000 1251261 21,415 310 954038 190,615 23

11000 1529261 26,040 310 1166038 191,528 23

13000 1807261 29,804 310 1378038 193,463 23

15000 2085261 34,414 310 1590038 195,658 23

17000 2363261 39,889 310 1802038 197,859 23

19000 2641261 43,392 310 2014038 199,946 23

0

5

10

15

20

25

1000 3000 5000 7000 9000 11000 13000 15000 17000 19000

Ti
m

e
(m

s)

Number of data elements

Large payload - Fetch data - Time comparison

Soap request

JSON request

34

Figure 4.6 Time comparison of set data –test with large payload.

The final set data test results are shown in table 4.4 and figure 4.6, which reveals issues with

JSON requests. The JSON requests take step up in processing time, while the number of payload

bytes stay the below the corresponding SOAP message. As the results are not in line with other

tests, some additional analyzing is required.

To find out the reason for the set data results, additional research is required. In test results the

packet handling rises at 5000 data objects, where the size of the packet is almost 700kb. The

options for the behavior was researched and tests reviewed for errors, but no clear reason was

found. As the packet transfer delay is eliminated, the only option for the source of the delay

comes from parser. The parser was studied using other studies of GSON parser and possible

reason for delay was found. Studies comparing JSON parsers report GSON to have troubles

when packet size rises, making it possible to be issue in the test. [12]

Overall, the test results show the REST implementation to have an advantage in terms of

bandwidth. In all tests, the RESTful approach using JSON reduced the payload size by 25% from

the SOAP equivalent. In addition, in fetch request the body message overhead is completely

eliminated, as the request parameters are sent in the URL.

In terms of processing time, which can be read as performance as well, the test results are

showing an advantage to REST, but the error chance is high. When examining results

individually, the small payload tests bring up the processing speed to JSON parsing, whereas the

large payload numbers are more difficult to interpret the advantage. These results are heavily

affected by the parser chosen for the implementation, so additional research with other parsers

should be done.

0

50

100

150

200

250

1000 3000 5000 7000 9000 11000 13000 15000 17000 19000

Ti
m

e
(m

s)

Number of data elements

Large payload - Set data - Time comparison

Soap request

JSON request

35

To confirm and compare the results, additional research was done against studies with similar

testing. Similarly to this thesis, the studies prove the RESTful implementations to have better

performance through better processing time and reduced message size and bandwidth usage.

The REST has been confirmed to achieve better and recommended to even more complicated

systems. [10, 13, 19, 20, 25, 30, 36]

36

5. Discussion
In this chapter apply the previous knowledge of REST and SOAP to discuss about their strengths

and weaknesses while trying to keep in mind the payment solution during the comparison. We

try to do the comparison in both point of views: common web service designing and

implementation, and Seitatech payment solution. The comparison of REST and SOAP in

definition level is difficult, as the technologies are different in definition: SOAP is a protocol,

whereas REST is architectural style or a set of architectural rules.

5.1 Differences of REST and SOAP

The differences can be divided as conceptual and feature differences. Conceptual differences

affect to early phase design decisions, where the technological decisions are not yet taken into

account. For the technology decisions which are often considered later in software

development, we do a feature difference comparison.

When going through the aspect listed in table 5.1, we first take a look to the technologies as a

concept. As mentioned before, SOAP and REST are not straightforward comparable, since they

are very different in terms of software architecture and design. As the REST relies on the

definition of constraints, it is more of a guideline for designing web services, thus leaving much

space for decisions for low level designing. SOAP on the contrary defines the structure and the

protocol of the messaging very accurately, completely leaving out the rest of the web service

design.

The ideology of operation is different between the technologies. REST deploys the service using

the concept of resource, whereas SOAP is using operations to access the data required. Both

styles have advantages. Resource handling of REST allows easy tracking of used data, while

SOAP offers reliable processing of certain task.

Performance was the aspect already proven in this work and similar studies. REST performs

better and reduces unnecessary network traffic, especially when handling great number of

small messages. Scalability is highly performance related aspect, where REST is also taking lead

in as the limited layering allows scalable service designing.

One practical aspect is the complexity of the technology. Developers often give value to

technologies which are easier to learn and add to their service. As the both technologies are

studied in chapters 2 and 3, it can be stated that SOAP is more complex and has strict rules to

follow, whereas REST definition is teaching the concepts and leaving the implementation to

user. On the other hand, when the studying is done and technology is well known, strict rules

are easy to follow.

37

For the conceptual part, the overview of the comparison stands as heavier SOAP versus lighter

REST, which can be said to be true in every aspect we have studied here. The REST allows

freedom of choice and improves performance, while also enables the scalability of the system.

Table 5.1. Conceptual difference comparison between SOAP and REST.

Aspect REST SOAP

Definition Architectural style Messaging protocol

Logic Resources Operations

Scalability Good Limited

Standards Loose standards only Strict standards defined

Message readability Readable JSON or XML Not easily readable

Communication Point to point styled Distributed systems

Performance Faster Slower

Complexity Easy Difficult

Documentation Easier to understand More complex

The summary of valuable feature comparison can be seen in table 5.2. As mentioned

previously, the features listed here are mainly limitations for technology decisions when

designing the software.

The greatest differences are the way to transport and package the messages. Even though the

REST is not strictly forced to use HTTP, the SOAP can be considered to have more options for

message sending method. The flexibility of SOAP is increased further as the transport type may

change during the transport of one message. As for the message format, REST brings flexibility

by not setting any restrictions. The base of the SOAP is in the SOAP-XML format, which while

providing detailed message format, it burdens the message by making it heavier and more

difficult for human to read. Finally, REST is less limiting and allows more technologies to be

used.

More functional feature are caching and failure handling. The REST enables use of message

caching, which can save the amount of message sent to the network. This is often valuable

feature, especially when similar messages without dynamic content is often requested. Failure

handing has two different solutions: client or server -side handling. Client side handling is here

more beneficial in terms of performance, as it does not stress the server machine. The

downside with this is the moving of complexity to client software, which may be an issue if

client is developed by third party developer. In addition, as the error situations produce low size

error messages, SOAP XML overhead is again an extra burden in network traffic.

38

When speaking of security, both technologies have their ways, even though SOAP is better

prepared with heavier tools. SOAP uses the extensibility to allow security module: Web Service

Security (WS-Security), which is standardized and provides message level encryption for

message. REST handles the security using HTTPS (TLS/SSL), which applies security to transfer

level meaning the encryption to apply when messages is transferred between the server and

client. In this manner, the HTTPS can be considered less secured compared to WS-Security. For

compensation, the HTTPS solution is easier to setup and use. Note that the SSL is also available

for SOAP as well. [14, 15]

Table 5.2 Technology comparison between REST and SOAP.

Feature REST SOAP

Transport HTTP Various choices

Method GET, POST, PUT, DELETE WSDL

Security HTTPS HTTPS, WS-Security

Message format JSON, XML, plain text XML

Caching Able to cache Not able to cache

Failure handling Client side Server side

While studying these technologies during this work, we noticed that the concepts of REST are

easier to understand than the standards and definitions of SOAP. The REST concepts are more

practical and abstracted, which allowed me to forget the implementation problems when

studying for architecture. Even when the implementation was required for the tests, using JSON

was easier when constructing the messages.

Finally, as the differences between the technologies are resolved, there are differences in the

usage to account for. The SOAP has been used for a long time, which has developed more

useful tools to help the development of the web service. Even though the cap is getting smaller,

the lack of tools might come an issue and slow down the development significantly.

Overall, the REST stands as modern, flexible and simplified architecture for web services. SOAP

represents the complex, but more familiar protocol with variety of tools available. The

differences give the picture of more modern REST to be superior in most of the cases, unless a

particular functionality is required from SOAP. When choosing SOAP over REST, drawbacks of

technology limitations must be taken in the account.

For Seitatech point of view, the REST could be used for simple services, but as the target was

high security and reliability requiring service, it might be necessary to stay in SOAP format. If

the security can be solved in other ways, scalability of REST would offer great advantage for

future.

39

5.2 Choosing between REST and SOAP

To make the decision between SOAP and REST, following questions can be used for choosing

between the SOAP and REST:

 Is flexibility required for API design?

 Is the service required to grow in future?

 Client type: Is lightweight required?

 What level of security is required?

After these questions are answered, following example cases can be recommended:

- Public API: REST is strong and easy to use, while HTTP is web browser friendly. Also the

statelessness help the development as user or server developer does not need to worry

about the control.

- Complicated internal systems: Usually SOAP is recommended for more complicated

system, but both approaches are available. The formal contracts of SOAP simplify the

system and possibility to change the transfer method enables creation of internal

systems.

- Reliability and security required systems: If the security of HTTPS is not enough, SOAP is

the correct choice. SOAP also has tools for increasing the reliability through pathing

logic, where REST relies on client side to retry the request.

- Legacy service: If service is already using SOAP as a part of the message handling, the

new services may be forced to use SOAP.

To summarize, REST is easier to develop and use than SOAP and should be the default option

when developing web service. The SOAP should be considered when a particular feature of

SOAP is needed and the complexity is not an issue.

40

6. Conclusions
In this thesis, we studied SOAP and REST by their definitions, which were used to make an

estimation of the differences between the technologies. REST appeared as a guideline to create

a web service without creating much of restriction for technology choices. On the other hand,

SOAP definition provided an accurate instruction of message format and ways how the message

should be transferred and processed. Both technologies proved promise for web service

message exchange.

After the definition studies, the technologies were used in practice by performing tests, where

the qualities of REST and SOAP was compared. The tests run on a Seitatech provided platform,

which added additional value by providing information for payment application web service.

The test application was created and the message processing performance and bandwidth

usage was chosen as interesting metrics for the tests. The REST was decided to use HTTP as

message transfer method and JSON as message format. Similarly SOAP holds HTTP for

transferring, while the SOAP XML was used as message format.

The results of the testing was clear and verified REST to perform better in terms of both

bandwidth usage and message handling. The tests show the benefits of REST in forms of shorter

messages compared to XML, causing less bandwidth usage. While the overall results proved

REST to process messages faster, issues were discovered as size of the test message increased.

Estimates for this behavior was done and the JSON parser used in Seitatech platform appears to

be the reason.

The comparison provided results of characteristic differences between SOAP and REST. SOAP is

more traditional and heavy, while REST is modern and lightweight way to develop web service

message delivery. Advantages of REST consists of scalability, freedom of choice for message

format and ease of deployment, whereas it suffers from lack of tools and security options.

SOAP suffers from complexity and burdening style of message handling, but brings reliability

and extensibility. Overall, REST outperforms SOAP in most of the critical areas. The

recommendation is to use REST unless extra security or reliability is required.

41

References

[1] Fielding, R. T. REST: Architectural Styles and the Design of Network-based Software

Architectures. Doctoral dissertation, University of California, Irvine, 2000.

[2] Richardson, L., and Ruby, S. Restful web services, 1.st ed. O'Reilly,2007.

[3] T. Berners-Lee, R. Fielding, L. Masinter. Uniform Resource Identifier (URI): Generic

Syntax. Network Working Group. http://www.hjp.at/doc/rfc/rfc3986.html. Cited

12.9.2017.

[4] Mark Massé. REST API Design Rulebook, 1.st ed. O'Reilly,2011.

[5] James Snell. Programming web services with SOAP. 1.st ed. O’Reilly, 2001.

[6] Mitra, N., and Lafon, Y. SOAP version 1.2 part 0: Primer (second edition). W3C

Recommendation, W3C, 2007. http://www.w3.org/TR/2007/REC-soap12-part0-

20070427. Cited 12.9.2017

[7] XML 1.0 Specification. W3C Recommendation, W3C, 2008. https://www.w3.org/TR/REC-

xml/. Cited 12.9.2017.

[8] SOAP Version 1.2 Part 2: Adjuncts (Second Edition). W3C Recommendation, W3C, 2007.

https://www.w3.org/TR/2007/REC-soap12-part2-20070427/. Cited 12.9.2017

[9] Network Working Group. HTML specification. https://tools.ietf.org/html/rfc2616. Cited

12.9.2017.

[10] Hatem Hamad, Motaz Saad, and Ramzi Abed. Performance Evaluation of RESTful Web

Services for Mobile Devices. International Arab Journal of e-Technology, Vol. 1, No. 3,

January 2010.

[11] P.A. Castillo, J.L. Bernier, M.G. Arenas, J.J. Merelo, P. Garcia-Sanchez. SOAP vs REST:

Comparing a master-slave GA implementation. arXiv:1105.4978 [cs.NE]. 2011.

[12] Kazuaki Maeda. Performance Evaluation of Object Serialization Libraries in XML, JSON

and Binary Formats. IEEE, DICTAP, Second International Conference. 2012.

42

[13] G. Mulligan, D. Gracanin. A comparison of SOAP and REST implementations of a service

based interaction independence middleware framework. Winter Simulation Conference.

2009.

[14] Web Services Security: SOAP Message Security Version 1.1.1. Oasis Standard. 18 May

2012. http://docs.oasis-open.org/wss-m/wss/v1.1.1/os/wss-SOAPMessageSecurity-

v1.1.1-os.html. Cited 12.9.2017.

[15] E. Rescorla. HTTP Over TLS. Network Working Group. May 2000.

https://tools.ietf.org/html/rfc2818.

[16] Mitra, N., and Lafon, Y. SOAP version 1.2 part 0: Primer (second edition). W3C

Recommendation, W3C, 2007. https://www.w3.org/TR/2007/REC-soap12-part0-

20070427/. Cited 12.9.2017.

[17] JSON specification. Internet Engineering Task Force. March 2014.

https://tools.ietf.org/html/rfc7159. Cited 12.9.2017.

[18] Bruno Costa, Paulo F. Pires, Flávia C. Delicato. Evaluating a Representational State

Transfer (REST) Architecture. In IEEE/IFIP Conference on Software Architecture, 2014.

[19] Snehal Mumbaikar, Puja Padiya. Web Services Based On SOAP and REST Principles.

International Journal of Scientific and Research Publications, May 2013.

[20] Feda AlShahwan, Klaus Moessner. Providing SOAP Web Services and RESTful Web

Services from Mobile Hosts. Centre for Communications Systems Research, 2010.

[21] Network Working Group. Hypertext Transfer Protocol 1.1.

http://www.ietf.org/rfc/rfc2616.txt. Cited: 12.11.2017.

[22] Xiwei Xu, Liming Zhu, Yan Liu, Mark Staples. Resource-Oriented Architecture for

Business Processes. 15th Asia-Pacific Software Engineering Conference. 2018.

[23] M. zur Muehlen, J. V. Nickerson, and K. D. Swenson. Developing Web services

choreography standards - the case of REST vs. SOAP. Decision Support Systems. July

2005.

[24] Pautasso, C., Zimmermann, O., and Leymann, F. Restful webservices vs. "big"' web

services: making the right architectural decision. In Proceeding of the 17th international

conference on World Wide Web. 2008.

43

[25] Philip Markey, Gary Clynch. A performance analysis of WS-* (SOAP) and RESTful Web

Services for Implementing Service and Resource Orientated Architectures. The 12th

Information Technology and Telecommunications (IT&T) Conference. 2013.

[26] Mark Massè. REST API Design Rulebook: Designing Consistent RESTful Web Service

Interfaces. O’Reilly. 2012.

[27] GSON documentation. https://sites.google.com/site/gson/Home. Cited 12.11.2017.

[28] Subbu Allamaraju. RESTful Web Services Cookbook. O’Really. March, 2010.

[29] Robert Daigneu, Ian Robinson. Service Design Patterns: Fundamental Design Solutions

for SOAP/WSDL and RESTful Web Services. Addison-Wesley Professional. October, 2011.

[30] Fatna Belqasmi, Jagdeep Singh, Suhib Younis Bani Melhem, Roch H. Glitho. SOAP-Based

vs. RESTful Web Services A Case Study for Multimedia Conferencing. IEEE Computer

Society. Vol 16, issue 4. May, 2012.

[31] Leonard Richardson, Mike Amundsen, Sam Ruby. RESTful Web APIs: Services for a

Changing World. O’Reilly. 2013.

[32] Xinyang Feng, Jianjing Shen, Ying Fan. REST: An Alternative to RPC for Web Services

Architecture. First International Conference on Future Information Networks. 2009.

[33] Snehal Mumbaikar, Puja Padiya. Web Services Based On SOAP and REST Principles.

International Journal of Scientific and Research Publications. Vol 3, issue 5. May 2013.

[34] Brian Suda. SOAP Web Services. University of Edinburgh. 2003.

[35] Ethan Cerami. Web Services Essentials: Distributed Applications with XML-RPC, SOAP,

UDDI & WSDL. O’Reilly. 2002.

[36] Pavan Kumar Potti, Sanjay Ahuja, Karthikeyan Umapathy, Zornitza Prodanoff. Comparing

Performance of Web ServiceInteraction Styles: SOAP vs. REST. Proceedings of the

Conference on Information Systems Applied Research. 2012.

[37] Pavan Kumar Potti. On the Design of Web Services: SOAP vs. REST. UNF Theses and

Dissertations. 2011.

[38] Fatna Belqasmi, Roch Glitho, Chunyan Fu. RESTful Web Services for Service Provisioning

in Next-Generation Networks: A Survey. IEEE Communications Magazine. December,

2011.

44

[39] Haibo Zhao, Prashant Doshi. Towards Automated RESTful Web Service Composition.

IEEE International Conference on Web Services. 2009.

[40] Jian Meng, Shujun Mei, Zhao Yan. RESTful Web Services: a Solution for Distributed Data

Integration. International Conference on Computational Intelligence and Software

Engineering. December, 2009.

[41] S. Vinoski. RESTful Web Services Development Checklist. IEEE Internet Computing.

November, 2008.

[42] Erik Wilde, Cesaro Pautasso. REST: From Research to Practice. Springer Science+Business

Media. 2011.

[43] Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal Mukhi, Sanjiva

Weerawarana. Unraveling the Web Services Web An Introduction to SOAP, WSDL, and

UDDI. IEEE Internet Computing. 2002.

[44] Li Li, Wu Chou. Design patterns for restful communication web services. IEEE

International Conference on Web Services. 2010.

