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Chapter 1

Introduction

In this work we research, design and implement a system that creates and
optimizes decision-making rules for stock portfolio selection.

The implemented system creates and calibrates the strategy parameters
and decision-making rules using genetic optimization. Strategies are opti-
mized and tested using real stock market and economic data. The work was
carried out at Unisolver Ltd.

The motivation for the study stems from the fact that new investment
methods are highly desired. Investors including individuals, organizations,
banks and insurance companies use a wide spectrum of methods to manage
their investments efficiently. Large amount of resources is pointed out to de-
velop methods for portfolio selection. In the literature the targeted balance
between profit and risk vary between authors describing their methods. Bet-
ter methods are constantly developed and existing methods are improved.
This research constructs a new decision-making model for stock portfolio
management.

1.1 Stock Investment Strategy

A stock investment strategy creation consists of selecting the candidate in-
struments, collecting the economic data, defining the objective function that
measures the performance of a strategy or a portfolio and finally optimizing
a portfolio or a strategy fulfilling the desired objective.

The selection of the optimization method is important. An optimization
method must fit well into the given problem. An investment strategy is
a decision-making procedure that defines the monetary amount (%) that
is invested into each instrument from a given set of instruments at every
moment of time. Reaching a good strategy or portfolio through optimization

10



CHAPTER 1. INTRODUCTION 11

is a challenging task.
A wide spectrum of stock instruments can be used in portfolio selection.

There are various sectors to invest in including e.g. health care, energy,
industry, technology, materials, transportation and financial sectors. It is
difficult to optimize strategy decision-making rules or a portfolio if there are
thousands of instruments to choose from. It is better to limit the number of
candidate instruments to suit into the available resources, data and knowl-
edge.

Investment timing is crucial. The best timing is obtained when every
instrument is bought at its lowest price and sold when the stock is at its
peak. A good investment strategy attempts to predict these moments. Often
investment strategies rely on slow moving underlying data. The stock trading
decisions might consequently take place relatively seldom, e.g. weekly or
monthly.

When a portfolio is formed one must be able to determine its quality.
Basic portfolio quality factors are risk and return. These factors are difficult
to predict but they are possible to calculate afterwards. An objective function
transforms the portfolio quality factors into a single numerical figure that is
used to rank different portfolios when performing portfolio selection.

There exists a wide spectrum of investment strategies. Perhaps the most
trivial strategy is ”buy and hold” meaning that a collection of instruments
is bought and held without performing any action. The opposite strategy
is a ”trader strategy” where instruments are bought and sold constantly
according to predefined rules. A practical investment strategy is usually
somewhere between these extremes.

To make the reader familiar with stock investment portfolio selection
methods this work presents a classical investment model called Markowitz
portfolio model that can be used to select an investment portfolio from a
given set of instruments. The Markowitz model seeks a portfolio with given
amount of expected return that has the lowest possible risk.

1.2 Strategy Implementation

The system of this work uses a set of widely accepted forecasting indicators
as building blocks in the decision-making rules. Recently developed portfolio
selection methods are studied, and some best ideas and advantages are used
in the implemented system. The strategy parameters and decision-making
rules are optimized using a genetic optimization method developed for the
purpose.

The emerging strategies are tested with actual historical data to get an
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overall picture of the developed system. The absolute performance of the
formed strategies is a minor part in this work. The genetic algorithm per-
formance is a more important factor. Still strategies having a relative good
absolute performance could be achieved with the constructed structure.

1.3 Research Objectives

The first objective of this research is to (i) study models, methods and indi-
cators that are used in investment strategies, portfolio decision-making and
forecasting in financial science. The second objective (ii) is to use the best
ideas and forecasting indicators to construct and document a system that
forms and optimizes investment strategy decision-making rules. The third
objective (iii) is to implement the documented system and to test the devel-
oped genetic optimizer performance by using real-world data.

1.4 Structure of the Work

In Chapter 2 we study features of an asset portfolio and introduce the classical
Markowitz portfolio selection model. Next we discuss how to measure invest-
ment portfolio or investment strategy quality. After that some potentially
efficient optimization methods for portfolio selection or model optimization
are presented and compared.

Chapter 3 presents some indicators that are used for forecasting and ana-
lyzing stock instruments. Some basic principles and challenges in investment
strategy and decision-making model construction are discussed.

Chapter 4 presents the implemented investment strategy generating sys-
tem including the selected indicators used in the decision-making, the strat-
egy structure, and the genetic optimization method used for the strategy
optimization.

The strategies formed by the system are tested in 5 with a real test
material.

Chapter 6 discusses the features of the investment strategies and the used
optimization method.

The research conclusions are presented finally in Chapter 7.



Chapter 2

Investment Modeling Backgrou-

nd

This Chapter presents the background related to the investment modeling.
Section 2.1 present the basic features of an stock investment portfolio which
is in this work shortened as portfolio. Section 2.2 presents the so called
Markowitz portfolio model that can be used to define a portfolio fulfilling
investors desires for profit and low risk. Section 2.3 discusses quantitative
measures for portfolio and investment strategy quality. Next Section 2.4
presents different optimization methods that can be used while optimizing
portfolios, models and stock exchange investment strategies. Finally Section
2.5 compares the performance of different optimization methods when applied
to financial science problems.

2.1 Features of a Stock Portfolio

This section presents stock portfolio features including return, risk and qual-
itative features.

2.1.1 Return

Return measures the investment portfolio or an instrument valuation change
during a certain time span (investment period). Specifically when one speaks
of return it means the Return on Investment (ROI) defined for an investment
period [t, t+ δt] as:

ROI =
p(t+ δt)− p(t)

p(t)
=

p(t+ δt)

p(t)
− 1, (2.1)

13



CHAPTER 2. INVESTMENT MODELING BACKGROUND 14

where p(t) is the portfolio value at the beginning of the investment period
and p(t+ δt) is the value at the end of the period.

ROI is often measured from the beginning of a year. Longer period results
are usually expressed by average annual return.

ROI consist of two factors, the change in instrument value and the possi-
ble dividends or interest payments for the investment. The current value for
a stock exchange instrument should in theory be the sum of its discounted
future returns. This is why it is important to predict the company future.
Current value is often less sensitive to the company’s existing property, i.e.
book value. Many methods are used to estimate the company’s future suc-
cess. Indicators used for forecasting and making portfolio allocation decisions
are studied in Section 3.1.

2.1.2 Risk

Risk measures the uncertainties in the portfolio future development. It at-
tempts to predict how probable it is that something undesired like portfolio
value degradation occurs. Risk can be split into categories in several possible
ways. One categorization:

• Political risk containing e.g. the effects of political decisions like changes
in taxation, customs tariffs or the effects of political conflicts

• Economic risk that is mostly related to the economical performance of the
target company. Economic risks include e.g. the effect of competition,
product portfolio competitiveness, logistic processes, human resources
and other items that can have effects to the profit and company success

• Model risk including e.g. the risk for erroneous parameter estimates, pos-
sible programming errors and the chance of model failure

Often only a few risks realize and only partially. That is why a proba-
bilistic approach is used to measure risks. A decent numerical risk measure
that fits in the situation and takes different risks into account needs to be
defined. The risk analysis may differ significantly depending on the context.
A nuclear power plant is designed low risks in mind[1] whereas the investment
world is used to situations, where several percent of the portfolio value may
be lost overnight.

The existence of various risk types makes the risk analysis challenging.
In this work we take only into account the monetary risk, meaning the risk
of losing capital or deviations in the portfolio value. Other risks are ignored.
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Higher expected return can be achieved only by accepting higher risk, so
when comparing portfolio returns, the risk must be taken into account. A
portfolio with high expected profit is always inferior if there is a risk-free
option like government bonds having the same profit.

The so-called risk-free-return is the return that can be achieved with
no risk. In reality no risk-free investments truly exist, even governments
are sometimes driven into insolvency. When speaking of risk-free-return it
usually means the highest return that can be achieved with an insignificant
probability for the return to vary from the expected value.

2.1.3 Qualitative Features

Investors have individual preferences for the trade-off between foreseen profit
and risk. Some investor may in addition have preferences for other features
like ethical factors or a desire to invest to a specific industrial sector, e.g.
green energy companies. These additional factors can be taken into account,
e.g, by restricting the original set of instruments to those that fulfill the
necessary constraints.

2.2 The Markowitz Portfolio Model

This Section presents the widely known mathematical investment model de-
veloped by Harry Markowitz in 1952.[2] The Markowitz model presents mea-
sures for portfolio expected profit and risk. The model formulates elegantly
the profit-risk trade-off for a portfolio of stock assets. When the investor’s
utility in risk-expected return space is known, Markowitz portfolio model
determines analytically the exact instrument allocation wI = {wI1 , ..., wIN},
when the set of allowed instruments I = {I1, ..., IN} is fixed.

2.2.1 Model Structure

The instrument’s expected future return is in the original formulation as-
sumed to coincide exactly with past returns of a given amount of time as:

r̂Ii = E [rIi ] , (2.2)

where rIi are the past returns and r̂Ii is the expected future return for the
instrument Ii. The sampling rate for the returns could vary from one day
to up to a year. The original measure for the expected future return (2.2)
assumes that the instrument’s expected return remains unchanged over time.
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Markowitz model risk is the standard deviation σP of the past returns
of the portfolio. The standard deviation can be straightly derived from the
variance of the past returns of the portfolio denoted as σ2

P and defined as:

σ2
P = σ2 [rP ] = E [(rP − r̄P )(rP − r̄P )] . (2.3)

The objective is to minimize the variance (2.3) while keeping the expected
return (2.2) unchanged. The problem takes a form:

min
wI1

,...wIn

σ2
P = min

wI

wI
TΣwI, (2.4)

so that






N∑

i=1

wIi = 1 (2.5)

wIi ≥ 0 (2.6)
N∑

i=1

wIi r̂Ii = R̂P . (2.7)

In (2.4) wI contains the money allocation for each instrument and Σ is the
covariance matrix for the instrument returns {rI1 , ..., rIn}.

The minimization of the risk must be performed so that boundary con-
ditions presented in (2.5), (2.6) and (2.7) are satisfied. Equation (2.5) states
that the weights sum up to 1, (2.6) restricts short selling and (2.7) states
that the portfolio expected return R̂P is fixed.

Markowitz model seeks a portfolio with a fixed expected return having
the lowest possible risk measure σP . When the problem is solved by varying
the expected return R̂P one obtains a set of portfolios each having different
expected returns with lowest possible risk that can be achieved with the given
expected return.

The most important feature of the model is that it can lower the risk
by taking advantage of the cross correlation of instrument’s returns, e.g.
selecting two negatively cross correlated instruments, one can lower the risk
without having effect to the expected return.

The Markowitz portfolio optimization problem can be presented in an
alternative form where the minimized objective function is the portfolio vari-
ance and a penalty term. One such formulation is presented by Lean Yo,
Shouyang Wang and Kim Keung Lai[6] as:

min
wI







wI
TΣwI + cpenalty

[(
N∑

i=1

wIi r̂Ii

)

− R̂P

]2

︸ ︷︷ ︸

penalty term







, (2.8)
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so that






N∑

i=1

wIi = 1 (2.9)

wIi ≥ 0, (2.10)

where cpenalty is the penalty factor and a quadratic penalty function is used
in (2.8) to ensure that the expected return of the portfolio stays fixed. The
penalty factor is ignored in the Yu, L., Wang, S. and Lai, K.K., 2008 solution
(cpenalty = 1).[6]

The Markowitz portfolio optimization problem could be thought as a
completely unrestricted optimization problem, if restrictions (2.9) and (2.10)
are also transformed into penalty terms. In this case the objective function
takes the form:

min
wI

{
wI

TΣwI + fpenalty
}
, (2.11)

fpenalty = c0

[(
N∑

i=1

wIi r̂Ii

)

− R̂P

]2

+c1

[(
N∑

i=1

wIi

)

− 1

]2

−c2

N∑

i=1

min {wi, 0} ,

(2.12)
where fpenalty is a penalty term; c0, c1 and c2 are penalty coefficients.

Now we are familiar with Markowitz model formulation. Next we discuss
the model preferences.

When the Markowitz portfolio optimization problem is solved by vary-
ing the expected fixed return R̂P , a set of portfolios is obtained denoted as
{P1, P2, ..., PN} that each have the lowest possible risk that can be achieved
by combining instruments (A,B,C,D) when the expected return is fixed.
These portfolios form the so-called Markowitz bullet. Figure 2.1 illustrates
these portfolios denoted as Markowitz portfolios.

In Figure 2.1 we have in addition convex combinations of (A,B), (B,C)
and (C,D) that form portfolios. Each combination forms a curve in the
risk-return graph because the instruments are correlated, for uncorrelated
instruments the curve would be a straight line.

The Markowitz model does not take a stand to the risk-profit preferences
of an investor. One investor may prefer more expected return and accept
more risk than another. Rational investors prefer so-called Pareto optimal
portfolios that settle to Pareto frontier, a curve containing all the portfolios
for which the expected return cannot be increased without increasing the
portfolio risk, and the risk cannot be lowered without lowering the return.
Every Pareto optimal portfolio is the best possible choice of all portfolios for
an investor having certain type of risk-profit preferences.
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instruments (A,B,C,D,Risk Free Asset) without taking debt. In Fig-
ure 2.1 the Pareto optimal portfolios are the portfolios setting to curves:
(Risk Free Asset,Tangent Portfolio) and (Tangent Portfolio, A)

The Markowitz model is relatively simple and trivial but its concept for
risk is a bit naive in the view of modern research and its method for estimating
future profit is also questionable. It can create stability in long-term investing
but it does not contain the necessary preferences for a strategy that targets
for high profits with the lowest downside risk. Alternative risk measures are
presented later in Subsection 2.2.3.

The Markowitz model estimates the expected return and variance using
the classical formulas presented in (2.2) and (2.3). Variance formula (2.3)
assumes that returns of a single instrument are identically distributed random
variables having a normal distribution.[8] These are very strong conditions
and the normality condition is shown to be false for stock returns in the study
of Felipe Aparicio and Javier Estrada.[11] As a result some studies attempt to
improve the Markowitz model by replacing the classical covariance and return
estimates with better alternatives. In the study of Tze Leung Lai, Haipeng
Xing and Zehao Chen in 2009 an alternative estimate for the covariance and
return is presented.[8] It is also said that the stock market data quality is too
low to apply the Markowitz model mean-variance approach.[9][10]

There exists models having more sophisticated features like self-learning
and adaptation that seem to outperform the Markowitz model in both risk
and return. Still the Markowitz model is a simple good classical example of
an investment strategy.

2.2.2 Solution Methods

Here we present two methods, interior point method and genetic algorithm,
that can be used to solve the Markowitz portfolio selection problem. The
basic form of the problem is presented in Equations (2.4), (2.5), (2.6) and
(2.7). The problem is a bounded quadratic optimization problem that can
be solved e.g. by using interior point method also known as barrier function
method. The idea is to transform the boundary conditions into barrier func-
tion, and add them to the objective function. The objective function is in
this case presented in (2.13). The barrier function ensures that the bound-
ary conditions will be fulfilled. The presentation of the method is from Aalto
University course Principles of optimization.[7]

min
wI

wI
TΣwI + µB(wI), (2.13)
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where B is a barrier function and µ is the barrier weight factor, suitable B
could e.g. be one of the forms:

B(wI) := −
m∑

i=1

ln [−gi(wI)] or B(wI) := −
m∑

i=1

1

gi(wI)
. (2.14)

The interior point method requires that the boundary conditions of the orig-
inal Markowitz problem presented in (2.5), (2.6) and (2.7) are transformed
into form gi(wI) < 0.

The interior point algorithm to solve the problem is of the form:

1. Choose an initial portfolio allocation w0

I
from the set of feasible port-

folios. Choose ε > 0, µ0 > 0, β ∈ (0, 1) and set k = 1.

2. Solve min
wI

wI
TΣwI + µkB(wI). Let the solution be wk+1

I
.

3. If µkB(wk+1

I
) < ε =⇒ stop.

If µkB(wk+1

I
) ≥ ε =⇒ , k → k + 1 and go to step 2.

A method to solve the problem of step 2 is not presented. Relatively
simple methods can be used to solve the step 2 problem. For a Markowitz
problem a matter that makes step 2 problem easier is that Σ is positive
definite in almost every real case. This is explained in the Appendix A.

A genetic algorithm is an alternative method for solving the Markowitz
portfolio selection problem. The study of Hamed Soleimani, Hamid Reza
Golmakani and Mohammad Hossein Salimi reveals that a decent Markowitz
portfolio can be constructed for up to 2000 instruments utilizing a genetic
algorithm.[19] Different optimization methods are discussed in Section 2.4.
The genetic optimization is presented more specifically there in Subsection
2.4.1.

2.2.3 Alternative Risk Measures

A classical risk measure was introduced by Harry Markowitz in 1952.[2] The
risk in his measure is thought to be the standard deviation of the past port-
folio returns. The measure indicates how the returns have varied from the
mean value during a time period. The Markowitz risk measure is defined as

σ[rP ] =
√

E [(rP − r̄P )(rP − r̄P )] =
√

E
[
r2P
]
− r̄2P

︸ ︷︷ ︸

numerically inaccurate

, (2.15)

where σ[rP ] is the standard deviation of portfolio return, rP is the vector of
past portfolio returns, r̄P is the mean of past returns and E[·] is an expected
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value operator. It is better to prefer the first formula of (2.15) to avoid
numerical inaccuracy for a certain type of data.[3]

Markowitz risk measure (2.15) is used in various investment models to
measure risk. When the only applied risk measure is (2.15) the risk caused
by estimation errors for the future returns is ignored. This could have a
significant impact on the risk measure functionality. Still the Markowitz risk
measure is simple and suitable for many purposes.

There are alternative approaches to measuring risk. One measure is Value
at risk.[4] It answers to the question about what is the minimum amount of
loss in the portfolio value for a given probability p. The measure is defined
as:

VaRp = arg{P(Xt −Xt+T ≥ VaRp) = p}, (2.16)

where p is a probability, Xt is the portfolio value in the beginning of a period
[t, t + T ], and Xt+T is the value at the end of the same period; P(·) is the
probability measure. A value of p = 5% or p = 1% is often used.

An advantage of the Value at risk measure (2.16) is that a stochastic
positive return does not increase the risk measure. Positive return is al-
ways desirable and not something an investor should avoid while Markowitz
measure (2.15) ends up avoiding instruments that tend to react sharply to
positive market news. Value at risk measure (2.16) takes roughly speaking
only large drops into account. The Value at risk could in many cases be a
better risk measure than a plain variance measure. The medium and small
negative returns can be taken into account by using smaller values for Value
at risk measure p. VaRp can be estimated using past returns or Monte Carlo
simulation.[24] A larger sample is required to sustain the accuracy of VaRp in
case of a small value of p.

Another risk measure, Conditional Value at Risk (CVaR), measures the
expected loss, on condition that the portfolio has fallen by a value of VaRp

or more as:[5]

CVaRp = E[Xt+T −Xt|Xt −Xt+T ≥ VaRp], (2.17)

in other words CVaRp is the expected loss given that the portfolio value
has fallen equal or more than VaRp. Both CVaRp and VaRp are estimated
similarly and their behavior has many similarities.

Low risk is preferred by actors like governments, insurance companies and
banks while the profit is sometimes a less important criteria. These kind of
market actors focus on diversification instead of trying to win the average
market return. They analyze political and other type of risks that cannot be
modeled neither with risk measures (2.15), (2.16) nor (2.17) and need to be
taken into account in some other way.
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2.3 Measuring Portfolio and Strategy Qual-

ity

An objective function (or functional) is used to measure numerically, with a
single number, how well the investor preferences are met with a given portfo-
lio (or strategy). If the objective function or functional is well prepared then
a higher (or in some cases lower) objective value reflects a better portfolio.
The objective function of the Markowitz portfolio model is presented in (2.4).
The Markowitz portfolio quality is estimated using the past data, available
before the selected portfolio reveals its quality.

Finding a good measure qualifying a portfolio or a strategy with a single
number is a hard task because investors usually express their requirements
in qualitative terms that need to be converted into a mathematical form.

Once the investor preferences are in mathematical form, it becomes pos-
sible to express the portfolio selection as an optimization problem. Subsec-
tion 2.3.1 presents how to form an optimization problem when the objective
function is known. Subsection 2.3.2 presents the problem formulation when
the varied objective variable is not a portfolio but an investment strategy
decision-making function defining the portfolio.

The objective function is in financial science sometimes denoted as a
fitness function or a utility function. In this work we denote it the objective
function.

2.3.1 Objective Function

An objective function takes an instrument allocation vector (portfolio) as an
argument and returns a value that measures how the investor preferences
are met with the given portfolio. The objective function denoted by F is a
real valued function F (U) : wI → R, where U contains the preferences of an
investor thus defining the shape and the structure of the objective function
and wI = {wI1 , ..., wIn} contains the instrument I = {I1, ..., In} allocation in
the portfolio.

In some problem formulations the lowest possible objective function value
is targeted and others target for the highest. One can always transfer a min-
imization problem to a maximization problem and vice versa by performing
a transformation F → −F . So both the minimization and the maximization
problems could be transformed to another. This section speaks for clarity
reasons only about maximization of the objective value.

Finding a correct objective function depends on the case. The preferences
of an investor must be defined and transformed into a mathematical form.
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Optimization seeks portfolios having a high objective function value. When
a portfolio has a high value for the objective function it is wise to check that
the portfolio satisfies the investor needs.

The objective function is in many studies only a mathematical formula
qualifying a portfolio numerically and lacks an interpretation. In that case
the study may ignore the objective function value from the results and present
portfolio return, risk and other preference deliverables instead. One reason
for this practice is that different investors prefer widely different attributes
and there are no unique objective function fitting into every investor needs.

To find a desired portfolio one must maximize the objective function value
by varying the allocation wI so that:

w∗
I
= arg

{

max
wI={wI1

,...,wIn}
F (U,wI)

}

, (2.18)

where arg{·} refers to the weights wI in the portfolio that are varied to maxi-
mize the objective function, w∗

I
= w∗

I
(t) is a function of time covering money

allocations in every moment of time. So w∗
I
(t) covers the whole investment

strategy. Note that money allocations wI in (2.18) vary, while the investor
preferences held in U stay constant.

Usually there are additional boundary conditions for the portfolio like
the short selling restriction of the Markowitz model that must be satisfied.
Common restrictions are:

1. Short selling is forbidden: wIi ≥ 0

2. Taking debt is forbidden:
∑n

i=1 wIi ≤ 1

3. Single asset allocation limit: wmin < wIi < wmax

There could be even more boundary conditions, e.g. sector allocation
limit, when money allocation to specific economical sector (e.g. health care,
industrial) is limited. These restrictions are reality and make the prob-
lem solving complicated. A sector allocation restriction could be modeled
using binary variables, presented e.g. by K.P. Anagnostopoulos and GG.
Mamanis.[12]

The additional boundary conditions could be included in the objective
function. A simple approach that can be used is to give an objective value
of −∞ for a portfolio that violates the boundary conditions. This approach
is often easy to implement but it is inefficient from the optimization point of
view.

Finding the best strategy w∗
I
from (2.18) can be a challenging task. The

problem is mathematically simple, if there is only one local optima (convex



CHAPTER 2. INVESTMENT MODELING BACKGROUND 24

problem). The objective function forms usually a structure that has a large
quantity of local optima to be dealt with. Lots of optimization methods have
been developed to solve these non-convex problems, some of the methods are
discussed in Section 2.4.

2.3.2 Objective Functional

The approach of this work is a bit different from what is described in the
Subsection 2.3.1, where a objective function was presented.

In this work an investment strategy decision-making function denoted by
S, is used to select the instrument allocation wI, to form a portfolio. The
investment strategy decision-making rules held in S is varied, affecting indi-
rectly to the allocation wI. So instead of the allocation wI, the optimization
focuses on improving the decision-making rules. This makes the objective
function a functional. The objective functional is denoted by F and takes a
form of F(U) : S → R, where S is an investment strategy decision-making
function and U are the investors preferences.

The aim is to maximize the objective functional by varying the decision-
making rule S that defines the allocation wI, so that:

S∗ = arg

{

max
S∈S

F(U) [S]

}

= arg

{

max
S∈S

F(U) (wI[S])

}

, (2.19)

where S is the set of allowed rules and S∗ is the rule (investment strategy)
maximizing the objective functional.

In this work we use a decision-making function S to define the money
allocation. The optimization concentrates on optimizing the decision-making
rules. The reasons for this approach is presented later in Chapter 4 when the
implemented decision-making model is represented.

2.4 Optimization Methods

In this section we present briefly genetic optimization method together with
some other heuristic methods that can be used to solve different type of in-
vestment problems like Markowitz portfolio selection problem. The studied
methods are in their general form focusing on their basic structure. There ex-
ist many optimization methods that combine the basic methods and enhance
them. This section does not study the modified versions.

It is important to select a proper optimization method when solving a
problem that has many variables and nonlinear dependencies. Many heuris-
tic optimization methods have been developed before it became possible to
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process large amount of data using a computer. One optimization method
may fit best to a certain type of problem, while another method outperforms
it in another problem category.

2.4.1 Genetic Optimization

In the genetic optimization the so-called genome vectors Gi (solutions) are
produced forming a basic set X = {G1, ...,Gn+m}, where every Gi is a can-
didate solution for the problem. Now one selects a given amount of best
solutions from the set X forming an elite set Xelite = {G1

elite, ...,G
n
elite}. The

solutions left in the basic set X = {G1, ...,Gm} are discarded or modified.
The elite solutions Xelite are combined and random modifications are made
(mutations) producing new solutions that may be better than its parents,
also completely new genomes may be generated.

The process is repeated to a point where no significantly better solutions
are found or the solutions are refined to a desired level. When the process
halts the candidate solutions for the problem are in the set Xelite. There are
many variations from the algorithm. In some variations no elite population
exist and solutions participate in a new individual crossover with a prob-
ability proportional to the objective functional value of the corresponding
individual. Often a modified version of the genetic algorithm needs to be
constructed because the problem does not fit into the algorithm naturally.

Fundamental principles of the genetic optimization is presented e.g. by
A.E. Eiben and M. Schoenauer in 2002.[13] Genetic optimization is often
applied to problems that have a complicated form or non-continuous variables
and if the optima cannot be found easily by other methods. The genetic
optimization method is suitable for many purposes because it has been proved
to be very robust, e.g. Jiah-Shing Chen, Jia-Li Hou, Shih-Min Wu, Ya-Wen
Chang-Chien uses it in portfolio optimization.[14]

2.4.2 Simulated Annealing

The idea of the simulated annealing algorithm (abbreviated SA) originates
from the physical laws of statistical thermodynamics. The algorithm is pre-
sented e.g. by Jorge Haddock and John Mittenthal in 1992.[15]

Simulated annealing algorithm starts by selecting an initial value x, called
a state. A small random change in the x is made, producing a value xnew.
The variable x can be either continuous or discrete. Now the transition from
state x to state xnew occurs if for the transition probability it holds:

P(x,xnew, T ) ≥ random(0, 1), (2.20)
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where T is the so called system temperature and random(0, 1) ∈ [0, 1] is a
random variable drawn from an uniform distribution.

The transition probability depends on the energy E that is in this context
same as the objective function, thus E = F , in other words the energy for
a state x is F (x). A good transition probability function depends highly
on application. The temperature is decreased (cooling) and the process is
repeated. The system will eventually reach a thermodynamic equilibrium xeq

minimizing the energy F (xeq). Again if one wants to maximize the objective
function value it can be performed by transforming F to −F .

Simulated annealing is a robust stochastic algorithm that usually finds
good solutions. There are some drawbacks: A transition probability suiting
for the application is difficult to find, and the algorithm is relative slow to
converge. Finding a good solution may consequently consume a great amount
of computation time.

2.4.3 Particle Swarm Optimization

Particle swarm optimization abbreviated often as PSO can be considered to
imitate a swarm of birds seeking food. For an n-dimensional problem every
bird i has its own global best position vector pi = {pi1, ..., pin} where the bird
has found the highest amount of food. The bird swarm has it’s global best
position vector pg = {pg1, ..., pgn} where there exists the highest amount of
food found by any bird. Every bird seeks food near the personal best position
pi but in addition every bird takes into account the globally best position
pg.

The birds are called particles in modeling. Particle swarm optimization
is introduced e.g. by Shi & Eberhart in 1998[16] and has a form:

vid[t] = wvid[t− 1] + c1ri1(pid − xid[t− 1]) + c2ri2(pgd − xid[t− 1]), (2.21)

xid[t] = xid[t− 1] + vid[t], (2.22)

where vid[t] is the velocity of particle i in dimension d at iteration t, w is the
parameter defining the trade-off between local and global search. In addition
c1 and c2 are acceleration parameters, pid is the particle i global best position
in dimension d, pgd is the global best position for all particles in dimension
d; ri1, ri2 ∈ [0, 1] are randomly generated numbers.

Li & Engelbrecht in 2007 have discovered that a good convergence of
particles is obtained by using values: c1 = c2 = 1.49618 and w = 0.7298.[17]

However it is likely that good parameters are highly dependent on the prob-
lem.
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Kennedy and Eberhart (1997) modified the particle swarm method to fit
into problems with binary-variables[16]. This was done by replacing (2.22)
with:

xid[t] =

{

1 if ρid < sig(vid[t])

0 Otherwise
∀ d ∈ {1, ..., N}, (2.23)

where ρid is uniform random variable and sig(·) is the sigmoid function defined
as sig(x) = 1/(1 + e−x).

More information about the particle swarm optimization can be found in
a work published by Hamid Reza Golmakani and Mehrshad Fazel in 2011.[18]

They apply particle swarm optimization to a constrained Markowitz portfolio
selection problem. Many of the conclusions above are from that study.

2.5 Comparison of Optimization Methods

In this Section we compare performance of optimization methods applied
in financial science. In Subsection 2.5.1 is discussed the listed comparison
criteria and Subsection 2.5.2 compares alternative optimization methods.

2.5.1 Criteria and Approach

It is necessary to apply the compared methods to same problems when doing
a proper quantitative performance comparison. This is t the case in most
studies in the financial science literature.

It seems that publications measure the performance of a certain set of op-
timization methods by utilizing a too narrow set of test material, in addition
the structure of the optimized object varies between publications, e.g. the op-
timized object can consist of a Markowitz portfolio selection method, fuzzy
logic or decision trees or other type of structures. A certain optimization
method is efficient in optimizing a specific kind of model or decision-making
rules. This is why the quantitative performance differences do not show up.
That is a reason why we discuss the performance qualitatively.

Optimization methods seems to find a solution in a relatively short time.
Various studies speak about seconds or minutes. E.g. study of Hamed
Soleimani, Hamid Reza Golmakani and Mohammad Hossein Salimi reveals
that a decent Markowitz portfolio can be constructed for up to 2000 instru-
ments utilizing genetic algorithm in 17 minutes. For 500 instruments the
optimization converges in 6 to 8 minutes.[19] So the solving time is not a sig-
nificant factor because stock transaction decisions are often made in a time
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scale of days. A time span of hours might be sufficient even for fast trad-
ing. Solving time can become a restrictive factor only if instrument selection
needs to be made among a set of thousands of instruments.

The major focus is usually to obtain an investment portfolio that is as
good as possible, while computing power is a secondary issue that is solved
by adding the necessary processing capacity. This turned out to be the case
also when the optimization method for this work was selected.

2.5.2 Comparison in the Literature

Hamid Reza Golmankani and Mehrshad Fazel (2011) extend the Markowitz
portfolio selection problem and solve it using a modified particle swarm opti-
mization and compare it to genetic optimization with a test sample varying
from 9 up to 150 stocks.[18] The return r is fixed and the portfolio variance
σ2 varies. The study found that in this case the modified particle swarm
optimization outperforms the genetic optimization. The genetic optimiza-
tion seems to find good solutions when the portfolio is small. The modified
particle swarm optimization is superior when the portfolio is large. The
superiority was demonstrated with the capability to find portfolios with bet-
ter (min σ2), mean variance E[σ2] and deviations in the portfolio variances
(var[σ2]). The mean solving time was also shorter. One must note that the
modified particle swarm optimization method was tailored for this purpose,
increasing the available solving time might have cut the differences between
the compared methods.

Tsung-Jung Tsai, Chang-Biau Yang and Young-Hsing Peng (2010) have
implemented an investment strategy based on the so called technical indica-

tors explained later in Section 3.1. The indicators include e.g. moving aver-
age (SMA), global trend indicator (GTI) and monitoring indicator (MI).[20]

The method uses trigger signals to make buying and selling decisions. The
method includes parameters (weights) that are set and adjusted to obtain
calibrated decision-making rules. The performance of the method is com-
pared with static user-defined weights, static genetic optimized weights and
dynamic weights optimized with a genetic algorithm. The comparison is car-
ried out with a large test sample, a set of instruments varying from 35 to 45
having a time series history of roughly 9 years. The dynamically optimized
method gave the best (ROI) performance followed by the genetic optimized
static method. The user-defined method was minor.

Ying-Hua Chang and Ming-Sheng Lee have developed in 2015 a trading
strategy based on Markov Chains.[21] Market moves are split into separate
categories based on the days return. The return can e.g. have 15 categories
between (−7%, 7%) each denoted as n ∈ (1, 15). The model assumes that
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the category of the previous day return predicts the category for the next
day return. In the model return of category i is assumed to be followed
by category j with a probability of pij. The method parameters are opti-
mized separately using simple and modified genetic algorithm. The study
compares different trading strategies based on average return of 24 periods
settled evenly in 2003-2014. The modified genetic algorithm outperforms in
this case the simple genetic algorithm. The optimization performed by sim-
ple genetic algorithm achieves marginally higher average return than a Buy
& Hold strategy for TWN50 (TWSE Taiwan 50 Index) and TAIEX (Taiwan
Capitalization Weighted Stock Index). A noticeable thing is that a model
optimized with modified genetic optimization can achieve positive returns
even when model optimized with the two other methods have negative re-
turns. The method is based on Markov chains that has many similarities
with forecasting with autocorrelation.

Somayeh Mousavi, Akbar Esfahanipour and Mohammaed Hossein Fazel
Zarandi (2013) constructs a trading system that is based on decision trees.[22]

A unique decision tree is constructed for each stock Ii in the set of stocks I
to take into account each stock’s unique individual behavior. So the method
consists of decision trees Di for each instrument Ii. Each decision tree is
optimized independently using genetic algorithm to obtain efficient trading
rules. Each decision tree Di has adjusted allocation wi as an output for stock
Ii. The allocations wi are finally normalized so that the method takes partly
into account the instruments interdependences. The method is tested and
compared to a 2-year performance of a Buy & Hold strategy for (TEPIX)
Tehran Stock Exchange and S&P500 during 2009-2011. When only returns
are considered, the decision tree outperforms both Buy & Hold, TEPIX and
S&P500 indexes significantly with a level of significance varying between 1
% -5 %. In addition the decision tree model portfolios achieve a better risk
measure, and not only the relative but also the absolute performance of the
decision tree model seems to be excellent.

2.5.3 Optimization Summary

New optimization methods have been developed and existing methods have
been improved, e.g. there are many variations from the genetic optimization
method. Stochasticity can be added to optimization to make a method more
robust. Modifications made to optimization algorithms can show advantages
in certain types of problems and have disadvantages in others, e.g. convex
problems can usually be solved efficiently with simple methods but are solved
inefficiently with stochastic methods like genetic optimization or simulated
annealing. Stochastic methods often outperform in non-convex problems
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because deterministic methods are easily stuck in local optima. The problem
type is consequently valuable information and one should pay attention to
it when selecting an optimization method, e.g. covariance matrix of the
Markowitz portfolio selection problem is in reality always positive definite
(Appendix A). This is valuable information while selecting an optimization
method for solving the Markowitz portfolio selection problem.

New optimization methods are often developed by applying and modify-
ing an optimization method that appears to work in the real nature. Imitat-
ing natural phenomena, like in genetic algorithm and simulated annealing,
seems to work well providing robust and efficient methods that fit to many
applications.

2.6 Conclusions

We studied in this chapter the portfolio features including risk and return.
An example of an analytical investment model called Markowitz portfolio
selection model familiarized the reader with investment modeling. We pre-
sented the objective function and functional that are used to provide a nu-
merical measure of the investor utility. Simple optimization methods used
in financial science were presented and finally the investment methods and
their optimization found in the literature were discussed. At this point the
reader has become familiar with mathematical modeling and optimization in
the financial science.



Chapter 3

Domain Modeling

In this chapter the reader is familiarized with some of the common indica-
tors and methods for financial forecasting. The basic principles and decision-
making indicators used in investment strategies are introduced and the prac-
tical challenges related to missing data are discussed.

3.1 Indicators for Forecasting

In this section we present some of the most common fundamental indicators

used to describe the company economic situation and some technical indica-
tors that are derived from the stock price behavior. The most appropriate
indicators are selected to the implementation presented in Chapter 4.

The selected subset of the indicators having supposed predictive value
for stock assets future return (ROI), and risk (volatility, drawdown) should
be as independent from each other as possible. Using a subset of indicators
that depend on each other is not appropriate. Unnecessary and harmful
redundancy, called collinearity, is caused if one indicator can be constructed
using the others.

It seems that authors of financial science have developed similar or even
linearly dependent indicators. That is why selecting a subset of indepen-
dent indicators is a major challenge and must be performed with care. The
set of forecasting indicators should be sufficiently large to ensure a decent
prediction but at the same time as limited as possible. The used method
or decision-making model always finds a good fit if there are too many in-
dicators from which the optimization method can pick a combination. The
method would seem to adapt fine but would rarely work outside the sample
data used to calibrate the parameters.

31
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3.1.1 Economic Indicators

Some common fundamental indicators including MCAP, P/E, P/S, P/B and
P/Cf that are used to forecast behavior and to indicate fundamental factors
of a company. Explanations for these indicators:

• MCAP is the company total valuation in currency

• P/E is the price-earnings ratio. The ratio of market value and annual
earnings of the company

• P/S is the price-sales ratio indicating how large annual sales does the
company have with respect to its market value

• P/B is the price-to-book ratio indicating the ratio between the market
value of the company and its balance sheet value (book value)

• P/Cf is the ratio of market value and annual cash flow

A low price compared e.g. to the book value (P/B) or revenue (P/S) is
a hint towards the possibility that the company might be in income or cash
flow related difficulties.

The values of the relative indicators (P/S, P/Cf, P/E and P/B) fall into
a certain range that depends on the sector, type of the company and interest
level. It is possible e.g. that a large industrial company has plenty of capital
invested to machinery and investors might believe that the only valuable
thing in the company are the machines. As result the stock valuation P of the
firm is near its book value B the price-book ratio being P/B ≈ 1−2. A start-
up company could be an opposite example, the invested capital might be low
but the valuation of the company is high as a result of high expectations
regarding the business idea. A start-up firm could consequently have a very
high P/B-ratio.

3.1.2 Technical Indicators

Technical indicators that can be derived from the stock market data are typi-
cally based on stock price charts or stock turnover histograms. The definition
of many technical indicators originate from the era when calculations had to
be performed by hand explaining the simple definitions. More sophisticated
indicators have shown up later but not all of them provide advantage over
the simpler ones. This subsection focuses on the most commonly used basic
technical indicators alongside with few relatively new and potentially useful
ones.
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Stock value moving average MA(n) also known as simple moving average
SMA(n) is an indicator that defines the average price of the stock over last n
days. The moving average indicator smooths out rapid changes in the stock
price. MA can be thought to present the slowly moving component of the
stock price. It is defined for a stock valuation time series p as:

MA [pt] (n) =
pt + pt−1 + ...+ pt−n+1

n
=

1

n

n−1∑

i=0

pt−i, (3.1)

where pt is the day t price, and n is the time window for the moving average
in days.

The exponential moving average (EMA) is a widely used alternative for
MA. EMA is a moving average with exponentially decreasing weights for the
past prices. EMA gives the trend of the stock in pretty much similarly as
MA, but responds more quickly to rapid changes. It is defined as:

EMA [pt] (α) =
pt + (1− α)pt−1 + (1− α)2pt−2 + ...

1 + (1− α) + (1− α)2 + ...

=

∑∞
i=0(1− α)ipt−i
∑∞

i=0(1− α)i
≈

∑n

i=0(1− α)ipt−i
∑n

i=0(1− α)i
,

(3.2)

where α ∈ (0, 1) is a coefficient defining how much the past effects. If α
is near 1 then the past is ignored and the indicator adapts immediately to
changes. If α is near 0 then past has a large effect and the indicator is
approximately the average stock value from a longer period of time.

Moving average convergence-divergence (MACD) measures the so-called
stock momentum and has similar properties as the classical derivative op-
erator. Calculating MACD for a stock valuation time series p is done by
generating a time series denoted by p′ that is the difference between two
EMAs with EMA coefficients α1 and α2. The MACD is the EMA of p′ with
an EMA coefficient of α3. Using the formula in the appendix B, MACD can
be formed as:
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MACD[pt](α1, α2, α3) = EMA [EMA [pt] (α1)− EMA [pt] (α2)] (α3)

= (1− β3)
∞∑

n=0













1− β1

1−
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1






−
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pt−n,

(3.3)

where α1 = 1 − β1, α2 = 1 − β1 are the EMA-coefficients for the original
series pt and α3 = 1− β3 is the EMA-coefficient for the p′t series.

From (3.3) one can note that MACD is effectively a weighted difference
between 3 EMAs of the original time series. It indicates the stock direction
(stock momentum).

Another momentum indicator called rate of change (ROC) is defined for
a stock with price pt as:

ROC [pt] (n) = 100 ·

(
pt
pt−n

− 1

)

= 100 ·
pt − pt−n

pt−n

= 100n ·
MA[pt](n)−MA[pt](n− 1)

pt−n

.

(3.4)

ROC is relatively similar to MACD. Using both indicators simultaneously
could result in unnecessary complexity.

The Discrete Fourier transformation (DFT) or the computationally effi-
cient version of it called the Fast Fourier transformation (FFT) is used to
divide a time series into different sine and cosine waves. In exact terms it
is not an indicator but it can be used to analyze stock behavior and reveal
phenomena. DFT can be best understood by presenting a time series xt

using sine and cosine function as:

xt =
N−1∑

k=0

[

<(Xk) cos

(

2πit
k

N

)

+ =(Xk) sin

(

2πit
k

N

)]

, (3.5)

where <(Xk) is the real, and =(Xk) is the imaginary part of the discrete
frequency spectrum X = <(X) + i=(X) at k. The spectrum X reflects the
frequencies present in the original time series.
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There is one fundamental problem when DFT is applied in financial sci-
ence. The stock market is closed during the weekends and during some other
holidays. These missing days change the phase of the original time series x
leading to a misleading Fourier analysis. The Fourier analysis can for this
reason be reliably used only for low frequency detection. Lower frequencies
are less sensitive to short term discrepancies.

Another commonly used indicator called Relative Strength Factor (RS)
is defined as:

RS =
SMMA [Ut] (n)

SMMA [Dt] (n)
, (3.6)

where Ut = max{closet − closet−1, 0}, Dt = min{closet−1 − closet, 0}, and
SMMA are exponentially smoothed moving averages with smoothing fac-
tor α = 1/n. The exponential smoothing SMMA is defined for xt as st =
αxt + (1− α)st−1, where s0 = x0. The relative strength factor (RS) is often
converted to a so called relative strength index (RSI) defined as:

RSI = 100−
100

1 + RS
, RSI ∈ (0, 100). (3.7)

According to many investors RSI indicates weather the stock is oversold (low
value) or overbought (high value). The RSI includes nonlinear operations
and that is one reason why it might contain new information not included in
other indicators.

Current literature introduces a large spectrum of different methods for
portfolio selection. The arguments and indicators used in the studies are
surprisingly similar. There are various other indicators including for example
volume oscillator and momentum oscillator. These indicators are ignored in
this work.

Ayca Cakmak Pehlivanli’s, Barik Asikgil’s and Guzhan Gulay’s research
paper in 2016 augments machine learning to select a suitable set of indicators
that forecasts the next day returns for stocks in the Istanbul Stock Exchange
(ISEX). Appropriate forecasting indicators are selected from a comparatively
large set of 97 indicators. The most promising indicators for prediction were
price momentum, relative strength index, stochastic oscillator, the demand
index, intraday momentum index, the random walk index, ultimate oscillator,
William R and the commodity channel index. These indicators were selected
by minimizing the next day return forecasting error for the instruments.
Their approach differs from the more commonly used forecasting period of
one or several months. It is possible that the Istanbul stock exchange behav-
ior differs from large trading hubs like New York Stock Exchange (NYSE),
but the research reveals anyhow potentially very valuable information about
candidate forecasting indicators.
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3.2 Principles in Investment Strategy Con-

struction

A good method is as simple as possible but still fulfill its purpose. Degrees
of freedom in the method should be small compared to the sample size used
for the parameter identification phase. The reason for this is that when
adjusting e.g. decision-making rule parameters the system will always fit into
the sample if there are too many degrees of freedom. The system would seem
to perform fine but would rarely work outside the parameter identification
sample data.

Attempts have been made and methods have been developed to include
the simplicity as a target into the automated method building. One interest-
ing approach for the problem is developed by Jorma Rissanen in 1978.[23] His
method is called minimum description length principle (MDL). The MDL
seeks a method or a model that stores parameters and estimation errors in
the smallest possible memory. When the total information is minimized the
method is automatically as simple as possible still fulfilling its purpose. The
implementation of the MDL principle could however be relatively complex
depending on the situation; implementation is ignored in this study but it
could be a part of the future development plan.

3.3 Practical Challenges

This section presents the practical challenges related to model construction.

3.3.1 Instrument Set Selection

Selecting a decent set of instruments is a major task when optimizing an
investment strategy. Even an excellent model can suggest bad portfolios if
it has only inferior instruments to choose from. Sufficient time series data
for the stock prices and for fundamental indicators need to be available for
testing. A time series may have some incompleteness that needs adjusting
before an analysis can be performed, missing data points need to be filled
up.

Stock price history may have forecasting value. If additional indicators
e.g. trading volumes and fundamental data is needed, they need to be col-
lected. It may be necessary to discard some potentially good candidate in-
struments due to poor availability of the necessary data.
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3.3.2 Collecting the Required Indicators

Fundamental indicators need often to be collected manually from the interim
reports. Manual work is however tedious when speaking of hundreds of in-
struments with a long history. Some missing data points might be obtained
by interpolation but it may be better to completely ignore an indicator if the
data series is too incomplete.

3.3.3 Filling the Missing Information

Interpolation is a commonly used method for filling the missing data points of
an incomplete time series. Imagine that a time series x has data points xt and
xt+2, but the point xt+1 is missing. The missing point can be interpolated
using the existing data. Linear interpolation is the most common choice.
It has in this case the form xt+1 = (xt + xt+2)/2. Nonlinear interpolation
methods can be used in cases when the time series is nonlinear. The choice
of an interpolation method has only minor effect to the result if the interval
is small between the points and a change in x is small. To avoid unnecessary
complexity linear interpolation is used in this work. One must notice that
interpolation does not generate new information and it is only done to fill
the missing data to ensure the method operation.

Interpolation works if the concerned phenomena is continuous. A so-
called stock split sometimes breaks the continuity of stock price time series.
In a stock split the value of a stock is adjusted to a convenient level if the
stock price has risen by a significant amount. In a stock split the owner
may e.g. have his 10 shares converted to 100 shares with a 1/10 of the
original value, investment total value does not change but the value of a
stock abruptly decreases to 1/10 of its original value. Un-continuous points
need to be located and fixed before analysis is performed.

3.3.4 Company Dividends

Some funds and companies do not deliver profit through dividends, they may
e.g. buy their own stocks instead. The stock price development includes in
these cases the dividends, that are automatically taken into account.

Most of the companies pay dividends as a result of a successful year or as
an old habit. Dividends may take place once a year or several times during
the year as is common on the United States markets. Dividends are usually a
significant factor for the portfolio return and are recommended to be included
in a model. Including dividends into a model is a time-consuming task that
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often requires manual work. Simple methods may ignore the dividends and
the results are consequently less perfect.

In our decision-making model we have used a time series data that is
split adjusted but the data is not dividend adjusted, thus dividends are ig-
nored. This decision made things simpler and reduced the manual workload
significantly. This work focuses on creating and analyzing the optimization,
while the decision-making model performance is a secondary priority. Adding
dividends into the decision-making model could be part of the future devel-
opment.

3.3.5 Transaction Costs

The transaction costs are always present when buying and selling stock
shares. These costs may include the contract with a stock broker, the cost
per transaction and the cost per exchanged share. The costs can be simulated
using predefined transaction costs.

The investment world deals usually with transactions greater or equal
than $ 10000. With these lots and if the trading frequency is moderate the
transaction costs are relatively small and can be ignored. This work resulted
in strategies where the trading is performed once a month and the total
amount of money in the simulation is $ 100000 so the transaction costs are
relatively small and could be ignored.

3.3.6 Dealing with the Outliers

The data could include outliers caused by erratic readings or by other reasons.
Instruments with far outlying data should be corrected or removed if possible.

Deletion or correction is not always possible. If the outliers are not caused
by errors and if it is necessary to include the outliers in the analysis then
it is important to ensure that the outliers do not dominate the results. A
single erratic data point can for example distort a least square fit (LSQM)
significantly. Some methods are less sensitive to outliers. The median is for
example a less sensitive indicator (robust indicator).

There were relatively few outliers but relative many systematic problems
in the raw data used in this work and it was important to ensure that the
outliers were dealt properly.
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3.4 Conclusions

This Chapter studied the indicators used for forecasting stock behavior and
for portfolio selection decision-making. Some principles that should be kept
in mind when constructing an investment method were discussed. Problems
related to imperfect and missing data were studied. The reader has now the
essential knowledge regarding investment model building for practical use.



Chapter 4

Strategy Representation and Op-

timization

This chapter introduces the constructed and implemented generic structure
used to generate decision-making rules to form stock portfolios. A single
individual decision-making rule is called an investment strategy.

In Section 4.2 we present an overview of the structure. Section 4.3 dis-
cusses types of objective functionals that can be used to score the decision-
making rules. The implemented genetic optimization method used to cali-
brate the rules is presented in Section 4.4.

The structure and the decision-making system and the genetic optimizer
is implemented and integrated into Unisolver Ltd’s Unisolver Portfolio Risk

Manager. To make the simulations and optimization possible the heavy cal-
culations are carried out using custom software functions built for this pur-
pose with C++ programming language. The decision-making rule generation
and optimization is implemented using LISP symbolic programming.

The strategies (decision-making rules) are scored with an objective func-
tional. The final goal is not to find portfolios but a set of strategies producing
portfolios with a good performance. This is a conceptual difference to the
Markowitz portfolio model approach. Using genetic algorithm results in an
automated system for finding decision-making rules that define an invest-
ment portfolio. These rules can be stored as accumulated knowledge about
what has worked in the past.

4.1 Indicators for Decision-Making

Moving averages (SMA and EMA) of stock prices, relative strength index
(RSI), price standard deviation σ[p] and basic fundamental indicators are

40
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4.2.1 Fuzzy Operators

The decision-making relies strongly on indicator comparison. Indicators are
compared to other indicators or to pure numbers using a specific kind of
comparison operators, denoted in this work as fuzzy operators. The operators
are fuzzy equal, fuzzy unequal, fuzzy less than and fuzzy greater than. They
have forms:

FuzzyTrue[a = b] =
1 [ab > 0]− 1 [ab < 0]

1 +

[

−ε=
2|a| − 2|b|

max {|a|+ |b|, δ=}

]2 , (4.1)

FuzzyTrue[a 6= b] = sign (FuzzyTrue[a = b]) (1− |FuzzyTrue[a = b]|) (4.2)

FuzzyTrue[a < b] =
1

1 + exp

[

−ε<

(
2a− 2b

max {|a+ b|, δ<}

)] , (4.3)

FuzzyTrue[a > b] =
1

1 + exp

[

−ε<

(
2b− 2a

max {|a+ b|, δ<}

)] , (4.4)

where ε<, ε= > 0 are the sensitivity parameters, δ<, δ= are parameters needed
to ensure that when negative values are compared to positive values, or if
|a+ b| is a very small number, the divider differs enough from zero. We can
define the functions by using limits δ<, δ= → 0.

A set of fundamental boundary conditions are used in the fuzzy operator
construction. The conditions are presented in the following equations:

FuzzyTrue[a < b] = FuzzyTrue[b > a], (4.5)

FuzzyTrue[a < b] + FuzzyTrue[a > b] = 1, (4.6)

FuzzyTrue[a = b] + FuzzyTrue[a 6= b] = 1 ∀ ab > 0. (4.7)

FuzzyTrue[a = b] + FuzzyTrue[a 6= b] = −1 ∀ ab < 0. (4.8)

FuzzyTrue[a = b] + FuzzyTrue[a 6= b] = 0 ∀ ab = 0. (4.9)

Equation (4.5) ensures that arguments ordering does not have effect to the
comparison result. In the special case when a = b both fuzzy operators
(4.3) and (4.4) take a value of 1/2. Equation (4.6) ensures that the sum of
fuzzy-variables indicating a being less and greater than b is 1. Equation (4.7)
ensures that a equal b and unequal b sums to a fuzzy-variables being 1.
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It is not possible to say if a pure number is large or small. It depends
on the situation and context. That is why the comparison functions are in
addition scale-invariant satisfying relations:

FuzzyTrue[a < b] = FuzzyTrue[Ca < Cb], (4.10)

FuzzyTrue[a = b] = FuzzyTrue[Ca = Cb], (4.11)

FuzzyTrue[a 6= b] = FuzzyTrue[Ca 6= Cb], (4.12)

Conditions (4.10), (4.11) and (4.12) are met if a and b are not too near to
zero or to each other. This can be seen from the structure of functions (4.1),
(4.2), (4.3) and (4.4). This is a problem that cannot be avoided in a relative
comparison. However all of the relations hold for all (a, b) if a, b 6= 0 and
a 6= b when δ<, δ= → 0.

It can be said e.g. that numbers 10 and 11 are relatively near to each
other, as opposite when comparing e.g. 0 and 1 or -2 and 2 it is unclear how
near the numbers are in relation to each other. Only the absolute difference
can be presented. When constructing a relative magnitude comparison func-
tion these problems must be dealt with. The method of this work partially
deals with this problem by producing negative fuzzy values when comparing
negative numbers to positive ones, also value zero is always fuzzy unequal to
every nonzero number. This can be mathematically expressed as:

FuzzyTrue[a = −a] = −FuzzyTrue[a = −a] ∀ a, (4.13)

FuzzyTrue[0 = b] = 0 ∀ b, (4.14)

FuzzyTrue[a 6= −a] = −FuzzyTrue[a 6= −a] ∀ a 6= 0, (4.15)

FuzzyTrue[0 6= b] = 0 ∀ b. (4.16)

The presented few compromises were necessary in the fuzzy operators, while
making them suitable for practical applications. Still the functions are as
formal as possible.

Figures 4.2, 4.3, 4.4 and 4.5 present the fuzzy comparison operators. It
can be seen that the fuzzy operators are pairwise symmetric. The problem in
the definition is the singular point where a, b → 0 and the relative difference
have no exact definition. Lowering the ε< and ε= values makes the functions
less steep and increasing makes the operator steeper. A good parameter
choice depends perhaps on the application. The testing revealed that ε<, ε= ∈
[4, 10] is a good choice at least for our strategy structure and test material.
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Figure 4.4: Fuzzy functions having parameters ε< = ε= = 5, δ< = δ= = 0.01.

Figure 4.5: Fuzzy functions having parameters ε< = ε= = 5, δ< = δ= = 0.01.
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4.2.2 Strategy Gene

The basic element of the decision-making rule is called a gene. A gene per-
forms a fuzzy comparison for a pair of certain predefined type of indicators.
The comparison is of the form of (4.1), (4.2), (4.3) or (4.4). A decision-making
rule contains several different types of genes each comparing different type of
attributes. A gene of type i is denoted by g

i. A gene is actually a function
that has a fuzzy number as an output, e.g. genes of type l and m denoted
as gl and g

m can be of the form of:

g
l = FuzzyTrue[RSI(10) > 0.5], (4.17)

g
m = FuzzyTrue[SMA(15) < Price]. (4.18)

The output of a single gene is always a fuzzy variable having a value between
[−1, 1]. So the value can be also negative due to the structure of fuzzy equals
(4.1) and unequals (4.2) comparison operators.

4.2.3 The Overall Picture of the Strategy

A set of genes presented in Subsection 4.2.2 are collected together to form
the decision-making rule to select the instruments. In this work a single rule
defining the instruments is called a strategy and is denoted by S. There are
exactly Ngenes number of genes in each strategy. The strategy type is defined
by its number depending on how many similar type of genes are used. A
strategy S has the form:

S = f
[

g
Type(1)
1 , ..., g

Type(Ngenes)
Ngenes

]

, (4.19)

where f defines how the instrument scoring and weighting is calculated from
a group of genes, so f defines the form of the decision-making rule. It could
be e.g. simply an additive function of the basic elements gji .

The function f can be a simple minimum (fuzzy and), a maximum (fuzzy
or), a sum or product of the fuzzy elements g

j
i or some custom-made func-

tion. If a traditional fuzzy function (and/or) are used then the negative fuzzy
values produced by the genes g

j
i must be dealt with. This can be done for

example by ignoring the use of fuzzy equal (4.1) and unequal (4.2) functions
in the strategy. In a demonstrating example (4.20) f is a weighted sum func-
tion and there are exactly one type of each gene thus in that case Type(i) = i
and the strategy, i.e the decision-making rule to select the instruments has a
form:

S =

Ngenes∑

i=1

cig
Type(i)
i = c1g

1
1 + c2g

2
2 + c3g

3
3 + · · ·+ cNgenes

g
Ngenes

Ngenes
, (4.20)





CHAPTER 4. STRATEGY REPRESENTATION & OPTIMIZATION 48

1. Calculate the scoring for each instrument using strategy scoring func-

tion f
[

g
Type(1)
1 , ..., g

Type(Ngenes)
Ngenes

]

2. Select e.g. the 10 best scored instruments with wi ≈ 10 % to form a
portfolio

3. When a month have passed, repeat steps 1 and 2; Note that the avail-
able capital is different in each step

The procedure presented above forms a different investment portfolio for
each month that can be e.g. the following:

20070928 (adc.us 159) (alg.us 203) (cbd.us 329) · · · (usph.us 337)
20071031 (adc.us 150) (alg.us 224) (cbd.us 302) · · · (usph.us 331)

· · · · · · · · · · · · · · · · · ·
20111031 (adc.us 412) (agm.us 488) (cbd.us 421) · · · (yum.us 183)

Table 4.1: Portfolios

In the Table 4.1 the rows presents the portfolios, each of which are bought
at the start of the month presented in the first column. Instruments are
presented as pairs that have a ticker first and the number of shares as second.

4.3 Strategy Objective Functional

An objective functional F also called fitness function in genetic optimization,
attempts to measure how well the aspects of the investor preferences are met
with the given strategy S.

Strategies presented in Section 4.2.3 select the instruments using the past
data. The strategy quality on the other hand is defined from the portfolio
behavior that is selected: the quality is defined from the portfolio behavior
after it is bought. This is one significant difference between our strategy and
the Markowitz portfolio method that defines the quality from the portfolio
past return and risk.

The objective functional measuring the strategy quality consists in this
work of the strategy portfolio annualized return, Sharpe ratio, maximum
drawdown and a few other measures. Possible mathematical forms for the
objective functional are discussed next.

Different aspects and strategy attributes can be taken into account by
using a weighed sum of the portfolio factors. In this case objective functional
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is of the form:

F(U) [S] =
n∑

i=1

ciqi [wI(S)] , (4.22)

where ci is a weight for portfolio performance measure qi, wI is the allocation
of instruments. A performance measure has a positive weight when it is
favorable (ci > 0), and a negative weight (ci < 0) when it is undesired. The
weights must be properly calibrated to prevent one performance measure
from dominating.

An alternative form for the objective functional is:

F(U) [S] =
n∏

i=1

{qi [wI(S)]}
pi , (4.23)

where pi ∈ R is the power factor defining the weighting of different features.
If qi < 0, fraction powers must be set so that no complex numbers are
produced. When a feature qi is favorable, pi > 0, and if it is not favorable,
then pi < 0.

According to our experience, when the power factors ni are adjusted
correctly the objective functional of the form (4.23) seems to become less
sensitive for the preferences qi than (4.22). Strategies optimized using an
objective functional of the form (4.23) seems to prefer performance measures
more evenly and achieve a better qualitative performance than the strategies
optimized using objective functional of the form (4.22).

A bit risk averse approach was used while the objective functional was
constructed. In other words, a strategy producing a good return, relatively
high Sharpe ratio and having no significant drawdown was preferred.

One can note that the decision-making system ignores the interdependen-
cies between the selected instruments during the instrument selection stage.
For example the cross correlation is neglected from the structure in (4.19).
This is one disadvantage in our strategy compared to e.g. Markowitz model
that efficiently uses the instruments cross-correlation in the decision-making.
Still a well working objective functional can take the cross-features implic-
itly into account, e.g. Sharpe ratio improves if the variance of the portfolio
returns is low. Targeting a better Sharpe ratio results in portfolios where
the cross correlation is implicitly taken into account, leading automatically
to diversified portfolios.
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4.4.3 Genetic Optimization Pseudo-Code

The optimization pseudo-code is presented below. The optimization begins
with population initialization and is followed by the population optimization.

1. Nelite number of random strategies are generated forming the elite set

Xelite =
{

S1
elite, ..., S

Nelite

elite

}

2. (a) Ncross times random parents Si
elite and Sj

elite fromXelite are selected
and a new individual is crossed from the parents

(b) Nmutated times a random strategy Si
elite is selected from the set

Xelite and nmutation random genes are replaced with new genes
producing a new strategy

(c) Nnew completely new random strategies are generated

3. Strategies generated in the stage 2 are merged to the elite group Xelite

4. Xelite is cut so that Nelite number of strategies having the highest ob-
jective function value are left to the set forming a new elite set. Other
strategies are discarded

5. Steps 2, 3 and 4 are performed total Niterations times

When the optimization stage is complete the setXelite =
{

S1
elite, ..., S

Nelite

elite

}

that is obtained as an output from the optimization loop form the final strate-
gies. Optimization should be continued until the strategies in the set Xelite

fulfill the investor’s desires (objective functional value is high enough).

4.5 Conclusions

We presented in this chapter the implemented system that forms the decision-
making rules (investment strategies) for selecting stock investment portfolios.
Two possible forms for the objective functional were discussed and the genetic
optimization method used to optimize the strategies was presented.



Chapter 5

Strategy Testing

In this chapter we test and evaluate the implemented decision-making system
presented in Section 4.2. Strategies are optimized and tested with a prede-
fined test material and the portfolios the strategies selects are presented and
discussed. The strategies are optimized using the genetic algorithm accord-
ing to Section 4.4. In the optimization stage an objective functional having
a formula of the form presented in Section 4.3 is used to score the strategies.

Section 5.1 introduces the used test material. After the test material is
introduced we begin to present the simulation results. In the first test the
number of iterations applied for the strategy optimization is varied and the
effect (number of iterations) are discussed in Section 5.2 by presenting the
optimized strategies portfolios. After that the optimization method conver-
gence is discussed in Section 5.3. Section 5.4 tests the strategy optimizer
when the parameter identification and validation periods is varied. Sensitiv-
ity of the strategies with respect to decision-making parameters are tested
in Section 5.6. In the final test presented in Section (5.7) the strategies are
modified by separating the fundamental analysis and technical analysis fac-
tors into two separate decision-making models. Both of these models are
optimized separately and the performance of the strategies is discussed.

The constructed decision-making model can be compared to other port-
folio selection models. This can be done by comparing the portfolios of
the formed strategies to portfolios formed by e.g. Markowitz method. The
Markowitz strategy fits into long-term investing and the strategies in this
work are mainly meant for short-term investing and to adapt into monthly
changes. Markowitz model objective function is different and its value is
defined from the past behavior of the portfolio, while the objective function
value for strategies in this work is defined from the realized features of the
portfolio. Conclusion is that the portfolios of the strategies in this work and
Markowitz portfolios have different objectives and they are not fully compa-
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rable. Our work uses a significant quantity of instruments requiring major
amount of implementation and computing time. Building a Markowitz Port-
folio using the same set of instruments would be a large task because the
of huge amount of data, and it would require more suitable algorithm to be
developed. The numerical comparison of these methods has for this reason
been omitted.

Many different settings and test setups can be surveyed. The parameter
identification stage, objective function and strategy parameters can be varied,
and different amount of optimization can be applied. There are limitless
options for testing but only a relatively limited amount of test results is
presented.

5.1 Data Used in the Simulations

This section presents the test material, and the use of it in the strategy
optimization and simulation.

5.1.1 Test Material

As a test material we use the daily stock data of New York Stock Exchange
(NYSE) from June 2009 to March 2017 covering roughly a time span of eight
years. The set of candidate stock instruments consists of more than 2000
individual companies. The daily stock data is collected from one source only.
Using only one data source is an advantage, if the data contains systematic
errors, it is likely that the genetic algorithm forms strategies that adapt to
these errors.

It was recognized that the set contains companies in a liquidation state
causing unrealistic disturbances and irrational outliers. There were also com-
panies having zero daily trading volumes meaning that those particular in-
struments cannot be exchanged in reality. These problems were solved by
limiting the set of instruments to those having a market cap (MCAP) value
of higher than $ 500M . A company having a market cap of $ 500M is still
relatively small in the NYSE stock exchange context. After the limiting we
still had a good sample of 1378 companies left for the simulation.

5.1.2 Training and Validation Periods

The time series data from June 2009 to March 2017 was split into two periods.
The first period is used in the strategy optimization (parameter identification
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phase). The first period spans from June 2009 to November 2012. Approx-
imately first 100 days of the first period could not be used in the strategy
simulation because the data from those days was needed while calculating
the indicators used for the instrument selection, e.g. evaluating MA(100)
requires 100 last stock values from the history. The strategies having the
highest objective functional value was selected from the parameter identifi-
cation period (the first period), resulting in the elite set of strategies.

The second period spanning from November 2012 to March 2017 was used
to validate if the strategies are working outside the sample. Outside of the
sample testing is important to ensure that the strategies are not by change
fit into sample.

5.2 Effect of Refining

Figures 5.1, 5.2, 5.3 and 5.4 illustrate the portfolio progress of 10 strategies
having the highest objective functional values at the identification period,
while in each figure a different amount of optimization is applied. Both
the parameter identification and the validation periods are presented sepa-
rately. To understand the portfolio performance, S&P 500 index consisting
of the 500 largest North American companies is added as a reference series.
The investment portfolio value is calculated monthly and also the exchange
decisions (buying and selling) of the stock shares are carried out monthly,
similarly as we presented in Table 4.1.

5.2.1 Unoptimized Strategies

Figure 5.1 illustrates the return on investments of 10 randomly generated
unoptimized strategies. The upper figure illustrates the strategies during the
parameter identification period and the lower one illustrates the strategies
during the validation period.
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Figure 5.1: Return on investment (%), strategies unoptimized

The randomly generated strategies produce very unstable portfolios com-
pared to the S&P 500 Index. There is a huge deviation between the strategy
portfolios. One must note that these portfolios are selected by randomly
generated unoptimized strategies.

5.2.2 Marginally Optimized Strategies

The first chart in Figure 5.2 illustrates the strategy portfolios during the pa-
rameter identification period and the next chart illustrates the same strate-
gies during the validation period. The strategies are marginally optimized.
The total of 135 strategies has been evaluated during the optimization stage.
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Figure 5.2: Return on investment (%), strategies marginally optimized

The strategies possess better performance than the unoptimized strategies
presented in Figure 5.1. Every strategy outperforms the S&P 500 index
during the parameter identification period. There are significant deviations
in the strategies performance during the validation period.
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5.2.3 Medium Optimized Strategies

At this stage, 675 strategies have been evaluated during the optimization.

Figure 5.3: Return on investment (%), strategies medium optimized

Figure 5.3 is similar to the figure presented before. The S&P 500 Index
has been outperformed significantly during the parameter identification pe-
riod but the generated strategies seem to achieve low performance during
the validation period. This indicates that the strategies are a fitting into the
sample and do not perform outside the sample.
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5.2.4 Highly Optimized Strategies

Figure 5.4 illustrates the return on investments of 10 well optimized strate-
gies. In the process 2550 strategies have been evaluated and 10 best strategies
have been selected.

Figure 5.4: Return on investment (%), strategies highly optimized

One can note that in Figure 5.4 the best 10 elite strategies selected the
same portfolio during the identifying period and their performances are con-
sequently identical. The overwhelmingly good performance during the iden-
tification phase indicates a fit into the sample. Still the results are relatively
good during the validation period. That could indicate that there is sense in
the developed strategies. Although the strategies pick up identical portfolios
during the identifying period, they produce very different portfolios during
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the validation period. One can conclude that the identification period con-
tains too little information to properly optimize the strategies.

5.3 Optimization Convergence

In this section we test the convergence speed of the genetic algorithm. Two
(2) elite sets are used having sizes of 20 and 40. We present the conver-
gence of annual return, Sharpe ratio and maximum drawdown for the best
10 strategies in the elite set during the parameter identification period with
respect to the total number of evaluated strategies.

Figure 5.5: Convergence using elite set of 20 strategies

The *-marks in Figures 5.5 and 5.6 present the indicator average values for
the elite set. The vertical lines present the range from minimum to maximum
values for the indicators that the strategies have in the elite set.

One can note that not every performance indicator in the strategy mono-
tonically improves during the optimization process. Sometimes the average
performance of the strategies with respect to one objective may even decrease.
This is caused by the multi-objective nature of the objective functional. To
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Figure 5.6: Convergence using elite set of 40 strategies

achieve an improvement in one attribute, it may be necessary to permit an-
other to weaken. This phenomenon occurs e.g. in the maximum drawdown
of Figure 5.5. The maximum drawdown increases between iterations 10-15,
while the return and Sharpe ratio increases. The exchange rate between the
attributes depends on the objective functional.

The 20 and 40 size elite sets both converge very similarly. Because of
the stochastic nature of the genetic optimization process, it is not possible
to draw statistically significant conclusions about the differences.

5.4 Altering the Identification Period

In this section we test how the results differ when the parameter identification
period is altered. In the first test (Subsection 5.4.1) a shortened identification
period is used, and in the second test (Subsection 5.4.2) the identification
period is extended.
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5.4.1 Shortened Identification Period

The strategies are medium optimized and the identification period start in
May 2009 and ends in December 2011.

Figure 5.7: Return on investment (%), shortened identification period

According to Figure 5.7 the strategies seem to achieve good performance
during the parameter identification period but their performance on the val-
idation period is less encouraging. There seems to be some strategies that
outperform the index significantly but others fail.
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5.4.2 Extended Identification Period

The strategies of this test are medium optimized and the parameter identi-
fication period is changed to start in May 2009 and to end in June 2014.

Figure 5.8: Return on investment (%), extended identification period

According to Figure 5.8 the strategies seem to achieve good performance
during both the identification and validation periods, the S&P 500 Index is
outperformed by every strategy. This could indicate that in the optimization
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phase more data is needed to avoid fit into sample to occur. The performance
during the identification and validation periods is similar indicating that the
strategies are not a fit into the sample. The optimized strategies seem to
possess stable portfolios.

5.5 Split the Instruments into Subsets

The set of 1378 instruments we have used this far is in this test split randomly
to two roughly equal sized sets. The first set is used for the parameter
identification, and the second for validation. Both the identification and
validation periods span from June 2009 to April 2017. Strategies are medium
optimized in this test. This test measures the performance of the genetic
optimization method.

Figure 5.9: Return on investment (%), split



CHAPTER 5. STRATEGY TESTING 65

Every strategy in the elite set seems to outperform the S&P 500 Index
significantly. The performance is overwhelming with the instruments used in
the identification and almost as good with the validation set. The optimiza-
tion method seems to find very decently working strategies. It is possible that
the strategies are a fit into the sample because instruments could have acted
similarly due to the identical time periods of the identification and valida-
tion sample. One cannot show if there is any real sense behind the strategies.
Figure 5.9 reveals only that the used genetic optimization method has good
performance and it works very well.

5.6 Sensitivity of the Strategies

The choice of forecasting parameters (decision-making variables) has an ef-
fect on the behavior of the strategies. This section tests how sensitive the
decision-making rules are to changes.

The set of genes that the strategy consists of have for testing purposes
been divided into 2 categories. The first category consists of genes performing
the technical analysis, while the second group of genes performs fundamental

analysis. To have a proper sensitivity analysis the method is made partially
linear meaning that both these scoring functions have their own contribution
weights that can be varied. The structure of the decision-making scoring
function used for the study is of the form:

S = c1Ψ
score
Technical + c2

︸︷︷︸

=1

Ψscore
Fundamental, (5.1)

where Ψscore
Technical and Ψscore

Fundamental are the technical and the fundamental scor-
ing for the instrument and c1 is the exchange coefficient between the funda-

mental analysis and technical analysis.
The focus of the test is to determine whether it is Ψscore

Technical or Ψ
score
Fundamental

that has more contribution to the instrument selection and to portfolio fea-
tures. It is still possible that the method cannot be divided into two separate
parts in the way presented in (5.1) because there can be joint effects between
fundamental analysis and technical analysis.

A medium optimized elite set has been used during the optimization stage
of this test. This ensures that both Ψscore

Technical and Ψscore
Fundamental are decently

converged and functional but are not over fitted to the sample.
The Technical analysis is given a larger weight in the first test (c1 = 2.00)

of Figure 5.10. The fundamental analysis is given a higher weight in the
second test (c1 = 0.50) of Figure 5.11. In principle setting c1 = 1 would
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means a neutral situation where the fundamental analysis and the technical

analysis are weighted in the best way selected by the genetic algorithm.

Figure 5.10: Return on investment (%) technical analysis weighted (c1 = 2)

The portfolios of the technically weighted (Figures 5.10) and the funda-
mentally weighted (Figure 5.11) strategies are unexpectedly almost identical.
This means that the value of c1 does not effect the decision-making. A con-
clusion can be drawn that the method uses effectively either only fundamental

or technical analysis in the decision-making. Our tests revealed that in this
case the method only uses technical analysis that was shown by ignoring
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Figure 5.11: Return on investment (%) fundamental analysis weighted (c1 =
0.5)

the fundamental analysis by setting c1 = 1000 so that the technical analysis

becomes the only effective factor.
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5.7 Separate Strategies for Technical and Fun-

damental Analysis

Because of the system nature one must not draw strict conclusions from the
sensitivity analysis presented in Section 5.6. The strategies are nonlinear
and can differ significantly from strategies where strategy components effect
linearly and component-wisely. A nonlinear system can in this sense be more
than its components. To illustrate this phenomenon two separate strategies
the first based on only fundamental analysis and the second based on only
technical analysis are separately optimized and studied in this section. Total
550 strategies have been evaluated in the optimization stage.

5.7.1 Strategies Based on Fundamental Analysis

Figure 5.12: Fundamental analysis strategies
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From Figure 5.12 one can note that the strategies based only on fun-

damental analysis converge relatively fast. During the training period the
optimized strategies have ended up selecting portfolios from two (2) possible
choices. This indicates that all the information is used. Interesting is that
the strategies still produce very different portfolios during the validation pe-
riods. This is a good example from a sample fit. In this case the optimization
algorithm works well because it has converged fast during the identification
period but the strategies are however undesired fits into the sample.

5.7.2 Strategies Based on Technical Analysis

Figure 5.13: Technical analysis strategies

In Figure 5.12 the genetic algorithm has found well working strategies
during the training period having diversified portfolios, but the strategies do
not perform particularly well during the validation period.
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5.8 Conclusions

This chapter discussed the constructed decision-making method and the ge-
netic algorithm performance while using real stock market and economic
calibration and validation data.

The strategies and their behavior was tested while varying the amount of
optimization. The optimization convergence was studied by measuring how
annualized return, Sharpe ratio and maximum draw-down of the strategies
converge into some saturation values. Strategy behavior is tested in situa-
tions where the period of the parameter identification phase is varied. The
sensitivity of the strategies is tested regard to the decision-making parameters
that are used to select the instruments. Separate decision-making models are
tested, the first based only on fundamental analysis, and the second based
only on technical analysis. At this point the reader is aware of the method
behavior and the quality of results it produces.
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Discussion

This chapter studies the used genetic algorithm and the features possessed
by the implemented decision-making model. Further improvements for the
system are discussed.

6.1 Genetic Optimization Method

The results reveal that the implemented genetic algorithm fits well into find-
ing and optimizing decision-making rules. The instrument selection rules of
the strategies stabilize quickly, when the genetic algorithm is applied to opti-
mize them. The converged strategies possess high return and low risk during
the parameter identification period indicating that the implemented genetic
algorithm performs well.

6.2 Features of the Decision-Making Method

The developed method to form investment strategies is modular, consist-
ing of selection of the forecasting indicators and their parameters, investor
preferences function called objective functional and the optimization stage,
where the portfolio selection strategies are formed. The system can recognize
and pick different kind of well working instrument selection rules (investment
strategies) by getting feedback about how satisfying a rule is. It may be hard
to tell the explicit idea behind the formed instrument selection rules. The
program can create simple working programming code and algorithms on its
own and it adjusts the decision-making algorithm, when new information
emerges.

It would be more desirable to generate a structure that has more intel-
ligence by granting the structure more freedom regarding to the parameters
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and functions it can use. While the investment strategy instrument selection
in this work was made complicated enough, it turned out that it started to
find some algorithms that worked just by chance during the identification
period, but had no meaning outside of that sample. The degrees of freedom
need to be adjusted to match with the amount of information that the data
used for the identification can possess, otherwise it is not guaranteed that
the strategy works outside the sample data.

The decision-making rules can, during the optimization stage, take ad-
vantage of some factors that do not directly appear in the decision-making
indicators. The method does e.g. explicitly try to build a portfolio that allo-
cates money to different sectors. But the optimized strategies end up doing
so while preferring strategies having a high Sharpe ratio and a low maximum
drawdown. These features are usually maximized by using a good sector
allocation strategy. The developed method achieve this goal by optimizing
the decision-making to fulfill a proper objective function. Still one must note
that the decision-making rules are simple and it is unlikely that they possess
very deep intelligence.

It is common that humans are fixated to thought patterns in their decision-
making and they do not easily try out abnormal methods and ideas in their
decision processes, leading into slow development of new ideas. One advan-
tage of the developed decision-making rule optimizer is that it does not get
stuck into thought patterns. Every possible way of thinking is equal for the
system regardless of background of the idea. New working ideas have a good
chance to show up. A disadvantage of this approach is that it may sometimes
lead to absurd strategies working by a good luck, that must be ignored later
in the light of the best knowledge and new data.

The performance of the strategies was less perfect outside the sample
data, when the sample used for optimization of the decision-making rules was
not large enough. This could have resulted from having too many degrees
of freedom, enabling an undesirable fit into the identification sample period.
An alternative reason could be that the set of forecasting parameters did not
possess all the influencing factors, and a better forecast cannot be achieved
without increasing the amount and diversity of the indicators. The set of
indicators could not be enlarged in the scope of this work, because we did
not have time series data for more independent factors available.

6.3 Multi-Stage Selection

The instrument selection decision-making process in the developed system is
a one-step procedure. An alternative way would be to implement a multi-
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step procedure, i.e. the strategy preselects for example N ≈ 25 - 100 instru-
ments from a given set. The next step would be to create the portfolio from
these preselected set with another method, e.g. Markowitz portfolio selec-
tion method. The advantage would be that with a significantly smaller set
N , it will be possible to take explicitly into account the cross correlation or
other cross features in the decision-making process. Our set consisted of 1378
instruments and the instrument’s cross features was forced to be ignored to
make the method simulation and optimization practical.

6.4 Augmenting the Entropy Principle

The decision-making rule could be extended to have more degrees of freedom
by creating an entropy penalty factor into the objective functional. Entropy
measures the amount of information in the system or in other words measures
the system complexity. The lower the entropy is, the better the method is in
terms of complexity. Good methods or models work well and can be stored
using low amount of information. When using the entropy penalty, one could
grant the method a lot more freedom in the building stage and only the best
performing sub parts for the final method would be selected. One form of
this idea is introduced by Jorma Rissanen.[23]

The entropy penalty is already integrated into e.g. natural selection,
where complicated structures are more probable to perish e.g. as a result of
thermal motion or ionizing radiation. The complicated structures can survive
only if they outperform the simpler ones with a large enough margin.

To generate a method, a decision-making model or an investment strategy
that has this property, requires the formulation of the entropy of the system
into the objective function.
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Conclusions

7.1 Achieved Objectives

The first objective of this work (i) was to study the type of models, ap-
proaches and indicators used in financial decision-making when determining
the base and principles in stock investment strategies and forecasting compa-
nies future success. The second objective (ii) was to construct and document
a structure that produces decision-making rules (investment strategies) that
find well performing stock market portfolios to satisfy the investor needs. The
third objective (iii) was to implement the structure, optimize it using genetic
algorithm, and test its performance with real stock market data, forming
investment strategies for stock instrument selection into practical use.

All the objectives of this work (i, ii and iii) were met. Wide spectrum
of models and indicators was found and some advantages of them was used,
and kept in mind, when the structure of the decision-making rule generator
was constructed. The structure was implemented, and it turned out to be
successful in generating decently working investment strategies.

7.2 Discussion

The strategies seem often to fit into the sample meaning that they work only
with the sample used to optimize the strategies, and does not work outside
of this sample with another sample. This happens although the degrees of
freedom is comparably low relative to the sample size. Partly this could be
caused by some rapidly changing phenomena in the investment world. Still
the strategies seem to be well working when they are carefully optimized
with sufficient amount of data. It seems that it is important to ensure that
the period used to optimize the strategies is long enough. Better investment
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strategies are obtained when the period is longer.
When the method dynamics is adjusted properly, it adapts rapidly to

new phenomena. With as such or small improvements and fixes, the strate-
gies can be very useful and practical in the modern investment world. If
the strategies are used to make real investments, it is highly recommended
to optimize them with a long period that contains as new information as
possible, speaking of this day or yesterday stock prices and other possible
information. This ensures that the strategies can adapt to rapidly evolving
phenomena appearing in the stock market and take advantage of them.

We used genetic algorithm that imitates the evolution process and this
approach turned out to work well in calibrating and forming the decision-
making rules. Test results showed a relatively good match. The genetic
algorithm turned out to be efficient, when the task was to find working in-
vestment strategies using a test data covering 1378 instruments, each having
time series histories for many different properties.

It is important to take into account the type and behavior of instruments
set used in the model calibration because different instrument sets may pos-
sess different behavior and phenomena. In this work strategies are optimized
to work in New York Stock Exchange and may not perform so well e.g. in
Shanghai Stock Exchange. The model must always be calibrated using same
or similar instruments that the model is then applied.

Comparison to other models like Markowitz model was omitted because
we did not have the necessary resources to perform the Markowitz analysis
to the same test material, and the Markowitz model is very different to our
model making the comparison also partly impolitic.

We noticed that there is an entropy formulation for optimal degrees of
freedom given to a decision-making rule with respect to the sample size used
in the calibration, the minimum described length principle (MDL). We did
not study the exact formula for this law and that could be a part of later
development.
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Appendix A

Covariance Matrix is Positive Def-

inite

Letw be the instruments allocation andΣ = E
[
(r − E[r])(r − E[r])T

]
be the

covariance matrix of instrument returns. Now for every portfolio covariance
matrix Σ it holds that:

wTΣw = wT
E
[
(r − E[r])(r − E[r])T

]
w = E

[
wT (r − E[r])(r − E[r])Tw

]

= E

[{
wT (r − E[r])

}{
wT (r − E[r])

}T
]

= E
[
xxT

]
≥ 0,

(A.1)

where x = wT (r − E[r]).
If we also assume that the covariance matrix is of the full rank (that is

commonly the case) meaning that there are no portfolios with zero variance
then it strictly holds that wTΣw > 0.

79



Appendix B

MACD Formula

βi = 1− αi ∀i ∈ {1, 2, 3}.

MACD(α1, α2, α3)[pt] = EMA(α3) [EMA(α1) [pt]− EMA(α2) [pt]]

=
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