
Henri Pitkänen

Exploratory sequential data analysis of
user interaction in contemporary BIM
applications

Department of Computer Science and Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 24.04.2017

Thesis supervisor:

Prof. Marko Nieminen

Thesis advisors:

M.Sc. (Tech.) Ville Rousu

M.Sc. (Tech.) Osmo Tolvanen

aalto-yliopisto
tietotekniikan laitos

diplomityön
tiivistelmä

Tekijä: Henri Pitkänen

Työn nimi: Exploratory sequential data analysis of user interaction in
contemporary BIM applications

Päivämäärä: 24.04.2017 Kieli: Englanti Sivumäärä: 7+80

Tietotekniikan laitos

Professuuri: Käytettävyys Koodi: T-121

Valvoja: Prof. Marko Nieminen

Ohjaajat: DI Ville Rousu, DI Osmo Tolvanen

Luomiseen perustuva ohjelmisto mahdollistaa käyttäjän työskentelyn oman vi-
sionsa ja sääntöjensä mukaisesti. Ohjelmien analysoinnin kannalta tämä on haas-
tavaa, koska ei ole varmuutta siitä, kuinka ohjelmistoa tarkalleen käytetään ja
millaisia työskentelytapoja ohjelmiston eri käyttäjäryhmille voi syntyä.

Opinnäytetyön tavoitteena oli tutkia ja identifioida toistuvien käyttäjätapahtu-
masekvenssien analyysipotentiaalia tietomallinnukseen keskittyvässä luomispoh-
jaisessa ohjelmistossa. Opinnäyte esittelee myös evaluointimallikonseptin, jonka
avulla on mahdollista tunnistaa toistuvasta käyttäytymisestä aiheutuvia käytet-
tävyysongelmia. Lopuksi työssä esitellään sekvenssianalyysiin perustuva ohjelmis-
ton käyttäjän toiminta-analyysi sekä ennustava koneoppimisen sovellus.

Opinnäytetyössä esitellään data-analyysisovellus, joka perustuu käytettävyys-
tutkimuksessa esiintyvien toistuvien sekvenssien tai kokeellisesti toistuvien
sekvenssien analyysiteorian tarkasteluun. Sovelluksen toteutus on tehty eritoten
työssä käytetylle ohjelmistolle, jossa käyttäjän detaljointitapahtumista muodoste-
taan sekvenssejä sekvenssitietokannan luomiseksi. Työssä käytetään sekvenssien
toistuvuusanalyysiin moderneja louhintamenetelmiä nimeltään BIDE ja TKS.
Lopuksi työssä hyödynnetään luotua sekvenssitietokantaa myös käyttäjän de-
taljointityön ennustamista varten käyttämällä CPT+ algoritmia.

Opinnäytetyön tulosten pohjalta pyritään löytämään vaihtoehtoja käytettävyyden
ja tuotekehityksen päätöksenteon tietopohjaiseksi tueksi tunnistamalla ja ennusta-
malla käyttäjien toimintaa ohjelmistossa. Löydetyn informaation avulla on mah-
dollista ilmaista käytettävyyteen liittyviä ongelmia kvantitatiivisen tiedon valossa.

Avainsanat: Data-analyysi, Koneoppiminen, Käytettävyysanalyysi, Käyt-
täjäloki, Tiedonlouhinta, Tietomallinnus, Sekvenssi, Toistuvuus

aalto university
department of computer science and engineering

abstract of the
master’s thesis

Author: Henri Pitkänen

Title: Exploratory sequential data analysis of user interaction in contemporary
BIM applications

Date: 24.04.2017 Language: English Number of pages: 7+80

Department of Computer Science and Engineering

Professorship: Usability Code: T-121

Supervisor: Prof. Marko Nieminen

Advisors: M.Sc. (Tech.) Ville Rousu, M.Sc. (Tech.) Osmo Tolvanen

Creation oriented software allows the user to work according to their own vision
and rules. From the perspective of software analysis, this is challenging because
there is no certainty as to how the users are using the software and what kinds of
workflows emerge among different users.

The aim of this thesis was to study and identify the potential of sequential event
pattern data extraction analysis from expert field creation oriented software in the
field of Building Information Modeling (BIM). The thesis additionally introduces
a concept evaluation model for detecting repetition based usability disruption.
Finally, the work presents an implementation of sequential pattern mining based
user behaviour analysis and machine learning predictive application using state of
the art algorithms.

The thesis introduces a data analysis implementation that is built upon inspections
of Sequential or Exploratory Sequential Data Analysis (SDA or ESDA) based the-
ory in usability studies. The study implements a test application specific workflow
sequence detection and database transfer approach. The paper uses comparative
modern mining algorithms known as BIDE and TKS for sequential pattern dis-
covery. Finally, the thesis utilizes the created sequence database to create user
detailing workflow predictions using a CPT+ algorithm.

The main contribution of the thesis outcome is to open scalable options for both
software usability and product development to automatically recognize and predict
usability and workflow related information, deficiencies and repetitive workflow.
By doing this, more quantifiable metrics can be revealed in relation to software
user interface behavior analytics.

Keywords: AEC, BIM, Event data, Exploratory data analysis, Frequent itemset
mining, Machine learning, Repetitive pattern analysis, ESDA, Se-
quence detection, Sequential pattern mining, Usability Engineering

iv

Preface
This thesis was implemented out of personal interest in finding ways to utilize and
learn from user created data. To shed some light on my personal goals, I feel that I
have also learned something new.

First, I would simply like to thank everyone at Tekla. I would not want to merely
name-drop a few individuals, as I feel that everyone by whom I have been challenged
have affected the outcome. However, without Ville Rousu and Jarmo Manninen’s
extraordinary ability to quickly comprehend and see value, the work would not have
been started.

I would like thank the thesis supervisor Marko Nieminen for his enthusiasm,
guidance and expert knowledge throughout the project. I would also like to thank
the advisor Osmo Tolvanen for his support and ability to see my work from the
perspective of usability. I am also grateful to Sirpa Riihiaho for the guidance at the
beginning of the work.

Finally, I would like to thank Henri Aalto and Iikka Olli for their interest and
wits towards the research topic. Thanks are due to the whole UX-team for the
additional support and interest.

Helsinki, 24.04.2017

Henri Pitkänen

v

Contents
Abstract (in Finnish) ii

Abstract iii

Preface iv

Contents v

Commonly Used Abbreviations vii

1 Introduction 1
1.1 Justification from value standpoint 3
1.2 Scope of the study and data . 4
1.3 Research questions and structure . 6

2 Theoretical background 7
2.1 Usability studies . 7

2.1.1 Usability Engineering . 8
2.1.2 Usability evaluation . 10
2.1.3 Evaluator importance . 12

2.2 Data analysis . 15
2.2.1 Exploratory data analysis . 17
2.2.2 Sequential data analysis . 18
2.2.3 Sequential pattern mining . 19
2.2.4 Sequence predicting . 20

2.3 User events and data . 21
2.4 Automated evaluation in usability studies 22

3 Selected approaches for implementation 26
3.1 Pattern recognition using behavior models 26
3.2 Detection techniques in usability research 29

3.2.1 Fisher’s Cycles . 30
3.2.2 Lag Sequential Analysis . 33
3.2.3 Maximal Repeating Patterns 35

3.3 Selection of mining algorithms . 36
3.3.1 BIDE+ . 37
3.3.2 Top-K Sequential pattern mining 39
3.3.3 Compact Prediction Tree+ . 40

4 Implementation of methods 43
4.1 Test application . 43
4.2 Depth of recognition . 46
4.3 Available data . 47
4.4 Test implementation . 51

vi

5 Results 54
5.1 Simple behavioral sequence model . 56

5.1.1 Case: Average transition of repetitive modify 56
5.1.2 Conclusions: Problem identification 57

5.2 Tool start and sequence relevance . 58
5.2.1 Case: Counting sequence starts 58
5.2.2 Conclusions: detailing use case differences 59

5.3 Lower frequency workflow . 60
5.3.1 Case: Chronologically ordered tool starts 60
5.3.2 Conclusions: Revealing common use workflows 61

5.4 Help contents used from detailing tools 61
5.4.1 Case: Help actions calls inside sequence 62
5.4.2 Conclusions: Cause of usability breakdown 62

5.5 Revealing common detailing path . 63
5.5.1 Case: Visualization of frequent tool (008) and (83) paths . . . 63
5.5.2 Conclusions: Found software use behavior 65

5.6 Prediction of detailing path . 66
5.6.1 Case: Prediction visualization of tool (63) 66
5.6.2 Conclusions: Prediction of workflow 68

6 Discussion and conclusion 71
6.1 Answers to research questions . 71
6.2 Validity and reliability . 72
6.3 Future work . 73

References 75

vii

Commonly Used Abbreviations
BIDE BI-Directional Extension
BIM Building Information Modeling
CPT Compact Prediction Tree
ESDA Exploratory Sequential Data Analysis
HCI Human Computer Interaction
LSA Lag Sequential Analysis
MRP Maximal Repeating Pattern
SDB Sequence Database
TKS Top-K Sequential Pattern

1 Introduction
Software usability design is greatly influenced by the main objectives and complexity
of the initial Human Computer Interaction (HCI) task assigned. Understanding
user workflow and the field of work in question is often crucial in order to make the
right decision among various trade-offs in usability design (Nielsen, 1993, p. 40–42).
In ideal cases, information is gathered by implementing various carefully observed
usability tests in controlled conditions (Nielsen, 1993; Rubin, 1994, p. 21–26; 112–
113). However, the approach might be problematic in cases where the software
contains a variety of tools1 and features that have previously not been evaluated
by usability experts. In these situations, the overall software design may become
balancing between feature rich content and usability.

When using software, the majority of the users’ choices are directly linked to user
interface events. Creating a record of such event traces to a log file that contains
user event data in an organized format enables user event based behavioral analytics
and statistics (Nielsen, 1993; Hilbert and Redmiles, 2000, p. 216–27; 387). In
usability analysis, the principle of this kind of data structure is more explicitly
defined as User-Interface UI event that includes either a mouse press or key press,
an Identifier (ID) that refers to the text field or button in the UI, a timestamp, and
other information, such as input method variations (Hilbert and Redmiles, 2000, p.
387). Because of the structured and sequential nature of the data, it is certainly
an area of interest in many studies. In usability design, there have previously been
multiple techniques that have automation potential. The first collections of potential
techniques were introduced to the public audience in Hilbert and Redmiles (2000,
p. 385–387), where eight high level categories were characterized and explained as
a guide for understanding the existing research. Another similar collection was by
Ivory and Hearst (2001), where multiple existing automated analysis were identified
and categorized.

Despite the previous interest in automated usability analysis, there seems to be a
limited amount of recent research regarding pattern recognition and analysis among
creation oriented or expert software systems2. In spite of a thorough search, no
similar research appears to have been done, where usability study driven workflow
sequence detection and sequential pattern recognition is created and analyzed using
pre-existing large data-sets from Building Information Modeling (BIM) software
domain.

The aim of this thesis was to study and identify the possibility to extract user
workflow related sequential event patterns from expert field creation oriented soft-
ware in the field of BIM. The thesis briefly discusses the existing traditional usability
approaches that deal with usability disruption in software systems. The paper then

1’Tools’ refer to the tools inside the software that help task completion with partial automation
2Based on searches in databases such as Association for Computing Machinery (ACM) digital li-

brary (dl.acm.org), Elsevier ScienceDirect (sciencedirect.com), IEEE Software (ieeexplore.ieee.org)
and Google Scholar (scholar.google.com)

2

continues to discuss automated pattern recognition as a solution in creation oriented
software. This includes an inspection and selection of different types of existing auto-
mated Sequential or Exploratory Sequential Data Analysis (SDA or ESDA) usability
analysis theorized techniques that seem feasible in the BIM domain. Additionally,
the techniques are viewed and compared from the perspective of modern mining
approaches to find modern applications of selected preliminary techniques.

After the theoretical background, the thesis explores the chosen methods. The
selected analysis techniques were used as a basis for preliminary usability disruption
cases and an approach model for method implementation. Disruption case examples
were created for initial categorization purposes. After creating the approach model,
the selected techniques were tested using existing test application data. As a first
test implementation, a sequence detection algorithm was created to suit the test
application data. As a second implementation, the detected user sequences were
mined for repetitive patterns using pre-existing open source Frequent itemset and
Sequential pattern mining algorithms library. Additionally, a pattern prediction
approach was used to predict from captured user input sequences. This enabled the
use of automated pattern discovery and prediction in order to reveal and predict
common user behavior and repetitive tasks among captured sequences throughout
the test application.

The study has a qualitative basis and its paradigm primarily deals with usability
analysis. As the thesis includes the creation of a sequence detection algorithm and
mining implementations suitable for pre-existing user event data, it also contains
quantitative elements. However, as the implementations and the selection of the
most suitable methods are based on inspection, the interpretation of the results
remains under the qualitative domain.

The inspiration for the thesis arises from a personal interest in finding new useful
information from existing user created data. The study aims to help both usability
and software development to automatically recognize relevant deficiencies and intro-
duce more quantifiable metrics in order to understand user needs and behavior in
BIM domain. The thesis is carried out as master’s thesis for the Trimble Solutions
Corporation Structures division that is responsible for Tekla Structures Software.
Any applied implementation of the automated analysis is created for existing Tekla
Structures data only. Introduction of the test application can be found in section
4.1.

The author is an employee of Trimble Corporation as a Software Specialist in
the Tekla Software Product Offering unit. The thesis will be evaluated at Aalto
University. The supervisors on behalf of Trimble are M.Sc. Osmo Tolvanen and
M.Sc. Ville Rousu. The examiner of the thesis is Prof. Marko Nieminen from Aalto
University.

3

1.1 Justification from value standpoint

Successfully entering the field of expert software systems requires a vast amount of
knowledge and a careful interpretation of given requirements. In order to create
critical content to have more acceptable software and a wider user-base, one has to
choose the correct path from the subjective and proportionally uneven surroundings
that contain endless choices. Businesses that do succeed in these fields have created
software that serves customer goals, is stable and allows experts to achieve their
goals.

As the product market has matured over time, there has been an increase in
acceptability requirements and especially in the role of usability due to its signifi-
cance in increased loyalty and user satisfaction (Grudin, 1991; Rajanen and Iivari,
2007, p. 187–191; 511–512). Utilising usability activities to identify the most critical
problems in expert systems can be difficult because of the expert field knowledge
requirements. Additionally, the user interface can be costly and great in depth if
analyzed thoroughly using traditional3 usability evaluation methods.

Many of the previous studies are based on defining the cost-benefit structures of
usability design. Definitions are built upon different viewpoints, commonly either
company, customer, or the end user on some level. Ehrlich and Rohn provide a
classification of usability benefits divided into three different areas: Increased sales,
Reduced support costs4 and Reduced development costs. Ehrlich et al. have also
presented some case studies linking these definitions with having a great impact
on overall expense structures. Clare-Marie Karat approaches cost structuring from
the human factor perspective. The major beneficial aspects have certain similari-
ties, such as Increased sales, but when viewing from the human effort perspective,
beneficial aspects also include Customer or employee satisfaction and productivity,
found in a case study by Karat (1994, p. 108–109). Other aspects by Mayhew
and Tremaine (1994) describe the product lifecycle and the overall cost effects. In
the hypothetical project examples, first year and product lifetime predicted benefits5

were compared based on time value of money models by Karat (1994, p. 120–139).
The results of the comparisons and the examples by Karat et al. show great dif-
ferences and cost-benefits in the average five-year software product lifecycle where
implementations were successful.

In addition to the external benefits, the effects linked to inner organization re-
lations should be underlined, most notably regarding reduced development cycles
and various supporting elements. The intangible effects of usability offer prolonged
beneficial changes. In development projects there is tendency to promote taking an
approach towards increased usability design activity when implemented with careful
planning and vision of external or internal benefit. In this thesis, a set of automated

3In the context of this study, user-centered laboratory usability tests
4In this case, support costs are defined as user support that includes online, phone and training

services
5In this context, predicted benefits are solely usability triggered cost-benefits

4

data analysis technique outcomes, aimed directly towards customer HCI behavioral
data, could more accurately quantify effects of usability development effort. As op-
posed to post-release laboratory testing of usability improvements, the approaches
introduced in this thesis could provide low cost measurement tools suitable for both
usability and software development.

The cost-benefits of the outcome of the thesis can be seen in both tangible
and intangible assets. Based on usability study related generalized assumptions
mentioned above, achieved benefits from this research outcome could be seen in
increased sales, reduced costs and new offerings such as:

• Increased sales due to customer satisfaction and productivity

• Better strategic choices due to statistical help in decision making

Added value and cost reduction could be seen in:

• Reduced development strain due to the efficient allocating of resources

• Reduced development iteration due to finding repetitive behavior models

• Reduced usability prerequisite evaluations for finding valuable issues

• Suggestion based, scalable functionalities based on learning data-sets

• Analysis service offerings, based on sequential data analysis

1.2 Scope of the study and data

This paper focuses on BIM software. In the construction industry, this is a highly
growing standard for all types of construction design, detailing, management, and
production planning tasks. In this workflow, the stakeholders are working in a 3D
environment6 creating and obtaining information rich data7 and visualizations. An
example of a 3D model environment is shown in Fig. 1. The data created during
design processes also cover elements of 4D8 and 5D9 which describe time and cost
planning of projects (Eastman et al., 2008, p. 24; 359).

6Three-dimensional representation of geometric data
7Geometric objects that contain attribute data such as name and ID
8Commonly refers to the dimension of the time and schedule constraint in construction modeling
9Commonly refers to the dimension of cost in construction modeling

5

Figure 1: The Halfdan offshore platform constructed in 2007 (above) and Tekla
Structures structural BIM model of the platform (below), digital photograph,
Saipem S.p.A.

In order to obtain a reasonably sized and less error-prone data set for analysis,
the evaluation was focused on structural engineers10 who were using test application
detailing tools for structural detailing. Obtained application event data currently
has known missing unmapped entries,11 but they are not present in the design tools
used in this work analysis. The scope of the evaluation can be considered both
interesting and useful, as the test application12 contains over 1000 pre-installed
design-tools, the majority of which have no record for usability inspection or early
user feedback that could have impacted the tool designs.

Although the evaluation focuses on design tools, the approach can be considered
to suit all software related UI. Additionally, the approach may theoretically suit
user-created BIM information analysis by opening possibilities to learn from actual
user creations, such as structural design and documentation.

The level of generalizability was a significant factor when selecting the methods
for analysis. If the methods were suitable for automated pattern discovery with min-

10In this context, the designer of a load bearing structure
11See missing data entries in Section 4.3
12Tekla Structures 2016i Full using Default environment

6

imal parameter calibrations, they were selected to be used to pinpoint the location
of possible usability problems in the available data. Locating problems was further
divided into different depths13 of which were a requirement for extracted event data.

1.3 Research questions and structure

The primary qualitative research questions for this thesis were the following:

1. For what are the found exploratory sequential data analysis (ESDA) usability
methods best feasible in contemporary BIM applications?

2. What kind of software usage information is revealed from sequential data?

3. How can the obtained information be utilized in prediction?

The thesis consists of five parts: Theory (Section 2.) will discuss existing the-
ory about both traditional and automated usability testing studies as well as look
at pattern detection in general from data analysis perspective. Approach selection
and focus (Section 3.) will concentrate on the selected approaches and act as an
introduction to the test implementation. Analysis (Section 4.) focuses on the im-
plementation of selected approaches. Results (Section 5.) will discuss analyzed data
and explain its impact based on the initial research questions. Conclusions and fu-
ture work (Section 6.) will review the research questions and answer them concisely.
The section will also discuss the further possibilities of the created implementations
as well as scalability.

13See user task depths in subsection 4.2.

7

2 Theoretical background

Section 2. discusses the research fields and the discipline in general. The emphasis is
on usability studies and the use of automated usability evaluation. Non-automated
usability engineering and evaluation is discussed and utilised to adapt automated
analysis to existing processes. The section also provides possible approaches towards
answering research questions introduced in section 1.3. Towards the end of the
section, data analysis terminology is discussed and explained from the perspectives
of both usability and data mining.

2.1 Usability studies

ISO standard 20282-2:201314 defines usability as "The extent to which a product can
be used by specified users to achieve specified goals with effectiveness, efficiency, and
satisfaction in a specified context of use." Usability is also commonly defined as a
measurable characteristic of used user interface (Mayhew and Tremaine, 1994, p. 1).
There is no singular property or value to measure the usability of each interface as
the requirements of the interface can vary excessively. In software development, the
software is generally intended to be used by a distinct user group that also varies.
Nielsen states that usability is traditionally associated with five different attributes,
shown in Table 1. (Nielsen, 1993, p. 26–36).

Table 1: Definitions of different usability attributes. Adopted from Nielsen (1993,
p. 26)

Learnability The system should be easy to learn so that the user can rapidly
start getting some work done with the system.

Memorability
The system should be easy to remember, so that the casual
user is able to return to the system after some period of not
having used it, without having to learn everything all over again.

Efficiency The system should be efficient to use, so that once the user has
learned the system, a high level of productivity is possible

Satisfaction The system should be pleasant to use, so that the users are
subjectively satisfied when using it; they like it.

Error Rate

The system should have a low error rate, so that the users
make few errors during the use of the system, and so that if
they do make errors they can easily recover from them. Further,
catastrophic errors must not occur.

As shown in Table 1, Nielsen divides usability into different requirements. De-
pending on the software and user type, each of the attributes can be valued as the
highest. The most typically used attribute is noted to be learnability (Nielsen, 1993,
p. 27). In many software systems, users start working with new interfaces and learn

14See ISO-20282-2:2013 (2013)

8

functionalities by trial and error. Additionally, most of the created software does
not have the capacity to offer enhanced support services, such as training or other
user assistance, making good learnability vital for the software to be accepted by
users (Nielsen, 1993, p. 28).

In contrast to Nielsen’s attributes, defining usability in measurable characteris-
tics can also be divided into factors describing usability as outcomes. Some notable
characteristics are described by Mayhew as Cognitive, perceptual, and motor capa-
bilities, Decreased user training time and cost and Decreased overall development
and maintenance costs (Mayhew, 1999, p. 2–4). These characteristics describe dif-
ferent types of benefits. In work by Karat (1994, p. 108–109) and Mayhew (1999,
p. 2–4), cognitive, psychological and social aspects are defined as benefits involved
with human factors. Decreased errors and training or support costs produce value
especially for business product users (Rajanen and Iivari, 2007; Ehrlich and Rohn,
1994). Finally, decreased development, support, maintenance, or other organiza-
tional costs can be categorized as directly beneficial usability design for the software
organization itself (Mayhew, 1999, p. 2–4).

2.1.1 Usability Engineering

Usability engineering can be described as an engineering field that accounts for us-
ability related tasks during the software development process. Rather than focusing
on design, one of the main goals of usability engineering is to analyze and find room
for realistic usability improvement regarding assigned goals (Nielsen, 1993; Mayhew,
1999, p. 16–17; 125–131). The work of the usability engineer often deals with finding
the best possible solution for the assigned task in order to satisfy both the various
usability limitations and the overall software development process (Nielsen, 1993, p.
79–80).

Going through software development projects where interface design aspects are
discussed as a single part of the overall development is not considered usability
engineering. Usability engineering as a development task must be considered and
implemented when necessary throughout the software lifecycle (Nielsen, 1993, p.
71–73). There are multiple lifecycle models that describe entire software lifecycles.
One of the first simplified lifecycle models was described by Gould and Lewis as
principles in 1985. Their three design principles are Early Focus on Users and Tasks,
Empirical Measurement and Iterative Design (Gould and Lewis, 1985, p. 300–301).
Early focus on users and tasks encourages the designers to understand user types
and their characteristics by differentiating viewpoints that vary between cognitive-
behavioral and expected work result. The iterative design principle is considered
as an early development phase where users are tested by using empirical methods
such as prototypes and simulations. The empirical measurements are then recorded
and analyzed for better understanding and development suggestions. The iterative
design results in fixing the engineering design using iterative cycles until the solution
meets required standards. (Gould and Lewis, 1985, p. 300—303)

9

In comparison with the simple model by Gould and Lewis, Nielsen (1993, p.
72) has presented more advanced life cycle model shown in Table 2a with similar
foundation. The model is more detailed and can be followed as 11 different stages
through entire development process. Further detailed definitions can be found in the
book The Usability Engineering Life cycle by Mayhew (1999). Model by Mayhew
(1999, p. 5–9) is also shown in Table 2b, that is dedicated to unifying existing
usability engineering techniques and explaining lifecycle models thoroughly.

Table 2: Usability engineering lifecycle model comparison (a) Nielsen, (b) Mayhew.
Adopted from Nielsen (1993, p. 72) and Mayhew (1999, p. 5–9).

(a) (b)

1. Know the user 1. Requirements Analysis
a. Individual user characteristics a. User Profile
b. The user’s current and desired tasks i. Contextual task analysis
c. Functional analysis ii. Usability goal settings
d. The evolution of the user and the job iii. Platform capabilities and

constraints
2. Competitive analysis iv. General design principles
3. Setting usability goals 2. Design/testing/development

a. Financial impact analysis a. Work reengineering
4. Parallel design b. Conceptual model design
5. Participatory design c. Conceptual model mock-ups
6. Coordinated design of the total interface e. Iterative conceptual model evaluation
7. Apply guidelines and heuristic analysis f. Screen design standards
8. Prototyping g. Screen design standards evaluation
9. Empirical testing h. Style guide development
10. Iterative design i. Detailed user interface design

a. Capture design rationale j. Iterative detailed user interface
design evaluation

11. Collect feedback from field use 3. Installation
a. User Feedback

The focus of the thesis is on finding the problematic areas of a released product
by recognising repetitive behavior. The basis is in the overall usability engineering
process Iterative design found both from Nielsen’s and Mayhew’s model examples.
Mayhew describes iterative design as "To further refine the product Detailed User
Interface Design" (Mayhew and Tremaine, 1994, p. 339). Although the original pur-
pose of iterative design is to apply it to the empirical testing of unreleased products,
the same method applies to existing development. As potential methods, Nielsen
suggests utilising user event log streams for problem discovery, showing where users
might have encountered usability related problems, such as time waste and use dis-
ruption (Nielsen, 1993, p. 105).

Using data collection during the iterative design process is described to be one
of the key factors of obtaining information about time waste (Nielsen, 1993; May-
hew and Tremaine, 1994, p. 106–107; 340). Time waste is also of interest from
the customer’s perspective, as it’s easily measurable and can be transformed into
costs. Using event stream to pinpoint time waste could be implemented for the large

10

audience without user disturbance and with minimal costs due to the automated na-
ture of the process. Finding priorities from possible automated discovery outside of
their statistical occurrence, such as fixing time and expense, is left to the usability
team. The existing design tools used in test application are primarily indented to
be technically functioning correctly. This should allow the design teams to suffice
without major interface changes to impact usability. Other measures, such as user
satisfaction surveys can also be used to some extent, but is not prioritized, as test
subject attendance is too low for validation when using surveys.

2.1.2 Usability evaluation

Usability evaluation is the general definition of product evaluation or testing using
different techniques that involve either the analysis of user and product interaction or
the direct analysis performed by experts (Dix et al., 1998; Nielsen, 1993, p. 319; 155–
163). The goal of usability evaluation is to locate usability problems in different user
interfaces. One of the fundamental, yet challenging bases of usability evaluation is
reliability and validation. As the subjects are typically individual users, test subject
results can greatly vary from each other (Nielsen, 1993, p. 43–48, 165–167, 177–180).

Evaluation is commonly divided into two distinct types. Usability testing con-
sists of all testing that contains user involvement. Analyses performed as expert
evaluations or walkthroughs are not considered as usability testing, but are iden-
tified as usability evaluation in general (Rubin, 1994, p. 21–22). In some types
of evaluation, subject specialised experts from fields such as usability or software
systems can evaluate or describe usability without any user involvement (Nielsen,
1993, p. 155–157).

The expert evaluation method that is based on a heuristic systematic approach
is a common evaluation method. The evaluator, who is a usability specialist or user,
performs the evaluation of the assigned product. Analysis is performed according
to heuristic rules and possibly the intended user group domain perspective (Rosen-
baum, 1989, p. 210). Instead of the review process that follows a certain checklist
or preassigned goals during expert reviews, the evaluator is required to understand
heuristic principles; however, they are not forced to follow specific rulings. Using
expert evaluation is seen as cost-effective in various cost-benefit analyses (Muller
et al., 1993; Nielsen, 1993, p. 185; 160).

Systems that require expert domain knowledge to be operated tend to create
more false alarms and overall noise when evaluated. This can have a direct effect on
the usefulness of the method due to validity and reliability. The evaluators decide
if a usability issue has been found, using their own understanding (Nielsen, 1993,
p. 155–157). As a result, the found issues vary depending on the expert’s level of
knowledge. Using multiple experts and obtaining evaluators with high knowledge
reduces uncertainty in expert reviews.

11

Most usability evaluation methods can be categorized under Ethnographic Re-
search, Usability Testing, Expert or Heuristic Evaluations,Walkthroughs and Surveys
(Rubin, 1994, p. 16–20). Additionally, Nielsen describes a more detailed Thinking
Aloud15 method as "probably the single most valuable usability engineering tech-
nique" (Nielsen, 1993, p. 195). In a more recent paper by Ivory and Hearst, usability
evaluation is divided into five different classes (Ivory and Hearst, 2001, p. 473). The
classes are Testing, Inspection, Inquiry, Analytical modeling and Simulation. The
paper focuses on automation techniques and is considered to be a useful addition
to modern usability evaluation (Ivory and Hearst, 2001, p. 472). Other techniques
that fall under these categories as traditional methods or automated techniques are
further explained in this section.

Ethnographic Research gathers information about user activity in an environ-
ment that is familiar to the user. In software development, the test user should
use a known software product in familiar surroundings (Rubin, 1994, p. 16). Using
these surroundings during any tests with direct user involvement can help to min-
imize unwanted disruption from unfamiliar circumstances. The research method is
qualitative, and is used to obtain user information during product interaction (Ru-
bin, 1994, p. 16). In this context, the methods are used to create a more natural
test environment.

Usability Testing involves direct user interaction techniques and methods. The
idea of having real users testing the product is described as a fundamental part
of usability testing (Nielsen, 1993, p. 165). Basic usability testing scenario yields
a participant and an evaluator. During testing, the user performs tasks using the
system or product and tries to achieve assigned goals or tasks (Ivory and Hearst,
2001, p. 477).

Walkthroughs are considered as expert evaluation, used to explain user necessity
or the individual user’s way of working, and to eliminate the problematics found by
using iterative cycles (Rubin, 1994; Nielsen, 1993, p. 19; 155). Walkthroughs are a
part of the inspection classification described by Ivory and Hearst, but also refer to
techniques that contain preassigned criteria and use of various heuristics (Ivory and
Hearst, 2001, p. 473, 475–476).

By using a walkthrough, the designer is able to visualize the familiarized user
group ability to succeed in an assigned task that involves system interaction (Rubin,
1994, p. 19). Usability walkthroughs are commonly used in two different methods:
A Cognitive Walkthrough (CW) describes user interface by asking how the tested
user interface functions with new users. Test steps involve at least a Set of goals
that the test subject is trying to achieve, A search and selection of correct actions
to proceed during use and Performing the selected actions in order to complete the
set of assigned goals. An organizer will walkthrough the product, and the evaluator
will ask questions from the user perspective (Rieman et al., 1995, p. 387–388). If
the users form alternative paths or breakdowns, they are evaluated, and changes

15See Nielsen (1993, p. 195–200)

12

are made into the system where necessary. The process is then evaluated again to
review improved performance and the necessity of the additional improvements. A
Heuristic walkthrough (HW) has many similarities to CW, but rather than trying
to find problems or breakdowns, the usability is evaluated by a set of heuristics.
The most well-known form of heuristic principles is by Nielsen (1993, p. 115–163).
There are various other sets of heuristics created. Introduction to these sets can be
found as a collection in Nielsen and Molich (1990, p. 249–250).

Surveys or Inquiries as usability testing methods simply ask the users questions
related to product usability and giving feedback (Nielsen, 1993; Ivory and Hearst,
2001, p. 209; 473). Survey methods, such as questionnaires, are indirect and measure
individual opinions (Nielsen, 1993; Rubin, 1994, p. 209; 18). A common survey
method is the System Usability Scale (SUS) created by John Brooke in 1986. SUS
is a standardized question set regarding system usability and has been validated by
various studies (Brooke, 2013, p. 38).

2.1.3 Evaluator importance

Although automated usability analysis approaches are able to reveal usability re-
lated information without direct evaluator presence, the evaluator is still often re-
sponsible of choosing what to evaluate and how to interpret results. By utilizing
the implementations based on this thesis, the evaluator is responsible for filtering
and filtering model functionalities. As the detection of user behavior and possible
model examples in section 3.1 and the implementation in Section 5.1, justification
of evaluator importance is introduced. There is only a single model creation for the
testing purposes in this work. Based on the following section, it should be decided
by the reader as what kind of evaluator knowledge is required to select, utilize and
interpret revealed information.

Various models that have been created for the purpose of finding usability prob-
lems are based on different methods and human factor scaling. Measuring the per-
formance of different approaches can be challenging and does not always provide
stable, measurable information (Muller et al., 1993, p. 185–186). Different methods
tend to work for certain products and user groups better than others. For instance,
expert software systems and BIM software require expert knowledge in order to
understand and find important usability problems.

In terms of finding usability problems, the difference between user and evaluator
outcome was introduced in Rasmussen et al. (1989, p. 518–520), who described
that individuals are affected by three factors that they possess. These factors are
Skill-based, defined as the ability to recognize attention and the right signals in
the interface, Rule-based, defined as the ability to respond to ongoing procedures,
and Knowledge-based, measuring the ability to create mental models of the product.
Nielsen et al. conducted empirical comparison studies with similar findings, sug-
gesting that the amount of usability problems found during expert evaluation may
vary significantly depending on the level of knowledge of the evaluator (Nielsen,

13

1992, p. 375). Furthermore, Nielsen et al. created a mathematical model based
on heuristically evaluated test cases. The model describes the amount of evaluators
required to find a certain percentage of usability problems (Nielsen and Landauer,
1993, p. 206–213).

System evaluation is efficient with a relatively small number of evaluators or
users. On average, using five evaluators results in 75% of usability problems being
found. This is shown in Fig. 2., that is based on the evaluation model and values16

from heuristic evaluation cases in Nielsen and Landauer (1993, p. 206–213). There
is a close reference to user testing and a similarity with the heuristic approach
when examining mixed user and evaluator group median values. The performances
of user testing and heuristic evaluation are the same when using six individuals.
Since the initial models defined by Nielsen et al., there have been newer ones, such
as Schmettow’s model that discusses the effects of heterogeneity and sample size
affecting the original model (Schmettow, 2008, 2012). When looking at the model,
the effects of complex expert software evaluation might cause a decrease in mean
values as diversity increases software heterogeneity. By using the models provided
by Schmettow, random variation could be calculated to provide a more accurate
problem discovery percentage (Schmettow, 2008, p. 89).

Nielsen et al. grouped the performance of evaluators into three different cate-
gories that consist of Novice evaluators, Regular specialists and Double specialists.
The group types were described as 1) novice as not familiar with usability but other-
wise normal user, 2) regular specialists as usability specialists that have experience
from usability design and evaluation perspective but no experience in the actual
product domain, and 3) Double specialists that have experience in both usability
and product domain and are familiar with the product (Nielsen, 1992, p. 376).
The statistics in Fig. 2. show significant difference between evaluation performance
between different knowledge levels. The requirements to achieve generalized percent-
age yielding 75% of found problems are included for reference. The novice group
reaches 71% with 14 evaluators. The regular group requires three to five evaluators
for 74–87% and the double specialist requires two to three to reach 81–90%. The
percentages are recommended by Nielsen for successful evaluation (Nielsen, 1992, p.
376–377).

Although the heuristics are not used in this study, the findings of Nielsen et
al. and Rasmussen could be considered important due to their categorization of
users and evaluators into groups giving some metric directive for problem discovery.
As described, the mean values obtained from heuristic and user testing provide
results close to each other. However, when evaluating complex expert software,
the likelihood of finding problems can be notably lower. Somewhat similar findings
have been found when viewing creation-oriented software Trimble Sketchup (Akers
et al., 2012, p. 2). Akers found that the number of test participants required
in order to find 75% of usability problems was estimated as 30 users. As with

16See p. 207 "Heuristic Evaluation" in Table 1. (Nielsen and Landauer, 1993, p. 207)

14

0

20

40

60

80

100

0 2 4 6 8 10 12 14

P
ro
po

rt
io
n
of

U
sa
bi
lit
y
P
ro
bl
em

s
Fo

un
d
(%

)

Number of evaluator or user

Heuristic, Mean
User test, Mean
Novice evaluator
Regular specialist
Double specialist

5E=75%

6E=79%

Figure 2: Difference between novice evaluator, regular and double specialist usability
problem discovery when performing heuristic evaluation. Based on the mathematical
models from Nielsen and Landauer (1993) and Nielsen (1992).

expert software, the diversity of applications and the large number of possibilities
from approaches to goals contributed to difficulties in finding problems in creation-
oriented software (Akers et al., 2012, p. 3). As BIM software requires expert field
knowledge for a wide spectrum of structural design domain, in order to be able to
recognize user disruption from user behavioral sequences, evaluator grouping should
be taken into consideration. This could be similar to Schmettow’s heterogeneity
related corrections to the model created by Nielsen and Landauer (Schmettow, 2008,
p. 97). The use of double specialists in expert software evaluation increases the
amount of overall usability problems found.

In this thesis, all of the event data was obtained from users as an automated
background process. User are generally non-conscious about the ongoing data cap-
ture and are not obligated to any direct involvement. This should minimize any
altering of behavioral effects caused by unfamiliar circumstances. The data could
be seen as neutral raw direct user activities.

15

Users typically perform detailing work using their own systems and personalized.
Among all of the data, there is a possibility that some of the work has been done as
testing or in unfamiliar circumstances. The effects of this kind of data could alter
the resulting data with a smaller sequence sample size. In larger sequence samples,
the results of the analysis reveal the most common occurrences. The users who do
testing for their own organization are likely to play a minor role in the ordinary
workflow. Thus this kind of data should not be dominant, and as a result, it ought
not be seen in the highest occurring patterns.

2.2 Data analysis

Data analysis is a process that gathers and analyzes information from any target
activities to some form of digital entity. Target activities can be anything that
includes a need for data driven decision making (Myatt and Johnson, 2014, p. 1–
2). The field of data collection processing has grown alongside the information
technology evolution. The first collection of data was shown around the 1960s as
primitive file processing (Han, 2012, p. 3–4). By the 1980s, interest in data analysis
began to grow highly due to the advances in database management systems, and
the creation of data warehouse17, and different Online Analytics Processing tools -
all powerful for data handling and modeling (Han, 2012, p. 3–4). As the analysis
process contributes to many fields, it can be described as multidisciplinary (Cuesta,
2013, p. 7–8). Hector and Myatt et al. describe the basic structure of the data
analysis process very similarly as shown in Table 3. In Han (2012, p. 7), the model
has similarities but emphasizes a data mining perspective with an elevated focus in
knowledge discovery. In this process, preparing the data is shown as model cleaning,
selecting and transformation.

Table 3: Data analysis process model. Adopted from Myatt and Johnson (2014, p.
4). Different to Myatts model, Cuesta (2013, p. 11) also has separate distinctions
of data exploration, predictive modeling and visualization of results.

1. Problem definition
2. Data preparation
3. Analysis
4. Deployment

Problem definition covers areas that are yet to be solved. As analysis imple-
mentations may require careful settings for a shallow scope, the problems need to
be clearly structured and planned for constraining and keeping work focused (My-
att and Johnson, 2014, p. 5). This does not mean that the resulting information
is always known beforehand, but rather assumed to answer broader questions. In
popular work by Hartwig (1979, p. 3), regarding exploratory data analysis, this is

17In this context, a system for data analysis and reporting. See about data warehouse in Han
(2012, p. 125–128)

16

described as the discovery of new relationships between known assets. In this the-
sis, the research question structures closely followed a more open ended exploratory
analysis approach.

Data preparation focuses on creating definitions of the data to be collected and
structured. This includes characterizations, cleaning, transforming, and portioning
tasks for further processing (Myatt and Johnson, 2014, p. 4). This step is often
the most time-consuming step in successful analysing. Data should be in a format
that can provide answers to the given research questions most efficiently (Myatt
and Johnson, 2014, p. 8). Typical drawbacks during data preparation include
issues such as invalid, ambiguous, out-of-range, or missing values (Cuesta, 2013, p.
12). The characteristics of a good data-set are listed as being complete, coherent,
unambiguous, countable, correct, standardized, and non-redundant (Cuesta, 2013, p.
12). Existing AUF-data18 is in raw format, but is cleaned and checked to follow the
above mentioned characteristics. Missing and invalid data is reported and explained
in section 4.3.

Analysis goes into finding and implementing the correct analysis methods for
structured data. Myatt and Johnson (2014, p. 9–10) explain analysis in three
distinct categories that involve summarizations and statements, identification of
important content such as facts, relationships, anomalies or trends andmathematical
model creation to encode data relationships. In this thesis, the focus is on the last
two categories. The definition of the analysis type follows the qualitative domain,
defined as "numerical measurements expressed in terms of numbers" (Cuesta, 2013,
p. 13).

The classification of data and the corresponding approach for the analysis regard-
ing outcomes is well established among known categories. In Cuesta (2013, p. 13),
the listing of common classifications among data analysis refers to Categorical as
classification, Numerical outcome as regression and Descriptive as clustering model
outcomes.19 In this study, the classification method scope follows the use of Fre-
quent patterns, where attributes in existing data can be revealed to occur in the same
order in multiple instances (Han, 2012, p. 415–416). One of the first implementa-
tions among the classification was described in Agrawal and Srikant (1994), related
to "Basket data", that is currently typically recognized as Market basket analysis
(Han, 2012, p. 244). This also lead to the creation of the well known Apriori20

algorithm for mining frequent itemsets. The ESDA based thesis implementation
mostly utilizes similar, sequential pattern mining approaches.

Deployment is the last phase mentioned by Myatt. In this phase, the resulting
data is carefully translated to give the client beneficial value in forms of reports or
direct business impact measurement (Myatt and Johnson, 2014, p. 11–13). Among

18See Fig. 6. for an example of raw data
19See classifications also in Bramer (2007); Han (2012); Scarpa and Azzalini (2012); Myatt and

Johnson (2014) for common and other more advanced classifiers.
20See Apriori in Agrawal and Srikant (1994)

17

the different available methods on quantitative or qualitative summaries, the de-
ployment result can vary from numerical visualization to descriptive results. Cuesta
(2013, p. 15) emphasizes the importance of visualization as it usually represents the
results for all further data related decision making processes.

2.2.1 Exploratory data analysis

Exploratory Data Analysis (EDA) is an approach that implements various data-
analysis techniques without a strict hypothesis or assumption of what is going to be
revealed. In EDA, one of the main goals is in investigating data for a characterization
that would ultimately allow the extraction of patterns (Behrens, 1997, p. 131–132).
Major contribution to definitions of the EDA approach was in the book "Exploratory
Data Analysis" by John W. Tukey (1977).

From a more usability centered perspective, EDA is seen as broad requirements of
how data is handled with the selection of different techniques (Fisher and Sanderson,
1993, p. 34–35). In Sanderson and Fisher (1994, p. 264–265), EDA is described
as an approach that reveals quantitative observational data for better qualitative
understanding. In Hartwig (1979) and Tukey (1977) as cited in Sanderson and
Fisher (1994), EDA is based on three principles:

Continual openness and re-expression. Data is explored for possible patterns
with simple statistics before categorization and the use of a certain model. Finding
patterns might require several iterations to "smooth" data. In contrast, the rest of
the available data is considered, yet unexplained. Transformations applied to the
data are considered essential to discover new patterns.

Initial skepticism. As the data does not always contain a unique and correct
numerical summary due to smoothing, the data is not believed to be statistically
fully correct. It is also assumed that EDA preferred statistics are more sensitive to
the bulk of data rather than outlying points.

Exploration versus confirmation. The EDA approach supports data exploration
to generate hypotheses. These can later be analyzed and fully validated with differ-
ent statistical methods.

The central implementations of EDA are related to graphical methods, revealing
data correlation in visualized format. Non-graphical methods deal with calculations
of data, using different statistical methods (Myatt and Johnson, 2014; Behrens,
1997, p. 10–11; p. 135). The following section "Sequential data analysis" and used
pattern detection approaches such as Predicting and Sequential pattern21 or Frequent
itemset22 -mining can be categorized under EDA.

21See Section Sequential pattern mining 2.2.3
22See in SPMF (Fournier-Viger et al., 2014b, Frequent Itemset Mining)

18

2.2.2 Sequential data analysis

Sequential data analysis is a wider term for activities related to recorded data ele-
ments, containing ordered sequential information. This information can be analyzed
through a variety of methods. Popular applications typically focus on discovering
useful patterns in databases (Sammut and Webb, 2010, p. 902). Approaches under
Sequential pattern or Frequent itemset mining that emerged during the 1990s have
gained popularity due to widespread applications, such as Market Basket Analysis,
DNA sequencing in biomedical applications and analysis of user actions (Fournier-
Viger et al., 2017; Sammut and Webb, 2010, p. 55, p. 902).

In this thesis work, Sequential Data analysis is strictly considered as the result
of the data that contains sequential information. As an example of such data, Fig. 3
shows the process model of simple decision making. From point A or B all decisions
lead to point C. Depending on the decision in point C, there will be a return to
either point A or B. Recording points A or B could example result in a observable
sequence such as:

AAABBAAB.

Figure 3: Example of a small decision making process that formulates sequential
data. Depending on nature of the decision, there should be variance in forming
probabilities P (A,B,C) = xi,j ,k.

From the Usability Sciences’ perspective Exploratory Sequential Data Analysis is
a working term for a loose set of data analysis activities in human sciences that deal
with recorded data (Fisher and Sanderson, 1993, p. 34). Related techniques provide
solutions to detecting sequences. During ESDA activities, data such as audio, video,
or any other data source is directly analyzed. Sequential Data Analysis also refers to
the use of techniques where all data relations and dependencies are preserved (Fisher
and Sanderson, 1993, p. 34–35). The techniques considered as a part of ESDA are
not defined clearly by Fisher and Sanderson. Some distinctions can be found in

19

the work of Hilbert and Redmiles (2000), Cuomo (1994) and Olson et al. (1994).
Based on the distinctions, the applications of ESDA with the highest interest for
this particular thesis and the subjects for further study are evaluated in section 2.4.

2.2.3 Sequential pattern mining

The first definition created for sequential pattern mining was by Agrawal and Srikant
(1995, p. 5): "Given a database of sequences, where each sequence consists of a list
of transactions ordered by transaction time and each transaction is a set of items,
sequential pattern mining is to discover all sequential patterns with a user-specified
minimum support, where the support of a pattern is the number of data sequences
that contain the pattern."

There are two common subtypes of data: Time-series and Sequential. Time-
series is a time ordered list of numbers. A sequence is an ordered list of nominal
values, as shown in Fig. 3. The main interest of sequential pattern mining is in
finding all the subsequences in a set of sequences. A subsequence is called a frequent
sequential pattern if it appears more than once in a set of sequences (Fournier-
Viger et al., 2017, p. 55–56). For test application data, this thesis concentrates
on exploring sequential pattern approaches as the target data is a collection of user
events. Additionally, the use of frequent itemsets approaches is excluded due to data
containg multiple identical items in a itemset that is generally not accepted.

The problem of sequential pattern mining is expressed in Mooney and Roddick
(2013); Fournier-Viger et al. (2017, p. 19:3, p. 56–57) defined as: Let there be
a set of items, such as nominal values I = i1, i2...im. An itemset is an nonempty
unordered collection of items, such as X ⊆ I. Itemset X is considered to be length
of k or a k-itemset when it contains a k amount of items. Without loss of generality,
it is assumed that the items in the itemset are in lexicographical order. An ordered
list of itemsets s = 〈I1, I2, ...In〉 is called a sequence, where Ik ⊆ (1 ≤ k ≤ n). As an
example, consider the following sequences s1 and s2:

Table 4: A set of sequences s1 and s2

s1 = 〈{a, b}, {a}, {b}, {a, b, c}〉
s2 = 〈{a, b}, {a, b, c}〉

In sequence s1 and s2, the letters represent a person’s decision making process.
The sequence s1 contains four different decision itemsets, some of which contain
multiple simultaneous choices, such as a, b and a, b, c. The length k in a sequence is
the total number of individual items of a, b or c, for instance k = |I1|+ |I2|+ ...+ |In|,
and thus ks1 = 7.

When calculating all the possible subsequences that support both s1 and s2, the
result is a total of 28 sequential patterns, five of which are shown below in Table 5.

20

The support of a sequential pattern sn is the number of sequences where a pattern
occurs divided by the total number of sequences in a given sequence set, or Sequence
Database (SDB), thus sup(sn) = |{s | s w sb ∧ s ∈ SDB}| (Fournier-Viger et al.,
2017, p. 57). When looking at the subsequences below, all sup(s) = 2. The longest
sequential pattern found is 〈{a, b}{a, b, c}〉 found both in s1 and s2.

Table 5: five sequential patterns found from set of sequences s1 and s2

〈{a, b}〉
〈{a, b}{a}〉
〈{a, b}{a, b}〉
〈{a, b}{a, c}〉
〈{a, b}{a, b, c}〉

This thesis later utilizes mining variations to maximal, closed and top-k sequen-
tial patterns.23 The variations are discussed in more detail in Section 3.3. The
starting points for each variation the remain same as defined in this section. I have
specifically selected to use the SPMF open source data mining library (Fournier-
Viger et al., 2014b) as the main portion of its available mining methods are close to
the proposed ESDA or SDA related approaches inspected in Section 2.4.

2.2.4 Sequence predicting

The modeling and prediction of paths can be considered to be in the same continuum
as sequential pattern mining. Sequence predicting is considered to be a part of the
machine-learning field, in the form of prediction or decision tree based learning
(Alpaydin, 2014, p. xvii, p. 214–215). The majority of applications have emerged
from disciplines such as DNA sequencing, financial engineering, robotics and speech
recognition (Sun and Giles, 2001; Alpaydin, 2014, p. 1–2, p. 3–13). Currently,
learning from data, for instance machine-learning, is a popular area of data-analysis,
particularly in online business applications (Alpaydin, 2014, p. xviii).

The problem in sequence prediction related to this work is defined in Sun and
Giles (2001); Gueniche et al. (2013, p. 2–4, p. 2) and can be expressed as follows:
Consider again the two sequences in Table 4., or more. In a SDB = si, si+1..., sn
and the next items sn+1, ...sn+1+k where (1 ≤ i ≤ n) and k > 1. Given si, si+1..., sn,
we want to predict either sn+1 or sn+1, ..., sn+k by training sequences and building
a prediction model.

23See closed and maximal sequence detection examples in Sections 3.3.1 and 3.2.3. See non
closed, top-k in 3.3.2, or from all in more depth definitions in Fournier-Viger et al. (2017)

21

In this study, a Compact Prediction Tree (CPT) based prediction model is used
together with the resulting sequential pattern data. The approach is described more
in depth in Section 3.3.3. Various different models exist, but CPT is considered
directly implementable for test application purposes and is considered superior to
similar24 Markovian, All-k-Order Markov Chains (AKOM)25 or First order Markov
Chains (PPM)26

2.3 User events and data

Many of the techniques proposed by Hilbert and Redmiles (2000) focus on finding
user problem areas or reducing the domain area to pinpoint user problems in existing
software systems. However, this requires the software or the user to be monitored
in some way to produce repetition for automated base data collection. For the
Tekla Structures software that is primarily analyzed in this thesis, a previously
created feature of collecting user feedback event data in the software’s User Feedback
Program (UFP)27 is used as one of the primary elements. In Siochi and Ehrich
(1991), repetitive events in user sessions were analyzed to find possible usability
problems. This included the use of the ESDA technique that recognizes sequences
directly from backtracked event data transcript, which contain a time-stamp (Siochi
and Ehrich, 1991, p. 4). The study introduced the use of Maximal Repeating
Patterns (MRPs) in usability analysis. MRPs log the users’ natural sequences of
tasks. The research hypothesized that registered, repeated sequences of actions
indicate a task rather than random sequence (Siochi and Ehrich, 1991, p. 4–5).
Focusing on finding performed tasks as repetitively occurring sequences is a possible
method of finding usability related information.

Similar to the functionality of MRPs, techniques called Fisher’s Cycles (FC)
by Carolanne Fisher and Lag Sequential Analysis (LSA) first introduced by Gene
Sackett also extract information from event data (Hilbert and Redmiles, 2000, p.
404). The main difference between MRPs compared with Fisher’s and LSA is that
the investigator can assign a particular event of interest. In Fisher’s Cycles the
investigator can specify a beginning and ending event to identify the content as
a sequence. In LSA, a ’key’ and ’target’ event is assigned, reporting the distance
to reach the target (Hilbert and Redmiles, 2000, p. 404–405). The techniques
introduced above are explained more in depth in section 3.2.

24In this context, precise sequence prediction models
25See Pitkow and Pirolli (1999) about AKOM and for performance comparison against test

datasets Gueniche et al. (2015, p. 9–11)
26See Alpaydin (2014, 2.1 Learning Markov Chains) and for performance comparison against

test datasets Gueniche et al. (2015, p. 9–11).
27UFP-program is voluntary user contribution program where unreleased material can be tested

by user before final release

22

The use of ESDA techniques creates various challenges discussed by both Hilbert
and Redmiles (2000, p. 407) and Cuomo (1994, p. 9). The challenges of these
techniques mainly deal with high noise and a large number of occurring natural
events. The techniques do not reveal the exact usability problem, but rather where
the problems might occur and where to look for them. Also, defining the correct
parameters that indicate usability problems for techniques such as Fisher’s Cycles
or LSA can be very difficult and time consuming. For example, Fisher’s Cycles
typically requires a set of parameters on what to look for in each specific case.
The proposed applications in automated analysis should work properly when used
together with more traditional approaches. Automated analysis use is highlighted
especially while in search of usability problems.

An interesting use of pattern related techniques together with the more tradi-
tional methods, such as Thinking-aloud protocol and Video capture was used in
Akers et al. (2012, p. 16). Akers et al. introduced a technique that implemented
Retrospective Thinking-Aloud (RTA) for participant video capture and the use of
backtracked event data fixed to an equivalent time-stamp (Akers et al., 2012, p. 38–
44). In the think-aloud method, the researcher will ask the participants to perform
tasks while verbalizing their thoughts in a controlled environment without distrac-
tions (Nielsen, 1993, p. 195). This is also referred to as a concurrent method. In
the retrospective variant, the participant will comment the process in a similar way
but shortly after the actual test of using the software so that the trace of the partic-
ipants’ workflow remains in short term memory (Ericsson and Simon, 1993, p. 16).
Akers decided to use the retrospective method after finding that the participants
have difficulties with verbalizing their thoughts (Akers et al., 2012, p. 40). Issues
related to the loss of important information in RTA is discussed on a theoretical level
in Ericsson and Simon (1993), although newer studies such as Guan et al. (2006)
indicate that usability researchers can trust the information provided by the par-
ticipants. In the research by Akers et al. (2012), single target events were recorded
and video episodes were created from these event instances for an RTA review.

2.4 Automated evaluation in usability studies

The use of computer automation in usability has repeatedly been a field of interest
due to its potential to yield measurable results, its high visibility of problems, and
the available cost-benefit28. Usability evaluation can be considered expensive when
comparing time consumption and human efforts (Ivory and Hearst, 2001, p. 470). In
this thesis, implementing evaluation approaches that perform computer automated
routines to discover usability related behavior offers an advantage by introducing
a set of measurable distinctions and trying to drastically reduce the need to locate
problems in software. Methods introduced in this section are primarily intended for
existing complex systems that contain different creation oriented tools often required
in the BIM domain.

28See section 1.1 on cost justification.

23

A summary of the evaluated techniques for the purposes of this thesis work can be
seen in Table 6. The latest approaches and collections found suitable for this thesis,
more specifically event data analysis of software, were from Akers et al. (2012), Ivory
and Hearst (2001), Hilbert and Redmiles (2000), Cook and Wolf (1995) and Cuomo
(1994). There are various newer studies on HCI ’Automated usability analysis’ that
deal with pre-defining an optimal path or that are exclusive for either Web or Mobile
applications, only to mention a few examples. Due to this, suitable recent studies
seem to be few and far between.29 However, the principles of sequential analysis of
usability data have remained somewhat static. The techniques introduced are quite
universal and can be implemented to various different purposes without without
major changes or the risk of unrecognizability.

The different usability problem detection techniques were analyzed using avail-
able studies. A total collection of 23 approaches were inspected. Other techniques
considered as irrelevant were directly left out of thorough inspection due to a very
limited minimal scope requirement. Additionally, two languages for event detection
were inspected but not implemented. The languages were General Event Monitoring
Languange (GEM)30 and Task Sequencing Languange (TSL).31

In Table 6., Pattern detection denotes if the technique can successfully detect
sequences from undefined types of data without a given optimal source or any other
comparative target sequence. As an exception, single start and ending fixed event
trigger definitions are allowed. Event data compatibility denotes if the technique can
handle event based log data. Specified event data used in this thesis can be seen in
Fig. 6. and it is further discussed in section 4.3. Generalizable for a broad range of
tools denotes BIM detailing tools in software analyzed in this thesis test application.
The technique must be able to capture repetitive patterns from a wide range of used
detailing tools with minimal presets. The presets are divided into two allowances
that follow parametrized beginning or ending triggers for sequence detection and
matching behavioral problem model types32 for summary categorization.

Different kinds of automated applications especially for Windows, Icons, Menus
and Pointers (WIMP) have been used in numerous usability analyses (Ivory and
Hearst, 2001, p. 502). Task model33 based Expectation-Driven Event Monitoring
(EDEM) as a full monitoring system enabled usability monitoring by using pre-
defined sequence path called "Expectation Agents" (Hilbert and Redmiles, 1998,
p. 2–3). By recording the user workflow path using log file analysis, EDEM will
notify designers if a sequence path was broken by a user (Hilbert and Redmiles,

29Based on searches to databases such as Association for Computing Machinery (ACM) digital li-
brary (dl.acm.org), Elsevier ScienceDirect (sciencedirect.com), IEEE Software (ieeexplore.ieee.org)
and Google Scholar (scholar.google.com)

30See Mansouri-Samani and Sloman (1997)
31See Rosenblum (1991)
32Problem models refer to predefined event patterns that are identified as usability problems.

See section 3.1 and Table 7. about problem models and type examples
33A task model analysis is usually performed by the software or system designers and try to

investigate users activities to reach certain goal. Lecerof and Paterno (1998, p. 866–867)

24

Table 6: Summary of computer aided techniques for usability analysis. Consists of
study collections of Ivory and Hearst (2001), Hilbert and Redmiles (2000), Cook
and Wolf (1995) and Cuomo (1994). Empty fields denote an unknown status. Prob-
able label denotes an elevated level of acceptance but with uncertainty. Based on
the inspections, Fisher’s Cycles, LSA and MRP are the most suitable for given
conditions.

Method type Pattern detection Event data
compatibility

Generalizable for a
broad range of tools

ADAM No Yes No
AMME Yes Probable No
DRUM No Probable Yes
EBBA No Yes Probable
EDEM No Yes No
EMA Probable Yes No
Fisher’s Cycles Yes Yes Yes
FSM No Probable
IBOT Probable No
I-Observe No Probable Probable
KALDI Yes No Yes
LSA Yes Yes Yes
MIKE No Yes Yes
MRP Yes Yes Yes
QUIP Yes No Yes
RemUSINE Probable Yes No
RNet Probable Probable No
TOP/G Yes Yes No
UsAGE Probable
USINE Probable Yes No
VISVIP No Yes Yes
YEAST No Probable

1998, p. 4). Diagnostic Recorder for Usability Measurement (DRUM) is another
automated method using metrics34 based evaluation method that uses synchronized
video recordings, observations and event data created by Macleod and Rengger
(1993). DRUM allows the logging of single events or larger sequences in which the
designer is interested. Based on the logged recordings and statistics collected, the
usability evaluators are able to see specific video entries of these event sequences
without going through full recordings (Macleod and Rengger, 1993, p. 1–8).

34In this context, metrics is defined as quantitative measure of event based data

25

The task model or the methods that follow Comparing Sequences approaches
provide close similarities in workflow to what is proposed in this study. USINE
is a tool present in the work of Lecerof and Paterno (1998). USINE functions by
creating task model based statistical results from user event logs. The method
provides statistics when the user differs from the task model path. The task model
path is created by using a special tree editor. USINE tool records assigned event
data from a tree task model, including mouse clicks, widget names and time relations
(Lecerof and Paterno, 1998, p. 869–887). The basis of the method was introduced
by Lecerof and Paterno (1998, p. 869), and it is somewhat visible in the evaluation
models of this thesis, seen especially in Fig. 5. Using the comparison of expert
created task models such as in USINE is not implemented in this study as it is not
possible to determine specific user goals fully in advance.

Other metrics such as Automatic Mental Model Evaluator (AMME)35 or task
model approaches such as iBOT36, Quantitative user interface profiling (QUIP)37

or KALDI38 are not relevant for the generalized analysis in this work. Finding
optimal paths to perform user task with Petri Nets39 or comparing user performances
by using automated log analysis does not apply to analyzing a varying amount of
detailing tool UIs. Nevertheless, these approaches could be suitable for further single
tool usability analysis, and do not exclude the use of learning based methods.

35See Rauterberg (1993)
36See Zettlemoyer et al. (1999)
37See Helfrich and Landay (1999)
38See Ivory and Hearst (2001, p. 481–482)
39Mathematical model that try to imitate user actions, see Rauterberg (1993)

26

3 Selected approaches for implementation
In this section, the selection and approach for implementation described in section
2., are explained in more detail. The beginning of the section deals with software
use behavior model candidates for usability disruption categorization. The latter
part of the section goes into the automation of usability and introduces a model for
automated event data capture. At the end of the section, the selected usability study
automation techniques and their corresponding mining approaches are explained.

3.1 Pattern recognition using behavior models

This thesis introduces an approach of evaluating the feasibility of event data and
software use behavior extraction in BIM detailing workflow. To my knowledge, no
similar research appears to be done where usability study driven workflow sequence
detection and sequence pattern recognition is created and tested against pre-existing
large data-set in BIM software domain. Creating a basis for raw pattern extraction
using techniques that emphasize behavioral repetitive patterns is considered to be
of interest for this study. This section introduces models to evaluate and catego-
rize such data extractions, but additionally considers that the selected automated
techniques must not be limited to found recognition models only. The selected tech-
niques must also be adaptable in order to be used by evaluators according to their
own filtering rules and interest.

As introduced briefly in sections 1.1 and in 2.4, there are various types of meth-
ods and techniques regarding computer automation and finding usability patterns.
Selected techniques under topics synchronizing and searching, detecting sequences
and comparing sequences in Hilbert and Redmiles (2000) are evaluated as the basis
for the preliminary selection. As the intention is to develop a method that is appli-
cable for different kinds of creation oriented tools, using ideal path comparison of
sequences is not possible since there is no knowledge of what the designer is trying
to achieve. Instead, for successful detection, using combinations of the detection
approaches in this section are considered as a necessary requirement.

Synchronizing and searching of user event data covers automated tools to syn-
chronize and allow the captured data to be analyzed (Hilbert and Redmiles, 2000, p.
395). The topic is also known as a direct usability engineering method type Capture
that is defined as "Automatically records usability data e.g., logging interface usage"
(Ivory and Hearst, 2001, p. 473). The available Tekla Structures event log contains
both Windows Presentation Foundation (WPF) user interface rendering events and
Application-kit (Akit) events that is Tekla Structures’ own user interface event han-
dler. The created log file contains a time-stamp and is therefore useful for multiple
techniques that require chronological order.

Hilbert and Redmiles define usability investigator possibilities to two cases where
the investigator can either search through UI events or recordings manually for event
of interest or check certain point from events or recordings if marked during obser-

27

vation activities (Hilbert and Redmiles, 2000, p. 396). For this thesis, there is no
actual observation phase. Instead, the expert evaluator is able to see the occurrences
of user behavioral sequences. As the mining algorithms are searching for repetitive
behavior among the captured sequences, the evaluator can focus on inspecting the
highest occurrences and categorizing them as occurrence models. After recognizing
the repetitive behavior in existing software system, it is possible to do further cat-
egorization on whether the pattern is a usability related disruption in normal user
detailing tool use process. In Table 7., some typical detailing tool disruptions are
listed. On the basis of the captured sequences, some of these disruptions could be
accurately detected and transformed into working detection models. In this work,
repetitive modify40 is used as an example for model creation.

Table 7: Sequence example outcomes that are possible scenario for usability problem
model creation.

Preliminary examples of found sequence types:
Repetitive search of a design tool

Repetitive tasks inside a design tool
Repetitive modify
Unexpected exit

Unexpected exit and search for similar design tool
Repetitive exit and return to design tool

Deleting created component created by design tool
Exploding created component created by design tool

Transaction delay between events compared to other user data
Error: caused by design tool settings

Error: caused by incorrect pick position in 3D-view
Error: caused by incorrect object pick in 3D-view

Work done by Sanderson and Fisher (1994) deals with useful sequence detection
from event related data. The different HCI event types have great significance
because they have the tendency to occur in different frequencies (Sanderson and
Fisher, 1994, p. 10–13). The extracted usability information from data rich sources
that contain a multitude of events can easily produce high amounts of events in short
time and be irrelevant to usability analysis. In Fig. 4. Fisher and Sanderson provide
good insight to popular HCI related studies and different time related frequencies.

40See Section Test application 4.1 for modify definition

28

Figure 4: A spectrum of HCI events. Adapted from Sanderson and Fisher (1994, p.
10).

In figure 5., a model of the full event analysis process is displayed. Steps to
procedure statistical information from captured user sequences is divided into five
different steps that consist of detection, storage, analysis, filtering according to model
boundary condition and visualizations.

Techniques for comparing sequences and their detection for usability related data
is targeted for the comparison of source sequences and targets using automation
(Hilbert and Redmiles, 2000, p. 386). This is an implementation goal for this
thesis, and it is used to automatically extract event patterns. As shown in Fig. 5.,
the parameters created for each technique can, for instance, be in the form of target
sequences that are triggered by key event based rules. Sequence based techniques
are also chosen as main type of automated detection for this thesis. Techniques
introduced later in this section, such as Fisher’s Cycles, LSA or MRPs, are defined
as pattern detection type approaches (Hilbert and Redmiles, 2000, p. 404).

The first step into automated problem recognition using repetitive event pattern
discovery requires parsing and a sequence detection algorithm that transforms the
data into a structured collection of captured user sequences. A SDB is considered
to be a constantly growing set of sequence information of all user related specified
tasks. In this study, the database contains all detailing tool use sequences regarding
macros. After the data is collected and structured, it can be directly analyzed further
using selected mining algorithms.41 It is possible to perform mining according to
specific rules or boundary conditions to obtain repetitive pattern information. The
boundary conditions are intended to be created using expert evaluators’ interest
in selected repetitive occurrences seen from data. Table 7. shows an example of
potential events of interest. For the test implementation, mapping of repetitive
modify boundary conditions were selected to be used during the analysis.

41See section 3.3 for selected mining algorithms

29

Figure 5: A model of test application analysis process. Based on the models created
by experts or examples seen in Table 7., the statistical results can be filtered using
given boundary conditions. As a result, the statistics can be used to see occurrences
of categorized usability problems types.

Model corresponding sequence types can be transformed into boundary condi-
tions that suit selected analysis approaches shown in Fig. 6. The parametrization of
found sequence types can vary from statistical count boundary conditions to short
sequences isolated for matching purposes. The found sequence types are categorized
under each distinct evaluation method type allowing the parametrization to take
place. The working implementation of figure 5. model aims to form abstracted
usability related sequence type information into simplified statistical expression. No
further user involvement should be required. Depending on evaluator interest, using
the implementation can be divided into multiple iterations and depths42 of interest
targeted for the sequence database.

In this thesis, the available approaches are divided into metric outcome, task
model, and specific ESDA techniques that follow some level of pattern matching or
logging capabilities. In similar available work, ESDA techniques are considered to
be initially used for pattern recognition. Workflow from metric and task models,
however, contain multiple principles that could be be used for data filtering. For
example, filtering the ESDA created data in respect to specific interest and prede-
fined parametrized statistical count based rules can be used to determine if certain
known usability problem types exist.

3.2 Detection techniques in usability research

Available analysis methods were discussed previously in Section 2.4. Inspections
included collection of proposed in of computer aided techniques for usability anal-
ysis from Ivory and Hearst (2001), Hilbert and Redmiles (2000), Cook and Wolf
(1995) and Cuomo (1994). The following approaches were selected based on given
conditions in Table 6., and what has been discussed previously.

42See depth of recognition in Section 4.2

30

3.2.1 Fisher’s Cycles

Fisher’s cycles is a ESDA technique that was introduced in Fisher (1991) by Car-
olanne Fisher. The technique was a part of Fisher’s ’workbench’ for implementa-
tions of computer-aided protocol analysis. In Fisher’s Cycles, evaluators are able to
capture user created frequently occurring event patterns using a preselected begin-
ning and ending event that triggers and stops the capturing sequence. The captured
event patterns are typically transformed into a summary where the pattern is shown
together with the occurrence counts.

Hilbert et al. has provided an in depth example of how Fisher’s Cycles would
function in an event data sequence. In the example, an investigator is faced with
a source sequence of events that are encoded to alphabets (Hilbert and Redmiles,
2000, p. 404–405). In the example, the investigators are only interested in the
events that occur between the starting event ’A’ and the ending event ’D’. No other
sequences are recorded. A sequence can only contain a single starting event. Using
Fisher’s method a following result occurs:

Table 8: Fisher’s cycles example 1. Adapted from Hilbert and Redmiles (2000, p.
405).

Source sequence: ABACDACDBADBCACCCD
Begin event: A
End event: D

Output:
ABACDACDBADBCACCCD
ABACDACDBADBCACCCD
ABACDACDBADBCACCCD
ABACDACDBADBCACCCD

Cycle # Frequency Cycle
1 2 ACD
2 1 AD
3 1 ACCCD

From the result, Hilbert et al. note that there were no occurrences of ’B’ in
any of the recorded cycles (Hilbert and Redmiles, 2000, p. 405). If ’B’ were to be
considered as a new feature for a BIM detailing tool that is intended to be used
between the trigger ’A’ and the ending event of ’D’, this might implicate a usability
problem, as ’B’ is not present. Another example better suitable for this thesis might
provide more insight. Here we use a similar alphabetic example of multiple users’
event data analyzed as one with the following result:

31

Table 9: Fisher’s cycles example 2.

Cycle # Frequency Cycle
1 126 ACD
2 6 AD
3 38 ACCD
4 27 ACCCD
5 8 ACCCCD

As we now have a larger number of frequencies recorded, the results with the
help of a usability evaluator can provide useful insight. Cycle ’ACD’ has the most
occurrences and could be confirmed a short and the most favourable work routine
performed by users. High amounts of ’ACCCD’ or variants might indicate repetitive
tasks or problems completing assigned ′A′ →′ D′ task especially during event ’C’.
Like previously, the lack of ’B’ in all cycles is interesting and a new cycle imple-
mentation with ′A′ →′ B′ might show that is ’B’ resulting in the users retrying of
detailing work to achieve ′A′ →′ D′ goals until ’B’ is left unused, and the tasks is
completed with ’ACD’ instead.

Considering that the summaries are purely user created and follow evaluator
interest, the technique is particularly useful for discovering user behavior and work-
flow in higher frequency43 tasks without exact parametrized targets. Additionally,
if the event data stream provided is structured enough, evaluators could potentially
create generalized expectations of the time duration between start and end event,
pattern size, or just the failure to reach end event before starting a new evaluation.
The sequences inside the recorded pattern are also interesting, and could be fur-
ther analyzed with parallel Fisher’s Cycles implementation or together with other
extraction techniques.

In this thesis, some limitations of the Fisher’s cycles approach mainly concern
capture duration and the ability to follow only higher frequency event streams. Se-
quence capture can only be implemented to a single detailing tool and the events
occurring until component exit or other end of usage. This might lead to a loss of
frequently occurring pattern counts due to minimal difference that is irrelevant to ac-
tual user task completion. However, this limitation could be partly accompanied by
other ESDA approaches, such as MRPs, to connect and capture lower level software
usage workflow that interests both usability and software development teams.

In all, additional filtering of sequences obtained in SDB is required, that is, the
filtering of unwanted noise from sequences and for the ending itself44. Defining the
start event type and using options that allow the excluding of certain events defined
by the evaluator can help focus on a specific range of HCI event frequency. For BIM

43See Fig. 4., the spectrum of HCI events about event frequencies
44In this context, it is assumed that the workflow ending is not always trivial, and might require

additional filtering and detection effort

32

software such as Tekla Structures the evaluators could specify multiple different
instances of Fisher’s for filter events, such as 3D view changes, mouse presses, string
inserts, modify and apply events, depending on evaluator interest.

Another requirement for sequence detection in Fisher’s approach is the ability
to clear the ending, or define multiple event keys for the ending event that stops
the capturing of a sequence instead of using one specific key regardless of the real
occurred ending event. By using the multiple end key possibility, an equal sequence
capture can be interpreted as an equal pattern. A possible implementation could
be using data filtering. An example of filtering can be seen in Fig. 6. The use of
the technique with posed additions could ultimately lead to many different filtering
possibilities to obtain information about tool usage behavior, performance, and even
differentiation of locale used as in country requirements and organizations.45 The
focus of development could be in seeing ahead of high priority customer require-
ments and tailoring specific detailing tools according to the customers’ needs by
discovering requirements from obtained repetitive data. The implementation of ad-
ditional filtering is discussed in Section 4.4, regarding a sequence parsing algorithm
that creates SDB for mining algorithms.

As in Fig. 6, a similar approach could also be used in parallel. Different Fisher’s
Cycle parameters could parse through counting discovered sequence definition types,
as in Table 7. As the ST, I and ET events are modifiable, the use types and
extraction of multiple findings should be possible. The statistical count can be
expressed as the summation of basic detailing tool information and the sequence
types found overall. In this approach, the discovered ’issues’ would be summed
and categorized under the detailing tool. This eliminates noise from the available
source data and represents information in more useful way. As an example, let us
consider that we have discovered one parametrization suitable for Fisher’s Cycles
with a frequency boundary of 5 that represents Repetitive tasks inside a tool. Using
this parametrization would categorize all matching cycles’ frequencies over 5 together
under the design tool name. If the frequencies containing multiple occurrences of ’C’
from Table 9. were to represent a similar issue, the start triggered tool would contain
14.6 Repetitive tasks inside a tool -issues within the design tool across multiple users,
as all cycles with repeated ’C’ have the frequency of over 5.

45In this context, the locale is test application related country specific settings

33

Start Trigger (ST) = akit.CommandStart*

Igonore (I) = akit.Mouse*

End Trigger (ET) = akit.PushButton("saveas",*

 = akit.PushButton("OK_button",*

 = akit.Cancel*

ST 9:50:33; akit.CommandStart("ail_create_joint_by_one_sec", "134", "main_frame");

I 9:50:35; akit.MouseDown("View_01 window_1", "View_01 window_1", 747, 651, 1);

I 9:50:35; akit.MouseUp("View_01 window_1", "View_01 window_1", 747, 651, 0);

I 9:50:42; akit.MouseDown("View_01 window_1", "View_01 window_1", 1033, 326, 1);

I 9:50:42; akit.MouseUp("View_01 window_1", "View_01 window_1", 1033, 326, 0);

C 9:50:56; akit.ValueChange("joint_134", "skew", "15");

C 9:51:07; akit.ValueChange("modify_button", "joint_134");

I 9:51:09; akit.MouseDown("View_01 window_1", "View_01 window_1", 1225, 228, 1);

I 9:51:09; akit.MouseUp("View_01 window_1", "View_01 window_1", 1225, 228, 0);

I 9:51:22; akit.TabChange("joint_134", "tw", "jointtab13");

C 9:51:27; akit.ValueChange("joint_134", "edist3", "150");

C 9:51:33; akit.ValueChange("modify_button", "joint_134");

ET 9:52:36; akit.ValueChange("joint_134", "saveas_file", "my_joint");

ET 9:52:37; akit.PushButton("saveas", "joint_134");

ET 9:52:37; akit.PushButton("OK_button", "joint_134");

Output:

ST 9:50:33; akit.CommandStart("ail_create_joint_by_one_sec", "134", "main_frame");

C 9:50:56; akit.ValueChange("joint_134", "skew", "15");

C 9:51:07; akit.ValueChange("modify_button", "joint_134");

C 9:51:27; akit.ValueChange("joint_134", "edist3", "150");

C 9:51:33; akit.ValueChange("modify_button", "joint_134");

ET 9:52:36; akit.ValueChange("joint_134", "saveas_file", "my_joint");

ET 9:52:37; TIMEOUT akit.PushButton("OK_button", "joint_134");

ET time delay = 5s

Figure 6: Example of source event data filtering according to proposed additions.
Mouse related events are filtered from the capture. The ET event will be recorded as
TIMEOUT and is considered as an ending trigger after evaluator given time limit,
equal to any other ending types.

3.2.2 Lag Sequential Analysis

Lag Sequential Analysis (LSA) is a technique originally introduced by Sackett et al.
(1978) as cited in Cuomo (1994, p. 8). The technique requires a beginning and an
ending key event that form the basis for the calculation of the amount of events
until reaching the end sequence and the occurrences expressed in sum format. The
technique does not show the event sequence itself, but instead expresses the length
of events that were required to reach the target. The purpose of this expression is to
reveal possible correlation between chosen start and ending event and reveal patterns
that might not be strictly sequential (Hilbert and Redmiles, 2000; Cuomo, 1994, p.
405; 8). For example, using Fisher’s Cycles requires strict transition between events
to be logged as a frequent sequence. In LSA, only the start and ending event remain
positioned, and the order of events in various states between them does not affect
the final output expression. Due to the possibility of noisy source data, using the
technique can reveal otherwise unnoticed correlations between key events (Hilbert
and Redmiles, 2000, p. 405).

34

Hilbert et al. has provided an in depth example of how LSA would function in
an event data sequence. In a source sequence equal to the Fisher’s Cycles example,
the evaluator is again faced with a sequence of events that are encoded to alphabets
with starting event ’A’ and ending event ’B’ (Hilbert and Redmiles, 2000, p. 404–
405). Using the technique will output transition lengths between ′A′ →′ D′ into an
expression similar to the following sequence example:

Table 10: Output example of lag sequential analysis adapted from Hilbert and
Redmiles (2000, p. 405)

Source sequence: ABACDACDBADBCACCCD
Begin event: A
End event: D
Lag(s): -4 through +4
Output:

Lag -4 -3 -2 -1 1 2 3 4
Occurrences 0 1 1 1 1 2 0 1

The lag interval chosen for the example in Table 10. is -4 through +4. This
means that all sequences up to four events including ’D’ will be recorded in the
output. The shortest sequence found corresponds to -1 or 1 as the source sequence
contains both ’DA’, which is negative and ’AD’ that is positive traversal. The count
one denotes from ’A’ or ’D’ until reaching target. Lag 2 corresponds to two ’ACD’
sequences found and therefore has the occurrence of two (Hilbert and Redmiles,
2000, p. 405).

For this thesis, the use of LSA seemed suitable for assessing the work effort
required for each detailing tool in BIM workflow within test application. More
cases could be discovered if test implementation was established. The suggestions
for the filtering of unwanted events should be available and extended also for LSA.
Using large lag intervals could help understand which detailing tools require high
changes to various settings during detailing work both using modeling views and
the tool interface. Using this information, usability and development teams could
evaluate needs to integrate parts of the detailing tool to different existing Direct
Modification46 and floating toolbar functionalities. Additionally, LSA could be used
for problem sequence detection in a way similar to Fisher’s Cycles.

Some limitations found of the LSA approach in this thesis concern the recognition
of usable patterns. As the technique can provide indirect non-sequential behaving
sequences that occur between events of interest, the sequence itself remains unknown
unless there is a time-stamp trace relation. Additionally, even if LSA does not require
the sequential order of events, noise may still play a significant part in reducing

46Direct modification is a Tekla Structures functionality where the user is able to modify certain
model objects by dragging handles without using object properties dialog boxes

35

output accuracy. Obtaining equal lag lengths can provide sequences that have no
relation when put to comparison. However, optimal filtering rules and problem
sequence parametrization can potentially offer solutions to noise related limitations.

3.2.3 Maximal Repeating Patterns

Maximal Repeating Pattern (MRP) analysis is a another ESDA technique that
was introduced in Siochi and Hix (1991). MRP uses an algorithm to parse source
event data logging sequences that occur repeatedly (Siochi and Hix, 1991, p. 1).
Compared to repeating patterns that occur more than once in a given string, a
maximal repeating pattern tries to extract as long a sequence as possible, ignoring
smaller substrings (Siochi and Ehrich, 1991, p. 5). However, in Hilbert and Redmiles
(2000) MRP also outputs the substrings. In this thesis, both types are used. Siochi
and Hix have presented a good example regarding basic output of MRP from a given
sequence:

Source sequence: ABCDYABCDXABCE

A simple extraction of MRPs from the sequence outputs ’ABC’ and ’ABCD’.
The substrings’ repeating patterns ’AB’, ’BC’, ’BCD’, and ’CD’ are not included
since they are part of a longer sequence formation. ’ABC’ is a MRP as it represents
itself after ’X’ (Siochi and Hix, 1991, p. 6). From the perspective of interpreting
MRP to recognize all formed patterns, a useful Table expression would output:

Table 11: Example of MRP output collecting all patterns

Pattern # Frequency Pattern
1 3 AB
2 3 BC
3 2 CD
4 3 ABC
5 2 BCD
6 2 ABCD

The role of MRPs in usability analysis relies on finding enough repeated se-
quences to form clear patterns. Usability designers can discover repeatedly occur-
ring real user workflow criteria from MRP output information (Siochi and Hix, 1991;
Cuomo, 1994, p. 9; 1–2). The technique does not prioritize any events and is con-
sidered unique in the sense that it does not require any evaluator defined starting
or end target definitions (Cuomo, 1994, p. 10).

Challenges in the usage of MRPs for BIM event data are related to transcript
file amounts. MRP can easily create a large number of transcripts that contain
multiple frequencies. Most of the transcripts can be considered to be noise, and
they typically do not indicate usability or workflow related patterns (Siochi, 1989,

36

p. 59–60). However, the amount of transcripts follows a linear scale47 in number of
event lines in respect to number of MRPs detected. As the number of detected MRPs
rises, the number of frequencies of longer patterns is also revealed48 (Siochi, 1989,
p. 59–60). Using filtering rules based on specific interest could possibly eliminate
noise from MRP transcripts. Evaluator defined parameters and concentrating on
given log time interval pattern length could improve transcript importance.

The use of MRP for usability problem recognition as well as the discovery of user
overall workflow is considered highly useful for this thesis. Similar to Fisher’s Cycles,
the use of filtering of evaluator defined events should be available to make full use
of the technique. Using strict filtering, such as excluding all event types apart from
e.g. figure 6. ’akit.CommandStart*’, can create interesting samples of user design
behavior in longer time periods regarding lower frequency usability events such as
operation events defined in Fig. 4., where a single event can occur in a timeframe of
hours up to days. As the events also contain time-stamps, there is the possibility of
logging detailing tool transformation periods for analysis. Detailed searches directed
towards these transformation periods could indicate the use of external design tools
for some parts of the workflow. From a pure usability related perspective, using
MRP to find frequently occurring sequences without any predefined interest can
reveal usability related problem patterns in large event data collections. The data
does not need to cover solely design tool related filtering, but instead ’akit.*’ or
’wpf.*’ events of the overall software user interface. Accessing the sum output of
MRP and seeing the highest occurrences should be the focus of the usability teams’
interest for further analysis.

3.3 Selection of mining algorithms

After inspecting and selecting suitable approaches from the usability domain, a com-
parative search was conducted into the modern data-analysis domain. The search
for suitable analysis methods was limited to SDA. This allowed a sufficiently nar-
row inspection of open source Frequent Itemset Mining, Sequential Pattern Mining,
and additional Sequence Prediction approaches. Available methods are a part of
the collection in SPMF, an open-source data mining library in Fournier-Viger et al.
(2014b).

Before choosing each individual method for further analysis, tests were conducted
to compare each algorithms performance and compability against test application
captured random sequences. Based on the inspection, BIDE+ and TKS were the
fastest49 and had the best equivalence to FC and MRP. Additionally, as discussed in
usability related approaches in Section. 2.4, a suitable pattern prediction algorithm
was found. CPT+ is a useful learning based approach identifying the most likely
pattern of specified user tasks if SDB was filtered for single detailing tool.

47See Fig. 10. in Siochi (1989)
48See Fig. 12. in Siochi (1989)
49Based on comparison to test application data-set, see Section 5

37

By testing and reviewing theory on each inspected mining approach, frequent
itemset mining was found incompatible for the test application data. The test
application data consists of items in a transaction that may appear more than once
per transaction. The limitation of the frequent itemset approach is that the items
are allowed to appear only once in a given transaction (Fournier-Viger et al., 2014b).

Based on the test findings, there was a moderate to high amount of variance
between sequences. Using non-closed pattern mining such as PrefixSpan resulted in
high number of found patterns. To limit the amount of found patterns, I chose to
use closed sequential pattern mining50 approaches. Also, in Wang and Han (2004)
regarding BIDE+, it is noted that using a closed approach resulted in more compact,
complete and efficient patterns (Wang and Han, 2004, p. 1).

Table 12: Inspected mining approaches for data analysis. Consists of SPMF library
(Fournier-Viger et al., 2014b). Based on the inspections, BIDE+, TKS and CPT+
are the most suitable algorithms for the test implementations.

Method Algorithm
Frequent Itemset

FPGrowth
DCI_Closed

Sequential Pattern
PrefixSpan
CM-SPADE
ClaSP
CM-ClaSP
CloSpan
BIDE+
TKS

Sequence Prediction
CPT+

A direct approach for LSA was not found and was therefore excluded from the
test implementations. Utilizing LSA for time constraint based detection is however
still considered as a valuable approach to implement if suitable application is found.

3.3.1 BIDE+

BI-Directional Extension based frequent closed sequence mining (BIDE) is an algo-
rithm for discovering complete sets of frequent closed sequences. The algorithm’s
efficiency is based on the fact that there is no direct requirement for maintaining
a large amount of possible pattern candidates (Wang and Han, 2004, p. 1–3). By
using the BIDE pattern closure mechanicsm, consumption of memory and running

50Frequent closed sequence e.g. sa can be defined as closed if there is no other larger sequential
pattern sb, where sa is a subset and has the same support (Fournier-Viger et al., 2014a, p. 42)

38

time is lower than CloSpan, SPADE or PrefixSpan51 (Wang and Han, 2004, 2). Bide
was also the fastest algorithm for the test application example data-set.

A good definition of BIDE+ input and output comes from Fournier-Viger et al.
(2014b). Input sequence format can contain items and or itemsets. Due to the input
format, items are presented in integer format, but follow the same guidelines as the
previously introduced FC, LSA, and MRP. A sequence could contain multiple item-
sets such as s1 = 〈{1, 2}, {1}, {4}, {1, 2, 3}〉 or single items s2 = 〈{1}, {2}, {4}, {3}〉,
following also the same definition as in Section 2.2.3. For test application data, all
implementation follows a single item format similar to s2. In addition, all items or
itemsets in a sequence must be assumed to be lexically ordered (Wang and Han, 2004,
p. 3). Although it’s not a constraint for test application data, it should be remem-
bered that patterns categorized under sequential pattern mining in SPMF generally
restrict that an itemset, such as s1, cannot contain duplicate values (Fournier-Viger
et al., 2014b).

Table 13: A single item sequential database example with duplicate items in a
sequence. The example is similar to the ones found in captured event sequences in
test application.

SDB =

s1 = 〈{1}, {2}, {3}, {5}〉
s2 = 〈{1}, {4}, {5}, {4}〉
s3 = 〈{1}, {3}, {2}, {3}, {5}〉
s4 = 〈{1}, {2}, {3}, {2}, {5}〉
s5 = 〈{1}, {2}, {3}〉

Using example SDB in Table 13. outputs similar resulting data as with FC shown
in Table 8. or 9., by sequence comparison. Compared to non-closed, the pattern
yield using the same minimum support (minSup) is 19 patterns. The algorithm in
SPMF library also has the ability to set maximum pattern length. The initial use
cases of BIDE+ are similar to those defined for FC in Section 3.2.1. From the test
application viewpoint, the patterns reveal frequent behavior and links among the
user workflow. The example resulting cases from the test application are shown in
Section 5.

51See CloSpan, SPADE or PrefixSpan in Fournier-Viger et al. (2014b, 8–11)

39

Table 14: BIDE+ outputs frequent closed patterns using minSup. In this case
pattern five has the minSup of 40%.

Pattern # Support Pattern
1 5 〈{1}〉
2 4 〈{1}, {2}, {3}〉
3 4 〈{1}, {5}〉
4 3 〈{1}, {2}, {3}, {5}〉
5 2 〈{1}, {3}, {2}, {5}〉

3.3.2 Top-K Sequential pattern mining

Top-K Sequential Pattern mining (TKS) is an algorithm for mining user defined k
sequential patterns in given set L and sequence database SDB. The top-k mining
results in maximum support sequential patterns (Fournier-Viger et al., 2013, p. 1–
3). If each pattern sa ∈ L, there is no sequential pattern sb /∈ L | sup(sb) > sup(sa)
(Fournier-Viger et al., 2013, p. 2).

The algorithm was initially created to address difficulty of setting minSup values.
The problem is analogous to other related studies52 of frequent itemset, association
rule and sequential rule mining variants (Fournier-Viger et al., 2013, p. 4). Simi-
lar approaches exist, such as Top-K closed sequential pattern (TSP) introduced in
Tzvetkov et al. (2005). TKS was created to be faster and more memory efficient,
particularly when using dense SDBs (Fournier-Viger et al., 2013, p. 2, p. 10–12).

The SDB example in Table 13. outputs similar data as the MRP shown in
Table 11. In addition to selecting value k, the TKS implementation contains user-
selectable options minimum pattern length, maximum pattern length, required items
and maximum gap between items. Required items allow the specifying of items that
must appear in each found pattern. Maximum gap allows a gap interval between
pattern contents. If gap is set to N , a gap of N − 1 itemsets are allowed between
the previous and following itemsets of a pattern (Fournier-Viger et al., 2014b, TKS
Documentation). For example, if we run TKS to SDB using k = 5, minimum
pattern length of 3 items and required items using item 1, the top-5 most frequent
patterns are:

52See Wang et al. (2005) for frequent closed itemset, Fournier-Viger et al. (2014b, Top-K Asso-
ciation Rules) for association rule and Fournier-Viger et al. (2014b, Top-K Sequential Rules) for
sequential rule top-k examples

40

Table 15: TKS outputs top-k five patterns. TKS calculates minSup in preprocessing
and after exploring the possible pattern candidates. In this case, final minSup was
two, revealing six individual patterns that have the support of over two.

Pattern # Support Pattern
1 4 〈{1}, {2}, {3}〉
2 3 〈{1}, {2}, {3}, {5}〉
3 3 〈{1}, {2}, {5}〉
4 3 〈{1}, {3}, {5}〉
5 2 〈{1}, {3}, {2}, {5}〉
6 2 〈{1}, {3}, {2}〉

3.3.3 Compact Prediction Tree+

Compact Prediction Tree (CPT+) is a lossless or near lossless53 tree structure based
sequence prediction model that predicts next item of a given pattern (Gueniche
et al., 2015, p. 2–4). CPT differs from other existing models such as Prediction by
Partial Matching (PPM) or markovian, All-K-Order Markov (AKOM)54 in that it
utilizes training sequence information more efficiently. The model can be used to
predict the next items of subsequences that have not been previously introduced
during sequence training. As a result, CPT is able to predict the next items of
subsequences with noisy data (Gueniche et al., 2013, 2015, p. 1–2, 3–4).

The model approach is divided into two main phases. First, the sequences are
trained and compressed from input SDB forming a sequence prediction model. For
CPT+, this work uses Frequent subsequence compression (FSC-strategy). This is
based on using a modified55 PrefixSpan algorithm to identify all sequential patterns
and the insertion of these to the CPT.

The basic insertion and training consists of a Prediction Tree (PT), Inverted
Index (II) and a Lookup Table (LT) (Gueniche et al., 2013, p. 3–4). Each sequential
pattern training sequence is inserted to the PT one after another. If the root in a
PT has a direct child, the sequence will follow existing paths. If there are no direct
matches from root, a new child is inserted with the item’s value. The inverted index
contains information of the sequence in which a given item appears, and stores this
information for further lookup to find sequences containing a set of items (Gueniche
et al., 2013, p. 3–4). PT and II are linked together using the lookup table. For
each sequence, LT points to the last item in PT (Gueniche et al., 2013, p. 3–4).
As an example, we can look at a CPT construction of the following two sequential
patterns:

53In this context, loss of information in training sequences is dependant on the kind of data
compression method used

54See PPM or AKOM in Fournier-Viger et al. (2014b)
55Modification limits found subsequent itemsets between assigned size constraint (Fournier-Viger

et al., 2014b, CPT+ source code)

41

Table 16: Found sequences to be inserted to a PT

s1 = 〈{1}, {2}, {3}〉
s2 = 〈{1}, {2}〉
s3 = 〈{1}, {2}, {4}, {3}〉
s4 = 〈{3}, {4}〉

Item s1 s2 s3 s4
1 1 1 1 0
2 1 1 1 0
3 1 0 1 1
4 0 0 1 1

Figure 7: Prediction tree and lookup table (right) and Inverted Index (left) con-
structed from given sequential patterns from Table. 16. above. The pointing arrows
represent the pattern traversal.

Predicting the next item is done in the next phase by comparing a sequence
against trained sequences (Gueniche et al., 2015, p. 3–4). If x represents an integer of
prefix length56, making a prediction for sequence s is created by finding all sequences
that contain the last x items for s in any order or position (Gueniche et al., 2013,
p. 5). The accuracy of prediction is dependant on the prefix length and data-size.
CPT is showing the highest accuracy using a prefix pattern of eight (Gueniche et al.,
2013, p. 10). The found sequences are called sequences similar to s and used to
predict the next item of s(Gueniche et al., 2013, p. 5).

When looking at the created PT, II and LT in Fig. 16., a prediction can be
constructed for a given sequence. For example, to predict the next item of pattern
p1 〈{1}, {2}〉, we can start by looking at the II items 1 and 2. Common sequences
are present in the index and found from s1, s2 and s3. By using backwards traversal
in the LT, it is possible to count common occurrences after the given prefix. For
this, the procedure uses an additional Count Table. For pattern p1 the item 3 has a
higher count of two, and is presented as a next item prediction.

56In this context, the given items for predictor

42

In this work, CPT+, an improved version of CPT, is used. Compared to other
prediction approaches57, CPT has a higher order of spatial complexity58 to out-
put predictions. CPT+ was developed in a paper by Gueniche et al. (2015) to
reduce higher prediction times by proposing two new compression strategies for
subsequences and tree branches, and a noise reduction strategy (Gueniche et al.,
2015, p. 2)

For the test application data, the use of noise tolerant prediction was considered
appropriate. The application pattern lengths were moderate, and from the CPT
limitations’ point of view, decreased accuracy after prefix length of eight did not
present a direct issue. Average pattern lengths in test application data can bee seen
in Section 4.3.

57See PPM, DG or AKOM in Fournier-Viger et al. (2014b)
58In this context, spatial complexity is defined as the order of magnitude that is required for

working storage to solve initial problem

43

4 Implementation of methods
This section explains the implementation done for the study and examines the au-
tomated analysis procedures suitable for test application. First the test application
and it’s basic functionalities are introduced. The section then continues introducing
working hypothesis of software use behavior and the depth of information required
to be captured for the given research questions. The latter parts of the section
discuss the usability test setup process, problem identification, and the automated
detection of sequences. The problem identification and automated detection follows
the given hypothesis. The end of the section shows sequential mining and prediction
use process model applied to the test data-set outside of usability study definitions,
described previously in section 3.3.

4.1 Test application

The selected BIM software for the test application is Tekla Structures. Tekla Struc-
tures is a BIM software specialized in structural design. By using the software,
structural engineers are capable of delivering designs for construction and built en-
vironment projects. The projects created by users vary from residential buildings
through plants and factories to bridges and offshore structures.

Detailing tasks done in the software are typically executed by structural engi-
neers. The detailer works in a 3D environment that consists of structural solid
modeling objects in categories such as columns, beams, plates, panels or slabs. Ob-
jects are created in the model and later detailed according to design and structural
needs. Detailing can be achieved either by manually editing or using automated
applications and components that perform pre-defined detailing routines and logic.

In manual detailing, the model object’s geometry is modified by using cut ob-
jects or additional objects that are added to existing objects as subobjects. Manual
detailing does not follow any constraints that might exist using automated tools.
Common categories of objects added as subobjects are plates, bolts and concrete
reinforcing rebars. subobjects and main modeling objects often form a single as-
sembly59 or cast unit60

Automated detailing is based on existing knowledge of structural details. Rou-
tines are introduced to selected objects forming structural details. The tasks may
include the creation of custom parts, connections, details or seams. Part of Tekla
Structures development is focused on the delivery of components and applications
that are useful for different user groups. Depending on the specifications, tools are
also developed to suit global or specific area needs.

59Several steel modeling objects are joined together forming a build assembly
60Several concrete or reinforcing parts joined together ready to be casted as a whole

44

Figure 8: Test application user interface steel detailing example. Detailing tools
Bolted moment connection (134) and Splice connection (77) are applied to modeling
objects and seen in gray and brown with visible green cone shaped Component
symbol. After creating the connections, the three individual steel parts that consist
of a column and two separate steel beams form a single assembly.

Figure 9: Test application user interface, concrete detailing example. Detailing tools
Rectangular column reinforcement (83), Corbel connection (14) Corbel reinforcement
(81), Beam end reinforcement (79) and Beam reinforcement (61) have been used.
The corbel is a concrete part that is added to a column as a subobject forming a
cast unit. The reinforcing tools’ routine-created rebar modeling objects are added
as subobjects to each main modeling object. Due to the predefined settings of the
detailing tools, the beam and its reinforcing are separate cast units.

45

Figure 10: System Detailing tool
Bolted moment connection (134) tool
Doubler plate tab. In this tab struc-
ture, the user is able to change bolt
plate dimensions and bolt hole config-
uration using various text boxes that
take integer values as input. The user
is also able to change plate material
information and displayed name infor-
mation. The tool requires two steel I-
shaped beams as input modeling ob-
jects in order to create default detail.

Figure 11: System detailing tool Corbel
reinforcement (81) Stirrups tab. In this
tab structure, the user is able to change re-
inforcing stirrup positioning, amount, size
and overlap types. The user can also
change stirrup material information and
some additional values, such as reinforce-
ment numbering starting index. The tool
requires a column as a secondary input in
addition to corbel due to the reinforcing
being extended to the column and being a
part of the same cast unit.

In figures 8. and 9., the model view is shown on the left. The view shows
the main modeling objects and applied detailing. The main modeling objects are
created by accessing ribbon in the upper part of the interface. The detailing tool side
panel61 is open and showing a filtered view of the used tools on the left. The dialog
of a detailing tool can be accessed from the model view by either double-clicking
connection, its green symbol, or directly from the tool thumbnail. In the dialog
structure the user can modify, apply or save settings, or seek help. The detailing tools
used in the figures automatically create structural connection or reinforcing based
on default or user defined settings and modeling object geometry. The connection
parts created by the detailing tool are added to the modeling parts as subobjects
according to predefined rules.

61The side panel containing detailing tools in the test application is called Applications and
components

46

In order to create a basis for recognition, there is a need for an initial working
hypothesis base for software use behavior in BIM detailing tool use. For the test
application, there was no previous research available. A common use case of a
detailing tool workflow is considered to be the following.

User workflow order is expected to consist of the creation of modeling objects
and later applying detailing tools. The detailing is commonly divided into two steps.
The user applies the detailing tool from the applications and components window
or side panel with default or saved settings. Applying the detail tool in the model
functions by selecting each modeling object as input with the mouse. After viewing
the results in model view, the user then decides if the selected tool representation is
correct and suitable for solving the given structural design task. The next step is to
open the detailing tool settings dialog and change the necessary parameters to create
actual structural detail according to the exact design. Changing the parameters
and modifying the changes iteratively is also common. If the used tool is not fully
familiar to the user, partial changes and seeing the model changes visually help
the user assess if the detail is correct. The detailing task commonly ends after the
creation of preferred and correct detail. The user’s individual detailing task can be
assumed to end after using the detailing tool interface OK, Apply, Cancel, Save as
or standard form close -command combinations. These commands can be seen as
interface buttons both in figures 10. and 11. In rarer cases, users can leave the
detailing tool open without leaving an exact trace of ending a detailing task. In
these cases, the end is determined by the last specific tool related command before
re-activation of the same tool, or starting a new detailing task with another tool.

4.2 Depth of recognition

By using the proposed methods of analysing event data, it is possible to pinpoint ar-
eas of repetitive behavior that the user is facing without human interaction. The test
implementation is able to construct such data from the user event stream without
any disruption or the user even being aware. The chosen methods and parameters
in this solution are required to be applicable to such an extent that the individual
configurations for each tool is not required. Example generalizations can be divided
into three levels of depth.

1. The user is not able to find the best suitable tools to perform required task.

2. The task that the user is trying to achieve has disruptions.

3. A certain element within the user task is causing disruption

The first depth The user is not able to find the best suitable tools to perform
required task is for receiving data about user search keywords and trending searches.
This could be used to obtain certain user segments’ typical search entries and into
which tool these searches ultimately lead and whether the component works for used
objects. The level could include the recognition of the interval between search and
component launch until possible exit without using a component. Additionally, the

47

number of occurring searches in a short period of time until the component launch
could be included in this level. By using statistics created with these patterns, there
is a possibility of automatic discovery in situations where users are having difficulties
finding the correct tools. Searches could also indicate desired functionalities for
future software development.

The second depth of recognition The task that the user is trying to achieve has
disruptions could allow the usability team to minimize their search of potential
issues and prioritize the tasks that have the highest statistical occurrence. This is
a form of pattern detection that identifies occurrences with concretely or abstractly
defined parameters in collected event stream (Hilbert and Redmiles, 2000, 404).
Using construction from event pattern recognition elements could reveal a single
tool or toolset that causes usability breakdowns. The prerequisites for this analysis
type require the creation of generalized and expected behavioral models as the basis
for parameter definitions (Akers et al., 2012, p. 45).

The third level A certain element within the user task is causing disruption fo-
cuses on recorded data inside a certain task. This could decrease issues in finding the
exact location of a disruption from a generalized level to an area in used component
structure. The discovery of the disruption could possibly be generated using event
patterns that evaluate component dialog exit and time usage.

4.3 Available data

Existing user event data from the test application was readily available. The data
has been collected since the Tekla Structures version 20.0 from users who have ac-
cepted to participate in the Tekla Structures UFP-program. Not until the version
of 2016 a portion of the log files has been lost due to asending process that involves
data sending interval triggered by a visible prompt that can be canceled. The feed-
back program has since developed and transferring of the data is now a background
process. The data is gathered to an external server and saved in zipped .txt contain-
ers. User feedback log files are being sent to the server from each user after a default
of 10000 lines of interaction. Data is pushed to the server after each full line-count,
allowing continuous data fetching. Possibility of utlizing live-data is discussed in
section 6., as future implementation of continuous sequence detection.

During the inspection of the test application data done for this paper, three
known event loss causes were identified. Primary cause was found to be the large
reform of the test application of the 2016-version UI layout and utilizing the new
WPF-technology. A part of the user actions are not mapped, and they are missing
from the current event data log. The use of all UI actions is possible, but results
may contain a loss of events. All sequences under analysis in this paper are targeted
towards tools that have mappings idenfified functional.

48

Secondary cause found was the missing UI mappings of plugins and applications.
Other than registering CommandStart-of each plugin or application, there was no
other log data found from .dll-based plugins or executable applications.

Other causes of data loss were found to be related to test application parts that
have been under lesser analysis interest. Tekla Structures Drawing-base62 contains
a higher amount of missing mappings. Requirements related to missing valuable
mappings are further discussed in Section 6.3.

The test analysis data consisted of the Tekla Structures version 2016 repository
containing 26.3GB set of user recordings with 555534 log files. The files did not
limit to the 2016 version logged data, but instead represent the current version
timeline during retrieval. Macro related detailing tool sequence detection and the
creation of a test SDB yielded 41173 sequence starts and 12668 individual user-
sequences containing user actions. The total number of individual user actions
recorded were limited to detailing tool UI actions. The filtering output of total
user actions in SDB was 219529. Additional data processing operations that were
executed regarded UI noise, divided into two separate cases. First, fetching only
specific tool sequences from SDB. Second, filtering high occurences of known,
generic Ok, Apply, Modify, Cancel, or tab change "tw"-commands. If there was
no interest in inspecting high occurence of transfers between detailing tool and test
application model view, additional filtering might apply. The use of additional
filtering is mentioned in all test analysis result cases if used.

Based on the inspection of existing data format and creating a test implementa-
tion that parses the data, the following technical and process depth related factors
were taken into consideration.

Operating system character formatting:

Varying formatting type could result in fetched file read operations to fail. Using
formatting to change function for each line that is being read is recommended. As
a drawback, this might slightly affect parsing time.

Operating system locale:

As the event data obtained is not from any specific region, using different locale could
result in variation in timestamps. The detection and parsing of used standard date
and time notation formatting is recommended. The sequence detection process uses
time extensively for positioning and calculating last sequence event instance during
recursion. Additionally, the timestamps are used to obtain other time-related usage
information if so required.

Command positioning:
62In this context, test application has model-view and a drawing-view for creation of documen-

tation

49

While parsing lines, the entry is being processed into a list of basic elements consist-
ing of a Timestamp (time), Command Name (cmd), command-id (cmdId), Target
and a Attribute field (attrib). The existing raw data often requires change between
logical commandname and cmdId. As an example, starting macro detailing and
pressing modify in the tool dialog will trigger the following log entries:

ST 2.1.2016 14:26:01; akit.CommandStart("ail_create_macro", "30000079", …

C 2.1.2016 14:26:20; akit.PushButton("modify_button", "macro_30000079");

Figure 12: Example of unstructured data sequence detection start trigger
"akit.CommandStart("ail_create_macro"" and first dialog structure edit command
"akit.PushButton("modify_button"".

The commandname "ail_create_macro" or "modify_button" is not as specific
as "30000079" and "macro_30000079". During sequence detection, it is necessary
to have a specific identifier where the design toll can be traced as a sequence. For
this purpose, in the above example, the command-id is a correct identifier. For the
rest of the sequence, however it must be noted in what level of depth information is
gathered.

The second depth of recognition The task that the user is trying to achieve
has disruptions has a requirement for inspecting detailing tools and the general
actions that were used, but it does not specify the exact location in the dialog
structure. For the most part, the used general actions are structures that have
globally equal formatting and are offered as pre-made structures for detailing tool
development. In Table 17., the second depth of recognition requires cmd column as
minimal requirement for available SDA techniques.

In the third depth of recognition A certain element within the user task is causing
disruption the available data requires additional comparison elements, such as using
the specified field in this case. Detailing tool development does not follow strict
guideline for form item naming outside of premade interface structures. This limits
the possibility of detailing tool comparison. The third depth compares individual
tool usage and recognizes exact paths among captured sequences.

50

Table 17: Example of captured and parsed sequence of detailing tool macro
80000006. A sequence Id (sId), Sequence Position (sPos) is manually added to
the existing data. The cmd field is a combination of cmd and cmdId columns. sPos
"1" cmd is from cmdId and the rest of the is native cmd from sequence. Using a
combination of the target and attrib tables will reveal detailed information of the
used tool. If using target, the evaluator is able to see exact interface form item used.
By using the attribute column, it is also possible to extract the user input settings
of individual tools.

sId sPos time cmd target attrib
13d0812d 1 2016-01-29 14:26:01 80000006
13d0812d 2 2016-01-29 14:26:03 akit.TabChange tw
13d0812d 3 2016-01-29 14:26:09 akit.ValueChange type test
13d0812d 4 2016-01-29 14:26:10 akit.TabChange tw
13d0812d 5 2016-01-29 14:26:30 filename_btn
13d0812d 6 2016-01-29 14:26:36 akit.ValueChange dens test1
13d0812d 7 2016-01-29 14:26:44 apply_button
13d0812d 8 2016-01-29 14:26:47 akit.TabChange tw
13d0812d 9 2016-01-29 14:26:56 akit.ValueChange sname test2
13d0812d 10 2016-01-29 14:27:00 akit.ValueChange pname test3
13d0812d 11 2016-01-29 14:27:00 apply_button
13d0812d 12 2016-01-29 14:27:09 OK_button

The first depth of recognition: The user is not able to find the best suitable tools
to perform required task is a separate detection case in comparison with the second
and third depths that follow a fairly similar approach. The available data has a
clear detectable structure that contains user search input as shown in figure 13.
The initial detection is triggered by this search structure and ends when the user
finds the correct detailing tool. The correct tool can be found when the user stops
repetitive tool opening behavior and or starts a detailing tool editing sequence.

ST 13:45:46; wpf.View("… Find … SetText("column");

C 13:45:52; wpf.View("… Find … SetText("concrete column");

C 13:46:01; wpf.View("… Find … SetText("column shoe");

ET 13:46:08; akit.CommandStart("ail_create_plugin","ColumnShoeConnection", …

Figure 13: Example of detecting first depth recognition. The ST and C follow a
clear structure. The ending trigger requires additional constraint based detection.

51

4.4 Test implementation

Automated sequence detection and predictions were made as a part of the testing
implementation. The used data was real user event data. The detection consisted
of the following phases: 1) Working hyphotesis, 2) Sequence detection, 3) Transfor-
mation and processing of data, 4) Sequence mining and prediction. Foundations of
the above phases are introduced in this section.

Sequence detection from available data63 has been created to suit repetitive pat-
tern discovery requirements. For this work a An Open-Source Data Mining Library
by Philippe Fournier-Viger et al.64 was used with detected sequences for validating
purposes. The sequence detection algorithm was made for this thesis work and is
suitable for test application event data.

Primary detection from the existing event data stream is based upon Start Trig-
ger and the optional End Trigger based on MRPs and Fisher’s requirement, as
shown in the preliminary example of event data triggering in Fig. 6. Detection also
uses ET time delay expressed to allow recursive or fixed time window searches for
sequence completion and Ignore functionality to filter unwanted existing noise. For
macro detection, raw data contains an identifier sId for each line of action. In this
case, there is no need for end trigger, but recursive checking for parallel detailing
tasks65. Detection used in this work follows the approach shown in figure 14. In
this example, A is the available raw data being read. Ai is the line of raw data
that is being inspected. trigger is a list of trigger keywords defined by the user.
sequence is the position in a sequence. queue is used when an unexpected trigger
is found during a sequence capture. After handling the current sequence until end
of the file or found endTrig, items in queue are recursively handled and sequences
added to the SDB in the correct position. start is a list of used timestamped trig-
gers. Parse(Ai) modifies single Ai to a list format66 endTrig is a known ending
cmd. ignore is a list of ignored content defined by the user. Time(SeqId) translates
to a sequence start timestamp, whereas t is the maximum used ET time delay to
continue recursive search if no ending has been found. The capture sequences are
transferred to a SQL server database for storage and transformation operations for
future analysis implementation.

After detecting the sequences from test application data and pushing them into a
database, the data was transformed into sequence and prediction approach formats.
Transformations were done directly in a SQL database as table transformations
using hash matching to give frequent values a common identifier. The used SPMF
format is a transposed integer format of given sequence database contents, shown

63See section 4.3. Available data from software
64See library in http://www.philippe-fournier-viger.com/spmf/, or the related paper

Fournier-Viger et al. (2014b)
65In this context, when 1) user starts one detailing tool and 2) opens another without finalizing

the first task. In recursive check, both tasks are recorded and ordered in the SDB starting from
the first task

66See Table 17. for example formatting

http://www.philippe-fournier-viger.com/spmf/

52

function Analysisfile(A, startList, SDB, queue)
sequence← 0
for Ai in A do

if Ai is trigger then
if Ai in queue and sequence > 1 then

Add Ai to queue
else if Ai not in start then

sequence ++
Parse(Ai)
Add Ai to (start, SDB)
SeqId = Ai[sId]

else
if Ai not in ignore or sequence ≥ 1 then

if Time(Ai)− Time(SeqId) > t or Ai is endTrig then
if items in queue then

queue.pop
Analysisfile(A, startList, SDB, queue)

return
else if V alid for (SeqId,Ai) then

sequence ++
Parse(Ai)
Add Ai to SDB

Figure 14: Simplified representation of macro sequence detection used for test im-
plementation. The approach reads multiple log files averaging 1140 KB in size.

for example in Table 17. From test SDB, column cmd was being used for sequential
pattern and pattern prediction.

Data processing involved certain procedures regarding the created SDB. Based
on interest, the data contents were filtered to a smaller size, containing specific
detailing tools only and or removing generic actions for reduced noise. All data
was fetched as an extraction of the SDB data in SPMF converted .txt format.
Processing modifications were done to the extracted data, leaving the SDB to its
original state.

The SPMF format was directly compatible with all of the selected mining and
prediction approaches. The performance varied depending on the processing of
data and used options67 The output format consisted of SPMF integers that were
translated back to traceable test application events using an indexed translation list.
Additionally, the tool name translations were maintained in a separate listing and

67See algorithm mining or compression options in Section 3.3

53

required full translation. The translations of the cmd commands are further usable
as they are tool specific UI button identifiers.

The method implementation process followed the path shown in Figure 15. The
sequence detection and initial filtering was done in SequenceDetect during pars-
ing of the data as first steps. The test implementation data used ST Trigger
"akit.CommandStart _create_macro". Additional user based filtering was done
after SDB push. Only outputs from SDB are further used for sequential mining or
prediction. The SequenceDetect is only run to newly acquired raw data.

Figure 15: A simplified process chart of method implementation, starting from
raw user log data. The SequenceDetect parser contained filtering that limited the
detection to macro-detailing tools. SequenceFiltering was used to specify additional
filtering, such as the removal of noisy action or evaluation of a specific tool. The
algorithms TopKSeq, BIDE+ and CPT+ were compiled from SPMF source code
as individual console .jar-applications, reading filtered SPMF.txt-files initiated by
simple control script. The SDB was controlled by a SQL-server. Other process parts
were done as Python implementations, including the actual sequence detection.

54

5 Results
This section discusses the example cases and visualizations using either the test SDB
(See examples 5.2, 5.3 and 5.4) or a combination of BIDE+ and TKS for pattern
discovery (See examples 5.1 and 5.5). The purpose of these analysis methods are to
experiment with the available approaches and demonstrate how sequential data or
ESDA approaches data could be utilized in the contemporary BIM domain. Towards
the end of the section, the use of sequential pattern data for pattern training and
prediction using CPT+ is discussed and shown in example (See example 5.6) by
training parts of the test SDB.

The following testing implementation with an empiric foundation gives further
indications of the ESDA methods’ applicability. However, no quantitative verifica-
tion has been implemented for the data revelations, and the analysis is fully based
on evaluator observation of SDB data and mining or predicting implementations.

For the test data, additional filtering was required after counting cmds found
from the resulting SDB. The amount of "modify_button", tw and "apply_button"
occurences caused the formation of skewed data, shown in Fig 16., where 39% of
database contents consisted of three cmds. Filtering the results yielded a more
leveled action count shown in Fig 17. Additionally, this influences the average
itemset and the distinct item per sequence found from the SDB, shown unfiltered
in Table 18., and filtered in Table 19., as database statistics output.

Table 18: Test database statistics before filtering, using stripped representation of
SPMF database statistics tool output from Fournier-Viger et al. (2014b)

============ SEQUENCE DATABASE STATS ==========
Number of sequences: 12667
SDB: Filtered: NA
Number of distinct items: 7695
Largest item id: 7869
Average number of itemsets per sequence: 14.8
Average number of distinct item per sequence: 6.9

55

Figure 16: Proportion of test SDB highest occurring commandstarts before applying
target filtering to limit overall percentage of known generic commands. tw button
translates to dialog tab change and is filtered.

As seen in both Fig 17., particularly "OK_button" remains relatively large with
nearly 7% of the actions. The button will not be filtered as it serves as a sequence
ending command by saving changed attributes to dialog memory and closing the
detailing tool. The rest of the cmds are also considered as valuable information. The
"Load" and "get_menu" buttons are generic but often used as a prefix for loading
predefined settings. Additionally, "Create_button" and "CANCEL_button" are
often used as sequence ending cmds by either creating the desired detail or closing
the detailing tools without applying any settings.

Table 19: Test database statistics after filtering modify_button, tw, and ap-
ply_button cmds, using stripped representation of SPMF database statistics tool
output from Fournier-Viger et al. (2014b)

============ SEQUENCE DATABASE STATS ==========
Number of sequences: 12667
SDB : Filtered: modify_button, tw, apply_button
Number of distinct items: 7692
Largest item id: 7869
Average number of itemsets per sequence: 9.8
Average number of distinct item per sequence: 5.8

56

Figure 17: Proportion of test SDB commandstarts after applying target filtering.
The number series represent a macro launched as a sub-process, and it is not iden-
tified as a detailing tool launch cmd.

5.1 Simple behavioral sequence model

Utilizing detectable sequence example outcomes for triggering events of interest to
the evaluator was discussed in section 3.1. A simple detection model is shown in Fig
18. An example count done using the model is shown in Table 20. The SDB was
mined for average repetition transition counts that could be used by the evaluator
as a threshold of interest.

5.1.1 Case: Average transition of repetitive modify

As an example of the output of mining the SDB for modify patterns, the highest
occurrence of modify event traversal was one traversal in 43% of all sequences. When
limiting the scale to a 15% support level, repetitive modify occurred as a traversal
pattern five times or less in a sequence. The tested example threshold creation was
for Repetitive modify, finding cases such as in Table 7., captured from the SDB. In
the mining result before filtering out "modify_button", the average repetitive modify
was obtained from either single tools or in general and used as a problem indicator.
The model example was a simple counting principle, as seen in Fig 18., discovering
sequences that exceed the threshold values set by the evaluator.

57

Figure 18: A simple model representation of counting repetitive modify action
traversal between model 3D view, changing the same attribute. A count thresh-
old triggering alert could be set by the evaluator using average repetitive modify
counts found in SDB.

Table 20: Modify event traversal between model view taken from SDB sequence,
(only relevant actions shown) changing the same attribute several times during single
sequence capture in the detailing tool Rectangular column reinforcement (83).

Pos Timestamp Cmd 1 Cmd 2 Occ
8 29.4.2016 16:49 akit.ValueChange TopCornBarDist2
13 29.4.2016 16:49 modify_button modify_button 1
17 29.4.2016 16:50 akit.ValueChange TopCornBarDist2
18 29.4.2016 16:50 modify_button modify_button 2
26 29.4.2016 16:52 akit.ValueChange TopCornBarDist2
27 29.4.2016 16:52 modify_button modify_button 3
29 29.4.2016 16:52 akit.ValueChange TopCornBarDist2
30 29.4.2016 16:52 modify_button modify_button 4
35 29.4.2016 16:52 akit.ValueChange TopCornBarDist2
36 29.4.2016 16:52 modify_button modify_button 5
37 29.4.2016 16:53 akit.ValueChange TopCornBarDist2
38 29.4.2016 16:53 modify_button modify_button 6

5.1.2 Conclusions: Problem identification

By utilizing the analysis methods and creating a threshold by observing sequen-
tial patterns found for the selected content, the pattern recognition using behavior
models described seems possible. Using the threshold in repetitive patterns, such as
minimum occurrence of five modify actions, there is a possibility to do inspections
of all data or just parts of the SDB, such as the detailing tool of interest. The
results would show all modify traversals over the given threshold. The data reveals
sequential patterns and contains an identifier to see the full sequence contents from
the database, similar to mining without a specific pattern.

58

5.2 Tool start and sequence relevance

Detailing tool command starts are the foundation of the sequence detection discussed
in this paper. Sequence capture is different from recording a single event action, as
it contains indexed actions in chronological order. Definitions of sequences and
sequence starts were discussed mainly in Sections 3.2 and 4.3. Sequence examples
are found in Fig 6., Fig 12. and in Table 17.

5.2.1 Case: Counting sequence starts

In order to evaluate the detailing tool information from the test SDB angle com-
pared to the direct raw data counting of actions, a use case example was created to
show individual start counts of most popular macro detailing tools. The test data
included Action starts and Sequence starts, where both function as a command start
for detailing tools. A total of 219529 action starts were added for comparison. The
total number of sequences that contained a detailing tool sequence was taken from
from test SDB, totalling 12668 individual sequences.

Table 21: Most frequent tool start count listing ordered by action starts.

Tool name Action start Sequence start
Unfold surface (21) 961 328
Border rebar for single edge (93) 943 423
Rectangular column reinforcement (83) 929 596
Embedded anchors (008) 909 677
Array of objects (29) 880 584
Pad footing reinforcement (77) 806 283
Beam reinforcement (63) 801 408
DWG profile to library (6) 788 727
Hole Generation (32) 746 653
Slab bars (18) 677 502

8440 5181

59

Figure 19: detailing tool start action counts. High action count does not correlate
to actions counts that additionally contain tool UI-interaction.

5.2.2 Conclusions: detailing use case differences

The most frequently used detailing tools are shown in Table 21. and Fig 19. There
is no correlation between the detailing tool starts that contain a sequence of UI-
interaction and all found action starts. This might indicate that the tools are used
for more generic tasks and do not require equal UI-interaction.

From these tools, Embedded anchors (008) and DWG profile to library (6) contain
the highest amount of UI-interaction. By viewing the tool interfaces and sequence
examples, both tools are frequently changed to suit the needs of each use case.

60

Additionally, sequential pattern mining of embedded anchors tool revealed68 that
the users utilize the existing pre-defined settings, but still require additional changes.

The tools Unfold surface (21) and Pad footing reinforcement (77) usage contains
the lowest amount of sequences. The tool interfaces and basic use cases might indi-
cate that the Unfold surface might function with generic one-time applied settings.
The pad footing reinforcement tool has multiple dialog and setting options, but by
viewing the structural design domain, pad footings are often similar by design.

From the sequence perspective, the results show highly different action start
counts. Using SDB for statistical comparison, such as the most used detailing tools,
might reveal valuable information for the evaluator. Additionally, users commonly
test different detailing tools and their suitability for the workflow, possibly producing
additional action counts.

5.3 Lower frequency workflow

The spectrum of the different frequency workflows as HCI events was previously
discussed in Section 3.1 and shown in Fig 4. Frequency is also related to different
levels of recognition depth, discussed in Section 4.2 and has played a high overall role
when defining what action data is required to be captured by sequence detection.

5.3.1 Case: Chronologically ordered tool starts

A use case example of lower frequency workflow describing user detailing tool usage
of several days was created using a single user log-file. Table 22. shows the workflow
capture of eight working days. Found actions were calculated together, forming
a count if no other tools were started in-between. The information captured was
not limited to macro-tools only, additionally recording plugin and application start
actions. Sequence detection was isolated as a separate test SDB. As there is a
limitation in the mappings of plugin and application information, sequential pattern
mining based analysis was not applicable.

68See 5.5.1, where mining was performed to reveal detailing paths

61

Table 22: Example capture from SDB containing chronologically ordered user de-
tailing workflow information from eight consecutive working days.

Timestamp Tool Name Count
26.4.2016 7:08 WallLayoutConnector 5

- WallLayoutElementation 2
- WallLayoutOpening 4
- WallLayoutSeam 4
- WallLayout 2
- FloorLayout 2
- SlabReinforcementTool 2
- WallLayout 2
- SandwichWallWindow 4
- SlabReinforcementTool 1
- E Sheet Reference 3
- Stair Drawing Views and Details 7
- FloorTool 1
- PEBMember 1
- FloorLayoutDetailing 1
- Similar Assemblies Filter 1

3.5.2016 17:30 SlopingSlabDrainage 7
8 working days Total 49

5.3.2 Conclusions: Revealing common use workflows

The case example follows evaluator interest based predefined settings. Based on the
interest, different frequencies can be analyzed, for instance ordered start commands
without seeing the actual higher frequency sequence information. To fully utilize
workflow analysis, the plugin and application sequences should be accessible. When
enabled, sequences could be mined for sequential patterns on various levels. In the
example case, a single user log data container can represent a low frequency action
sequence. Different user based low frequency captures could be mined against each
other in search of a common workflow. After a low level frequency lookup, the higher
frequency information of the same data could be mined further for UI-interaction
in detailing tool dialog structure. Similar approach also applies to general software
UI actions.

5.4 Help contents used from detailing tools

Finding help after trying to use the detailing tool UI is considered as a disruption
in both the workflow and the usability. Understanding why the help action is used
connects to the pattern recognition discussed throughout this paper, as users have
the tendency to try to solve issues using several attempts before frustration.

62

5.4.1 Case: Help actions calls inside sequence

Finding occurrences of help action instances was done by searching sequence contents
for "joint_help" cmd. Found cmds were traced back to the original sequence start.
The sequences were counted and listed shown in Table 23. Total number of tools
inspected was the full testing SDB with the sequence count of 12668. A total of 178
help disruptions were discovered, of which the top ten tools represented 47, denoting
to 26% of all searches for assistance in software.

Table 23: User action counts for "joint_help" to search assistance.

Tool Name Count
Pilecap reinforcement (76) 6
Unfold surface (21) 6
DWG profile to library (6) 5
Concrete stairs (65) 5
160000079 (ext0) 5
Rectangular column reinforcement (83) 4
Triangles generation (19) 4
Generation of purlins (50) 4
90000064 (ext1) 4
3D cut (10) 4
Total 47

5.4.2 Conclusions: Cause of usability breakdown

Due to low counts of help usage, the results were re-inspected for a possible cause.
It was discovered that the keyboard quick command "F1" that triggers help while
in the detailing tool UI, is unmapped, and not present in raw event log. Instead,
the user is required to press "Help..." button located tool dialog in the upper right
corner. There was not enough data to perform sequential pattern analysis on the
found sequences to reveal repetitive behavior in the UI structure before disruption.
Shown in Table 23, even the top five tools have the average sequence count of less
than six. There may be other reasons for low help usage. The detailing tool help is
mostly69 loaded from Tekla User Assistance (TUA) web service, also available for
registered users via web browser. Users could be familiarized to search assistance
directly from web pages. Macro tools also have a slightly smaller user base compared
to modern plugins. Plugin help search behavior may be different but cannot be
analyzed before mapping support for plugins.

Having a higher sequence count of each detailing tool help action could enable
ESDA based analysis, revealing small patterns that lead the user seeking for help.
These patterns could, for example, consist of certain parts of dialog attributes and
modify traversal or follow other preliminary models described in Table 7. Identifying

69Some older detailing macros were found to contain local help page content

63

the exact cause enables simple dialog reconstructions or updated help contents for
given tool parts causing disruption.

5.5 Revealing common detailing path

Software use behavior analysis using ESDA approaches is a primary topic in this
paper. Mining UI paths as an example case is constructed upon discussed topics
such as the selection of usability domain approaches in Section 2.2 and 3.2. The
equivalent approaches as modern mining methods are introduced in Section 3.3
and the overall suitability of data and implementation discussed in Section 4. The
example is thought to show scalable potential to other frequencies of events and
parts of the software, where sequential pattern mining could be applied.

5.5.1 Case: Visualization of frequent tool (008) and (83) paths

The first detailing tool analyzed was Embedded anchors (8) shown in Fig. 20. The
analysis process followed the model shown in Fig. 15. A filtered export was made
from the testing SDB to contain only the sequences that were started using the
detailing tool. The resulting analyzed sequence count was 677. Frequent sequence
count was 29, varying in pattern lengths up to four, when using the support of
10%. Using the support of 5% frequent pattern length extended up to six, with 146
patterns. The highlighted area represents the most frequent commands found in the
patterns. Typical use path involves both the blue and cyan path that occur in the
Placement and Input dialogs. The analysis employed additional filtering of "load"
and "get_menu" actions due to the high utilization of predefined settings.

64

Figure 20: BIDE+ and TKS based results visualization of frequent user work path
in Embedded anchors (8) tool. Path traversal is shown as numbers.

The second detailing tool analyzed was Rectangular column reinforcement (83)
shown in Fig 21. Again, the analysis process followed the model shown in Fig. 15.
A filtered export was made from testing the SDB to contain only the sequences that
were started using the detailing tool. Resulting analyzed sequence count was 596.
Frequent sequence count was 43, varying in pattern lengths up to three when using
the support of 10%. Using support of 5%, frequent pattern length extended up to
6, with 244 patterns. The highlighted area represents the most frequent commands
found in the patterns. The blue and green paths were the most popular ones, often
continued by moving from the Main bars to the Side bars tab, the path marked here
with cyan.

65

Figure 21: BIDE+ and TKS results visualization of frequent user work path in
Rectangular column reinforcement (83) tool. Path traversal is shown as numbers.

5.5.2 Conclusions: Found software use behavior

The sequential pattern mining test implementation in this paper reveals software
use behavior that concentrates on distinct detailing tools. The tested approach is
also functional when searching the entire SDB for repetitive patterns that reveal the
highest occurring patterns in all data, traceable back to source sequences. However,
inspections to test SDB show that the majority of different detailing tools contain
unique names for dialog content. As a result, different tools are not comparable for
repetitive behavior.

Focusing on the elimination of the highly occurring irrelevant cmds after the first
analysis iterations tends to output more valuable information of the detailing work-
flow. The additional filtering done to Embedded anchors (8) clarified the analysis.
Filtering should be done in careful iterations as it helps understand the effect of
each output sequential pattern information.

The sequence lengths and variance found after the mining showed some cen-
tralization of workflows. A single tool showed different usage patterns, making the
overall repetitive pattern support lower and more fragmented. This might be due
to the test data containing global usage sequences. The analysis could be more ac-
curate if the SDB would be targeted to selected user groups, such as organizations
or even parts of an organization to single user. Using this approach, the detailing
task variation due to global differentiation could be minimized.

66

5.6 Prediction of detailing path

Predicting the user’s next action in the detailing workflow was discussed as contin-
uation for sequential pattern mining in Section 2.2.4. Selecting the approach and
utilizing the prediction of next user actions in detailing workflow was discussed in
Section 3.3.3. The example of prediction aims to show the scalable potential of uti-
lizing sequence training based learning approaches for both interface related actions
and background processes.

5.6.1 Case: Prediction visualization of tool (63)

Sequence prediction examples were tested for the detailing tool in three iterations.
The analysis process followed the model shown in Fig 15., using a modified70 CPT+
prediction approach with two different length prefixes. From testing SDB, a fil-
tered export was made to contain only the sequences that were started by using
the detailing tool. Resulting analyzed sequences count was 408. Additional filtering
was made to reduce highly occuring single actions. Filtered cmd "bar5_spacing" is
shown in Fig 22., labeled as P3 and in Fig 23., labeled as P1. Number of distinct
items was 914, item-sets per sequence 16, distinct items per sequence 9.3, and oc-
currences for each item 1.7. The resulting predictivity found was below four actions.
Following predicted actions were looping duplicate single action suggestions caused
by repetitive traversal stacking.

For the third iteration, a new filtering was utilized for the SDB by removing
repetitive traversals in each sequence. As a result, no duplicate items appeared twice
in the same sequence, arranged in first appearance order. Number of distinct items
was 915, item-sets per sequence 9.4, distinct items per sequence 9.3. The resulting
predictivity had no issues of single action looping.

70Source change that re-applied the prediction by user given length, using a previous prediction
prefix and output prediction result

67

Figure 22: CPT+ sequence prediction of detailing tool Beam reinforcement (63).
Prediction outcome done using the prefix length of three.

First prefix length path in Fig 22., contains three actions and the second, shown
in Fig 23., contains eight actions, boths shown in blue color. Corresponding pre-
diction for the next items use cyan color marked with a symbol, prediction path P ,
followed by arrow path, square attribute marking and triangular marking represent-
ing exact prediction action. The prefixes mimic the user’s detailing work, changing
a load bearing concrete beam top and bottom reinforcing attributes. Cmds "Ap-
ply_button", "Modify_button" and "tw" were filtered beforehand. Tab changes, and
user "modify-apply-ok" routine were assumed and shown in dotted lines instead of
actual prediction entries.

68

Figure 23: CPT+ sequence prediction of detailing tool Beam reinforcement (63).
Prediction outcome done using the prefix length of eight.

5.6.2 Conclusions: Prediction of workflow

The sequential patterns found in the data are trainable for pattern prediction. The
CPT+ algorithm was able to predict test application data successfully. The pre-
diction was also time efficient.71 In the test case with the prefix length of three,
the single next action duration using 408 sequences was 16 ms, with 2 + 10 action

71Prediction was run both on Intel Core i7-4910MQ running Windows, and Intel Core i7-4770K
running Linux. GPU’s were not utilized for testing

69

total prediction time of 110 ms. In the test case with the prefix length of eight,
the prediction duration for a single sequence was 15 ms, with 8 + 10 action total
prediction time of 4799 ms. This indicates that the prediction approach could be
suitable for real-time application predicting.

Based on inspection, the prediction of the next attribute fields was in line with the
prefix design task. Common actions in concrete beam detailing include reinforcing
top and bottom section, followed by stirrups, especially middle spacing and typical
high shear force areas after beam supporting points. Based on the inspection done
using BIDE+, prediction using a short prefix seems to follow the most used overall
commands since there is high variance in possible actions after a small prefix based
search in the prediction tree. This was also noticeable in Fig 22., as a more unnatural
workflow path, indicated by unnecessary tab changes. A longer prefix in Fig 23.,
seemed to predict real user workflow more accurately. As described in Section 3.3.3,
found matches of the longer prefixes in the prediction tree decrease action variation
and focus on predicting common behavior after a common prefix path.

To improve accuracy of the approach, further implementation is theorized. This
require use of assigning model object information as prefix. In a sequence this would
denote to prefix with itemset such as:

s1 = 〈{a, b, c}, {d}, {e}, {f}〉

Instance of {a, b, c} in this case is selected as any model object properties, for
example "Name","Profile" or "Material"72 and the rest as detaling tool interactions.
The prediction would contain link between 3D-model objects subject to detaling and
user detaling workflow initiated by the user. For CPT, this could further reduce
amount of possible common sequence formation found in a prediction tree, focusing
to previous sequences with similar object properties. A possible outcome could
have impact on predicting correct structural detaling information based on object
properties ultimately enabling accurate prediction of design values.

During testing, two challenges related to prediction accuracy and length were
discovered. Similar to the previous cases using sequential patter mining, the tool
Beam reinforcement (63) showed variance in workflows, resulting in fragmented
sequence contents. The analysis could be more accurate if the SDB was targeted
to selected user groups, such as organizations or even parts of an organization to
single users. Additionally, filtered repetitive modify traversals only filter out single
events from the SDB.73 This results in many occurrences of actions stacking after
one another. During prediction tree creation, the path traversal of the found prefix
may contain stacked duplicates. Prediction continued to suggest the same actions.
A solution was to filter out repetitive traversal caused duplicates in each sequence.

72See Test Application model objects definitions in Section 4.1
73See Table 20., where non-filtered modify traveral from the test data forms a high count of

single cmds. A "Modify_button" filtered event would cause the stacking of "TopCorenBarDist2"
command

70

As a drawback, the filtered SDB loses information of repetitive behavior. Also,
the filtering builds the sequence in first appearance order. Weighted position based
ordering could allow for a more natural sequence build.

71

6 Discussion and conclusion
This section will summarize and examine the research work done, first by going
through the research questions addressed in Section 1.3. After reviewing the ques-
tions, the validity and reliability of the study is discussed in retrospect. At the end
of the section, future implementation requirements towards the test application and
further research work are introduced.

6.1 Answers to research questions

The primary questions addressed in this thesis are answered as follows:

RQ1. For what are the found exploratory sequential data analysis (ESDA) usability
methods best feasible in contemporary BIM applications?

Proposed ESDA methods collections in Ivory and Hearst (2001); Hilbert and
Redmiles (2000); Cook and Wolf (1995); Sanderson and Fisher (1994); Cuomo
(1994), previously discussed in Section 2.4, point out that the exploratory sequential
data analysis results often are not anticipated but instead reveal how the software
is used. Based on the inspection of the collection of available methods and revealed
sequential test data74 derived from the test application specific workflow sequence
detection introduced in Section 4.4, there is a positive indication that the selected
approaches Fisher’s Cycles, LSA and MRP type ESDA, discussed in usability stud-
ies, and their comparative applied modern mining approaches BIDE+ and TKS75

are feasible in contemporary BIM applications and the revealing of user workflow
and repetitive software use behavior. The test SDB under observational analysis
also seems to confirm the used working hypothesis introduced in Section 4.1, of
general user workflow order while performing common detailing tasks.

RQ2. What kind of software usage information is revealed from sequential data?

Existing study in usability, introduced in Sections 2.2, and 2.3, propose that
sequential data from repetitively occurring sequences of user actions show task in-
formation, which, when further analyzed, could reveal specific locations or action
patterns causing causing usability related issues or disruptions in existing software
systems. This background information was also used to create preliminary dis-
ruption outcome candidates for model creation, shown in Table 7., as information
revealing examples. On the basis of the automated usability analysis method in-
spections76, the selected sequential data utilizing approaches Fisher’s Cycles, LSA
and MRP, introduced in Section 3.2, all reveal occurrences of sequential patterns
from collections of sequences that are chosen by the evaluator and could use different
triggering for sequence start and ending. The existing studies propose that captured
sequential patterns could reveal diverse frequent workflow information.

74See test data sequence examples in Fig. 6., Fig. 12. and in Table 17.
75See used mining approaches in Section 3.3
76See inspected methods in Section 2.4

72

Depending on the data filtering or model used in Secton 5., the proposed ESDA
comparative mining approaches used against the captured detailing sequence SDB
during test implementation are capable of revealing various kinds of information.
For the test examples it was possible to 1) reveal model based usability disruption
occurrences using sequential pattern mining, as shown in example 5.1, 2) utilize
SDB statistically for gathering information about various sequence related counts
and workflow information, as shown in examples 5.2, 5.3, and 5.4, and 3) utilize
sequential pattern mining to reveal common detailing workflow, as shown in example
5.5.

RQ3. How can the obtained information be utilized in prediction?

Prediction that utilizes sequence data was introduced in Section 2.2.4. Imple-
mentable prediction model approach CPT+ was introduced in Section 3.3.3, predict-
ing the next item of a found pattern prefix that is not introduced previously during
any sequence training. With minor modification, the model was able to efficiently
train and predict using available sequences in test SDB, as shown in example 5.6.
Prediction done by utilizing matching given prefix and common sequential patterns
found in SDB can minimize the variation of available possibilities and suggest more
similar task related actions instead of counting overall action occurrences.

6.2 Validity and reliability

In terms of validity and reliability, the results of this paper can be divided into two
distinct categories. In the first category, the inspections, analysis and selection of
the existing automated usability analysis theorized approaches followed a qualitative
path. Also, the results from sequential pattern mining were based on observation of
commonly occurring patterns with high support. In the second category I have ad-
dressed that the amount of data77 analyzed in this work is adequate when compared
with commonly78 used testing datasets in Fournier-Viger et al. (2014b). Also, to my
knowledge there are no minimal functional thresholds for the used approaches.

In the first category, selection of suitable approaches was guided by existing
studies and preliminary requirements for the test application. The coverage of ap-
proaches in the usability paradigm was 23 different approaches, listed in Table 6.
It was found that there was a relatively small amount of information found after
Ivory and Hearst’s collection79 of automated evaluation techniques. In retrospective,
newer studies for modern software system automated usability analysis would have
provided better comparative reasoning throughout the paper. Quite the contrary,
from a pure data analysis perspective, the available approaches possibly adept for
further investigation were substantial. In this case, the depth required to understand
different algorithmic approaches, comparative to found usability studies ESDA ap-
proaches, and the implementation for testing resulted in time strain, reducing the

77See Section 4.3, Available Data
78Datasets tested for BIDE+, TKS and CPT+ in Fournier-Viger et al. (2014b)
79See collection in Ivory and Hearst (2001)

73

possibility for more extensive searches.

In the second category, using authentic work based workflow data was used as
the basis for all results. Sequence capture was manually validated against raw event
logs, and after iterative adjustments, both the detection algorithm and the used
recording scope80 led to the situation where there was no loss of detailing tool related
data. As the recording scope was broader, the missing plugin and applications usage
information reduced the initial sequence size. The correct mappings and using the
initial 26.3 GB of raw user event data would have significantly increased the sequence
yield.

The last data-related noticeable element regarding this study was the quality of
the obtained data. The extent to which the raw event data is from testing users or
doing something other than actual detailing work, such as developing new tools or
processes, can only be argued. However, the issues of this data should decrease when
increasing the data-set size, as overall, the users of the software mostly produce real
user worfklow data, resulting from the natural usage of the inspected tools. Also,
as discussed previously in the results of the common detailing path in 5.5, and the
prediction of the detailing path 5.6, the currently obtained event data is global,
causing some increased variance in common detailing use behaviour.

6.3 Future work

The results and implementations done during this thesis should offer a range of
scalable use cases and subjects for future work. During the course of the study,
functional ESDA usability analysis approaches suitable for contemporary BIM ap-
plications were found. The approaches were also tested and provided information
of how the software is used. Additionally, the revealed information has opened
possibilities for predicting user actions in software.

As minimal requirements I will first propose future work that is targeted for
the test application. Utilizing this paper’s results, simple graphical application to
produce evaluator desired basic filtering, filtering models creation and visualiza-
tion should be constructed. As described previously in Section 2.2, Deployment or
the production of "quantitative or qualitative summaries" is a fundamental part of
any analysis process. At current state, the implementations are run in a source
version that is difficult to use, and the visualizations are evaluator created, based
on translated event action results of sequential data mining. Overall, the example
visualizations provided in Section 5., could work as templates for development.

A next step for test application after creating a entry point for usability eval-
uators, is to map all missing actions from the recorded raw-data, where most im-
portant are Plugins, Applications, all their corresponded attribute values81 content

80See the scope of data both in Section 1.2, and 4.3
81In this context, user applied attribute values in textboxes, comboboxes and test application

specific catalog-selection boxes

74

from users and newly created WPF-commands. This would open up wide-ranging
analysis possibilities such as discussed in 5.3, as lower frequency workflow capture.
Additionally, the test application drawing and documentation module should also
be considered to be mapped. Utilizing all available user-actions could enable full
analysis software interface and interactions.

As future research work related to obtained data, I propose further inspections to-
wards statistical analysis and verification. Further validation could be done towards
the quality and possible use cases of statistical data obtained directly from SDB or
the resulting sequential pattern mining targeted to BIM workflow. Also, work to-
wards validating prediction related accuracy by incorporating common ethnographic
usability testing methods is considered an interesting topic. This might also lead to
the discovery of new use cases for sequential analysis based prediction.

For a direct continuum in method implementations and their further proceed-
ings, I propose additional development, particularly towards the prediction of user
workflow. The current implementation was able to predict and mimic user work-
flow as shown in example 5.6. As a next step, it would be beneficial to investigate
how to incorporate model side detailing tool object selections as prefixes to enable
structural object based categorization as a part of prediction. Obtaining additional
prefix information from what the user is currently interacting with, could open sev-
eral applications for sequential pattern prediction. Applications naturally include
detailing workflow, but additionally, highly repetitive work in test application exists
when creating structural documentations such as drawings.

75

References
Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules
in large databases. In Proceedings of the 20th International Conference on Very
Large Data Bases, VLDB ’94, pages 487–499, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Agrawal, R. and Srikant, R. (1995). Mining sequential patterns. In Proceedings
of the Eleventh International Conference on Data Engineering, ICDE ’95, pages
3–14, Washington, DC, USA. IEEE Computer Society.

Akers, D., Jeffries, R., Simpson, M., and Winograd, T. (2012). Backtracking events
as indicators of usability problems in creation-oriented applications. ACM Trans.
Comput.-Hum. Interact., 19(2):16:1–16:40.

Alpaydin, E. (2014). Introduction to Machine Learning. The MIT Press, 3nd edition.

Behrens, J. T. (1997). Principles and procedures of exploratory data analysis. Psy-
chological Methods, 2(2):131 – 160.

Bramer, M. (2007). Principles of Data Mining (Undergraduate Topics in Computer
Science). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Brooke, J. (2013). Sus: A retrospective. J. Usability Studies, 8(2):29–40.

Cook, J. E. and Wolf, A. L. (1995). Automating process discovery through event-
data analysis. In Proceedings of the 17th International Conference on Software
Engineering, ICSE ’95, pages 73–82, New York, NY, USA. ACM.

Cuesta, H. (2013). chapter Practical Data Analysis.

Cuomo, D. L. (1994). Understanding the applicability of sequential data analysis
techniques for analysing usability data. Behaviour & Information Technology,
13(1-2):171–182.

Dix, A., Finley, J., Abowd, G., and Beale, R. (1998). Human-computer Interaction
(2Nd Ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Eastman, C., Teicholz, P., Sacks, R., and Liston, K. (2008). BIM Handbook: A Guide
to Building Information Modeling for Owners, Managers, Designers, Engineers
and Contractors. Wiley Publishing.

Ehrlich, K. and Rohn, J. A. (1994). Cost-justifying usability. chapter Cost Justifica-
tion of Usability Engineering: A Vendors’s Perspective, pages 73–110. Academic
Press, Inc., Orlando, FL, USA.

Ericsson, K. A. and Simon, H. A. (1993). Protocol analysis verbal reports as data.

Fisher, C. (1991). Protocol Analyst”s Workbench: Design and evaluation of
computer-aided protocol analysis.

76

Fisher, C. and Sanderson, P. (1993). Exploratory sequential data analysis: Tradi-
tions, techniques and tools. SIGCHI Bull., 25(1):34–40.

Fournier-Viger, P., Chun-Wei Lin, J., Kiran, R. U., Koh, Y. S., and Thomas, R.
(2017). A survey of sequential pattern mining. Ubiquitous International, 1(1):54–
76.

Fournier-Viger, P., Gomariz, A., Campos, M., and Thomas, R. (2014a). Fast Vertical
Mining of Sequential Patterns Using Co-occurrence Information, pages 40–52.
Springer International Publishing, Cham.

Fournier-Viger, P., Gomariz, A., Gueniche, T., Mwamikazi, E., and Thomas, R.
(2013). TKS: Efficient Mining of Top-K Sequential Patterns, pages 109–120.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu., C., and Tseng,
V. S. (2014b). SPMF: a Java Open-Source Pattern Mining Library. Journal of
Machine Learning Research (JMLR), 15:3389–3393.

Gould, J. D. and Lewis, C. (1985). Designing for usability: Key principles and what
designers think. Commun. ACM, 28(3):300–311.

Grudin, J. (1991). Systematic sources of suboptimal interface design in large product
development organizations. Hum.-Comput. Interact., 6(2):147–196.

Guan, Z., Lee, S., Cuddihy, E., and Ramey, J. (2006). The validity of the stimulated
retrospective think-aloud method as measured by eye tracking. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’06, pages
1253–1262, New York, NY, USA. ACM.

Gueniche, T., Fournier-Viger, P., Raman, R., and Tseng, V. S. (2015). Cpt+:
Decreasing the time/space complexity of the compact prediction tree. In Proc.
19th Pacific-Asia Conf. Knowledge Discovery and Data Mining, pages 625–636.
Springer.

Gueniche, T., Fournier-Viger, P., and Tseng, V. S. (2013). Compact prediction tree:
A lossless model for accurate sequence prediction. In Proc. 9th Intern. Conference
on Advanced Data Mining and Applications, volume 2, pages p.177–188. Springer.

Han, J. (2012). Data Mining: Concepts and Techniques. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA.

Hartwig, F. (1979). chapter Exploratory Data Analysis.

Helfrich, B. and Landay, J. A. (1999). Quip: Quantitative user interface profiling.

Hilbert, D. M. and Redmiles, D. F. (1998). An approach to large-scale collection of
application usage data over the internet. In Proceedings of the 20th International
Conference on Software Engineering, ICSE ’98, pages 136–145.

77

Hilbert, D. M. and Redmiles, D. F. (2000). Extracting usability information from
user interface events. ACM Comput. Surv., 32(4):384–421.

ISO-20282-2:2013 (2013). SO/TS 20282-2:2013 Usability of consumer products and
products for public use. ISO Standard, Part 2.

Ivory, M. Y. and Hearst, M. A. (2001). The state of the art in automating usability
evaluation of user interfaces. ACM Comput. Surv., 33(4):470–516.

Karat, C.-M. (1994). Cost-justifying usability. chapter A Business Case Approach
to Usability Cost Justification, pages 103–140. Academic Press, Inc., Orlando, FL,
USA.

Lecerof, A. and Paterno, F. (1998). Automatic support for usability evaluation.
IEEE Transactions on Software Engineering, 24(10):863–888.

Macleod, M. and Rengger, R. (1993). The development of drum: A software tool for
video-assisted usability evaluation. In In Proceedings of HCI’93, pages 293–309.
Cambridge University Press.

Mansouri-Samani, M. and Sloman, M. (1997). GEM: a generalized event monitoring
language for distributed systems. Distributed Systems Engineering, 4(2):96–108.

Mayhew, D. (1999). The Usability Engineering Lifecycle: A Practitioner’s Handbook
for User Interface Design. Interactive Technologies Series. Morgan Kaufmann
Publishers.

Mayhew, D. J. and Tremaine, M. (1994). Cost-justifying usability. chapter A Basic
Framework, pages 41–101. Academic Press, Inc., Orlando, FL, USA.

Mooney, C. H. and Roddick, J. F. (2013). Sequential pattern mining – approaches
and algorithms. ACM Comput. Surv., 45(2):19:1–19:39.

Muller, M. J., Dayton, T., and Root, R. (1993). Comparing studies that com-
pare usability assessment methods: An unsuccessful search for stable criteria.
In INTERACT ’93 and CHI ’93 Conference Companion on Human Factors in
Computing Systems, CHI ’93, pages 185–186, New York, NY, USA. ACM.

Myatt, G. J. and Johnson, W. P. (2014). Making Sense of Data I. ProQuest Ebook
Central.

Nielsen, J. (1992). Finding usability problems through heuristic evaluation. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’92, pages 373–380, New York, NY, USA. ACM.

Nielsen, J. (1993). Usability engineering. Morgan Kaufmann, USA.

Nielsen, J. and Landauer, T. K. (1993). A mathematical model of the finding of
usability problems. In Proceedings of the INTERACT ’93 and CHI ’93 Conference
on Human Factors in Computing Systems, CHI ’93, pages 206–213, New York,
NY, USA. ACM.

78

Nielsen, J. and Molich, R. (1990). Heuristic evaluation of user interfaces. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’90, pages 249–256, New York, NY, USA. ACM.

Olson, G. M., Herbsleb, J. D., and Rueter, H. H. (1994). Characterizing the se-
quential structure of interactive behaviors through statistical and grammatical
techniques. Hum.-Comput. Interact., 9(4):427–472.

Pitkow, J. and Pirolli, P. (1999). Mininglongestrepeatin g subsequencestopredict
worldwidewebsurfing. In Proc. USENIX Symp. On Internet Technologies and
Systems, page 1.

Rajanen, M. and Iivari, N. (2007). Human-Computer Interaction – INTERACT
2007: 11th IFIP TC 13 International Conference, Rio de Janeiro, Brazil, Septem-
ber 10-14, 2007, Proceedings, Part II, chapter Usability Cost-Benefit Analysis:
How Usability Became a Curse Word?, pages 511–524. Springer Berlin Heidel-
berg, Berlin, Heidelberg.

Rasmussen, J., Kim, and Vicente, J. (1989). Coping with human errors through
system design: Implications for ecological interface design. International Journal
of Man-Machine Studies, pages 517–534.

Rauterberg, M. (1993). Amme: an automatic mental model evaluation to analyse
user behaviour traced in a finite, discrete state space. Ergonomics, 36(11):1369–
1380. PMID: 8262030.

Rieman, J., Franzke, M., and Redmiles, D. (1995). Usability evaluation with the cog-
nitive walkthrough. In Conference Companion on Human Factors in Computing
Systems, CHI ’95, pages 387–388, New York, NY, USA. ACM.

Rosenbaum, S. (1989). Usability evaluations versus usability testing: when and
why? IEEE Transactions on Professional Communication, 32(4):210–216.

Rosenblum, D. S. (1991). Specifying concurrent systems with tsl. IEEE Software,
8(3):52–61.

Rubin, J. (1994). Handbook of Usability Testing: How to Plan, Design, and Conduct
Effective Tests. John Wiley & Sons, Inc., New York, NY, USA, 1st edition.

Sackett, G., of Child Health, N. I., (U.S.), H. D., of Washington. Child Development,
U., and Center, M. R. (1978). Observing Behavior: Data collection and analysis
methods. Observing Behavior: Proceedings of the Conference, Application of
Observational/ethological Methods to the Study of Mental Retardation, Held at
Lake Wilderness, Washington in June, 1976. University Park Press.

Sammut, C. and Webb, G. I., editors (2010). Sequential Data, pages 902–902.
Springer US, Boston, MA.

79

Sanderson, P. M. and Fisher, C. (1994). Exploratory sequential data analysis: Foun-
dations. Hum.-Comput. Interact., 9(4):251–317.

Scarpa, B. and Azzalini, A. (2012). Data Analysis and Data Mining. Oxford Uni-
versity Press, USA. Oxford University Press, USA.

Schmettow, M. (2008). Heterogeneity in the usability evaluation process. In Proceed-
ings of the 22Nd British HCI Group Annual Conference on People and Computers:
Culture, Creativity, Interaction - Volume 1, BCS-HCI ’08, pages 89–98, Swinton,
UK, UK. British Computer Society.

Schmettow, M. (2012). Sample size in usability studies. Commun. ACM, 55(4):64–
70.

Siochi, A. (1989). Computer-based User Interface Evaluation by Analysis of Repeat-
ing Usage Patterns in Transcripts of User Sessions. Virginia Polytechnic Institute
and State University.

Siochi, A. C. and Ehrich, R. W. (1991). Computer analysis of user interfaces based
on repetition in transcripts of user sessions. ACM Trans. Inf. Syst., 9(4):309–335.

Siochi, A. C. and Hix, D. (1991). A study of computer-supported user interface eval-
uation using maximal repeating pattern analysis. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’91, pages 301–305,
New York, NY, USA. ACM.

Sun, R. and Giles, L. C. (2001). Sequence Learning : Paradigms, Algorithms, and
Applications, volume 1828 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg.

Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley.

Tzvetkov, P., Yan, X., and Han, J. (2005). TSP: mining top-k closed sequential
patterns. Knowl. Inf. Syst., 7(4):438–457.

Wang, J. and Han, J. (2004). Bide: Efficient mining of frequent closed sequences.
In Proceedings of the 20th International Conference on Data Engineering, ICDE
’04, pages 79–, Washington, DC, USA. IEEE Computer Society.

Wang, J., Han, J., Lu, Y., and Tzvetkov, P. (2005). Tfp: an efficient algorithm
for mining top-k frequent closed itemsets. IEEE Transactions on Knowledge and
Data Engineering, 17(5):652–663.

Zettlemoyer, L. S., St. Amant, R., and Dulberg, M. S. (1999). Ibots: Agent control
through the user interface. In Proceedings of the 4th International Conference on
Intelligent User Interfaces, IUI ’99, pages 31–37, New York, NY, USA. ACM.

	Abstract (in Finnish)
	Abstract
	Preface
	Contents
	Commonly Used Abbreviations
	Introduction
	Justification from value standpoint
	Scope of the study and data
	Research questions and structure

	Theoretical background
	Usability studies
	Usability Engineering
	Usability evaluation
	Evaluator importance

	Data analysis
	Exploratory data analysis
	Sequential data analysis
	Sequential pattern mining
	Sequence predicting

	User events and data
	Automated evaluation in usability studies

	Selected approaches for implementation
	Pattern recognition using behavior models
	Detection techniques in usability research
	Fisher's Cycles
	Lag Sequential Analysis
	Maximal Repeating Patterns

	Selection of mining algorithms
	BIDE+
	Top-K Sequential pattern mining
	Compact Prediction Tree+

	Implementation of methods
	Test application
	Depth of recognition
	Available data
	Test implementation

	Results
	Simple behavioral sequence model
	Case: Average transition of repetitive modify
	Conclusions: Problem identification

	Tool start and sequence relevance
	Case: Counting sequence starts
	Conclusions: detailing use case differences

	Lower frequency workflow
	Case: Chronologically ordered tool starts
	Conclusions: Revealing common use workflows

	Help contents used from detailing tools
	Case: Help actions calls inside sequence
	Conclusions: Cause of usability breakdown

	Revealing common detailing path
	Case: Visualization of frequent tool (008) and (83) paths
	Conclusions: Found software use behavior

	Prediction of detailing path
	Case: Prediction visualization of tool (63)
	Conclusions: Prediction of workflow

	Discussion and conclusion
	Answers to research questions
	Validity and reliability
	Future work

	References

