
Large-Scale Measurement of Real-Time
Communication on the Web

Shaohong Li

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 20.11.2017

Thesis supervisor:

Prof. Patric Östergård

Thesis advisor:

PhD. Pasi Sarolahti

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/145239442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Shaohong Li

Title: Large-Scale Measurement of Real-Time Communication on the Web

Date: 20.11.2017 Language: English Number of pages: 6+51

Department of Communications and Networking

Professorship: Networking Technology

Supervisor: Prof. Patric Östergård

Advisor: PhD. Pasi Sarolahti
Web Real-Time Communication (WebRTC) is getting wide adoptions across the
browsers (Chrome, Firefox, Opera, etc.) and platforms (PC, Android, iOS). It
enables application developers to add real-time communications features (text
chat, audio/video calls) to web applications using W3C standard JavaScript APIs,
and the end users can enjoy real-time multimedia communication experience from
the browser without the complication of installing special applications or browser
plug-ins.

As WebRTC based applications are getting deployed on the Internet by thousands
of companies across the globe, it is very important to understand the quality of
the real-time communication services provided by these applications. Important
performance metrics to be considered include: whether the communication session
was properly setup, what are the network delays, packet loss rate, throughput, etc.

At Callstats.io, we provide a solution to address the above concerns. By integrat-
ing an JavaScript API into WebRTC applications, Callstats.io helps application
providers to measure the Quality of Experience (QoE) related metrics on the end
user side. This thesis illustrates how this WebRTC performance measurement
system is designed and built and we show some statistics derived from the collected
data to give some insight into the performance of today’s WebRTC based real-time
communication services. According to our measurement, real-time communication
over the Internet are generally performing well in terms of latency and loss. The
throughput are good for about 30% of the communication sessions.

Keywords: Measurement, Quality of Experience, Real-Time Communications,
WebRTC

iii

Preface
I want to thank my advisor Dr. Pasi Sarolahti and my supervisor Professor Patric
Östergård for their guidance and valuable feedbacks on the thesis writing. Thanks
to Professor Jörg Ott for creating a context within that the idea of WebRTC mea-
surement platform is brewed. Many thanks go to my colleagues at Callstats.io:
Varun Singh, Marcin Nagy, Karthik Budigere, Eljas Alakulppi, Lennart Schulte and
everyone else, for the great teamwork that transformed the SaaS idea into a reliable
service that helps hundreds of companies around the world to monitor and manage
the quality aspects of their WebRTC services.

Espoo, 20.11.2017

Shaohong Li

iv

Contents
Abstract ii

Preface iii

Contents iv

Abbreviations vi

1 Introduction 1
1.1 Background . 1
1.2 Goals . 1
1.3 Organization . 2

2 Real-Time Communication and WebRTC 3
2.1 Real-Time Communication . 3

2.1.1 Signaling Protocol . 4
2.1.2 Media Transport Protocol . 6
2.1.3 Signaling and Media Paths in RTC 8
2.1.4 NAT traversal for RTC . 8

2.2 Web Real-Time Communication (WebRTC) 11
2.2.1 WebRTC History . 12
2.2.2 WebRTC Stack . 13
2.2.3 WebRTC Application . 14
2.2.4 WebRTC basic call flow . 16
2.2.5 WebRTC Protocols . 16
2.2.6 WebRTC Use Cases . 18
2.2.7 WebRTC APIs . 18

3 Quality of Real-Time Communication 23
3.1 Quality Metrics . 23
3.2 Quality Measurement in WebRTC . 26

3.2.1 Statistics API . 26
3.2.2 Network Connection State Tracking 27

4 WebRTC Performance Measurement System 29
4.1 Performance Monitoring as a Service 29
4.2 System Architecture . 30
4.3 Measurement Probe . 31
4.4 Authentication Service . 31
4.5 Collector and Session Management 32
4.6 Storage Component . 32
4.7 Analytics Component . 33
4.8 Other Components . 33

v

5 Performance Measurement Observations 35
5.1 Endpoint Statistics . 36
5.2 Media Statistics . 37
5.3 Network Statistics . 37
5.4 ICE Performance . 40

5.4.1 Gathered ICE Candidates . 40
5.4.2 Active ICE Candidates . 41
5.4.3 ICE Latencies . 42

5.5 Signaling Overhead . 44

6 Summary 45

References 47

A PeerConnection API Usage Example 50

vi

Abbreviations
DTLS Datagram Transport Layer Security
ICE Interactive Connectivity Establishment
IETF Internet Engineering Task Force
ISP Internet Service Provider
PSTN Public switched telephone network
QoS Quality of Service
QoE Quality of Experience
RFC Request for Comments
RTC Real-time Communications
RTCP Real-Time Transport Control Protocol
RTP Real-time Transport Protocol
SaaS Software as a Service
SCTP Stream Control Transmission Protocol
SDP Session Description Protocol
SRTP Secure Real-time Transport Protocol
SSRC Synchronization Source (identifier)
STUN Session Traversal Utilities for NAT
TURN Traversal Using Relays around NAT
UDP User Datagram Protocol
URL Uniform Resource Locator
VoIP Voice over IP
W3C World Wide Web Consortium
WebRTC Web Real-Time Communications

1

1 Introduction
Real-time communication applications are booming these days. Usage of popular
services such as Skype, Facebook Messenger, Google Hangout, WeChat, etc., has
become an indispensable part of our everyday life. For businesses, these tools and
applications help increase collaborations and productivity while saving lots of travel
costs and energy consumption. On the personal front, they make it easy for people
to keep the social bonds with friends and relatives long distance apart.

As more and more real-time communication applications are emerging and com-
peting for more user engagement and market shares, it is natural for the providers
of these applications to consider not only the features but also the quality of the
services they are offering and seeking ways to improve the end user’s experience. The
main topic of this thesis is about the performance measurement system for this type
of real-time communication services.

1.1 Background
WebRTC, which stands for Web Real-Time communication, is the latest addition
to real-time communication developer’s toolbox. This technology was initiated by
Google and coordinated by working groups in bothW3C and IEFT for standardization.
W3C specifications define standard JavaScript APIs to let developers add real-time
communication capabilities to web applications running within the browser. And the
working group in IETF defines details of WebRTC at the protocol level. Following
the standards, different browsers or library implementations should be able seamlessly
inter-operate with each other. The main benefits for end user is to leverage the
ubiquitous existence of web browsers to dynamically load and run web applications
without the need to install any special software or plug-ins. As the technology
is standardized and easily accessible, application developers can either write web
application or standard-alone applications using WebRTC library implementations.

As more and more web based applications are adopting WebRTC technologies,
there is a common need among these applications to understand the end user’s
quality of experience. For most web developers, firstly there is a learning curve to
understand all the factors related to multimedia communication, secondly it is a
nontrivial investment of time and effort to build, scale and maintain this kind of
measurement and analysis system in house. Therefore, a cloud-based service which
can help these application providers to perform such measurement and analysis will
be very desirable.

1.2 Goals
There are two major goals we want to achieve with this thesis:

• We will motivate why a Software-as-a-Service (SaaS) approach to monitor
WebRTC application performance is doable, and we show how we built such a
system at Callstats.io.

2

• With the SaaS platform at Callstats.io, we have helped hundreds of application
service providers to perform real-time communication performance measure-
ment. We use a subset of the measurement data to draw a big picture of
how real-world web based real-time communication performance looks like.
Metrics we show include things such as latency, loss, throughput, NAT traversal
performances, etc.

1.3 Organization
The thesis is organized as following:

• In Chapter 2, we introduce the basics of real-time communication, which
include call signaling and media transport set up, etc. Then we introduce the
basics of WebRTC technologies and how it can be used to implement real-time
communication applications within web browsers.

• In Chapter 3, we introduce the various factors that can affect the end user’s
experience during a communication session and how those metrics can be
measured for WebRTC calls.

• In Chapter 4, we explain the motivation for building a SaaS system that can
help WebRTC application providers to monitor the quality aspects of their
services. We show the architectural design of such a system at Callstats.io.

• In Chapter 5, we use a subset of the measurement data collected at Callstats.io
to draw a big picture about the performance of today’s web based real-time
communication services in terms of various metrics.

• In the final Chapter, we summarize our findings, list our limitations and point
out some further studies that shall be done to gain more insight from the
measurement data.

3

2 Real-Time Communication and WebRTC
The Internet was created as a medium for people to exchange data. These data can
be emails, files or multimedia content such as audio or video streams. Real-time
communication (RTC) over the Internet requires that the audio/video contents are
captured, exchanged and rendered with minimal delays so that the users can enjoy
an interactive conversational experience. In this chapter we will first introduce,
from networking technology perspective, the key components that enabled real-time
communication applications. Then we will introduce how RTC can be implemented
within the web browser (the most ubiquitously installed application).

2.1 Real-Time Communication
Back in 1973, Network Voice Protocol (NVP) [1] was implemented by researchers
to carry real-time voice communication between different sites over ARPANET
(Advanced Research Projects Agency Network, the precursor of Internet). The surge
of using Internet to provide real-time communication services happened in the 1990s
when Internet telephony services emerged and allowed people to make long distance
calls over the public Internet. The audio quality of these IP (Internet Protocol) based
calls are usually acceptable and the cost are typically much cheaper than the calls
made over public switched telephone Network (PSTN).

Over the time, network capacity increased and technologies evolved, more and
more applications were created in the consumer and the enterprises spaces enabling
users to interact and collaborate in real-time via audio/video/text. Today, real-time
communication applications and services such as Skype, FaceTime, Google Hangout,
WeChat, etc., are serving billions of users. Video conferencing equipments from Cisco,
Polycom and other vendors are also widely deployed in the meeting rooms of big and
medium sized corporations, bringing the benefits of increased collaboration efficiency
and reduced travel cost. Business wise, today’s enterprise real-time communication
market is already valued at multi billion dollars and expected to grow even bigger in
the coming years1.

The core technologies behind Voice over IP (VoIP) and video conferencing services
include:

• Signaling protocols that are used to set-up and tear-down a communication
session and describes its media characteristics (e.g. what kind of media will be
used, what is the bandwidth requirement, etc.).

• Audio and video codecs for encoding and decoding the audio and video media
content.

• Transport protocols that are used to deliver audio/video streams between the
users in real-time.

1http://www.businesswire.com/news/home/20170921005575/en/
Global-Enterprise-Video-Conferencing-Market---Growth

http://www.businesswire.com/news/home/20170921005575/en/Global-Enterprise-Video-Conferencing-Market---Growth
http://www.businesswire.com/news/home/20170921005575/en/Global-Enterprise-Video-Conferencing-Market---Growth

4

Works on audio and video codecs fall into the digital signal processing domain and
focus on providing high compression ratio while keeping the perceived audio/video
quality good. For the networking community, the standardization and application of
the signaling protocols and multimedia transport protocols has been a major topic
for the last two decades and we will take a look at those aspects in the following
sections.

2.1.1 Signaling Protocol

In real-time multimedia communication applications, signaling messages are ex-
changed between participating entities to signify the start and end of a call. The
messages may also contain information about the details of the session, such as what
kind of media types will be used, capabilities about supported codecs, bandwidth
requirements, etc., and where to send/receive the multimedia streams. Signaling
messages are also used for call control purposes, such as putting a call on hold,
transfer a call, etc.

Since the emergence of IP Telephony in the 1990s, organizations such as the
International Telecommunication Union (ITU) and the Internet Engineering Task
Force (IETF) had put on efforts to standardize the VoIP singling protocols for better
interoperability between different multimedia communication service and equipment
vendors. The most widely adopted signaling protocols are H.323 [2] specified by ITU
and Session Initiation Protocol (SIP) [3] specified by IETF. The two organizations
have different rationales behind the protocol development2 but their capability and
extensibility are all comparable. H.323 uses ASN.1 (abstract syntax notation one)
protocol syntax and PER (Packed Encoding Rules) to encode messages in binary
forms. The binary encoding makes it more efficient on the wire but it also makes it
a bit demanding for application development and there are only a few commercial
or open-source H.323 libraries available for developers to use. SIP follows a syntax
similar to HTTP and use plain text for message encodings which is more human
friendly to work with. There are quite a few commercial or open-source development
stacks available when it comes to develop RTC applications in SIP. H.323 came out
earlier than SIP. The first version of H.323 was published in 1996. The first version
of SIP protocol was standardized in 1999. Although the two protocols are, mostly,
functionally equivalent, SIP has become more widely used as the signaling protocol
to build VoIP services. For example, the IP Multimedia Subsystem (IMS) [21] (the
core multimedia service delivery network for mobile operators) specified by 3GPP
(3rd Generation Partnership Project) uses SIP as the signaling protocol between its
components. We will take a close look at SIP next.

The core of SIP protocol is defined in RFC 3261 [3] which specified the models
and messages for call establishment and call control. RFC 3261 also specified the
registration and routing mechanism to facilitate the rendezvous between entities in
a communication session. SIP follows the request-response transaction model used
in HTTP. Core request methods include REGISTER, INVITE, CANCEL, ACK,
BYE, OPTIONS. SIP response codes also follow HTTP syntax. For example, 1xx

2https://www.packetizer.com/ipmc/h323_vs_sip

5

indicates provisional responses; 2xx for successful responses; 3xx for redirections
to new contact addresses; 4xx for client error; 5xx for server error, etc. SIP is
independent of transport protocols thus it can run over any transport layer such as
TCP, UDP, SCTP, etc.

Figure 1: SIP basic call flow [3]

A basic SIP call flow is shown in Figure 1. This diagram is traditionally called “SIP
trapezoid”. In this scenario, user Alice is identified with URI (Uniform Resource Identi-
fier) “sip:alice@atlanta.com” and user Bob is identified with URI “sip:bob@biloxi.com”.
Both users registered their contact addresses with their servers so that they can
be located when being called. When Alice wants to call Bob, her user agent sends
an INVITE request to her server which serves all subscribers under “atlata.com”
domain. The “atlanta.com” server then proxies the request to the server which serves
subscribers under “biloxi.com” domain. Bob’s server receives the INVITE, finds
the contact address of Bob’s user agent, from its registry, and proxy the request to
Bob. Response 180 signifies that Bob is being alerted by his user agent about the
incoming call. Response 200 signifies Bob answered the call. ACK request assures
Bob that Alice had received the 200 response. The ACK request serves the reliability
mechanism for successful session establishment, that is, if ACK is not received by

6

Bob’s user agent it will resend the 200 response.
SIP uses SDP offer/answer model [16] to exchange the multimedia capabilities of

the user agent and agree upon a set of commonly supported media capabilities. For
example, the INVITE from Alice can include a SDP like this:

v=0
o=alice 2890844526 2890844526 IN IP4 host.atlanta.example.com
s=
c=IN IP4 192.0.2.101
t=0 0
m=audio 49170 RTP/AVP 0 97
a=rtpmap:0 PCMU/8000
a=rtpmap:97 iLBC/8000
m=video 51372 RTP/AVP 31
a=rtpmap:31 H261/90000

where the “c=” line indicates that IP address 192.0.2.101 will be used to send/receive
media, and the “m=audio” line indicates it supports audio media and use RTP [4]
with payload type “0” (PCMU) and port 49170 to receive the audio stream. The
“m=video” line indicates it supports video media and the payload type “31” maps to
H.261 video codec. This SDP is called offer SDP as it is sent from Alice to Bob to
propose the possible media types and transport methods. When Bob’s user agent
receives this SDP, it will check it against its own media capabilities and sends back
an answer SDP which describes the capabilities that Bob supports. It may remove
any codecs that it does not support and it can also reject a media by setting the
port to 0. If none of the proposed media types can be supported by Bob’s user agent,
it can reject the INVITE by sending a 4xx response.

2.1.2 Media Transport Protocol

While signaling protocols are used to manage the state of a call and negotiate media
content specifics, the actual media content are delivered through media transport
protocol. For interactive real-time applications, the major challenge is the on-time
delivery of media packets. Timeliness outweighs reliability in the protocol design.

Real-time Transport Protocol (RTP) [4] is the most widely adopted protocol by
real-time applications to deliver real-time interactive audio/video media data. Early
versions of RTP implementations were used to transport voice over the Internet’s
multi-cast backbone (MBONE). The first standard for RTP is RFC 1889 in 1996
and later on it was superseded by RFC 3550 in 2003. Both H.323 and SIP protocols
use RTP for audio/video media content delivery.

RTP is an application layer protocol and can use either UDP or TCP as the
transport. UDP is used in most cases as its fast delivery approach (send and forget)
matches well with the stringent latency requirement on real-time media. TCP
transport is less preferable as retransmission of real-time media packets is usually not
desired, but still it can be used when UDP traffic is blocked, for example, in a strictly
controlled network where UDP traffic is blocked. Some research had been done to
model the feasibility and strategies to use TCP for real-time media delivery [5].

The packet structure for RTP is shown in Figure 2. Important fields include:

7

Figure 2: RTP packet structure [7]

• The payload type (PT) field specifies the type of the payload, thus determines
how application shall interpret the received data. Some static payload types
are defined in RFC 3551 [6].

• The sequence number field increases by one for each RTP data packet sent.
Receiver can use it for packet reordering in the playback buffer as well as
detecting packet loss.

• The timestamp field is the time instance (relative to the first sample) when
the payload was sampled. If multiple RTP packets are used to carry one sample
(e.g. in the case of an initial frame in a video stream), these RTP packets shall
use the same time stamp. Time stamp allows receiver to playback received
packets at the right time interval. This timestamp can be mapped to absolute
wall-clock time with the help of RTCP Sender Report packet which is also part
of RTP protocol. With the timestamp information, receiver can calculate the
network delays.

• The synchronization source (SSRC) identifier field identifies the source
of the media stream, such as a microphone or a camera. Packets with the
same SSRC shares the same timing and sequence number namespace and are
grouped together on the receiver side for playback.

• The contributing source (CSRC) identifiers are used when the sender
of the RTP packets is a RTP mixer (e.g. a media server that mix several
audio/video streams into one audio/video stream) or RTP translator (e.g. a
trans-coder that converted the origininal media stream from one codec profile
to another code profile). In these scenarios, the SSRC will be the id of the
mixer/translator, but the CSRC will contain the original SSRC(s) used to
generate the new media stream.

RTP is augmented by RTP Control Protocol (RTCP) which uses a port number
right above the RTP port. RTCP packets are exchanged periodically to provide
feedbacks about quality of service (QoS), such as latency, packet loss, etc., of the RTP
streams. Details about QoS will be covered in Chapter 3. Based on the feedback,

8

the RTP senders can make adaptations on the media encoding so that user’s quality
of experience can be managed properly. For example, user can send higher profile
video when network condition is good and send lower profile video when network
congestion is detected.

When a communication session has multiple media streams (i.e. both audio
and video) and each media stream is transported over its own RTP stream, RTCP
provides absolute time information so that the RTP timestamps can be mapped
to absolute wall-clock time. This makes it possible to do synchronizations between
multiple media streams, such as lip syncing during a video call.

The overhead incurred by RTCP packets is small, typically less than 5% of the
total media session traffic [7].

2.1.3 Signaling and Media Paths in RTC

In RTC applications, the signaling messages and media streams usually follows
separate paths, similar to what is shown in Figure 1.

Signaling messages between the participating entities are typically exchanged
through a centralized signaling server, where things such as address translation
and call control can take place. There are peer-to-peer signaling architecture and
implementations such as P2P SIP [17] which allow entities to send signaling protocols
directly to each other, but those are not mainstream deployment scenarios.

The media streams between participants can either go through a centralized media
server or flow directly between the parties. The benefit of exchanging media streams
through a media server is that features such as media mixing or selective forwarding of
media streams can be done by the media server and these features are often required
in a multi-party conference call. Media servers can also function as an intermediary
to adapt the differences in bandwidth or media capabilities among the participants
so that user agents with different or even incompatible capabilities can co-exists
in the same conference. All these benefits come with the extra infrastructure cost
and potentially longer delays in media exchange. For above reasons, it is desirable
for a two party call to have the media streams flow directly between the peers for
both efficiency and cost considerations. Unfortunately this can be difficult to achieve
because of the existence of Network Address Translation (NAT) and firewalls devices
in the Internet. Some special procedures are needed to find a usable media path
between the media sender and receiver.

2.1.4 NAT traversal for RTC

NAT and firewall functionalities are usually built into one box which sits between the
local area network (LAN) and the Internet. Firewall manages network security and
blocks unauthorized traffic both to and from the private network. NAT is used for
IP address conservation. Computing devices behind the NAT use private IP address
spaces to communicate with each other and these devices can share a pool of public
IP addresses assigned to the enterprise or ISP. Once a device in the local network
needs to visit the Internet, NAT will create a binding of address and port between
the private side of the network and the public side of the network and rewrites the

9

IP address and port when it forwards packets in both directions. A diagram of how
NAT works is shown in Figure 3. This binding of private and public address and
port on NAT is ephemeral, i.e. it will be removed when there is no traffic flowing on
this path any more.

Figure 3: Network address translation example

In a multimedia communication session, the participating endpoints are typically
located behind NAT while signaling servers is publicly reachable. NAT has some
impact on the signaling messages, for example some message routing related headers
in SIP contains IP addresses and those addresses maybe private therefore are not
routable from outside of the LAN. The simplest solution for signaling messages
to traverse NAT is to use TCP and always keep a persistent connection between
the endpoint and the signaling server so that messages can be exchanged any time
in both directions. For media streams and RTP traffic, in order for the endpoints
behind the NAT to exchange media streams directly, some NAT traversal techniques
are needed to help setting up the media path. The state-of-the-art solution to probe
and establish connections between two endpoints is called ICE [18], which stands for
“Interactive Connectivity Establishment”. ICE specifies the protocol and procedures
to set up a media path for UDP-based media streams to traverse NAT.

The communicating endpoints that support using ICE to establish media path
through NAT are called ICE agents. ICE extends the SDP offer/answer model by
including transport candidates in the exchanged session descriptions and then doing
connectivity checks between the candidate pairs to find the possible media paths.
The whole ICE procedure consists of several steps including: candidate address
gathering, connectivity checking and concluding phase.

In the “candidates gathering” phase, based on the configurations, each ICE
agent collects candidate transport addresses it could use to communicate with the
peer agent. Each candidate transport address can be represented in the form of a
(IP address, port, transport protocol) triplet. ICE defines four types of candidate
addresses:
• The “Host” candidate is the address of network interface of the endpoint. If

the host has multiple physical/logical interfaces then there could be multiple
“Host” candidate addresses;

10

• The “Server Reflexive” candidate is the address of the endpoint as seen on the
public side of the NAT. This is learned by making use of the Session Traversal
Utilities for NAT (STUN) protocol [19]. Agent sends a STUN “Binding” request
to its STUN server and the server copies the source transport address of the
Binding request into the Binding response. When there are multiple layers of
NAT between the endpoint and the Internet, the “Server Reflexive” address is
the address as seen on the public side the outermost NAT;

• The “Relayed” candidate is an address allocated by the TURN server that
sits in the public Internet and relays packets between the ICE agent and its
peer. TURN stands for “Traversal Using Relays around NAT”. It extends the
STUN protocol by adding an “Allocate” request which a TURN client can use
to request the TURN server to allocate resource (in the form of a transport
address) to reply packets between the client and its peer. TURN is a reliable
way to by pass any type of NAT. If a TURN server is configured for an ICE
agent, it will report back the “Server Reflexive” address as well as the “Relayed”
address in the “Allocate” response.

The candidate gathering process depends on the end point’s configuration. For
example, if TURN server is not configured for the endpoint then it will not gather
any relayed candidate.

After the ICE agent collected the various candidate transport addresses, it
prioritizes them numerically according to certain preference criteria and then sends
the candidate list in an SDP offer through the signaling channel (e.g. in a SIP
INVITE message) to its peer. When the peer receives the offer, it goes through a
similar gathering process and sends back its transport candidates in a SDP answer.

When both ICE agents have the list of each other’s candidates, the “connectivity
check” phase starts. In this step, each agent first forms an ordered list of candidate
pairs (ordered by the combined priorities of local and peer candidate), then starts a
series of checks to test which pairs work. A check is done by sending a STUN Binding
request from the local candidate to remote candidate as indicated in Figure 4. A
check is successful if a successful response is received and the source and destination
transport addresses match with the candidate pair. Candidate pairs that passed the
connectivity checks are put into the valid pairs list.

In order to reach an agreement upon which media path to use, ICE assigns one
of the agent the “controlling” role and its peer the “controlled” role. The controlling
agent dictates which candidate address pair will be used for media transport. By
default, the ICE agent that sends the SDP offer assumes the controlling role. As
the connectivity check goes on and some valid pairs are found, the controlling agent
can stop the checks and then choose one from the valid list as the final transport
addresses. The controlling agent “nominates” the selected candidate pair by sending a
STUN Binding request with the USE-CANDIDATE attribute. Once this transaction
completes, both agent will cancel any further connectivity checks. This concludes
the ICE process and media stream can begin to flow over the connection between
the selected transport addresses pair. With the ICE procedure, STUN and RTP are
multiplex via the same network connection.

11

Figure 4: ICE connectivity check [18]

After ICE procedure concludes, either agent can restart it again at a later time
by sending an updated SDP offer. A restart is needed for example in the case where
an agent changed its IP address which invalidates the previous selected transport
address pair.

To keep the NAT bindings valid during the communication session, ICE has
a keep-alive mechanism. ICE agent uses STUN Binding Indication (a transaction
where no response needs to be generated) to refresh its bindings on the NATs.

2.2 Web Real-Time Communication (WebRTC)
Using standard (and sometimes proprietary) signaling and media transport protocols,
many VoIP software/hardware systems have been built over time. Some notable
ones include Skype, NetMeeting3, FaceTime4, WebEx5, etc. These applications have
been successfully serving end users to engage in real-time multimedia communication
either within managed enterprise networks or over the Internet. There are some
annoyances with these applications, mostly on the installation and interoperability
aspects. For example, customers need to install dedicated applications for each of
these systems. It is also quite common that the client application for one system
cannot communicate properly with client or servers applications of another system.

With the ubiquitous availability of web browsers since the 1990s, more and more
applications have become web based. Web based applications offer several advantages.
For the developers, there is no need to build and maintain specific application binaries
for each operating systems as the applications can be dynamically downloaded from
the web server and run in the browsers. The end users are also alleviated from the

3https://en.wikipedia.org/wiki/Microsoft_NetMeeting
4https://en.wikipedia.org/wiki/FaceTime
5https://en.wikipedia.org/wiki/WebEx

12

complication of installing and upgrading application binaries on their computers as
all they need is a web browser. Same trend was also happening in the real-time
communication field, where embedding the functionalities of such as voice and video
chat inside the web browser could potentially open a new world of possibilities for
web applications. But due to the complexity of technologies involved (audio, video,
network) and licensing considerations, the initial offerings of RTC functionalities are
done via proprietary plug-ins, such as Skype Click to Call6, Adobe Flash Player7,
etc. All these solutions still require end user installations of browser plug-ins and
there were no standard ways to use the RTC functionalities. The Web community
yet need a standard approach to incorporate real-time communication functions into
web applications.

2.2.1 WebRTC History

In 2010, Google acquired a video codec company, On28, and an audio codec library
company, Global IP Solutions (GIPS)9. On2 was the owner of VP video codec series
which provide alternatives to H.264 video codec. GIPS was a market leader for
VoIP media engines. After the acquisition, Google’s Chrome team integrated those
technologies into their browsers and open-sourced them in Chromium in May 2011
with the aim of allowing developers to create voice and video chat applications via
simple HTML and standard JavaScript APIs in a royalty free pattern [23].

The standardization works were initiated around the same time via W3C “Web
Real-Time Communications” (WEBRTC) working group and IETF “Real-Time Com-
munication in WEB-browsers” (RTCWEB) working group. Collaborators include
people from Google, Mozilla, Microsoft, Ericsson, Cisco, etc. The W3C WEBRTC
working group focuses on defining client-side JavaScript APIs to enable real-time com-
munication in Web browsers. We will describe these APIs in detail in Section 2.2.7.
The IETF RTCWEB working group focuses on defining the requirements and models
for WebRTC functions, as well as creating or extending communication protocols to
ensure interoperability between different WebRTC implementations which include
browsers, gateways and application libraries, etc.

Both W3C and IETF working groups are making good progress as of today.
The JavaScript APIs and communication protocol specifications are all relatively
stable now. Chrome and Firefox are the two major browsers that have been actively
developing WebRTC support since the beginning. Apple declared WebRTC support
in Safari 11 in June, 2017. Microsoft is developing WebRTC support on the Edge
browser in the form of Object RTC (ORTC) APIs which is similar to WebRTC
API [22].

6https://www.skype.com/en/download-skype/click-to-call
7https://en.wikipedia.org/wiki/Adobe_Flash_Player
8https://en.wikipedia.org/wiki/On2_Technologies
9https://en.wikipedia.org/wiki/Global_IP_Solutions

13

2.2.2 WebRTC Stack

WebRTC implementations are under development among various browser, gateway
and SDK vendors. As an example, Google published the WebRTC stack architecture
in Chromium as shown in Figure 5. The notable components in Google’s WebRTC
stack include:

• The “Web API” (will be discussed in detail in Section 2.2.7) layer refers to
the JavaScript APIs that are being standardized in W3C. Web application
developers use these APIs to build features such as interactive audio/video/data
communications.

• The “WebRTC Native C++ API” layer provides a library interface so that
browser or native application makers can invoke these APIs to incorporate
WebRTC functionalities into their applications.

• The “Voice Engine” and “Video Engine” components handle the encoding/de-
coding, packetization and signal processing (e.g. echo cancellation, packet loss
concealment, etc.) for audio and video streams.

• The “Transport” component manages the actual peer-to-peer network communi-
cation channel setup and media content transport, using protocols such as ICE
and RTP. WebRTC uses Stream Control Transmission Protocol (SCTP) [28] to
transport data and secure RTP (SRTP) [27] to transport real-time media [24].

Figure 5: WebRTC stack architecture diagram
10

The IETF “WebRTC Overview” draft [9] gives a good description of the browser
model as shown in Figure 6. The browser model emphasizes on the various interfaces
between the web server, WebRTC application and browser’s real-time communication

14

functions. For example, it shows that HTTP or WebSocket can be used to convey
signaling messages between the web application and web server, and the network
communication mechanism used between peer browsers are abstracted as “on-the-wire
protocols”.

Figure 6: WebRTC browser model [9]

2.2.3 WebRTC Application

Having seen the WebRTC stack architecture and application function model in the
previous section, let us now look at what kind of WebRTC applications can be built.
As WebRTC provides APIs to generate multimedia content as well as setting up
media and data communication channels between browsers, it can be used to create
all kinds of interactive real-time communication application scenarios from within
the browser, in simple and secure fashion.

The essential WebRTC applications model can be described as “WebRTC trape-
zoid” as shown in Figure 7. It is quite similar to the “SIP trapezoid” [3]. To set
up a media path between two peer browsers, the RTC functions in the browser just
need to know the local and peer’s session descriptions in the form of SDPs that
we have briefly introduced in Section 2.1.1. In the trapezoid model, the choice of
signaling protocols between the communication endpoints (i.e. the browsers) and the
communication servers (i.e. web servers) are deliberately left outside the scope of the
WebRTC protocol suite. The rationale behind the decision was to give application
developers the freedom to choose any signaling mechanism that matches their appli-
cation needs [31] the best. To manage the call setup and tear-down, web applications
can use either existing standard signaling protocols (e.g. SIP/XMPP/Jingle over
WebSocket) or any proprietary customized communication protocols (e.g. JSON
over WebSocket). WebSocket is a way to setup a bi-directional data communication

15

channel between the browser and the web server so that messages exchange can
be initiated by either party at anytime. It is standardized in RFC 6455 [8] and
supported by all browsers.

Figure 7: The WebRTC trapezoid [9]

In the basic trapezoid model, the signaling between the two servers are also not
specified so the federation between the two servers can be done either using well
established protocols such as SIP, or using other application protocols the two web
servers agreed upon.

(a) Basic WebRTC triangle (b) With media server

Figure 8: WebRTC triangle

Variations on the basic trapezoid model will lead to different application scenarios.
For example, the simplest WebRTC application model consists of two users having
a communication session using the same web application. In this scenario, the two
web servers in Figure 7 can be merged as one. This scenario can be called “WebRTC
Triangle” as shown in Figure 8a, which is the most common WebRTC application
scenario with two or more users participating in a video chat using the same URL
e.g. https://webrtc-example.com/my-chat-room. On the media plane,
the application can use either the “full mesh” model or the “centrally mixed” model

https://webrtc-example.com/my-chat-room

16

which includes a media server as part of the infrastructure as shown in Figure 8b.
In the “full mesh” model, each browser/endpoint participating in an N-party video
conference will setup N-1 connections with the other participants. With the “centrally
mixed” architecture, each conference participant will setup connection with the media
server and the media server will do the mixing or selective forwarding to manage the
media streams to and from each participant.

Further variations on the above application scenarios can lead to the introduction
of other communication endpoints such as gateways to other communication systems
(PSTN, VoIP, etc). For example, in the WebRTC triangle model, if one of the browser
is replaced by a gateway to the Public Switched Telephone Network (PSTN) then
the browser user can make or receive phone calls with mobile/fixed phones.

In all of the above scenarios, the browser(s) can also be replaced by custom built
applications using WebRTC libraries.

2.2.4 WebRTC basic call flow

As introduced previously, WebRTC protocol suite does not specify how the call
signaling is done between the browser and the web server. As long as the local and
remote SDPs are provided to the browser, the RTC functions in the browser engine
will use the information in SDP to setup the connections between the peers. For
example, with the basic “WebRTC triangle” application model, a typical call flow
can be setup as shown in Figure 9. The main steps include:

1. Browser A and B first download the application from web server.

2. Then browsers create and exchange (with the facilitation of web server) their
session descriptions in the form of SDP, following the Offer/Answer model that
we described in Section 2.1.1.

3. After the SDP exchange, browsers’ RTC functions will start the ICE connectivity
checks and find out which transport addresses pairs can be used to transfer
media/data.

4. After the connection is setup using the selected transport address pair, session
keys are negotiated over DTLS (Datagram TLS) secured channel [29].

5. When key negotiation is done, the media stream will be encrypted and trans-
mitted via SRTP [27] (Secure Real-time Transport Protocol) and data streams
will transmitted over SCTP [28] (Stream Control Transmission Protocol) which
can offer delivery guarantees.

2.2.5 WebRTC Protocols

The details of the networking protocols used by WebRTC are shown in Figure 10.
Correlating this figure with the browser model in Figure 6, the left half of Figure 10
shows the call signaling related protocols used between browser and the web server,

17

Figure 9: The WebRTC triangle call flow [37]

and the right half covers the media transport related protocols the browser RTC
functions use to set up the connection between browser peers to transfer media/data
streams.

From the call signaling aspects, the caller’s web application needs to signal to
the web server about the intent to make an outgoing call, and the server needs to
inform the callee about the incoming call. SDPs of the caller and callee need to be
exchanged between the peer browsers with the assistance of the web server. These
application signaling messages can be wrapped in any format and can be delivered
via several approaches, such as XMLHttpRequest (XHR), Server-Sent Events (SSE)
or WebSocket. In order to get notification from the web server about incoming calls,
XHR polling is the old/traditional way. SSE can also be used by web server to
stream messages to the browser where the HTTP response content-type is set to
“text/event-stream”. And the most modern and flexible approach is to use WebSocket
as the bi-directional communication channel between browser and web server. All
three different mechanisms are encrypted over TLS as indicated on the left part of
Figure 10.

The communication protocols used between browser RTC functions are the core
standardization effort undertaken by the IETF RTCWEB working group. To set up
connections between the browser peers, WebRTC uses ICE mechanism (introduced in
Section 2.1.4) to check the connectivity of each transport address pair and establish
connections on the ones that can be used to transfer media/data. WebRTC requires
that all communications shall be secure and encrypted [26]. DTLS is used to

18

Figure 10: WebRTC protocol stack [38]

negotiate the encryption keys then media content is transported over SRTP and data
is transfered via SCTP over DTLS. WebRTC uses RTP to transport media streams
and explicitly specifies the mandatory RTP features that need to be supported
by the implementations [25] to ensure proper interoperability. WebRTC requires
endpoints must support multiplexing of DTLS and RTP over the same port pair,
which ultimately was setup and kept alive via ICE [24].

2.2.6 WebRTC Use Cases

The “WebRTC Use Cases and Requirements” specification [10] mandates that We-
bRTC implementations must be able to support certain application use cases, in-
cluding:

• Browser-to-browser video communications, possibly with multiple video streams
(as device may have multiple cameras), screen sharing and file exchange.

• Multi-party on-line gaming with voice communication.

• Video conferencing system with central server.

• Browser to PSTN gateway calls, with DTMF (Dual-Tone Multi-Frequency)11

support.

The above list looks quite exciting as it covers most (if not all) of the real-time
communication features currently known in the industry for both enterprise and
Internet usage context. In the next section, we will take a look at the WebRTC
APIs that web application developers can use to implement the above application
scenarios.

2.2.7 WebRTC APIs

WebRTC related APIs are still in the process of being standardized within the W3C
community by the Web Real-Time Communications (WEBRTC) Working Group.
The relevant APIs can be categorized into two groups:

11DTMF is a technique that use voice-frequency to send signals.

19

• “Media Capture and Streams API”: also known as getUserMedia API, allows
applications to access media devices such as camera or microphone to capture
audio/video.

• “PeerConnection API” [11] allows application to set up the connection between
browser peers to deliver media streams or exchange arbitrary data.

At the time of this writing, both set of APIs are in the Candidate Recommen-
dation (CR) [13] stage, i.e. they have been widely reviewed and met all the design
requirements, no major exchanges are expected, and the working group are soliciting
feedbacks about implementation experience.

2.2.7.1 Media Capture and Streams API

W3C candidate recommendation “Media Capture and Streams” specification [12]
defines the set of APIs to handle generation and consumption of media streams. For
example, media streams can be generated by allowing application to access local
multimedia devices such as microphone and video cameras.

The API models the real-time multimedia content (audio, video) in the forms of
MediaStreamTrack and MediaStream objects. A MediaStreamTrack object represents
a single type of media generated from one media source. For instance, an audio
MediaStreamTrack object can be generated by accessing the microphone and a video
MediaStreamTrack object can be generated by accessing web cam or by capturing
the screen. A MediaStream consists of a set of MedisStreamTrack objects. These
audio/video tracks are grouped together with the intent to be synchronized when
rendered by the browser. A MediaStream object has a single input (source) and a
single output (sink) to represent the combined inputs and outputs of all the contained
MediaStreamTracks. For example, the output of a MediaStream that has both audio
and video tracks can be set to a HTML <video> element and browser will make
best effort to perform proper synchronization and rendering of the audio/video tracks.
The input and output of a MediaStream could also be a RTCPeerConnection
object (which will be introduced in the next section), in this case it models the media
stream being received from or sent to the peer browser.

The API to get access to local media resources is defined as:
getUserMedia(constraints)

Listing 1: getUserMedia example code
1 var constraints = {
2 audio: true,
3 video: true
4 };
5
6 var localVideo = document.getElementById(’localVideo’);
7
8 navigator.mediaDevices.getUserMedia(constraints).
9 then(handleSuccess).catch(handleError);

10
11 function handleSuccess(stream) {

20

12 // render the mediaStream in a video element
13 localVideo.srcObject = stream;
14 console.log("audio tracks count: " + stream.getAudioTracks().length);
15 console.log("video tracks count: " + stream.getVideoTracks().length);
16 }
17
18 function handleError(error) {
19 console.log(’navigator.getUserMedia error: ’, error);
20 }

Listing 1 gives an example of how to use the getUserMedia API to access
local microphone and camera. The captured audio and video are abstracted as
a MediaStream object and it is rendered in an HTML <video> element. The
constraints parameter passed to getUserMedia() call specifies that the re-
turned MediaStream should contain a video track and an audio track. If this call
is successful (i.e. user granted the permission for the application to use microphone
and camera), handleSuccess will be invoked with the newly created MediaStream
object. If the call fails (e.g. user did not grant permission for the application to
access local media source, or the computer does not have a camera), handleError
will be invoked with an object encapsulating the details of the failure.

WebRTC API also allows application to control how the media is generated by spec-
ifying a constraint either with the getUserMedia call or the applyConstraints
method on a MediaStreamTrack object. As an example, Listing 2 defines a con-
straint saying that the generated video resolution should be at least standard definition
(SD) and preferably high definition (HD), and the frame rate shall be at least 20.
Errors will be thrown out to the WebRTC application if the specified constraint can
not be met.

Listing 2: getUserMedia constraints example
1 var videoConstraint = {
2 frameRate: { min: 20 },
3 width: { min: 640, ideal: 1280 },
4 height: { min: 480, ideal: 720 },
5 }
6
7 var constraint = {
8 audio: true,
9 video: videoConstraint

10 };

2.2.7.2 PeerConnection API

The “WebRTC 1.0: Real-time Communication Between Browsers” specifica-
tion [11] describes the APIs that can handle the network communication part of the
real-time communication between browsers. The major API functionalities include:

• Connecting to browser peers using NAT-traversal technologies, i.e. ICE.

21

• Sending the locally-produced MediaStreamTracks to remote peers and receiving
tracks from remote peers.

• Sending arbitrary data (with configurable delivery guarantees) directly to
remote peers via DataChannel.

• Getting statistics about the communication. Details for this API will be covered
in Chapter 3.

All the above functionalities are wrapped around the RTCPeerConnection
API, and can be best explained by looking at some sample code. Appendix A shows
an example of how the RTCPeerConnection API can used to setup a video chat
session between two browsers and how it correlates to the various steps of basic
WebRTC call flow (Figure 9).

The RTCPeerConnection object models a network connection between local
and peer browser. The constructor of RTCPeerConnection takes a configuration
object which specifies how the peer-to-peer connection can be setup. For example,
in listing A, the configuration contains STUN and TURN server information. These
configuration are needed by ICE agent in the candidate gathering phase to know
what kind of transport address can be offered as candidates for receiving and sending
media.

The MediaStreamTracks from local MediaStream object can be attached to the
RTCPeerConnection by calling the addTrack method. When remote media
streams are received on connection, application got notified via the ontrack event
handler.

On the caller side, offer SDP can be generated by calling the createOffer
method which contains the description of the MediaStreamTracks attached to the
RTCPeerConnection. This SDP is passed to the PeerConnection object by calling
setLocalDescription method. On the callee side, when it receives the SDP
offer through the signaling channel, it calls the setRemoteDescription method
to make RTCPeerConnection apply the supplied SDP as remote offer, then it
calls createAnswer method to generate a SDP answer that is compatible with the
caller’s offer. The answer SDP is used in setLocalDescription to set callee’s
local session description and it is also sent to the caller via signaling channel. When
caller receives the SDP answer, it calls PeerConnection’s setRemoteDescription
method to update local media state. Through this way, SDP offer/answer process is
completed.

The ICE Agent starts gathering candidates when setLocalDescription or
setRemoteDescription is called. When a new candidate is found, it is added
to the RTCPeerConnection as well as notified to the application through the
onicecandidate event handler. Application can either immediately send the new
candidate to remote (this is called “ICE Trickling” [30] mechanism to speed up the
connection establishment) or wait until ICE gathering state is “completed” and then
send the SDP with the complete set of ICE candidates. When “ICE Trickling” mech-
anism is used, application receives the new remote candidate over signaling channel

22

and calls the addIceCandidate method to updates RTCPeerConnection (es-
sentially the ICE agent) about the new remote candidate. This new remote candidate
will be added to ICE agent’s connectivity check immediately. Media will start to flow
between the two peer browsers when the ICE agent find a usable pair of transport
candidates.

An RTCPeerConnection object has signaling state, connection state, ICE
gathering state and ICE connection state. By polling these states or attaching event
handlers, application can keep track of the status of the network connection and
trigger corresponding application logic upon state changes. We will come back to
this in later sections.

23

3 Quality of Real-Time Communication
In a real-time multimedia communication session, media content (audio/video) are
firstly captured in their raw forms on the sender’s end, then encoded and packetized
before getting pushed to the network. When packets arrived at the receiver’s end,
they are reordered, unpacked, decoded and rendered (on speaker/monitor) to the
end user. The whole pipeline from media generation till media consumption can be
represented as shown in Figure 11.

Figure 11: RTC media pipeline

For an end user, the perceived (or subjective) Quality of Experience (QoE) in a
real-time interactive multimedia communication session depends on multiple factors,
for instance, the codec parameters used for audio and video, the selected resolution
and frame rate, the condition of the underlying computer networks, etc. In an
ideal case, where wide band audio codecs and high fidelity video codecs are used to
encode the audio and video streams, and the media packets are transmitted over high
capacity, low latency, error free network with no congestions along the path, the user
experience can be expected to be very good. In a less ideal case, network condition
may not be good enough to match the bandwidth and latency requirements of the
media streams and user experience would be degraded.

Quality of Service (QoS), on the other hand, refers to the objective measurements
of the performance of the network based services. QoS has a strong correlation with
the end user’s QoE.

3.1 Quality Metrics
For real-time multimedia communication, QoE related metrics shall be measured
both at the network level and the media engine level.

Measurable network QoS metrics include:

24

• Latency: Network latency (also called delay) is a measure of how long it takes
a packet to travel from the sender to the receiver across the network. As IP
network is based on a statistical multiplexing model, network latency is not
a constant but varies over time depending on the condition of the network.
Latency can be long if network is congested as the packet will be waiting in the
buffer of the congested node before it is dispatched to the next hop, the packet
can even get dropped which will lead to packet loss. Latency also depends
on the number of hops between the two communication endpoints. If two
communication endpoints are geographically far away, or they are from two
Internet service providers with complicated routing and peering topologies,
latency can also be high.
For conversational audio, it is recommended by the ITU G.114 [41] that one
way (“mouth-to-ear”) delay shall be less than 200 ms to ensure very good
real-time user experience. Delays longer than 200 ms will introduce noticeable
annoyance to the some users and delays longer than 400 ms will make the
conversation difficult to proceed for many users.

• Jitter: Jitter is a measure of the variance in latencies. As receiver receives
two consecutive packets of a given media stream, the difference in the delay of
these two packets can be calculated as

Di−1,i = (Ri − Si)− (Ri−1 − Si−1) = (Ri −Ri−1)− (Si − Si−1)
And as packets are received continuously, the differences in the inter-arrival
delays can be calculated continuously. Jitter is defined in RFC 3550 [4] as the
mean deviation of D within certain time window according to the formula:

Ji = Ji−1 + (|Di−1,i| − Ji−1)/16
If jitter is 0, it means packets are received in order, at fixed intervals, and there
was no congestion in the network.

• Throughput: Throughput measures the rate (in bits/second or bps) at which
streamed media are delivered to the receiver. Instantaneous throughput refers to
the transfer rate within a short interval (e.g. 200ms) while average throughput
refers to the transfer rate over a relatively longer period of time. Instantaneous
throughput may vary over time due to either the characteristics of media codec
(e.g. video I-frame, P-frame and B-frame will generate different number of
packets) as well as the condition of the network. Another close related concept is
bandwidth which refers to the average throughput that is required by a given
media stream to get properly delivered. If the network capacity cannot match
the media codec requirement, some dynamic adaptation at the application
layer are needed so that less media data will be transfered. Such adaptations
could be reducing the video resolution, or turning off the video stream, for
instance.

• Loss: A packet sent out by the sender may not be able to reach the receiver. It
can be dropped by the intermediate routers either due to error or due to network
congestion. Packet loss can be detected via sequence numbering mechanism.
As introduced in Section 2.1.2, each RTP media packet is associated with a

25

sequence number. On the media receiver side, there is a playout buffer which
keeps the received media packets before rendering them to the user. Within a
given time interval, the media receiver sees the initial and last sequence number
of the packets belonging to the playout buffer and it can check how many
packets are missing from the buffer. Packet loss will lead to degradation of the
rendered media. There are multiple strategies to address packet loss, such as
request for retransmission, or using some loss recovery mechanism, e.g. FEC
(Forward Error Correction) [42], in the media stream packetization, or just
conceal it via certain algorithm during the rendering. Some level of packet loss
can be tolerated but packet loss above certain threshold will surely degrade the
QoE. RTP’s receiver report mechanism (RR) defines two packet loss measures:
the “fraction lost” metric reports the percentage of packets lost within the last
reporting interval (typically a few seconds); the “cumulative number of packets
lost” metric reports the total number of packets since the start of the streaming.
These two metrics help keeping track of both short term and long term packet
loss situation. So far there has been no standard recommendations modeling
the relationship between loss and perceived video quality degradation.

All the above network QoS metrics are measured by the RTP stack for each stream
(identified by SSRC) as different media streams (audio, video, data) might be treated
differently while traversing the network. These metrics provide both short term and
long term measurement on the condition of the media path. For example, latency
and jitter can provide short-term measurement of network congestion. If network
congestion is forming, latency will start to increase and also jitter will also become
bigger. If network becomes quite congested, packet loss will happen and the “fraction
lost” metric will give a good description of how congested the network is during the
last reporting interval.

In addition to the network QoS metrics, there are other things from media
characteristics and application performance perspectives that will affect end user’s
experience. Example media metrics include:

• Video resolution: i.e. the size of the video frames. Higher resolution contains
more details in the image. For example, nowadays main stream TV resolution
is 1080p(1920x1080) while 4K (3840x2160) TV and videos are also becoming
popular.

• Frame Rate: This is the rate (frames per second or FPS) at which video
frames are updated. Human vision will notice individual images if the frame
rate is low (e.g. 10) while typical TV programs use 25 or 30 FPS12.

When network is congested, the frame resolution or frame rate will be impacted
and application needs to dynamically adapt and lower the frame rate for example. In
addition, A measurement of how many video frames were sent, received, corrupted,
dropped, etc., can provide important insights into the media quality of an real-time
communication session.

12https://en.wikipedia.org/wiki/Frame_rate

26

From application performance perspective, metrics such as how long it takes to
load the application and set up a media transport connection between the commu-
nicating parties is an important measure of the responsiveness of the application.
Shorter waiting time will definitely lead to better user experiences.

All the above mentioned metrics can be measured by properly using WebRTC
APIs which will be discussed next.

3.2 Quality Measurement in WebRTC
As introduced in Section 2.2, WebRTC offers APIs allowing web applications to
access media devices (microphone, camera) and setup network connections with peers
to deliver media streams. WebRTC specs also require implementations to measure
and expose the network and media quality related metrics to the applications.

By providing the APIs to let applications become aware of the network connection
state as well as the transport layer and media processing layer statistics, WebRTC
makes it possible for applications to make dynamic adaptation to the underlying
network condition. For example, an application can change the video resolution or it
can alert its user when network issue happens.

3.2.1 Statistics API

In order to get the statistics of the underlying transport and media statistics, an
application can invoke the getStats, on the RTCPeerConnection object. The
API is defined as:
Promise<RTCStatsReport> getStats(MediaStreamTrack? selector = null);13

The returned report contains statistics related to the RTCPeerConnection, which in-
cludes things such as ICE candidates available for the peer-connection, certificate used
to set up data and media channels, inbound-rtp (e.g. receiver) statistics, outbound-
rtp (i.e. sender) statistics, codec and media stream track statistics, etc. The optional
selector argument can be used to specify a particular MediaStreamTrack (in-
troduced in Section 2.2.7.1) being sent or received over the RTCPeerConnection, and
the returned report will only contain statistics about that particular stream.

The returned RTCStatsReport object is a collection of RTCStats objects and
each RTCStats is a dictionary containing a set of values reflecting the statistics or
states of certain aspects of the RTCPeerConnection at a specific time. WebRTC’s
Statistics API spec [14] defines all the details about what type of statistics info shall
be reported and what are the mandatory fields that shall be included in each type of
RTCStats object.

The baseline for a RTCStats object is:
dictionary RTCStats {

DOMHighResTimeStamp timestamp;
RTCStatsType type;
DOMString id;

};

13Promise is a JavaScript mechanism to pass the result of an asynchronous function call.

27

The “id” is an identifier consistent across time associated with the stats object. The
“type” signifies what kind of statistics the RTCStats object contains. For example,
when the “type” is “inbound-rtp”, the rest of the keys and values in the stats object
are about inboud RTP stream statistics, such as “packetsReceived”, “packetsLost”,
“jitter”, etc. When the “type” is “track” the RTCStats object will contain media-
level metrics of a MediaStreamTrack such as “frameWidth”, “frameHeight”,
“framesSent”, “framesPerSecond”, etc., which were introduced Section 3.1.

The WebRTC statistics API specifies several different types of RTCStats and
the mandatory metrics that shall be included in each type. WebRTC implementations
such as Chrome and Firefox are required to keep track of the relevant statistics for
the RTCPeerConnection object and return those statistics, in correct data format,
to the application upon request.

Below is a sample RTCStats data reported by Firefox, containing sender’s
metrics for an outbound video steam track. Although it is not fully compliant with
the WebRTC spec yet (as implementation is still in progress), it serves the purpose
of showing what is already available for the developers to monitor the status of the
WebRTC application.
{

"id": "outbound_rtp_video_1",
"timestamp": 1492458456710.715,
"type": "outboundrtp",
"bitrateMean": 1248603.8604651163,
"bitrateStdDev": 231678.58458041612,
"framerateMean": 29.9593023255814,
"framerateStdDev": 0.3644680195908843,
"isRemote": false,
"mediaType": "video",
"remoteId": "outbound_rtcp_video_1",
"ssrc": "3290094681",
"bytesSent": 27148704,
"droppedFrames": 38,
"packetsSent": 25381

}

By periodically querying for statistics report, an WebRTC application can monitor
the network QoS and media engine statistics throughout a communication session.

3.2.2 Network Connection State Tracking

In addition to the statistics API, The RTCPeerConnection object also maintains
several state machines to track the status of the signaling state (i.e. the SDP
exchange status), connection state (whether the two peers were connected or not),
ICE gathering state, as well as the ICE connection state (whether the connectivity
check succeeded or failed or still checking).

State info can be queried at any time and state transitions are exposed via event
callbacks mechanism. An WebRTC application can register event listeners to the
RTCPeerConnection object and get notified when the underlying transport layer
state changes. For example, in an application, if there is a RTCPeerConnection

28

object called pc, then the application can query the connection status of underlying
transport layer via:

pc.iceConnectionState

The application can also handle connection status changes by registering an event
handler via:

pc.oniceconnectionstatechange = function(e) {
// logic to handle ICE connection state change

};

As a sample use case, an application can show proper prompt to the user when there
are disruptions in the network and ICE connection state changes from “connected”
to “disconnected”.

29

4 WebRTC Performance Measurement System
It is introduced in previous chapters that the WebRTC specification and its im-
plementations provide a set of APIs to query media and network level statistics of
the real-time communication sessions between browser peers. Using these APIs, an
application can know whether the media transport connection has been setup and how
the network QoS and the media characteristics look like during the communication
session. All these information will help WebRTC service providers to understand the
performance of their applications on the end user side. As the need for performance
monitoring is common to all WebRTC applications, it is technically possible to build
a cloud-based service that can perform communication quality measurement and
analysis to any WebRTC applications.

4.1 Performance Monitoring as a Service
Software as a Service (SaaS) [40] model becomes popular since around 2000 with
the exemplary success of companies like Concur and Salesforce14. SaaS is based
on the multi-tenancy model where the service back-end runs in the cloud (instead
of on customer’s premise) and serves all subscribers/customers. On the customer
side, there is usually a thin client library or API interfaces that customer can use
to access the service. Data from different customers are properly managed and
access controlled so that each customer can only access their own data. The biggest
advantage of SaaS is on the deployment and maintenance aspects as the core services
are running and maintained in the cloud, thus for the service subscribers there is no
need to install or manage the service in house.

Mapping the SaaS model to the WebRTC performance monitoring requirements,
we can provide a JavaScript library which acts as the thin client and performs the
communication session quality measurement within the end user’s browser. The
library can be downloaded at the same time when an WebRTC application is loaded
in the end user’s browser. On the cloud side, we can run the service that collect,
analyze and store the measurement data reported by the JavaScript client. WebRTC
application service providers can visit the back-end service to see the measurement
and analysis result. As WebRTC implementations in the browsers are still in progress,
having such as measurement and monitoring system is important for the application
providers to make sure that there is no malfunction or service degradation caused by
some changes introduced by browser updates.

At Callstats.io15, we are building and running such a WebRTC quality monitoring
service essentially following the above model and we will show the detail of the design
of the system in the following sections.

14https://bebusinessed.com/history/the-history-of-saas
15https://www.callstats.io

30

4.2 System Architecture
The high level solution architecture of the SaaS platform is shown in Figure 12.
For a WebRTC application to monitor the performance statistics on the end users
side, it needs to integrate the “callstats.js” JavaScript library. After integration,
when an end user uses the web application to make audio/video calls, the relevant
PeerConnection will be automatically queried for state changes and media/network
statistics. The collected metrics will be sent to the collector component running in
the cloud. For different users in the same call, their metrics will be correlated in the
cloud by the “Conference Session Management” component so that metrics from
separate users can be analyzed together to generate higher level metrics. Majority of
the session or higher level metrics will be calculated as the call progresses and at
the end of the call by the “Conference Quality Analyzer” component. The WebRTC
application operators can visit the “Dashboard” component to check the metrics at
different level of granularities. The following sections will provide more details about
each of these major components. There are several other services in the system that,
together with the ones shown in Figure 12, make up the complete solution. Those
services will not be described here for the sake of clarity and emphasis on the big
picture.

Figure 12: System architecture

31

4.3 Measurement Probe
The application performance measurement is done by the “callstats.js” library16

within the end user’s browser. This library monitors the peer connection status by
calling the various WebRTC APIs introduced in the previous sections to fetch media
and network statistics. It also registers callbacks to keep track of the signaling and
network connection state changes as well as any errors reported by the PeerConnection.
The collected state change events, errors, media and network statistics data, etc.,
are sent to Callstats.io cloud at regular or adaptive intervals.

When an WebRTC application is loaded in the end user’s browser, the application
also loads callstats.js library from the CDN (Content Delivery Network) via https:
//api.callstats.io/static/callstats.min.js. The callstats.js library
contains the callstats module which exposes several APIs that the application
shall integrate. Application shall call the initialize() methods with proper
credentials to authenticate with Callstats.io’s authentication service. After the
authentication is done and when application is ready to start the audio/video
communication with its peer application, it creates the PeerConnection object and
passes it to the callstats module by calling the addNewFabric() method. From
that point on, the callstats module will perform all the events and stats monitoring
on that PeerConnection object and submit the measurement data to the Callstats.io
cloud via secure WebSocket connection.

At any time during the call, the application can call sendFabricEvent()
method to report customized events such as “audio mute”, “audio resume”, “dominant
speaker”, etc. At the end of the call, application can ask the end user to give feedback
about the overall experience and then call sendUserFeedback()method to submit
user feedback to Callstats.io backend. All the above stats, events and user’s feedback
will be stored in the cloud and shown to the application provider on Callstats.io
dashboard.

4.4 Authentication Service
The Callstats.io backend consists of several micro services and one of them is the
authentication service. The main functionality of the service is to validate that
the requests are originated from valid Callstats.io customer applications and then
issue data submission tokens to the clients. Data submission token will be used
subsequently by the callstats module on the client side to submit data to Callstats.io’s
Collector service.

Authentication process uses the JSON Web Token (JWT) [39] mechanism and
client’s authenticity can be checked based on shared secrets or public/private key.
The data submission token issued by the authentication service contains various
configurations particular to each application based on their subscribed plan, therefore
it can be utilized between “callstats.js” library and various Callstats.io micro services
to specify how the collected data shall be handled for different applications.

16https://www.callstats.io/api/

https://api.callstats.io/static/callstats.min.js
https://api.callstats.io/static/callstats.min.js

32

4.5 Collector and Session Management
The collector service handles the data submitted by the “callstats.js” library from
the end user’s browser. Collector verifies the validity of data submission token (using
a shared secret between the collector and the authentication service), and checks
that the data conforms to valid data schema. After the submitted data (conference
events, stats metrics, etc.) pass the validation, they are tagged with a conference
session id for which the data belongs to, and then pushed to analysis and storage
pipeline.

A conference session refers to the occurrence of a multi-party conference call that
happened within a certain time window. All end user’s data belonging to the same
conference session shall be tagged with the same conference session ID for storage
and analysis. The ID of a conference session consists of three components:

• an “application ID” component that identifies the WebRTC application. Cus-
tomer gets it when creating an application on Callstats.io dashboard;
• a “conference ID” component supplied by the application (e.g. “weeklymeeting”)
which identifies a conference but might not be unique in the temporal domain;
• an additional ID issued by the “Conference Session Management” service shown

in Figure 12 to add temporal uniqueness to the conference session.

The “Conference Session Management” service maintains the conference session
states, for example it creates a new conference session when the first user joins a
conference and it terminates a conference session after all users left the conference
and no keep-alive messages have been received from the conference participants for
the last 30 seconds.

4.6 Storage Component
Two different types of data storage strategy are used at callstats.io backend to store
customer’s configuration data and the performance monitoring data.

For customers’ subscription and configuration data, the data volume is relatively
small and it is very important to keep the consistencies of the data and guarantee
the ACID17 properties when customers make configuration changes. For above
considerations, relational database management system PostgreSQL18 was selected to
store these application configuration data. Whenever customers login to callstats.io
dashboard and change application settings, the data are persisted to PostgreSQL.

For the conferencing events and end users’ performance metrics data, depending
on the number of conferences occurred and the duration of the conferences, the
aggregated volume can be quite big, for example, an application might submit
hundreds of millions of data points per day. For this reason high performance and
high scalability requirements outweighs ACID properties. Because the data format
of the collected metrics might evolve over time, it is also important that the data

17https://en.wikipedia.org/wiki/ACID
18https://en.wikipedia.org/wiki/PostgreSQL

33

store is flexible in terms of the data schema. A couple of NoSQL19 solutions stand
out to meet the above requirements and MongoDB20 was used at callstats.io for its
high performance, high availability and ease of scaling. Each customer’s metrics data
are stored under a separate namespace and can be scaled and maintained in isolation
of other customer’s data. This way of operation fits perfectly with the SaaS model.
Therefore, whenever end users are making audio/video calls, all the relevant events,
stats and other conference related data submitted from the “callstats.js” library got
saved to MongoDB.

4.7 Analytics Component
One major motivation for WebRTC application providers to integrate with the
Callstats.io monitoring solution is to get insights into the operations of their services
and find potential issues or rooms for improvement.

For each WebRTC call, analysis can be done on things such as how many
participants were in the call, how many PeerConnections were used, was there any
failures or retries during PeerConnection setup, the type of failures occurred, where
are the end users from (Geo Locations, ISP), codecs and frame size selected, the
user-agent (native application version or browser version, etc.) each participant uses,
etc. Callstats.io also calculates a quality index for each media stream based on
the measurement data such as delays, losses, throughput, etc., to give application
provider a general idea of the performance of the communication session.

Aggregated metrics can also be calculated for the service provider. These kind
of metrics include things like number of calls occurred each hour/day/month, the
percentage of calls that have errors (e.g. signaling errors, network connection errors,
etc.), the distribution of end user locations, distribution of the browsers, operating
systems, etc.

To achieve the real-time processing capability, Apache Kafka21 is used as the
message queue to stream collected events and stats data for analysis and storage.
Kafka makes it possible to persist incoming data from the collectors in a fast and
scalable fashion through partitioning logic. Apache Storm22 real-time processing
system reads from Kafka, then process and analyze the data to calculated performance
metrics mentioned above. This stream oriented architecture matches the requirements
on reliability and scalability needed for processing large amount of incoming data,
and makes it possible for the application service providers to see the status of their
service metrics on Callstats.io dashboard near real time (e.g., within seconds).

4.8 Other Components
In addition to the above mentioned components, there are various other components
and services providing supporting functionalities such as IP to geographic location

19https://en.wikipedia.org/wiki/NoSQL
20https://docs.mongodb.com/manual/introduction/
21https://kafka.apache.org/, Apache Kafka is a distributed and replicated log system.
22http://storm.apache.org

34

mapping, application log indexing, service registration and coordination, customer
billing management, etc. All these services work together to provide a scalable and
reliable WebRTC application performance monitoring solution.

35

5 Performance Measurement Observations
In Chapter 2 and 3 we introduced WebRTC APIs and the set of methods that
can be used to gather network transport statistics and media characteristics of a
communication session between peer browsers. In Chapter 4 we explained how a
measurement platform is built at Callstats.io to provide performance monitoring
service for WebRTC application service providers, so that they can focus on the
customer engagement features while relying on Callstats.io service to takes care of the
communication quality monitoring. In this chapter, we will show some measurement
results to demo certain performance characteristics of real-world WebRTC services.

Many things can be measured with Callstats.io service. For example, the measure-
ment probe (introduced in Section 4) gathers information such as: the user-agent used
for the communication, ICE related events (connection state changes, candidates,
the selected transport pair, etc), the SDPs exchanged between the communication
peers, the A/V codecs and other media characteristics (frame size, frame rate), and
the network metrics such as latency, throughput, packet loss, etc.

As mentioned in Section 4, Callstats.io customers (which are typically developers
or service operation people) can log on to the dashboard and check the performance
of their WebRTC applications for both aggregated metrics and the details of specific
conferences. Figure 13 shows a screenshot of the dashboard displaying the throughput
info of a particular user during a call.

Figure 13: Sample dashboard screenshot

In the rest of this chapter, we will show some aggregated metrics calculated
using data collected from selected customer applications to give a big picture of how
real-world WebRTC application performance looks like. These applications include
web applications as well as native desktop or mobile applications built with tools or
SDKs that are WebRTC compliant. All these applications embed “callstats.js” probe
and rely on Callstats.io to monitor the quality of their end users’ communication

36

sessions.
The dataset used to generate the statistics in the following sections consists of

1.5 million peer-connections measured between mid-July and mid-August in 2017.

5.1 Endpoint Statistics
Figure 14 shows the distribution of end user’s operating system (OS) and browser
types. It is pretty clear to see that Windows is the most popular operating system
that people use to run WebRTC applications. Android and iOS together account
for more than 12% of the user sessions, showing the trend of people using mobile
devices to make WebRTC calls.

The percentage of Chrome usage is a bit over 70% which is on-par with the
browser’s market share23. As for other browsers, Safari announced support for We-
bRTC in June 201724 with Opus and H.264 codecs. Microsoft also announced support
of WebRTC 1.0 in IE and Edge early 201725. Opera has been supporting WebRTC
since the beginning as it shares the core engine with Chrome. Our measurement
indicates the usage of these browsers in WebRTC calls are less than 1%.

The OS and user-agent joint distribution chart shows that Android users pre-
dominately use Chrome for WebRTC calls while iOS users seem to only use native
applications, which can be explained by Apple’s policy of not allowing 3rd party
browser engine to run on iOS26.

55.0%

22.6%

10.1%

9.8%
2.5%

Windows
Mac
Linux
Android
iOS

(a) Operating system type

CHROME 71.2%
NATIVE 22.7%
FIREFOX 5.4%
IE 0.4%
OTHER 0.3%

(b) User-agent type

Android

iOS

Linux

Mac

Windows

(c) OS vs. user-agent

Figure 14: Endpoint distributions

End user’s geographic location can be derived by examining the IP address
he/she used to access the Internet. In WebRTC context, the “Server Reflexive” ICE
candidate (introduced in Section 2.1.4) contains user’s IP seen on the public side of
the user’s NAT. Table 1 lists the top 9 countries that has the highest number of end
user sessions monitored by Callstats.io. This table indicates US is leading in terms

2376% visits came from Chrome per https://www.w3schools.com/browsers
24https://webkit.org/blog/7726/announcing-webrtc-and-media-capture
25https://blogs.windows.com/msedgedev/tag/webrtc/
26https://www.howtogeek.com/184283/why-third-party-browsers-will-always-be-inferior-to-

safari-on-iphone-and-ipad/

37

of WebRTC technology penetration. Considering the relative smaller population of
European countries (DE, FR, GB), the table indicates WebRTC adoptions in Europe
is about half of US.

Country Code US BR FR DE IN CN GB ZA CA Others
Percentage (%) 48.7 5.8 3.5 3.2 2.6 2.5 2.4 2.4 2.4 26.6

Table 1: End user distribution by country

5.2 Media Statistics
To ensure basic level of inter-operability, WebRTC requires implementations to
support audio codecs such as Opus, PCMA and PCMU according to RFC 7874 [32].
WebRTC also requires implementations to support VP8 video codec and H.264
Constrained Baseline profile according to RFC 7742 [33].

Table 3 shows the video codec distribution observed from our selected calls. It is
clear that VP8 is used by the majority of the calls. VP9 video codec is not mandatory
in WebRTC but it is built into Google’s WebRTC library and browser. We can see
from Table 3 that some applications choose to use VP9 over VP8 and H.264. H.264
is the least popular video codec in WebRTC world per our observation.

Table 2 shows the audio codec usage and it is clear that Opus [34] is the audio
codec for WebRTC (used by more than 99% calls).

Audio codec Percentage (%)
Opus 99.71
PCMU 0.20
Other 0.09

Table 2: Audio codec distribution

Video codec Percentage (%)
VP8 94.34
VP9 3.51
H.264 2.15

Table 3: Video codec distribution

5.3 Network Statistics
In this section, we will look at the network performance metrics such as latency, loss
and throughput in the reported dataset. These metrics has strong correlation with
end user’s quality of experience.

From throughput perspective, higher throughput usually leads to better user
experience. Figure 15 shows the distribution of average audio throughput. The
distribution indicates that more than 70% of the audio streams use throughput lower
than 40 kbps and about 20% audio streams use bit rate lower than 20kbps. This is
compatible with the codec distribution shown in Table 2 as Opus is the dominant
codec for WebRTC calls, and Opus works well within the 21-48 kbps range for speech
audio so we can argue that majority of audio sessions have pretty good quality.

38

<10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 >80
Audio Throughput (kbps)

0%

10%

20%

30%

40%

Figure 15: Audio throughput

0 500 1000 1500 2000 2500 3000 3500
Video Throughput (kbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 16: Video throughput

Figure 16 shows the distribution of average throughput for the video streams. It
can be seen that on average, half of the video sessions use bit rate less than 400 kps,
and about 30% of the video streams use bit rate higher than 1Mbps, which can
usually provide good video quality (e.g., 480P). There are about 10% video streams
use throughput higher than 2Mbps, that is typically good enough for HD quality
video.

Figure 17 shows the 95th percentile Round-Trip Time (RTT) for the WebRTC
calls in our reported dataset. It was introduced in Section 3.1 that one way delay less
than 200ms usually provide good real-time conversational audio experience. One way
delay longer than 400ms will lead to bad user experience for VoIP calls. Looking at
the figure with the user experience model in mind, we can see that around 90% of our
monitored calls have 95th percentile RTT shorter than 400ms. So our measurement
just confirmed the fact that the Internet is good enough, most of the time, to provide

39

real-time communication services. There are about 3-4% of the calls for which the
95th percentile RTTs are longer than 800ms. We can infer that for those calls, there
must be some periods during which the network performance were degraded (e.g.,
the network is congested or user got switched to some low performance network) and
the end users experienced some cluttering audio or choppy video.

0 500 1000 1500 2000 2500 3000 3500
95th percentile RTT (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 17: 95th percentile RTT

0 10 20 30 40 50 60 70 80
95th percentile fractional loss (%)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

C
D

F

Figure 18: 95th percentile fractional loss

In Section 3.1 we mentioned that RTP protocol defined the mechanism for receivers
to periodically report the fraction of packets lost during the last reporting interval.
When the loss is low (e.g. less than 5%), user shall experience no major media quality
degradation. If this metric is high, then the user will experience choppy or black out
videos.

Figure 18 shows the distribution of the 95th percentile fractional loss observed
on the PeerConnection sessions in our report dataset. It is nice to see that 85% of

40

the sessions have 95th percentile of packet loss of 0, and about 95% of the sessions
report 95th percentile loss lower than 5%. Smaller loss leads to better audio and
video experiences. This observation on packet loss is really encouraging to the
WebRTC service providers as we had just showed above that 90% session have a
satisfactory 95th percentile RTT. Combining these two pieces of information about
loss and latency, we can claim that the majority of the calls in our reported dataset
are performing reasonably well from network transport perspective. Of course a
satisfactory end user experience also include things such as selected video resolution,
audio bandwidth, etc.

5.4 ICE Performance
ICE mechanism is used in WebRTC to set up the media path. In previous sections,
we introduced ICE algorithm steps and how WebRTC API exposes the ICE state
machine. Callstats.io collects and records those ICE state related information
during the PeerConnection setup. In this section, we first look at the gathered ICE
candidates, then we show the latency metrics which characterize how long each
ICE step takes and, more importantly, how long it takes overall to setup the media
transport channel between the communicating peers.

5.4.1 Gathered ICE Candidates

The number of ICE candidates gathered depends on a few factors, such as the
application’s configuration (e.g. whether STUN and TURN servers are configured);
the number of media transport channels that application wants to use, e.g. should it
use separate streams to transmit audio and video or should it bundle [35] multiple
media streams over the same transport channel; whether RTP and RTCP can be
multiplexed over the same transport [36]; and the number of network interfaces
available and IP addresses bounded to those interfaces, etc.

Figure 19a shows the total number of ICE candidates gathered per PeerConnection.
Each candidate can be represented as a (IP, port, transport) triplet where the
transport can be either UDP or TCP. From the figure, we can see that 90% of
the sessions has 10 or less candidates. And 99.8% of the PeerConnections in our
reported dataset has less than 20 candidates. It is interesting to note that there are
17% of PeerConnections only have one ICE candidate. The relevant application must
have some very special setting to make this happen, which might deserves further
analysis.

Figure 19b shows the IP address type of the ICE candidates. We can see that
the curve for IPv4 address distribution is almost the same as the the distribution in
Figure 19a, which signifies the dominance of IPv4 address usage. Less than 5% of
the PeerConnections have IPv6 candidates.

Figure 19c shows that around 80% of PeerConnections do not have a TCP
transport candidate and 99% of the PeerConnections have less than 4 TCP candidates.
TCP transport offers better NAT traversal capability than UDP, but because of the
elastic nature of TCP, UDP shall be the preferred transport to use, unless only TCP

41

0 5 10 15 20
Number of candidates

0.0

0.2

0.4

0.6

0.8

1.0

(a) Total

0 5 10 15 20
Number of candidates

0.0

0.2

0.4

0.6

0.8

1.0

IPv4
IPv6

(b) IPv4 vs. IPv6

0 5 10 15 20
Number of candidates

0.0

0.2

0.4

0.6

0.8

1.0

UDP
TCP

(c) UDP vs. TCP

0 5 10 15 20
Number of candidates

0.0

0.2

0.4

0.6

0.8

1.0

Total
Host
STUN
TURN

(d) Candidate types

Figure 19: ICE candidates per PeerConnection

candidates can succeed the connectivity check.
Figure 19d shows the distribution of the candidate address type (introduced in

Section 2.1.4). It is interesting to see that about 65% of the PeerConnections do not
have TURN candidates, in these cases the successful setup of these PeerConnections
will have to depend on either there are publicly reachable host addresses or the STUN
address can be used to traverse the endpoint’s NAT. It is also interesting to see
that about 22% of the PeerConnections have 0 Host address candidate. This might
be due to the application’s configuration that the PeerConnection is forced to use
only “relayed” candidate (e.g. by setting the iceTransportPolicy option in the
PeerConnection configuration), so there was no need to gather “Host” candidates.
This approach can the significantly optimize and accelerate the connectivity checks
step.

5.4.2 Active ICE Candidates

The statistics of ICE candidates that succeeded connectivity checks are shown in
Table 4, 5 and 6.

Table 4 shows that predominantly (more than 98%) the active ICE candidate
pairs (i.e. the ones passed the connectivity checks) use IPv4 addresses. There are
about 1% PeerConnections that have an active transport channel using IPv6 address.

Table 5 shows that active media paths are predominantly (around 97%) using
only UDP as the transport. And there are close to 3% PeerConnections only have

42

IPv4 IPv6 IPv4 and v6
98.66% 0.96% 0.38%

Table 4: Address type distribution for active ICE candidates

UDP TCP UDP and TCP
96.86% 2.93% 0.21%

Table 5: Transport type distribution for active ICE candidates

TCP transport available. This might be due to the NAT configuration in enterprise
environment where UDP traffics are strictly filtered and limited. A very small portion
of the PeerConnections have both UDP and TCP transport available for the media
path.

Host STUN Relay Mixed
6.85% 81.03% 7.59% 4.52%

Table 6: Active ICE candidate types distribution

Table 6 indicates that about 6-7% PeerConnections can be successfully established
just using the endpoint’s host address. In these cases, the communicating peer is
either located in the same network or the endpoint’s host address is publicly reachable.
More than 80% PeerConnections’ STUN address have successfully passed connectivity
checks which justified the effectiveness of NAT traversal via the server or peer reflexive
address. There are about 7% PeerConnections that have to rely on relay server to
set up the media path due to the most restrictive NAT policy.

5.4.3 ICE Latencies

In this section, we examine how long it takes for ICE to work through each steps
to eventually setup the transport connection between peers. More specifically, we
measure the following metrics:

• Gathering Delay: This is the interval from the PeerConnection’s candidates
gathering starts (e.g. state changed from “new” to “gathering”) till the gathering
state is changed to “complete”, at which point all possible candidates have
been gathered.

• Connectivity Check Delay: This is the the interval when ICE starts the
connectivity probing till the ICE agent finishes checking all candidate pairs
against one another and has found a usable connection. Candidate pairs are
prioritized by the ICE agent. Higher priority pairs are checked first, and
successful candidate pair can already be used to transmit media. Lower priority

43

pairs can be kept as backup transports after they succeed the checks. Most
WebRTC implementations support “ICE trickle” [30] where ICE candidates
are exchanged immediately (through signaling channel) as they are gathered,
thus connectivity check phase can already start before the gathering phase
completes.

• Time to First Media: This is the time since the PeerConnection is created
till the first remote audio/video frame is received and ready to be rendered in
the browser. This is an important user experience indicator.

Measuring the above latencies provides a general profile about how much time
it takes for the media transport to setup and how much time an end user needs to
wait, after call initiation, before he/she sees the video from remote.

101 102 103 104 105

Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Gathering
Connectivity Check
Time to First Media

Figure 20: ICE-related call setup delay

Figure 20 shows the distribution of measurement results for the above three ICE
latencies. We can see that about 50% of the PeerConnections finished gathering all
ICE candidates under 1 s. And more than 90% of the PeerConnections completed
gathering in less than 5 s. But for about 2% of the sessions, the ICE gathering phase
took more than 10 s to conclude.

For connectivity check delay, we observed that about half of checks are finished
within 500ms, and 90% finished within 2 s. And more than 99% connectivity checks
finished within 10 s. The ones that took longer time to finish are most likely due to
ICE trickle where ICE gathering phase might have took long to complete hence the
connectivity checks also took long to conclude.

As to the “Time to First Media” measurement, we can see that 50% of the user
sessions took less than 300ms to render the first media frame. One should note
that the median for connectivity check is around 500ms, this is exactly how ICE
is designed to work, i.e. the successful transport can already be used to transmit
media while further connectivity checks of lower priority candidate pairs are still
in progress. About 90% of the user sessions starts to receive remote media within

44

10 s. Some of the longer delay can be caused by longer connectivity checks to find
successful candidate pairs and some can also be caused by applications requiring the
user to manually grant permissions to accept the call.

5.5 Signaling Overhead
As mentioned in Section 2.2, WebRTC does not define specific signaling protocols for
call initiation and call control. ICE candidates and media codec info are exchanged
between the peers via SDP and facilitated by each application’s own signaling
mechanism. The SDP exchange can be considered as the signaling overhead for
peer connection establishment. Callstats.io collects and records SDP info for each
WebRTC call.

0 1000 2000 3000 4000 5000 6000 7000 8000
SDP size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100
Number of SDP exchanges

0.0

0.2

0.4

0.6

0.8

1.0

Figure 21: SDP size and exchange frequency

Figure 21 shows the size of the SDPs and how often SDP exchange happened in
the reported dataset. This figure shows that 80% of the SDP descriptions are larger
than 2KB and almost all SDPs are less than 6KB. SDP exchange can happen when
audio/video streams are added or removed from the communication session. The
figure also indicates that half of the calls only need 1 or 2 SDP exchanges, and 90%
of the sessions involve less than 10 SDP exchanges. But there are some portions
of sessions involve several hundreds of SDP exchange, this can happen when there
are many participants in a SFU (Selective Forwarding Unit) bridged conference. In
those cases, the media stream info for different participants are all listed in the SDP.
So when a participant joins or leaves the conference, SDP updates will be sent to
all other participants so that the end user’s application can render video streams
properly for all the participants. Same thing can happen when different participants
enable or disable screen share, for example. If the conference duration is long, and
there are more user join/leave activities, one can expect that there will be quite
many SDP exchanges involved.

45

6 Summary
In this thesis, we glossed over the general real-time communication techniques for call
signaling and media path setup. We introduced the basics of WebRTC technology
that web application developers can use to add real-time communication functionality
to web applications via W3C standard APIs. We then discussed the major factors
affecting the end user’s experience in a communication session and how those factors
can be measured from WebRTC perspective.

As the core contribution of this thesis, we showed the architectural design of
Callstats.io, a cloud-based service platform that helps WebRTC application providers
to monitor the performance of their applications. Callstats.io utilizes standard APIs
to keep track of signaling and network state changes, also collect network and media
statistics of the end user’s communication sessions. The measurement results are sent
to the back-end in the cloud for further analysis and storage. This service has been
running online since early 2015 and up to today hundreds of customers have signed
up and integrated the “callstats.js” SDK inside their applications to monitor the
quality of the audio/video calls they are serving to their end users. These integrations
provide us the opportunity to collect real-time communication performance data at
large scale.

We used a subset of the collected data to generate a profile showing how real-world
WebRTC applications perform in terms of latency, loss, throughput, codec usage etc.
Based on the statistics of our measurement we can see that the majority of these
real-time communication sessions are doing reasonably well in terms of latency and
packet loss. The throughput performance is good for about 30% of the sessions (e.g.,
above 1Mbps which is usually good enough for 480p video resolution).

ForWebRTC application providers, these measurements can help them understand
their application’s performance either for individual calls or aggregated across different
geographic regions, throughout a period of time. Based on the metrics, they can try
to make adjustment to their application deployment configurations (such as setting
a better constraint based on user’s context; using relay servers closer to the end
users; deploy more application servers to the places where majority of their users are
located, etc.) so that the overall application performance can be improved over time,
and the improvement should be easily reflected by the metrics collected or calculated
by Callstats.io.

We are aware that the metrics reported in this thesis is limited and biased by the
applications integrated with Callstats.io. But, as the dataset consists of more than 1
million measured user sessions sampled from about one hundred different applications
serving end users world-wide, the statistics we generate should be a high confidence
reflection of the performance of web based real-time communication at large. We
are also aware that there are still some widely used real-time communication tools
that use proprietary signaling and media protocols or codecs, and the media streams
might be transmitted over managed or overlay networks. They might be able to
outperform the Internet based WebRTC applications on some aspects, but there is
no way for us to verify this.

Due to the limitation of time, the statistics studied in this thesis only scratched

46

the surface of performance evaluation in WebRTC. Further study shall be done
with finer granularity of context. For example, metrics can be studied based on
geographic locations, Internet service providers, connectivity types (wired vs. wireless,
public vs. enterprise networks), conferencing topologies (P2P vs. relayed), operating
system types, user-agent groups, etc., so that the performance characteristics for
each particular context can be profiled to give more clear picture of the status quo
in WebRTC performance. Furthermore, those detailed information can be used as a
feedback and source of input to various stakeholders to further improve the quality
of their real-time communication services.

47

References
[1] D. Cohen. Specifications for the Network Voice Protocol (NVP). RFC 741,

November 1977.

[2] H.323 : Packet-based multimedia communications systems. ITU-T recommenda-
tion H.323, February 1998.

[3] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, etc. SIP: Session
Initiation Protocol. RFC 3261, June 2002.

[4] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications. RFC 3550, July 2003.

[5] E. Brosh, S.A. Baset, D. Rubenstein, H. Schulzrinne. The delay-friendliness
of TCP. ACM SIGMETRICS Performance Evaluation Review, 36(1), pp. 49-60,
2008.

[6] H. Schulzrinne, S. Casner. RTP Profile for Audio and Video Conferences with
Minimal Control. RFC 3551, July 2003.

[7] C. Perkings. RTP: Audio and Video for the Internet. Addison Wesley, 2003.

[8] I. Fette, A. Melnikov. The WebSocket Protocol. RFC 6455, December 2011.

[9] H. Alvestrand. Overview: Real Time Protocols for Browser-based Applications.
Internet Draft draft-ietf-rtcweb-overview-18, March 2017.

[10] C. Holmberg, S. Hakansson, G. Eriksson. Web Real-Time Communication Use
Cases and Requirements. RFC 7478, March 2015.

[11] A. Bergkvist, D. C. Burnett, C. Jennings, A. Narayanan, B. Aboba, T.
Brandstetter. WebRTC 1.0: Real-time Communication Between Browsers. W3C
Candidate Recommendation, November.

[12] D. C. Burnett, A. Bergkvist, C. Jennings, A. Narayanan. Media Capture and
Streams. W3C Candidate Recommendation, October 2017.

[13] World Wide Web Consortium Process Document. World Wide Web Consortium
(W3C), October 2005.

[14] H. Alvestrand, V. Singh. Identifiers for WebRTC’s Statistics API. W3C
Working Draft, November 2017.

[15] M. Handley, V. Jacobson, C. Perkins. SDP: Session Description Protocol.
RFC 4556, July 2006.

[16] J. Rosenberg and H. Schulzrinne. An Offer/Answer Model with the Session
Description Protocol (SDP). RFC 3264, June 2002.

48

[17] D. Bryan, B. Lowekamp, C. Jennings. SOSIMPLE: A Serverless, Standards-
based, P2P SIP Communication System. First International Workshop on Ad-
vanced Architectures and Algorithms for Internet Delivery and Applications
(AAA-IDEA’05), pp. 42–49, IEEE Computer Society, 2005.

[18] J. Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol for
Network Address Translator (NAT) Traversal for Offer/Answer Protocols. RFC
5245, April 2010.

[19] J. Rosenberg, R. Mahy, P. Matthews, D. Wing. Session Traversal Utilities for
NAT (STUN). RFC 5389, October 2008.

[20] R. Mahy, P. Matthews, J. Rosenberg. Traversal Using Relays around NAT
(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN).
RFC 5766, April 2010.

[21] G. Camarillo, M. Martín. The 3G IP Multimedia Subsystem (IMS): Merging
the Internet and the Cellular Worlds (3rd Edition). Wiley, September 2008.

[22] J. Wagner. What Developers Should Know About ORTC Versus WebRTC.
https://www.programmableweb.com/news/
what-developers-should-know-about-ortc-versus-webrtc/
analysis/2015/10/12.

[23] Google. Introducing WebRTC – An Open Realtime Communications Project.
https://webrtc.org/blog/2011/05/03/
introducing-webrtc-an-open-realtime-communications-project.
html. May 03, 2011.

[24] H. Alvestrand. Transports for WebRTC. Internet Draft draft-ietf-rtcweb-
transports-17, October, 2016.

[25] C. Perkins, M. Westerlund, J. Ott. Web Real-Time Communication (WebRTC):
Media Transport and Use of RTP. Internet Draft draft-ietf-rtcweb-rtp-usage-26,
March, 2016.

[26] E. Rescorla. WebRTC Security Architecture. Internet Draft draft-ietf-rtcweb-
security-arch-13, October, 2017

[27] M. Baugher, D. McGrew, M. Naslund, E. Carrara, K. Norrman. The Secure
Real-time Transport Protocol (SRTP). RFC 3771, March 2004.

[28] R. Stewart (Editor). Stream Control Transmission Protocol. RFC 4960, Septem-
ber 2007.

[29] E. Rescorla, N. Modadugu. Datagram Transport Layer Security Version 1.2.
RFC 6347, January 2012.

https://www.programmableweb.com/news/what-developers-should-know-about-ortc-versus-webrtc/analysis/2015/10/12
https://www.programmableweb.com/news/what-developers-should-know-about-ortc-versus-webrtc/analysis/2015/10/12
https://www.programmableweb.com/news/what-developers-should-know-about-ortc-versus-webrtc/analysis/2015/10/12
https://webrtc.org/blog/2011/05/03/introducing-webrtc-an-open-realtime-communications-project.html
https://webrtc.org/blog/2011/05/03/introducing-webrtc-an-open-realtime-communications-project.html
https://webrtc.org/blog/2011/05/03/introducing-webrtc-an-open-realtime-communications-project.html

49

[30] E. Ivov, E. Rescorla, J. Uberti, P. Saint-Andre. Trickle ICE: Incremental
Provisioning of Candidates for the Interactive Connectivity Establishment (ICE)
Protocol. Internet Draft draft-ietf-ice-trickle-14, September, 2017.

[31] J. Uberti, C. Jennings, E. Rescorla. JavaScript Session Establishment Protocol.
Internet Draft draft-ietf-rtcweb-jsep-24, October, 2017.

[32] JM. Valin, C. Bran. WebRTC Audio Codec and Processing Requirement. RFC
7874, May 2016.

[33] A.B. Roach. WebRTC Video Processing and Codec Requirements. RFC 7742,
March 2016.

[34] JM. Valin, K. Vos, T. Terriberry. Definition of the Opus Audio Codec. RFC
6716, September 2012.

[35] C. Holmberg, H. Alvestrand, C. Jennings. Negotiating Media Multiplexing
Using the Session Description Protocol (SDP). Internet Draft draft-ietf-mmusic-
sdp-bundle-negotiation-39, August 31, 2017.

[36] C. Perkins, M. Westerlund. Multiplexing RTP Data and Control Packets on a
Single Port. RFC 5761, April 2010.

[37] A. Johnston, D. Burnett. WebRTC APIs and RTCWEB Protocols of the
HTML5 Real-Time Web (3rd Edition). Digital Codex LLC, 2014.

[38] I. Grigorik. High Performance Browser Networking (1st Edition). O’Reilly
Media, 2013

[39] M. Jones, J. Bradley, N. Sakimura. JSON Web Token (JWT). RFC 7519, May
2015.

[40] P. Mell, T. Grance. The NIST Definition of Cloud Computing. NIST, Sept.
2011

[41] ITU. One-way transmission time. ITU G.114, May 2003.

[42] C. Perkins, O. Hodson. Options for Repair of Streaming media. RFC 2354,
June 1998.

50

A PeerConnection API Usage Example

1 // setup a signaling channel with the web application server
2 var signalingChannel = new SignalingChannel();
3
4 var pcConfig = {
5 iceServers: [{
6 "url": "stun:stunserver:8888"
7 }, {
8 "url": "turn:user@turnserver:9999",
9 "credential": "password"

10 }]
11 };
12
13 // create peer connection
14 var pc = new RTCPeerConnection(pcConfig)
15
16 navigator.getUserMedia({
17 "audio": true,
18 "video": true
19 }).then(gotStream).catch(handleError);
20
21 function gotStream(stream) {
22 // attach local media stream to the peerconnection
23 stream.getTracks().forEach((track) => pc.addTrack(track, stream));
24
25 if (isCaller()) {
26 pc.createOffer(function(offer) {
27 pc.setLocalDescription(offer);
28 // send SDP offer to callee, facilitated by server
29 signalingChannel.send(offer.sdp);
30 });
31 }
32 }
33
34 pc.onicecandidate = function(event) {
35 if (event.candidate) {
36 signalingChannel.send({
37 type: ’candidate’,
38 label: event.candidate.sdpMLineIndex,
39 id: event.candidate.sdpMid,
40 candidate: event.candidate.candidate
41 });
42 }
43 }
44
45 signalingChannel.onmessage = function(message) {
46
47 if (message.type === ’candidate’) {
48 // handle ICE candidate from remote
49 var candidate = new RTCIceCandidate({
50 sdpMLineIndex: message.label,
51 candidate: message.candidate
52 });

51

53 // tell browser about new ICE candidate from remote
54 pc.addIceCandidate(candidate);
55 }
56
57 if (message.type === ’answer’) {
58 // caller handle SDP answer from remote
59 pc.setRemoteDescription(new RTCSessionDescription(message));
60 }
61
62 if (message.type === ’offer’) {
63 // callee handle SDP offer from remote
64 pc.setRemoteDescription(new RTCSessionDescription(message));
65 pc.createAnswer(function(sdpAnswer) {
66 pc.setLocalDescription(sdpAnswer);
67 signalingChannel.send(sdpAnswer);
68 });
69 }
70 }
71
72 // once media for a remote track arrives, show it in the remote video

element
73 pc.ontrack = function(event) => {
74 var remote_video = document.getElementById(’remote_video’);
75 remote_video.srcObject = event.streams[0];
76 };

	Abstract
	Preface
	Contents
	Abbreviations
	Introduction
	Background
	Goals
	Organization

	Real-Time Communication and WebRTC
	Real-Time Communication
	Signaling Protocol
	Media Transport Protocol
	Signaling and Media Paths in RTC
	NAT traversal for RTC

	Web Real-Time Communication (WebRTC)
	WebRTC History
	WebRTC Stack
	WebRTC Application
	WebRTC basic call flow
	WebRTC Protocols
	WebRTC Use Cases
	WebRTC APIs

	Quality of Real-Time Communication
	Quality Metrics
	Quality Measurement in WebRTC
	Statistics API
	Network Connection State Tracking

	WebRTC Performance Measurement System
	Performance Monitoring as a Service
	System Architecture
	Measurement Probe
	Authentication Service
	Collector and Session Management
	Storage Component
	Analytics Component
	Other Components

	Performance Measurement Observations
	Endpoint Statistics
	Media Statistics
	Network Statistics
	ICE Performance
	Gathered ICE Candidates
	Active ICE Candidates
	ICE Latencies

	Signaling Overhead

	Summary
	References
	PeerConnection API Usage Example

