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1 Introduction

Engine calibration has been an important process since the rising of diesel engines
in industry. The meaning of engine calibration (as known as engine tuning) is
adjustment, modification to the internal engine’s actuators or to its control unit in
order to yield optimal performance and fuel economy. The need of keeping the engine
running at higher efficiency and lower emissions requires the calibration work to be
more sophisticated and accurate.

Besides, increasing in the number of controllable engine’s parameters leads to a
dramatic increase in calibration costs, hence, the new generation of engine calibration
process must be capable of handling high number of parameters with reasonable
costs. Using static control maps (lookup tables) in which the optimal values of the
engine’s actuators are contained, has been a very common control strategy in the
automotive industry. Finding the accurate values for these maps is therefore really
challenging for the manufacturers.

1.1 Thesis objectives

The objective of this thesis is to create static optimal control maps of diesel engines
for high efficiency and emission reduction. The calibration tool to be used to create
the control maps, named "Off-line parameterization tool", was designed based on
the Design of Experiments method. The optimization goal is to minimize the
Brake Specific Fuel Consumption (BSFC) of the engine by adjusdting the engine’s
input parameters and under some emission constraints. The logical structure of the
calibration tool was built similarly to the engine calibration process in [1].

The chosen input parameters of the calibration tool are the following:

• Boost pressure.

• Common rail pressure.

• Start of injection.

The outcome and the emission constraints are determined respectively as:

• Optimal static control maps of the three input parameters.

• NOx emission constraints.
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The tool was designed to be able to work both fully automatically and semi-
automatically depending on the engine’s conditions. Using the Design of Experiments
approach helps reducing the calibration process time as well as saving resources.

From a literature review, it can be concluded that several calibration processes
using the Design of Experiments methods have been developed over the years. For
instance, the Design of Experiments method was used in [2] to optimize the injection
strategies of the diesel engines. An extensive application of the method, adaptive
on-line Design of Experiments, was used in [3] with the automatic and adaptive
identification of the region of interest in the high dimensional parameter space to
guarantee the efficiency of the designs with highly non-linear system and irregular
shaped valid regions. Moreover, the Design of Experiments was also used in the
model-based engine calibration according to [4], [5] and [6].

Even though all the mentioned researches have used the Design of Experiments
approach, their implementations in choosing experimental design types and optimiza-
tion process are different compare to this thesis. The unique aspect of this research
lies on the significant properties of the Off-line parameterization tool. Firstly, this
tool is flexible, it is able to work with multiple inputs and multiple outputs. Secondly,
it can also reduce the calibration time as the engine running time is kept as small as
possible and all the data processing work is done automatically.

1.2 Thesis overview

This thesis is divided into five main chapters. The background information about
engine working principles and the working cycle of the parameterization tool are
presented in Chapter 2. In this chapter, a general introduction to diesel engine such
as operating principles, the diesel combustion, the flow diagrams of air and fuel as
well as some knowledge about the emissions of the diesel engine are discussed. In
addition, in the last part of this chapter, the parameterization tool is described in
detail discussing engine control aspects, input-output relationship and the working
diagram of the tool.

The Design of Experiments method and other methods used in the tool are
discussed in Chapter 3. Chapter 4 and Chapter 5 present the implementation and
results of the Off-line parameterization tool on a non-road, turbocharged, common
rail and direct injection 44 AWI AGCO diesel engine. Conclusions of the research
and some future works are presented in Chapter 6.
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2 Background

2.1 Introduction to diesel engines

2.1.1 Diesel engine operating principles

Diesel engine was invented in 1892 by Rudolph Diesel [7]. It operates using a
compression ignition process. The diesel engine is different from other gasoline
engines in the way of using a high compression of the air to ignite the fuel rather than
using a spark plug. The operating cycle of a diesel engine is shown in the following
figure 1 [8].

Figure 1: 4-stroke diesel engine operating cycle [8].

There are 4 strokes in an operating cycle of a diesel engine, which are: intake
stroke, compression stroke, expansion stroke and exhaust stroke [9].

1. Intakestroke: (0 to 1) Atmospheric air after passing through the air filter
gets inducted into the engine through the intake valve while the exhaust valve
remains closed. This starts at top dead center, then intake valve opens when
the piston moves downward and closes when the piston is at bottom dead
center.

2. Compression stroke: (1 to 2) The stroke starts when the piston is going
upward from the bottom position to compress the air-fuel mixture. As both
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intake and exhaust valves are closed, the fuel mixture is trapped inside the
combustion chamber and is compressed to a fraction of its volume.

3. Expansion stroke: (2 to 3 and 3 to 4) the stroke, also known as power stroke,
begins when the air-fuel mixture is ignited by the significantly risen heat from
the compression stroke. The heat is high enough to auto ignite and burn the
fuel and then leads to expanding the air inside the chamber and forcing the
piston to go downward. Closing both valves guarantees that all the force is
exerted on the piston. The stroke ends as the piston reaches the bottom dead
center.

4. Exhaust stroke: (4 to 1 and 1 to 0) the stroke begins near the end of the
expansion stroke and the exhaust valve is opened. The piston moves upward
and pushes the burnt gases from the expansion stroke out of the combustion
chamber through the exhaust port. The exhaust valve closes and the intake
valve opens when the piston is at the top position again. A new cycle is started
with the intake stroke.

Each cylinder of a four-stroke diesel engine completes the aforementioned opera-
tion in two revolutions in which intake stroke and compression stroke happen in the
first revolution and the other 2 strokes happen during the second revolution. The
figure 2 shows a detailed view of the strokes[10].

2.1.2 Diesel combustion

Like most other engines, diesel engine also uses hydrocarbon based fuel. In
stoichiometric conditions (perfect amount of air needed for a given amount of fuel)
and under assumption that only major products of combustion are formed, fuel
undergoes complete combustion [11], yielding carbon dioxide (CO2), water (H2O)
and unreacted nitrogen (N2). The following expression [11] explains more details
about the relation. The indexes a and b in the reaction are depended on the type of
fuel being used for the engine.

CaHb +

(
a +

b

4

)(
O2 + 3.76N2

)
−−−−−→ aCO2 +

b

2
H2O+ 3.76

(
a +

b

4

)
N2

It is assumed that the simplified composition of air consists of 21 percent O2 and
79 percent N2 (by volume) so that for each mole of O2 in air, there are 3.76 moles
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Figure 2: Four-stroke cylinder working diagram [10].

of N2. Nevertheless, the above reaction does not happen in reality since there are
hundreds of elementary reactions that make up the entire combustion process [11].

The stoichiometric quantity of oxidizer (usually referred to air) is a quantity
needed to completely burn out an amount of fuel. The fuel is said to be lean if more
than a stoichiometric quantity of oxidizer is supplied. On the other hand, if less than
stoichiometric quantity is supplied, the fuel is said to be rich.

The air-to-fuel ratio is defined as the ratio between the air mass and the fuel
mass injected into the cylinder [12]. It is denoted as lambda(λ). There are two
kinds of air-to-fuel ratio which are the actual ratio (λact) and the stoichiometric ratio
(λstoich). There is a parameter called the equivalence ratio phi(Φ) which is the ratio
between the actual air-to-fuel ratio (λact) and the stoichiometric ratio (λstoich)

Φ = λact

λstoich
(1)

This parameter can be used to distinguish rich mixture and lean mixture of fuel with
Φ > 1 representing a rich mixture while Φ < 1 representing a lean mixture. The
composition of the combustion using lean mixture is different than the one using
rich mixture. Increasing of the fuel injected can create problems with air utilization
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which lead to excessive amount of soot [11].

2.1.3 Diesel engine flow diagrams

Diesel engine’s working principles are based on compressed air, and the previous
sections have given some knowledge about the combustion and working cycle inside
the engine’s cylinders. This section will discuss more the air-flow inside the engine,
from the air intake port to exhaust port. Figure 3 describes how air is circulated
inside the engine.

Figure 3: Air-flow diagram of a diesel engine. [13]

Air is compressed from the intake port and transfered to each cylinder. After
the combustion, exhausted air goes out through the exhaust air port. The turbine in
front of the exhaust port belongs to the turbocharger which is an improvement of the
modern diesel engines. The turbocharger uses power of the exhausted air-flow to spin
the turbine blades. This set of blades is connected to the air compressor by a rod
that makes the compressor wheel spin together with the turbine, and therefore the
turbocharger helps compressing air faster with less energy needed for the compressor.
Control of the intake air pressure (or so called boost pressure and denoted as Pi) is
then depended on control of the turbocharger.

There are several types of turbochargers to be used in engine such as:

• Single-Turbocharger
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• Twin-Turbocharger

• Twin-Scroll Turbocharger

• Variable Geometry Turbocharger

• Variable Twin Scroll Turbocharger

• Electric Turbocharger

Each of them has both advantages and disadvantages and they are selected to
serve different purposes. The one that will be considered and mentioned in this thesis
is Variable Geometry Turbocharger (VGT). A variable geometry turbocharger is a
turbocharger whose turbine is equipped with movable vanes to direct the exhaust air
flow onto the blades. Figure 4 shows an example of a VGT [14]

Figure 4: Example of a variable geometry turbocharger: 1. Turbine housing; 2.
Variable angle vanes; 3. Adjusting ring [14].

Turbine blades are located inside the ring of vanes. Those variable vanes can
rotate to open up or close down the channels between them (as described in figure 5
[14]) for the exhaust air to flow onto the turbine blades with different speeds. The
moving angles are adjusted by an actuator. The reason why VGT is needed is that
there are situations in which the exhaust air flow is too large, and therefore the
exhaust air flows onto the turbine blades needs to be controlled.

In modern engines, fuel is injected to cylinders via common rail fuel injection
system. Figure 6 shows an example of this system. It is a direct injection fuel system
which includes a high pressure (over 1000 bar) common fuel rail connected to the
engine’s fuel injectors by separate pipes. The common rail pressure (denoted as PCR)
is controlled by a high pressure fuel pump. In each injector, injection timing (start of
injection, denoted as SoI) and injection quantity are controlled by a programmable
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Figure 5: Rotation of variable vanes in VGT [14].

control unit. The injection timing is defined as degrees before the piston inside the
cylinder reaches the top dead center.

Figure 6: Common rail fuel injection system [15].

The common rail system allows multiple injections at any time so it provides
flexibility to exploit and to optimize for a better engine’s performance and emissions
control.

2.1.4 NOx emissions from internal combustion engines

NOx refers to a mixture of nitric oxide(NO) and nitrogen dioxide (NO2). According
to [12], nitric oxide is the most dominant oxide of nitrogen formed during combustion.
The amount of nitric oxide is dependent on the engine design and operating conditions,
but usually in the range of 500-1000 ppm or 20 g/kg of fuel [16].
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Oxidation of nitric oxide continues and leads to nitrogen dioxide which creates
smog when reacting with hydrocarbon in the environment. According to [17], smog
and nitrogen dioxide are dangerous as they both create some serious respiratory
problems.

NOx is formed in regions in which there is enough available energy for nitrogen
to be oxidized. There are several strategies that have been used to reduce NOx
emissions in diesel engine. Using of ultra-lean can help reducing the NOx formation
since there is less unburnt fuel, however it causes problems with sustainability of the
combustion. In automotive engine, use of catalytic converters in the exhaust pipe is
necessary.

2.1.5 Particulate matter emissions

In the combustion of diesel engine, incomplete oxidization of fuel can lead to forming
soot and particulate emissions. Due to the size of these particles, it is easy for them
to go to human’s lungs by inhalation and cause serious health problems.

The objective of particulate measurement is to determine the amount of emitted
particulate. Measurement devices can be smoke meters or dilution tunnels. The
measurement requires a long period of sample collection and careful monitoring as
the composition can be easily altered by interacting with surroundings.

2.2 Off-line parameterization tool

2.2.1 Control loops of the engine

In engine systems, there are a number of large control loops for controlling purposes.
They are both feed-forward and feedback control systems. These control loops are
made to fulfill main objectives such as [18]

• Target torque response, low fuel consumption and drivability.

• Avoiding damages and fatigue of the material by keeping the engine inside its
allowed operating region.

• The emissions have to be controlled under limits and follow the legal regulations.

An engine’s operating point is defined by its speed and torque. They represent
the most important input factors of the control systems. The operating point in turn
decides values for all of the engine’s main variables [18] such as air mass flow, intake
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pressure, injection timing, etc. When the engine is fully warmed up, most of the
actuator inputs remaining their value in the same operating point. In this thesis,
these three following inputs are chosen for the optimization process of the engine:
intake pressure (boost pressure), start of injection (injection timing) and common
rail pressure (fuel pressure). Figure 7 shows an illustration of a basic feedback loop
control system of the engine using the aforementioned inputs. As can be seen from
figure 7, at each operating point there are three inputs, one main output and two
feedback loops.

The VGT controller gives signals to control the angles of the variable vanes of
the turbocharger which affect the boost pressure. Similarly, the HP pump controller
sends signal to the high pressure pump to inject pressurized fuel into the cylinders.
Sensors measure both pressures (Boost Pressure and Common Rail Pressure) and
give feedback signals to the controllers. Unlike the other two inputs, the start of
injection input is fed to the engine by feed-forward control.

The brake specific fuel consumption (BSFC) is one of the most important
responses of the engine, along with other emission responses. According to [12], break
specific fuel consumption represents the fuel flow rate per unit power output and it
show the efficiency of using fuel to produce work of the engine.

BSFC = ṁf

P

With units,
BSFC(g/kW.h) = ṁf (g/h)

P (kW )

Set-points of all three inputs come from sets of data called static control maps.
These maps are the most important outcome of this parameterization tool as well
as of this thesis. The following paragraphs will give more details and meanings of
control maps in the engine.

In the modern Engine Control Unit (ECU) of the engine, a map-based algorithm
is usually implemented. Maps are three dimensional data tables which include
steady-state optimized results of each actuator inputs at every engine’s operating
point (speed and load) [18]. It is noted that maps only contain optimized values of
actuator inputs when the engine is fully warmed up, hence a correction map of the
engine temperature is often added to the control loops to compensate the errors in
cold start of the engine. Figure 8 taken from [18] is an example of using correction
map along with the optimized map. It can be seen from the figure that, based on
the engine speed and a relative load, a nominal spark advanced is chosen (map1),
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Figure 7: Example of a simple feedback loop control.

Figure 8: Example of a simple correction map structure[18].

then the correction for engine temperature is applied. In reality, there are a lot more
corrections which need to be considered based on thermodynamic principles, but this
is only a simple example to understand the application of correction maps.

In industry, instead of using actual torque value, the relative load is usually
selected as an independent variable [18]. At each fixed engine’s speed, this relative
load indicates the actual percentage of air charge in the cylinder. The relative load
can be used to derive the actual torque later on with the use of a full-load torque
curve[18]. In some cases, the relative load can be substituted by the injection quantity,
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since the produced torque and the injection quantity are directly proportional. This
kind of system is defined as torque-based control structure. The torque is set to
a torque demand manager from which it collects and evaluates all demands for
engine torque [18]. Then one signal is transferred to a block called torque conversion
manager in which control signals will be given out to the actuators so that the torque
can be "realized as best as possible".

Figure 9 shows an example of a spark advanced map in according to speed and
load which is implemented in a modern ECU. The figure is extracted from Fig. 4.6 ,
page 197 of [18]. The map is defined by the best fuel-efficiency spark advanced with
emission limits, knock avoidance, etc. included.

Figure 9: Example of a control map[18].

This thesis proposes a tool called Off-line Parameterization Tool. The goal of
this tool is that it can be used in semi-automatic engine tuning to generate the
optimal set-point maps. Earlier, one common method for engine calibration has been
the "brute force" approach. This method requires a lot of time and work force to
run many tests in all operating points to investigate the effects of separate variable
on the response. What makes this tool different is the introduction of the Design of
Experiment (DOE) method, due to its ability to study multiple variable effects on the
output at a time rather than one effect at a time. Therefore, this parameterization
tool is expected to replace the "brute force" approach in engine tuning to save time
and resources. It is also required to provide better optimized engine’s responses in
comparison to the "brute force" guessing method. At this stage of the development,
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outcomes of this off-line parameterization tool are defined to be three set-point maps
in according to speed and load of:

• Boost Pressure

• Common Rail Pressure

• Start of Injection

The maps consist of optimized values of the three mentioned inputs so that the
Brake Specific Fuel Consumption (BSFC) of the engine is minimized under some
emission limits. In the following sections, effects of the three inputs on the BSFC
and emissions will be discussed in details.

2.2.2 Effects of intake pressure

The intake pressure (boost pressure) plays an important role in diesel engine control.
It has big impact on how efficiently the engine is performing and most importantly,
the intake pressure also affects the exhaust emissions of the engine.

Compressed air is used to create heat to burn the fuel and high intake pressure
can increase the efficiency of fuel combustion. High efficient combustion reduces
unburned components so the exhaust emissions can be improved [19]. Higher intake
pressure increases the concentration of O2 to improve the combustion, however,
higher intake pressure simultaneously increases the concentration of CO2 emission
due the optimal reaction between C in the fuel and highly concentrated O2.

Moreover, higher air intake pressure increases the NOx emission. According
to Zeldovich’s mechanism [16], the NOx formation will increase with high pressure
and high temperature of the combustion. However, particle mass emission is in fact
decreased significantly with high intake pressure [20].

2.2.3 Effects of common rail pressure

Common rail pressure has big effects on the engine combustion quality as the injection
pressure affects the fuel spray. Rising the rail pressure to an appropriate range can
help to reduce smoke and to increase the fuel economy but at the same time the
NOx emission is increased [21].

Common rail pressure can have different effects upon different working conditions
of the engine. Under heavy load condition, too high rail pressure does not make clear
improvement on the smoke and fuel economy but the NOx emission is still increased.
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On the other hand, too high rail pressure under light load condition makes the BSFC
become to high [22]. On low and middle load, high enough rail pressure can reduce
both smoke and NOx emission.

2.2.4 Effects of start of injection/ injection timing

Start of injection decides when the fuel is injected into the cylinder and kick off the
combustion. The timing is defined to be before and after the piston reaches the top
dead center. Advanced start of injection happens before the top dead center and
retarded start of injection happens after the top dead center. Advanced SoI can
result in high in-cylinder pressure, temperature and NOx emission while retarded
SoI results in a reversed trend [23].

According to [24], the use of advanced SoI provides lower soot and higher NOx

emission compared to the the use of retarded SoI. Retarded SoI is commonly used
method for effective NOx reduction. Improving fuel atomization, filling combustion
space with fuel spray to well facilitate the air and fuel mixing are fundamental
principles for a low NOx combustion [25].

2.2.5 Working procedure of the parameterization tool

The engine calibration process is classically divided into three big phases [26]:

1. Preliminary phase: choosing a set of operating points to be studied and
emissions targets.

2. The optimization of engine responses on each OP under emissions targets.

3. The construction of the maps with smoothening step between optimal settings.

Based on this structure, the off-line parameterization tool’s working diagram is made
with some modifications as shown in the figure 10

The objective of the calibration is stated again as

minimize
Boost,CR,SoI

BSFC

subject to: emissions constraints
(2)

(i) The first step is preparation for the Design of Experiments setup in which the
type of experimental design and the optimization variables must be defined.
The Box-Behnken design table is chosen due to its simplicity and ability to
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Figure 10: Working diagram of the tool.
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produce good experimental data. In Section 3.1, the reason why Box-Behnken
design is chosen over other experimental designs will be discussed in details.
The optimization variables are coded as

1. Input factors:
– Boost pressure: x1. (unit: gauge pressure)
– Common rail pressure: x2. (unit: bar)
– Start of injection: x3. Unit: degree Before Top Dead Center (dBTDC).
2. Responses:
– The Break Specific Fuel Consumption (BSFC): y1 (unit: g/kWh)
– Other possible emissions responses such as NOx and NO responses: yi

Though there are multiple inputs and multiple outputs, this is not the case
of multiple input-multiple output modelling. Each of the output responses is
modelled separately based on the inputs.

(ii) The second step is selecting the operating points to run the engine with. The
points are chosen in a 300 round-per-minute interval of speed and about 8-16
load points. Interval between points may differ from the engines and should
be carefully considered beforehand. In addition, domain of variations of the
variables should also be predetermined. The complexity of the fitting model for
engine’s response depends on the size of this domain. Low order polynomials
are usually sufficient to precisely model the response by using a small enough
domain. Notice that choosing too small domains leads to difficulty in coherently
fulfilling sub-optimal engine maps [27]. This step is also a starting point of a
closed-loop process. This loop is run for each operating point, starting from
the first one and finishing at the last one.

(iii) The next two steps, which are marked in blue area, require actual engine
running. First task involving the engine is validation of the domains which
were predetermined in the previous step. Experimenter runs the engine with
predefined domains to check whether the upper and lower levels are out of
engine’s operating range. As all tests are predefined, the experiments can be
run automatically if it is safe to let the engine run on itself. In this thesis,
the engine’s test bed is a 44 AGCO tractor engine in the Combustion Engine
Laboratory of Aalto University. Data of inputs and response values are recorded
separately for each operating point.

(iv) Modelling and optimization processes can be run right after finishing of all the
experiments at each operating point. In case it is not safe to keep the engine
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run with the tool automatically, experiments of all operating points will be
conducted without going to the modelling step. As the data has been recorded
separately, modelling and optimization can be done after engine’s runs. That is
why the tool is called "off-line" as computation can be done without running the
engine. The type of mathematical model used in modelling process depends on
the complexity of the engine response and on the size of the domain. For this
reason, a second order polynomial has been chosen. The model is a function
of responses (BSFC and emissions responses such as NOx and NO) with the
three input variables in the form

y = b0 + b1x1 + b2x2 + b3x3 + (linear terms)
b12x12 + b13x13 + b23x23 + (interaction terms)

b11x
2
1 + b22x

2
2 + b33x

2
3 (quadratic terms)

(3)

with x1, x2, x3 represent boost pressure, common rail pressure, start of injection
respectively, Y represents each engine’s response and b0, . . . , b33 are regression
coefficients of the model. The model has all three linear terms of the inputs plus
interaction terms between each two of them and finally quadratic terms of each
of them. The quadratic terms also ensure curvature in the response. Optimizing
can be formulated as a classical mathematical problem of optimization under
constraints. In this approach, the optimization is performed at one OP after
the other, considering the responses of emissions for each OP as constraints.

(v) When optimization is done for all of the operating points, optimal values of
each input factor are saved to initial optimal maps similar to the one in figure
11. They are just scatter plots of all the optimal settings and the next step

Figure 11: Initial optimal map with local optima.
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is building a final map on the whole engine operating domain based on those
values. Several fitting methods can be applied to build the map, such as Robust
Locally Weighted Regression [28] method. Notice that the selected number of
operating points has a big impact on the map’s resolution and accuracy. The
denser the map is, the more points is needed. Figure 12 shows an example of a
map on the whole engine operating range.

Figure 12: Example of a map on the whole operating range.

(vi) One more step must be done before the created maps can be used. The final
phase of the tool is to smooth the set-point maps. Since sharp evolution of
air loop parameters are not feasible during transient[1], the maps need to be
smoothen to avoid rough transitions between operating points. Hence, the
optimal points are often shifted away from their locations during the smoothing
process. The goal is to remain as close as possible to the local optima while
keeping a smooth shape of the map.
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3 Research material and methods

3.1 Introduction to the Design of Experiments method

3.1.1 Preface

Experiments are used in almost every area to solve problems in an effective way.
They can be found in daily life or in industry or in scientific area. Experiments are
in principle comparative tests, they are used to compare between alternative options.
It can be comparing the yield of a certain process to a another to prove the effect of
changes made or comparing performance of an automated process with manually
controlled process.

Experiments are also used in science to find significant information about a
studied object. Objects can be chemical mixture or performance of engines etc.
Systematic experiments can also be applied to some processes aiming to optimize
their performances. In this case, available operating ranges are required in advance
and experiments are designed so that when using them with some mathematical
software, the optimum operation points can be achieved. Inspecting performances of
an engine can be a good example as doing experiments can lead to finding suitable
parameters at every operation point of the engine to improve its fuel consumption as
well as to reduce emissions.

3.1.2 Meaning of Experiments

An experiment is defined as an observation that leads to characteristic information
of an object. The classical purpose for such an observation is to verify a hypothesis
with an investigation. The experiment setup is selected for the particular problem
statement, and the experimenter tests whether the hypothesis is true or false [29].

With the concept of Design of Experiments (DoE), a set of well selected experi-
ments is performed. The purpose of the design is to optimize a process by performing
experiments orderly and systematically so that from the result of the experiments,
conclusion about the significant character of the studied object is produced.

By using DoE, the number of experiments is kept as low as possible and the
most informative combination of the factors is chosen [30]. Hence using DoE is an
effective, economical and time-saving method. The following section gives definitions
and terms used in the method.
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3.1.3 Basic definitions

There are always two types of variables when experiments are performed in DoE,
factors and responses. The responses can be understood as output giving information
about the behavior of the studied object. Factors can be understood as inputs, which
are used to manipulate the output. Factors can have two or more values and always
lie in a defined range. A system or process can be manipulated by one or more
different input factors. The changes put effects on the output responses and those
effects can be measured. Following figure 13 shows the relationship between factors
and responses to a certain system or process. Factors can be divided into 3 groups:

Figure 13: Factors and response relationship.

controllable and uncontrollable factors, quantitative and qualitative factors, process
and mixture factors

Controllable and uncontrollable factors

This is the first way to differentiate types of factors, dividing them into con-
trollable and uncontrollable ones. Controllable factors are process inputs which
can be easily monitored and investigated. These inputs can be changed during the
experiments by experimenter. On the other hand, uncontrollable factors are hard to
regulate since they are mostly disturbance values or external errors. They can have
very high impact on the response and therefore they should always be considered
during the experiments [30]. In the diesel engine case, controllable factors can be
input pressure, fuel pressure and start of injection. Meanwhile uncontrollable factors
can be measurement device’s errors or mechanical characteristics of the engine itself.

Quantitative and qualitative factors

Another way to split the types of factors is separating them into qualitative
and quantitative factors. Quantitative factors always take values from a given range
with a continuous scale, meanwhile qualitative factors only have fixed values [31]. In
diesel engine, the three aforementioned factors, start of injection, input pressure and
fuel pressure are all quantitative factors.

Process and mixture factors
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Final group of factors is process factors and mixture factors. Process factors
are independent factors and they can be changed without affecting other factors in
the same experiments, whereas mixture factors can be understood as amounts of
ingredients in a mixture and they all add up to 100%. Since mixture factors are
dependent on each other, they can not be changed independently [30].

3.1.4 Basic principles of DoE

The experiment design in the old time was usually done such that changes are made
at one variable at a time; i.e. firstly the first variable is changed and its effect is
measured and then the same procedure takes place for the second variable and so
on. As [30] describes, the intuitive approach is to "change the value of one separate
factor at a time until no further improvement is accomplished". This method is so
called COST (Change Only one Separate factor at a Time) and was used to find the
optimum. Nevertheless, it is very difficult for the experimenter since he/she does not
know at which value the changing of a certain variable should be stopped due to the
inability to observed any further improvement, and finding exact value of that factor
is very crucial considering it in combination with other changes of other factors.

The same process can be investigated with the use of DoE and in this case a
uniform set of experiments is created around a center-point. Changes are now done
simultaneously and systematically according to a program decided beforehand. The
following figure 14 from [30] illustrates the difference between the two approaches.

Figure 14: COST approach & DoE[30].

All factors are changed simultaneously, as shown in the low right corner. This
method provides better information about the optimum of the response than result
of the COST approach in which all factors are changed successively.
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The basic concept of DoE is to arrange a symmetrical distribution of experiments
around a center point and within a given range of input factors providing that the
calculation of this center point is possible. Figure 15 shows an example of a design
with three factors x1, x2, x3. The three factors have their ranges and the center points
are calculated. The factors are placed in a cubic pattern with an aformentioned
center point in the middle.

Figure 15: Symmetrical Distribution of Experiments[30].

Objectives of Experiments The purposes of designing sets of experiment
are divided into two main types of designs.

1. Screening: A screening design is performed to characterize a process at the
beginning. Its purposes are to determine the main factors and inspect the
changes of responses by varying each factor. This design is meant for processes
with large number of input factors and is useful for later optimization work
since the experimenter only has to work with a subset of fundamental input
factors.

2. Optimization: Screening process is followed by optimization process. It gives
detailed information about effects of the chosen inputs factors to determine the
best combination of factors. In other words, an optimization process is used to
find the optimum point by estimating response values for all factor combinations.
Response Surface Modeling (RSM) is one of the usually used methods to
estimate interactions and effects between factors so that the experimenter can
have an idea of the investigated response. Further details about RSM will be
discussed later in Statistical Design section.
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Model Concept: DoE is based on approximation of interactions and effects
with the help of a mathematical model. Fundamental aspects of the studied process
are represented by factors and responses. A model can not be perfectly correct but
it can be helpful to transport the complexity of the process into a mathematical
equation which is easy to handle [30].

The simplest approach to be used is a linear model with the n factors x affecting
one response y like the following equation:

y = β0 + β1x1 + ...+ βnxn + ε (4)

in which β0, β1,..., βn are regression coefficients and ε is the model error, which is
assumed to be normally distributed. In addition, the regression coefficients can be
found by the help of a mathematical tool which will be described in Section 3.2. The
equation (4) can be extended to N multiple responses as:

yi = β0 + β1xi1 + ...+ βnxin + εi, i = 1, .., N (5)

in which yi represents ith response with the corresponding factors xi1, xi2,.., xin. It
can also be notated in a matrix form as:



y1

y2

y3
...
yN


=


1 x11 . . . x1n

1 x21 . . . x2n
... ... ... ...
1 xN1 . . . xNn

×



β0

β1

β2
...
βn


+



ε1

ε2

ε3
...
εN


The input factors xi can be selected and represented in different ways depending

on the type of design such as xi being a quadratic form of another variable. The
experimenter should be careful on choosing the type of design in order to acquire
the best results. A further discussion about different types of design will be shown
in the next section.

3.1.5 Matrix Designs

Matrix design is the way in which the experimenter systematically arranges the
experiments in order. In each type of design, the order and the number of experiments
are different to serve different purposes of the experimenter.

The following example illustrates a simple way of arranging experiments for
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a case of three input factors. The factors are A, B and C which have different
ranges. Firstly, limits of the ranges are denoted as (+)/(-) or (+1)/(-1) according to
maximum and minimum values. Medium values are usually denoted by the value 0.

Example.
Factor A:
(-) level is 100; (+) level is 150
Factor B:
(-) level is 5; (+) level is 10
Factor C:
(-) level is 0.1; (+) level is 0.5

In this case, the number of experiments is simply decided by the number of
combination between the three factors with two levels of each factor. Hence it makes
a total number of 8 (23) experiments needed to be run. The design matrix then can
be written as:

Run number A B C
1 - - -
2 + - -
3 - + -
4 + + -
5 - - +
6 + - +
7 - + +
8 + + +

So in the first run, factor A, B and C are kept at (-) levels and so on, their levels are
changed simultaneously through 8 runs. In the following sections, matrix designs of
different types will be discussed in detail.

3.1.6 Full Factorial Design

Full factorial design means that in these designs, possible combinations of all factors
at every level are included. There can be more than two levels for each factor (medium
level can be considered), but the number of levels can create a big influence on the
number of neccessary experiments. For a simple case of 2 factors with 2 levels, there
are 4(22) experiments needed for a full factorial design. If there are k factors with 2
levels of each, the number of runs is 2k.
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The aforementioned example in the previous section is a case of full factorial
design with 3 factors and 2 levels of each factor. Hence there are 8 experiments
needed. After all experiments are performed, a regression analysis of 23 factorial
experiment can fit to the following model:

y = b0 + b1x1 + b2x2 + b3x3 + b12x12 + b13x13 + b23x23 + b123x123 (6)

where the bi are regression coefficients. The b0 is referred to the model’s constant; the
b1, b2, b3 are called main effects; the b12, b13, b23 are two-factor interactions and b123

is three-factor interaction. The three variables x1, x2, x3 are the three corresponding
factors A, B and C. Accordingly, x12, x13, x23 and x123 are interactions between the
three factors. The interactions between factors are defined as the multiplication of
their values.

In the full factorial design category, the 3k factorial design is a special one. It
is constructed by k variables with each variable having three evenly spaced levels
and all combinations of levels are used [32]. This design guarantees to provide a full
quadratic model due to the appearance of center levels, however, it requires so many
runs. The number of runs increases exponentially with the power of k, for example
with three input variables it needs 27 (33) run in total. For this reason, other designs
with fewer runs and yet providing full quadratic models are usually used instead of
3k factorial designs.

3.1.7 Fractional Factorial Design

Fractional factorial designs include only the most important combinations of
the variables. It is very useful in cases which have many input factors in order to
avoid exponential explosion. Reducing the number of runs can be beneficial for the
experimenter.

3.1.8 Response Surface methods

The two-level factorial designs in the previous sections provide a powerful
set of experiment design for studying complex responses; however, they are not
capable of detecting curvature in the responses. Therefore they have limitations
in optimization. A weakness of these designs is that they use only two levels of
each variable. Adding center points can help detecting curvature but it also creates
more runs and hence consumes more time and energy of the experimenter. Response
surface designs are capable of resolving curvature in the response associated with
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each variable and guarantee a minimum of experiments needed. The power of this
design is the use of quadratic terms added to their models such as:

y = b0 + b1x1 + b2x2 + b12x12 + b11x
2
1 + b22x

2
2 (7)

This equation defines the response surface, i.e. how y depends on x1, x2, which can
be presented as a surface in a multidimensional graph.

In the response surface methods, there are two main types of designs which can
be applied in practice. They are Central Composite design and Box-Behnken design.

a. Central Composite Design:

This design has a basis of the two-level factorial designs. In factorial designs,
adding center cells is a good method to give them the ability to search for curvature,
but it is incomplete [32]. Extra runs can be added to these designs to give them
capabilities of quadratic modeling. The model which is used to fit in the case of
three factors is:

y = b0 + b1x1 + b2x2 + b3x3 + b12x12 + b13x13 + b23x23 + b11x
2
1 + b22x

2
2 + b33x

2
3 (8)

where the square terms are the source of quadratic effects.

The runs that must be added beside the two-level plus the center points fall
at extreme points outside the normal limits -1/+1 of the two-level design. These
extreme points are called star points. The distance from the center of the design to
the star points is denoted as η. Value of η is depended on the number of points in
the factorial design. Hence η is given by [32]:

η = n
1/4
cube (9)

where ncube is the number of points in a single replicate of 2k design. Two star
points are added to the original experiment for each variable, one at the -η level and
the other one at +η level, while all other variables are held at their zero level [32]
(medium level). This adding gives the central composite designs five levels of each
variable: -η, -1, 0, 1, +η. Figure 16 shows an illustrative view of combination of 3
variables using central composite design [33].

Example. Following example illustrates the application of central composite
design in a three-factor case. There are 8 points in the factorial design and hence
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Figure 16: Central composite 3-variable design [33].

the value of η can be calculated as:

η = 81/4 = 1.68 (10)

The star points are located at -1.68 and 1.68 if the center is assumed to be zero (0).
Table of runs can be described as shown in table 1.

There are 8 runs with the normal level ±1, plus 6 runs with zero level and 2
extra runs for each variable with their star values. It makes a total of 20 runs, while
adding center levels to the factorial design makes a total of 27 (33) runs. Hence using
central composite designs really reduces workload and saves time.

b. Box-Behnken design:

The Box-Behnken (BB) design is an independent quadratic design and a member
of 3k family of designs. This design are fraction of the 3k designs with center points
added to keep the balance of the design [32]. In [34], an original design was introduced
for up to twelve variables. The primary idea of this design is about the location of
the experimental boundaries and avoidance of extreme combinations [32]. Hence,
Box-Behnken design omits all the corner points, and the star points which were
included in central composite designs. By avoiding all the corner points and star
points, BB design prevents the values from going beyond the low and the high limit.
Figure 17 shows an illustrative view of factor combination of the BB design in the
three-factor case [35]. All points are now in the middle of edges and in the center
space. There are no more points at corners or star points.

Table 2 describes the matrix for BB design with three factors. In each noncenter
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Table 1: Table of run for the CC 3-variable experiment.

CC (23)
x1 x2 x3 No. of runs
±1 ±1 ±1 8
0 0 0 6
±1.68 0 0 2
0 ±1.68 0 2
0 0 ±1.68 2

Total runs 20

=

Std x1 x2 x3
1 - - -
2 - - +
3 - + -
4 - + +
5 + - -
6 + - +
7 + + -
8 + + +
9 0 0 0
10 0 0 0
11 0 0 0
12 0 0 0
13 0 0 0
14 0 0 0
15 -1.68 0 0
16 +1.68 + -
17 0 -1.68 +
18 0 +1.68 0
19 0 0 -1.68
20 0 0 +1.68

row (row with ±1 levels in it), there is always an experiment that resolves each
two-factor interaction but another variable still remains at its zero level [32]. The
center cells are added to the design to fulfill the requirements to resolve the quadratic
terms. There are 12 runs with ±1 levels and only three runs with zero levels, hence
the total number of experiments is significantly reduced to only fifteen. It is much
less in comparison to the number of runs in Central Composite designs.

Data recorded from the experiments is fitted to the same model which was used
in CC designs

y = b0 + b1x1 + b2x2 + b3x3 + b12x12 + b13x13 + b23x23 + b11x
2
1 + b22x

2
2 + b33x

2
3 (11)

The function includes three single terms for main effects, plus three two-factor
interaction terms and three quadratic terms.

c. Comparison of the response surface designs:
Since both Central Composite and Box-Behnken designs are able to provide models
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Figure 17: Box-Behnken 3-variable design[35].

Table 2: Table of run for the BB 3-variable experiment.

BB (3)
x1 x2 x3 No. of runs
±1 ±1 0 4
±1 0 ±1 4
0 ±1 ±1 4
0 0 0 3
Total runs 15

=

Std x1 x2 x3
1 - - 0
2 - + 0
3 + - 0
4 + + 0
5 - 0 -
6 - 0 +
7 + 0 -
8 + 0 +
9 0 - -
10 0 - +
11 0 + -
12 0 + +
13 0 0 0
14 0 0 0
15 0 0 0

with main effects, two-factor interactions and quadratic terms, other criteria must
be considered to decide which design will be used [32]:

• The number of observations and number of error degrees of freedom in the
design. The error degrees of freedom (dfε) are defined by the difference of the
total number of points in the data set and the number of coefficients in the
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regression model.

• The number of level required for each variable.

• The safety of te highest and lowest variable levels.

Models that have less than about eight error degrees of freedom are considered
to be risky while ones those have more than about twenty degrees are considered to
be wasteful [32]. Table 3 [32], is a summary of the number of runs and error degrees
of freedom for both CC and BB designs.

In this table, N is number of required experiments. Total degrees of freedom
dftotal is the total number of points in the data set after running the experiments.
Lastly, model degrees of freedom dfmodel is the number of coefficients in the regression
model.

According to this table, of the three variable experiments, BB(3) design is very
efficient with 5 error degrees of freedom compared to 10 degrees of CC(23) design.
Although BB seems to be short on error degrees of freedom, most of the experiments
have terms that can be dropped out to improve the estimation of the error. Therefore,
Box-Behnken designs are mostly used in three variable experiments.

Table 3: Comparison of response surface methods
Design N dftotal dfmodel dfε

32 9 8 5 3
CC(23) 13 12 5 7

33 27 26 9 17
BB(3) 15 14 9 5
CC(23) 20 19 9 10

The next reason why BB designs are chosen over CC designs lies on the number
of levels of each variable. While BB designs require only three levels from each factor,
CC designs need five levels from each factor (max, min, center, star points). In some
cases, getting all five needed levels for each variable is difficult or even impractical[32].

The last criterion is about the safety of variable levels. It is stated that if the
levels of a variable are selected too far apart then there is possibility that one or both
extreme levels will be lost. When safe limits are not known then Central Composite
designs are very good selection because of the appearances of their star points. Those
points can be placed in unsafe area to keep the other points in safety since the
two-factorial plus the centers can still be analyzed despite the lost of those star points.
In figure 16 it can be seen that if all star points are lost then the response can still
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be analyzed inside the cube formed by the other points. In the engine optimization
problem it is assumed that the limits of the engine’s parameter can be found out by
running tests, and therefore the Box-Behnken designs are still safe to use.

In summary, it can be concluded that choosing Box-Behnken designs for the
experimental setup can save time and resources by using less runs yet still guaranteeing
to provide good quadratic models.

3.2 Data fitting method: Least squares

The next process after running the design of experiments is creating a mathematical
model to fit the experimental data. The model of each operating point of the engine
will then be used to predict the engine’s performance at that point. There are several
methods which can be used to fit the data; the one that was chosen is, the Least
Squares Regression method.

This section is going to give a theoretical view about application of the Least
Squares method as well as the statistical testing procedure for the fitted results. Fitted
models must satisfy some required statistical tests to assure that the predictions on
the engine’s model do not go wrong. Since the parameterization tool is developed in
MATLAB, implementation of the whole fitting and testing procedure is carried by
the help of MATLAB fitting toolbox which uses the similar principles.

According to previous sections, the idea of the parameterization tool is that
at each operating point of the engine, one set of the designed experiments will be
conducted and the obtained data will be treated and fitted into a mathematical
model with the form

Y = β0+β1x1+β2x2+β3x3+β12x1x2+β13x1x3+β23x2x3+β11x
2
1+β22x

2
2+β33x

2
3 (12)

The number of models to be fitted is dependent on the number of operating
points chosen in advance. The more points the more accurate when it comes to
creating final control maps, however, too many points require a noticeable amount of
time to conduct all the experiments. The issue on selecting the number of operating
points will be discussed in the result section.
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3.2.1 Introduction

In general, a least squares problem is an unconstrained minimization problem
Definition 1[36] Find β∗, a local minimizer for

F (β) =
m∑
i=1

(fi(β))2, (13)

where fi : Rn 7→ R, i = 1, . . . ,m are given functions, and m ≥ n.
According to [36], in a least squares fit parameters are determined to minimize the
sum of squared residuals. In other words, the coefficients needed for the model are
the values that make the sum of squared errors minimized.

To make it clearer, let the equation (12) be an example. This model depends on
the parameters β = [β0, β1, β2, β3, . . . , β33]T . At each operating point, the obtained
data includes input values x1i, x2i, x3i and output values yi with i = 1, . . . , 15 (Box-
Behnken design has 15 experiments for each design). Hence the residual function
can be written as

fi(β) = yi − Y (β, x1i, x2i, x3i), i = 1, . . . , 15. (14)

Now the problem becomes least squares problem which is finding β so that it minimize
the function

F (β) =
15∑
i=1

(fi(β))2, (15)

Although the least square model includes non-linear terms of the independent variables
x1, x2, x3, it is still linear in the parameters since the variable β appears linearly. It
can be rewritten in linear form as

Y = βX, X = [1, x1, x2, x3, . . . , x
2
3]T

β = [β0, β1, β2, β3, . . . , β33]
(16)

Therefore, this problem can be solved by basic linear calculus and the method will
be discussed in the next section.

3.2.2 Basic Calculus method

Data and Matrix Notations:

The method being presented here is applied at one operating point of the engine,
hence, there are 15 cases for observed data which includes output values Y and all
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of the terms x1, x2, x3. A set of 10 terms including intercept from equation (12) can
be rewritten for easier computation as X = [1, x1, x2, x3, . . . , x9]T .
Symbols for the response and the terms of all observations using matrix notation
can be written as

Y =



y1

y2

y3
...
y15


, X =


1 x11 . . . x19

1 x21 . . . x29
... ... ... ...
1 xn1 . . . xn9


So Y is a 15x1 vector and X is a 15x10 matrix. In addition, β is denoted as a 10x1
vector of regression coefficients and e is denoted as a 15x1 vector of statistical errors.

β =



β0

β1

β2
...
β9


, e =



e1

e2

e3
...
e15


The multiple linear regression model has the form of

Y = Xβ + e. (17)

Variance-Covariance matrix of e:

The 15 x 1 error vector e is an unobservable random vector and it is assumed
to have the following properties [37]

• Zero mean: E(e) = 0.

• Var(e) = σ2In

where Var(e) means covariance matrix of e and In is a 15 x 15 identity matrix.

Ordinary Least Squares Estimator:

The main idea of least squares estimator is to find β to minimize the residual
sum of squares function in equation (15). It can be rewritten with new matrix
notations as

RSSE(β) =
15∑
i=1

(yi − x′iβ)2 = (Y −Xβ)′(Y −Xβ) (18)



34

in which x′i and yi are the ith row of matrix X and ith element of vector Y. The
estimator can be found by using theories about finding local minimum point using
derivatives of RSSE function with respect to β [37].

• First derivative of RSSE with respect to β:

δRSSE

δβ
= −2XT (Y −Xβ) (19)

• Second derivative with respect to β:

δ2RSSE

δβδβT
= 2XTX. (20)

Set the first derivative to zero and solve for β, under assumption that columns of X
are linearly dependent, gives

XT (Y −Xβ) = 0 (21)

Hence the normal equation is of the form

XTXβ = XTY. (22)

Solve for β under the assumption that XTX exists:

β = (XTX)−1XTY. (23)

Nevertheless, using equation (23) to compute for β can be inaccurate since
the terms XTX and XTY are matrices of uncorrected sums of squares and cross-
products. Using uncorrected sum of squares and cross-product can possibly lead to
large rounding error, and so computations can be highly inaccurate. According to
[37], one alternative method can be used which is based on matrix decomposition
and computations are based on corrected sum of squares and cross-products. Firstly,
matrix X is redefined which excludes its first column and the column mean is
subtracted from each of the remaining columns.

X =


(x11 − x̄1) . . . (x19 − x̄9)
(x21 − x̄1) . . . (x29 − x̄9)

... ... ...
(xn1 − x̄1) . . . (xn9 − x̄9)
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Similarly, Y is the vector with each element being subtracted by the mean of y as

Y =



y1 − ȳ
y2 − ȳ
y3 − ȳ

...
yn − ȳ


Let β∗ be the coefficient vector excluding the intercept β0, then

β̂∗ = (X TX )−1X TY (24)

β̂∗0 = ȳ − β̂∗
T
x̄ (25)

where x̄ is the vector of sample means for all the terms except for the intercept.

3.2.3 Modelling Error

• If the observation Y has a variance σ2, then

V ar(β̂) = (XTX)−1σ2 (26)

• The variance (mean squared error) of the regression is

MSE = RSSE

n− p− 1 = 1
n− p− 1

n∑
i=1

(yi − ŷi)2 (27)

where n is number of experiments, p is number of independent variables in the
regression model and ŷi is the estimated value of the response.

• The standard deviation of the error

σ̂ =
√
MSE =

√
RSSE

n− p− 1 (28)

• The coefficient of determination R2 is one of important factor to show how well
data is fitted to a statistical model. [32]

R2 = 1− RSSE

SST
(29)
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in which

RSSE =
n∑
i=1

(ŷi − Y )2, ŷi is predicted value, Y is measured value (30)

SST =
n∑
i=1

(ŷi − Ȳ )2, ŷi is predicted value, Ȳ is mean value of Y (31)

The closer of R2 to 1, the better of the fitting result. Small R2 indicates bad
fit of data.

• In a more complex model, as more and more independent variables are carried,
the R2 values will always increase. Hence, it is necessary to compensate the
complexity of the model by using a new coefficient of determination, called the
adjusted coefficient of determiantion R2

adjusted [32]

R2
adjusted = 1− dftotalRSSE

dfεSST
(32)

R2
adjusted is always smaller than R2 and is safer to use to evaluate a complex

model.

• The t values for the regression coefficients are calculated by dividing each
coefficient by its standard deviation[32]. According to [32], "the t value indicates
how much that the coefficient is of its standard deviations greater than zero".

t = β

sβ
= β
√
n

sε
= β

√
n√

RSSE
dfε

(33)

in which dfε is the number of degrees of freedom available to estimate the error
after calculating the coefficients. Hence in this case, dfε = n− 10

3.3 Optimization method: Sequential quadratic programming

The main scope of this thesis is to optimize the performance of diesel engine based
on its input factors and under emissions constraints. In the initial approach, the
question of emission constraints were first neglected to simplify the problem. It then
became optimizing engine’s performance by the input factors. Several methods were
considered such as Gradient Descent, Conjugate Gradient Descent and Newton’s
method. These methods work well with non-constrained nonlinear optimization
problems, however, the presence of nonlinear constraints requires a more complex
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approach. A method called Sequential Quadratic Programming (SQP) was considered
due to its ability to solve nonlinear optimization problems under some nonlinear
constraints. In addition, SQP is also able to be used in non-constrained optimizing
problems in which it basically becomes Newton’s method (iteratively solve for the
optimal point). The use of SQP method has also been mentioned in [1] for solving
constrained single-objective optimization problem. The following section gives an
inner view about the SQP method and how it works in real scenarios.

3.3.1 Introduction

Since its first apperance in the 1960s [38], SQP has become the most popular method
for solving nonlinearly optimization problems under constraints. SQP is in fact not
a single algorithm but a conceptual method [39]. With the help of solid theories and
computational procedure, SQP method has been developed and used to solve a large
set of important problems in practice.

The nonlinear optimization problems (NLP) in which SQP is applied usually
have the form [39] of:

minimize f(x)
over x ∈ Rn

subject to h(x) = 0 g(x) ≤ 0,
(34)

where f : Rn → R is the objective function, the functions h(x) : Rn → Rm and g(x) :
Rn → Rp describe the equality and inequality constraints. This type of problems can
be found in various application in science, engineering, industry and management.
Since the great strength of SQP is its ability to solve optimization problems under
nonlinear constraints, it is assumed that there is at least one nonlinear constraint
function in the NLP.

The basic idea of SQP is to iteratively model the NLP at a given number
of iteration xk as a Quadratic Programming subproblem, and to use the solution
from the subproblem to build a new iteration (or approximation ) xk+1 [39]. The
optimization is done when its solution converges to an optimal solution x∗. Hence,
with a suitable selection of quadratic programming subproblem, this method can be
considered as an extension of Newton and quasi-Newton methods with the constrained
settings. Nevertheless, the constraints make the analysis and implementation of SQP
more complex [39].
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3.3.2 The basic SQP method

Firstly, there are some assumptions on the nonlinear problem (NLP) which need
to be stated to clarify the class of the problems. Secondly, theories of nonlinear
programming are used to describe the SQP algorithm. The major theory of nonlinear
constrained optimization can be found in [40] and [41].

Gradient of functions:
The gradient of a function f : Rn → R at x ∈ Rn is denoted as ∇f(x), for example

∇f(x) := (δf(x)
δx1

,
δf(x)
δx2

, . . . ,
δf(x)
δxn

)T . (35)

For vector-valued functions h : Rn → Rm, the symbol ∇ is also used for the Jacobian
of the function h:

∇h(x) := (∇h1(x),∇h2(x), . . . ,∇hm(x)). (36)

Hessian matrix
Hessian matrix of f at x ∈ Rn is the matrix of second partial derivatives as given by:

(Hf(x))ij := δ2f(x)
δxiδxj

, 1 ≤ i, j ≤ n. (37)

Lagrangian function:
The key function that plays an important role in all theory of constrained optimization
is the scalar-valued Lagrangian function, defined as:

L(x, λ, µ) := f(x) + λTh(x) + µTg(x) (38)

where vector λ ∈ Rm and µ ∈ Rp are referred to as Lagrangian multipliers.

Set of active constraints:
The set of active constraints consists of the inequality constraints satisfying the
equalities at given vector x with x ∈ Rn. It is denoted as:

Iac := {i ∈ {1, . . . , p} | gi(x) = 0} (39)

Strict complementary slackness:
If x∗ ∈ Rn is a local minimum of the NLP, the following condition is called strict
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elementary slackness at x∗:

gi(x∗)µ∗i = 0 , 1 ≤ i ≤ p, (40)

µ∗i > 0 , i ∈ Iac(x∗) (41)

Let qx := |Iac(x)| and assuming Iac(x) = {i1, . . . , iq(x)}, a matrix called G(x) ∈
Rn∗(m+qx) is denoted by:

G(x) := (∇h1(x),∇h1(x), . . . ,∇hm(x),∇gi1(x), . . . ,∇giqx(x)) (42)

This matrix G(x) will be used in defining sufficient optimality conditions [39] in the
next section.

First order optimality conditions:
The first order necessary conditions hold, if there exist Lagrangian multipliers λ∗ ∈ Rm

and µ∗ ∈ Rp such that:

(A1) ∇L(x∗, λ∗, µ∗) := ∇f(x∗) +∇h(x∗)λ∗ +∇g(x∗)µ∗ = 0 (43)

Second order sufficient optimality conditions [40]:
In addition to (A1), the following conditions need to be satisfied:
(A2) The column of G(x∗) are linearly dependent.
(A3) Strict elementary slackness holds at x∗

(A4) The Hessian of the Lagrangian respect to x is positive definite on the null
space of G(x∗)T such as:

dtHL∗d > 0

for all d 6= 0 such that G(x∗)td = 0. The optimality conditions in second order assure
that the local minimum x∗ of the NLP can be confined and the Lagrange multipliers
are unique.
According to [39], three standard asymptotic convergence rates respected to Euclidean
2-norm can be used to determined the convergence characteristic of the SQP methods.

Convergence rates:

Let (xk)k∈N0 be a sequence of iterates converging to x∗. There are three kinds
of convergence rates [42]:
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• Linearly if there exists a positive constant ξ < 1 such that

‖xk+1 − x∗‖ ≤ ξ‖xk − x∗‖

for all k sufficiently large.

• Superlinearly if there exists a sequence of positive constant ξk → 0 such that

‖xk+1 − x∗‖ ≤ ξk‖xk − x∗‖

for all k sufficiently large.

• Quadratically if there exists a positive constant ξ such that

‖xk+1 − x∗‖ ≤ ξ‖xk − x∗‖2

for all k sufficiently large.

In the next section, the construction of the quadratic programming subproblems
which have to be solved in each iteration step is discussed in details.

Construction of the QP Subproblems:

Choosing a good QP subproblem is very crucial in SQP method since the
step from xk to xk+1 is obtained by solving the quadratic subproblem. Note that
algorithms needed to solve the QP subproblems are not going to be mentioned
although they are nontrivial issue. The scope of this thesis is to create an off-line
tool which can optimize the performance of a diesel engine, hence computation works
are carried out by using available toolboxes in MATLAB.

At a current step xk, a reasonable choice for the constraints can be a linearization
of the actual constraints about xk and the objective function can be replaced by its
local quadratic approximation. Hence the QP subproblem has the form:

minimize ∇f(xk)Td(x) + 1
2d(x)TBkd(x)

over d(x) ∈ Rn

subject to h(xk) +∇h(xk)Td(x) = 0 g(xk) +∇g(xk)Td(x) ≤ 0,
where d(x) := x− xk, Bk := Hf(xk)

(44)

The chosen QP works well with linear constraints, however, with the presence
of nonlinearity in the constraints of the original problem, the computation of the
increment d(x) may break down. Hence, to take nonlinearity in the constraints into
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account, a quadratic model of the Lagrangian function is substituted as the objective.
The reason behind this substitution is that conditions A1-A4 imply that x∗ is a
local minimum for this problem [39]

minimize L(x, λ∗, µ∗)
over x ∈ Rn

subject to h(x) = 0 g(x) ≤ 0,
(45)

According to equation (38), the constraint functions are also included in the
objective function for this equivalent problem. At a given iterate xk, the quadratic
Taylor series approximation in x for the Lagrangian function is

L(xk, λk, µk) +∇L(xk, λk, µk)Tdx + 1
2d

T
xHL(xk, λk, µk)dx. (46)

Hence the QP subproblem can be formed as

minimize ∇L(xk, λk, µk)Td(x) + 1
2d(x)TBkd(x)

subject to ∇h(xk)Td(x) + h(xk) = 0 ∇g(xk)Td(x) + g(xk) ≤ 0,
where d(x) := x− xk, Bk := HL(xk, λk, µk)

(47)

In the problems consisting of only equality constraints, the two equations (44)
and (47) are equivalent since the derivative term of the constraint becomes constant
and the two objective functions become similar as ∇f(xk)Td(x) + 1

2d(x)TBkd(x).
Whereas, in inequality-constrained cases, the two subproblems are equivalent only if
a vector of slack variables z ∈ Rp is added to the inequality constraints, changing
the subproblem into equality-constrained case [39].

minimize f(x)
subject to h(x) = 0 g(x) + z = 0, z ≥ 0.

(48)

Solving the QP subproblem in equation (44) gives a solution d(x) which can be
used to generate a new iterate xk+1 by adding a step α to xk in the direction of d(x).
In addition, the multipliers λ and µ need to be estimated again. It can be done by
using the optimal multipliers from the QP subproblem. Let the optimal multipliers
of the QP subproblem be λqp and µqp. The updates of (x, λ, µ) can be defined as
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[39]
xk+1 = xk + αd(x)
λk+1 = λk + αd(λ)
µk+1 = µk + αd(µ)

in which
d(λ) = λqp − λk

d(µ) = µqp − µk

(49)

Global convergence is a term stated when convergence of the problem starts from
a point which is far away from the optimal point. To guarantee global convergence,
the SQP needs a measure of progress [39] called merit function φ from which its
reduction indicates the progress toward the solution. Adjusting the step-length
parameter α is introduced to guarantee that function φ is decreased at each iteration.
A basic SQP algorithm can be stated as the following pseudo code

Basic Algorithm[39]

Given approximate starting points (x0, λ0, µ0), initial Hessian B0 and a merit
function φ with iteration k starts from 0.

1. Form and solve the QP subproblem in eq.47 to obtain (d(x), d(λ), d(µ)).

2. Choose a step-length α satisfies

φ(xk + αd(x)) < φ(xk).

3. Set updates
xk+1 = xk + αd(x)
λk+1 = λk + αd(λ)
µk+1 = µk + αd(µ)

(50)

4. Stop if converged.

5. Compute new Hessian matrix Bk+1.

6. Set new iterate k = k + 1. Go back to step 1.
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3.4 Map smoothening method

The optimization process produces a set of local optimum points from which a
set-point map is created for each operating point. Nevertheless, these set-point maps
consist some rough transitions between two operating points and are not good for
engine performance during transient. This is why a smoothening step must be done
in addition.

The initial approach of this smoothening method is considering every map as a
gray-scale image due to the similarity in their structures. The 3-D set-point map
corresponding to each operating point is defined as a square matrix of size m. Each
element of the matrix contains the optimal value of engine’s actuator that minimizes
the BSFC under emission constraints. A gray-scale image is also presented as a
matrix of size m× n and each element in the matrix contains a value in the range of
0 to 255. Figure 18 shows the similarity of a set-point map and a gray-scale image.
On the left is the matrix presentation of a set-point map and on the right is the
matrix presentation of a gray-scale image.

Figure 18: Similarity of set-point map and gray-scale image structures.

The rough transitions between two operating points (usually seen as peaks) can
be treated an impulse noises in image since impulse noises are random variation of
the brightness and that variation is similar to the rapid change between two operating
points. In image processing, median and mean filtering are used as common schemes
to reduce impulse noises [43] [44]. There are several researches which applied mean
filtering to smooth surface as [45] or used mean filtering as a basis to develop a faster
mean filter algorithm [46] [47].

The mean filtering algorithm is stated as, the value of each filtered image’s pixel
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is the arithmetic mean computed by using the neighbor pixels of the current pixel
[48]. Kernel of the mean filter is usually a 3× 3 or 5× 5 matrix

A = 1
9


1 1 1
1 1 1
1 1 1


The reason why this filter can attenuate the noise is based on the fact that

averaging takes out small variations and averaging 9 values around each pixel decreases
the standard deviation of the noise by

√
9 = 3 times [49]. Larger kernel matrix hence

makes larger impact in noise removal.

Matrix A is a mask which will be applied to the original image by matrix
convolution operator. This operator works in an iterative procedure as a kernel
matrix goes through every element(i, j) of the original matrix (image). Then for
each of them, the value of the element(i, j) and values of the 8 surrounding elements
are multiplied by the corresponding values of the kernel. Finally the multiplication
results are added together and the element(i, j) is set to this final sum value. Figure
19 shows a simple example of a matrix convolution.

Figure 19: An example of a 2-D convolution[50].

The center element of the first matrix is being treated by the second matrix
which is a 3 × 3 matrix. All elements inside the green box of the first matrix are
then multiplied with their corresponding values in the kernel and finally the center
element is set to result of the following computation

40 ∗ 0 + 46 ∗ 0 + 52 ∗ 0 + 42 ∗ 1 + 50 ∗ 0 + 56 ∗ 0 + 46 ∗ 0 + 55 ∗ 0 + 58 ∗ 0 = 42

The fraction 1
9 in the kernel matrix A represents the averaging step as the sum

of all 9 multiplications is divided by 9. The simple following example shows how
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kernel matrix A is applied to a particular matrix using matrix convolution.

1 2 3 4 5
6 7 8 9 10
11 12 22 14 15
16 17 18 19 20
21 22 23 24 25




⊗

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9




=

1 2 3 4 5
6 7 8 9 10
11 12 14 14 15
16 17 18 19 20
21 22 23 24 25





The center element (the one inside the red square) can be seen as an impulse
noise since its value dramatically increases compared to its neighbor values. A
kernel matrix of size 3× 3 is applied to this matrix and the center element is being
considered. All elements inside the green box of the first matrix are then multiplied
with their corresponding values in the kernel and the center element is set to result
of the following computation:

1
9 ∗ (7 + 8 + 9 + 12 + 22 + 14 + 17 + 18 + 19) = 14

The kernel matrix goes on and does the same computation for the rest of the treated
matrix.

Applying mean filtering with discrete convolution has a drawback when dealing
with elements at border elements of the original matrix. As shown in figure 20, when
applying convolution to the top left corner element, it is assumed that values of
positions which are out of the original matrix are set to 0. This is so called "zero
padding" method.

Figure 20: Example of convolution at the border element[51].

This method may lead to undesired changes in the border elements as the
arithmetic mean value is affected by five neighborhood values being set to 0. These
changes might not affect the filtered image much as they happen only on the edge of
the image, however, with the final set-point maps, these undesired changes make a
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very big impact. The edges of the map will have rather big errors as shown in figure
21.

Figure 21: Example of a final map with errors at its edges.

In order to overcome this problem with the border elements, an alternative
non-zero padding method is introduced to this tool. It means at each side of the
unfiltered matrix, one more row/column is added and values in these rows/columns
are copied from the adjacent rows/columns.

M =

1 2 3
4 5 6
7 8 9



−→ M =

1 1 2 3 3
1 1 2 3 3
4 4 5 6 6
7 7 8 9 9
7 7 8 9 9





The padded matrix on the right has one outside layer and matrix convolution
will only be carried inside the red square, it means computation starts from row and
column index 2 instead of 1 and finishes at the second last row/column. Padding
rows and columns into the unfiltered matrix ensures that the arithmetic mean value
of neighborhood elements is not affected by zero values and hence avoids big variation
in the border elements. Testing result is shown in figure 22. The surface on the
right is the smoothed map with non-zero padding method and it shows a decent
smoothening in comparison to the original map on the left. Most importantly, the
smoothed map does not consist vertical edges like the smoothed map in figure 21.

Validation of the smoothening process will be explained in the Result section.
The goal of the smoothening process is to make a smooth shape of the map while
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Figure 22: Testing result by using non-zero padding method.

keeping the values as close as possible to their original.
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4 Experiment implementation

4.1 DoE preparations

The selected design of experiment is Box-Behnken design due to its competitive
advantages mentioned in Section 3.1. This design includes more than 2 factors to
capture the response curvature and its resultant model contains quadratic terms
according to the following equation

y = b0 + b1x1 + b2x2 + b3x3 + (linear terms)
b12x12 + b13x13 + b23x23 + (interaction terms)

b11x
2
1 + b22x

2
2 + b33x

2
3 (quadratic terms)

(51)

According to Subsection 2.2.5, the optimization variables are coded as

1. Input factors:

• Boost pressure (Pi): x1. (unit: gauge pressure)

• Common rail pressure (PCR): x2. (unit: bar)

• Start of injection (SoI): x3. Unit: degree Before Top Dead Center (dBTDC).

2. Responses:

• The Break Specific Fuel Consumption (BSFC): y1 (unit: g/kWh)

• Other possible emissions responses such as NOx and NO responses: yi

The resultant model can be written in physical variables as

BSFC = b0 + b1Pi + b2PCR + b3SoI + (linear terms)
b12PiPCR + b13PiSoI + b23PCRSoI + (interaction terms)

b11P
2
i + b22P

2
CR + b33SoI

2 (quadratic terms)

The design matrix at each operating point is shown in Table 4. According to
the table, 15 experiments are required for each operating point and at each point, 15
values of BSFC are recorded as well as 15 values of emission measurement. The ±1
indicate minimum and maximum values of each factor while 0 indicates the central
point of each range.
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Table 4: Design matrix for each oper-
ating point.

No. Pi PCR SoI BSFC NOx
1 -1 -1 0
2 -1 +1 0
3 +1 -1 0
4 +1 +1 0
5 -1 0 -1
6 -1 0 +1
7 +1 0 -1
8 +1 0 +1
9 0 -1 -1
10 0 -1 +1
11 0 +1 -1
12 0 +1 +1
13 0 0 0
14 0 0 0
15 0 0 0

Table 5: Specification of the engine test
bed

1 Cylinder number 4
2 Bore (mm) 108
3 Stroke (mm) 120
4 Swept volume (dm)3 4.4
5 Rated speed (1/min) 2200
6 Rated power (kW) 101
7 Maximum torque at rated speed (Nm) 455
8 Maximum torque at 1500 1/min (Nm) 583

4.2 Engine test bed

The engine test bed to be used in this thesis is a four-cylinder, common rail and
turbocharged diesel engine in the Internal Combustion Engine Laboratory at Aalto
University. The engine model is AGCO POWER 44 AWI and is shown in figure 23.
Controller of the engine is designed entirely on LabView.

Main specifications of this engine are listed in Table 5.

Figure 24 show an example set of experiment results running on the AGCO
engine at 1600 rpm and 200 Nm. As can be seen, the first three graphs show values
of each factor at their maximum, minimum and center levels. The last graph is the
brake specific fuel consumption index of the engine. The oscillation that happens in
the boost graph is caused by the sensitivity of the VGT controller. Therefore the
results of the BSFC are also affected as there are also some oscillation in the BSFC
graph. In addition, running all 15 experiments of one operating point takes around
one hour since the engine is very sensitive and it requires careful handling during
the operation.

Due to these reasons, this engine test bed is only used for testing of operating
points to find out the ranges of factors. The experiments are conducted on a
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Figure 23: AGCO POWER 44 AWI.

simulation engine model which was calibrated with the AGCO engine. The model
was developed in GT-SUITE software by David Bernasconi, who was a Master thesis
worker in the Internal Combustion Engine Laboratory at Aalto University.

The simulation model will be shortly described in the next section.

4.3 Engine simulation model

4.3.1 Introduction to GT-SUITE

GT-SUITE is an industry-leading simulation tool which offers functionalities ranging
from fast concept design to detailed system or sub-system analyses, optimization
and investigation. The reasons why GT-SUITE is chosen over other simulation tool,
such as MATLAB Simulink, are its competitive advantages and accuracy in system
modeling.

• GT-SUITE is a comprehensive set of simulation tools for engine and vehicle
systems with industry-standard engine simulation.

• The foundation of GT-SUITE is a versatile multi-physics platform to build
up models of different systems based on many fundamental libraries such
as: Mechanical library, Electric and Electromagnetic library, Thermal library,
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Control library, etc.

• With a wide range of libraries, the tool is able to model boosting system,
variable geometry systems and other important systems inside an engine.

• GT-SUITE has capability to run Design of Experiment tool directly on the
model with built-in or customized matrix design options for users.

• In addition, it is also possible to measure the emissions (NOx, CO and CO2)
by using GT-SUITE while it is temporarily not possible to measure in the real
AGCO engine.

4.3.2 Overview of the GT-SUITE model

This simulation model was made by David Bernasconi as his Master thesis during
the time he was working at the Internal Combustion Engine Laboratory. The main
purpose of the work was to build a model of the real AGCO engine in the lab and
implementing the controller of the engine into the model.

The model consists of two main parts: simulation execution and reports. Figure
25 shows an overview of the simulation model with fundamental blocks and compo-
nents. The four cylinders are shown in the middle of the figure and are connected
with piping systems. Compressor, turbine and inter-cooler are also modeled by
separate blocks. All components and pipes are modeled with their real dimensions.

Figure 26 shows the result panel after the simulation is done. All the results
about speed, torque, pressure, temperature, etc. are shown in this panel by both
data tables and plots.

Simulations in the GT-SUITE model are run by case and each case can be
configured as shown in figure 27. In the case setup option, speed, pressure, injection
quantity, start of injection, etc. can be set directly.

Furthermore, DoE setup can be made directly in GT-SUITE by using an available
built-in function named ’DoE setup’, as shown in figure 28. Factors and their ranges
can be set using ready-made designs or by customized designs.

This model has been calibrated with the real AGCO engine to mimic its per-
formance, however, the calibration was made only at a certain range of speed and
load on the real engine. Running the model inside the calibrated range or in the
near area can assure that the results are quite accurate. Due to this reason, the
selection of operating points for the DoE setup must be considered inside or close to
the calibrated operating range:
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• Speed: 1500 rpm - 2000 rpm

• Load: 150 Nm - 300 Nm

Choosing operating points which are too far away from the calibrated range can
lead to errors and nonsense results. There is one drawback in this model, which is the
lack of control of the common rail pressure for the engine. Modeling and calibrating
the common rail pressure require in-cylinder pressure measurement, however, it is
temporarily not available in the laboratory. Therefore, the rail pressure values used
in the Design of Experiment method have been taken from the real AGCO engine
run tests.

4.4 Operating point selection

Based on the calibrated working range of the engine model, the operating points
selected for the DoE setups are inside that range and partly in the close neighborhood
of that range.

Notice that in this model, the torque is controlled by the fuel injection quantity
as each quantity of injected fuel gives a certain amount of torque. Therefore, several
testing runs have been conducted to find out the corresponding torques. There will
be 12 to 14 operating points needed, the number of necessary points affects the
accuracy and resolution of the final maps. A comparison between the uses of different
numbers of operating points will be conducted in section Results.

Finally, the chosen operating points are shown in the following Table 6. Points
are chosen in 300 rpm interval and 15 mg interval. More points are chosen to be
inside the calibrated range of the model.

Table 6: Selection of operating points
Speed (rpm)

Injection quantity (mg) 1300 rpm 1600 rpm 1900 rpm 2200 rpm
15 mg (∼ 60Nm)
30 mg (∼ 100Nm) X X X
45 mg (∼ 150Nm) X X X X
60 mg (∼ 250Nm) X X X
75 mg (∼ 350Nm) X X
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4.5 Simulation runs

All the points with the check mark (X) will be run in the simulation model and
results of BSFC as well as emissions are recorded for later phases. Modeling and
optimization processes are executed after all operating points have been run. Results
of the modeling, optimization and map constructing will be shown in details in the
next section.
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(a) Intake pressure

(b) Common rail pressure

(c) Start of injection

(d) Brake specific fuel consumption

Figure 24: Experiment results at operating point @(1600 rpm, 200 Nm)
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Figure 25: GT-SUITE simulation model.

Figure 26: GT-SUITE reports.
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Figure 27: Speed and pressure setup.

Figure 28: DoE set up options.
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5 Results

5.1 Modeling and Optimization processes

5.1.1 Modeling of the BSFC

Modeling process is executed after all the experiments have been done and engine
responses have been fully recorded. Computational works have been done by MAT-
LAB with Linear Model Fitting function. The recorded data is fitted to this resultant
model

BSFC = b0 + b1Pi + b2PCR + b3SoI + (linear terms)
b12PiPCR + b13PiSoI + b23PCRSoI + (interaction terms)

b11P
2
i + b22P

2
CR + b33SoI

2 (quadratic terms)

The outcomes of this process are a set of vectors of coefficients bi for each
operating point and corresponding model errors. Figure 29 shows relationships and
effects of each factors on the BSFC response based on their coefficients. This figure
shows result at (1600 rpm, 45 mg).

Figure 29: Coefficient effects on BSFC.

As can be seen from the graph, the common rail pressure (CRP) and start of
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injection (SoI) have little correlation to the BSFC response while boost pressure
(Pi) has a big impact on how BSFC changes. Table 7 shows results of the modeling
process applied for 12 selected operating points in Table 6.

1. 1300 rpm - 45 mg

2. 1300 rpm - 75 mg

3. 1600 rpm - 30 mg

4. 1600 rpm - 45 mg

5. 1600 rpm - 60 mg

6. 1900 rpm - 30 mg

7. 1900 rpm - 45 mg

8. 1900 rpm - 60 mg

9. 1900 rpm - 75 mg

10. 2200 rpm - 30 mg

11. 2200 rpm - 45 mg

12. 2200 rpm - 60 mg

Table 7: Modeling results of the selected operating points.
Operating Point Mean Squared Error R2 R2

adjusted

1 2.32 0.987 0.965
2 1.39 0.995 0.987
3 3.15 0.996 0.99
4 3.36 0.993 0.982
5 2.25 0.995 0.986
6 11.3 0.986 0.961
7 7.09 0.991 0.975
8 6.04 0.989 0.97
9 4.54 0.992 0.979
10 25.5 0.974 0.927
11 12.5 0.985 0.959
12 6.24 0.994 0.983

According to the result table, the model error is quite small and the goodness
of fit is pretty good as all of the coefficients of determination R2 are close to 1.
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5.1.2 Modeling of the emissions

In order to model the emission response (due to limitations of the simulation model,
only NOx emission can be measured) of the engine, an investigation on how the
three input factors make impacts on the amount of NOx exerted at 1600 rpm and
45 mg was done. Result of the inspection is shown in figure 30. Horizontal axis in
each graph is the running order of the executed experiments according to the design
matrix in Table 4.

It can be seen that the common rail pressure and the start of injection somehow
have a little correlation with the changes of NOx emission. The boost pressure on
the other hand makes main impact on the NOx emission. Therefore, it is relatively
safe to model the response of NOx emission based on these three input factors Pi,
PCR and Soi.

Furthermore, one more inspection has been done to test how NOx emission
responses to different speeds and torques. Figure 31 shows results of the test and in
summary, higher speeds and lower torques create the most NOx emission.

Similarly, the recorded NOx data is also fitted to the same function that has
been used to model the BSFC responses considering that the two responses are
recorded in a same experiment and both have correlation with the input factors.

NOx = b0 + b1Pi + b2PCR + b3SoI + (linear terms)
b12PiPCR + b13PiSoI + b23PCRSoI + (interaction terms)

b11P
2
i + b22P

2
CR + b33SoI

2 (quadratic terms)

The results of this process are a set of vectors of coefficients bi and their
corresponding model errors. Emission models archived from this modeling process
can be used as constraint functions in the later optimization processes.

5.1.3 Optimization processes

The optimization of BSFC is done in two different ways to compare the differences
between without emission constraints and under emission constraints. The function
to be optimized is the one stated in equation (51).

The first optimization problem (without emission constraints) is defined as

minimize
Boost,CR,SoI

BSFC
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(a) Intake pressure

(b) Common rail pressure

(c) Start of injection

Figure 30: Effects of input factors on the NOx emission @(1600 rpm, 45 mg)
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(a) NOx versus speeds (b) NOx versus torques

Figure 31: Effects of different speeds and torques on the NOx emission

An example of optimized result at (1600 rpm, 45 mg) is shown in figure 32.
Optimization is done with three variables, however it is not possible to create 4-D
plots, the plots in the result are made by every two of the input factors with the
other factor being kept at its optimal value.

The optimization of BSFC under the emission constraints is defined as

minimize
Boost,CR,SoI

BSFC

subject to: emission constraints

Example result at (1600 rpm, 45 mg) is shown in figure 33 and the plots are
made in the similar way as in unconstrained cases.

It is shown that there are differences in optimal set-points and optimal BSFC
values between the two scenarios. The following Table 8 shows detailed differences
of unconstrained and constrained optimization at (1600 rpm, 45 mg).

Table 8: Differences between unconstrained and constrained optimization
Unconstrained Constrained

Boost pressure (gauge pressure) 0.5195 0.4
Common rail pressure (bar) 1400 1250
Start of injection (dBTDC) -3.6643 -4

BSFC (g/kW.h) 207.4699 213.2500

The constrained optimal values of BSFC tend to be a bit larger than the
unconstrained ones because higher boost pressure and later injection timing tend to
decrease the amount of NOx but at the same time increase the BSFC of the engine.
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(a) SoI vs CRP

(b) SoI vs Pi

(c) CRP vs Pi

Figure 32: Optimization without emission constraints @(1600 rpm, 45 mg)
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(a) SoI vs CRP

(b) SoI vs Pi

(c) CRP vs Pi

Figure 33: Optimization under emission constraints @(1600 rpm, 45 mg)
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5.2 Map construction

The optimization process creates 3 sets of optimal values for all three factors Pi,
PCR and Soi at the selected operating points. Applying ’Robust Locally Weighted
Regression’ (LOESS) [28] method to each set of optimal values produces an initial
map for every factor.

The name LOESS is derived from the ’locally weighted scatter plot smoothing’.
The main idea of LOESS is to use the values of neighbor data points within a
defined span to estimate the value at a new point. In other words, LOESS creates a
continuous curve that represent the relationship between the inputs and the response.
At a given point, LOESS fits a second degree polynomial using weighted linear least
squares regression to the data points within the span. The weights Wi for each data
point is defined by

Wi =
(

1−
∣∣∣∣∣x− pid(x)

∣∣∣∣∣
3)3

where pi are the neighbor points of x within the span and d(x) is the distance from x
to the furthest point in the span. The LOESS regression was implemented by using
MATLAB toolbox. Figure 34 shows the results of LOESS-regression on the three
constrained optimal sets of values of Pi, PCR and Soi

In practice, static control maps of diesel engines can have many different reso-
lutions (intervals between chosen operating points) based on the properties of the
engine (high speed or low speed). In this AGCO engine, the control maps with
respect to speed and injection quantity will have resolution of 125-rpm and 3.25-mg
intervals. Dividing the maps into smaller intervals requires more operating points
to be run for better accuracy of the created maps. Figure 35 shows set-point maps
created in both unconstrained and constrained optimization.

There are definitely some differences between the constrained and unconstrained
maps showing in these graphs. Figure 36 shows a clearer differences between maps
when emission constraints are presented.

The colored surfaces are unconstrained and the white ones are made under
emission constraints. Emission constraints tend to lower the values of the optimal
maps and avoid sudden high peaks. Though the emission constraints can reduce
the high peaks for some extend, these constrained maps still needs smoothening to
achieve a smoother transition between operating points. Results of the smoothening
process, including validation test results, will be discussed in the next section.
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5.3 Map smoothening

The initial set-point maps will be treated by modified mean filtering method to
smoothen all the rough transitions and sudden peaks. Figure 37 shows the result of
smoothening on the Pi map. The peaks appear at medium speed-low torque and
high speed-low torque positions have been smoothed to some extend.

Similarly, figure 38 and figure 39 show the same result for the common rail
pressure and start of injection maps.

It seems that the smoothening process visually does not change the values of the
original maps so much, however, some validation tests are still needed to be carried
out at locations where the changes are significant. The tests help to assure that the
smoothening process does not shift the optimal points too far away from their original
locations and lead to dramatical changes in the optimized BSFC values. Nevertheless,
due to the drawback of the simulation model which was mentioned in Subsection
4.3.2, it is not possible to run the model with different values of common rail pressure.
Therefore, the validation tests can only be taken with the boost pressure and the
start of injection maps.

Table 9 shows the BSFC results of validation tests at the following operating
points, where changes are the biggest:

• Boost pressure map:

(OP1) 1750 rpm - 15 mg, (OP2) 1750 rpm - 18.25 mg
(OP3) 1750 rpm - 21.5 mg, (OP4) 2000 rpm - 18.25 mg

• Start of injection map:

(OP5) 1750 rpm - 15 mg, (OP6) 2000 rpm - 15 mg
(OP7) 1625 rpm - 70.25 mg, (OP8) 1500 rpm - 63.75 mg

Table 9: The BSFC (g/kW.h) results of validation tests for smoothed maps.
OP1 OP2 OP3 OP4 OP5 OP6 OP7 OP8

Initial map 327 280 256 285 326 345 206 206
Smoothed map 333 286.5 262 303 325 344 206.4 206.35

The BSFC values do not change much after the maps have been smoothed.
Hence, it is safe to use this smoothening method to make the initial set-point maps
smoother and not to shift the local optimum too far.
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(a) Constrained Pi map

(b) Constrained PCR map

(c) Constrained Soi map

Figure 34: LOESS fitting results
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(a) Unconstrained Pi map (b) Constrained Pi map

(c) Unconstrained PCR map (d) Constrained PCR map

(e) Unconstrained SoI map (f) Constrained SoI map

Figure 35: Initial set-point maps
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(a) Pi maps

(b) PCR maps

(c) Soi maps

Figure 36: Differences between constrained and unconstrained maps
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(a) Initial Pi map (b) Smoothed Pi map

Figure 37: Differences between initial and smoothed Pi maps.

(a) Initial PCR map (b) Smoothed PCR map

Figure 38: Differences between initial and smoothed PCR maps.

(a) Initial Soi map (b) Smoothed Soi map

Figure 39: Differences between initial and smoothed Soi maps.
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6 Conclusions and Discussion

6.1 Conclusions

This thesis presents a study of designing static optimal control maps for high efficiency
and emission reduction on diesel engine. The study leads to a finding of an engine
calibration method which reduces necessary time and resources. The method has
also been implemented on a non-road 44 AWI AGCO engine and on a GT-Power
simulation model of that engine. Several conclusions were made from this work:

• An off-line parameterization tool which can be used for semi and fully automatic
engine tuning was proposed and developed.

• The Design of Experiments method, which is the core component of the off-line
tool, provides an organized and economical way of engine calibration. By using
this method a considerable amount of time and resources can be saved.

• The engine response is better optimized in comparison to the traditional "brute
force" method. Moreover, the response is even optimized under emission
constraints to guarantee environmental protection.

• The off-line parameterization tool outputs the optimal control maps with
smoothing transitions between the operating points. This smoothening work
assures a smooth run for the engine in speed and load changing conditions.

6.2 Discussion

Though this study has given some promising results, there are still several aspects
which need further improvements in the future for a better engine efficiency and
lower emissions.

• Improve the Off-line parameterization tool with more important engine parame-
ters. For instance, more injection strategy optimization (pre- and post-injection)
should be considered instead of only the main injection in the current version
of the tool.

• More constraints should be studied and included into the optimization of the
engine responses to assure the engine’s safety. The peak in-cylinder pressure
can be an example of the addition constraints.

• The most important thing that needs improving in the future is the selection
of the ranges of treated parameters at each operating point. In this thesis, the



71

selection is made mainly by running tests in the engine to find the limits of each
parameter. However, this method does not guarantee that the combinations
of the selected ranges are totally safe for the engine to run. Therefore, more
research needs to be done on this issue to make sure that all the chosen ranges
are safe for the engine.

• Last but not least, more full-scale tests of the parameterization tool must be
carried out on other diesel engines to improve the working of the tool and to
inspect for some potential drawbacks and errors.
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