

Transitioning towards continuous development within an
established business organization

Atte Virtanen

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of Science in Technology.
Espoo 17.11.2017

Thesis supervisor:

Doc. Kalevi Kilkki

Thesis advisors:

M.Sc. Tatu Sipilä

M.Sc. Antti Rajala

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Aaltodoc Publication Archive

https://core.ac.uk/display/145239405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AALTO UNIVERSITY ABSTRACT OF THE

SCHOOL OF ELECTRICAL ENGINEERING MASTER’S THESIS

Author: Atte Virtanen

Title: Transitioning towards continuous development within an established
business organization

Date: 17.11.2017 Language: English Number of pages: 7+55

Department of Communication and Networking

Professorship: Network Economics

Supervisor: Doc. Kalevi Kilkki

Advisors: M.Sc. Antti Rajala, M.Sc. Tatu Sipilä

Software development today has rapidly developed into a significant part of
business and its value creation chain. Increasingly more stakeholders within an
organization are tied in with more frequent software releases. This has driven
organizations to adapt to more flexible and continuous software development
methods.
This Master’s Thesis addresses the challenges, advantages and disadvantages
associated in shifting an organization’s software development culture towards that
of continuous development. The specific type of continuous development within
this research considers the new software development culture of DevOps.
DevOps is seen as a fundamental change in the IT world today for the transition
towards continuous software development, where dedication is given to the
successful collaboration between development and operations.
The aim of this research is to discover the vastness of attempting to change an
organizational culture for an improved and modern software development process
for all stakeholders involved. Furthermore, this research attempts to provide the
organization at hand with information on how and where to begin initiating the
required changes. New cloud computing technologies have enabled development
teams to become less dependent on companies’ traditional IT departments.
The research is conducted via literature review and the data collected through
interviews with employees of the organization attempting to shift towards
continuous development. Further information is gathered through three case
studies of other companies that have successfully undergone a transition towards
continuous development and DevOps.

Keywords: devops, agile, lean, cloud computing, continuous development

AALTO YLIOPISTO DIPLOMITYÖN

SÄHKÖTEKNIIKAN KORKEAKOULU TIIVISTELMÄ

Tekijä: Atte Virtanen

Työn nimi: Jatkuvaan ohjelmistokehitykseen siirtyminen vakiintuneessa
organisaatiossa

Päivämäärä: 17.11.2017 Kieli: Englanti Sivumäärä: 7+55

Tietoliikenne- ja tietoverkkotekniikan laitos

Professuuri: Tietoverkkotalous

Työn valvoja: Dos. Kalevi Kilkki

Työn ohjaaja: KTM Antti Rajala, DI Tatu Sipilä

Tänä päivänä ohjelmistokehityksestä on nopeasti muodostunut merkittävä osa
liiketoimintaa ja sen lisäarvon tuottamista. Yhtiöiden sisällä yhä useampi
sidosryhmä on osallisena yhä useammin toistuvissa ohjelmistojulkaisuissa. Tästä
johtuen yritykset ovat joutuneet sopeutumaan joustaviin ja jatkuviin tapoihin
kehittää ohjelmistoa.
Tämä diplomityö tutkii yhtiön jatkuvaan ohjelmistokehitykseen siirtymisen
haasteita, hyötyjä ja haittoja. Jatkuvan ohjelmistokehityksen tyyppi, jota tässä
työssä tutkitaan, on nimeltään DevOps. DevOps:ia pidetään keskeisenä
muutoksena nykypäivän IT-alalla jatkuvaan kehitykseen siirtymisessä. Sen
pääpiirteeksi koetaan sulava yhteistyö kehityksen ja ylläpidon välillä.
Tämän tutkimuksen tavoite on selvittää yrityksen ohjelmistokehityksen
muuttamisen laajuuden ottamalla samalla sen kaikki sidosryhmät huomioon.
Lisäksi tämä tutkimus pyrkii tuottamaan yritykselle, jolle tutkimus tehdään,
lisätietoa siitä miten tarvittavat muutokset voidaan käynnistää ja toteuttaa. Uudet
pilvipalvelut ovat lisänneet kehityksen autonomisia työskentelytapoja ja
vähentäneet heidän riippuvuuksia perinteisen IT-osaston toiminnollisuuksista.
Tutkimus toteutetaan kirjallisuuskatsauksen sekä yrityksen eri sidosryhmien
haastattelujen kautta. Lisätietoa kerätään esimerkkien avulla, joissa tutkitaan
kolmen eri yrityksen menestyksekkäitä siirtymisiä jatkuvan ohjelmistokehityksen
pariin.

Avainsanat: devops, agiili, ketterä, pilvilaskenta, jatkuva ohjelmistokehitys

iv

Preface

I would like to thank my supervisor Kalevi Kilkki for the support during the creation of this

research.

Furthermore, I would like to thank my advisors Antti Rajala and Tatu Sipilä for helping me

research the topic at Kesko.

Thanks Mom. Thanks Dad.

Otaniemi, 13.11.2017

 Atte Virtanen

v

Table of contents

PREFACE ... IV

TABLE OF CONTENTS ... V

ABBREVIATIONS .. VII

1 INTRODUCTION .. 1

1.1 RESEARCH TOPIC JUSTIFICATION .. 1

1.2 COMPANY BACKGROUND .. 1

1.3 RESEARCH PROBLEM AND QUESTIONS .. 3

1.4 RESEARCH SCOPE ... 4

1.5 RESEARCH STRUCTURE .. 5

2 RESEARCH METHODS ... 6

2.1 LITERATURE REVIEW ... 6

2.2 INTERVIEWS .. 7

2.2.1 Interviewees and company context .. 7

2.2.2 The purpose of the interviews ... 7

3 SOFTWARE DEVELOPMENT .. 9

3.1 THE WATERFALL MODEL ... 10

3.2 LEAN AND AGILE PRACTICES ... 12

3.2.1 Lean development ... 12

3.2.2 Agile development .. 14

3.3 CONTINUOUS DEPLOYMENT PIPELINE ... 16

3.3.1 Continuous integration ... 16

3.3.2 Continuous delivery ... 17

3.4 DEVOPS .. 17

3.4.1 What is DevOps ... 17

3.4.2 DevOps practices ... 18

3.4.3 Culture and people .. 19

3.4.4 Benefits of DevOps .. 20

3.4.5 Problems in implementing DevOps ... 22

3.4.6 DevOps with agile or lean ... 22

3.4.7 DevOps and cloud computing ... 23

4 COMPANY REFERENCES AND EXAMPLE CASES ..25

4.1 SOLITA .. 25

4.2 A LARGE FINNISH COMPANY – COMPANY A .. 26

4.3 HEWLETT PACKARD ENTERPRISE ... 28

4.3.1 DevOps at HPE .. 28

vi

4.3.2 Culture change at HPE .. 28

4.3.3 Automation pipeline at HPE .. 29

4.3.4 Trust at HPE... 29

5 RESULTS, PROBLEMS AND BARRIERS TO DEVOPS ..31

5.1 KESKO SOFTWARE DEVELOPMENT MODEL ... 31

5.1.1 Project types .. 32

5.2 SILO FORMING THROUGH BUDGETING .. 33

5.2.1 The role of the IT department ... 33

5.2.2 Budgeting and prioritization ... 34

5.3 AUTOMATION, GUIDELINES AND TOOLSETS ... 35

5.3.1 Automation and tools ... 35

5.3.2 Testing ... 35

5.4 DEVOPS AWARENESS AT KESKO .. 36

6 IMPLEMENTABLE DEVOPS PRACTICES AT KESKO ...37

6.1 CULTURE, COLLABORATION AND TRUST .. 38

6.1.1 Trust and empowerment ... 38

6.1.2 One tool for everything ... 38

6.1.3 Documentation ... 40

6.1.4 Team structure .. 40

6.1.5 Defining clear project types .. 41

6.2 AUTOMATION AND TOOLS ... 43

6.2.1 Automation pipelines .. 43

6.2.2 Monitoring and metrics .. 44

6.3 DEVOPS AWARENESS ... 44

6.4 ACTION PLAN .. 45

7 DISCUSSION...47

7.1 IDEAL SITUATION ... 47

7.2 DEVOPS TEAM .. 48

8 CONCLUSIONS ...49

9 REFERENCES ..51

APPENDIX ...54

vii

Abbreviations

CD – Continuous Delivery

CI – Continuous Integration

DOD – Definition of Done

DevOps – Development and Operations

HPE – Hewlett Packard Enterprise

IAAS – Infrastructure as a service

IT – Information technology

PAAS – Platform as a service

RAD – Rapid application development

SAAS – Software as a service

TPS – Toyota Production System

1

1 Introduction

1.1 Research topic justification

The foundations of this research lie in the current environment of Kesko’s software

development and my personal responsibilities within the organization. Kesko provides a set

of development tools, which their development teams are free to use. The organization

currently does not employ its own software developers. Instead, it supports standardized

tools and processes under which development occurs.

Maintenance and support for the tools from Kesko’s perspective are my personal

responsibilities within the company. Providing tools for the development teams has therefore

granted me access and a wide perspective on all of the development conducted for Kesko.

Not only am I invested in the IT department of Kesko, but am also in constant contact with

the developers developing for Kesko and employees from the business side. As different

vendors require and use different tools and processes, the need for creating functional

development guidelines that correspond more adequately to an evolving digital domain

becomes evident on a daily basis.

Kesko is striving to adapt to these changing circumstances and improve upon its own

software development environment. Bridging the gap between business and development is

at the forefront, as currently the challenges lie within this collaboration.

Furthermore, I am personally keen on discovering how change occurs within a large

organization. Especially within an organization undergoing a transition towards continuous

development, where the goal is to be able to release faster, more often and more agilely.

1.2 Company background

Kesko, one of the largest multi-industry corporations in Finland has been steadily taking

advances into the digital domain with a vast range of new digital services. The company’s

strategy has been to increase sales, market share, customer satisfactory and customer value

through the expansion of their digital services.

As a conventional sales company, Kesko now faces the challenge of evolving its ways of

working as it attempts to tackle the hurdles associated with a large firm attempting to

incorporate efficient digital development into its portfolio. Management, development,

operations and many other roles need to align mutually in their goals, targets and cooperation

in order to create a functioning and coordinated platform for their digital services. These

2

hurdles include aspects from technical solutions to deeply rooted cultural practices, all of

which can significantly hinder digital project management processes.

Kesko’s three main business operations are grocery trade, technical trade and car sales.

Advancing these portfolios further into the digital domain requires skillful technical

expertise in software development and efficient execution. Kesko’s scattered digital

development model has revolved mainly around outsourcing its software development. The

approach towards outsourcing software development is not due to change instantly, as

Kesko’s business model lies in the sales of consumer goods. However, as the portfolio

around its digital services expands, so does the need to evolve Kesko’s own digital

development culture to match the fast-paced markets it is involved in.

Kesko has its target set at pursuing new methods for its working culture, mainly within its

own IT department and its dependencies, in order to develop an environment, which can

produce high quality digital services faster and more efficiently. The lack of a precise and

unified blueprint on how to execute digital projects currently prevents development

optimization on an organizational level. Different types of development methods such as

waterfall, agile or lean have been implemented within the development projects. However,

complete guidelines on how the organization wishes development to be conducted are

missing.

Developing consumer applications such as the K-Ruoka mobile application or building new

online stores for Kesko’s grocery and hardware trade have given rise to shifting development

from the outdated “waterfall” model to that of continuous development. Projects that are set

to increase market share and business value in the long term require constant development.

Therefore, the organizational environment is required to be in a state of supporting such

development. Transitioning a software product from one department to another, for example

from development to operations, should no longer be the only option.

Technological advances in cloud services have been an additional catalyst for advancing the

methods of conducting software development. With the rise of cloud computing focusing on

delivering infrastructure, platforms and software as a service, the burdens of personally

having to build infrastructure and catering to scalability needs have been mitigated.

Developers and in particular Kesko are in a position to take advantage of these technologies

for optimizing development.

Kesko’s development structure consists of an organizational IT department supporting

outsourced software development conducted by collaborating vendors. Improving this

divide between the information technology department and software development is at the

3

forefront of Kesko’s plans. DevOps, the cooperation of development and operations, has

been suggested as a potential model for Kesko’s development guidelines.

This thesis sets out to investigate the problems in Kesko’s software development process

and to compare them to the practices related to DevOps. The aim is to gain an understanding

into the aspects of how Kesko could implement DevOps and whether or not DevOps could

solve problems currently present in software development. The research questions and scope

presented in the following chapters define the goals of this research in more detail.

1.3 Research problem and questions

As Kesko is striving to improve upon its software development model and transition towards

developing more continuously than before, the questions which this research attempts to

answer are as follows:

RQ1: What are the problems in Kesko’s software development process?

In order to create an analysis of how Kesko could change its software development process,

the current problems need to be uncovered. This question is answered through interviews

with employees working in Kesko’s software development.

RQ2: What points can Kesko focus on in transitioning towards continuous development?

As a non-software development company the process of transitioning towards continuous

development is not rapid. Furthermore, the creation of a new model is a tedious process

during which the best practices for Kesko are developed. Therefore, this research attempts

to answer the question of what Kesko can do now and what takes longer to establish.

RQ3: Could DevOps be adaptable?

After analyzing the current situation of the company’s development model and making

proposals on what it can implement now and in the future, the final question of this paper

answers the question whether or not the culture of DevOps is suitable for Kesko to

transition towards continuous development.

4

1.4 Research scope

The nature of DevOps and its implementation on an organizational scale require vast inputs

from all aspects of the company. The working culture of DevOps affects everyone, from

management to every team and employee. Tools, guidelines, new social norms and skills

must all be developed and established from the ground up. The process of developing an

organization’s own DevOps culture does not have a finite ending, but instead focuses on

continuously improving upon the current conditions. This does not happen overnight.

Due to the nature of DevOps being a newly considered model for Kesko, the scope of this

thesis is limited to the key aspects of DevOps. The goal of this research is to identify the

technological and cultural readiness needs at Kesko for deploying and building their own

continuous software development. This thesis provides an insight into the current problems

at Kesko, the required points of focus for transitioning from a conventional “waterfall”

development model to an agile or lean method of working; specifically, the deployment of

DevOps as a potential model. Furthermore, this paper aims to aid readers new to the topic to

familiarize themselves with the relevant concepts and steps for DevOps and transitioning

towards continuous development.

This thesis attempts to present the theories and aspects behind DevOps and place them into

the context of Kesko. Companies and organizations differ vastly from each other, meaning

that each firm that has successfully implemented DevOps has done so within their own

limitations. DevOps can mean significantly contrasting things within different organizations,

mainly due to contrasting business goals. Hence, this research aims to discover whether the

best practices of DevOps are deployable at Kesko.

Finally, the purpose of this paper is not to create an immediately deployable model of

DevOps for Kesko, but instead present the necessary aspects for being able to adapt it. A

roadmap for the ideal state or a completed model of Kesko’s DevOps culture does not suit

the scope of this research. Instead, it aims at describing the key points of DevOps, reflecting

them onto Kesko’s current software development environment and propose points of

emphasis for a potential Kesko DevOps model. However, this thesis does function as an

introduction on the scale of implementing a revised working model, especially for employees

and decision makers involved in the transitioning process.

5

1.5 Research structure

As its first chapter, the structure of this thesis begins with the presentation of the necessary

background information on the topic at hand. Information on the author’s relevance to the

subject and the company in question are presented, closely followed by the research

questions studied within this work.

The structure continues with chapter 2, which introduces the research methods used to

conduct this study. Literature was utilized to discover the theorem relative to the topic. Data

collecting was conducted via interviews with employees from the company who are

associated with the topic.

Chapter 3 presents the theorem on software development, DevOps and cloud-computing

capabilities.

Chapter 4 lists three example cases of how other companies have transferred to continuous

development.

Chapter 5 posts the data and results gathered during the interviews. This chapter is followed

by chapter 6, which analyses the results and proposes methods on how to begin developing

a more modern software development model.

Chapter 7 discusses key points on what could be the ideal situation of the company in the

future. The final chapter, chapter 8, summarizes the research conducted in this work.

The references are listed in chapter 9, which is conclusively followed by the appendix listing

the questions asked during the interviews.

6

2 Research methods

This chapter describes the research methods of this thesis. It begins with the introduction of

the literature related to this research and is followed by presenting the data collection process

in the form of conducting interviews within the organization.

 The approach for researching this topic commences with the investigation into the theories

of software development and the theories of DevOps in particular. In order to place these

theories into the context of Kesko, interviews were chosen as the most suitable form of data

collection. The methods are justified by this research being qualitative in its nature.

For referencing purposes, the research is completed by analyzing how other companies have

either fully implemented DevOps or transitioned from a traditional development model to a

continuous development model. These data collecting methods were used in analyzing

Kesko’s current situation and drawing comparisons to the theorem and practical examples.

Conclusively, this data was used to create results for Kesko’s points of focus on transitioning

towards DevOps.

2.1 Literature review

The literature review presents different software development models, such as the waterfall,

agile and lean frameworks. Their general ideas and reasons for their application strive to

introduce the reader into the different ways software development is managed.

 The software development models are followed by introducing DevOps, which is the

continuous development model Kesko wishes to adopt. DevOps is presented in detail, as it

is the focus of this research.

 Further introductions are made into the automation processes of software development, as

in the form of presenting the theories of the continuous deployment pipeline and cloud-

computing possibilities. These chapters are justified by modern software development

relying on these technological aspects.

 The literature review concludes with information on common organizational challenges

caused by organizational culture and structure. These theories are closely linked to a

transition towards a different development model, as changes within large organizations are

complex.

7

2.2 Interviews

2.2.1 Interviewees and company context

The empirical study of this research is conducted through the analysis of 11 interviews,

lasting roughly an hour each, with people related to Kesko’s IT department. The interviewees

were selected from different branches, teams, vendors, positions and operations to attain a

comprehensive coverage of Kesko’s digital domain and a current understanding on what it

means to establish a new culture in Kesko’s own software development operations.

The group consisted of three employees from the business branch, five employees from the

IT department and three software developers. Hence, not all participants in the interview

process were directly from Kesko’s IT department, but all had connections to it.

The business aspect of interviewees encompassed the three main business branches: the

grocery trade department, hardware trade and supporting IT functions. Such a distinct

division based on each industry was avoided for the IT perspective due to the complexity of

one common IT department being involved in all digital development projects at Kesko.

Instead, the interviewees were chosen based on the nature of their work: the group was

comprised of project managers, IT architects, operations, testing and IT leadership.

The developer aspect of interviewees involved people from different software companies.

All interviewed developers were working on diverse projects with altering methods and

tools. This selection provided a wide range of information on the study at hand. The goal of

selecting developers from different partnering companies was identical as with the other

groups: gaining different perspectives from different corners of digital development within

Kesko.

2.2.2 The purpose of the interviews

The interviews and their respective questions were devised with the purpose of gaining

knowledge into the current state of Kesko’s software development model. The primary part

of the questionnaire focused on learning from the interviewee what he or she believes

DevOps is and discovering whether people involved in the process of software development

had any previous knowledge or understanding of DevOps. These questions differed between

interviewees as the questions were chosen according to the interviewee’s role within the

organization. The subsequent part presented the interviewee with questions relating to the

8

digital project environment at Kesko and the recognizable problems within it. The closing

set of questions considered aspects of what the future of Kesko’s software development

model could withhold.

 By reflecting the ideas and theorems behind software development, DevOps and Kesko on

the interviewee, the questionnaire had three specific goals on which to construct this

research:

- Obtain information on whether or not Kesko already has elements of the DevOps

model built into its own process

- Understand Kesko’s development environment

- Discover how much of DevOps could potentially be implemented at Kesko

The questionnaire is posted in the appendix.

9

3 Software development

Software development is conducted through different models, with each model carrying its

unique advantages and disadvantages. The most traditional method of developing software

is the “Waterfall” model, whereas today more modern approaches are agile and lean. Others

such as the Rapid application development, or RAD, model [1] exist as well, however this

chapter focuses on the more traditional approach and agile as they are the primary

approaches relevant for Kesko. Additionally this chapter presents DevOps and cloud

services in more detail.

 Waterfall, lean and agile are frameworks for software development. These frameworks

consider the methods and processes of how teams and projects conduct software

development. They describe the dynamics within teams for creating software. DevOps on

the other hand is not a framework for software development, but instead a culture of tying

the software development frameworks into an efficient IT unit involving development and

operations [2].

Therefore, in order to portray the culture of DevOps, it is fundamental to present the ideas

of the different software development frameworks.

10

3.1 The Waterfall model

The waterfall model is a traditional type of software development process, which progresses

logically from one phase to another after each completed phase [3]. Dr. Winston W. Royce

introduced it in his paper Managing the development of large software systems in 1970

without naming it the waterfall model [3]. The model gained its name through the downward

flow between phases. The typical stages of the waterfall model are presented in Figure 1 [3].

The development process beings with extensive planning on what the system and software

requirements for the product should be. This phase is followed by analyzing and designing

the user interface and other visuals, after which programming can begin. Finalized software

is conclusively tested and placed into production. Eventually, the software is regarded as

being complete and is finally transferred to maintenance. Due to the different phases being

Figure 1. The Waterfall model

11

performed by different and specialized groups, the waterfall model obligates the

organization’s structure to be strictly arranged [3]. Development processes are managed

firmly [4].

At its core, the waterfall model attempts to produce a finished product systematically from

beginning to end and eventually release it all at once. The most notable advantage of the

waterfall model is being able to complete phases on schedule [4]. As every phase is

transferred to the next one, each step has a set deadline [4]. Hence, the schedule is simple to

follow, creating software on time. Due to the strict specifications at the initial planning stage

of the project, documentation is well constructed throughout the development stage [3]. New

project members can join the project with ease as the knowledge is found within the

documentation [3]. This documentation creates the significant bridge for transferring

knowledge of the project from one phase to another [4]. The waterfall model is most suitable

for projects which can provide complete specifications at the earliest stage.

The theoretically pure waterfall model expects each phase to be perfected before moving on

to the next [4]. In practice however, perfecting a phase is challenging [4]. Stages might not

be completed on time, leading to the next phase having to wait or begin work with an

incomplete product. This leads to slow and inefficient development. During the planning

phase, not all specifications and future problems can be accounted for [4]. The waterfall

model does not support adapting to feedback gained during development [3], causing

potential rewriting of code [5]. Customers or users of the software might not know exactly

what they want from the product. This can create an outdated and unusable product [6, p.

17]. Sudden changes or problems during any phase can significantly derail the project from

its original schedule [4]. Furthermore, changes during development create costs, making the

project flow over the planned budget [3]. As testing is conducted during the later stages,

potential software problems are recognized late [5].

12

3.2 Lean and agile practices

Lean and agile are the modern approaches to software development, formed under the fast-

paced software markets of today. The aim towards creating business value and delivering

features based on customer wants has led to the development of more flexible software

development methods. These allow for more freedom and adjustments during development.

Their relevance in this research is based on the assumption that DevOps practices rely on

lean and agile software development as a platform. [6, p. 36]

3.2.1 Lean development

Lean development derived originally from the manufacturing industry, where the car-

manufacturing firm Toyota built its manufacturing line around just-in-time production.

Toyota created their own Toyota Production System (TPS) [7]. The general thought behind

lean development is the elimination of waste and unnecessary work during the development

process in order to produce the most customer value. Tom and Mary Poppenieck introduced

lean software development and broke it down into seven key principles. These principles are

presented in Table 1 [8, p. 13-15].

13

Principle Description

1. Eliminate
waste

- Eliminating redundant code, features
- Avoiding speed blocks created by bureaucracy,

ineffective communication
- Avoiding the attempt to do more than can be

completed
- Avoiding multitasking and fractionally completed work
- Eliminating every unnecessary aspect

2. Build quality
in

- Focus on assuring quality software from the start
- Building quality in from the start avoids waste at

finalizing stages
- Pair programming: two developers simultaneously

programming; high error avoidance
- Test Driven Development (TDD): tests and test

conditions are written before code
- Incremental and frequent code integration
- Test automation

3. Create
knowledge

- Quality software is based on knowledge and
experience of the product

- Pair programming enriches more than one developer
- Documentation
- Code which is well commented
- Code is reviewed
- Sharing knowledge within team

4. Defer
commitment

- Making decisions at the latest possible, but safe, stage
- Especially important for permanent decisions
- Creates flexibility in software product

5. Deliver fast

- Delivering quickly and collecting feedback to improve
- Time to market can create competitive advantage
- Avoiding monoliths
- Keep things simple

6. Respect
people

- Everyone, regardless of position, should be treated
equally and respectfully

- Transfer responsibility to workers
- Empowerment without sacrificing control

7. Optimize the
whole

- Optimize complete value stream, from feedback to
release

- Organize teams around product, not around expertise

Table 1. The key principles of lean software development

14

Eliminating unnecessary work and inefficient methods of working are, through its seven

principles, at the essence of lean development. Learning what can be eliminated throughout

the development cycle enhances the understanding of customer value for the specific

product. Developers are empowered and trusted to conduct their work. Risks are minimized

by making decisions at the latest possible time. [9]

The principles of lean as a process management method for development [10] lend

themselves to the principles of agile that are presented in the following chapter.

3.2.2 Agile development

Whereas lean focuses on eliminating waste, agile software development places its emphasis

on people with the most significant aspect being the end-user of the software. Agile stems

from the fact that the challenge of software development is not being able to recognize the

outcome of the produced code in advance. Therefore agile relies on the feedback provided

by its end-users to meet the initially unknown requirements of the software. [10]

The Agile Manifesto describes the success metrics of agile as being able to provide working

software through the collaboration with its end-users. People and their respective

cooperation are valued more than processes and tools whilst being able to adapt to changes

instead of attempting to stay fixed on a preset plan. [11]

15

Agile follows twelve principles that are presented in Table 2 [12].

Principle

Highest priority is customer satisfaction

Welcome changing requirements

Frequent delivery of software

Business people and developers cooperating daily

Build projects around motivated people

Face-to-face conversation is best

Progress measured by working software

Sustainable development pace

Continuous attention to technical excellence

Simplicity

Self-organizing teams

Regular reflection and adaptation

Table 2. The principles of the Agile Manifesto

The essence of agile’s twelve principle is to be able to react to changes required by the end-

user for providing the highest quality software. Releases are done iteratively and frequently.

Development teams conduct work together at the same location and cooperate often with

employees from the business side for the highest value creation chain. [12]

16

3.3 Continuous deployment pipeline

The continuous deployment pipeline is the set of automated processes that enable the fast

and efficient deployment of new software features into production. The pipeline is a

fundamental aspect in lean and agile software development, but also in DevOps’ automation

culture. The general stages within such a pipeline consist of continuous integration and

continuous delivery. The goal of these stages is to authenticate the software at different

phases and establish feedback to the developers, whilst doing so on a consistent basis. [13]

The following two sections on continuous integration and continuous delivery depict the

components of the automation process of building software. They are an essential part of

DevOps, however as the approach of this research limits itself to DevOps within a large

organization and is directed at all employees, these sections do not delve into the specifics

of how to construct CI and CD from a developer’s point of view.

3.3.1 Continuous integration

Continuous integration, or CI, is the process of submitting small changes of code to the main

piece of code, called the mainline, on a constant basis, where the time interval between new

commits is short. Multiple developers working on a piece of software periodically submit

minor changes to the main piece of software. The purpose of constantly applying small

adjustments is to maintain improved control of the mainline. Larger changes conducted less

frequently could cause compatibility and build issues. Additionally, in the case of run or test

errors after a commit, the rollback to a previous version is significantly simpler and the

effects on the main piece of code are mitigated. [14]

 Programmers make a copy of the mainline to their system, add their changes to the program

and commit these changes back to the mainline. Once a new commit to the mainline is made,

an automated commit build, which includes tests, is triggered which confirms the changes’

compliance within the main piece of code. Bugs and errors are discovered through these

automation steps. [14]

 The advantage of CI is that it automates the integration of code changes. Linking all required

files and conducting appropriate tests is much faster through an automated CI pipeline [14].

Incremental code changes further enhance the creation of software [14]. These aspects

reduce risks by making problems become easier and faster to recognize since developers

receive most of the feedback of their code at this stage [13].

17

3.3.2 Continuous delivery

Once the incremental changes or new features have been completed, integrated and tested,

they can be deployed to production. Continuous delivery, or CD, consists of automated

processes that enable the possibility of being able to deploy the changes into production at

any time [15]. Changes are delivered to an environment, which mirrors the production

environment itself to ensure that the changes will also function in production [15].

 Continuous delivery is the final step in continuous deployment. Deployment into production

might not be conducted as often as continuous delivery. Continuous delivery warrants the

possibility of rolling out at any time [15]. Continuous deployment considers releasing new

features to the eventual end-user, whereas continuous delivery ensures that the release can

be conducted without failures [16]. Organizations schedule software releases with marketing

and other business functions. Releasing new features to end-users often requires detailed

scheduling, therefore constant rollouts are not always granted. Continuous deployment

enables the ease of releasing [16].

 The continuous deployment pipeline, which places software changes into production,

reduces manual labor as much as possible [16]. Incremental continuous deployments

mitigate risks compared to large releases [16].

3.4 DevOps

3.4.1 What is DevOps

Development and Operations, or DevOps, is regarded as the most advanced software

development culture based on the lean and agile methodologies. It incorporates all the tools

of lean and agile software development into an approach striving for a cultural change

between development and IT operations. DevOps attempts to combine multiple roles and

positions during development into an efficiently cooperative and autonomous team. [6, p. 6]

As the name, Development and Operations, implies, the aim is to strive for the collaboration

of different roles within the software development process, such as developers and system

operators. The justification for the need of more collaboration lies in the difference between

the goals of development and operations [17]. Developers, much like business, strive for

creating value to the customer. Whereas operations’ focus is on establishing and maintaining

a reliable system [17]. Furthermore, the aim is to eliminate barriers between existing

functions, such as development and operations, for more efficient cooperation and ultimately

faster and more concise software releases. In the technical scope, this means improvements

18

in the time to market, time between bug fixes, time for recovery from failure and the quality

of released software for greater customer satisfaction.

DevOps ingrains all of the benefits and practices of agile software development and

eliminates handovers of a project between different teams [6, p. 91]. This is achieved by

having the team originally responsible for creating the software take over the tasks needed

further down the development line. Development teams become DevOps teams by creating,

integrating, testing, building and maintaining their software. The team building a product

becomes responsible for running it [18]. Such is the DevOps mantra: “you build it, you run

it” [18]. The following chapters further demonstrate the aspects that define DevOps.

3.4.2 DevOps practices

The four key values of DevOps revolve around CAMS: culture, automation, measurement

and sharing [19].

3.4.2.1 Culture

 Creating a culture, which emphasizes communication and corporation, is at the core of

DevOps. Silos and barriers within an organization cause unnecessary delays in information

flow. These delays in return reduce work efficiency and produce wasted working hours [19].

A DevOps culture aims at removing such silos and encourages an environment with open

discussion between employees and teams. Management plays a key role in creating such an

environment, where open conversation is rewarded and employees are empowered [20, p.

110]. Therefore, a significant part of DevOps revolves around the cultural working aspect of

development.

“DevOps is a human and management problem” [21].

“You can’t directly change culture. But you can change behavior, and behavior becomes

culture” – Lloyd Taylor VP Infrastructure, Ngmoco [21]

An essential part of an empowering working culture for the single employee or team member

is knowledge of the true purpose of the ongoing work. Understanding the overall purpose

has a significant effect on the motivation and innovation of the employee [20, p. 117]. This

emphasizes the natural human urge of being genuinely part of something. Management is in

a powerful position for generating a sense of purpose to its teams. As management becomes

more aware of the overall situation within the organization and the dependencies between

projects, the same understanding can be passed on to their teams. An organizational

environment without silos provides the ability for empowered teams. Additionally it renders

development teams with more responsibility.

19

3.4.2.2 Automation

DevOps strives to automate steps in the software development process as much as possible.

Creating automated tests for new builds and an automated deployment pipeline is at the

forefront of DevOps automation. The purpose of such automation is the reduction in

avoidable working hours for repeatable tasks that computers can process faster. Testing

automation is also more reliable than human testing. Thorough tests provide reliable data

that can improve decision-making checkpoints. Furthermore, testing and deployment should

be easy and not a burden for the developer. Making testing and deployment effortless

promotes the concept of releasing new software more often, a key approach for agile and

lean development itself. Although constructing a fully automated development environment

is an extensive and laborious task, it pays itself back by making the process of releasing

software uncomplicated. [20, p. 76]

3.4.2.3 Monitoring

Knowing what to develop and understanding how to improve development is at the heart for

creating high quality software. Hence, DevOps teams strive towards monitoring the

performance of their systems and their software. Monitoring infrastructure is critical in

maintaining system stability. DevOps strives for an environment where recovery from

failures is fast. The complexity of interdependent systems is more controllable with better

monitoring tools. [20, p. 91]

3.4.2.4 Sharing

Tied in with culture is DevOps’ sharing factor. Building an open and trusted working

environment requires transparency within communication and collaboration. Knowledge

and information is shared as much as possible to create an efficient working culture. A

sharing culture can lead to finding solutions faster and avoids conducting the same work

twice. Sharing can encompass not only single teams, but also organizations as a whole. [19]

3.4.3 Culture and people

DevOps is as much of a technical concept as it is a cultural and people minded approach.

The model promotes openness, communication, collaboration and trust between employees.

Having clearly set goals and free information flow promotes a DevOps culture. Ideally,

communication and information flow is never a barrier during development.

20

 Changing organizational culture is crucial to having a DevOps mindset. However,

understanding how to change existing culture begins by recognizing the culture currently in

progress within the organization. In his study on information flow, Ron Westrum divides

organizational culture into three distinct categories [22] presented in Table 3.

Category Information flow Silos

Pathological Non-existent Full

Bureaucratic Only within silos Departments are silos

Generative Full Non-existent

Table 3. The categories of organizational culture

In pathological culture, information flow between employees is highly biased or misleading.

The reasoning for this claimed to lie in the human nature of wanting to make things appear

better, especially for themselves. Therefore, information is not passed on at all.

 A bureaucratic culture is considered to promote information flow only within organizational

silos themselves, but not between different “departments” as Westrum claims. Each silo acts

according to the rules developed within each silo.

 The generative organizational culture is the most open, as the focus lies only on the goals of

the organization.

The Westrum model is a polarization of real world organizational cultures. However, it

demonstrates the direction a company needs for its working culture. In order to adapt

DevOps, the company must continually shift towards a generative working culture.

Efficiently functioning teams evolve over time as trust within the team develops. Such teams

embody the idea of open collaboration, which in turn builds trust.

A common location for the team members improves upon cooperation. Being able to

communicate in the same space with each other makes problem solving faster.

An organization can consider culture already at the hiring stage. Employing the correct

people can have a significant effect on the development of openness and cooperation.

3.4.4 Benefits of DevOps

More digital projects lead to more complexity within an environment without a unified set

of tools and practices. DevOps guidelines strive towards simplifying the environment. The

goal is to be able to focus more on the creation of innovative features and products instead

21

of having to concentrate purely on maintaining the stability of existing systems [23].

Development therefore gains the opportunity to become continuous. Cross-functional and

autonomous teams responsible for one product are able to solve problems faster without any

previous dependencies from other teams or business functions [23].

Teams with a higher degree of freedom and responsibility become more involved in the

company’s identity [23]. As a result, the possibility of growth in work satisfaction and

productivity for employees and team members increases [23]. Furthermore, a high degree of

collaboration within a DevOps culture aids in removing silos between teams and barriers

[24].

Quantitative benefits of DevOps have been studied by organizations such as puppet. Their

annual surveys on DevOps within the IT industry present the development direction of

DevOps. The annual State of DevOps Report by puppet and DORA for 2016 presents a vast

array of benefits from DevOps, of which the most notable claims are listed in Table 4 [25].

“High-performing organizations decisively outperform their lower-performing peers.

They deploy 200 times more frequently, with 2,555 times faster lead times, recover 24

times faster, and have three times lower change failure rates.”

“High-performing organizations spend 22 percent less time on unplanned work and

rework. They are able to spend 29 percent more time on new work, such as new

features or code.”

“Undertaking a technology transformation initiative can produce sizeable returns for

any organization.”

“The long-term value of an enterprise is not captured by the value of its products and

intellectual property, but rather by its ability to continuously increase the value it

provides to customers—and to create new customers—through innovation.”

Table 4. Benefits of DevOps according to puppet and DORA

The ultimate goal of DevOps is for the organization to improve its competitiveness by being

able to enhance the organization as a whole and not only improving a single silo [26].

22

3.4.5 Problems in implementing DevOps

The most significant hurdle in implementing DevOps is the cultural shift from removing the

silos between development and operations. The two roles either function in unison or are

embedded within the team. [27]

A further problem is the required transfer within the organization’s digital domain of old

legacy systems to modern microservices. However, the scope of this research limits itself to

mentioning this architectural shift. [27]

Another problem in implementing DevOps is the resistance for change. [20, p. 119-120].

3.4.6 DevOps with agile or lean

DevOps incorporates all of the best practices from lean and agile software development.

Lean and agile consider the dynamics within teams: how they function as an effective unit

to produce quality software as fast as possible. Successful development teams create high

quality code whilst using integration and deployment automation as much as possible. Much

dedication is given to communication and collaboration within the team. The lean and agile

frameworks focus on the teams themselves. [28]

DevOps however, as mentioned earlier, is not a development framework but rather a culture,

which attempts to bond the teams into the complete IT organization. Emphasis is placed on

developers collaborating with operations and vice versa. The technical tools are present for

being able to release faster with shorter feedback loops. [29]

 A distinction must be made: with companies purely producing software without any

overhead IT operations, the DevOps culture becomes ingrained into the teams themselves.

The team is responsible for development and operations. This means handovers to operations

do not occur. However, for companies where IT operations and maintenance departments

exist, the DevOps culture becomes the collaboration between the development team and

operations team. [28]

 The essence of DevOps is not a strict set of rules. Instead, DevOps is the cultural change

between different IT functions enabling an organization to move towards continuous

development. DevOps represents the next step for lean and agile frameworks. DevOps

requires lean and agile frameworks as its base to be successful. It is not a separate framework

by itself. Therefore, DevOps culture is most suited for agile software development. [28]

23

3.4.7 DevOps and cloud computing

The transition towards an automated DevOps culture is aided with the development of open-

source and commercial cloud computing opportunities. Commercially available tools such

as infrastructure-as-a-service (IAAS), platform-as-a-service (PAAS), software-as-a-service

(SAAS) and serverless architecture all reduce the need for IT to maintain and support their

own infrastructure and services. [30]

Development can be provided with traditional IT functions in a more agile way without the

limitations set by maintaining one’s own infrastructure. Infrastructure and other services

required by development can be abstracted. [31, p. 285]

Different cloud services are presented in Table 5 [30].

Service Description Examples

IAAS
Provides computing infrastructure
with virtual machines, run by
customer

Amazon S3, OpenStack

PAAS
Provides development platform for
application developers

Heroku, Microsoft Azure,
RedHat OpenShift

SAAS
Provides software which is fully
maintained by SAAS provider

Microsoft Office 365, Google
Apps, Dropbox, Flowdock,

Slack

Serverless
architecture

[32]

Provides computing infrastructure
with virtual machines, run by
provider

AWS Lambda

Table 5. Cloud computing services

The benefits of cloud computing have been the reason for their success, as for example

gaining access to virtualized hardware and software resources immediately [33, p.178].

Cloud computing, especially IAAS, has the additional advantage of scaling resources

according to usage [34, p. 25]. The pricing scheme of cloud computing, which is based on

the usage of the services, mitigates the problem of maintaining own underused hardware [34,

p. 25]. Such an automated infrastructure enables the self-serving on services for developers

[31 p. 286-287]. The costs of maintaining servers, platforms and software are transferred to

the cloud service provider.

DevOps benefits from the mitigations of obstacles set by the traditional IT hardware

limitations. It can function without cloud services. However, the simple and quick

24

implementation possibilities of cloud services and their on-demand capabilities make them

an effective tool for improving the efficiency of development processes.

25

4 Company references and example cases

This chapter represents example cases of other companies that have undergone a similar

transition as Kesko is attempting to achieve. The references selected are Solita, a large

Finnish company and Hewlett Packard Enterprise. Solita was selected due the company

being a software producer where DevOps has become an integral part of their operations.

The large Finnish company is not a software producing organization, but requires software

development to occur in order to increase sales and customer satisfaction. This company was

chosen as an example case as they have been able to adapt DevOps keys into their

development. Finally, as another large company Hewlett Packard Enterprise, or HPE, was

able to transition towards continuous development as well.

4.1 Solita

Solita, a software consulting company, has adopted the four keys of DevOps successfully

within their own organization. Being a software company, Solita has had strong a strong

agile framework on which its teams operate. This example is based on a webinar conducted

by Solita during the spring of 2017.

The culture of DevOps is at the core of DevOps at Solita. Silos within the organization have

been minimized. If such silos arise, they are recognized and broken up. An environment

without silos advocates the merging of development and operations. Furthermore,

organizational bureaucracy does not create barriers for their operations.

Solita has created a model for their automated testing pipeline, which is simple to operate.

This is accomplished by setting up their different development environments to resemble

each other. The development, quality assurance and testing environments are all similar. In

doing so, development and testing are conducted within copies of the real world

environments, leading to minimized risks and fewer unknown problems further down the

development process. Initially Solita configured their environments manually. Transferring

software between the development, quality assurance and production environments would

take hours due to the manual labor of configuring them.

Monitoring tools are in extensive use for different purposes throughout the development

process, with the main objective being able to find root causes in cases of failure. Monitoring

systems can show whether the servers are running correctly, but extensive monitoring with

centralized log files can further aid in discovering what exactly might have gone wrong. The

knowledge gained from monitoring is applicable for scheduling appropriate maintenance

26

windows. The planning of future projects becomes easier as potential problems or

opportunities are discovered at an earlier stage. Any suspicious activity is observed faster

with a higher degree of monitoring. Solita uses monitoring not only for noticing anomalies

within its systems, but also for developing its own processes: measure job queue

management and apply metrics for code bug counts, evaluate average resolution times or

determine customer satisfaction. Monitoring is used in a variety of ways within the DevOps

culture of Solita.

In order to share information, Solita periodically arranges 30-minute knowledge sessions for

its developers to discuss whatever topics they are working on at the time. Additionally, after

failures have been resolved, Solita organizes sessions that it calls “post mortems”: these

sessions cover the reasons behind technical failures and their respective resolutions. These

sessions emphasize the importance of sharing: knowledge and experience is shared among

Solita’s developers. For code sharing Solita uses the version control tool GitHub.

The mantra behind DevOps at Solita “Do things better – Do better things” justifies the

implementation of the four keys of DevOps. Automation and monitoring reduces risks and

simplifies the process of going into production, which in turn makes delivery continuous.

Problems are easier to recognize and risks mitigated even further. The feedback from the

value chain becomes more efficient as the feedback loop becomes shorter. The question

whether a new feature or change increases the perceived value of a product is answered more

effectively. An unsuccessful software change can quickly be reversed with an automated

delivery pipeline.

4.2 A large Finnish company – Company A

Another large Finnish company operating on an international scale had previously been in a

similar situation as Kesko: without any in-house developers, the company, Company A, was

forced to outsource its software development. The teams were hired from software

companies. This meant the outsourced developers had agile development methods built into

their routine. In order to have these outsourced teams function as part of Company A, the

decision was made to create its own set of guidelines and rules according to which the agile

development teams were motivated to develop. Company A called it a “handbook” on how

they conduct agile development. This example is based on a meeting with company A.

 As with other large organizations, Company A was not able to adopt fully dedicated and

autonomous teams developing in DevOps mode. Company A’s development teams consist

at its core of cross-functional team members, with the exception of infrastructure specialists

being part of multiple teams for cost-efficiency reasons. However, Company A describes

27

them as essentially being in DevOps mode due to the larger part of teams being cross-

functional and having the capabilities of maintaining their own product.

 Automation rules are part of Company A’s development guidelines. The continuous delivery

pipelines are setup according to the rules made by them. Each team also releases software

based on the same guidelines of Company A’s definition of done (DOD). Company A has

created a template for development, which is used as the baseline of tools and practices for

any new project.

 Motivation and collaboration is caressed with multiple measures. Company A strives to

accommodate its development teams into a single location as much as possible for the

quickest flow of information and knowledge and improved collaboration. They additionally

consider their developers more as artists than engineers. At the end of each three-month

cycle, Company A organizes innovation sprints for two weeks for its developers. During

these innovation sprints, the teams are encouraged to freely develop new ideas and

innovations. The focus is to strengthen the teams’ commitment to their project and empower

individuals to recognize and visualize their role within the organization. According to

Company A, they are still working on improving the teams’ collaboration.

 Company A has begun shifting towards hosting more in-house developers and has begun

hiring. Its target is to continue employing developers until the goal of three quarters of the

developers being their own developers is reached. However, according to Company A, this

process is time consuming. Therefore, as teams grow, they are still hiring partially from

outsourced companies with the addition of Company A being in charge who is hired from

the vendor. The vendor suggests candidates and Company A selects whom they acquire.

 The most significant obstacle for shifting towards continuous development under an agile

and DevOps culture at Company A has been motivating and empowering developers to

understand their role within the organization. According to Company A, it is challenging to

get people more involved and attached to their work. This in turn creates a stronger sense

for the reasoning behind their work. Another hurdle in implementing modern ways of

development is training managers on setting goals for their teams more clearly. With

Company A’s knowledge of their culture transformation today, it would have begun

recruiting its own developers earlier.

28

4.3 Hewlett Packard Enterprise

4.3.1 DevOps at HPE

As a large organization, Hewlett Packard Enterprise (HPE) has adopted the DevOps culture

successfully within their own framework. In 2015, their digital portfolio consisted of roughly

900 projects with 100 development teams and 1400 applications supported by their IT and

operations department. This example is based on a DevOps seminar presentation given by

HPE during the spring of 2017.

 The question HPE attempted to answer was whether DevOps can work within their old and

large organization. The answer to this question was positive: it is possible to apply DevOps

within firms with high complexity and system dependencies. However, the extent of projects

to which DevOps is applicable is limited to the nature of varying systems. Arne Luhrs, a

senior system architect at HPE, described DevOps as “One size does not fit all” for their

respective organization.

In order to reach the answer of how DevOps functions at HPE, HPE began by examining

and discussing what DevOps was trying to solve at HPE. The outcome was the HPE DevOps

manifesto, which portrayed the guidelines for culture and automation at HPE. The manifesto

was built upon everything running through code, meaning that although developers had

access, they were not able to make any changes without code to execute the changes. This

culture eventually lead to more code reviews and collaboration within the development

process.

 HPE began their DevOps transformation in 2014 by applying the culture to the development

of a mobile application first. DevOps is best suited for development projects working in an

agile environment, under which the mobile application was being developed. The goal was

to implement DevOps on a small scale first before expanding it to other digital assets.

4.3.2 Culture change at HPE

 The first task was to drive the culture towards a higher degree of collaboration. With 45,000

professionals working in the IT department of HPE, a complete reorganization was not a

viable solution. Arne Luhrs called this process “how to reorganize without changing the

organization”. HPE coined the term “ChatOps” for improving collaboration, which is the

method of using a single chatroom tool for cooperation. Due to the complexity of HPE, not

all teams have the opportunity to be located in the same room; hence, all communication is

conducted through the chatroom. Furthermore, the same communication tool is used for

integrating everything else: monitoring tools produce critical information, service tickets are

29

created and team members use it as a social medium. All of this information is immediately

visible within the chatrooms and the chatroom itself becomes the most important

collaboration pipeline. Team members can not only discuss problems but also find relevant

data, graphs and metrics all through one centralized tool. “Teams became teams around an

asset” and employees themselves were seen more as people instead of a resource. Team

members could share and learn from each other in a more efficient matter than before, which

had previously been a system of e-mail communication. This communication tool

significantly improved the speed and quality of collaboration.

4.3.3 Automation pipeline at HPE

The vast range of different digital projects does not allow for a unified set of automation

tools. HPE was aware of this and shifted the focus from a tool discussion to a pipeline

discussion, which lead the DevOps automation aspect to become the application of rules

instead of tools. The rules were set for the execution within pipelines, where the pipelines

were the set of tools used for each respective project. The goal was to create continuous

delivery pipelines by automating as much as possible with code, whilst reducing unnecessary

paper work and human decision-making steps wherever possible.

 HPE created standard steps and non-negotiable points that had to be conducted within the

pipelines. Different environments and testing had to be setup in a manner where automation

could verify whether everything had been tested thoroughly, hence reducing risks and

eliminating slow decision-making. User acceptance testing requires real log data and is

automated if the possibility to do so exists. Environment changes or code commits always

require automated code reviews before execution. Commits themselves trigger automated

tests. Thousands of tests are triggered with each new commit at HPE, with the duration of

the complete test cycle being 11-15 minutes. The aim with automation is to eliminate the

necessity for requesting permission and making sure that "this has been tested in the correct

environment and is verified".

4.3.4 Trust at HPE

The final key for DevOps at HPE was increasing trust within the organization. Teams need

to be integrated and empowered for the success of DevOps, yet managers often found it

challenging to surrender some of their power to their teams. However, HPE recognized that

a manager’s goal is to create value for teams and businesses instead of applying a process.

The role of the manager is to deliver the organization’s goals and targets to the team and

trust the team to accomplish them with the appropriate work as efficiently as possible. Work

is done transparently and openly, where value is placed on trust and responsibility instead of

rigid processes.

30

 Today, the teams working in DevOps mode at HPE are in high demand within the

organization. They are able to create value for the business faster and maintain a high quality

developer experience. DevOps “Dojos” are now part of the DevOps improvement plan at

HPE, where knowledge on DevOps is shared and projects can attain information on the first

steps on how to transition towards DevOps. Arne Luhrs’ vision on the three most important

keys towards DevOps are culture, collaboration and automation.

31

5 Results, problems and barriers to DevOps

The interviews were able to provide details on the first research question of this research.

RQ1: What are the problems in Kesko’s software development process?

The primary finding emphasized the variety in the methods of how development is

conducted within Kesko’s digital projects. The lack in a concise and applicable development

model without true organizational guidelines was seen as a cause for an unclear overview of

digital projects and silos that understand themselves but not beyond.

This chapter presents the discoveries made through the interviews of different employees

within Kesko’s digital domain and provides further answers to the first research question.

5.1 Kesko software development model

Answers to the question on describing Kesko’s current software development model

produced a wide range of observations. The lack of a common model has produced varying

methods of development for digital projects that in turn have affected the overall

acknowledgement on the complexity of Kesko’s digital domain.

As of today, Kesko has acquired all of its digital development from outsourced vendors.

These partnering development teams are responsible for the software development of their

respective project, located either on premise at Kesko’s headquarters, in other cities within

Finland or abroad in other time zones. Business is in charge for the value creation chain and

works most actively with the development teams. IT is in a supportive role between them.

However, due to the lack of in-house developers, the role of the IT department and the goals

within its teams were not seen as transparent.

Both agile development with lean processes and projects with waterfall development were

discovered. For example, multiple digital projects within the grocery trade sector have been

conducted with agile methods for some years through the cooperation of different vendors.

These projects are a grocery mobile application and a new grocery online store. The teams

involved in these projects develop, test and maintain their projects autonomously with

automated tools. They were seen as conducting development according to the DevOps

culture, without their respective project owners necessarily realizing the fact.

In some cases agile and waterfall approaches were attempting to work in unison, especially

with looming handovers to maintenance. As agile places more emphasis on the quality of

32

code rather than documentation, a problem DevOps would attempt to solve is imminent:

operations requires high quality documentation to understand the digital asset it is receiving,

whilst agile development focuses on the code itself and not on passing deep knowledge on

to other functions.

 The vast majority of digital projects mentioned during the interviews were seen as following

a traditional waterfall model; handovers to maintenance vendors were considered the norm.

The organizational culture appeared to dictate digital projects form the beginning: all digital

assets were regarded as “projects”, meaning they had to be implemented with a clear

deadline in mind. A predetermined finite ending to a digital project places the product into

a state of expecting a handover to operations at some time, not if it a handover is made at

all. The situation becomes more complex with the maintenance teams being from a different

vendor than the development teams themselves.

5.1.1 Project types

 An important observation was the variety in the nature of digital projects within Kesko,

ranging from quick and agile projects such as mobile applications and online stores to

monoliths such as ERP and SAP systems. Business critical systems such as SAP are an

essential part of the organization’s business model. Such systems are difficult if not

impossible to adopt to agile frameworks.

 Kesko is predominantly in the position of having to accept different types of software

development models in its digital portfolio. Some assets are more suitable for agile and

DevOps than others.

Developers and IT managers alike reported varying degrees of transparency in the common

goals of their respective projects within Kesko. Teams experienced differences in the

reasoning behind their projects. Some were able to report a direct purpose for their team.

Others felt key targets were missing. This produced an unclear situation for motivation and

perception of being part of something.

The core structure of Kesko’s software development organization is executed based on

reporting to one’s supervisor on each organizational level. On one end is the development

team, which reports to the product owner or project manager. The product owner or project

manager, who is either from the business or from the IT department, reports upwards to

higher managers within their respective organizational structure. This hierarchical flow of

information can push decision-making, even for smaller cases, unnecessarily high.

Additionally, information during this upwards trending flow poses the danger of either being

misinterpreted or missed altogether. The key issue, which presented itself during the

33

interviews from this topic, was the need for providing development teams with greater trust

and empowerment.

5.2 Silo forming through budgeting

5.2.1 The role of the IT department

A further finding of the interviews was the presence of silos within Kesko’s digital

environment. On the organizational level, the silos of the IT department and business were

recognizable. The current level coordination and communication between different projects

influences projects to distance themselves from each other.

Many decision-making steps were reported to be conducted on a top-down approach, where

even small-scale decisions had gone through a decision-making process. This was perceived

to have had a negative effect on the efficiency of value delivery and product deployment.

The bureaucracy resulting from this decision-making process was seen as a bottleneck for

faster deployment.

The organizational matrix of having a separate IT department from the business sector was

reported to have had an effect on the forming of silos. Business strives to create value under

the administration of Kesko’s IT, however IT was reported to not necessarily be able to

provide all required resources at all times. Currently, IT and business should be able to

collaborate for the best value creation pipeline. However, due to the current level of

collaboration of the two departments in practice, they were not perceived as working

together for a common goal as of yet.

By default, software development teams at Kesko are not traditional agile and DevOps teams

such as in software development companies. These companies can provide the technical

skills in-house. At Kesko, developers from an outsourced vendor create the development

team, Kesko’s business provides the product owner and value creator role and IT is the

supportive function providing the budgeting. Further down the development pipeline is the

outsourced maintenance. All of these parts were reported to lack in the levels of cross-

collaboration for the efficient implementation and maintenance of a digital asset. Instead,

the project managers collaborated with other managers.

Reflecting on the Westrum model on organizational culture, the interviews showed that

bureaucratic culture is present within Kesko’s digital domain. Functioning communication

is present, but only within the silos themselves. Information flow between different

34

stakeholders of a digital project is limited, leading to general barriers of effective

development, deployment and maintenance.

5.2.2 Budgeting and prioritization

The divide between departments was seen as the most significant barrier for cultural change

and conversely transitioning towards continuous development. Reasons for the divide

between departments and teams were reported to lie in the limitations set by the current

bureaucratic processes within the organization that had varying impact levels on

communication, collaboration, decision-making, responsibility, transparency and digital

asset management.

Budgeting is conducted on a yearly cycle, where the IT department assesses changes or new

features requested by the business unit. According to the interviewees, this created

bottlenecks hindering quick and responsive development. The scope of this research does

not address the budgeting processes of Kesko. However, it is mentioned as the interviews

reported budgeting processes to have a significant impact on the efficiency of being able to

supply customer demands and value creation more efficiently. A revision of the budgeting

system to a more stream-like approach, such as at Company A, could promote the autonomy

of development teams and the weakening of silos.

Interviewees reported unclear prioritization mechanisms on digital projects to have been

involved in the forming of the vague overall goals and targets. The digital portfolio appeared

to lack clear priorities for projects, where multiple assets had been assigned the same

priority. This in turn had created challenges in projects’ budgets, their collaboration and

resource sufficiency. As a result, a sharing mentality, whether for tools or resources, had not

been able to develop as of yet. The prioritization mechanisms were therefore perceived as

being another cause in the forming of silos.

Cost-efficiency measures are at the forefront of businesses. Kesko itself is now in the

situation of having required a maintenance vendor for multiple digital projects in the future.

From a DevOps cultural point of view, this step was reported to be counter-intuitive, as

DevOps strives to create and maintain digital products within one team. The deal to transfer

projects to one partnering maintenance team will foretell an increase in project handovers

from development to maintenance. As mentioned during the interviews, the company is

aware that it must run some projects with the waterfall method. However, with the contracts

in place, Kesko now has the opportunity to carefully prepare for the handovers.

35

5.3 Automation, guidelines and toolsets

5.3.1 Automation and tools

Kesko is currently in the position of not controlling the tools of all of its development teams.

This is because outsourced development teams use their own automation tools. This was not

considered a problem during the interviews as development teams should have the freedom

to use the tools they are most experienced with. Furthermore, Kesko itself is not able to

provide the technical knowledge of setting up automated pipelines. This in turn has formed

an environment where each development team conducts automation differently and

according to their own best practices.

 As outsourced teams use automation and monitoring tools for their digital assets, these tools

limit themselves mostly to each respective project. The culture of deploying shared tools

within Kesko is in progress. The interviews reported a lack in the transparency of the

monitoring tools within Kesko. Projects did use monitoring tools for their own projects,

however a centralized understanding of which tools were in use was not recognizable.

A team for maintaining shared development tools, such as the cloud infrastructure AWS and

the communication platform Flowdock, exists. However, guidelines for using the tools were

reported to not be in place. Some, but not all, interview participants were aware of the tool

possibilities Kesko provides. Guidelines for using available tools were not considered

transparent enough. Further problems were recognizable during the interviews: the

capabilities of the tool maintenance team were limited in supporting Kesko’s complete

digital domain. Not all tools in use were under the supervision of this team. Therefore, the

transparency and guidelines for unified tool availability were seen as lacking.

5.3.2 Testing

 Consistent methods of software testing were not reported during the interviews. The current

role of Kesko’s IT for testing mechanisms was considered to provide a consulting role, where

Kesko’s own testing specialists informed projects of testing methods. However, the testing

responsibility and methods were seen as residing within the projects themselves. This was

believed to be the main reason for varying testing processes, leading to the absence of clear

testing guidelines. Exceptions arose during the interviews of projects that tested their

software throughout the development process. These were mostly the projects which

developed with agile methods. However, transferring a product to a testing phase, which is

common during waterfall projects, was regarded as an unsolved problem within Kesko’s

software development. With many projects, testing had been neglected until close to

deployment time, which in turn caused testing complexities and scheduling challenges.

36

5.4 DevOps awareness at Kesko

Previous knowledge on DevOps varied between the participants. The majority of the

interviewees approached DevOps only from the technological aspect. They regarded

DevOps as being a method for automating development, which in turn produces faster

development. Others recognized DevOps as being the unified collaboration between

development and operations, where emphasis is placed on autonomous teams developing

and maintaining their digital asset. Some of the interviewees had no previous knowledge of

DevOps, but were familiar with agile software development, as some their projects had

applied agile principles. The minority of interviewees, mainly the collaborating vendors, had

deeper knowledge of all of the aspects related to a DevOps culture. These development

vendors had already integrated the DevOps best practices into their own work, providing

justification for their understanding of DevOps.

All interviewees agreed upon the need for cultural change within the organization. Improved

communication and transparency were seen as the most significant step in transitioning

towards continuous development. Furthermore, the interviewees also conceded the fact that

cultural change is a challenging task.

From Kesko’s point of view a comprehensive perception of DevOps’ key factors was not

present as of yet. However, the interviewees recognized the benefits of DevOps and were

encouraged by the possibilities of its adoption.

37

6 Implementable DevOps practices at Kesko

Reflecting the received responses during the interviews with the theorems of DevOps, an

overall picture can be drawn on the aspects Kesko should focus on in transitioning towards

continuous development. This chapter focuses on answering the second research question.

RQ2: What points can Kesko focus on in transitioning towards continuous development?

The interviews gave insight into the fact that agile software development is still in its infancy

at Kesko. However, a transition towards agile has already begun and more is being developed

with agile methods. DevOps bases its practices on the methods of agile and lean. Hence, it

is important to note that before a DevOps development mode can be implemented,

significant emphasis must be placed on changing the overall project culture from waterfall

to agile and lean first. Nevertheless, this does not exclude the DevOps culture from becoming

a part of Kesko’s culture already.

One of the findings of this research is that DevOps is not a model suited for every type of

digital project. Business critical digital assets that are planned thoroughly and executed

systematically, must inevitably be kept separate from the complete DevOps movement.

Improvements on collaboration and sharing can still be applied to such development, as

culture should develop on an organizational level.

The first step for Kesko should be to unify its software development. This can be

accomplished with sets of clear guidelines that affect different digital projects. Especially

DevOps requires a set of rules on how development is conducted, therefore a type of DevOps

mantra is needed.

The following findings present points Kesko can take into account today when considering

the question of what problems DevOps could address within its organization. These findings

are based on the problems and ideas discovered during the interviews, the DevOps theorem

and the experiences provided by other large organizations that have implemented DevOps

in their own development culture. All of the aspects considered during this paragraph should

be addressed in the DevOps guidelines.

38

6.1 Culture, collaboration and trust

6.1.1 Trust and empowerment

Much like HPE, a significant step towards DevOps would be for Kesko to attempt changing

the culture through which projects are managed. A top-down approach for managing teams

and digital projects can create not only bottlenecks, but also hinder efficient decision-

making. Automation guidelines can move decision-making towards a leading-with-data

approach during development.

 Building trust and empowering teams and individuals does not happen overnight. A first step

towards DevOps could be for Kesko’s managerial approach to change towards pushing

discussion to occur directly between developers and operators, meaning having its technical

experts talking to other technical experts. This could remove some of the silo effects

recognized during the interviews. The current collaboration culture causes developers to

report to managers and managers discussing technical knowledge with each other. Removing

such a stage and facilitating communication between experts could be a part of Kesko’s

DevOps culture, which promotes development that is more efficient. Removing barriers

between business and IT could be managed in a similar manner. Integrating IT’s service

managers, testing consultants or enterprise architects earlier into the development teams with

business could improve trust and collaboration. Additionally, project development teams

and operations teams should be encouraged to collaborate more freely at an earlier stage.

 A further change towards building trust is shifting away from the need to manage processes

which have been formed by the bureaucratic limitations. Kesko’s position as a software

customer forces its managers into a supervisory role of the development teams, where either

the manager or a higher official makes most decisions on development. Decisions that could

be made by the team, especially technical decision, should be entrusted to the team instead

of having to follow strict protocol slowing development down. Managerial focus should be

able to shift from process management to focusing on their own expertise, which is value

creation management. The recognition of such bottlenecks and their subsequent mitigation

favors the transition towards a DevOps culture.

6.1.2 One tool for everything

Conducting open and efficient communication requires the correct setup. Facilitation all of

its teams and their respective team members at one location is the ideal setup, however

Kesko is not in the position of being able to locate all of its teams into one location. Hence,

the appropriate tools are necessary.

39

Focusing all communication and all of the data produced during development into a single

tool was a key factor for HPE to adapt DevOps. HPE was able to apply an integration capable

communication tool on an organizational scale for everything conducted during

development. One such tool was Flowdock, which is partially in use within Kesko’s software

development. The next step would be to make such a tool not only mandatory but expect

every other tool, such as the project management tool Jira or the monitoring tool New Relic,

to be integrated into the same chat. This method leads to a greater degree of transparency

and efficiency as every discussion, problem and all relevant data can be found in one place.

Problem recognition and solving becomes much quicker, as opposed to more traditional e-

mail communication. Through the unified tool, team members are aware of all of the aspects

that are in progress, and they can conduct research of other issues on their own. As all project

relevant data and events are integrated into one tool, notifications on urgent matters such as

failures or updates are visible to the whole team. With the availability of desktop and mobile

versions of such collaboration tools, team members are continuously aware of the project’s

status.

 Quick and efficient communication is an essential part of DevOps culture. Shifting away

from e-mail communication opens doors towards transparency and employees to become

more involved in the development process. E-mail communication has the disadvantage of

being only visible to the employees involved in the discussion chain. Shifting the discussion

to an open communication platform has the effect of information having to be posted only

once. This eliminates the building of e-mail clutter, which can cause information to be lost

during an e-mail only discussion. Questions on an open discussion platform are answered

more efficiently as someone who knows the answer can be found quicker.

The key recognition for Kesko is that it is not a software company. As of now, the majority

of the technical knowledge lies within its outsourced software development teams.

Therefore, Kesko should be more active in creating an environment for DevOps

collaboration between the teams developing for them. This could mean more sharing, more

cooperation and more communication even between teams originating from different

companies. Outsourced development teams are not expected to maintain a project forever.

Hence, the transfer of project knowledge from development to operation becomes a critical

point during the later stages of a digital asset. Promoting the collaboration between

development and operations aids in the successful transfer, which in turn is helped by

documentation. Using an open collaboration platform can positively influence all of these

aspects.

Communication plays a significant role in team building. Using the unified communication

tool for socializing and discussions of other topics besides work should be encouraged.

40

Hewlett Packard Enterprise emphasized the importance of treating team members as humans

instead of resources.

6.1.3 Documentation

Operations teams place a high priority on proper documentation. Comprehensive

information on digital products and services is necessary for sharing the knowledge related

to them. In case of failure the operations team must have access to the knowledge regardless

of time of the day. Maintenance of a digital asset requires detailed specifications on how the

asset is built. This is the purpose of thorough documentation: promote the accessibility of

the detailed specifications.

Kesko has outsourced the creation and maintenance of its digital products and services to

different vendors. Each vendor currently places different priorities on their respective

documentation. As different companies conduct development and maintenance, great

emphasis must be placed on transferring the knowledge of the product from one vendor to

another. A proposal for Kesko’s DevOps culture therefore is to incorporate the expectation

of detailed documentation from every development team into the DevOps guidelines. This

maximizes knowledge transfer efficiency from development to operations.

Agile software development places greater priority on development than documentation.

Kesko is the initial customer and end-user of the software products and services its

outsourced development teams create. Furthermore, Kesko is also in a position of

transferring these products and services to another vendor at the maintenance handover

stage. Therefore, Kesko should place great emphasis on incorporating high quality

documentation into its development culture. Access to the documentation should not be

limited. Documentation access could be incorporated into the unified collaboration tool.

6.1.4 Team structure

Teams that develop software in pure DevOps mode, are cross-functional teams capable of

developing, running and maintaining their product. The core DevOps mantra of “you build

it, you run it” applies to teams with the appropriate skill set. As Kesko employs software

development teams from outsourced vendors, the creation of cross-functional teams is

challenging. The team, which creates the product, is in charge of maintaining it whilst they

are developing for Kesko. However, many digital assets eventually reach a handover phase,

where parts of the product’s maintenance are transferred to operations. In Kesko’s case, this

maintenance vendor is a different outsourced company. Precise documentation aids in the

transfer, yet true knowledge and experience of the product resides in the minds of the team

members.

41

An early step towards shifting teams into DevOps mode could be to integrate members from

the future operations team into the development team at an early stage. Through this change,

knowledge and ownership of the product would not only grow within the development team,

but also for the members responsible of maintaining it. This could produce an opportunity

to bridge the knowledge gap of understanding the product thoroughly between development

and operations in Kesko’s situation. The benefits of having an operations’ member

integrated into the development team presents multiple benefits. Specifications from the

operations team can be passed on to development at the earliest stage. The operations team

eventually does not only have to rely on the documentation, but can refer to the experience

gained from its team members who were a part of development.

Kesko is in the process of hiring its own developers. Depending on their initial numbers,

these developers could be integrated into development teams working on the highest priority

assets at first for bridging the technical knowledge gap currently at Kesko. Such an approach

to team creation would aid in retaining technical knowledge within Kesko.

Building a cross-functional DevOps team requires not only knowledge on development and

maintenance from its members, but also social skills to advance team dynamics. Kesko

should have a more dominant role in the recruitment of its outsourced teams. Being able to

reassure that development and operations employees are suited for the Kesko’s DevOps

guidelines and ultimately selecting the correct people for its teams is an essential part in

developing a functional DevOps culture.

Team building exercises reinforce each individual’s growth within the team. As the

importance of a single team grows within an evolving DevOps culture, so does the need for

ensuring a functioning team dynamic. Building trust within a team consisting of different

vendors takes significantly more time and effort than a team from a single vendor. Kesko’s

managers should play a role in developing this team dynamic and trust.

DevOps teams do not have “project managers” in theory, but Kesko does because of its

position in outsourcing development. Project management acts as the direct bridge between

business and software development, hence the position’s criticality is significant.

6.1.5 Defining clear project types

DevOps is the next progressive advancement from agile software development to higher

efficiency. Therefore, a complete DevOps culture should be implemented in digital projects

that can be conducted with agile methods. Business critical projects such as new point of

sales technology requires careful planning and vigorous testing before deployment. These

42

kinds of projects have the precise requirements from the beginning and are therefore justified

as being conducted with waterfall methods.

 The digital product, which a specific project is attempting to create, should have the product

lifecycle specified at the very earliest stage. The clearer the lifecycle of a product is defined,

the simpler it is to plan and apply the appropriate software development methodologies.

According to the interviewees, product lifecycle was an aspect where Kesko could improve

upon whilst idealizing a new product or service. Having product lifecycle aspects built into

the development process early could allow for clearer budgeting and prioritization

procedures. Recognizing the timeline for which a product is to be developed aids in

prioritization and preparation for a potential handover.

Therefore, Kesko should carefully consider the creation of not only one software

development model, but several different models. These models could differ according to

nature of the digital asset and be applied accordingly. The agile model could be used for

products with rather unknown specifications such as mobile applications and the waterfall

model for projects with strict specifications. Perceived customer value is not always known,

such as in mobile applications. They must be developed with agile methods where features

and customer wants can change rapidly.

The models should have clear, but flexible, templates for how a digital asset is developed.

Once a new project is started, the template would define the tools that are available for the

project to utilize, how testing and quality assurance is to be conducted and how a potential

handover is to be prepared for.

The distinction in project types does not mean to neglect agile and DevOps best practices.

Cultural changes can and should ultimately affect the organization as a whole. Waterfall type

projects can apply the cultural changes mentioned previously throughout this paragraph to

improve efficiency and collaboration. Therefore, Kesko should incorporate multiple clearly

defined project types into its guidelines and apply its DevOps guidelines for assets which

are most suitable for the DevOps culture.

The multitude of digital assets and services at Kesko makes it challenging to implement

changes to every asset initially. Especially DevOps is not implementable for every type of

product development. Hence, it is vital to be able to distinguish the type of project at the

earliest stage.

43

6.2 Automation and tools

Although DevOps focuses extensively on culture, it also incorporates the building of a

continuous delivery pipeline with the use of automation tools for integration and

deployment. During the development of a new digital asset, every checkpoint that is

automatable, should be automated. The use of cloud applications should be promoted on an

organizational level.

6.2.1 Automation pipelines

Without any own in-house developers or development teams, Kesko needs to continue

relying on the technical knowledge provided by its development partners for building

automation pipelines. As these development teams currently create the pipelines based on

their own expertise, Kesko’s role in automation should be more present in demanding

automated deployment pipelines and setting precise requirements for them. Instead of

providing automation tools, Kesko should focus on creating the rules within the pipelines,

just as HPE has done. These rules should provide automation as much as possible in order

to make deployment and decision-making as simple as possible. This however needs an

improved visibility of the complexities and dependencies of all of its systems: not only the

cloud infrastructure in use today but also the active legacy systems. The culture and sharing

improvements should present an opportunity in providing such information for anyone

requiring it as fast as possible.

Having an automated deployment pipeline, which incorporates automatic testing for builds,

would result in the reduction of risks and difficult decision-making. The emphasis on

thorough testing throughout the complete development process would provide high quality

software coupled with a proficient deployment process. Hence, testing already at an early

stage of development should be incorporated into the DevOps automation guidelines set by

Kesko. Conducting all tests at the end of development creates scheduling and quality

challenges. This approach should be avoided by requesting continuous deployment pipelines

for each project that automate wide scale testing with each new code commit. Therefore,

testing would be conducted constantly during development, instead of being a process during

the finalizing stages of development.

 Creating a set of rules and requirements could be the first step for Kesko to be more involved

in the automation conducted within its digital projects. The key aspect to keep in mind for

setting the rules, such as the type and amount of testing, on automation pipelines is how to

prevent large releases and instead promote smaller and more frequent releases within each

project.

44

6.2.2 Monitoring and metrics

Having a centralized knowledge of infrastructural and application systems on an

organizational level is a vital part of DevOps. Recognizing failures early and often aids

significantly in development that is more efficient. Wide-scale monitoring leads to quicker

recovery from failures and deeper learning of the created value from software changes.

Striving for functioning monitoring tools is essential, but furthermore it is critical to deploy

the same monitoring tools and metrics for every project and department. Such unified

metrics enable the comparability between digital assets and further the knowledge on

successful development practices.

 Unified monitoring tools should be accompanied with unified metrics in the DevOps

guidelines. Making project progresses and statuses more transparent, accessible and

comparable with new metrics could be an integral part of Kesko DevOps. Metrics such as

cost per deployment could reveal overall efficiency of development teams. Other metrics

such as bugs per build or team satisfaction metrics could be developed in order to reveal the

true work efficiency within the team. Metrics for the quality of code could provide feedback

on the outsourced vendor, however because of the lack of in-house development teams these

metrics should be conducted by the vendor teams.

The recorded metrics should cover three areas: people, processes and technology.

Understanding employee satisfaction, motivation and recognizing bottlenecks in

development and organizational processes can provide insight into the hurdles associated

with non-technological aspects during development. Metrics on technology aid in improving

the output provided by the employees [6, p. 44].

6.3 DevOps awareness

Increasing the awareness of DevOps and its benefits is an effective way to spread its best

practices into the organization successfully. Sharing previous success stories and making

existing achievements in agile, lean and DevOps more transparent and accessible can

become a catalyst for the required cultural and technological changes. As DevOps is in its

essence mostly a human and management problem, the shift towards continuous

development and DevOps arises from these organizational roles. As sharing is a corner stone

of DevOps, sharing its angles openly can become vital during the creation of DevOps

guidelines within Kesko.

45

6.4 Action plan

Depending on their nature and industry, specific DevOps practices can differ vastly between

companies. As Aruna Ravichandran, Kieran Taylor and Peter Waterhouse recognize in their

book [6], the action plan for beginning to adopt a DevOps culture consists of seven

fundamental points:

1. Recognizing business goal

2. Finding support from senior management

3. Choosing the correct people

4. Choosing quick deliverable

5. Developing suitable metrics

6. Incorporating DevOps with other processes

7. Developing automation

Understanding the needs and goals of the business is the driving force behind DevOps.

Building such a culture should rise from striving to improve customer value creation. IT and

business should collaborate towards satisfying the common goal. [6, p. 164-165]

In order to gain support for DevOps throughout the organization, it is integral to have trust

from senior management for the benefits of DevOps. Higher management is able to create a

more credible force behind the adoption of a change. [6, p. 165].

As DevOps revolves heavily around people, selecting the right people has a significant

impact on the first development changes towards DevOps. People involved in an evolving

DevOps culture need not only be able to work well in teams, but also show resilience and

flexibility as failure can accompany change. [6, p. 165-166]

DevOps development is most suited for assets that are quickly deliverable. The application

or project should be manageable and deliverable whilst trialing with different DevOps

practices. Suitable examples are mobile applications or webpage development. [6, p. 166-

167]

The success of the DevOps development needs to be measurable. Therefore collaborate goals

and the metrics to measure the success of DevOps must be developed. The metrics and their

respective goals should be coordinated with the business goals, but also measure and provide

feedback on the development process. [6, p. 167-168]

All stakeholders involved during the development of a digital product are to be taken into

account. Therefore, forcing completely new processes and approaches should be taken

lightly. Instead, the developing DevOps culture should be adjustable and capable of being

integrated with other existing processes in order to satisfy the needs of all stakeholders

involved. . [6, p. 168]

46

Building the automation pipeline should begin by assessing the most significant hurdle in

the current delivery pipeline. Although the ultimate goal of automation is to commit, build

and release with the least amount of manual labor, the primary step should be to automate

the process currently being the most significant bottleneck in the development process. [6,

p. 168-169]

These seven steps create a basis from which to begin the transition towards DevOps. Cultural

change on an organizational level is complex; therefore beginning the journey towards

DevOps should begin on a small scale. The success of such beginnings can become a

platform for major change.

47

7 Discussion

The focus of this research was to discover how Kesko could transition towards the

continuous software development model of DevOps whilst utilizing cloud-computing

applications. Direct connections can be drawn between areas where Kesko could improve in

order to work under a DevOps culture. However, the major finding was that the culture

within Kesko is not fully ready to deploy teams functioning under a DevOps culture. Kesko’s

first task should be to implement lean and agile approaches to not only its digital

development, but also to the separated departments of business and IT. As changing

organizational culture within a large corporation is a challenging task, Kesko nevertheless

has the opportunity to transition towards continuous development. Hence, the final research

question can be answered within this chapter.

RQ3: Could DevOps be adaptable?

Developing a DevOps culture is a process, where suitable practices are adopted iteratively.

DevOps in Kesko’s case is clearly adaptable. However, it requires a cultural shift

promoting more collaboration between development, operations and Kesko’s other

business functions and a more wide range agile or lean adoption.

This chapter answers the final research question in more detail and discusses some of the

points that would create an ideal DevOps culture at Kesko.

7.1 Ideal situation

Having a fully functioning DevOps culture within a large organization is a major task to

reach. As an example, HPE has been working on their respective DevOps culture for three

years as of today.

 In an ideal situation, Kesko would have a complete set of guidelines for its own established

DevOps culture. These guidelines would direct software development, wherever applicable,

to completely ingrained agile methods with fully automated deployment pipelines. DevOps

at Kesko would be executed with a template, which portrays all of the required rules for

testing, integration, deployment and collaboration.

 The development teams would be completely autonomous. These teams would develop and

maintain their product at all times, without any handovers to maintenance taking place.

Changes or new features could be implemented at any time and failures would be recognized

and repaired immediately. Ideally, the teams would consists of only in-house developers

48

from the IT department who collaborate with the business unit for creating customer value

via its digital products and services. The continued employment of software consultants for

digital projects comes at a high cost. This is the reasoning behind the current model of

requiring handovers to maintenance. Therefore, as the discussion is generally about cost

optimization, the outsourced software consultants are often times an unsuitable option for

maintaining the software created for Kesko.

 As one development team cannot be tied up with a single digital asset forever, the carefully

created project type models are responsible for the timeline during which the team is

responsible for maintaining its product or service. These models take the product

prioritization and lifecycle into account at the beginning of the project.

 Unified automation and communication tools could be provided by the organization’s IT, as

all development teams are Kesko’s own.

 With the current construction of a centralized office, Kesko would have the ability to locate

its potential development teams in one location.

7.2 DevOps team

The scope of this research limits itself to uncovering Kesko’s current software development

hurdles and attempting to apply aspects of the DevOps culture into the current environment.

Therefore, in order to attain a complete overview of the problems, complexities and

dependencies of all of Kesko’s IT systems, a dedicated DevOps team is required. The task

of this team would be to map out all cultural and technological aspects and processes within

Kesko. Furthermore, the team would propose changes that incrementally lead to a transition

towards continuous development. Such a team would require the support of the

organization’s top management. Further material on such a dedicated DevOps team can be

found in literature, as for example Paul Swartout’s book Continuous Delivery and DevOps:

A Quickstart Guide. Swartout emphasizes the difficulties of changing organizational

procedures and therefore suggests the deployment of such a team.

Multiple consulting companies such as Eficode and Puppet provide organizational change

services, especially towards DevOps culture. The dedicated team could either be created

with the knowledge and support of these companies or with Kesko’s own employees.

However, as Swartout suggests, the key for the DevOps team is to focus only on developing

DevOps. Additionally, the team requires not only knowledge on cultural change but also on

technical knowledge for being able to create automation pipelines.

49

8 Conclusions

Transitioning towards continuous development in its simplest terms requires a faster

software release cycle. Releases must be conducted more often and in smaller chunks.

Creating such an environment for quick iterative releases becomes more challenging with

larger organizations, not necessarily because of technical challenges, but because of the

underlying dependencies between different departments and teams.

This research has been able to discover the existence of such substantial dependencies within

Kesko, but also the silos that currently limit the collaboration between these dependencies.

In order to shift towards continuous development, these dependencies should be recognized

and improved upon. As of today, Kesko’s software development situation on an

organizational scale is in its infancy in regards to continuous development and DevOps.

Some teams do practice the DevOps culture within their daily work. However their

implementation of DevOps stems from the fact that these teams are outsourced vendors that

have applied the DevOps culture within their own respective organizations. Therefore, the

DevOps culture practiced currently within Kesko is not Kesko’s own. However, valuable

information, lessons and experiences on continuous delivery can be directly acquired from

the current DevOps development practiced by the vendors at Kesko.

Although the development of Kesko’s DevOps culture is only at its first initial stage, current

organizational structures and processes were regarded as being hurdles for the company’s

own DevOps culture. As DevOps takes agile or lean development for granted, Kesko should

begin by focusing on creating its own development guidelines that incorporate functioning

aspects of agile and lean into the existing organizational processes. The creation of these

guidelines should assemble all stakeholders involved in the DevOps culture, for example

product owners, developers, enterprise architects, operations, maintenance, release

managers or information security specialists. The formation of DevOps silos should be

avoided at all costs [31, p. 282].

Due to the limitations set by the current organizational structure, the question of what

DevOps is expected to achieve should be taken into account. DevOps itself should not be

considered as an ultimate solution, but instead a result of a functional structure. Hence, in

order to adapt DevOps, transition towards continuous development and create a modern way

of developing, significant cultural changes mentioned throughout this research need to be

undertaken: such as measures to improve transparency and collaboration. DevOps ultimately

is the functioning combination of work culture and modern technical tools.

50

Another question to consider is the range on which DevOps should be applied: should

DevOps become the norm for every digital asset or only applicable were necessary?

Acknowledging the fact that DevOps is not applicable for every type of development aids in

recognizing the potential DevOps can bring to the organization. As other larger firms, such

as Company A and HPE have recognized before, although tedious, change is necessary for

building a new software development model.

The results gained from this research can be considered as concrete points of emphasis on

where to begin mapping out an action plan for the development of DevOps. The interviews

provided insight into the current state from employees directly involved in every day

development. Comparing the interviews with the theorem of DevOps and other

organizations produced results of cultural and technical value, which Kesko could consider

expanding on. Nevertheless, the importance of Kesko’s own identity regarding DevOps

should remain at the forefront. Experiences on DevOps from other parties should be

surveyed, yet the formation of DevOps should be reflected on Kesko’s own needs. This

research recognizes the vastness of the requirements for organizational change. Therefore,

greater research is required to chart out and improve upon the organizational challenges

associated with a large company such as Kesko for transitioning towards continuous

development.

51

9 References

[1] Powell-Morse, Andrew . Rapid Application Development (RAD): What Is It And How

Do You Use It? Online Document. Updated 2016. Cited 14.4.2017 Available:

https://airbrake.io/blog/sdlc/rapid-application-development

[2] New Relic. What is DevOps? Online Document. Cited 15.4.2017. Available:

https://newrelic.com/devops/what-is-devops

[3] Powell-Morse, Andrew. Waterfall Model: What Is It and When Should You Use It?

Online Document. Updated 2016. Cited 14.4.2017. Available:

https://airbrake.io/blog/sdlc/waterfall-model

[4] Oxagile. Waterfall Software Development Model. Online Document. Updated 2016.

Cited 14.4.2017. Available: https://www.oxagile.com/company/blog/the-waterfall-

model/

[5] Petersen, K. & Wohlin, C. & Baca, D. The Waterfall Model in Large-Scale

Development. Online Document. Updated 2009. Cited 14.4.2017. Available:

http://www.wohlin.eu/profes09.pdf

[6] Ravichandran, A. & Taylor, K. & Waterhouse, P. DevOps for Digital Leaders -

Reignite Business with a Modern DevOps-Enabled Software Factory. Apress, 2016.

173 p. ISBN 978-1-4842-1842-6.

[7] Monden, Y. Toyota Production System: An Integrated Approach to Just-In-Time. 2nd

ed. Springer, 2012. 424 p. ISBN: 978-1-4615-9716-2

[8] Poppendieck, M. & Poppendieck, T. Lean Software Development: An Agile Toolkit.

Addison-Wesley Educational Publishers Inc, 2003. 240 p. ISBN: 978-0-321-15078-3

[9] Kelly Waters. 7 Key Principles of Lean Software Development. Online Document.

Updated 2010. Cited 25.4.2017. Available: http://www.allaboutagile.com/7-key-

principles-of-lean-software-development-2/

[10] Todd Brasel. Lean vs. Agile: What’s the Difference? Online Document. Cited

16.5.2017. Available: https://goleansixsigma.com/lean-vs-agile-whats-the-difference/

[11] Manifesto for Agile Software Development. Updated 2001. Online Document. Cited

18.5.2017. Available: http://agilemanifesto.org/

https://airbrake.io/blog/sdlc/rapid-application-development
https://newrelic.com/devops/what-is-devops
https://airbrake.io/blog/sdlc/waterfall-model
https://www.oxagile.com/company/blog/the-waterfall-model/
https://www.oxagile.com/company/blog/the-waterfall-model/
http://www.wohlin.eu/profes09.pdf
http://www.allaboutagile.com/7-key-principles-of-lean-software-development-2/
http://www.allaboutagile.com/7-key-principles-of-lean-software-development-2/
https://goleansixsigma.com/lean-vs-agile-whats-the-difference/
http://agilemanifesto.org/

52

[12] Principles behind the Agile Manifesto. Online Document. Cited 18.5.2017. Available:

http://agilemanifesto.org/principles.html

[13] Andrew Phillips. The Continuous Delivery Pipeline — What it is and why it’s so

important in developing software. Online Document. Updated 2014. Cited 14.5.2017.

Available: https://devops.com/continuous-delivery-pipeline/

[14] Martin Fowler. Continuous Integration. Online Document. Updated 2006. Cited

12.5.2017. Available: https://martinfowler.com/articles/continuousIntegration.html

[15] Carl Caum. Continuous Delivery vs. Continuous Deployment: What's the Diff? Online

Document. Updated 2013. Cited 16.5.2017. Available:

https://puppet.com/blog/continuous-delivery-vs-continuous-deployment-what-s-diff

[16] Martin Fowler. Continuous Delivery. Online Document. Updated 2013. Cited

16.5.2017. Available: https://martinfowler.com/bliki/ContinuousDelivery.html

[17] Matt Watson. Divvy Up DevOps Tasks, Defining the Ops in DevOps. Online

Document. Updated 2017. Cited 26.7.2017. Available: https://stackify.com/defining-

the-ops-in-devops/

[18] Jezz Humble. There is No Such Thing as a "Devops Team". Online Document.

Updated 2012. Cited 18.5.2017. Available:

https://www.thoughtworks.com/insights/blog/there-no-such-thing-devops-team

[19] DevOps Dictionary. CAMS. Online Document. Updated 2015. Cited 20.5.2017.

Available: http://devopsdictionary.com/wiki/CAMS

[20] Swartout, P. Continuous Delivery and DevOps: A Quickstar Guide. Packt

Publishing, 2012. 171 p. ISBN: 978-1-84969-368-4

[21] John Willis. DevOps Culture (Part 1). Online Document. Updated 2012. Cited

20.5.2017. Available: http://itrevolution.com/devops-culture-part-1/

[22] Westrum. R. The study of information flow: A personal journey. Safety Science.

Issue 67. 2014. p. 58-63.

[23] New Relic. The benefits of DevOps. Online Document. Cited 15.4.2017. Available:

https://newrelic.com/devops/benefits-of-devops

[24] DevOpsGuys. Why DevOps? Online Document. Cited 15.4.2017. Available:

https://www.devopsguys.com/why-devops/

http://agilemanifesto.org/principles.html
https://devops.com/continuous-delivery-pipeline/
https://martinfowler.com/articles/continuousIntegration.html
https://puppet.com/blog/continuous-delivery-vs-continuous-deployment-what-s-diff
https://martinfowler.com/bliki/ContinuousDelivery.html
https://stackify.com/defining-the-ops-in-devops/
https://stackify.com/defining-the-ops-in-devops/
https://www.thoughtworks.com/insights/blog/there-no-such-thing-devops-team
http://devopsdictionary.com/wiki/CAMS
http://itrevolution.com/devops-culture-part-1/
https://newrelic.com/devops/benefits-of-devops
https://www.devopsguys.com/why-devops/

53

[25] Puppet. 2016 State of DevOps Report. Online Document. Updated 2016. Cited

18.3.2017. Available: https://puppet.com/resources/whitepaper/2016-state-of-

devops-report

[26] Dawn Foster. What is DevOps? Patrick Debois Explains. Online Document. Updated

2016. Cited 15.4.2017. Available: https://www.linux.com/blog/what-devops-

patrick-debois-explains

[27] Alex Manly. 5 Challenges to DevOps adoption and how to overcome them. Online

Document. Updated 2017. Cited 15.4.2017. Available:

https://www.contino.io/insights/5-challenges-to-devops-adoption-and-how-to-

overcome-them

[28] Curtis Franklin Jr. Agile Vs. DevOps: 10 ways they're different. Online Document.

Updated 2016. Cited 15.4.2017. Available:

http://www.informationweek.com/devops/agile-vs-devops-10-ways-theyre-

different/d/d-id/1326121

[29] Jayne Groll. What is a DevOps ‘Best Practice’. Online Document. Updated 2016.

Cited 18.3.2017. Available: https://devops.com/devops-best-practice/

[30] Apprenda. IaaS, PaaS, SaaS (Explained and Compared). Online Document. Cited

17.5.2017. Available: https://apprenda.com/library/paas/iaas-paas-saas-explained-

compared/

[31] Kavis, M. Architecting the cloud – Design decisions for cloud computing service

models (SaaS, PaaS and IaaS). John Wiley & Sons Inc, 2014. 351 p. ISBN: 978-1-

118-82627-0

[32] Mike Roberts. Serverless Architectures. Online Document. Updated 2016. Cited

8.5.2017. Available: https://martinfowler.com/articles/serverless.html

[33] Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J. & Ghalsasi, A. Cloud computing

— The business perspective. Vol 51. Decision Support Systems. 2011. p. 176-189.

Available: http://www.keencomputer.com/images/KEENCOMP/CLOUD/cloud-

computing-business-perspective.pdf

[34] Grossman, R. The case for cloud computing. Vol 11, Issue 2. IT Professional. IEE.

2009. p. 23-27. Available:

https://pdfs.semanticscholar.org/fd95/05897a97b2f82a73148dc87ce3067a33c6ab.p

df

https://puppet.com/resources/whitepaper/2016-state-of-devops-report
https://puppet.com/resources/whitepaper/2016-state-of-devops-report
https://www.linux.com/blog/what-devops-patrick-debois-explains
https://www.linux.com/blog/what-devops-patrick-debois-explains
https://www.contino.io/insights/5-challenges-to-devops-adoption-and-how-to-overcome-them
https://www.contino.io/insights/5-challenges-to-devops-adoption-and-how-to-overcome-them
http://www.informationweek.com/devops/agile-vs-devops-10-ways-theyre-different/d/d-id/1326121
http://www.informationweek.com/devops/agile-vs-devops-10-ways-theyre-different/d/d-id/1326121
https://devops.com/devops-best-practice/
https://apprenda.com/library/paas/iaas-paas-saas-explained-compared/
https://apprenda.com/library/paas/iaas-paas-saas-explained-compared/
http://www.keencomputer.com/images/KEENCOMP/CLOUD/cloud-computing-business-perspective.pdf
http://www.keencomputer.com/images/KEENCOMP/CLOUD/cloud-computing-business-perspective.pdf
https://pdfs.semanticscholar.org/fd95/05897a97b2f82a73148dc87ce3067a33c6ab.pdf
https://pdfs.semanticscholar.org/fd95/05897a97b2f82a73148dc87ce3067a33c6ab.pdf

54

Appendix

Common questions for everyone:

1. What is DevOps in your opinion?

2. How do you see Kesko’s current continuous development model?

a. What is good? What could be improved?

3. What do you consider a successful working culture?

a. How do you see a change taking place?

4. What pain points come to mind currently at Kesko in your projects?

5. What are the barriers in coordinating your projects efficiently?

6. Do you believe changing the development model is a challenge?

a. Why or why not?

7. How do you currently see the willingness of changing to a more modern model within

Kesko?

a. How could that be changed?

8. Which do you see as more important and why: freedom or overall project

management?

9. If given the chance would you agree with removing handovers wherever possible?

a. How could this be done?

10. How often do you think software should be deployed into production?

11. What roles do you expect DevOps teams to contain?

Questions for developers:

1. You as a potential partner: how do you see working with other vendors in one team?

2. If Kesko had a specified DevOps model: as a potential partner are you excited or

burdened?

a. How much of your own tools or your pipeline would you be willing to change?

55

b. Which should be the same?

2. How is testing implemented currently in the projects you are a part of?

3. Can development be conducted fast or efficiently enough at the moment?

a. Why or why not?

b. How would you develop it?

Questions for business:

1. What are your expectations of CAMS in Kesko?

2. What is the biggest blocker for faster development?

3. Should digital projects have a model with a finite ending?

a. Why or why not?

Questions for IT:

1. How is testing implemented currently in the projects you are a part of?

a. What problems do you recognize?

2. What role do you see yourself in currently within the digital projects?

3. What role do you see yourself in the future within the digital projects?

4. Can development be conducted fast or efficiently enough at the moment?

a. Why or why not?

b. How would you develop it?

