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Software development today has rapidly developed into a significant part of 
business and its value creation chain. Increasingly more stakeholders within an 
organization are tied in with more frequent software releases. This has driven 
organizations to adapt to more flexible and continuous software development 
methods. 
This Master’s Thesis addresses the challenges, advantages and disadvantages 
associated in shifting an organization’s software development culture towards that 
of continuous development. The specific type of continuous development within 
this research considers the new software development culture of DevOps. 
DevOps is seen as a fundamental change in the IT world today for the transition 
towards continuous software development, where dedication is given to the 
successful collaboration between development and operations. 
The aim of this research is to discover the vastness of attempting to change an 
organizational culture for an improved and modern software development process 
for all stakeholders involved. Furthermore, this research attempts to provide the 
organization at hand with information on how and where to begin initiating the 
required changes. New cloud computing technologies have enabled development 
teams to become less dependent on companies’ traditional IT departments. 
The research is conducted via literature review and the data collected through 
interviews with employees of the organization attempting to shift towards 
continuous development. Further information is gathered through three case 
studies of other companies that have successfully undergone a transition towards 
continuous development and DevOps. 
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1 Introduction 

1.1 Research topic justification 

The foundations of this research lie in the current environment of Kesko’s software 

development and my personal responsibilities within the organization. Kesko provides a set 

of development tools, which their development teams are free to use. The organization 

currently does not employ its own software developers. Instead, it supports standardized 

tools and processes under which development occurs. 

Maintenance and support for the tools from Kesko’s perspective are my personal 

responsibilities within the company. Providing tools for the development teams has therefore 

granted me access and a wide perspective on all of the development conducted for Kesko. 

Not only am I invested in the IT department of Kesko, but am also in constant contact with 

the developers developing for Kesko and employees from the business side. As different 

vendors require and use different tools and processes, the need for creating functional 

development guidelines that correspond more adequately to an evolving digital domain 

becomes evident on a daily basis. 

Kesko is striving to adapt to these changing circumstances and improve upon its own 

software development environment. Bridging the gap between business and development is 

at the forefront, as currently the challenges lie within this collaboration. 

Furthermore, I am personally keen on discovering how change occurs within a large 

organization. Especially within an organization undergoing a transition towards continuous 

development, where the goal is to be able to release faster, more often and more agilely. 

1.2 Company background 

Kesko, one of the largest multi-industry corporations in Finland has been steadily taking 

advances into the digital domain with a vast range of new digital services. The company’s 

strategy has been to increase sales, market share, customer satisfactory and customer value 

through the expansion of their digital services.  

As a conventional sales company, Kesko now faces the challenge of evolving its ways of 

working as it attempts to tackle the hurdles associated with a large firm attempting to 

incorporate efficient digital development into its portfolio. Management, development, 

operations and many other roles need to align mutually in their goals, targets and cooperation 

in order to create a functioning and coordinated platform for their digital services. These 
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hurdles include aspects from technical solutions to deeply rooted cultural practices, all of 

which can significantly hinder digital project management processes. 

Kesko’s three main business operations are grocery trade, technical trade and car sales. 

Advancing these portfolios further into the digital domain requires skillful technical 

expertise in software development and efficient execution. Kesko’s scattered digital 

development model has revolved mainly around outsourcing its software development. The 

approach towards outsourcing software development is not due to change instantly, as 

Kesko’s business model lies in the sales of consumer goods. However, as the portfolio 

around its digital services expands, so does the need to evolve Kesko’s own digital 

development culture to match the fast-paced markets it is involved in. 

Kesko has its target set at pursuing new methods for its working culture, mainly within its 

own IT department and its dependencies, in order to develop an environment, which can 

produce high quality digital services faster and more efficiently. The lack of a precise and 

unified blueprint on how to execute digital projects currently prevents development 

optimization on an organizational level. Different types of development methods such as 

waterfall, agile or lean have been implemented within the development projects. However, 

complete guidelines on how the organization wishes development to be conducted are 

missing. 

Developing consumer applications such as the K-Ruoka mobile application or building new 

online stores for Kesko’s grocery and hardware trade have given rise to shifting development 

from the outdated “waterfall” model to that of continuous development. Projects that are set 

to increase market share and business value in the long term require constant development. 

Therefore, the organizational environment is required to be in a state of supporting such 

development. Transitioning a software product from one department to another, for example 

from development to operations, should no longer be the only option. 

Technological advances in cloud services have been an additional catalyst for advancing the 

methods of conducting software development. With the rise of cloud computing focusing on 

delivering infrastructure, platforms and software as a service, the burdens of personally 

having to build infrastructure and catering to scalability needs have been mitigated. 

Developers and in particular Kesko are in a position to take advantage of these technologies 

for optimizing development. 

Kesko’s development structure consists of an organizational IT department supporting 

outsourced software development conducted by collaborating vendors. Improving this 

divide between the information technology department and software development is at the 
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forefront of Kesko’s plans. DevOps, the cooperation of development and operations, has 

been suggested as a potential model for Kesko’s development guidelines.  

This thesis sets out to investigate the problems in Kesko’s software development process 

and to compare them to the practices related to DevOps. The aim is to gain an understanding 

into the aspects of how Kesko could implement DevOps and whether or not DevOps could 

solve problems currently present in software development. The research questions and scope 

presented in the following chapters define the goals of this research in more detail. 

1.3 Research problem and questions 

As Kesko is striving to improve upon its software development model and transition towards 

developing more continuously than before, the questions which this research attempts to 

answer are as follows: 

RQ1: What are the problems in Kesko’s software development process? 

In order to create an analysis of how Kesko could change its software development process, 

the current problems need to be uncovered. This question is answered through interviews 

with employees working in Kesko’s software development. 

RQ2: What points can Kesko focus on in transitioning towards continuous development? 

As a non-software development company the process of transitioning towards continuous 

development is not rapid. Furthermore, the creation of a new model is a tedious process 

during which the best practices for Kesko are developed. Therefore, this research attempts 

to answer the question of what Kesko can do now and what takes longer to establish. 

RQ3: Could DevOps be adaptable? 

After analyzing the current situation of the company’s development model and making 

proposals on what it can implement now and in the future, the final question of this paper 

answers the question whether or not the culture of DevOps is suitable for Kesko to 

transition towards continuous development. 
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1.4 Research scope 

The nature of DevOps and its implementation on an organizational scale require vast inputs 

from all aspects of the company. The working culture of DevOps affects everyone, from 

management to every team and employee. Tools, guidelines, new social norms and skills 

must all be developed and established from the ground up. The process of developing an 

organization’s own DevOps culture does not have a finite ending, but instead focuses on 

continuously improving upon the current conditions. This does not happen overnight. 

Due to the nature of DevOps being a newly considered model for Kesko, the scope of this 

thesis is limited to the key aspects of DevOps. The goal of this research is to identify the 

technological and cultural readiness needs at Kesko for deploying and building their own 

continuous software development. This thesis provides an insight into the current problems 

at Kesko, the required points of focus for transitioning from a conventional “waterfall” 

development model to an agile or lean method of working; specifically, the deployment of 

DevOps as a potential model. Furthermore, this paper aims to aid readers new to the topic to 

familiarize themselves with the relevant concepts and steps for DevOps and transitioning 

towards continuous development.  

This thesis attempts to present the theories and aspects behind DevOps and place them into 

the context of Kesko. Companies and organizations differ vastly from each other, meaning 

that each firm that has successfully implemented DevOps has done so within their own 

limitations. DevOps can mean significantly contrasting things within different organizations, 

mainly due to contrasting business goals. Hence, this research aims to discover whether the 

best practices of DevOps are deployable at Kesko. 

Finally, the purpose of this paper is not to create an immediately deployable model of 

DevOps for Kesko, but instead present the necessary aspects for being able to adapt it. A 

roadmap for the ideal state or a completed model of Kesko’s DevOps culture does not suit 

the scope of this research. Instead, it aims at describing the key points of DevOps, reflecting 

them onto Kesko’s current software development environment and propose points of 

emphasis for a potential Kesko DevOps model. However, this thesis does function as an 

introduction on the scale of implementing a revised working model, especially for employees 

and decision makers involved in the transitioning process. 
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1.5 Research structure 

As its first chapter, the structure of this thesis begins with the presentation of the necessary 

background information on the topic at hand. Information on the author’s relevance to the 

subject and the company in question are presented, closely followed by the research 

questions studied within this work. 

The structure continues with chapter 2, which introduces the research methods used to 

conduct this study. Literature was utilized to discover the theorem relative to the topic. Data 

collecting was conducted via interviews with employees from the company who are 

associated with the topic. 

Chapter 3 presents the theorem on software development, DevOps and cloud-computing 

capabilities. 

Chapter 4 lists three example cases of how other companies have transferred to continuous 

development. 

Chapter 5 posts the data and results gathered during the interviews. This chapter is followed 

by chapter 6, which analyses the results and proposes methods on how to begin developing 

a more modern software development model. 

Chapter 7 discusses key points on what could be the ideal situation of the company in the 

future. The final chapter, chapter 8, summarizes the research conducted in this work. 

The references are listed in chapter 9, which is conclusively followed by the appendix listing 

the questions asked during the interviews. 

  



6 

 

2 Research methods 

This chapter describes the research methods of this thesis. It begins with the introduction of 

the literature related to this research and is followed by presenting the data collection process 

in the form of conducting interviews within the organization. 

 The approach for researching this topic commences with the investigation into the theories 

of software development and the theories of DevOps in particular. In order to place these 

theories into the context of Kesko, interviews were chosen as the most suitable form of data 

collection. The methods are justified by this research being qualitative in its nature.  

For referencing purposes, the research is completed by analyzing how other companies have 

either fully implemented DevOps or transitioned from a traditional development model to a 

continuous development model. These data collecting methods were used in analyzing 

Kesko’s current situation and drawing comparisons to the theorem and practical examples. 

Conclusively, this data was used to create results for Kesko’s points of focus on transitioning 

towards DevOps. 

2.1 Literature review 

The literature review presents different software development models, such as the waterfall, 

agile and lean frameworks. Their general ideas and reasons for their application strive to 

introduce the reader into the different ways software development is managed.  

 The software development models are followed by introducing DevOps, which is the 

continuous development model Kesko wishes to adopt. DevOps is presented in detail, as it 

is the focus of this research.  

 Further introductions are made into the automation processes of software development, as 

in the form of presenting the theories of the continuous deployment pipeline and cloud-

computing possibilities. These chapters are justified by modern software development 

relying on these technological aspects. 

 The literature review concludes with information on common organizational challenges 

caused by organizational culture and structure. These theories are closely linked to a 

transition towards a different development model, as changes within large organizations are 

complex.  
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2.2 Interviews 

2.2.1 Interviewees and company context 

The empirical study of this research is conducted through the analysis of 11 interviews, 

lasting roughly an hour each, with people related to Kesko’s IT department. The interviewees 

were selected from different branches, teams, vendors, positions and operations to attain a 

comprehensive coverage of Kesko’s digital domain and a current understanding on what it 

means to establish a new culture in Kesko’s own software development operations.  

 

The group consisted of three employees from the business branch, five employees from the 

IT department and three software developers. Hence, not all participants in the interview 

process were directly from Kesko’s IT department, but all had connections to it. 

 

The business aspect of interviewees encompassed the three main business branches: the 

grocery trade department, hardware trade and supporting IT functions. Such a distinct 

division based on each industry was avoided for the IT perspective due to the complexity of 

one common IT department being involved in all digital development projects at Kesko. 

Instead, the interviewees were chosen based on the nature of their work: the group was 

comprised of project managers, IT architects, operations, testing and IT leadership. 

 

The developer aspect of interviewees involved people from different software companies. 

All interviewed developers were working on diverse projects with altering methods and 

tools. This selection provided a wide range of information on the study at hand. The goal of 

selecting developers from different partnering companies was identical as with the other 

groups: gaining different perspectives from different corners of digital development within 

Kesko. 

2.2.2 The purpose of the interviews 

The interviews and their respective questions were devised with the purpose of gaining 

knowledge into the current state of Kesko’s software development model. The primary part 

of the questionnaire focused on learning from the interviewee what he or she believes 

DevOps is and discovering whether people involved in the process of software development 

had any previous knowledge or understanding of DevOps. These questions differed between 

interviewees as the questions were chosen according to the interviewee’s role within the 

organization.  The subsequent part presented the interviewee with questions relating to the 
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digital project environment at Kesko and the recognizable problems within it. The closing 

set of questions considered aspects of what the future of Kesko’s software development 

model could withhold.  

 By reflecting the ideas and theorems behind software development, DevOps and Kesko on 

the interviewee, the questionnaire had three specific goals on which to construct this 

research:  

- Obtain information on whether or not Kesko already has elements of the DevOps 

model built into its own process 

- Understand Kesko’s development environment 

- Discover how much of DevOps could potentially be implemented at Kesko 

The questionnaire is posted in the appendix. 
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3 Software development 

Software development is conducted through different models, with each model carrying its 

unique advantages and disadvantages. The most traditional method of developing software 

is the “Waterfall” model, whereas today more modern approaches are agile and lean. Others 

such as the Rapid application development, or RAD, model [1] exist as well, however this 

chapter focuses on the more traditional approach and agile as they are the primary 

approaches relevant for Kesko. Additionally this chapter presents DevOps and cloud 

services in more detail. 

 Waterfall, lean and agile are frameworks for software development. These frameworks 

consider the methods and processes of how teams and projects conduct software 

development. They describe the dynamics within teams for creating software. DevOps on 

the other hand is not a framework for software development, but instead a culture of tying 

the software development frameworks into an efficient IT unit involving development and 

operations [2].  

Therefore, in order to portray the culture of DevOps, it is fundamental to present the ideas 

of the different software development frameworks. 
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3.1 The Waterfall model 

The waterfall model is a traditional type of software development process, which progresses 

logically from one phase to another after each completed phase [3]. Dr. Winston W. Royce 

introduced it in his paper Managing the development of large software systems in 1970 

without naming it the waterfall model [3]. The model gained its name through the downward 

flow between phases. The typical stages of the waterfall model are presented in Figure 1 [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The development process beings with extensive planning on what the system and software 

requirements for the product should be. This phase is followed by analyzing and designing 

the user interface and other visuals, after which programming can begin. Finalized software 

is conclusively tested and placed into production. Eventually, the software is regarded as 

being complete and is finally transferred to maintenance. Due to the different phases being 

 

Figure 1. The Waterfall model 
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performed by different and specialized groups, the waterfall model obligates the 

organization’s structure to be strictly arranged [3]. Development processes are managed 

firmly [4]. 

At its core, the waterfall model attempts to produce a finished product systematically from 

beginning to end and eventually release it all at once. The most notable advantage of the 

waterfall model is being able to complete phases on schedule [4]. As every phase is 

transferred to the next one, each step has a set deadline [4]. Hence, the schedule is simple to 

follow, creating software on time. Due to the strict specifications at the initial planning stage 

of the project, documentation is well constructed throughout the development stage [3]. New 

project members can join the project with ease as the knowledge is found within the 

documentation [3]. This documentation creates the significant bridge for transferring 

knowledge of the project from one phase to another [4]. The waterfall model is most suitable 

for projects which can provide complete specifications at the earliest stage. 

The theoretically pure waterfall model expects each phase to be perfected before moving on 

to the next [4]. In practice however, perfecting a phase is challenging [4]. Stages might not 

be completed on time, leading to the next phase having to wait or begin work with an 

incomplete product. This leads to slow and inefficient development. During the planning 

phase, not all specifications and future problems can be accounted for [4]. The waterfall 

model does not support adapting to feedback gained during development [3], causing 

potential rewriting of code [5]. Customers or users of the software might not know exactly 

what they want from the product. This can create an outdated and unusable product [6, p. 

17]. Sudden changes or problems during any phase can significantly derail the project from 

its original schedule [4]. Furthermore, changes during development create costs, making the 

project flow over the planned budget [3]. As testing is conducted during the later stages, 

potential software problems are recognized late [5]. 
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3.2 Lean and agile practices 

Lean and agile are the modern approaches to software development, formed under the fast-

paced software markets of today. The aim towards creating business value and delivering 

features based on customer wants has led to the development of more flexible software 

development methods. These allow for more freedom and adjustments during development. 

Their relevance in this research is based on the assumption that DevOps practices rely on 

lean and agile software development as a platform. [6, p. 36] 

3.2.1 Lean development 

Lean development derived originally from the manufacturing industry, where the car-

manufacturing firm Toyota built its manufacturing line around just-in-time production. 

Toyota created their own Toyota Production System (TPS) [7]. The general thought behind 

lean development is the elimination of waste and unnecessary work during the development 

process in order to produce the most customer value. Tom and Mary Poppenieck introduced 

lean software development and broke it down into seven key principles. These principles are 

presented in Table 1 [8, p. 13-15]. 

  



13 

 

 

Principle Description 

1. Eliminate 
waste 

- Eliminating redundant code, features 
- Avoiding speed blocks created by bureaucracy, 

ineffective communication 
- Avoiding the attempt to do more than can be 

completed 
- Avoiding multitasking and fractionally completed work 
- Eliminating every unnecessary aspect 

2. Build quality 
in 

- Focus on assuring quality software from the start 
- Building quality in from the start avoids waste at 

finalizing stages 
- Pair programming: two developers simultaneously 

programming; high error avoidance 
- Test Driven Development (TDD): tests and test 

conditions are written before code 
- Incremental and frequent code integration 
- Test automation 

3. Create 
knowledge 

- Quality software is based on knowledge and 
experience of the product 

- Pair programming enriches more than one developer 
- Documentation 
- Code which is well commented 
- Code is reviewed 
- Sharing knowledge within team 

4. Defer 
commitment 

- Making decisions at the latest possible, but safe, stage 
- Especially important for permanent decisions 
- Creates flexibility in software product 

5. Deliver fast 

- Delivering quickly and collecting feedback to improve 
- Time to market can create competitive advantage 
- Avoiding monoliths 
- Keep things simple 

6. Respect 
people 

- Everyone, regardless of position, should be treated 
equally and respectfully 

- Transfer responsibility to workers 
- Empowerment without sacrificing control 

7. Optimize the 
whole 

- Optimize complete value stream, from feedback to 
release 

- Organize teams around product, not around expertise 

Table 1. The key principles of lean software development 
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Eliminating unnecessary work and inefficient methods of working are, through its seven 

principles, at the essence of lean development. Learning what can be eliminated throughout 

the development cycle enhances the understanding of customer value for the specific 

product. Developers are empowered and trusted to conduct their work. Risks are minimized 

by making decisions at the latest possible time. [9] 

The principles of lean as a process management method for development [10] lend 

themselves to the principles of agile that are presented in the following chapter. 

3.2.2 Agile development 

Whereas lean focuses on eliminating waste, agile software development places its emphasis 

on people with the most significant aspect being the end-user of the software. Agile stems 

from the fact that the challenge of software development is not being able to recognize the 

outcome of the produced code in advance. Therefore agile relies on the feedback provided 

by its end-users to meet the initially unknown requirements of the software. [10] 

The Agile Manifesto describes the success metrics of agile as being able to provide working 

software through the collaboration with its end-users. People and their respective 

cooperation are valued more than processes and tools whilst being able to adapt to changes 

instead of attempting to stay fixed on a preset plan. [11] 
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Agile follows twelve principles that are presented in Table 2 [12]. 

Principle 

Highest priority is customer satisfaction 

Welcome changing requirements 

Frequent delivery of software 

Business people and developers cooperating daily 

Build projects around motivated people 

Face-to-face conversation is best 

Progress measured by working software 

Sustainable development pace 

Continuous attention to technical excellence 

Simplicity 

Self-organizing teams 

Regular reflection and adaptation 

Table 2. The principles of the Agile Manifesto 

The essence of agile’s twelve principle is to be able to react to changes required by the end-

user for providing the highest quality software. Releases are done iteratively and frequently. 

Development teams conduct work together at the same location and cooperate often with 

employees from the business side for the highest value creation chain. [12] 
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3.3 Continuous deployment pipeline 

The continuous deployment pipeline is the set of automated processes that enable the fast 

and efficient deployment of new software features into production. The pipeline is a 

fundamental aspect in lean and agile software development, but also in DevOps’ automation 

culture. The general stages within such a pipeline consist of continuous integration and 

continuous delivery. The goal of these stages is to authenticate the software at different 

phases and establish feedback to the developers, whilst doing so on a consistent basis. [13] 

The following two sections on continuous integration and continuous delivery depict the 

components of the automation process of building software. They are an essential part of 

DevOps, however as the approach of this research limits itself to DevOps within a large 

organization and is directed at all employees, these sections do not delve into the specifics 

of how to construct CI and CD from a developer’s point of view. 

3.3.1 Continuous integration 

Continuous integration, or CI, is the process of submitting small changes of code to the main 

piece of code, called the mainline, on a constant basis, where the time interval between new 

commits is short. Multiple developers working on a piece of software periodically submit 

minor changes to the main piece of software. The purpose of constantly applying small 

adjustments is to maintain improved control of the mainline. Larger changes conducted less 

frequently could cause compatibility and build issues. Additionally, in the case of run or test 

errors after a commit, the rollback to a previous version is significantly simpler and the 

effects on the main piece of code are mitigated. [14] 

 Programmers make a copy of the mainline to their system, add their changes to the program 

and commit these changes back to the mainline. Once a new commit to the mainline is made, 

an automated commit build, which includes tests, is triggered which confirms the changes’ 

compliance within the main piece of code. Bugs and errors are discovered through these 

automation steps. [14] 

 The advantage of CI is that it automates the integration of code changes. Linking all required 

files and conducting appropriate tests is much faster through an automated CI pipeline [14]. 

Incremental code changes further enhance the creation of software [14]. These aspects 

reduce risks by making problems become easier and faster to recognize since developers 

receive most of the feedback of their code at this stage [13]. 
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3.3.2 Continuous delivery 

Once the incremental changes or new features have been completed, integrated and tested, 

they can be deployed to production. Continuous delivery, or CD, consists of automated 

processes that enable the possibility of being able to deploy the changes into production at 

any time [15]. Changes are delivered to an environment, which mirrors the production 

environment itself to ensure that the changes will also function in production [15].  

 Continuous delivery is the final step in continuous deployment. Deployment into production 

might not be conducted as often as continuous delivery. Continuous delivery warrants the 

possibility of rolling out at any time [15]. Continuous deployment considers releasing new 

features to the eventual end-user, whereas continuous delivery ensures that the release can 

be conducted without failures [16]. Organizations schedule software releases with marketing 

and other business functions. Releasing new features to end-users often requires detailed 

scheduling, therefore constant rollouts are not always granted. Continuous deployment 

enables the ease of releasing [16]. 

 The continuous deployment pipeline, which places software changes into production, 

reduces manual labor as much as possible [16]. Incremental continuous deployments 

mitigate risks compared to large releases [16]. 

3.4 DevOps 

3.4.1 What is DevOps 

Development and Operations, or DevOps, is regarded as the most advanced software 

development culture based on the lean and agile methodologies. It incorporates all the tools 

of lean and agile software development into an approach striving for a cultural change 

between development and IT operations. DevOps attempts to combine multiple roles and 

positions during development into an efficiently cooperative and autonomous team. [6, p. 6] 

As the name, Development and Operations, implies, the aim is to strive for the collaboration 

of different roles within the software development process, such as developers and system 

operators. The justification for the need of more collaboration lies in the difference between 

the goals of development and operations [17]. Developers, much like business, strive for 

creating value to the customer. Whereas operations’ focus is on establishing and maintaining 

a reliable system [17].  Furthermore, the aim is to eliminate barriers between existing 

functions, such as development and operations, for more efficient cooperation and ultimately 

faster and more concise software releases. In the technical scope, this means improvements 
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in the time to market, time between bug fixes, time for recovery from failure and the quality 

of released software for greater customer satisfaction. 

DevOps ingrains all of the benefits and practices of agile software development and 

eliminates handovers of a project between different teams [6, p. 91]. This is achieved by 

having the team originally responsible for creating the software take over the tasks needed 

further down the development line. Development teams become DevOps teams by creating, 

integrating, testing, building and maintaining their software. The team building a product 

becomes responsible for running it [18]. Such is the DevOps mantra: “you build it, you run 

it” [18]. The following chapters further demonstrate the aspects that define DevOps. 

3.4.2 DevOps practices 

The four key values of DevOps revolve around CAMS: culture, automation, measurement 

and sharing [19]. 

3.4.2.1 Culture 

 Creating a culture, which emphasizes communication and corporation, is at the core of 

DevOps. Silos and barriers within an organization cause unnecessary delays in information 

flow. These delays in return reduce work efficiency and produce wasted working hours [19]. 

A DevOps culture aims at removing such silos and encourages an environment with open 

discussion between employees and teams. Management plays a key role in creating such an 

environment, where open conversation is rewarded and employees are empowered [20, p. 

110]. Therefore, a significant part of DevOps revolves around the cultural working aspect of 

development. 

“DevOps is a human and management problem” [21]. 

“You can’t directly change culture. But you can change behavior, and behavior becomes 

culture” – Lloyd Taylor VP Infrastructure, Ngmoco [21] 

An essential part of an empowering working culture for the single employee or team member 

is knowledge of the true purpose of the ongoing work. Understanding the overall purpose 

has a significant effect on the motivation and innovation of the employee [20, p. 117]. This 

emphasizes the natural human urge of being genuinely part of something. Management is in 

a powerful position for generating a sense of purpose to its teams. As management becomes 

more aware of the overall situation within the organization and the dependencies between 

projects, the same understanding can be passed on to their teams. An organizational 

environment without silos provides the ability for empowered teams. Additionally it renders 

development teams with more responsibility. 
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3.4.2.2 Automation 

DevOps strives to automate steps in the software development process as much as possible. 

Creating automated tests for new builds and an automated deployment pipeline is at the 

forefront of DevOps automation. The purpose of such automation is the reduction in 

avoidable working hours for repeatable tasks that computers can process faster. Testing 

automation is also more reliable than human testing. Thorough tests provide reliable data 

that can improve decision-making checkpoints. Furthermore, testing and deployment should 

be easy and not a burden for the developer. Making testing and deployment effortless 

promotes the concept of releasing new software more often, a key approach for agile and 

lean development itself. Although constructing a fully automated development environment 

is an extensive and laborious task, it pays itself back by making the process of releasing 

software uncomplicated. [20, p. 76]  

3.4.2.3 Monitoring 

Knowing what to develop and understanding how to improve development is at the heart for 

creating high quality software. Hence, DevOps teams strive towards monitoring the 

performance of their systems and their software. Monitoring infrastructure is critical in 

maintaining system stability. DevOps strives for an environment where recovery from 

failures is fast. The complexity of interdependent systems is more controllable with better 

monitoring tools. [20, p. 91] 

3.4.2.4 Sharing 

Tied in with culture is DevOps’ sharing factor. Building an open and trusted working 

environment requires transparency within communication and collaboration. Knowledge 

and information is shared as much as possible to create an efficient working culture. A 

sharing culture can lead to finding solutions faster and avoids conducting the same work 

twice. Sharing can encompass not only single teams, but also organizations as a whole. [19] 

3.4.3 Culture and people 

DevOps is as much of a technical concept as it is a cultural and people minded approach. 

The model promotes openness, communication, collaboration and trust between employees. 

Having clearly set goals and free information flow promotes a DevOps culture. Ideally, 

communication and information flow is never a barrier during development. 
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 Changing organizational culture is crucial to having a DevOps mindset. However, 

understanding how to change existing culture begins by recognizing the culture currently in 

progress within the organization. In his study on information flow, Ron Westrum divides 

organizational culture into three distinct categories [22] presented in Table 3. 

Category Information flow Silos 

Pathological Non-existent Full 

Bureaucratic Only within silos Departments are silos 

Generative Full Non-existent 

Table 3. The categories of organizational culture 

In pathological culture, information flow between employees is highly biased or misleading. 

The reasoning for this claimed to lie in the human nature of wanting to make things appear 

better, especially for themselves. Therefore, information is not passed on at all. 

 A bureaucratic culture is considered to promote information flow only within organizational 

silos themselves, but not between different “departments” as Westrum claims. Each silo acts 

according to the rules developed within each silo.  

 The generative organizational culture is the most open, as the focus lies only on the goals of 

the organization. 

The Westrum model is a polarization of real world organizational cultures. However, it 

demonstrates the direction a company needs for its working culture. In order to adapt 

DevOps, the company must continually shift towards a generative working culture.  

Efficiently functioning teams evolve over time as trust within the team develops. Such teams 

embody the idea of open collaboration, which in turn builds trust.  

A common location for the team members improves upon cooperation. Being able to 

communicate in the same space with each other makes problem solving faster. 

An organization can consider culture already at the hiring stage. Employing the correct 

people can have a significant effect on the development of openness and cooperation. 

3.4.4 Benefits of DevOps 

More digital projects lead to more complexity within an environment without a unified set 

of tools and practices. DevOps guidelines strive towards simplifying the environment. The 

goal is to be able to focus more on the creation of innovative features and products instead 
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of having to concentrate purely on maintaining the stability of existing systems [23]. 

Development therefore gains the opportunity to become continuous. Cross-functional and 

autonomous teams responsible for one product are able to solve problems faster without any 

previous dependencies from other teams or business functions [23]. 

Teams with a higher degree of freedom and responsibility become more involved in the 

company’s identity [23]. As a result, the possibility of growth in work satisfaction and 

productivity for employees and team members increases [23]. Furthermore, a high degree of 

collaboration within a DevOps culture aids in removing silos between teams and barriers 

[24]. 

Quantitative benefits of DevOps have been studied by organizations such as puppet. Their 

annual surveys on DevOps within the IT industry present the development direction of 

DevOps. The annual State of DevOps Report by puppet and DORA for 2016 presents a vast 

array of benefits from DevOps, of which the most notable claims are listed in Table 4 [25]. 

“High-performing organizations decisively outperform their lower-performing peers. 

They deploy 200 times more frequently, with 2,555 times faster lead times, recover 24 

times faster, and have three times lower change failure rates.” 

“High-performing organizations spend 22 percent less time on unplanned work and 

rework. They are able to spend 29 percent more time on new work, such as new 

features or code.” 

“Undertaking a technology transformation initiative can produce sizeable returns for 

any organization.” 

“The long-term value of an enterprise is not captured by the value of its products and 

intellectual property, but rather by its ability to continuously increase the value it 

provides to customers—and to create new customers—through innovation.” 

Table 4. Benefits of DevOps according to puppet and DORA 

The ultimate goal of DevOps is for the organization to improve its competitiveness by being 

able to enhance the organization as a whole and not only improving a single silo [26]. 
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3.4.5 Problems in implementing DevOps 

The most significant hurdle in implementing DevOps is the cultural shift from removing the 

silos between development and operations. The two roles either function in unison or are 

embedded within the team. [27] 

A further problem is the required transfer within the organization’s digital domain of old 

legacy systems to modern microservices. However, the scope of this research limits itself to 

mentioning this architectural shift. [27] 

Another problem in implementing DevOps is the resistance for change. [20, p. 119-120]. 

3.4.6 DevOps with agile or lean 

DevOps incorporates all of the best practices from lean and agile software development. 

Lean and agile consider the dynamics within teams: how they function as an effective unit 

to produce quality software as fast as possible. Successful development teams create high 

quality code whilst using integration and deployment automation as much as possible. Much 

dedication is given to communication and collaboration within the team. The lean and agile 

frameworks focus on the teams themselves. [28] 

DevOps however, as mentioned earlier, is not a development framework but rather a culture, 

which attempts to bond the teams into the complete IT organization. Emphasis is placed on 

developers collaborating with operations and vice versa. The technical tools are present for 

being able to release faster with shorter feedback loops. [29] 

 A distinction must be made: with companies purely producing software without any 

overhead IT operations, the DevOps culture becomes ingrained into the teams themselves. 

The team is responsible for development and operations. This means handovers to operations 

do not occur. However, for companies where IT operations and maintenance departments 

exist, the DevOps culture becomes the collaboration between the development team and 

operations team. [28] 

 The essence of DevOps is not a strict set of rules. Instead, DevOps is the cultural change 

between different IT functions enabling an organization to move towards continuous 

development. DevOps represents the next step for lean and agile frameworks. DevOps 

requires lean and agile frameworks as its base to be successful. It is not a separate framework 

by itself. Therefore, DevOps culture is most suited for agile software development. [28] 
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3.4.7 DevOps and cloud computing 

The transition towards an automated DevOps culture is aided with the development of open-

source and commercial cloud computing opportunities. Commercially available tools such 

as infrastructure-as-a-service (IAAS), platform-as-a-service (PAAS), software-as-a-service 

(SAAS) and serverless architecture all reduce the need for IT to maintain and support their 

own infrastructure and services. [30] 

Development can be provided with traditional IT functions in a more agile way without the 

limitations set by maintaining one’s own infrastructure. Infrastructure and other services 

required by development can be abstracted. [31, p. 285]  

Different cloud services are presented in Table 5 [30]. 

Service Description Examples 

IAAS 
Provides computing infrastructure 
with virtual machines, run by 
customer 

Amazon S3, OpenStack 

PAAS 
Provides development platform for 
application developers 

Heroku, Microsoft Azure, 
RedHat OpenShift 

SAAS 
Provides software which is fully 
maintained by SAAS provider 

Microsoft Office 365, Google 
Apps,  Dropbox, Flowdock, 

Slack 

Serverless 
architecture 

[32] 

Provides computing infrastructure 
with virtual machines, run by 
provider 

AWS Lambda 

Table 5. Cloud computing services 

The benefits of cloud computing have been the reason for their success, as for example 

gaining access to virtualized hardware and software resources immediately [33, p.178]. 

Cloud computing, especially IAAS, has the additional advantage of scaling resources 

according to usage [34, p. 25]. The pricing scheme of cloud computing, which is based on 

the usage of the services, mitigates the problem of maintaining own underused hardware [34, 

p. 25]. Such an automated infrastructure enables the self-serving on services for developers 

[31 p. 286-287]. The costs of maintaining servers, platforms and software are transferred to 

the cloud service provider. 

DevOps benefits from the mitigations of obstacles set by the traditional IT hardware 

limitations. It can function without cloud services. However, the simple and quick 
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implementation possibilities of cloud services and their on-demand capabilities make them 

an effective tool for improving the efficiency of development processes. 
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4 Company references and example cases 

This chapter represents example cases of other companies that have undergone a similar 

transition as Kesko is attempting to achieve. The references selected are Solita, a large 

Finnish company and Hewlett Packard Enterprise. Solita was selected due the company 

being a software producer where DevOps has become an integral part of their operations. 

The large Finnish company is not a software producing organization, but requires software 

development to occur in order to increase sales and customer satisfaction. This company was 

chosen as an example case as they have been able to adapt DevOps keys into their 

development. Finally, as another large company Hewlett Packard Enterprise, or HPE, was 

able to transition towards continuous development as well.  

4.1 Solita 

Solita, a software consulting company, has adopted the four keys of DevOps successfully 

within their own organization. Being a software company, Solita has had strong a strong 

agile framework on which its teams operate. This example is based on a webinar conducted 

by Solita during the spring of 2017. 

The culture of DevOps is at the core of DevOps at Solita. Silos within the organization have 

been minimized. If such silos arise, they are recognized and broken up. An environment 

without silos advocates the merging of development and operations. Furthermore, 

organizational bureaucracy does not create barriers for their operations. 

Solita has created a model for their automated testing pipeline, which is simple to operate. 

This is accomplished by setting up their different development environments to resemble 

each other. The development, quality assurance and testing environments are all similar. In 

doing so, development and testing are conducted within copies of the real world 

environments, leading to minimized risks and fewer unknown problems further down the 

development process. Initially Solita configured their environments manually. Transferring 

software between the development, quality assurance and production environments would 

take hours due to the manual labor of configuring them. 

Monitoring tools are in extensive use for different purposes throughout the development 

process, with the main objective being able to find root causes in cases of failure. Monitoring 

systems can show whether the servers are running correctly, but extensive monitoring with 

centralized log files can further aid in discovering what exactly might have gone wrong. The 

knowledge gained from monitoring is applicable for scheduling appropriate maintenance 
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windows. The planning of future projects becomes easier as potential problems or 

opportunities are discovered at an earlier stage. Any suspicious activity is observed faster 

with a higher degree of monitoring. Solita uses monitoring not only for noticing anomalies 

within its systems, but also for developing its own processes: measure job queue 

management and apply metrics for code bug counts, evaluate average resolution times or 

determine customer satisfaction. Monitoring is used in a variety of ways within the DevOps 

culture of Solita. 

In order to share information, Solita periodically arranges 30-minute knowledge sessions for 

its developers to discuss whatever topics they are working on at the time. Additionally, after 

failures have been resolved, Solita organizes sessions that it calls “post mortems”: these 

sessions cover the reasons behind technical failures and their respective resolutions. These 

sessions emphasize the importance of sharing: knowledge and experience is shared among 

Solita’s developers. For code sharing Solita uses the version control tool GitHub. 

The mantra behind DevOps at Solita “Do things better – Do better things” justifies the 

implementation of the four keys of DevOps. Automation and monitoring reduces risks and 

simplifies the process of going into production, which in turn makes delivery continuous. 

Problems are easier to recognize and risks mitigated even further. The feedback from the 

value chain becomes more efficient as the feedback loop becomes shorter. The question 

whether a new feature or change increases the perceived value of a product is answered more 

effectively. An unsuccessful software change can quickly be reversed with an automated 

delivery pipeline. 

4.2 A large Finnish company – Company A 

Another large Finnish company operating on an international scale had previously been in a 

similar situation as Kesko: without any in-house developers, the company, Company A, was 

forced to outsource its software development. The teams were hired from software 

companies. This meant the outsourced developers had agile development methods built into 

their routine. In order to have these outsourced teams function as part of Company A, the 

decision was made to create its own set of guidelines and rules according to which the agile 

development teams were motivated to develop. Company A called it a “handbook” on how 

they conduct agile development. This example is based on a meeting with company A. 

 As with other large organizations, Company A was not able to adopt fully dedicated and 

autonomous teams developing in DevOps mode. Company A’s development teams consist 

at its core of cross-functional team members, with the exception of infrastructure specialists 

being part of multiple teams for cost-efficiency reasons. However, Company A describes 
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them as essentially being in DevOps mode due to the larger part of teams being cross-

functional and having the capabilities of maintaining their own product. 

 Automation rules are part of Company A’s development guidelines. The continuous delivery 

pipelines are setup according to the rules made by them. Each team also releases software 

based on the same guidelines of Company A’s definition of done (DOD). Company A has 

created a template for development, which is used as the baseline of tools and practices for 

any new project. 

 Motivation and collaboration is caressed with multiple measures. Company A strives to 

accommodate its development teams into a single location as much as possible for the 

quickest flow of information and knowledge and improved collaboration. They additionally 

consider their developers more as artists than engineers. At the end of each three-month 

cycle, Company A organizes innovation sprints for two weeks for its developers. During 

these innovation sprints, the teams are encouraged to freely develop new ideas and 

innovations. The focus is to strengthen the teams’ commitment to their project and empower 

individuals to recognize and visualize their role within the organization. According to 

Company A, they are still working on improving the teams’ collaboration. 

 Company A has begun shifting towards hosting more in-house developers and has begun 

hiring. Its target is to continue employing developers until the goal of three quarters of the 

developers being their own developers is reached. However, according to Company A, this 

process is time consuming. Therefore, as teams grow, they are still hiring partially from 

outsourced companies with the addition of Company A being in charge who is hired from 

the vendor. The vendor suggests candidates and Company A selects whom they acquire. 

 The most significant obstacle for shifting towards continuous development under an agile 

and DevOps culture at Company A has been motivating and empowering developers to 

understand their role within the organization. According to Company A, it is challenging to 

get people more involved and attached to their work. This in turn creates a stronger sense 

for the reasoning behind their work. Another hurdle in implementing modern ways of 

development is training managers on setting goals for their teams more clearly. With 

Company A’s knowledge of their culture transformation today, it would have begun 

recruiting its own developers earlier. 
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4.3 Hewlett Packard Enterprise  

4.3.1 DevOps at HPE 

As a large organization, Hewlett Packard Enterprise (HPE) has adopted the DevOps culture 

successfully within their own framework. In 2015, their digital portfolio consisted of roughly 

900 projects with 100 development teams and 1400 applications supported by their IT and 

operations department. This example is based on a DevOps seminar presentation given by 

HPE during the spring of 2017. 

 The question HPE attempted to answer was whether DevOps can work within their old and 

large organization. The answer to this question was positive: it is possible to apply DevOps 

within firms with high complexity and system dependencies. However, the extent of projects 

to which DevOps is applicable is limited to the nature of varying systems. Arne Luhrs, a 

senior system architect at HPE, described DevOps as “One size does not fit all” for their 

respective organization.  

In order to reach the answer of how DevOps functions at HPE, HPE began by examining 

and discussing what DevOps was trying to solve at HPE. The outcome was the HPE DevOps 

manifesto, which portrayed the guidelines for culture and automation at HPE. The manifesto 

was built upon everything running through code, meaning that although developers had 

access, they were not able to make any changes without code to execute the changes. This 

culture eventually lead to more code reviews and collaboration within the development 

process. 

 HPE began their DevOps transformation in 2014 by applying the culture to the development 

of a mobile application first. DevOps is best suited for development projects working in an 

agile environment, under which the mobile application was being developed. The goal was 

to implement DevOps on a small scale first before expanding it to other digital assets. 

4.3.2 Culture change at HPE 

 The first task was to drive the culture towards a higher degree of collaboration. With 45,000 

professionals working in the IT department of HPE, a complete reorganization was not a 

viable solution. Arne Luhrs called this process “how to reorganize without changing the 

organization”. HPE coined the term “ChatOps” for improving collaboration, which is the 

method of using a single chatroom tool for cooperation. Due to the complexity of HPE, not 

all teams have the opportunity to be located in the same room; hence, all communication is 

conducted through the chatroom. Furthermore, the same communication tool is used for 

integrating everything else: monitoring tools produce critical information, service tickets are 
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created and team members use it as a social medium. All of this information is immediately 

visible within the chatrooms and the chatroom itself becomes the most important 

collaboration pipeline. Team members can not only discuss problems but also find relevant 

data, graphs and metrics all through one centralized tool. “Teams became teams around an 

asset” and employees themselves were seen more as people instead of a resource. Team 

members could share and learn from each other in a more efficient matter than before, which 

had previously been a system of e-mail communication. This communication tool 

significantly improved the speed and quality of collaboration. 

4.3.3 Automation pipeline at HPE 

The vast range of different digital projects does not allow for a unified set of automation 

tools. HPE was aware of this and shifted the focus from a tool discussion to a pipeline 

discussion, which lead the DevOps automation aspect to become the application of rules 

instead of tools. The rules were set for the execution within pipelines, where the pipelines 

were the set of tools used for each respective project. The goal was to create continuous 

delivery pipelines by automating as much as possible with code, whilst reducing unnecessary 

paper work and human decision-making steps wherever possible.  

 HPE created standard steps and non-negotiable points that had to be conducted within the 

pipelines. Different environments and testing had to be setup in a manner where automation 

could verify whether everything had been tested thoroughly, hence reducing risks and 

eliminating slow decision-making. User acceptance testing requires real log data and is 

automated if the possibility to do so exists. Environment changes or code commits always 

require automated code reviews before execution. Commits themselves trigger automated 

tests. Thousands of tests are triggered with each new commit at HPE, with the duration of 

the complete test cycle being 11-15 minutes. The aim with automation is to eliminate the 

necessity for requesting permission and making sure that "this has been tested in the correct 

environment and is verified".  

4.3.4 Trust at HPE 

The final key for DevOps at HPE was increasing trust within the organization. Teams need 

to be integrated and empowered for the success of DevOps, yet managers often found it 

challenging to surrender some of their power to their teams. However, HPE recognized that 

a manager’s goal is to create value for teams and businesses instead of applying a process. 

The role of the manager is to deliver the organization’s goals and targets to the team and 

trust the team to accomplish them with the appropriate work as efficiently as possible. Work 

is done transparently and openly, where value is placed on trust and responsibility instead of 

rigid processes. 
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 Today, the teams working in DevOps mode at HPE are in high demand within the 

organization. They are able to create value for the business faster and maintain a high quality 

developer experience. DevOps “Dojos” are now part of the DevOps improvement plan at 

HPE, where knowledge on DevOps is shared and projects can attain information on the first 

steps on how to transition towards DevOps. Arne Luhrs’ vision on the three most important 

keys towards DevOps are culture, collaboration and automation. 
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5 Results, problems and barriers to DevOps 

The interviews were able to provide details on the first research question of this research. 

RQ1: What are the problems in Kesko’s software development process? 

The primary finding emphasized the variety in the methods of how development is 

conducted within Kesko’s digital projects. The lack in a concise and applicable development 

model without true organizational guidelines was seen as a cause for an unclear overview of 

digital projects and silos that understand themselves but not beyond. 

This chapter presents the discoveries made through the interviews of different employees 

within Kesko’s digital domain and provides further answers to the first research question. 

5.1 Kesko software development model 

Answers to the question on describing Kesko’s current software development model 

produced a wide range of observations. The lack of a common model has produced varying 

methods of development for digital projects that in turn have affected the overall 

acknowledgement on the complexity of Kesko’s digital domain. 

As of today, Kesko has acquired all of its digital development from outsourced vendors. 

These partnering development teams are responsible for the software development of their 

respective project, located either on premise at Kesko’s headquarters, in other cities within 

Finland or abroad in other time zones. Business is in charge for the value creation chain and 

works most actively with the development teams. IT is in a supportive role between them. 

However, due to the lack of in-house developers, the role of the IT department and the goals 

within its teams were not seen as transparent.  

Both agile development with lean processes and projects with waterfall development were 

discovered. For example, multiple digital projects within the grocery trade sector have been 

conducted with agile methods for some years through the cooperation of different vendors. 

These projects are a grocery mobile application and a new grocery online store. The teams 

involved in these projects develop, test and maintain their projects autonomously with 

automated tools. They were seen as conducting development according to the DevOps 

culture, without their respective project owners necessarily realizing the fact.  

In some cases agile and waterfall approaches were attempting to work in unison, especially 

with looming handovers to maintenance. As agile places more emphasis on the quality of 
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code rather than documentation, a problem DevOps would attempt to solve is imminent: 

operations requires high quality documentation to understand the digital asset it is receiving, 

whilst agile development focuses on the code itself and not on passing deep knowledge on 

to other functions. 

 The vast majority of digital projects mentioned during the interviews were seen as following 

a traditional waterfall model; handovers to maintenance vendors were considered the norm. 

The organizational culture appeared to dictate digital projects form the beginning: all digital 

assets were regarded as “projects”, meaning they had to be implemented with a clear 

deadline in mind. A predetermined finite ending to a digital project places the product into 

a state of expecting a handover to operations at some time, not if it a handover is made at 

all. The situation becomes more complex with the maintenance teams being from a different 

vendor than the development teams themselves. 

5.1.1 Project types 

 An important observation was the variety in the nature of digital projects within Kesko, 

ranging from quick and agile projects such as mobile applications and online stores to 

monoliths such as ERP and SAP systems. Business critical systems such as SAP are an 

essential part of the organization’s business model. Such systems are difficult if not 

impossible to adopt to agile frameworks. 

 Kesko is predominantly in the position of having to accept different types of software 

development models in its digital portfolio. Some assets are more suitable for agile and 

DevOps than others.  

Developers and IT managers alike reported varying degrees of transparency in the common 

goals of their respective projects within Kesko. Teams experienced differences in the 

reasoning behind their projects. Some were able to report a direct purpose for their team. 

Others felt key targets were missing. This produced an unclear situation for motivation and 

perception of being part of something. 

The core structure of Kesko’s software development organization is executed based on 

reporting to one’s supervisor on each organizational level. On one end is the development 

team, which reports to the product owner or project manager. The product owner or project 

manager, who is either from the business or from the IT department, reports upwards to 

higher managers within their respective organizational structure. This hierarchical flow of 

information can push decision-making, even for smaller cases, unnecessarily high. 

Additionally, information during this upwards trending flow poses the danger of either being 

misinterpreted or missed altogether. The key issue, which presented itself during the 
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interviews from this topic, was the need for providing development teams with greater trust 

and empowerment. 

5.2 Silo forming through budgeting 

5.2.1 The role of the IT department 

A further finding of the interviews was the presence of silos within Kesko’s digital 

environment. On the organizational level, the silos of the IT department and business were 

recognizable. The current level coordination and communication between different projects 

influences projects to distance themselves from each other. 

Many decision-making steps were reported to be conducted on a top-down approach, where 

even small-scale decisions had gone through a decision-making process. This was perceived 

to have had a negative effect on the efficiency of value delivery and product deployment. 

The bureaucracy resulting from this decision-making process was seen as a bottleneck for 

faster deployment. 

The organizational matrix of having a separate IT department from the business sector was 

reported to have had an effect on the forming of silos. Business strives to create value under 

the administration of Kesko’s IT, however IT was reported to not necessarily be able to 

provide all required resources at all times. Currently, IT and business should be able to 

collaborate for the best value creation pipeline. However, due to the current level of 

collaboration of the two departments in practice, they were not perceived as working 

together for a common goal as of yet. 

By default, software development teams at Kesko are not traditional agile and DevOps teams 

such as in software development companies. These companies can provide the technical 

skills in-house. At Kesko, developers from an outsourced vendor create the development 

team, Kesko’s business provides the product owner and value creator role and IT is the 

supportive function providing the budgeting. Further down the development pipeline is the 

outsourced maintenance. All of these parts were reported to lack in the levels of cross-

collaboration for the efficient implementation and maintenance of a digital asset. Instead, 

the project managers collaborated with other managers. 

Reflecting on the Westrum model on organizational culture, the interviews showed that 

bureaucratic culture is present within Kesko’s digital domain. Functioning communication 

is present, but only within the silos themselves. Information flow between different 
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stakeholders of a digital project is limited, leading to general barriers of effective 

development, deployment and maintenance. 

5.2.2 Budgeting and prioritization 

The divide between departments was seen as the most significant barrier for cultural change 

and conversely transitioning towards continuous development. Reasons for the divide 

between departments and teams were reported to lie in the limitations set by the current 

bureaucratic processes within the organization that had varying impact levels on 

communication, collaboration, decision-making, responsibility, transparency and digital 

asset management. 

Budgeting is conducted on a yearly cycle, where the IT department assesses changes or new 

features requested by the business unit. According to the interviewees, this created 

bottlenecks hindering quick and responsive development. The scope of this research does 

not address the budgeting processes of Kesko. However, it is mentioned as the interviews 

reported budgeting processes to have a significant impact on the efficiency of being able to 

supply customer demands and value creation more efficiently. A revision of the budgeting 

system to a more stream-like approach, such as at Company A, could promote the autonomy 

of development teams and the weakening of silos. 

Interviewees reported unclear prioritization mechanisms on digital projects to have been 

involved in the forming of the vague overall goals and targets. The digital portfolio appeared 

to lack clear priorities for projects, where multiple assets had been assigned the same 

priority. This in turn had created challenges in projects’ budgets, their collaboration and 

resource sufficiency. As a result, a sharing mentality, whether for tools or resources, had not 

been able to develop as of yet. The prioritization mechanisms were therefore perceived as 

being another cause in the forming of silos. 

Cost-efficiency measures are at the forefront of businesses. Kesko itself is now in the 

situation of having required a maintenance vendor for multiple digital projects in the future. 

From a DevOps cultural point of view, this step was reported to be counter-intuitive, as 

DevOps strives to create and maintain digital products within one team. The deal to transfer 

projects to one partnering maintenance team will foretell an increase in project handovers 

from development to maintenance. As mentioned during the interviews, the company is 

aware that it must run some projects with the waterfall method.  However, with the contracts 

in place, Kesko now has the opportunity to carefully prepare for the handovers.  
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5.3 Automation, guidelines and toolsets 

5.3.1 Automation and tools 

Kesko is currently in the position of not controlling the tools of all of its development teams. 

This is because outsourced development teams use their own automation tools. This was not 

considered a problem during the interviews as development teams should have the freedom 

to use the tools they are most experienced with. Furthermore, Kesko itself is not able to 

provide the technical knowledge of setting up automated pipelines. This in turn has formed 

an environment where each development team conducts automation differently and 

according to their own best practices.  

 As outsourced teams use automation and monitoring tools for their digital assets, these tools 

limit themselves mostly to each respective project. The culture of deploying shared tools 

within Kesko is in progress. The interviews reported a lack in the transparency of the 

monitoring tools within Kesko. Projects did use monitoring tools for their own projects, 

however a centralized understanding of which tools were in use was not recognizable.  

A team for maintaining shared development tools, such as the cloud infrastructure AWS and 

the communication platform Flowdock, exists. However, guidelines for using the tools were 

reported to not be in place. Some, but not all, interview participants were aware of the tool 

possibilities Kesko provides. Guidelines for using available tools were not considered 

transparent enough. Further problems were recognizable during the interviews: the 

capabilities of the tool maintenance team were limited in supporting Kesko’s complete 

digital domain. Not all tools in use were under the supervision of this team. Therefore, the 

transparency and guidelines for unified tool availability were seen as lacking. 

5.3.2 Testing 

 Consistent methods of software testing were not reported during the interviews. The current 

role of Kesko’s IT for testing mechanisms was considered to provide a consulting role, where 

Kesko’s own testing specialists informed projects of testing methods. However, the testing 

responsibility and methods were seen as residing within the projects themselves. This was 

believed to be the main reason for varying testing processes, leading to the absence of clear 

testing guidelines. Exceptions arose during the interviews of projects that tested their 

software throughout the development process. These were mostly the projects which 

developed with agile methods. However, transferring a product to a testing phase, which is 

common during waterfall projects, was regarded as an unsolved problem within Kesko’s 

software development. With many projects, testing had been neglected until close to 

deployment time, which in turn caused testing complexities and scheduling challenges. 
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5.4 DevOps awareness at Kesko 

Previous knowledge on DevOps varied between the participants. The majority of the 

interviewees approached DevOps only from the technological aspect. They regarded 

DevOps as being a method for automating development, which in turn produces faster 

development. Others recognized DevOps as being the unified collaboration between 

development and operations, where emphasis is placed on autonomous teams developing 

and maintaining their digital asset. Some of the interviewees had no previous knowledge of 

DevOps, but were familiar with agile software development, as some their projects had 

applied agile principles. The minority of interviewees, mainly the collaborating vendors, had 

deeper knowledge of all of the aspects related to a DevOps culture. These development 

vendors had already integrated the DevOps best practices into their own work, providing 

justification for their understanding of DevOps. 

All interviewees agreed upon the need for cultural change within the organization. Improved 

communication and transparency were seen as the most significant step in transitioning 

towards continuous development. Furthermore, the interviewees also conceded the fact that 

cultural change is a challenging task.  

From Kesko’s point of view a comprehensive perception of DevOps’ key factors was not 

present as of yet. However, the interviewees recognized the benefits of DevOps and were 

encouraged by the possibilities of its adoption. 
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6 Implementable DevOps practices at Kesko 

Reflecting the received responses during the interviews with the theorems of DevOps, an 

overall picture can be drawn on the aspects Kesko should focus on in transitioning towards 

continuous development. This chapter focuses on answering the second research question. 

RQ2: What points can Kesko focus on in transitioning towards continuous development? 

The interviews gave insight into the fact that agile software development is still in its infancy 

at Kesko. However, a transition towards agile has already begun and more is being developed 

with agile methods. DevOps bases its practices on the methods of agile and lean. Hence, it 

is important to note that before a DevOps development mode can be implemented, 

significant emphasis must be placed on changing the overall project culture from waterfall 

to agile and lean first. Nevertheless, this does not exclude the DevOps culture from becoming 

a part of Kesko’s culture already. 

One of the findings of this research is that DevOps is not a model suited for every type of 

digital project. Business critical digital assets that are planned thoroughly and executed 

systematically, must inevitably be kept separate from the complete DevOps movement. 

Improvements on collaboration and sharing can still be applied to such development, as 

culture should develop on an organizational level. 

The first step for Kesko should be to unify its software development. This can be 

accomplished with sets of clear guidelines that affect different digital projects. Especially 

DevOps requires a set of rules on how development is conducted, therefore a type of DevOps 

mantra is needed. 

The following findings present points Kesko can take into account today when considering 

the question of what problems DevOps could address within its organization. These findings 

are based on the problems and ideas discovered during the interviews, the DevOps theorem 

and the experiences provided by other large organizations that have implemented DevOps 

in their own development culture. All of the aspects considered during this paragraph should 

be addressed in the DevOps guidelines. 
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6.1 Culture, collaboration and trust 

6.1.1 Trust and empowerment 

Much like HPE, a significant step towards DevOps would be for Kesko to attempt changing 

the culture through which projects are managed. A top-down approach for managing teams 

and digital projects can create not only bottlenecks, but also hinder efficient decision-

making. Automation guidelines can move decision-making towards a leading-with-data 

approach during development. 

 Building trust and empowering teams and individuals does not happen overnight. A first step 

towards DevOps could be for Kesko’s managerial approach to change towards pushing 

discussion to occur directly between developers and operators, meaning having its technical 

experts talking to other technical experts. This could remove some of the silo effects 

recognized during the interviews. The current collaboration culture causes developers to 

report to managers and managers discussing technical knowledge with each other. Removing 

such a stage and facilitating communication between experts could be a part of Kesko’s 

DevOps culture, which promotes development that is more efficient. Removing barriers 

between business and IT could be managed in a similar manner. Integrating IT’s service 

managers, testing consultants or enterprise architects earlier into the development teams with 

business could improve trust and collaboration. Additionally, project development teams 

and operations teams should be encouraged to collaborate more freely at an earlier stage.  

 A further change towards building trust is shifting away from the need to manage processes 

which have been formed by the bureaucratic limitations. Kesko’s position as a software 

customer forces its managers into a supervisory role of the development teams, where either 

the manager or a higher official makes most decisions on development. Decisions that could 

be made by the team, especially technical decision, should be entrusted to the team instead 

of having to follow strict protocol slowing development down. Managerial focus should be 

able to shift from process management to focusing on their own expertise, which is value 

creation management. The recognition of such bottlenecks and their subsequent mitigation 

favors the transition towards a DevOps culture. 

6.1.2 One tool for everything 

Conducting open and efficient communication requires the correct setup. Facilitation all of 

its teams and their respective team members at one location is the ideal setup, however 

Kesko is not in the position of being able to locate all of its teams into one location. Hence, 

the appropriate tools are necessary.  
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Focusing all communication and all of the data produced during development into a single 

tool was a key factor for HPE to adapt DevOps. HPE was able to apply an integration capable 

communication tool on an organizational scale for everything conducted during 

development. One such tool was Flowdock, which is partially in use within Kesko’s software 

development. The next step would be to make such a tool not only mandatory but expect 

every other tool, such as the project management tool Jira or the monitoring tool New Relic, 

to be integrated into the same chat. This method leads to a greater degree of transparency 

and efficiency as every discussion, problem and all relevant data can be found in one place. 

Problem recognition and solving becomes much quicker, as opposed to more traditional e-

mail communication. Through the unified tool, team members are aware of all of the aspects 

that are in progress, and they can conduct research of other issues on their own. As all project 

relevant data and events are integrated into one tool, notifications on urgent matters such as 

failures or updates are visible to the whole team. With the availability of desktop and mobile 

versions of such collaboration tools, team members are continuously aware of the project’s 

status. 

 Quick and efficient communication is an essential part of DevOps culture. Shifting away 

from e-mail communication opens doors towards transparency and employees to become 

more involved in the development process. E-mail communication has the disadvantage of 

being only visible to the employees involved in the discussion chain. Shifting the discussion 

to an open communication platform has the effect of information having to be posted only 

once. This eliminates the building of e-mail clutter, which can cause information to be lost 

during an e-mail only discussion. Questions on an open discussion platform are answered 

more efficiently as someone who knows the answer can be found quicker. 

The key recognition for Kesko is that it is not a software company. As of now, the majority 

of the technical knowledge lies within its outsourced software development teams. 

Therefore, Kesko should be more active in creating an environment for DevOps 

collaboration between the teams developing for them. This could mean more sharing, more 

cooperation and more communication even between teams originating from different 

companies. Outsourced development teams are not expected to maintain a project forever. 

Hence, the transfer of project knowledge from development to operation becomes a critical 

point during the later stages of a digital asset. Promoting the collaboration between 

development and operations aids in the successful transfer, which in turn is helped by 

documentation. Using an open collaboration platform can positively influence all of these 

aspects. 

Communication plays a significant role in team building. Using the unified communication 

tool for socializing and discussions of other topics besides work should be encouraged. 
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Hewlett Packard Enterprise emphasized the importance of treating team members as humans 

instead of resources.  

6.1.3 Documentation 

Operations teams place a high priority on proper documentation. Comprehensive 

information on digital products and services is necessary for sharing the knowledge related 

to them. In case of failure the operations team must have access to the knowledge regardless 

of time of the day. Maintenance of a digital asset requires detailed specifications on how the 

asset is built. This is the purpose of thorough documentation: promote the accessibility of 

the detailed specifications.  

Kesko has outsourced the creation and maintenance of its digital products and services to 

different vendors. Each vendor currently places different priorities on their respective 

documentation. As different companies conduct development and maintenance, great 

emphasis must be placed on transferring the knowledge of the product from one vendor to 

another. A proposal for Kesko’s DevOps culture therefore is to incorporate the expectation 

of detailed documentation from every development team into the DevOps guidelines. This 

maximizes knowledge transfer efficiency from development to operations. 

Agile software development places greater priority on development than documentation. 

Kesko is the initial customer and end-user of the software products and services its 

outsourced development teams create. Furthermore, Kesko is also in a position of 

transferring these products and services to another vendor at the maintenance handover 

stage. Therefore, Kesko should place great emphasis on incorporating high quality 

documentation into its development culture. Access to the documentation should not be 

limited. Documentation access could be incorporated into the unified collaboration tool.  

6.1.4 Team structure 

Teams that develop software in pure DevOps mode, are cross-functional teams capable of 

developing, running and maintaining their product. The core DevOps mantra of “you build 

it, you run it” applies to teams with the appropriate skill set. As Kesko employs software 

development teams from outsourced vendors, the creation of cross-functional teams is 

challenging. The team, which creates the product, is in charge of maintaining it whilst they 

are developing for Kesko. However, many digital assets eventually reach a handover phase, 

where parts of the product’s maintenance are transferred to operations. In Kesko’s case, this 

maintenance vendor is a different outsourced company. Precise documentation aids in the 

transfer, yet true knowledge and experience of the product resides in the minds of the team 

members. 
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An early step towards shifting teams into DevOps mode could be to integrate members from 

the future operations team into the development team at an early stage. Through this change, 

knowledge and ownership of the product would not only grow within the development team, 

but also for the members responsible of maintaining it. This could produce an opportunity 

to bridge the knowledge gap of understanding the product thoroughly between development 

and operations in Kesko’s situation. The benefits of having an operations’ member 

integrated into the development team presents multiple benefits. Specifications from the 

operations team can be passed on to development at the earliest stage. The operations team 

eventually does not only have to rely on the documentation, but can refer to the experience 

gained from its team members who were a part of development. 

Kesko is in the process of hiring its own developers. Depending on their initial numbers, 

these developers could be integrated into development teams working on the highest priority 

assets at first for bridging the technical knowledge gap currently at Kesko. Such an approach 

to team creation would aid in retaining technical knowledge within Kesko. 

Building a cross-functional DevOps team requires not only knowledge on development and 

maintenance from its members, but also social skills to advance team dynamics. Kesko 

should have a more dominant role in the recruitment of its outsourced teams. Being able to 

reassure that development and operations employees are suited for the Kesko’s DevOps 

guidelines and ultimately selecting the correct people for its teams is an essential part in 

developing a functional DevOps culture. 

Team building exercises reinforce each individual’s growth within the team. As the 

importance of a single team grows within an evolving DevOps culture, so does the need for 

ensuring a functioning team dynamic. Building trust within a team consisting of different 

vendors takes significantly more time and effort than a team from a single vendor. Kesko’s 

managers should play a role in developing this team dynamic and trust. 

DevOps teams do not have “project managers” in theory, but Kesko does because of its 

position in outsourcing development. Project management acts as the direct bridge between 

business and software development, hence the position’s criticality is significant. 

6.1.5 Defining clear project types 

DevOps is the next progressive advancement from agile software development to higher 

efficiency. Therefore, a complete DevOps culture should be implemented in digital projects 

that can be conducted with agile methods. Business critical projects such as new point of 

sales technology requires careful planning and vigorous testing before deployment. These 
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kinds of projects have the precise requirements from the beginning and are therefore justified 

as being conducted with waterfall methods.  

 The digital product, which a specific project is attempting to create, should have the product 

lifecycle specified at the very earliest stage. The clearer the lifecycle of a product is defined, 

the simpler it is to plan and apply the appropriate software development methodologies. 

According to the interviewees, product lifecycle was an aspect where Kesko could improve 

upon whilst idealizing a new product or service. Having product lifecycle aspects built into 

the development process early could allow for clearer budgeting and prioritization 

procedures. Recognizing the timeline for which a product is to be developed aids in 

prioritization and preparation for a potential handover.  

Therefore, Kesko should carefully consider the creation of not only one software 

development model, but several different models. These models could differ according to 

nature of the digital asset and be applied accordingly. The agile model could be used for 

products with rather unknown specifications such as mobile applications and the waterfall 

model for projects with strict specifications. Perceived customer value is not always known, 

such as in mobile applications. They must be developed with agile methods where features 

and customer wants can change rapidly. 

The models should have clear, but flexible, templates for how a digital asset is developed. 

Once a new project is started, the template would define the tools that are available for the 

project to utilize, how testing and quality assurance is to be conducted and how a potential 

handover is to be prepared for. 

The distinction in project types does not mean to neglect agile and DevOps best practices. 

Cultural changes can and should ultimately affect the organization as a whole. Waterfall type 

projects can apply the cultural changes mentioned previously throughout this paragraph to 

improve efficiency and collaboration. Therefore, Kesko should incorporate multiple clearly 

defined project types into its guidelines and apply its DevOps guidelines for assets which 

are most suitable for the DevOps culture. 

The multitude of digital assets and services at Kesko makes it challenging to implement 

changes to every asset initially. Especially DevOps is not implementable for every type of 

product development. Hence, it is vital to be able to distinguish the type of project at the 

earliest stage. 
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6.2 Automation and tools 

Although DevOps focuses extensively on culture, it also incorporates the building of a 

continuous delivery pipeline with the use of automation tools for integration and 

deployment. During the development of a new digital asset, every checkpoint that is 

automatable, should be automated. The use of cloud applications should be promoted on an 

organizational level.  

6.2.1 Automation pipelines 

Without any own in-house developers or development teams, Kesko needs to continue 

relying on the technical knowledge provided by its development partners for building 

automation pipelines. As these development teams currently create the pipelines based on 

their own expertise, Kesko’s role in automation should be more present in demanding 

automated deployment pipelines and setting precise requirements for them. Instead of 

providing automation tools, Kesko should focus on creating the rules within the pipelines, 

just as HPE has done. These rules should provide automation as much as possible in order 

to make deployment and decision-making as simple as possible. This however needs an 

improved visibility of the complexities and dependencies of all of its systems: not only the 

cloud infrastructure in use today but also the active legacy systems. The culture and sharing 

improvements should present an opportunity in providing such information for anyone 

requiring it as fast as possible. 

Having an automated deployment pipeline, which incorporates automatic testing for builds, 

would result in the reduction of risks and difficult decision-making. The emphasis on 

thorough testing throughout the complete development process would provide high quality 

software coupled with a proficient deployment process. Hence, testing already at an early 

stage of development should be incorporated into the DevOps automation guidelines set by 

Kesko. Conducting all tests at the end of development creates scheduling and quality 

challenges. This approach should be avoided by requesting continuous deployment pipelines 

for each project that automate wide scale testing with each new code commit. Therefore, 

testing would be conducted constantly during development, instead of being a process during 

the finalizing stages of development. 

 Creating a set of rules and requirements could be the first step for Kesko to be more involved 

in the automation conducted within its digital projects. The key aspect to keep in mind for 

setting the rules, such as the type and amount of testing, on automation pipelines is how to 

prevent large releases and instead promote smaller and more frequent releases within each 

project. 
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6.2.2 Monitoring and metrics 

Having a centralized knowledge of infrastructural and application systems on an 

organizational level is a vital part of DevOps. Recognizing failures early and often aids 

significantly in development that is more efficient. Wide-scale monitoring leads to quicker 

recovery from failures and deeper learning of the created value from software changes.  

Striving for functioning monitoring tools is essential, but furthermore it is critical to deploy 

the same monitoring tools and metrics for every project and department. Such unified 

metrics enable the comparability between digital assets and further the knowledge on 

successful development practices. 

 Unified monitoring tools should be accompanied with unified metrics in the DevOps 

guidelines. Making project progresses and statuses more transparent, accessible and 

comparable with new metrics could be an integral part of Kesko DevOps. Metrics such as 

cost per deployment could reveal overall efficiency of development teams. Other metrics 

such as bugs per build or team satisfaction metrics could be developed in order to reveal the 

true work efficiency within the team. Metrics for the quality of code could provide feedback 

on the outsourced vendor, however because of the lack of in-house development teams these 

metrics should be conducted by the vendor teams. 

The recorded metrics should cover three areas: people, processes and technology. 

Understanding employee satisfaction, motivation and recognizing bottlenecks in 

development and organizational processes can provide insight into the hurdles associated 

with non-technological aspects during development. Metrics on technology aid in improving 

the output provided by the employees [6, p. 44].  

6.3 DevOps awareness 

Increasing the awareness of DevOps and its benefits is an effective way to spread its best 

practices into the organization successfully. Sharing previous success stories and making 

existing achievements in agile, lean and DevOps more transparent and accessible can 

become a catalyst for the required cultural and technological changes. As DevOps is in its 

essence mostly a human and management problem, the shift towards continuous 

development and DevOps arises from these organizational roles.  As sharing is a corner stone 

of DevOps, sharing its angles openly can become vital during the creation of DevOps 

guidelines within Kesko. 
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6.4 Action plan 

Depending on their nature and industry, specific DevOps practices can differ vastly between 

companies. As Aruna Ravichandran, Kieran Taylor and Peter Waterhouse recognize in their 

book [6], the action plan for beginning to adopt a DevOps culture consists of seven 

fundamental points: 

1. Recognizing business goal 

2. Finding support from senior management 

3. Choosing the correct people 

4. Choosing quick deliverable 

5. Developing suitable metrics 

6. Incorporating DevOps with other processes 

7. Developing automation 

Understanding the needs and goals of the business is the driving force behind DevOps. 

Building such a culture should rise from striving to improve customer value creation. IT and 

business should collaborate towards satisfying the common goal. [6, p. 164-165] 

In order to gain support for DevOps throughout the organization, it is integral to have trust 

from senior management for the benefits of DevOps. Higher management is able to create a 

more credible force behind the adoption of a change. [6, p. 165]. 

As DevOps revolves heavily around people, selecting the right people has a significant 

impact on the first development changes towards DevOps. People involved in an evolving 

DevOps culture need not only be able to work well in teams, but also show resilience and 

flexibility as failure can accompany change. [6, p. 165-166] 

DevOps development is most suited for assets that are quickly deliverable. The application 

or project should be manageable and deliverable whilst trialing with different DevOps 

practices. Suitable examples are mobile applications or webpage development. [6, p. 166-

167] 

The success of the DevOps development needs to be measurable. Therefore collaborate goals 

and the metrics to measure the success of DevOps must be developed. The metrics and their 

respective goals should be coordinated with the business goals, but also measure and provide 

feedback on the development process. [6, p. 167-168] 

All stakeholders involved during the development of a digital product are to be taken into 

account. Therefore, forcing completely new processes and approaches should be taken 

lightly. Instead, the developing DevOps culture should be adjustable and capable of being 

integrated with other existing processes in order to satisfy the needs of all stakeholders 

involved. . [6, p. 168] 
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Building the automation pipeline should begin by assessing the most significant hurdle in 

the current delivery pipeline. Although the ultimate goal of automation is to commit, build 

and release with the least amount of manual labor, the primary step should be to automate 

the process currently being the most significant bottleneck in the development process. [6, 

p. 168-169] 

These seven steps create a basis from which to begin the transition towards DevOps. Cultural 

change on an organizational level is complex; therefore beginning the journey towards 

DevOps should begin on a small scale. The success of such beginnings can become a 

platform for major change.  
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7 Discussion  

The focus of this research was to discover how Kesko could transition towards the 

continuous software development model of DevOps whilst utilizing cloud-computing 

applications. Direct connections can be drawn between areas where Kesko could improve in 

order to work under a DevOps culture. However, the major finding was that the culture 

within Kesko is not fully ready to deploy teams functioning under a DevOps culture. Kesko’s 

first task should be to implement lean and agile approaches to not only its digital 

development, but also to the separated departments of business and IT. As changing 

organizational culture within a large corporation is a challenging task, Kesko nevertheless 

has the opportunity to transition towards continuous development. Hence, the final research 

question can be answered within this chapter. 

RQ3: Could DevOps be adaptable? 

Developing a DevOps culture is a process, where suitable practices are adopted iteratively. 

DevOps in Kesko’s case is clearly adaptable. However, it requires a cultural shift 

promoting more collaboration between development, operations and Kesko’s other 

business functions and a more wide range agile or lean adoption. 

This chapter answers the final research question in more detail and discusses some of the 

points that would create an ideal DevOps culture at Kesko. 

7.1 Ideal situation 

Having a fully functioning DevOps culture within a large organization is a major task to 

reach. As an example, HPE has been working on their respective DevOps culture for three 

years as of today.  

 In an ideal situation, Kesko would have a complete set of guidelines for its own established 

DevOps culture. These guidelines would direct software development, wherever applicable, 

to completely ingrained agile methods with fully automated deployment pipelines. DevOps 

at Kesko would be executed with a template, which portrays all of the required rules for 

testing, integration, deployment and collaboration. 

 The development teams would be completely autonomous. These teams would develop and 

maintain their product at all times, without any handovers to maintenance taking place. 

Changes or new features could be implemented at any time and failures would be recognized 

and repaired immediately. Ideally, the teams would consists of only in-house developers 
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from the IT department who collaborate with the business unit for creating customer value 

via its digital products and services. The continued employment of software consultants for 

digital projects comes at a high cost. This is the reasoning behind the current model of 

requiring handovers to maintenance. Therefore, as the discussion is generally about cost 

optimization, the outsourced software consultants are often times an unsuitable option for 

maintaining the software created for Kesko. 

 As one development team cannot be tied up with a single digital asset forever, the carefully 

created project type models are responsible for the timeline during which the team is 

responsible for maintaining its product or service. These models take the product 

prioritization and lifecycle into account at the beginning of the project. 

 Unified automation and communication tools could be provided by the organization’s IT, as 

all development teams are Kesko’s own.  

 With the current construction of a centralized office, Kesko would have the ability to locate 

its potential development teams in one location.  

7.2 DevOps team 

The scope of this research limits itself to uncovering Kesko’s current software development 

hurdles and attempting to apply aspects of the DevOps culture into the current environment. 

Therefore, in order to attain a complete overview of the problems, complexities and 

dependencies of all of Kesko’s IT systems, a dedicated DevOps team is required. The task 

of this team would be to map out all cultural and technological aspects and processes within 

Kesko. Furthermore, the team would propose changes that incrementally lead to a transition 

towards continuous development. Such a team would require the support of the 

organization’s top management. Further material on such a dedicated DevOps team can be 

found in literature, as for example Paul Swartout’s book Continuous Delivery and DevOps: 

A Quickstart Guide. Swartout emphasizes the difficulties of changing organizational 

procedures and therefore suggests the deployment of such a team. 

Multiple consulting companies such as Eficode and Puppet provide organizational change 

services, especially towards DevOps culture. The dedicated team could either be created 

with the knowledge and support of these companies or with Kesko’s own employees. 

However, as Swartout suggests, the key for the DevOps team is to focus only on developing 

DevOps. Additionally, the team requires not only knowledge on cultural change but also on 

technical knowledge for being able to create automation pipelines.   
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8 Conclusions 

Transitioning towards continuous development in its simplest terms requires a faster 

software release cycle. Releases must be conducted more often and in smaller chunks. 

Creating such an environment for quick iterative releases becomes more challenging with 

larger organizations, not necessarily because of technical challenges, but because of the 

underlying dependencies between different departments and teams. 

This research has been able to discover the existence of such substantial dependencies within 

Kesko, but also the silos that currently limit the collaboration between these dependencies. 

In order to shift towards continuous development, these dependencies should be recognized 

and improved upon. As of today, Kesko’s software development situation on an 

organizational scale is in its infancy in regards to continuous development and DevOps. 

Some teams do practice the DevOps culture within their daily work. However their 

implementation of DevOps stems from the fact that these teams are outsourced vendors that 

have applied the DevOps culture within their own respective organizations. Therefore, the 

DevOps culture practiced currently within Kesko is not Kesko’s own. However, valuable 

information, lessons and experiences on continuous delivery can be directly acquired from 

the current DevOps development practiced by the vendors at Kesko. 

Although the development of Kesko’s DevOps culture is only at its first initial stage, current 

organizational structures and processes were regarded as being hurdles for the company’s 

own DevOps culture. As DevOps takes agile or lean development for granted, Kesko should 

begin by focusing on creating its own development guidelines that incorporate functioning 

aspects of agile and lean into the existing organizational processes. The creation of these 

guidelines should assemble all stakeholders involved in the DevOps culture, for example 

product owners, developers, enterprise architects, operations, maintenance, release 

managers or information security specialists. The formation of DevOps silos should be 

avoided at all costs [31, p. 282]. 

Due to the limitations set by the current organizational structure, the question of what 

DevOps is expected to achieve should be taken into account. DevOps itself should not be 

considered as an ultimate solution, but instead a result of a functional structure. Hence, in 

order to adapt DevOps, transition towards continuous development and create a modern way 

of developing, significant cultural changes mentioned throughout this research need to be 

undertaken: such as measures to improve transparency and collaboration. DevOps ultimately 

is the functioning combination of work culture and modern technical tools. 
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Another question to consider is the range on which DevOps should be applied: should 

DevOps become the norm for every digital asset or only applicable were necessary? 

Acknowledging the fact that DevOps is not applicable for every type of development aids in 

recognizing the potential DevOps can bring to the organization. As other larger firms, such 

as Company A and HPE have recognized before, although tedious, change is necessary for 

building a new software development model.  

The results gained from this research can be considered as concrete points of emphasis on 

where to begin mapping out an action plan for the development of DevOps. The interviews 

provided insight into the current state from employees directly involved in every day 

development. Comparing the interviews with the theorem of DevOps and other 

organizations produced results of cultural and technical value, which Kesko could consider 

expanding on. Nevertheless, the importance of Kesko’s own identity regarding DevOps 

should remain at the forefront. Experiences on DevOps from other parties should be 

surveyed, yet the formation of DevOps should be reflected on Kesko’s own needs. This 

research recognizes the vastness of the requirements for organizational change. Therefore, 

greater research is required to chart out and improve upon the organizational challenges 

associated with a large company such as Kesko for transitioning towards continuous 

development. 
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Appendix 

Common questions for everyone: 

1. What is DevOps in your opinion? 

2. How do you see Kesko’s current continuous development model? 

a. What is good? What could be improved? 

3. What do you consider a successful working culture? 

a. How do you see a change taking place? 

4. What pain points come to mind currently at Kesko in your projects? 

5. What are the barriers in coordinating your projects efficiently? 

6. Do you believe changing the development model is a challenge? 

a. Why or why not? 

7. How do you currently see the willingness of changing to a more modern model within 

Kesko? 

a. How could that be changed?  

8. Which do you see as more important and why: freedom or overall project 

management? 

9. If given the chance would you agree with removing handovers wherever possible? 

a. How could this be done? 

10. How often do you think software should be deployed into production? 

11. What roles do you expect DevOps teams to contain? 

 

Questions for developers: 

1. You as a potential partner: how do you see working with other vendors in one team? 

2. If Kesko had a specified DevOps model: as a potential partner are you excited or 

burdened? 

a. How much of your own tools or your pipeline would you be willing to change? 
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b. Which should be the same? 

2. How is testing implemented currently in the projects you are a part of? 

3. Can development be conducted fast or efficiently enough at the moment? 

a. Why or why not? 

b. How would you develop it? 

 

Questions for business: 

1. What are your expectations of CAMS in Kesko? 

2. What is the biggest blocker for faster development? 

3. Should digital projects have a model with a finite ending? 

a. Why or why not? 

 

Questions for IT: 

1. How is testing implemented currently in the projects you are a part of? 

a. What problems do you recognize? 

2. What role do you see yourself in currently within the digital projects? 

3. What role do you see yourself in the future within the digital projects? 

4. Can development be conducted fast or efficiently enough at the moment? 

a. Why or why not? 

b. How would you develop it? 


