
Data simulation of tumor phylogenetic
trees and evaluation of phylogenetic
reconstructing tools

Xinyue Li

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo October 8, 2017

Thesis supervisor:

Prof. Juho Rousu

Thesis advisors:

Prof. Veli Mäkinen

D.Sc. Alexandru I. Tomescu

aalto university
school of science

abstract of the
master’s thesis

Author: Xinyue Li

Title: Data simulation of tumor phylogenetic trees and evaluation of
phylogenetic reconstructing tools

Date: October 8, 2017 Language: English Number of pages: 4+45

Department of Computer Science

Professorship: Bioinformatics

Supervisor: Prof. Juho Rousu

Advisors: Prof. Veli Mäkinen, D.Sc. Alexandru I. Tomescu

Tumor heterogeneity describes that a tumor usually contains more than one type
of cells which are called clones. Clones in a tumor have distinct morphological and
physiological features such as genetic variations. Different clones display different
sensitivities to cytotoxic drugs, and tumor heterogeneity can add complexity
to understand tumor composition and pose challenges for the development of
successful therapies. Thus, studying tumor heterogeneity can guide tumor therapies
for individual patient and enhance our understanding of inter-clonal functional
relationships during therapies, which could be benefit to personalized and efficient
treatments.
Heterogenetic tumor development is an evolutionary process. There exists an
evolutionary relationship among the clones of a heterogenetic tumor and the
relationship can be described by an phylogenetic tree. Computational tools have
been increasingly important to study tumor heterogeneity because of their time
and economic efficiency. Such tools usually take as input the genetic variability
data produced by high-throughput sequencing technologies, then output clonal
composition of a tumor and reconstruct the polygenetic tree of it.
In this thesis, we simulated a large amount of datasets consisting of tumor phylo-
genetic trees with varying properties and used the datasets to evaluate five recent
and popular tumor phylogenetic reconstructing computational tools. We found rel-
atively large differences for performance among those tools and also their strengths
and shortcomings, respectively. We left as future work improvement of the data
simulation methods and exploration of tool parameters for possibly more beneficial
results.

Keywords: bioinformatics; tumor heterogeneity; phylogenetic trees; phylogenetic
reconstructing tools; evaluation

iii

Preface
Thank you professor Juho Rousu for being my supervisor and the guidance. Thank
you professor Veli Mäkinen for the interesting thesis topic and the patience for
instructions. Thank you Alexandru I. Tomescu for your very much patience for
guiding me for all the working details and the thesis revision to every single word.
And thank you Lu Cheng for helping me to find this thesis position. And also I
thank people around me for their continuous supporting.

Otaniemi, October 8, 2017

Xinyue Li

iv

Contents
Abstract ii

Preface iii

1 Introduction 1
1.1 Thesis structure . 2

2 Biological Background for Our Data Simulation Algorithm 3
2.1 Genetic variability . 3
2.2 Tumor evolution . 6
2.3 Sequencing technology and VAF value 6

3 Data Simulation of Tumor Plynogenetic Trees 8
3.1 Trees . 8
3.2 Overview of the data simulation algorithms of the evaluated tools . . 8
3.3 Data simulation . 11

3.3.1 Non-uniformity of data simulation of Ancestree 12
3.3.2 Data simulation with Prüfer sequence 21

4 Evaluation of the Tumor Phylogenetic Reconstructing Tools with
Simulated Data 30
4.1 Evaluation criteria . 30
4.2 Overview of the evaluation criteria of the evaluated tools 31
4.3 Evaluation results . 33

4.3.1 Predicted tree of the tools for one of our simulated data . . . 33
4.3.2 Performance of the tools on our evaluation criteria 34

5 Discussion 40

6 Summary 41

References 42

1 Introduction
Tumor is formed from the abnormal cell growth with the potential to invade or
spread to other parts of the body. Malignant tumors are usually called cancers.
Cancer has multiple causes such as genetic variations, environmental pollution
or poor lifestyle choices. A tumor may consist of subpopulations of cells with
distinct genomic alterations, this phenomenon is called tumor heterogeneity. Tumor
heterogeneity is likely to have implications for cancer therapeutics and biomarker
discovery, particularly in the era of targeted treatment [1]. Current therapies treat
cancer as a homogenous disease [2]. Targeted drugs have been developed against
single or multiple subpopulations of cells with mutated oncogenes that they target,
while those subpopulations without corresponding mutations are unaffected [1]. The
pre-existing untargeted subpopulations may expand and maintain tumor progression
after the drug therapies [1]. For example, the enrichment of tumorigenic cells in
colorectal carcinoma (CRC), breast cancer, and glioblastomas (GBMs) has been
observed after irradiation or cyclophosphamide treatment [2]. Therefore, studying
tumor growth process and its heterogeneity has profound effects on cancer diagnosis
and therapies.

Tumors can be benign, in situ, malignant, and of uncertain or unknown behavior
[21]. Benign tumors include uterine fibroids and melanocytic nevi. They are circum-
scribed and localized and do not transform into cancers [22]. Potentially malignant
tumors include carcinoma in situ (CIS). They do not invade and destroy other
tissues but may transform into cancers [23]. Malignant tumors are commonly called
cancers. They invade and destroy the surrounding tissue, may form metastases and,
if untreated or unresponsive to treatment, will prove fatal [23].

Tumor heterogeneity describes that a tumor contains more than one type of
cells in it. Different types of cells within a tumor has distinct morphological and
physiological features, such as expression of cell surface receptors, proliferative and
angiogenic potential. Tumor heterogeneity can occur both between tumors (inter-
tumor heterogeneity) or within tumors (intra-tumor heterogeneity). It is widely
accepted that tumor development is an evolutionary process [20], and spontaneous
tumors usually originate from a single cell and expand to a group of cells which form
a mass.

There are two sources for tumor heterogeneity. One source is cancer stem cells,
which are non-heritable and the other source is clonal evolution, which is heritable
[20]. The concept of cancer stem cells states that the growth and progression of many
tumors are driven by a small fraction of cells, the majority of cells in a tumor are the
products of abnormal differentiation of cancer stem cells [20]. Thus, to characterize
and eliminate the malignant cells in tumors, it is necessary to focus on the small
fraction of tumorigenic cells [24]. The concept of clonal evolution states that a tumor
arises from a a genetically normal cell which evolves to a large amount of cells. In this
evolution, random mutations are constantly produced and the tumor finally contains
billions of malignant cells that have accumulated large numbers of mutations [25].
Tumor evolution is depicted as a succession of clonal expansion rounds, in which
every new round is driven by an additional mutational event [20].

2

One is a linear model of clonal succession, where progressive sequentially ordered
mutations drive linear succession of rounds of clonal expansion, and result in clonal
expansion [20]. The other one is multi-clonal model of tumor progression, in which a
single cell is expanded into multiple subclones through a splitting mechanism [26].
This model is more associated with tumor heterogeneity than the linear model. The
acquired mutations result in an increased genomic instability with each successive
generation [27].

Heterogenetic tumors which are tumors consisting of multiple clones can display
different sensitivities to cytotoxic drugs among different clones. Furthermore, the
level of heterogeneity can itself be used as a biomarker since more heterogenetic
tumors may be more likely to contain treatment-resistant clones [28]. The reasons for
different sensitivities could be the interactions between clones which may inhibit or
alter therapeutic efficacy [20]. Tumors with high heterogeneity have higher probability
to be composed of pre-existent clones that are resistant to therapies and may result in
therapy failure [20]. The future treatment of tumors relies on personalized strategies
designed to target tumorigenic cell populations present in an individual patient
[29]. Tumor heterogeneity is a cause to drug resistance and, thus, a prominent
contributor to therapeutic failure [29]. Tumors can achieve drug resistance in various
ways simultaneously, thus targeting a single resistance mechanism to overcome
therapeutic failure may limit the benefit of targeted therapies [30]. Therefore,
tumor heterogeneity can add complexity to understand tumor development and
pose challenges for the development of successful therapies [29]. Studying tumor
heterogeneity can guide subsequent therapy for individual patients and enhance our
understanding of inter-clonal functional relationships during therapy, which could be
helpful with personalized and efficient therapies [30].

To study tumor heterogeneity, many effective computational tools have been
developed to analyze tumor clonal information and its evolutionary history. The tools
usually take as input the genetic variability data produced by the moderately-priced
high-throughput sequencing technologies, and produce output, such as the clonal
composition of a tumor and the ancestral relationship among clones. This information
is important to understand the tumor development and help with efficient treatment
developments.

1.1 Thesis structure
In this thesis, our goal is to evaluate and compare some computational tools which
could analyze tumor clonal composition information and the evolutionary relationship
among clones. For evaluation, we simulated datasets consisting of tumor phylogenetic
trees and set multiple evaluation criteria. We ran the selected tools on our simulated
datasets and computed their performance on our evaluation criteria for comparison.
Section 2 of the thesis introduces the biological background needed to understand the
tumor evolutionary process and how the data is being generated. Section 3 describes
our data simulation algorithm. Section 4 presents our evaluation criteria and the
evaluation results of the selected tools. Finally, Section 5 indicates some points for
further studies.

3

Figure 1: DNA double helix. [31]

2 Biological Background for Our Data Simulation
Algorithm

In this thesis, we generated datasets of tumor phylogenetic trees. In this section, we
briefly introduce biological background related to tumor phylogenetic trees which
form the biological basis of our data simulation algorithm.

2.1 Genetic variability
DNA is a biological molecule polymerized by nucleotides. There are four kinds of
nucleotides in DNA: adenine (A), thymine (T), cytosine (C) and guanine (G). DNA
is the basis of amino acid sequence which constitutes protein. A DNA molecule
consists of two strands. They are antiparallel to each other to form a structure of
double helix. Each type of nucleotide on one strand is connected with another type
of nucleotide on the other strand: A with T; C with G (Figure 1) [3]. This is known
as the rule of base pairing.

DNA replication is the process of producing two identical DNA molecules from
the original DNA molecule. When the replication starts, the two strands of a DNA
molecule are separated from each other and each strand serves as a template to make
its counterpart. A nucleotide at each position of a strand connects with another type
of nucleotide based on the rule of base pairing to synthesize the counterpart of this
strand. After the replication, the original DNA molecule turns into two identical
molecules (Figure 2) [3].

A gene is a region of DNA and is the molecular unit of heredity [3]. There are
multiple genes on DNA with different functions. Mutation is a permanent change
of the nucleotide sequence of the genome. It can come from the DNA replication
process when wrong nucleotides are connected to specific base positions. There are

4

Figure 2: DNA replication. [31]

Figure 3: Point mutation.[9]

5

Figure 4: Structural variation. [10]

Figure 5: Phylogenetic tree of a tumor

different types of mutations such as single nucleotide mutation (point mutation)
(Figure 3) and structural variation (SV) including insertion, deletion, and reversion
(Figure 4). Causes leading to mutations might be chemical materials, toxicity or
viruses. Mutations in a gene can change the products of it such as a different protein,
or prevent the gene from functioning properly [3].

6

(a) Creating consensus sequence from reads

(b) Comparing consensus sequence with reference genome to detect SSNV

Figure 6: SSNV detection from reads alignment

2.2 Tumor evolution
Mutations occur in any cell of the body excluding the germ cells (sperm and egg)
are called somatic mutations [6]. The accumulation of somatic mutations during an
individual’s lifetime can lead to uncontrolled growth of a collection of cells into a
tumor [7] and can cause cancer or other diseases [6]. As a result of the accumulation,
there will be more than one type of cells in a tumor. Groups of cells with distinct sets
of mutations are called clones or a cell population of a tumor. Clones in a tumor are
phylogenetically related. Their relationship can be represented by a phylogenetic tree
[20]. The phylogenetic tree illustrates evolutionary relationship among clones and the
occurrence order of each mutation. For example, in Figure 5, (1) is a phylogenetic
tree of a tumor with four clones labeled from 0 to 3, (2) shows new mutations that
occurred in each clone during the evolution of this tumor. Each clone will also
inherit mutations on the path from the top clone to itself. For example, clone 0 has
mutations m0, m1; clone 1 has mutations m0, m2, m3, m4.

2.3 Sequencing technology and VAF value
DNA sequencing is a method to detect the precise order of nucleotides in a strand of
DNA. The next-generation sequencing (NGS) field consists of a number of modern
sequencing technologies which allow sequence determination cost and time efficiently.
From an input of biological samples, the technologies output short nucleotide se-
quences (called reads). Reads are then aligned to a reference genome using various
alignment algorithms, such as Burrows-Wheeler transform algorithm. After the
alignment, a consensus sequence can be created by assembling the overlapping reads
(Figure 6). At a position of the consensus sequence, there may be more than one
reads type of nucleotides aligned there due to the overlapping of reads (the total
number of reads covering a mutation is called read coverage). The nucleotide at
that position is determined to be the most common one of the aligned nucleotides.
For example, in Figure 6, three adenines (A), one guanine (G) and one thymine (T)

7

are aligned at the third position of the consensus sequence, then nucleotide at that
position is determined to be adenine (A). After creating the consensus sequence,
nucleotides in it that are different from the reference genome can be identified and
they are the SSNVs we need.

From an input of multiple samples from a tumor, we can detect the somatic
single nucleotide variation (SSNV) in each sample with sequencing technology. The
fraction of cells in a sample containing a SSNV out of all cells is called the variant
allele frequency (VAF) of a SSNV in this sample. We can compute VAF values for
each SSNV in each tumor sample. From an input of VAF values of a tumor, many
tools have been developed to reconstruct the phylogenetic tree of the tumor.

In this thesis, we generated some datasets of tumor phylogenetic trees. We
collect samples from each tree and compute VAF values for each SSNV in each
sample. The VAF values are basically the inputs for tools we will evaluate in this
thesis. Each tool will output one or several reconstructed phylogenetic trees of the
tumor and we then compare the reconstructed tree or trees with the true tree to
evaluate the reconstruction accuracy of each tool. We evaluated five phylogenetic
tree reconstructing tools: MIPUP [15], LICHeE [16], AncesTree [17], CITUP [18]
and Treeomics [19].

8

3 Data Simulation of Tumor Plynogenetic Trees
In this work, we simulated datasets consisting of simulated phylogenetic trees. In
this section, we first briefly describe concepts related to trees in Section 3.1, then in
Section 3.2, we describe the simulation algorithms used in the papers introducing
the tools we will evaluate. Our data simulation algorithm is a modification of the
simulation and reconstructing algorithms from [17] and is described in Section 3.3.

3.1 Trees
In this section we use the terminology and definitions from [11]. A tree is an undirected
connected graph which has no cycles. Any two nodes in a tree are connected with
exactly one path. A rooted tree is a tree in which one node is set to be root. In a
rooted tree, for a pair of directly connected nodes, the one closer to root is called
parent and the one further to root is called children of the parent. On the path from
root to a node, all nodes are called ancestors of that node. Starting from a node, all
nodes reachable by repeatedly proceeding from parent to child are called descendants
of that node. A group of nodes with the same parent are said to be siblings. Nodes
without child are called leaves. Nodes which are not leaves are called internal nodes.
A subtree of a tree is a tree rooted at an internal node of that tree. The number of
edges incident to a node is called its degree.

A labeled tree is a tree with its nodes having distinct labels [12]. The number of
unrooted labeled trees of n nodes is nn−2 [12]. For example, with n = 3, there are
three unrooted labeled trees which are enumerated in Figure 7, and there are nine
rooted labeled trees which are enumerated in Figure 8.

3.2 Overview of the data simulation algorithms of the eval-
uated tools

In this section we give a brief overview of the data simulation algorithms used by
the tools that we evaluated.

In LICHeE [16], the simulator (Algorithm 1) starts from a normal clone, which
is a clone without mutations, and sets it to be root of a phylogenetic tree. Then
iteratively, each clone in the phylogenetic tree can give rise to a new clone which
is a child of the clone and also a new node in the phylogenetic tree. The new
clone carries a new somatic single nucleotide variation (SSNV) with probability
PSSNV or a copy number variation (CNV) with probability PCNV . Each clone can
also undergo death with some probability. The simulator runs fifty iterations and
produces a phylogenetic tree with several hundreds to thousands of nodes. Then
multiple samples are collected from the tree using two different sampling methods.
One method is randomized sampling in which one sample is made up of up to five
randomly selected nodes from the phylogenetic tree Figure 9. Another method is
localized sampling. This method collects all nodes in an entire subtree to form a
sample, but subtrees for different samples should be disjoint, which means subtrees
for different samples do not share nodes. In both sampling methods, each sample

9

Figure 7: Unrooted labeled trees with 3 nodes

Figure 8: Rooted labeled trees with 3 nodes

Figure 9: Sampling methods of the paper presenting LICHeE

10

then collects a fraction of cells from each clone. The algorithm then computes VAF
values for each mutation in each sample. These are the true VAF values,which are
VAF values without noise. The algorithm then adds sequencing and sampling noise
to them, as follows. For sample s and mutation i, it samples a value from a binomial
distribution B(n, p) where p is the true VAF value of mutation i in sample s and n is
a given read coverage. These values are considered to simulate VAF values obtained
from real samples. LICHeE takes as input these values.

Algorithm 1: Data simulation algorithm of LICHeE
1 Let a be the total number of reads;
2 Let n_mutations be the number of mutations;
3 Let n_samples to be number of samples;
4 Let V AF be an empty matrix of size n_samples× n_mutations to store the

true V AFs;
5 Let V̂ AF be an empty matrix of size n_samples× n_mutations to store the

noisy V AFs;
6 Let sample_i = a list of selected nodes of the ith sample;
7 Let mutations to be a list of mutations in the tree;
8 Set one node with normal cells to be the root of a tree;
9 for i = 1 to 50 do

10 for x in existing nodes in the tree do
11 add a new node to x with PSSNV = 0.15 or PCNV = 0/0.1/0.18;
12 end
13 end
14 for j = 1 to n_samples do
15 sample_i = up to 5 randomly selected nodes or all nodes in one subtree;
16 end
17 for i = 1 to n_samples do
18 for j = 1 to n_mutations do
19 V AFij = the fraction of cells containing the mutations[j] out of all the

cells in sample_i;
20 V̂ AFij = a random number from binomial distribution Bin(a, V AFij);
21 end
22 end

In AncesTree [17], the simulation algorithm (Algorithm 2) assigns one hundred
mutations into ten clones uniformly at random. Then it randomly picks a clone to
be the root of its phylogenetic tree. Then iteratively, the algorithm randomly picks
a node from the remaining nodes and adds it as child to one of the existing nodes
of the tree until there are no nodes left. Then the algorithm collects samples from
the tree to computes VAF values and the description of those process is short and a
bit confusing. The algorithm creates a usage matrix U row by row where each row
represents the usage of a sequenced sample. Usage was determined by first selecting
the number c of clones mixed in each sample by uniformly at random selecting a value

11

between 1 and 4. Then, usage was determined by randomly sampling a value from the
c simplex and applying the first c values to c randomly selected clones. The algorithm
used rejection sampling over this whole process to ensure that only simulations where
all mutations were included in at least two samples were created. The simulation
process described above implicitly creates a pair of matrices B and U . Then the VAF
value matrix is F = 1

2UB. AncesTree requires read counts for reference alleles and
alternate alleles to be its inputs so it simulate read counts, as follows. For sample s
and mutation i, the algorithm samples the number of reads containing mutation i
for sample s as nsi ∼ Poiss(a), where a is a given read coverage; then it samples
the number of reads containing the variant allele as xsi ∼ Binomial(nsi, fsi). The
number of reads containing the reference allele is nsi − xsi.

Algorithm 2: Data simulation algorithm of AncesTree
1 Let nnodes = 10;
2 Divide 100 mutations uniformly at random into 10 nodes;
3 Randomly set one node to be the root of the tree;
4 while nnodes > 0 do
5 randomly selected a node and add it to one of the existing nodes in the tree;
6 nnodes = nnodes − 1;
7 end
8 Creating matrices U and B;
9 F = 1

2 × U ×B;
10 Let read_coverage = r;
11 for i = 0 to 99 do
12 for p = 0 to nsample − 1 do
13 n[i, p] = a random number from a poisson distribution Poiss(r);
14 x[i, p] = a random number from a binomial distribution

B(n[i, p], F [p, i]);
15 end
16 end
17 n_x = n− x;

CITUP [18] has a short description of their data simulation algorithm. It creates
phylogenetic tree of three to seven clones. The clone frequencies were generated by
sampling from a Dirichlet distribution. The algorithm uniformly assigns five hundred
mutations into the clones and it also adds sequencing and sampling noise to the
simulated data by sampling from a Gaussian distribution.

In Treeomics [19], there is no detailed description of their data simulation algo-
rithms.

3.3 Data simulation
After exploring the simulation algorithms of the evaluated tools, we decided to use
a modification of the simulation and reconstructing algorithms in AncesTree to

12

generate our data. In our modification, we use a Prüfer sequence [13] to generate
phylogenetic tree. The Prüfer sequence (also Prüfer code or Prüfer numbers) is a
unique sequence associated with a labeled tree. Given a labeled tree, its Prüfer
sequence can be generated by a simple iterative algorithm. Correspondingly, given
the Prüfer sequence of a labeled tree, the tree can be generated by an algorithm.
After generating phylogenetic trees with Prüfer sequence, we then collect samples and
compute VAF values as done in the reconstructing algorithm of AncesTree. We did
not generate trees as in the simulation algorithm of AncesTree (by adding a randomly
selected node iteratively) because we found it is unable to generate trees uniformly.
In the rest of this section, we prove the non-uniformity of simulation algorithm of
AncesTree and then describe our data simulation algorithm with a Prüfer sequence.

3.3.1 Non-uniformity of data simulation of Ancestree

The data simulation algorithm of paper presenting AncesTree is described in the third
paragraph in Section 3.2. For a certain number of nodes, there are more than one
rooted labeled trees. To prove the non-uniformity of the data simulation algorithm of
AncesTree, we need to prove that under the simulation algorithm of AncesTree, the
generating probabilities are unequal for different rooted labeled trees. In this section,
the proof is started from a simple counterexample which are rooted labeled trees of
4 nodes. We demonstrate all unrooted labeled trees of 4 nodes, and each unrooted
labeled tree corresponds to 4 rooted labeled trees by setting each node to be its root.
We prove that the probabilities of generating each rooted labeled tree of 4 nodes are
unequal. The simple counterexample intuitively demonstrates the non-uniformity of
the algorithm, but to state the algorithm is not uniform, the non-uniformity property
should not only hold for trees with 4 nodes but also for an arbitrary number of
nodes. Thus after the counterexample, we extend the proof to trees with an arbitrary
number n of nodes. In that situation, demonstrating all unrooted labeled trees is
too complex because there are too many of them. So we demonstrate two special
unrooted labeled trees and their corresponding rooted labeled trees. We show the
generating probabilities are unequal for those rooted labeled trees, which can prove
the non-uniformity of data simulation algorithm of AncesTree.

We first give a counterexample which is a tree with four nodes (According to
Cayley’s formula [12], with n nodes, there are nn−2 unrooted labeled trees. If using
an example with three nodes, there are only three trees and if using example with
five nodes, there are 125 trees which is too complex to demonstrate. An example
with four nodes has 16 trees which might be a suitable example).

All unrooted labeled trees with 4 nodes are shown in Figure 10. With each node
to be root, every unrooted labeled tree corresponds to 4 rooted labeled trees. For
example, rooted labeled trees for tree (1) in Figure 10 are in Figure 11. Basically,
unrooted labeled trees with 4 nodes have two structures: a tree whose nodes have
degree at most 2 such as (1)-(12) in Figure 10; a tree whose nodes have degree at
most 3 such as (13)-(16) in Figure 10. We will prove that the generating probabilities
of different rooted labeled trees of (1) are unequal, and it is easy to prove that for
(2)-(12) in a similar way. Then, we prove that the generating probabilities of different

13

Table 1: Generating probability of rooted labeled trees of tree (1) in Figure 10

Rooted labeled
trees of tree (1) Generating patterns Probability

1
144 × 1 = 1

144

1
144 × 3 = 3

144

Similar with rooted labeled tree 2 3
144

Similar with rooted labeled tree 1 1
144

rooted labeled trees of (13) are unequal, and it is easy to prove that for (14)-(16) are
unequal in a similar way.

Lemma 1. Under the simulation algorithm of the paper presenting AncesTree, the
generating probabilities are unequal for different rooted labeled trees of (1) in Figure 10.

Proof. All rooted labeled trees of (1) in Figure 10 are shown in the first column
of Table 1. Based on the simulation algorithm of AncesTree, we give patterns of
generating each rooted labeled tree (second column of Table 1). At rooted labeled
tree 2, for example, the first selected node has to be node b because AncesTree sets
the first selected node to be its root. The second selected node can be a or c. If it

14

Figure 10: Unrooted labeled trees with 4 nodes

Figure 11: Rooted labeled trees for (1) in Figure 10, with the root shown as top-most
node

15

is a, the third selected node has to be c and the fourth selected node has to be d.
If the second selected node is c, the third selected node can be d or a. And then
the fourth selected node is a or d, respectively. We can see there are 3 patterns of
generating rooted labeled tree 2.

For pattern 1 of rooted labeled tree 2, the probability of selecting node b at the
first iteration is 1

4 , the probability of selecting node a at the second iteration is 1
3 .

The probability of selecting node c at the third iteration is 1
2 , but node c has to be

connected with node b instead of a with another probability 1
2 . The probability of

selecting node d at the last iteration is 1, but it has to be connected with node c with
another probability 1

3 . So the probability of pattern 1 is 1
4×

1
3×(1

2×
1
2)×(1× 1

3) = 1
144 .

It is easy to prove that the probability of any pattern for any rooted labeled tree
in Table 1 is the same. Thus we obtained the probability of generating each rooted
labeled tree for (1) (third column of Table 1). Probabilities in the third column of
Table 1 are unequal, thus, Lemma 1 is proved. �

Lemma 2. Under the simulation algorithm of the paper presenting AncesTree, the
generating probabilities are unequal for different rooted labeled trees of (13) in Fig-
ure 10.

Proof. All rooted labeled trees of (13) in Figure 10 are shown in the first column of
Table 2. Based on simulation algorithm of AncesTree, we give patterns of generating
each rooted labeled tree. At rooted labeled tree 2, for example, the first selected
node has to be node b. The second selected node has to be a. The third selecting
node can be c or d and then the fourth node is d or c, respectively.

For pattern 1 of rooted labeled tree 2, the probability of selecting node b at the
first iteration is 1

4 , the probability of selecting node a at the second iteration is 1
3 .

The probability of selecting node c at the third iteration is 1
2 , but node c has to be

connected with node a instead of b with another probability 1
2 . The probability of

selecting node d at the last iteration is 1, but it has to be connected with node a with
another probability 1

3 . So the probability of pattern 1 is 1
4×

1
3×(1

2×
1
2)×(1× 1

3) = 1
144 .

It is easy to prove the probability of any pattern for any rooted labeled tree in Table 2
is the same. So we obtained the probability of generating each rooted labeled tree
for (13) (third column of Table 2). Probabilities in the third column of Table 2 are
unequal, thus, Lemma 2 is proved. �

Theorem 1. The generating probabilities under the simulation algorithm of the paper
presenting AncesTree are unequal for different rooted labeled trees with 4 nodes

Proof. Lemma 1 proved that the generating probabilities are unequal for different
rooted labeled trees of (1) in Figure 10, we can prove that the generating probabilities
of different rooted labeled trees of (2)-(12) are unequal in a similar way with (1).
Lemma 2 proved that the generating probabilities are unequal for different rooted
labeled trees of (13) in Figure 10, we can prove that the generating probabilities
of different rooted labeled trees of (14)-(16) are unequal in a similar way with (13).
Thus, we can conclude that the generating probabilities are unequal for different
rooted labeled trees with 4 nodes, which proved Theorem 1. �

16

When looking more closely, for (1) in Figure 10, the probability of generating
any of its rooted labeled tree that rooted at the first selected node is 8

144 (sum up
probabilities in third column of Table 1). Since the first selected node can be any of
its node, 8

144 is also the probability of generating (1), which is an unrooted labeled tree
whose nodes have degree at most 2. Similarly, for (13) in Figure 10, the probability
of generating any of its rooted labeled tree that rooted at the first selected node is 12

144
(sum up probabilities in third column of Table 2), and 12

144 is also the probability of
generating (13), which is an unrooted labeled tree whose nodes have degree at most
3. It is easy to show that trees with an arbitrary n of nodes have similar properties.
Thus we have the following corollaries:

Corollary 1. With an arbitrary n of nodes, let T be an unrooted labeled tree whose
nodes have degree at most 2, let T ′ be any of the rooted labeled tree of T . Under
the simulation algorithm of paper presenting AncesTree, let P(T) be the generating
probability of T and let P(T ′) be the generating probability of T’, we have: P(T) =
P(T ′)

Corollary 2. With an arbitrary n of nodes, let T be an unrooted labeled tree whose
nodes have degree at most n− 1, let T ′ be any of the rooted labeled tree of T . Under
the simulation algorithm of paper presenting AncesTree, let P(T) be the generating
probability of T and let P(T ′) be the generating probability of T’, we have: P(T) =
P(T ′)

Then we extend the proof to trees with an arbitrary number n of nodes. If n
is large, there are a large number of different unrooted labeled trees. Each one
corresponds to n rooted labeled trees. Enumerating all of them and computing the
probability of each might be too complex. So we give two special cases:

• case 1: unrooted labeled trees with an arbitrary number n of nodes and whose
nodes have degree at most 2, similar with (1)-(12) in Figure 10.

• case 2: unrooted labeled trees with an arbitrary number n of nodes and whose
nodes have degree at most n− 1, similar with (13)-(16) in Figure 10.

Intuitively, a tree of case 1 is to permutate all nodes to be in a "line". With n
nodes, there are n! permutations, but a node sequence can be read from both sides,
for example: abcdef and fedcba are different permutations but actually the same
tree. So there are totally n!

2 different trees of case 1. For case 2, we can think of a
tree as a "star" with all the other nodes connected to a center node. So with n nodes,
there are n different trees in case 2 by setting each node to be the center node.

We demonstrate an arbitrary tree of case 1 (tree(1) of Figure 12), and it cor-
responds to n rooted labeled trees by setting each node to be root (first column
in Table 3). Then we show the generating probabilities are unequal for different
rooted labeled trees for this arbitrary tree of case 1. Similarly, we demonstrate an
arbitrary tree of case 2 (tree(2) of Figure 12), and its corresponding n rooted labeled
trees (first column in Table 4), and show the generating probabilities are unequal for
different rooted labeled trees for this arbitrary tree of case 2.

17

Figure 12: The arbitrary trees of case 1 and case 2

Lemma 3. Under the simulation algorithm of the paper presenting AncesTree, the
generating probabilities are unequal for different rooted labeled trees of tree(1) in
Figure 12.

Proof. The patterns of generating tree (1), and the corresponding probabilities,
are shown in Table 3. At rooted labeled tree 2, for example, the first selected
node should be a2, the second selected node can be a1 or a3. If it is a1, the third
selected node can only be a3, the fourth selected node can only be a4, and so on.
If the second selected node is a3, the third selected node can be a1 or a4, and
so on. Thus, the total number of patterns of generating rooted labeled tree 2 is
2 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸

n-3

= n− 1. For each pattern in rooted labeled tree 2, the probability

of selecting the first node is 1
n
, the probability of selecting the second node is 1

n−1 ,
the probability of selecting the third node is 1

n−2 and it has to be connected to only
one node in the tree to form a specific pattern, so with another probability 1

2 , and
so do the following nodes. Thus, the probability of each pattern of rooted labeled
tree 2 is 1

n
× 1

n−1 × (1
n−2 ×

1
2) × (1

n−3 ×
1
3) × · · · × (1 × 1

n−1) = 1
n!×(n−1)! . Thus, the

probability of generating rooted labeled tree 2 is 1
n!×(n−1)! × (n− 1) = 1

n!×(n−2)! . We
can verify this result with the previous example of 4 nodes. Indeed, for n = 4, we
have 1

4!×2! = 1
48 = 3

144 , which is the probability of generating rooted labeled tree 2 in
Table 1.

Probabilities of other rooted labeled trees for tree (1) can be computed in similar
ways, we omitted them since they are too complex to demonstrate.

�

Lemma 4. Under the simulation algorithm of the paper presenting AncesTree, the
generating probabilities are unequal for different rooted labeled trees of tree(2) in
Figure 12.

Proof. The patterns of generating tree (2), and the corresponding probabilities, are

18

shown in Table 4. At rooted labeled tree 2, for example, the first selected node should
be a2, the second selected node should be a1, the third selected node can be ak (k is
from 3 to n). The fourth selected node can be one of a3, · · · , ak−1, ak+1, · · · , an, and
so do with following selected nodes. So the number of patterns of generating rooted
labeled tree 2 is 2× 3× 4× · · · × (n− 3)× (n− 2) = (n− 2)!. For each pattern in
rooted labeled tree 2, the probability of selecting the first node is 1

n
, the probability

of selecting the second node is 1
n−1 , the probability of selecting the third node is 1

n−2
and it has to be connected to only one node in the tree to form a specific pattern, so
with another probability 1

2 , and so do with the following nodes. Thus, the probability
of each pattern of rooted labeled tree 2 is 1

n
× 1

n−1 × (1
n−2 ×

1
2)× (1

n−3 ×
1
3)× · · · ×

(1 × 1
n−1) = 1

n!×(n−1)! . Thus, the probability of generating rooted labeled tree 2 is
1

n!×(n−1)! × (n− 2)! = 1
n!×(n−1) . We can verify this result with the previous example

of 4 nodes. Indeed, for n = 4, we have 1
4!×3 = 1

72 = 2
144 , which is the probability of

generating rooted labeled tree 2 in Table 2.
Probabilities of other rooted labeled trees for tree (2) can be computed in similar

ways, we omitted them since they are too complex to demonstrate. �

The proof can be extended to be more formal than presenting arbitrary trees in
case 1 and case 2.

Lemma 5. With an arbitrary n of nodes, let T1 be an unrooted labeled tree in case
1, let T ′1 be any of the rooted labeled tree of T1; let T2 be an unrooted labeled tree in
case 2, let T ′2 be any of the rooted labeled tree of T2. Under the simulation algorithm
of paper presenting AncesTree, the generating probabilities for T ′1 and T ′2 are unequal,
which is P (T ′1) 6= P (T ′2).

Proof. we start from considering T1 and T ′1. To generate T ′1, it does not matter which
node to select at each iteration and we only need to consider how to connect the
selected node to keep the tree whose nodes having degree at most 2 (intuitively, to
keep all nodes to be a "line"). Based on simulation algorithm of AncesTree, the first
selected node is root (Figure 13), the second selected node is connected to root. The
third selected node can be connected to any of the first two nodes and all nodes will
be in a "line". Starting from the fourth selected node, it has to be connected to nodes
with degree one to keep all nodes in a "line". So the selected node has two choices
with probability 2

k
, where k is the number of existing nodes in the tree. Thus the

probability of generating any rooted labeled tree that rooted at its first selected node
for any tree in case 1 is 2

3 ×
2
4 ×

2
5 × · · · ×

2
n−1 = 2n−2

(n−1)! . Since different trees in case 1
can be regarded as different permutations of n nodes in a "line", the probability of
generating each of them should be equal. With n nodes, there are n!

2 different trees
in case 1. Thus the probability of generating any rooted labeled tree that rooted
at its first selected node for one tree in case 1 is 2n−2

(n−1)!/
n!
2 = 2n−1

n!×(n−1)! , which means
P (T ′1) = 2n−1

n!×(n−1)! .
Then we consider T2 and T ′2. To generating T ′2, the first selected node is root

(Figure 14), the second selected node is connected to root. The third selected node
can be connected to any of the first two nodes. After its connection, the center node

19

Figure 13: Labeled trees with degree at most 2

20

Figure 14: labeled tree with degree at most 3

has been fixed. Starting from the fourth selected node, it has to be connected to the
center node with probability 1

k
, in which k is the number of existing nodes in the

tree. Thus the probability of generating any labeled tree rooted at its first selected
node with degree at most 3 is 1

3 ×
1
4 × · · · ×

1
n−1 = 2

(n−1)! . With n nodes, there are
n different such trees by setting each node to be center node, so the probability of
generating any rooted labeled tree that rooted at its first selected node for one tree
in case 2 is 2

(n−1)!/n = 2
n! , which means P (T ′2) = 2

(n−1)!/n = 2
n! .

Thus, P (T ′1) 6= P (T ′2), which proved Lemma 5. �

The proof of Lemma 5 can be verified with the example of 4 nodes. According to
Corollary 1, P (T1) = P (T ′1), thus, P (T1) = 2n−1

n!×(n−1)! . With n = 4, 23

4!×3! = 1
18 = 8

144
which is the probability of generating (1) in Figure 10. According to Corollary 2,
P (T2) = P (T ′2), thus, P (T2) = 2

n! . With n = 4, 2
4! = 1

12 = 12
144 which is the probability

of generating (13) of Figure 10.

Theorem 2. Under the simulation algorithm of the paper presenting AncesTree, the
generating probabilities are unequal for different rooted labeled trees with an arbitrary
number n of nodes.

Proof. From Lemma 3 and 4 demonstrate that the generating probabilities are
unequal for different rooted labeled trees using specific examples. Lemma 5 demon-
strates the same conclusion in a more formal way. Thus, we can conclude that with
an arbitrary number n of nodes, the generating probabilities are unequal for different
rooted labeled trees, which proved Theorem 2. �

Thus, the simulation algorithm of the paper presenting AncesTree is non-uniform.

21

Figure 15: The unrooted labeled trees with their corresponding Prüfer sequences

3.3.2 Data simulation with Prüfer sequence

In this subsection, we describe our data simulation algorithm. At the end of this
subsection, we use a simplified example to demonstrate every step described below.

Our tree has 10 clones marked from 0 to 9 and 100 mutations marked from m0
to m99 and are randomly assigned into the clones. We ensure each clone has at least
one mutation so there is no empty clone. Then we randomly assign to each clone a
cell population size ranging from 100 to 200.

Our phylogenetic tree was randomly generated starting from a Prüfer sequence
[12]. A Prüfer sequence is a unique sequence associated with a labeled tree. A labeled
tree with n nodes has such sequence of length n − 2. Given a random sequence
a[1], a[2], · · · , a[n], the tree associated with it will have n + 2 nodes. For each node,
the algorithm sets its degree to be the number of times the node appears in the
sequence plus 1. Then for each number a[i], the algorithm finds the lowest-numbered
node j with degree 1, add the edge (j, a[i]) to the tree, and decrease the degrees of
j and a[i] by 1. Finally, there are two nodes with degree 1 left and the algorithm
just add an edge between them. Generating uniformly distributed random sequences
and converting them into the corresponding trees is a straightforward method of
generating uniformly distributed random labelled trees [14]. Figure 15 demonstrates
examples of two unrooted labeled trees with their Prüfer sequences.

To generate phylogenetic trees with n = 10 nodes (Algorithm 3 and 4), we first
generate a random sequence of length 8. Each position of the sequence is an random
integer from 0 to 9. Then we convert the sequence into an unrooted labeled tree
with 10 nodes with Prüfer code and randomly pick a node to be its root. Then, each
clone will inherit mutations from all its parent nodes.

Then we collect some samples from the tree. We randomly select 2 to 4 clones
to be a sample. The mutations in each sample will be the union of mutations in
clones it has; the cell population size of this sample will be the sum of cell population
size of its clones. Then we compute VAF values as did in AncesTree. Our tree has
10 clones, thus assuming we collect s samples from a tree, we first create a s× 10
usage matrix U . Each entry Usi is the fraction of the cells belonging to clone i in

22

Algorithm 3: Data Simulation with a Prüfer sequence
Data: The number of samples: nsample

Result: Funpack

1 a = [a0,· · · ,a7], in which ai = a random number between 0 and 9;
mutations = [0, 1, · · · , 99];

2 Divide mutations into 10 sublists: l0, l1, · · · , l9;
3 clone = empty dictionary;
4 cell_size = empty dictionary;
5 for i = 0 to 9 do
6 clone[i] = li;
7 cell_size[i] = a random number between 100 and 200;
8 end
9 Covert a to a labeled tree with Prüfer code;

10 Let root = a random number between 0 and 9;
11 Let sample = empty dictionary;
12 for i = 0 to nsample − 1 do
13 sample[i] = [c0,c1,· · · ,ck], k is between 2 and 4, ck is a randomly number

between 0 and 9;
14 sample_mutations = clone[c0] + clone[c1] + · · ·+ clone[ck];
15 sample_cell_size = cell_size[c0] + cell_size[c1] + · · ·+ cell_size[ck];
16 end
17 Let U = a empty matrix of size nsample × 10 ;
18 B = a empty matrix of size 10× 10;
19 for i = 0 to nsample − 1 do
20 for j = 0 to 9 do
21 U [i, j] = cell_size[i]

sample_cell_size[i] ;
22 end
23 end
24 for i = 0 to 9 do
25 for j = 0 to 9 do
26 if i is a descendant of j in the converted tree then
27 B[i, j] = 1;
28 else
29 B[i, j] = 0;
30 end
31 end
32 end
33 F = 1

2 × U ×B;
34 Let Funpack = a empty matrix of size nsample × 100;
35 for i = 0 to 9 do
36 m = clone[i];
37 for j in m do
38 for s = 0 to nsample − 1 do
39 Funpack[s, j] = F [s, i];
40 end
41 end
42 end

23

sample s. Then we create a 10× 10 clonal matrix B. Each row of B represents a
clone, each column represents the group of new mutations occurred in a clone. We
set each entry Bij to be 1 if clone i (after mutation inheritance) contains the group
of new mutations occurred in clone j; and set Bij to be 0 if not. Then the VAF value
matrix F = 1

2 ×U ×B. Thus F is s× 10 in which Fsi is the VAF value of the group
of new mutations occurred in clone i in sample s. Since we have 100 mutations, we
unpack F to be s× 100 by simply repeating column i to be k columns, where k is
the number of new mutations occurred in clone i. After unpacking, Fsi is the VAF
value of mutation i in sample s.

Value Fsi is the base of the input for the tools we will evaluate. However, each tool
has its specific input format. To ensure data consistency among tools, we did some
additional operations. For sample s and mutation i, we draw the number of reads
containing mutation i in sample s from a Poisson distribution as nsi ∼ Poiss(n),
where n is the given read coverage. Then we draw the number of reads containing
the variant allele from a binomial distribution as xsi ∼ B(nsi, Fsi). These sampling
procedures also add noise to the simulated data and we can control the noise with
read coverage. Then the number of reads containing the reference allele is nsi − xsi.
Here xsi and nsi are inputs of tool AncesTree, xsi and nsi are inputs of tool Treeomics.
MIPUP and LICHeE require VAF values as the inputs and CITUP requirs 2× V AF
as its input. To ensure all tools are evaluated on the exact same data, we use xsi

nsi
as

inputs for MIPUP and LICHeE and 2× xsi

nsi
as input for CITUP.

Algorithm 4: Data Simulation with a Prüfer sequence (continued)
Data: Funpack

Result: n; x; n_x; x
n

1 Let n = a empty matrix of size nsample × 100;
2 Let x = a empty matrix of size nsample × 100;
3 Let Funpacknoise = a empty matrix of size nsample × 100;
4 Let read_coverage = r;
5 for i = 0 to 99 do
6 for p = 0 to nsample − 1 do
7 n[i, p] = a random number from a poisson distribution Poiss(r);
8 x[i, p] = a random number from a binomial distribution

B(n[i, p], Funpack[p, i]);
9 x

n
[i, p] = x[i, p]/n[i, p] ;

10 end
11 end
12 n_x = n− x;

We use a simplified example with 4 clones and 10 mutations to demonstrate the
algorithm described above. We mark clones from 0 to 3 and mark mutations from
m0 to m9. We generate a random sequence of length 2, say (0,1). The tree associated
with it is drawn in Figure 16(1). We set a random cell population size for each
clone ranging from 100 to 200. New mutations occurring in each clone are shown

24

Clone Cell population size
0 185
1 183
2 126
3 158

Sample Clone
0 0,1,2,3
1 0,3,2
2 1,3
3 0,1,2,3
4 1,3

Figure 16: Simplified example with 4 clones and 10 mutations

in Figure 16(2), and mutations after inheritance are shown in Figure 16(3). We
collect 5 samples from the tree. Samples are marked from 0 to 4 and clones belong
to each sample are shown in Figure 14. Then matrices U, B, F, Funpack (Figure 17)
are generated as described above. We then did sampling with read coverage 100.
Finally, matrices n and x (Figure 18) are created. Matrices n and x are inputs for
tool Treeomics, n and n − x are inputs for AncesTree, x

n
is input for MIPUP and

LICHeE and 2× x
n
is the input for CITUP.

25

U =


0.284 0.281 0.193 0.242
0.394 0 0.269 0.337

0 0.537 0 0.463
0.284 0.281 0.193 0.242

0 0.537 0 0.463



B =


1 0 0 1
0 1 1 1
0 0 1 1
0 0 0 1



F =



m5 m1 m0, m2, m3, m6, m9 m4, m7, m8
0.142 0.14 0.237 0.5
0.197 0 0.134 0.5

0 0.268 0.268 0.5
0.142 0.14 0.237 0.5

0 0.268 0.268 0.5



Funpack =



m0 m1 m2 m3 m4 m5 m6 m7 m8 m9
0.237 0.14 0.237 0.237 0.5 0.142 0.237 0.5 0.5 0.237
0.134 0 0.134 0.134 0.5 0.197 0.134 0.5 0.5 0.134
0.268 0.268 0.268 0.268 0.5 0 0.268 0.5 0.5 0.268
0.237 0.14 0.237 0.237 0.5 0.142 0.237 0.5 0.5 0.237
0.268 0.268 0.268 0.268 0.5 0 0.268 0.5 0.5 0.268



Figure 17: Simplified example with 4 clones and 10 mutations (continued)

26

n =


84 99 99 98 74 112 114 117 104 99
104 101 107 105 85 116 102 90 111 126
96 95 96 113 122 89 101 94 99 104
109 102 103 103 88 105 104 84 100 99
106 92 109 90 95 106 110 94 93 119



x =


19 19 19 24 38 9 27 56 60 22
14 0 11 12 32 24 15 37 56 17
25 24 25 27 61 0 33 52 58 28
21 13 17 22 52 10 23 42 48 28
30 27 31 29 46 0 28 51 51 40



n− x =


65 80 80 74 36 103 87 61 44 77
90 101 96 93 53 92 87 53 55 109
71 71 71 86 61 89 68 42 41 76
88 89 86 81 36 95 81 42 52 71
76 65 78 61 49 106 82 43 42 79



x

n
=



19
84

19
99

19
99

24
98

38
74

9
112

27
114

56
117

60
104

22
99

14
104

0
101

11
107

12
105

32
85

24
116

15
102

37
90

56
111

17
126

25
96

24
95

25
96

27
113

61
122

0
89

33
101

52
94

58
99

28
104

21
109

13
102

17
103

22
103

52
88

10
105

23
104

42
84

48
100

28
99

30
106

27
92

31
109

29
90

46
95

0
106

28
110

51
94

51
93

40
119



Figure 18: Simplified exmaple with 4 clones and 10 mutations. n and x are inputs
for tool Treeomics, n and n− x are inputs for AncesTree, x

n
is input for MIPUP and

LICHeE and 2× x
n
is the input for CITUP

27

Table 2: Generating probability of rooted labeled trees of (13) in Figure 10

Rooted labeled
trees of (13) Generating patterns Probability

1
144 × 6 = 6

144

1
144 × 2 = 2

144

Similar with rooted labeled tree 2 2
144

Similar with rooted labeled tree 2 2
144

28

Table 3: Generating probability of rooted labeled trees of (1) in Figure 12

Rooted labeled
trees of (1) Generating patterns Probability

1
n!×(n−1)! × 1 = 1

n!×(n−1)!

1
n!×(n−1)! × (n− 1) = 1

n!×(n−2)!
Other rooted
labeled trees Omitted Omitted

29

Table 4: Generating probability of rooted labeled trees of (2) in Figure 12

Rooted labeled
trees of (1) Generating patterns Probability

Omitted 1
n!×(n−1)! × (n− 1)! = 1

n!

1
n!×(n−1)! × (n− 2)! = 1

n!×(n−1)
Other rooted
labeled trees Omitted Omitted

30

4 Evaluation of the Tumor Phylogenetic Recon-
structing Tools with Simulated Data

4.1 Evaluation criteria
We set 8 evaluation criteria related to the ancestry-descendent relationship of mutation
pairs. Some of our criteria are the same with the criteria of the evaluated tools,
which will be explained in Subsection 4.2. Our evaluation criteria are as follows:

1. the fraction of mutation pairs which are AD in the true tree and are also AD
in the predicted tree (%AD correct);

2. the fraction of mutation pairs which are AD in the true tree but are DA
(descendent- ancestor) in the predicted tree (%AD reversed);

3. the fraction of mutation pairs which are siblings in the true tree and are also
siblings in the predicted tree (%Sib correct);

4. the fraction of mutation pairs which are AD or siblings in the true tree and
their relationship is reserved correctly in the predicted tree (% (AD + Sib));

5. the fraction of mutation pairs which are AD in the true tree but are siblings in
the predicted tree (%AD to Sib);

6. the fraction of mutations pairs which are siblings in the true tree but are AD
in the predicted tree (%Sib to AD);

7. the fraction of mutations kept in the predicted tree;

8. precision, recall, true negative rate, false positive rate, accuracy and F1 score
of mutation pairs with ancestor-descendant relationship:

• precision = true positive / (true positive + false positive)
• recall (true positive rate) = true positive / (true positive + false negative)
• true negative rate = true negative / (true negative + false positive)
• false positive rate = false positive / (true negative + false positive)
• accuracy = (true positive + true negative) / (true positive + true negative
+ false positive + false negative)
• F1 score = 2/(1

precision
+ 1

recall
)

Here, true positive (tp) is the number of mutation pairs which are AD in the
true tree and are also AD in the predicted tree, false negative (fn) is the number of
mutation pairs which are AD in the true tree but are not AD in the predicted tree,
false positive (fp) is the number of mutation pairs which are not AD in the true tree
but are AD in the predicted tree and true negative (tn) is the number of mutation
pairs which are not AD in the true tree and are also not AD in the predicted tree.

31

Figure 19: Evolutionary constraint network for a real dataset used in paper presenting
LICHeE, The dataset contains 8 tumor samples and 55 SSNV s. Each node is
associated with the number of SSNV s assigned to it. The edges represent the
potential precedence relationships between the node SSNV s. The spanning tree
reported for the real dataset is highlighted [16].

4.2 Overview of the evaluation criteria of the evaluated tools
Among our evaluation criteria, criteria 1 is used in papers presenting all the other
evaluated tools, criteria 3, 5, 6 and 7 are used also in paper presenting LICHeE. In
addition to those criteria, each paper has specific criteria related to how its tool
works to reconstruct phylogenetic trees. In this subsection, we briefly introduce
working procedures of each tool and then introduce the specific evaluation criteria of
the paper presenting each tool.

LICHeE works by first classifying mutations into groups where each group contains
mutations detected in the same subset of samples. Then the mutations in each group
are further clustered according to theirVAF similarity. After that, LICHeE constructs
an evolutionary constraint network (Figure 19) to encode if a group of mutations
could have preceded another group of mutations. The network is a directed acyclic
graph (DAG), where each node corresponds to an SSNV cluster (except the root,
which represents the germ line), and each edge between two nodes, (u→ v) denotes
that node u could be an evolutionary predecessor of node v. In particular, an edge
(u → v) is added only if the VAFs of node u and v satisfy a set of constraints (in
general, the VAF controid vector of node u is larger than that of node v). The
constraints guarantee that the network will be acyclic. Finally, LICHeE searches
spanning trees over the network to be valid phylogenetic trees. For a pair of mutations,
if they occurred in two different clones and one clone was an ancestor of the other
one, then these two mutations have an ancestor-descent relationship (AD). If they,
however, occurred in two different clones and the two clones had the same parent,
these two mutations have a sibling relationship (Sib). In all other cases, these two
mutations are not related. The paper presenting LICHeE does not have specific
evaluation criteria.

AncesTree works by describing the mutational process that produced a tumor
by an n-clonal tree T. T is a rooted tree of n vertices for n mutations provided
that each edge is labeled with exactly one mutation and no mutation appears more

32

than once in T. From T, AncesTree collects samples and computes matrices U,
B and F as described in our simulation algorithm. After obtaining VAF matrix
F, AncesTree formalizes the problem of reconstructing the clonal evolution of a
tumor as the VAF factorization problem (VAFFP). The problem is to determine
the composition of each sample, including the number and proportion of clones in
each, and a tree that describes the ancestral relationships between all clones. Then,
AncesTree derives a characterization of the solutions of the VAFFP as constrained
spanning arborescences of a directed acyclic graph (DAG) called the ancestry graph.
From this characterization, it proves that the VAFFP is NP-complete and formulates
an integer linear program (ILP) to find the largest arborescence in an ancestry graph.
If the largest arborescence is a spanning arborescence, a solution to the VAFFP is
found. The paper presenting AncesTree includes the following specific evaluation
criteria:

1. the fraction of clustered relationships between pairs of mutations that were
correctly identified;

2. the fraction of incomparable relationships (i.e. neither ancestral nor clustered)
between pairs of mutations that were correctly identified;

3. discrepancy between a simulated frequency matrix F and its predicted frequency
matrix;

4. discrepancy between a simulated usage matrix U and its predicted usage matrix.

CITUP works by exhaustively enumerating all possible phylogenetic trees up
to a fixed number of nodes, and fitting each sample into several nodes of a tree by
minimizing a Bayesian information criterion on the VAF values. CITUP proposed
two methods to solve the problem, in which one method guarantees an optimal
solution but limit the feasible mutation size, and the second method solves the
problem iteratively until convergence. For evaluation, CITUP creates a matching
between the true tree and the predicted tree. The paper presenting CITUP contains
the following specific evaluation criteria:

1. the fraction of correctly identified tree topologies;

2. discrepancy between clone frequency of nodes in the smallest tree and clone
frequency of nodes in the largest tree;

3. the fraction of mutations which are placed in a node other than the matching
node in the predicted tree;

Treeomics used a Bayesian inference model to calculate the probability that a
mutation is present in a sample. Then it calculates a reliability score for each possible
mutation pattern (the set of samples where the variant is present) across all mutations.
After that, it constructs an evolutionary conflict graph in which each node represents
a mutation pattern and is assigned a weight provided by the reliability score. Two
mutations are evolutionary compatible if there exists an evolutionary tree where

33

each mutation is only acquired once and never lost. If two nodes were evolutionarily
incompatible, an edge is added between them. Finally, the phylogenetic tree is
inferred from the evolutionary conflict graph. The paper presenting Treeomics has
the following specific evaluation criteria:

1. whether mutations in the same clone in the true tree are assigned to the same
clone in the predicted tree;

MIPUP works by first transforming a VAF value matrix into a binary one with a
provided threshold value. Each row of the binary matrix represents a sample and
each column represents a mutation. Then MIPUP splits each row into several rows
so that the resulting matrix corresponds to a perfect phylogeny. The splitting is
performed so that the resulting matrix is ’minimal’. MIPUP addresses two types of
splitting problems, one is to ensure the resulting matrix has the minimum number of
rows, this problem is called MinimumConflict-FreeRowSplit (MCRS). The other one
is to ensure the resulting matrix has the minimum number of distinct rows, which is
called MinimumDistinctConflict-FreeRowSplit (MDCRS).

4.3 Evaluation results
In this section, we first illustrate the predicted trees of each tool for one of our
simulated data to intuitively show the performance of the tools. Then we illustrate
their performance with our evaluation criteria. We varied the sample size and read
coverage to assess performance of the tools under different situations. All results are
averaged over 100 simulated trees to remove randomness.

4.3.1 Predicted tree of the tools for one of our simulated data

In the true tree (Figure 20), the number on an edge indicates how many new
mutations occurred on that edge, for example, 6 on the edge from clone 8 to clone 7
means 6 new mutations occurred there. This is also the number of new mutations in
clone 7 with respect to its ancestors. In the predicted trees of MIPUP, the label on
an edge provides information of the group of mutations on that edge, for example,
C|11|.47 ± .1 means 11 new mutations that occurred there, and 0.47 is the mean
of the VAF values in mutation group C and 0.1 is the standard deviation of those
VAF values. In the predicted tree of LICHeE, the number on each node indicates the
number of mutations occurred in that clone, while in the predicted tree of AncesTree,
numbers in each node indicate which mutations are in that clone (mutations are
marked from 0 to 99). In the predicted tree of CITUP, information of mutations is
not shown on the tree but is in other output file; the number in each node is the
fraction of mutations coming from each node in one of the samples. In the predicted
tree of Treeomics, the number on an edge tells the number of new mutations on it.

As is seen in Figure 20, predicted trees of MIPUP and LICHeE are highly
topologically similar with the true tree. The predicted tree of Treeomics also has
relatively high similarity with the true tree. The predicted tree of AncesTree seems
to have just kept a small amount of mutations because each node does not contain as

34

many mutations as in the true tree. For CITUP, there are few nodes in the predicted
tree and this property might affect the performance of CITUP to some extent.

4.3.2 Performance of the tools on our evaluation criteria

When running MIPUP, 0.05 was used as the threshold value to transform a VAF value
matrix into a binary one. As is illustrated in Figure 22 and 23, the performance of
MIPUP is inproving with increasing sample size, which is a general rule occurred for
most of the other tools. The performance of MCRS problem is better than MDCRS
problem. When considering different read coverages, MIPUP has its best performance
with read coverage 1000, and this may indicate that a large read coverage is not
necessarily result in better performance. Thus in practice, there may not be the need
for large amount of reads at all times. Thus, MIPUP is an economically efficient
tool. Excluding the case of 5 samples, %SSNV is almost 1 in all the other cases
(Figure 22), and this indicates MIPUP can highly preserve mutations in samples.
Furthermore, the precision, recall, true negative rate and accuracy are very high
and even higher than %Corr Sib, therefore, MIPUP can predict mutation pairs of
ancestor-descent relationship with high accuracy and it might be better at predicting
AD than siblings.

When running LICHeE, two parameters are required: Maximum VAF to consider
an SSNV as robustly absent from a sample (-maxVAFAbsent) and Minimum VAF
to consider an SSNV as robustly present in a sample (-minVAFPresent). Both
parameters were set at 0.05 to make the running consistent with MIPUP and the
other parameters as default. The results of LICHeE have the vast majority properties
that the results of MIPUP have, such as increased performance with larger sample
size. When considering read coverages, LICHeE seems to prefer larger read coverages
than smaller ones (Figure 23 (e) and (f)). When the sample size increases, the
difference between %Corr AD and %Corr Sib decreases (Figure 22), thus a larger
sample sizes is preferable when desiring a good prediction accuracy for both AD and
Sibling.

We ran AncesTree with the default values for all its parameters and ran it up to
15 samples because the running time for 20 samples is too long. AncesTree does not
perform well on most of our evaluation criteria. With an increased sample size, its
performance slightly decreased (Figure 22 and Figure 23 (a),(b),(c)). From %SSNV
we learned that AncesTree kept only a small fraction of mutations in its predicted tree
(Figure 23 (g)), which could partly explain its poor performance. However, AncesTree
has good performance on the following criteria: precision, true negative rate and
accuracy, which are even better than those of MIPUP and LICHeE (Figure 21).
Hence, although the overall performance of AncesTree is inferior, the prediction of
ancestor-descent relationship among the kept mutations is highly accurate.

When running CITUP, the required parameter is the number of clusters in which
to classify mutations. Since our simulated tree has 10 clones, this parameter was set
to be 10 in order for a fair comparison. CITUP also requires to discard any mutation
that is suspected or known to be homozygous, which are mutations with VAF values
significantly larger than 0.5. From our experiments, when the read coverage is 100,

35

(a) True tree

(b) Predicted tree of MIPUP (MCRS) (c) Predicted tree of MIPUP (MDCRS)

(d) Predicted tree of AncesTree (e) Predicted tree of LICHeE

(f) Predicted tree of CITUP

Germline Data

SC 1

sample2SC 2

sample4SC 3

sample1SC 4

sample3sample0

+
16

10
0%

+
25

10
0%

+
9

10
0%

+
7

+
2
0

(g) Predicted tree of Treeomics

Figure 20: Predicted trees of each tool for one simulated data

36

the majority of the simulated datasets contain mutations with VAF values larger
than 0.5 and these datasets will lead to running errors in CITUP. Thus, CITUP was
run with datasets of read coverage 1000 and 10000. CITUP usually has more than
one solution for one dataset and their average and best performance is illustrated
with %AD as the indicator. Some solutions have no AD in their predicted trees,
such as two layer trees with no mutations in their root. When computing precision
for such trees, tp and fp would be 0, and precision would be meaningless. Therefore,
we discarded solutions with no AD and computed the best and average over the
rest solutions. The results show, when the sample size increases from 10 to 15,
the performance of % Corr(AD + Sib) and %Corr AD increases notably, but %Sib
decreases slightly (Figure 23 (a),(b)), which might indicate the increasing sample size
is unable to increase the overall performance. When the sample size increases from
15 to 20, %Corr (AD+Sib) and %AD do not increase much ((Figure 23 (a),(b))),
which could state that CITUP requires a certain quantity of samples, but increasing
beyond that point is not necessary for increased performance. CITUP assigns no
mutation in the root of its predicted tree and this can explain its comparatively
low performance of %Corr AD to some extent. Additionally, CITUP can keep all
mutations in all situations (Figure 23 (c)), but its precision is slightly worse than
other tools (Figure 23 (d)), this is in consistence with its relatively low %Corr AD.
Moreover, the average performance and the best performance do not have much
difference which indicates a fair amount of similarity between solutions of a dataset.

When running Treeomics, the tool terminates with an error when sample size is
15 or 20 maybe due to some internal time limit program. Treeomics has a time limit
parameter but when setting the parameter to be unlimited, the obtained solution is
no longer guaranteed to be optimal. Thus, Treeomics was ran with default values
for all its parameters and ran it up to 10 samples. Treeomics has relatively good
performance on most criteria. The performance on %Corr AD is better than %Sib
(Figure 23 (a),(b)) and this might point out that Treeomics is superior at predicting
ancestor-descent relationships. Treeomics also has more than one solution with slight
difference between average and best solution.

To summarize, MIPUP and LICHeE have the best performance: from Figure 21,
they have larger area under their ROC curves and are closer to (0,1) point in the plot,
compared with other tools. LICHeE has a drawback of relatively poor performance at
read coverage 100 (Figure 23 (e)). This indicates MIPUP might be a less expensive
tool in practice because users do not need to collect a large amount of reads. However,
LICHeE seems to be slightly better at predicting %Corr Sib than MIPUP (Figure 23
(b)). AncesTree does not perform well overall, and from the ROC curve (Figure 21),
its prediction accuracy is worse than a random guess because its curve lies under
the diagonal. This might because AncesTree is unable to keep most mutations,
but from the precision and-recall curve (Figure 21), its prediction is very accurate
among the kept ones and even more accurate than MIPUP and LICHeE. Treeomics
also has good performance, however because of its termination error, Treeomics
might be suitable for data with a small sample size. CITUP also performs well
although it is inferior to MIPUP and LICHeE (Figure 21), especially since it keeps
all mutations. Excluding LICHeE, the other tools are not highly sensitive to read

37

Figure 21: ROC and Precision-Recall curves

coverages (Figure 23 (e)), therefore it may not be necessary to collect a large amount
of reads to increase performance. For most tools, when the sample size is larger than
10, increasing sample size does not increase performance notably (Figure 23 (a),(b)).
Hence, if not demanded for extreme performance, users may collect moderate size of
samples to reduce costs.

38

Figure 22: Performance of each tool on our evaluation criteria

39

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 23: Plotting of the performance of each tool on part of our evaluation criteria.
When considering varying sample sizes, results are average over all different read
coverages; on the contrary, when considering varying read coverages, results are
averaged over all different sample sizes

40

5 Discussion
There are some valuable points in both data simulation and evaluation parts which
may need to be discussed further.

The largest sample size in our experiments is 20 which could be too large compared
to the size of the simulated trees. In our experiments, each sample collects 2 to 4
clones, thus on average it collects 3 clones, then 20 samples may cover 60 clones of
a tree. Our tree has 10 clones, which means each clone in a tree will be covered 6
times in a set of 20 samples on average. Even with 5 samples, about 15 clones can
be covered which is 1.5 times of the population size. In the experiments of papers
presenting the evaluated tools, most of the experiments collect up to 10 samples,
only the experiments for LICHeE collects up to 20 samples perhaps because the
simulated trees in the paper presenting LICHeE has hundreds to thousands of clones.
Collecting a large amount of samples may be economically inefficient in practice or
lead to running errors for some tools. However, since this thesis mostly focuses on
evaluation, it could be beneficial to demonstrate performance of the tools on large
sample sizes.

Some tools (such as AncesTree) do not perform well on our evaluation criteria,
but it could be too arbitrary to conclude that they are not good tools. The reasons
could be our simulated datasets are not suitable for them. For example, the paper
presenting AncesTree reported that AncesTree has good performance on some real
data.

Although our sample size is large, sometimes a set of samples is still unable to
include all mutations of the simulated tree. Mutations not included in the samples
will have VAF values equaling to 0 in each sample. It was found, however, that some
tools are unable to filter out such mutations automatically so these mutations could
be included in the output tree. However, this issue may not affect the overall results
of the evaluated tools and the comparison among them. The reasons behind this
may include the following: 1) the amount of mutations not included in samples are
very rare, usually a set of samples can include more than 95% of the mutations; 2) in
practice, mutations not included in the samples will not be input to tools, therefore
this problem does not exist on real data.

The running time of different tools for the same dataset varied a lot. MIPUP and
LICHeE are the fastest among the evaluated tools and can finish running in about
30 minutes for all situations. Treeomics is a bit slower than these two but is also
fast. CITUP is relatively slow but its running time is quit stable. AncesTree is the
slowest one and its running time for different datasets with the same sample size and
read coverage ranges from a few minutes to dozens of hours, its long running time
might partly explain its relatively small sample size (up to 6) for the experiments
performed in the paper presenting AncesTree.

41

6 Summary
Studying tumor heterogeneity and inferring its phylogenies are important for de-
veloping targeted cancer therapies. High-throughput sequencing technologies allow
us to detect genetic variations from biological samples. Given the variations, many
computational tools have been developed to reconstruct tumor phylogenies. In this
thesis, datasets consist of tumor phylogenetic trees were generated and to evaluate
some recent reconstructing tools. We found relatively large differences for perfor-
mance among those tools and also their strengths and shortcomings, respectively.
As future work, the data simulation process could be improved to better imitate the
idealized biological tumor evolutionary process. Parameters of each tool could also
be studied to suit the input data better. Furthermore, it is also possible to include
other evaluation criteria to catch more properties of the tools.

42

References
[1] Cancer heterogeneity: implications for targeted therapeutics. R Fisher, L

Pusztai, and C Swanton

[2] Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment.
Xiao-xiao Sun1 and Qiang Yu1

[3] Alberts, Bruce; Alexander Johnson; Julian Lewis; Martin Raff; Keith Roberts;
Peter Walters. Molecular Biology of the Cell; Fourth Edition. New York and
London: Garland Science. 2002. ISBN 978-0-8153-3218-3

[4] Mccarroll, S. A.; Altshuler, D. M. (2007). "Copy-number variation and
association studies of human diseases". Nature Genetics. 39: 37–42. PMID
17597780. doi:10.1038/ng2080.

[5] Sharp, A. J.; Locke, D. P.; Mcgrath, S. D.; Cheng, Z; Bailey, J. A.; Vallente,
R. U.; Pertz, L. M.; Clark, R. A.; Schwartz, S.; Segraves, R. (2005). "Seg-
mental Duplications and Copy-Number Variation in the Human Genome". The
American Journal of Human Genetics. 77 (1): 78–88.

[6] NCI Dictionary of Cancer Terms:
https://www.cancer.gov/publications/dictionaries/cancer-terms?cdrid=46586

[7] Nowell,P.C. (1976) The clonal evolution of tumor cell populations. Science, 194,
23–28.

[8] Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O
(Jul 2014). "Type-2 pericytes participate in normal and tumoral angiogenesis".
American Journal of Physiology. Cell Physiology. 307 (1): C25–38. PMC
4080181. PMID 24788248. doi:10.1152/ajpcell.00084.2014.

[9] prenatal assessment of genomes and exomes:
https://www.pageuk.org/parents/genome.html

[10] Paired-End Mapping Reveals Extensive Structural Variation in the Human
Genome, Korbel et al, Science 2007

[11] Kurt Mehlhorn; Peter Sanders (2008). Algorithms and Data topologies: The
Basic Toolbox (PDF). Springer Science Business Media. p. 52. ISBN 978-
3-540-77978-0 Biggs, N. L.; Lloyd, E. K.; and Wilson, R. J. Graph Theory
1736-1936.

[12] Weisstein, Eric W. "Labeled Tree." From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/LabeledTree.html

43

[13] Prüfer sequence:Prüfer, H. "Neuer Beweis eines Satzes über Permutationen."
Arch. Math. Phys. 27, 742-744, 1918. Skiena, S. Implementing Discrete
Mathematics: Combinatorics and Graph Theory with Mathematica. Reading,
MA: Addison-Wesley, 1990.

[14] Kajimoto, H. (2003). "An Extension of the Prüfer Code and Assembly of
Connected Graphs from Their Blocks". Graphs and Combinatorics. 19: 231–239.

[15] A. Hujdurović, E. Husić, M. Mehine, M. Milanič, R. Rizzi and A.I. Tomescu
(2017). MIPUP: Minimum perfect unmixed phylogenies for multi-sampled
tumors via branchings in graphs and ILP

[16] Popic, V. et al. (2015). Fast and scalable inference of multi-sample cancer
lineages. Genome Biology, 16(1), 1–17

[17] M. El-Kebir, L. Oesper, H. Acheson-Field, and B.J. Raphael. Reconstruc-
tion of clonal trees and tumor composition from multi-sample sequencing data
Bioinformatics

[18] Malikic, S. et al. (2015). Clonality inference in multiple tumor samples using
phylogeny. Bioinformatics, 31(9), 1349–1356.

[19] Johannes G. Reiter.Reconstructing phylogenies of metastatic cancers

[20] Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O
(Jul 2014). "Type-2 pericytes participate in normal and tumoral angiogenesis".
American Journal of Physiology. Cell Physiology. 307 (1): C25–38. PMC
4080181Freely accessible. PMID 24788248. doi:10.1152/ajpcell.00084.2014.

[21] "II Neoplasms". World Health Organization. Retrieved 19 June 2014.

[22] Abrams, Gerald. "Neoplasia I". Retrieved 23 January 2012.

[23] "Cancer - Activity 1 - Glossary, page 4 of 5". Retrieved 2008-01-08.

[24] Handa O, Naito Y, Yoshikawa T (2011). "Redox biology and gastric carcinogen-
esis: the role of Helicobacter pylori". Redox Rep. 16 (1): 1–7. PMID 21605492.
doi:10.1179/174329211X12968219310756

[25] Halford S, Rowan A, Sawyer E, Talbot I, Tomlinson I (June 2005). "O(6)-
methylguanine methyltransferase in colorectal cancers: detection of muta-
tions, loss of expression, and weak association with G:C>A:T transitions".
Gut. 54 (6): 797–802. PMC 1774551Freely accessible. PMID 15888787.
doi:10.1136/gut.2004.059535.

[26] Lee KH, Lee JS, Nam JH, Choi C, Lee MC, Park CS, Juhng SW, Lee JH (October
2011). "Promoter methylation status of hMLH1, hMSH2, and MGMT genes in
colorectal cancer associated with adenoma-carcinoma sequence". Langenbecks
Arch Surg. 396 (7): 1017–26. PMID 21706233. doi:10.1007/s00423-011-0812-9

44

[27] Neoplasm Cooper GM (1992). Elements of human cancer. Boston: Jones and
Bartlett Publishers. p. 16. ISBN 978-0-86720-191-8.

[28] Truninger K, Menigatti M, Luz J, Russell A, Haider R, Gebbers JO, Bannwart
F, Yurtsever H, Neuweiler J, Riehle HM, Cattaruzza MS, Heinimann K, Schär
P, Jiricny J, Marra G (May 2005). "Immunohistochemical analysis reveals high
frequency of PMS2 defects in colorectal cancer". Gastroenterology. 128 (5):
1160–71. PMID 15887099. doi:10.1053/j.gastro.2005.01.056

[29] Navigating the Challenge of Tumor Heterogeneity in Cancer Therapy Clare
Fedele, Richard W. Tothill and Grant A. McArthur DOI: 10.1158/2159-
8290.CD-13-1042 Published February 2014

[30] Tumour heterogeneity and the evolution of polyclonal drug resistance react-
empty: 83 react-empty: 84 react-empty: 85 react-empty: 86 react-empty: 87
react-empty: 88 react-empty: 89 Author links open overlay panel Rebecca
A.BurrellabCharlesSwantonab

[31] DNA Molecular Biology of the Cell. 4th edition. Alberts B, Johnson A, Lewis
J, et al.

	Abstract
	Preface
	Introduction
	Thesis structure

	Biological Background for Our Data Simulation Algorithm
	Genetic variability
	Tumor evolution
	Sequencing technology and VAF value

	Data Simulation of Tumor Plynogenetic Trees
	Trees
	Overview of the data simulation algorithms of the evaluated tools
	Data simulation
	Non-uniformity of data simulation of Ancestree
	Data simulation with Prüfer sequence

	Evaluation of the Tumor Phylogenetic Reconstructing Tools with Simulated Data
	Evaluation criteria
	Overview of the evaluation criteria of the evaluated tools
	Evaluation results
	Predicted tree of the tools for one of our simulated data
	Performance of the tools on our evaluation criteria

	Discussion
	Summary
	References

