
An FPGA Implementation of a Power
Converter Controller

Tero Kuusijärvi

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 13.10.2017

Thesis supervisor:

Prof. Kari Halonen

Thesis advisors:

D.Sc. (Tech.) Vlad Grigore

M.Sc. Pasi Lauronen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/145239348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Tero Kuusijärvi

Title: An FPGA Implementation of a Power Converter Controller

Date: 13.10.2017 Language: English Number of pages: 7+84

Department of Electronics and Nanoengineering

Professorship: Electronic Circuit Design

Supervisor: Prof. Kari Halonen

Advisors: D.Sc. (Tech.) Vlad Grigore, M.Sc. Pasi Lauronen

High switching frequencies and control rates in switched-mode power supplies are
hard to implement with microcontrollers. Very high clock frequency is required
to execute complex control algorithms with high control rate. FPGA chips offer
a solution with inherent parallel processing. In this thesis, the feasibility of
implementing the control of a typical telecom power converter with FPGA is
studied. Requirements for the control system partitioning are considered. The
control of a resonant LLC converter is studied in detail and implemented in VHDL.
As part of the controller, a high-resolution variable frequency PWM module and
floating-point arithmetic modules are implemented. Finally, a complete VHDL
simulation model is created and run in different conditions to verify the functionality
of the design.

Keywords: LLC, FPGA, high frequency control, DPWM, PFM, power converter

aalto-yliopisto
sähkötekniikan korkeakoulu

diplomityön
tiivistelmä

Tekijä: Tero Kuusijärvi

Työn nimi: Tehomuuntajan säädön toteutus FPGA:lla

Päivämäärä: 13.10.2017 Kieli: Englanti Sivumäärä: 7+84

Elektroniikan ja nanotekniikan laitos

Professuuri: Electronic Circuit Design

Työn valvoja ja ohjaaja: Prof. Kari Halonen

Korkeat kytkentä- ja säätötaajuudet hakkuriteholähteissä ovat haastavia toteuttaa
mikrokontrollereilla. Monimutkaiset säätöalgoritmit edellyttävät mikrokontrolle-
reilta korkeaa kellotaajuutta. FPGA-teknologia mahdollistaa rinnakkaislaskennan,
joka on etu säätösovelluksissa. Tässä työssä tutkitaan FPGA-teknologian sovel-
tumista tyypillisen telecom-tehomuuntajan säätöön. Työssä selvitetään säätöjär-
jestelmän partitiointia sekä toteutetaan LLC-muuntajan ja sen säätöjärjestelmän
simulaatiomalli VHDL-kielellä. Säädön osana toteutetaan korkearesoluutioinen
PWM-moduuli sekä liukulukuaritmetiikkamoduuleja.

Avainsanat: LLC, FPGA, DPWM, PFM, tehomuuntaja

iv

Contents
Abstract ii

Abstract (in Finnish) iii

Contents iv

Symbols and abbreviations vi

1 Introduction 1

2 Theory and Background 3
2.1 Telecom AC-DC Power Converter . 3
2.2 Power Factor Correction Circuit . 4

2.2.1 Power Factor . 4
2.2.2 Structure and Operation . 4

2.3 LLC Resonant Converter . 7
2.3.1 Structure . 7
2.3.2 Resonant Tank Gain . 8
2.3.3 Operation . 12

2.4 Field-Programmable Gate Array Technology 14
2.4.1 Structure . 14
2.4.2 Routing, Interconnect and Clock Distribution 15
2.4.3 Design Flow . 16

2.5 Digital Control of PFC-LLC Power Converter 17
2.5.1 Data acquisition . 17
2.5.2 Control law generation . 19
2.5.3 Digital PWM generation . 20

3 Control Implementation 23
3.1 Control System Partitioning . 23

3.1.1 The Galvanic Isolation . 23
3.1.2 Controller Requirements . 24
3.1.3 Partitioning Options . 24

3.2 Finite State Machine Structure . 29
3.3 Pulse Width Modulation Architecture 30

3.3.1 The Phase-shifting . 32
3.3.2 The Counter . 33
3.3.3 The Asynchronous Output . 36

3.4 Synchronous Rectifier Control . 36
3.4.1 Secondary Synchronization . 36
3.4.2 Dynamic Range Requirement 37

3.5 Floating-Point Arithmetic . 38
3.5.1 Single-Precision Representation 38
3.5.2 Number Format Conversions 39

v

3.5.3 Subtraction . 40
3.5.4 Multiplication . 42
3.5.5 Estimation of Multiplicative Inverse 44

4 Simulations 46
4.1 Start-Up And Static Regulation . 46
4.2 Dynamic Response . 47
4.3 Pulse Skipping . 49
4.4 Synchronous Rectifier Control . 49
4.5 PWM Module . 50
4.6 Floating-Point Arithmetic . 51
4.7 Controller Delay . 52

5 Conclusions 53

References 55

A PWM module 58
A.1 Top-Level . 58
A.2 Counter . 65
A.3 Output Multiplexer . 72
A.4 Set-Reset Latch . 73

B Floating-Point Arithmetic 74
B.1 Number Format Conversions . 74
B.2 Subtraction . 76
B.3 Multiplication . 80
B.4 Multiplicative Inverse . 82

vi

Symbols and abbreviations

Symbols
bn bit of index n
Cr resonant capacitance
D duty cycle
DR dynamic range
en exponent bit of index n
F relative switching frequency
f frequency
fclk clock frequency
feff effective clock frequency
fr first resonant frequency
fr2 second resonant frequency
fs switching frequency
Il,rms RMS value of total line (AC input) current
Il1,rms RMS value of line (AC input) current fundamental
Ip transformer primary current
IRMS RMS current
Is transformer secondary current
Lm magnetizing inductance
Lr resonant inductance
mn mantissa bit of index n
Np number of turns in transformer primary winding
Ns number of turns in transformer primary winding
p index of most significant non-zero bit
Q quality factor
RAC equivalent load seen from the converter primary side
Rload equivalent load seen from the converter secondary side
s complex frequency
sx sign bit of word x
Tr isolation transformer
teff effective clock period
ts switching period
VAC AC voltage
Vin input voltage
VL inductor voltage
VL(av) average inductor voltage
Vout output voltage
Vp transformer primary voltage
VRMS RMS voltage
Vs secondary voltage
θ angle between RMS voltage and RMS current in linear load
θ1 angle between line voltage and line current fundamental
Φm magnetizing flux
ω angular frequency

vii

Abbreviations
AC alternating current
ADC analog-to-digital converter
ASIC application-specific integrated circuit
CCM continuous-conduction mode
DC direct current
DPWM digital pulse-width modulation
DSP digital signal processor
EMI electromagnetic interference
FHA first harmonic approximation
FPGA field-programmable gate array
GaN gallium-nitride
HDL hardware description language
HIL hardware-in-the-loop
I/O input/output
IP intellectual property
LSB least significant bit
LUT lookup table
MCU microcontroller unit
MIPS million instructions per second
MOSFET metal-oxide-semiconductor field-effect transistor
MSB most significant bit
MSPS million samples per second
PF power factor
PFC power factor correction
PFM pulse-frequency modulation
PID proportional-integral-derivative
PLL phase-locked loop
PWM pulse-width modulation
RAM random access memory
RMS root-mean-square
SPI serial peripheral interface
SRAM static random access memory
VHDL very high speed hardware description language
XOR exclusive or
ZCS zero-current switching
ZVS zero-voltage switching

1 Introduction
The requirements for efficiency and flexibility of power converters are ever increasing.
Efficient operation over wide operation conditions requires optimization schemes
and special operation modes. These requirements demand more advanced control
methods. As a result, the industry has turned to digitally controlled high-speed
switching converters. Resonant converters are especially attractive since they can
be operated in zero-voltage or zero-current-switching modes [1]. There is a drive
towards smaller reactive component sizes and higher power densities, requiring ever
higher switching frequencies. The maximum switching frequency in a power converter
has previously been limited by the switching and conduction losses of silicon-based
switching devices. With the emerging of Silicon-Carbide and Gallium-Nitride based
low-loss switches, digital control has become the limiting factor for higher switching
frequencies.

Digital control of switched-mode power converters is commonly implemented
using a microcontroller with DSP capabilities. Special-purpose microcontrollers
typically include all the necessary functionalities and peripherals to control a power
converter, such as multipliers, timers, analog-to-digital converters and pulse-width
modulators, enabling optimization of the total system cost. With matured integrated
development environments, designing control algorithms for microcontrollers is a
straightforward process. Microcontrollers are also inexpensive. The cheapest models
are sold for less than a US dollar.

However, microcontrollers operate in a sequential manner. This means that the
maximum instruction throughput is directly related to the system clock frequency.
High control frequency requires high performance from the computation hardware
itself as well as the peripherals. In one cycle control, there must be enough time in
each cycle for the analog-to-digital conversions as well as the control computation.
In addition, there must be some processor time reserved for other functionalities
such as communication. The number of instructions in a control loop is thus
limited, and this sets a limit to the complexity of the control. At the same time,
the cost of power supplies is being pushed lower. These factors together make it
very difficult to implement a cost-effective real-time control system for switching
frequencies approaching 1 MHz with a microcontroller. This is also the reason why
field-programmable gate arrays have become more attractive choice for control system
implementation.

Unlike microcontrollers, FPGA chips allow for the development of parallel al-
gorithms. The configurable logic interconnections make it possible to calculate
parts of the control simultaneously at hardware level. The extra functionality of a
control system, such as external communication and system level optimizations can
be performed at the same time with the control. These factors remove the control
complexity limit, since the control is no longer limited by the system clock frequency.
Moreover, several converters can be controlled with one FPGA chip, increasing only
the area and cost of the chip but not reducing the available computation time.

2

In this work, the feasibility of using a field-programmable gate array chip in
the control of a typical telecom AC-DC power converter is assessed from cost,
performance, modularity and upgradability points of view. Furthermore, an efficient
control topology for a PFC-LLC power converter is proposed and an LLC control
algorithm capable of 1.2 MHz switching frequency is implemented in VHDL. As part
of this implementation, a high-resolution, variable frequency pulse-width modulation
architecture is implemented in VHDL. The implementation is verified by HDL
simulation. PFC boost converter control implementation is not within the scope of
this work.

3

2 Theory and Background

2.1 Telecom AC-DC Power Converter
In telecommunication sector, the millions of cellular base stations distributed across
the globe require high performance DC power supplies. The requirements for power
density, smaller size, low harmonic distortion and range of loading conditions are
increasing. The purpose of a telecom AC-DC power supply is to convert the line
AC voltage of 230 or 110 volts to the DC voltage utilized by the telecom equipment,
usually -48 V. The load to be powered may increase and decrease depending on
the network utilization at given time. The power converter must be able to keep its
output voltage regulated while supplying required amount of current. This power
conversion must be achieved with the mentioned requirements taken into account.
A popular solution for a switched-mode AC-DC power converter consisting of a
boost PFC stage followed by a galvanically isolated DC-DC converter [2] is shown in
Figure 1.

Figure 1: Simplified block diagram of a typical telecom AC-DC power converter

The purpose of the PFC stage (Power Factor Correction) is to keep the input
current waveform sinusoidal and in phase with the input voltage. For this stage, a
boost PFC topology is commonly employed. A benefit of such PFC stage is the ability
to raise the intermediate voltage above the line voltage and also regulate it. This
allows using both the 230 V and 110 V AC line inputs with the same design. After
the PFC stage, there is a DC-DC stage to add galvanic isolation to the design and
to create the 48 V output voltage from the intermediate DC bus voltage. Resonant
LLC converter with synchronous rectification is typically used for this stage. The
resonant operation allows for soft switching, resulting in highly efficient operation
over wide load range. The operation of the two converter stages is governed by the
controller block, shown in the bottom. It takes measurements of the various currents
and voltages within the converter and generates the appropriate switching sequence
for each switching device to keep the operation optimal.

4

2.2 Power Factor Correction Circuit
The PFC stage is essentially a rectifier coupled with a boost converter: its purpose is
to shape the line current drawn by the power converter to sinusoidal form and keep it
in phase with the input AC voltage while regulating the intermediate DC bus voltage.
The sinusoidal waveform of line current minimizes its distortion. The distortion
of the line current is linked to the efficiency of the whole power converter. High
distortion equals high harmonic content which in turn means high reactive power
and thus higher losses. Furthermore, distorted current might also distort the grid AC
voltage, and that is why it should be minimized. Standards such as IEC61000-3-2 [3]
regulate the maximum allowed levels of distortion in devices that are connected to
the electric grid.

2.2.1 Power Factor

Power factor is defined as the relation of real power to apparent power in a system [4,
p. 524]. It represents the efficiency of the use of real power within the system. Power
factor for linear loads is given by:

PF = VRMSIRMS · cos(θ)
VRMSIRMS

= cos(θ), (1)

where θ is the angle between the RMS line voltage and RMS line current. Since the
real power utilized by the system is the instantaneous product of voltage and current,
high RMS values of voltage and current do not correspond to high power delivered
to load, if the power factor is low. However, high RMS current does contribute to
higher conductive losses, even if it is not in phase with the line voltage.

Switched-mode power supplies are not linear power systems. Rectifier bridges
draw distorted currents, which degrade the power factor considerably. This is why it
is not enough to keep the line current in phase with the input voltage. The general
equation for the power factor is given by [4, p. 525]:

PF = Il1,rms

Il,rms

· cos(θ1), (2)

where Il1,rms is the rms value of the fundamental component of the line current, Il,rms is
the rms value of the line current, and θ1 the angle between the line voltage (assumed
sinusoidal) and the fundamental component of the line current. Minimizing distortion
implies minimizing the harmonic components of the line current to make the total
rms value of line current equal to the rms value of the fundamental component. The
goal is to shape the line current as close to purely sinusoidal as possible. There are
passive and active means to improve the power factor. In this work, the active boost
PFC topology shown in Figure 2 is used. With a boost PFC it is possible to achieve
power factors higher than 98%.

2.2.2 Structure and Operation

The PFC boost converter in Figure 2 consists of the input rectifier stage, boost
inductor L, switch Q, boost diode D and the intermediate DC bus capacitor [4, p.

5

Figure 2: The PFC boost converter with a diode rectifier

Figure 3: Current waveforms of the boost converter

528]. The boost inductor is located in the path of the input current, while the switch
is connected to the boost inductor and the negative terminal of the intermediate DC
bus capacitor. This configuration has advantages over buck and buck-boost type
converters. When the converter operates in continuous-conduction mode (CCM),
the input current is always greater than zero. It is also continuous, since it is not
disrupted by the switch. The current stress of the switch is thus lower in a boost
type converter. Additionally, the boost inductor smooths the input current, resulting
in lower EMI generation [4, p. 529].

When the switch Q conducts, the input current flows through the boost inductor
and the switch. The voltage over the inductor L is equal to the input voltage, which

6

in this case is the rectified line voltage. The current through the inductor increases,
while the load, which in this case is the LLC converter, is supplied with current from
the discharging intermediate DC bus capacitor. Since the inductor corresponds to a
short circuit for low frequencies, there cannot be an average non-zero voltage over
the inductor. When the switch does not conduct, the input current flows through
the boost inductor to the load and the intermediate DC bus capacitor. In this case,
the voltage over the inductor is equal to the difference of input and intermediate DC
bus voltages:

VL = Vin − Vout. (3)
Thus with a duty cycle D, the average inductor voltage is:

VL(av) = 0 = D · Vin + (1−D) · (Vin − Vout) (4)

(1−D) · Vout = D · Vin + (1−D) · Vin (5)

Vout = 1
1−DVin. (6)

As can be seen in Equation 6, the output voltage of a boost converter depends directly
on the duty cycle. It is thus easy to control a boost converter, since increasing load
or decreasing input voltage can both be compensated by simply increasing the duty
cycle towards 1. However, in a boost PFC this is not enough. The intermediate
DC bus voltage must be regulated while simultaneously keeping the line current
waveform sinusoidal. This can be accomplished by appropriate control. Since the
value of duty cycle corresponds to the period of time the current of the boost inductor
increases, the line current can be shaped with the duty cycle. For example, when the
line voltage wave reaches its peak value as its derivative is close to zero, duty cycle
of 50% keeps the inductor current and equivalently the input current approximately
constant. After this, the average duty cycle is decreased in phase with the sinusoidal
line voltage. It is important to note here that the switching frequency is much higher
than the line frequency. If the duty cycle is varied synchronously with the line voltage,
the average inductor current is approximately sinusoidal within a line cycle. Varying
the duty cycle results in ripple effect on the intermediate DC bus voltage.

To decrease the losses of the PFC stage, it is possible to use bridgeless design
for the input rectifier. Several such implementations have been proposed [5]. The
advantage of this is that some of the diodes within the path of the input current can
be removed, and thus the conduction losses reduced. However, bridgeless designs
require more complicated control because of greater number of controlled switches.
Furthermore, bridgeless design introduces other challenges like increased common-
mode noise [5].

Another technique to reduce the conduction losses of the PFC stage is to use
multiple interleaved boost converters [6]. The conduction losses, directly proportional
to the square of the current, are reduced to a quarter by dividing the current equally
between two interleaved converters. Another benefit of this is the ability to use
smaller inductors, because the current ripple in each interleaved path sums up with
a 180 degree phase shift, compensating the total ripple. From the grid side, this

7

seems like doubled switching frequency, which naturally reduces ripple. Additionally,
this reduces the line current distortion and transient overshoots [7]. Interleaved PFC
is best controlled digitally because of the need to keep the interleaved paths 180
degrees out of phase.

2.3 LLC Resonant Converter
Conventional PWM power converters operate using hard switching. This means
switching where the switch device has to endure high voltage or current during the
switching. Hard switching causes great stress to the power electronic components
and also losses in the form of heat. The losses originate from the fact that during
the switching, there is both current running through the component as well as a
voltage over it. Moreover, rapidly changing currents and voltages cause increased
electromagnetic interference. To overcome these problems, research efforts were
focused to resonant converter topologies such as LLC converter [4, p. 410]. The
general idea was to use resonant tanks to create sinusoidal voltage and current
waveforms, allowing the switching to be timed to the zero-crossing points. From
there come the terms zero-voltage switching (ZVS) and zero-current switching (ZCS).
A characteristic of LLC converter is that it is controlled with switching frequency
while the duty cycle is fixed to approximately 50%, whereas the conventional PWM
converters are controlled with duty cycle while keeping the switching frequency
constant.

2.3.1 Structure

Figure 4: Circuit diagram of synchronously rectified LLC converter

There are several possibilities to arrange the reactive components of the reso-
nant tank that result to different characteristics. One of those possibilities is the
LLC converter [8]. In LLC converter the resonant tank is made of three reactive
components, two inductors and a capacitor. LLC converter has advantages over
the other configurations, namely efficient operation over wide load conditions and
wider gain variation with narrower frequency control range [8]. Additionally, in LLC

8

configuration it is possible to utilize the parasitic inductances of the transformer by
integrating all the inductive components into the transformer. This is very beneficial
from the system integration point of view. Common to all configurations is the
basic operation principle: a square wave is applied to the resonant circuit by the
primary bridge circuit. The bridge circuit can be of either half-bridge of full-bridge
type. In this work, the half-bridge topology is used. The resonant circuit filters
the applied wave, and approximately sinusoidal current flows through the windings
of the isolation transformer. The current is rectified in the secondary side of the
transformer, resulting in DC-DC conversion.

The secondary side rectifier could be realized with diodes. However, with passive
rectification there exists a constant voltage drop over the rectification diodes. With
low voltages and large currents, the resulting power loss grows too high. Synchronous
rectification is a viable solution. Replacing the diodes with switches, such as the
MOSFETs in Figure 4, the conduction losses can be almost eliminated. Synchronous
rectification requires that the switching takes place when the current through the
switch is approximately zero, in order not to introduce additional losses originating
from the switching. To achieve this the phase difference between the primary
switching signals and the secondary switching signals must be calculated.

The three reactive components of the resonant tank cause the converter to have
two resonant frequencies, given by [9, p. 7/64]:

fr = 1
2π
√
LrCr

(7)

fr2 = 1
2π

√
(Lr + Lm)Cr

, (8)

where Lm, Lr and Cr are the magnetizing inductor, resonant inductor and resonant
capacitor respectively. The primary resonant frequency in Equation 7 is the frequency
that is commonly referred to as the resonant frequency. The second resonant frequency
fr2 is at lower frequency than the primary resonant frequency. The impedance of
the resonant tank can be either inductive or capacitive, depending on the switching
frequency. When the LLC converter is driven below the lower resonant frequency,
the input impedance of the resonant tank is capacitive. The input impedance is
inductive when the resonant tank is driven above the higher resonant frequency [9,
p. 7/64]. Between the resonant frequencies, the input impedance depends on the
load condition, and can be either inductive or capacitive.

2.3.2 Resonant Tank Gain

The analysis of resonant switching converters is thought to be more complex than in
the case of conventional PWM converters. To address this, it is assumed from here
on that from the square wave input only the first fundamental harmonic component
contributes to the transfer of electrical power and the rest of the harmonic content is
neglected. This greatly simplifies the analysis of the converter, and allows the usage
of classical AC circuit analysis to study the dynamics of the system. This is called

9

first harmonic approximation (FHA). In addition to the LLC gain characteristics,
it is used in the control algorithm of the synchronous rectifier to find the optimal
switching instants for the secondary side switches.

Simplified circuit consisting of the primary resonant tank, magnetizing inductance,
transformer and the load is shown in Figure 5. The synchronous rectifier is combined

Figure 5: Simplified diagram of resonant tank, transformer and load.

with the actual load to a single load Rload, seen as an AC load from the transformer.
The voltages from the dotted terminals to the undotted terminals for primary and
secondary sides of the transformer are respectively the following [10, p. 137]:

Vp = Np
dΦm

dt
(9)

Vs = Ns
dΦm

dt
, (10)

where Np and Ns is the number of turns on either side and Φm is the magnetizing
flux of the transformer. An ideal transformer is assumed here, and for that reason
no leakage fluxes or losses are included in this analysis. Dividing Equation 9 by
Equation 10 yields:

Vp

Vs

= Np

Ns

. (11)

Conservation of energy means that the input power and the output power of the
transformer must be equal. This means that:

VpIp = VsIs (12)

→ Vp

Vs

= Is

Ip

= Np

Ns

. (13)

The relationship between the primary current and the secondary current is then:

Is = Ip
Np

Ns

. (14)

10

From Equation 14 it can be seen that the secondary current is simply the primary
current scaled by the turns ratio constant. This means that the primary and secondary
currents are in phase, and the circuit in Figure 5 can be further simplified by including
the transformer and the load to a single AC load, RAC. The simplified circuit is
shown in Figure 6.

Figure 6: Further simplified resonant circuit.

Using Laplace transforms to obtain the complex impedances, we get for the
complex primary voltage:

Vp =
sLmRAC

sLm+RAC

sLmRAC

sLm+RAC
+ sLr + 1

sCr

VAC (15)

Vp = sLmRAC

sLmRAC + s2LmLr + sLrRAC + sLm+RAC

sCr

VAC (16)

Vp = s2CrLmRAC

s2CrLmRAC + s3CrLmLr + s2CrLrRAC + sLm +RAC

VAC (17)

Vp = s2CrLmRAC

s3CrLmLr + s2CrRAC(Lm + Lr) + sLm +RAC

VAC . (18)

Substituting jω in place of the complex frequency s yields:

Vp = −ω2CrLmRAC

−jω3CrLmLr − ω2CrRAC(Lm + Lr) + jωLm +RAC

VAC (19)

Vp = −ω2CrLmRAC

j(ωLm − ω3CrLmLr)− ω2CrRAC(Lm + Lr) +RAC

VAC . (20)

Substituting switching frequency 2πfS in place of ω yields:

Vp = −(2πfs)2CrLmRAC

j((2πfs)Lm(1− (2πfs)2CrLr))− (2πfs)2CrRAC(Lm + Lr) +RAC

VAC .

(21)
Quality factor Q and relative switching frequency F are the following:

11

Q =

√
Lr

Cr

RAC

(22)

F = fs

fr

. (23)

Using quality factor and relative switching frequency instead of RAC and fs in Equation
21 results to:

Vp =
−(2πFfr)2CrLm

√
Lr
Cr

Q

j((2πFfr)Lm(1− (2πFfr)2CrLr))− (2πFfr)2Cr

√
Lr
Cr

Q
(Lm + Lr) +

√
Lr
Cr

Q

VAC .

(24)
Using Equation 7, this simplifies into:

Vp = −F 2Lm

j ·QLmF (1− F 2)− F 2(Lm + Lr) + Lr

VAC (25)

Figure 7: LLC resonant tank gain as function of relative switching frequency

The equation for the resonant tank gain G(Q, F) is then:

G(Q,F) = | Vp

VAC

| = F 2Lm√
(QLmF (1− F 2))2 + (Lr − F 2(Lm + Lr))2

. (26)

12

As can be seen from Figure 7, the gain of the resonant tank depends on the switching
frequency of the primary side bridge circuit. The LLC converter is controlled by
adjusting the switching frequency near the resonant point. Zero-voltage switching
requires that the resonant tank impedance is inductive [9, p. 15/64]. The switching
frequency must then be limited to the inductive frequencies. Inductive impedance
increases with frequency, which is why the gain of the resonant tank is lower at higher
frequencies. The controller must respond to decreasing input voltage or increasing
load by reducing the switching frequency. With heavy loads (corresponding to quality
factor of 5 in Figure 7), the lowest allowed frequency is the resonant frequency. With
lighter loads, the switching frequency can be even lower, as long as it is in the
inductive region. All the gain curves coincide at the resonant frequency, where it has
value of unity. This is the operation point when the load condition is at the specified
nominal level. As will be shown next, it is the point of most efficient operation.

2.3.3 Operation

Figure 8: LLC waveforms at resonant frequency

in Figures 8 - 10, the voltage and current waveforms of the LLC converter are
plotted. V(n009) refers to the voltage applied to the resonant tank by the primary
switches. I(Lr), I(Lm), Is(Q3), and Is(Q5) are the resonant inductor current,
magnetizing current, and source currents through secondary switches Q3 and Q5 (in
Figure 4) respectively. In Figure 8 the circuit is operated at the resonant frequency.
The resonant inductor current I(Lr) is approximately sinusoidal and the magnetizing
current I(Lm) is triangular. The difference of these two currents flows through the
windings of the transformer. On the secondary side, the current flows through the
rectifier switches, which can be operated in ZCS conditions. On the primary side,
ZVS conditions are achieved in turning on the switches. During turn-off, there is
always some current flowing through the switches, causing turn-off losses. It should be
noted here that the resonant inductor current is not at its peak during the switching,
but rather has reversed its direction of change and is approaching zero. At the points

13

when the resonant inductor current meets the magnetizing current, the conducting
primary side switch is turned off. The inductive operation region guarantees that
the current will keep flowing. The only path for the current is through the body
diode of the other switch. To force the current through the body diode, the voltage
at the switching node is forced to increase to forward bias the body diode. After this
has happened, the voltage over the switch is just the forward voltage of the body
diode, allowing ZVS at the turn-on.

Figure 9: LLC waveforms below resonant frequency

in Figure 9, the converter is operated below resonant frequency. Now the square
voltage period is longer than the resonant period of the resonant tank. The resonant
inductor current I(Lr) meets the magnetizing current I(Lm) before the end of the
switching half-cycle. After this point, no current flows through the primary windings
of the transformer until the beginning of the next switching half-cycle. The current
is simply circulated in the primary side, resulting in increased conduction losses.
On the secondary side, the duty cycle of the switches must be reduced, since the
duration of the current pulses are now only a portion of the primary switching cycle.

in Figure 10, the converter is operated above resonant frequency. Now the square
voltage pulse is too short to allow for the resonant inductor current to complete the
resonant cycle. On the primary side, this increases the turn-off losses of the switches,
as the resonant inductor current is closer to its peak during the switching. On the
secondary side, ZCS is no longer possible. As can be seen in the figure, the secondary
current pulses are disrupted and the new half-cycle is started, resulting in inreased
switching losses.

As a whole, LLC control is relatively complicated. The circuit gain is controlled
with varying frequency rather than duty cycle. The control response must be different
for different load conditions, as can be seen in Figure 7. The secondary duty cycle
is not necessarily the same as the primary duty cycle. This is demonstrated in
Figure 9. In the same figure, it can be seen that in addition to calculating the duty
cycle, the switch control pulses must be slightly advanced in relation to the primary
pulses to ensure zero-current switching. This advancing or delaying depends on the

14

Figure 10: LLC waveforms above resonant frequency

primary switching frequency. This synchronization is somewhat complicated, and it
is further analyzed in section 3.4. Tight regulation of the output voltage typically
requires a two-stage nested control, with output voltage and primary current being
the measured quantities that are then compared to their reference values [11]. As
the goal is to move to higher switching frequencies in the future to increase power
density and reduce component sizes, it requires a high performance controller to run
a complex control algorithm. This is why the FPGA technology is becoming more
and more interesting for control implementations.

2.4 Field-Programmable Gate Array Technology
Field-programmable gate-array is essentially programmable logic. FPGA chips make
it possible for the developer to implement logic functions in hardware. This allows
implementing extremely fast algorithms and parallel processing without overhead.
FPGAs can be used for most of the applications that application-specific integrated
circuits (ASIC), but unlike ASICs, their logic functionality is not fixed during
production but rather defined later by the developer. For this reason, using an FPGA
chip instead of an ASIC is an attractive option in prototyping, low volume production
and situations where it is necessary to be able to modify and update the logic within
the final product on the field. While having reduced time-to-market, FPGAs are
not fully customizable like ASICs and therefore cannot be as precisely designed as
ASICs. An ASIC developer can draw wires in the design as desired, while FPGA
designer must rely on pre-existing wiring and connections.

2.4.1 Structure

FPGA chip consists of two basic building blocks, logic and interconnections [12, p.
3–4]. In addition, there are number of I/O pins to connect the chip to the rest of the
printed circuit board. Together these blocks form the logic fabric of the FPGA. The

15

logic resources are commonly realized with N-input lookup tables (LUT). LUTs are
basically truth tables, which can implement any N-input combinational logic function.
Lookup tables are programmed with a truth table of the implemented function.
A 4-input LUT is equal to a 16-bit read only memory connected to a multiplexer.
Complex combinational logic functions can be implemented with multiple lookup
tables interconnected in a specific manner.

In addition to the lookup table, the other basic element in a logic slice is the
register, or a flip-flop. The register is essentially a 1-bit memory element, which
samples the input at a certain point of the provided clock signal and transfers the
input to its output. Without memory, it would be impossible to implement state
machines with an FPGA, and only combinational logic would be possible. In addition
to memory, registers allow the implementation of delays and pipelines. Registers are
also the root of the timing considerations of an FPGA design. To avoid metastable
states and ensure correct operation, the input must be stable for a certain period
of time before and after the sampling moment. These periods are called setup and
hold times respectively. Using too high clock frequency for a given logic path would
result in too little time for the settling of the input data of the register at the end of
the path, causing its output data to be invalid at the next sampling moment. The
timing requirements can be relaxed by using a lower frequency clock or inserting
registers within the logic path.

Besides the LUT and the register, there is usually a multiplexer within each logic
slice. With the multiplexer, output of either the LUT or the register can be chosen
as the output of the block. The multiplexer is also the element that allows flexible
interconnection of sequential and combinational logic.

There are usually ASIC sections, called hard intellectual property cores (IP),
designed within an FPGA to allow for more flexible clock management and fast, re-
source efficient arithmetic operations. These blocks include phase-locked loops, delay
lines, memory blocks and multiply-accumulators. These blocks can be conveniently
connected to the logic fabric to improve the performance of related logic or preserve
the logic resources of the chip.

2.4.2 Routing, Interconnect and Clock Distribution

In a single FPGA chip, there can be thousands of individual logic slices. To map a
complex logic function on the chip, the slices must be interconnected in a meaningful
way. The commonly used routing architecture is the island-style architecture. In
this architecture, the logic slices are arranged in a two-dimensional array with
interconnections and routing in between. At the intersections of routing channels,
there are switchboxes to connect the logic slices and the wiring itself in a configurable
manner.

The clock signal as well as a global reset signal usually have dedicated routings,
inputs and buffers to minimize skew and ensure an even distribution to the entire
FPGA chip. There can be several clock domains with different frequencies on a single
FPGA. Often, some of the logic running on the chip has tighter timing requirements
than the rest. This allows using the minimum required clock frequency within a

16

certain clock domain in order to save dynamic power. Care must be taken when
routing signals from one clock domain to another. Since the differing clocks can be
of different frequency and phase, it is possible that the register in the target domain
samples the input data during a transition within the source clock domain, resulting
in corrupted data. This can be avoided by using multiple buffer registers between
clock domains to reduce the likelihood of unsettled input data.

2.4.3 Design Flow

The FPGA design flow is similar in the development environments of the major
manufacturers. The steps are [13]:

1. HDL description

2. Translation and synthesis

3. Design implementation

4. Physical implementation

In the first step, a HDL description is written. Popular hardware description
languages are VHDL and Verilog, derived from Ada and C respectively [12, p.
129]. At this point, the design is created as several modules, which can usually be
individually simulated to ensure their functionality before interconnecting them as a
larger design. Care must be taken to write the kind of description, which corresponds
to the available hardware elements in some way. It is possible to write HDL code
that is not synthesizable. Simulation after and during this step is called pre-synthesis
simulation.

In the second step, the written description is synthesized. This means creating
a netlist out of the design [13]. The netlist describes the logic gates needed to
implement the design as well as the way those components are connected. Simulation
after this step is call post-synthesis simulation.

In the third step, the netlist is mapped to the available FPGA resources and
subsequently placed and routed on the target FPGA. The best physical locations for
the functional blocks are found and routing between the blocks is calculated. The
result of this step is the configuration data that can be programmed on to the FPGA
chip. Simulation after this step is called post place-and-route simulation.

The data that specifies the configuration is called the configuration bitstream [12,
p. 402]. In the final step, the bitstream is actually programmed into the target FPGA
chip. After this step, the functionality of the design can be verified for example with
a logic analyzer or a hardware-in-the-loop (HIL) simulation. As mentioned in the
previous subsections, there are many elements in an FPGA that can be configured.
These elements are the truth tables of LUTs, initial values of the D flip-flops, the select
value of the multiplexers of the logic slices and the configurations of the switchboxes.
Both the logic and the interconnect configuration bits are commonly static SRAM.
The bitstream is usually stored in a non-volatile flash memory, external or internal.
From there, the configuration data is loaded to the FPGA’s internal SRAM memory

17

at the time of power-on start-up or during a manual reset at run time. SRAM is a
type of volatile memory, which keeps its value only when it is powered [12, p. 17].

FPGA development allows for code reuse just like in software engineering. Because
of the relatively large workload involved in creating a complex digital design from
scratch, it is common to use previously designed and verified modules to speed up
the development cycle. The major FPGA vendors have reusable modules, called soft
IP cores, available for purchase and some for free.

2.5 Digital Control of PFC-LLC Power Converter
The main elements of digital switched mode power supply control system are [14, p.
6]:

1. Data acquisition

2. Control law generation

3. Digital PWM generation

2.5.1 Data acquisition

As digital controllers operate with sampled and quantized measurements, analog-to-
digital converters are needed to get information about the controlled process. These
measurements are essentially the feedback loop of the control system. In the case
of PFC-LLC power converter, we need several measurements for the control. These
include:

1. AC input voltage

2. PFC phase current(s)

3. PFC output or intermediate voltage

4. LLC primary current

5. LLC output current

6. LLC output voltage

Typical ADCs have an input range of [0, 3.3] volts. However, many of the
measured quantities have too large values to be directly measured with an ADC. It
is necessary to scale those values down to the suitable range. Additionally, some
measurements must be obtained across the isolation barrier. Different quantities
require different sensing methods. For DC voltages, the scaling is done with a voltage
divider. This is simply a chain of resistors in series, which scales the high voltages to
lower voltages. While a resistor chain is a simple and low-cost measurement method,
it does not provide isolation. A surge voltage in the input of the voltage divider
can propagate past the voltage divider, possibly destroying some components. To

18

Figure 11: A voltage divider

make sure that the resistors themselves will not be destroyed by surges, they must
be properly selected. The voltage divider is shown in Figure 11. The equation for
the scaled-down voltage V_adc is:

V_adc = V in · R2
R1 +R2 . (27)

For DC currents, the most relevant options for obtaining the measurement and
scaling the value are shunt resistors and Hall-effect sensors [15, p. 133]. Shunt
resistor is a resistor placed in the path of the current to be measured. As the current
flows through the resistor, a detectable voltage drop is formed over the resistor.
The measurement scale can be adjusted by sizing the resistor properly or using an
amplifier circuit. However, the resistor should be of small value, since it affects the
surrounding circuit. In addition to the voltage drop over the resistor, some power is
inevidently dissipated within the resistor. It should be noted that measuring current
with a shunt resistor provides no isolation. The shunt resistor is shown in Figure 12.
The equation for the voltage drop is:

V_adc = I ·R_shunt. (28)

Figure 12: A shunt resistor

Instead of measuring the voltage drop in a resistor, Hall-effect sensors measure
the magnetic field created by the current [15, p. 133]. This has the advantages

19

of not affecting the measured circuit and providing electrical isolation. Hall-effect
sensors are useful for measuring large currents, since those generate larger magnetic
fields, leading to smaller relative error. With small currents however, factors such
as the orientation of the sensor in relation to earth’s magnetic field can affect the
measurement considerably. Hall-effect sensors are also very sensitive to differences in
distance to the measured wire as well as the wire geometrics [15, p. 134].

For AC quantities, a straightforward sensing method is to use a transformer.
With proper turns ratio, the secondary winding of a voltage transformer provides a
voltage which can be directly measured, as is shown in Equation 11. In case of AC
current, a current is obtained from the secondary winding. If a resistor is connected
to the secondary winding, voltage directly proportional to the primary current can
be measured over the resistor. With proper sizing of the transformer and the resistor,
negligible additional load is presented to the primary side. As an added benefit,
transformers provide isolation.

The requirements for the sampling speed and bit resolution of the measurements
vary, but generally the measurements that are needed within the control loops have
the strictest requirements. The requirements depend on the control loop frequency
as well as the dynamic and static requirements of the control. The control loop
frequency means the rate at which the control algorithm is executed. The ADC’s
sampling speed must be at least equal to the control loop frequency, and in practice
higher than that. In one-cycle control, it is necessary to have ADC sampling rate
higher than the control loop frequency to leave a portion of the control period for
the control law generation.

Dynamic requirements refer to the way the controlled system responds to changes
in its operating conditions. Higher resolution of the ADC means that the output word
of the ADC is wider in bits. This means that the measured quantity is represented
by a larger integer value than with a smaller resolution ADC. When the measured
quantities change their value, that change is more easily detected with a higher
resolution ADC. Furthermore, when the measured quantity differs from the set
reference point, the error quantity seen by the controller has a greater value. Finer
precision also helps the control system to achieve more stable operation around the
set reference. This requirement is usually defined as the maximum allowed ripple in
a given quantity.

2.5.2 Control law generation

The output of the controlled process, in this case currents and voltages, depend on
both past and present inputs. The past inputs have caused the process to enter a
certain state: its node voltages and branch currents have a certain value at a given
time instant. Based on this state, certain actions must be taken to direct the process
towards the desired state. As the process here is a power converter, this generally
means taking appropriate actions to reach a desired output voltage. Control law
means the function of process states, which determines the actions to be taken. In an
LLC converter, at some instant, the output voltage might be less than the reference
voltage. The control law dictates that in this situation, the action to be taken is

20

to reduce the switching frequency of the primary side switches in order to increase
the gain of the resonant tank and subsequently the output voltage. Similarly, the
control law dictates that an output voltage exceeding the reference voltage should
be compensated by increasing the switching frequency.

Control law also determines the magnitude of the response to a certain magnitude
of error between the reference and the measured quantity. This is done using
proportional-integral-derivative (PID) control structure. PID control is probably
the most used control structure within industrial control. It is very robust, since it
doesn’t require information about the process itself. The process output is measured
and subtracted from the reference to yield an error term. A control command is
calculated as a sum of three terms: one directly proportional to the instantaneous
error term (P), one proportional to the change, or derivative of the error term (D)
and one proportional to the accumulated or integral of the error term (I). In digital
control, it is sometimes good practice to use only P and I terms, since there is always
noise present in measurements. From the control point of view, noise equals to abrupt
changes, causing strong responses because of the derivative term. This kind of action
might actually worsen the dynamic properties of the control and possibly make it
unstable. This is the reason why only PI control is used in this work.

The control law is generated by a digital signal processor, a microcontroller or
an FPGA chip. The FPGA or microcontroller is called a controller. The controller
takes as its inputs the necessary measurements, and from them calculates the digital
command word, which represents the appropriate response to a given process state
at a given instant. This digital command word is then fed to an actuator, in this
case a digital pulse-width-modulation unit (DPWM), which is the means by which
the controller can affect the controlled process.

2.5.3 Digital PWM generation

The DPWM can be thought of as a digital-to-analog converter: it converts the digital
command word to an analog signal, which has the essential information modulated in
the relative width of its pulses as well as in its harmonic content. When the frequency
of the modulated signal is controlled, the module is called pulse-frequency-modulator
(PFM). In this work, both PWM and PFM are used. The relative width of the pulses
is called the duty cycle, which is usually given as a percentage. A 0% duty cycle
corresponds to a signal that is constantly zero and duty cycle of 100% corresponds to
a constantly high signal. A duty cycle of 50% is equal to a square wave: the signal is
at a logic high for as long period of time as it is at the logic low. This series of pulses
is used to control the state of the semiconductor switches within the power converter.
For example, in the LLC primary half-bridge there are two switching devices that
are operated out of phase, allowing a square wave of about 400 V to be applied to
the resonant tank.

Unlike analog PWM modules, the PWM output of a digital modulator is not
continuous but rather has a finite number of possible output duty cycles. The width
of the digital command word determines the resolution of the DPWM module. Since
the command word represents a value between 0% and 100%, or [0, 1], the number

21

of possible values of the command word relates to the maximum precision with
which the desired duty cycle percentage can be obtained. For example, an 8-bit
DPWM module has 256 possibilities for the duty cycle, which means that the finest
possible adjustment of the duty cycle is about 0.39 percentage points. The frequency
resolution is limited by the period of time that the least significant bit (LSB) of the
frequency command word corresponds to. If an LSB of the frequency command word
is equal to 1 ns, and the operation frequency is initially 1 MHz, then increasing the
frequency command by one LSB results in a period of:

ts = 1µs+ 1ns = 1.001µs (29)

fs = 1
ts
≈ 999kHz. (30)

The frequency resolution is then 1 kHz around the frequency of 1 MHz, or about
10 bits:

210 = 1024 ≈ 1MHz

1kHz . (31)

As can be seen from above, the frequency resolution in bits depends on the
frequency around which the control system operates. The higher the control frequency,
the lower is the available PWM frequency resolution in bits. The resolution is
important from control point of view, since the accuracy of the control is limited by
the PWM resolution. The PWM resolution must be at least higher than the ADC
resolution to avoid limit cycling [16].

There are a couple of possible DPWM architectures for FPGAs [17] and several
implementations that are based on these architectures or hybrids of them [17]-[21].
These architectures are the counter based and delay line based architectures. The
counter based architecture is in principle similar to the analog PWM: The output is
obtained by comparing the PWM command word to a carrier signal. In DPWM,
the carrier signal is a digital counter, and the comparator is a digital comparator.
The counter starts from zero, with the PWM output at logic high. The counter then
increases its value at every clock cycle, until the counter value is equal to the digital
command word. This is where the PWM output is reset to logic low, and is kept
in that value until the counter increases to its maximum value and is set to zero
again. This is a simple architecture and easy to implement with FPGA resources.
The disadvantage of this architecture is that the resolution of the PWM signal is
directly limited by the system clock frequency. Since the digital counter is compared
to the reference once every clock cycle, the finest adjustment of the duty cycle is
equal to the length of the clock cycle. For example, 14 bit duty cycle resolution
around 1 MHz operation frequency requires system clock frequency of 16.38 GHz.

The delay-line architecture utilizes the propagation delays of buffers to set the
duty cycle of the output. A clock input of desired frequency is fed to this modulator,
and in the beginning of each clock cycle, the modulator output is set to logic high
with a latch. The rising edge of the clock then propagates through series of buffers,
each of which has a known delay. The delay of a single buffer corresponds to the least

22

significant bit of the duty cycle command word. The delay must be equal in each
buffer so that the duty cycle varies linearly in response to changes in the command
word. The number of buffers through which the rising clock edge propagates to the
reset port of the output latch is determined by the digital command word. With this
architecture, the finest possible adjustment is limited only by the smallest propagation
delay of available silicon resources, usually given by tens or hundreds of picoseconds.
This is possible with a simple inverter gate, for example. The main disadvantage is
that a large number of required buffers consumes large area of silicon or equivalently
large amount of available FPGA resources. To implement a DPWM module with 10
bit resolution, there must be 1024 buffer elements in series. Other issue is that the
propagation delay of logic gates depends on multiple variables, like silicon production
process, junction temperature and used supply voltage. This is challenging if the
final product is designed to be used in varying temperatures or if it is desired that
the FPGA chip vendor is not fixed to just one.

23

3 Control Implementation
Many issues must be addressed when designing the control of a power converter.
Starting from top level, the first step is the placement of the necessary devices within
the physical layout of the converter. This is called control system partitioning. At
the same time, a suitable way to generate the PWM control signals for the switching
devices must be found, while taking into account the necessary performance as
well as cost. The various measurements and their individual requirements must be
considered. When the control system includes an FPGA, the required logic resource
consumption of different implementations must be taken into account. This has a
direct effect on the total system cost. Finally, suitable components must be chosen.
In this work, the key component is the FPGA chip. Since the initial goal of the
work was to find a low-cost way to implement the control, the chip selection was
done in the beginning. The chosen FPGA architecture was ECP5 from Lattice
Semiconductor [22], because of the price and available hardware and logic resources.
The ECP5 chips include hardware digital signal processing blocks with multipliers
and accumulators, and offer a relatively large number of LUTs in their price range.
At the time of writing, the smallest LFE5U-12F chip with 12000 LUTs sold for less
than 6$ (minimum quantity 168) in online component distributor Digikey.com.

3.1 Control System Partitioning
Digital control allows multiple different configurations in the way the control system is
partitioned. The optimal partitioning offers the best balance of several factors, which
include total system cost, control performance, hardware and software development
effort considerations, system modularity, surge robustness and the ease of upgrading
the product firmware in the field. The options for control partitioning of an AC-DC
power converter have been researched [2], and their advantages and disadvantages
are known. However, the research has been mainly focused on using microcontrollers
and not FPGA chips. A well partitioned control system takes into consideration the
special properties and also the limitations of FPGAs.

3.1.1 The Galvanic Isolation

In DC-DC power converter, the galvanic isolation between the primary and secondary
sides is beneficial for the following reasons: [10, p. 142] .

1. To protect the user from electric shocks

2. To allow for more reference potentials

3. To avoid using components with unnecessarily high ratings

The AC mains voltage as well as the intermediate DC voltage in the primary side
are dangerous to the user. This is why those should be isolated from the secondary
side and the power supply chassis. The galvanic isolation in the LLC converter is
in many ways the focus of the control partitioning. The power supply designer has

24

the freedom of choosing how to place the controllers and peripherals in relation to
the isolation. The isolation forms a barrier for the critical control and measurement
signals within the feedback loop, and this barrier must be crossed in some way. If the
signal crossing the isolation barrier is a one-channel digital control signal, it is easy
to use a low-cost optocoupler for the isolation. Another simple case is AC current: a
simple transformer provides the means to cross the isolation. However, the output
voltage is within the LLC control loop, and for that reason it should be measured
very accurately and quickly. This places limitations on the ways that the output
voltage could be measured across the isolation barrier. The way the control system
is partitioned greatly affects the measurements and controls.

3.1.2 Controller Requirements

The LLC controller is required to have higher performance than the PFC controller
[2]. This can be understood in terms of the output voltage. The output voltage has
the strictest accuracy and dynamic requirements and it is also within the control
loop of the LLC controller. The synchronous rectifier control adds complexity to
the LLC control algorithm. Using the same estimations for required microcontroller
performance as in [2], 1.2 MHz control loop frequency would require a microcontroller
capable of executing at least 120 million instructions per second (MIPS). With an
FPGA, there is no such a performance measurement as MIPS, but it can give some
reference to the necessary FPGA system clock frequency and area. If the control
algorithm is not parallelized at all, then the clock frequency must be at least 120 MHz
for a 120 MIPS requirement. Since the control loop often includes instructions like
saving some measurement or reference values or calculating the PID control terms
sequentially, its length can usually be reduced considerably. This means computing
in parallel, which possibly increases the utilized FPGA area but relaxes the clock
frequency requirements. With ECP5 chips, system clock frequencies up to 400 MHz
are possible [22, p. 65] while frequencies up to about 100 MHz are possible without
extensive timing closure efforts.

3.1.3 Partitioning Options

There are number of ways the partitioning can be arranged with using just one or
more FPGA chips, an FPGA and a DSP, or an FPGA and an MCU. In all cases, the
LLC control is handled by the FPGA. DSP in this context means a microcontroller
with digital signal processing capabilities that can be used for the PFC control (> 40
MIPS [2]), communication and system supervision. It is also assumed that it includes
multiple channel AD-converter. An MCU is a low performance microcontroller that
is only used for communication and system level supervision and optimization tasks.
The possible partitioning options are:

1. FPGA in primary

2. FPGA in secondary

3. FPGA in both sides

25

4. FPGA in primary, DSP in primary

5. FPGA in primary, DSP in secondary

6. FPGA in secondary, DSP in primary

7. FPGA in secondary, DSP in secondary

8. FPGA in secondary, MCU in primary

9. FPGA in secondary, MCU in secondary

10. FPGA in primary, MCU in primary

11. FPGA in primary, MCU in secondary

The first two options mean that a single FPGA chip would generate the control
law for both LLC and PFC converters, and also perform additional computing like
system level optimizations and external communication. The third option would
have an FPGA in both primary and secondary, with each controlling one of the
converters. One of the FPGAs would handle system optimizations and external
communication. In options 4. - 7., the LLC control law is generated by the FPGA
and the PFC control law by the DSP, with different placements in relation to the
isolation. In options 8. - 11., The FPGA is used to generate the control laws while
the communication and system optimization is handled by the MCU.

The output voltage measurement requires an external ADC in all cases. This
is because of the required accuracy and speed. Even though the low-cost DSPs
usually have fairly fast and accurate integrated ADCs, required speed (2.8 MSPS)
and accuracy (higher than 12 bits resolution) are not available within the cheapest
DSPs. Routing the measurement samples to the FPGA at 1.2 MHz rate would
create overhead in the DSP firmware point of view, and this would take away a lot
of processing time from the DSP. There is no considerable advantage in placing the
FPGA in the primary side since the DC-DC primary current can be easily measured
over the isolation with a current transformer. These reasons strongly favor placing
the FPGA in the secondary side.

Using only one large FPGA chip for all tasks is attractive in system integration
point of view. Runtime optimization would be easy, since all the related variables
would be within one controller. Upgrading the FPGA configuration in the field
would be easy, since there would be no need to keep track of matching software
and FPGA configuration versions as in options 4. - 11. Nonetheless, the system
supervision, external communication and power-on sequence functionality would have
to be implemented as a state-machine, requiring the use of a softcore processor like
Latticemico32. Latticemico32 is an IP module, which implements a processor within
the logic fabric of the FPGA [23]. It allows developing software in C programming
language and running that software within the FPGA. However, to implement both
control loops and a softcore processor with enough program memory and RAM would
require much more FPGA resources than implementing just the LLC control. All

26

the measurements would require external ADCs, which together with a larger FPGA
chip would raise the system cost too high. Because of the high volumes of DSPs, it
is more expensive to use an external ADC than a DSP with an integrated ADC with
similar performance. At the time of writing this work, the cheapest 1MSPS, 12 bit
resolution ADCs costed approximately twice as much as the cheapest microcontroller
with an integrated ADC of equal performance.

The advantages of using two FPGAs over using just one FPGA is the increased
hardware modularity as well as reduction of necessary isolation crossings. The
other FPGA could be replaced without changing the first one. The required FPGA
resources are roughly the same for the control law generation. The communication
between the chips will require some extra development effort as well as FPGA
resources. Instead of isolating the ADC communications, isolation is needed for
the internal communication bus. Nonetheless, this partitioning would be expensive
because of the required ADCs and FPGA resources.

Since using an MCU for system optimization also requires using many external
ADCs, the most attractive partitioning options from cost point of view are 6. and 7.,
which have an FPGA for LLC control law generation and a DSP for PFC control as
well as for most of the measurements. A comparison of all the partitioning options is
shown in Tables 1, 2, and 3.

Table 1: Partitioning options 1. - 4.
1. 2. 3. 4.

Layout FPGA in primary FPGA in secondary FPGA in both sides FPGA in primary,
DSP in primary

Functions FPGA handles
controls, extra
functionality

FPGA handles
controls, extra
functionality

Secondary FPGA
controls LLC and
extra functionality,
primary FPGA
controls PFC

FPGA controls
LLC, DSP controls
PFC and extra
functionality

External ADCs All measurements All measurements All measurements Output voltage,
output current,
primary current

Switch isolation Synchronous rectifier LLC primary, PFC LLC primary Synchronous rectifier
Isolated voltage meas. Output Intermediate, PFC

bridge
- Output

Isolated current meas. Output LLC primary, PFC LLC primary Output
Int. comm. isolation No No Yes No
Ext. comm. isolation Yes No No Yes
Surge robustness Least Medium Most Least
FPGA resources Most Most Most Least
Field programming Easiest Easiest Hardest Hardest
Runtime optimization Easiest Easiest Hardest Hardest
Cost Highest Highest Highest Lowest

27

Table 2: Partitioning options 5. - 8.
5. 6. 7. 8.

Layout FPGA in primary,
DSP in secondary

FPGA in secondary,
DSP in primary

FPGA in secondary,
DSP in secondary

FPGA in secondary,
MCU in primary

Functions FPGA controls
LLC, DSP controls
PFC and extra
functionality

FPGA controls
LLC, DSP controls
PFC and extra
functionality

FPGA controls
LLC, DSP controls
PFC and extra
functionality

FPGA handles
controls, MCU extra
functionality

External ADCs Output voltage,
primary current

Output voltage,
output current,
primary current

Output voltage,
primary current

All measurements

Switch isolation Synchronous recti-
fier, PFC

LLC primary LLC primary, PFC LLC primary, PFC

Isolated voltage meas. Output, intermedi-
ate, PFC bridge

- Intermediate, PFC
bridge

Intermediate, PFC
bridge

Isolated current meas. PFC LLC primary LLC primary, PFC LLC primary, PFC
Int. comm. isolation Yes Yes No Yes
Ext. comm. isolation No No No No
Surge robustness Least Most Medium Medium
FPGA resources Least Least Least Medium
Field programming Hardest Hardest Hardest Hardest
Runtime optimization Hardest Hardest Hardest Medium
Cost Medium Lowest Medium Medium

Table 3: Partitioning options 9. - 11.
9. 10. 11.

Layout FPGA in secondary, MCU in
secondary

FPGA in primary, MCU in
primary

FPGA in primary, MCU in
secondary

Functions FPGA handles controls,
MCU extra functionality

FPGA handles controls,
MCU extra functionality

FPGA handles controls,
MCU extra functionality

External ADCs All measurements All measurements All measurements
Switch isolation LLC primary, PFC Synchronous rectifier Synchronous rectifier
Isolated voltage meas. Intermediate, PFC bridge Output Output
Isolated current meas. LLC primary, PFC Output Output
Int. comm. isolation No No Yes
Ext. comm. isolation No Yes No
Surge robustness Medium Least Least
FPGA resources Medium Medium Medium
Field programming Hardest Hardest Hardest
Runtime optimization Medium Medium Medium
Cost Medium Medium Medium

The block diagrams for partitioning options 6. and 7. are shown in Figures 13
and 14. In option 6 the FPGA is placed in the secondary and the DSP in the primary
side. Since both controllers generate one of the control laws, only variables related
to system optimization and start-up sequence would have to be transferred over
the internal communication. One such variable is the output current measurement.
Assuming the measurement resolution to be 12 bits, and the system optimization
task running in the DSP at an execution rate of 100 us, data transfer rate of 120
kilobytes per second is required. Even adding to this the internal communication
messages and taking into account the frame size of the communication protocol, a
standard 10 MHz SPI is well enough. Along with the isolated SPI communication,
some isolated I/Os would be needed for communicating status information. The
external communication could be referenced to the power supply chassis and sent
through the FPGA over the isolated SPI, ultimately handled by the DSP.

28

Figure 13: Block diagram of partitioning option 6.

Placing both the DSP and the FPGA on the secondary side (option 7., Figure 14)
allows using unisolated digital I/Os for the internal communication, as well as some
individual I/Os for communicating status information. The external communication
could be referenced to the power supply chassis and handled by the DSP. This
way we avoid having to route the external communication through the FPGA and
again through the internal communication bus. The output current could be directly
measured by the DSP, allowing the use of a less expensive external ADC for only
the primary DC-DC current measurement. However, all the PFC control related
measurements would have to be measured across the isolation. It should be noted that
these measurements would require analog isolation. For this reason this partitioning
is more vulnerable to surge voltages and currents.

In summary, partitioning option 6. seems to offer the best balance of several
factors. It can be implemented with least cost and offers best protection against
surge voltages and currents. If it is desired to use even higher control loop frequencies
in the future, it is enough to use faster ADCs in the secondary side and a more
powerful DSP in the primary side. Since the only analog measurement over the
isolation is the primary DC-DC current, the measurements themselves would not
need any improvements at higher control frequencies. The external communication
could be taken straight from the primary side DSP through digital isolation, avoiding

29

Figure 14: Block diagram of partitioning option 7.

having to route it through the FPGA, relaxing the speed requirement for the internal
communication bus. However, maintaining the internal communication interface
and ensuring that the controllers have matching firmware and logic configurations
requires discipline and effort.

3.2 Finite State Machine Structure
Initially the LLC control law generation itself was implemented as a single logic
path with no pipeline stages. This means that all the actions of the control law
generation were performed between two consecutive rising edges of the system clock.
This implementation minimizes the control loop delay from AD conversion to the
next control command word. The maximum control rate could be found out from
the place-and-route report as the maximum frequency of the system clock. The
maximum system clock frequency for the initial implementation was reported to be
approximately 6 MHz. However, this implementation consumed more logic resources
than is available in the selected FPGA chip.

Many low-cost FPGAs including ECP5 FPGAs have integrated hardware digital

30

signal processing blocks, which include multipliers and accumulators [22, p. 23].
Using the hardware DSP blocks available, the amount of consumed FPGA resources
decreased, but was still almost all of the resources available. To account for future
additions like communication capabilites, some resources should be left available.
Furthermore, using the DSP blocks without properly pipelining the data flow means
that during each multiplication the operands must be routed from the logic fabric to
the DSP block, and similarly back from DSP block to logic fabric. All of this happens
within the same clock cycle. When there are several multiplication operations
required, the routing delays add up, reducing the maximum system clock frequency
considerably.

To account for these issues, the control loop was modified to a state machine
form. The state machine ensured that only the operations within one state would be
executed simultaneously, resulting in reduced FPGA resource consumption through
resource sharing. Another advantage is the possibility to pipeline the design to
allow for much higher system clock frequencies with the price of increasing the delay
from AD conversion to next control command word. The pipeline registers were
used within the DSP block to maximize the system clock frequency. Combined
with basic operations like resizing or limiting the operands, the maximum system
clock frequency for any of the states was approximately 110 MHz. The remainder of
the control algorithm was split into evenly sized steps to not restrict the maximum
system clock frequency. The whole control law generation could be fit into 47 steps,
corresponding to 470 ns delay with a 100 MHz system clock. The PI control loops
including filtering, dynamic coefficient calculation and saturation limits required 18
steps, while the secondary side synchronization algorithm required 29 steps. The
simplified control algorithm flowchart is shown in Figure 15.

With control delay of 470 ns, 1.2 MHz one cycle control is possible. If it is not
necessary to have one cycle control and the latency is not an issue, it is possible to
convert the state machine to a pipeline and feed measurements to the controller at a
maximum rate of 100 MHz. Using hardware DSP blocks reduces logic resources and
allows for greater data throughput, while requiring a pipelined design. State machine
design allows for debugging: the integrator register values within the PI loops and the
dynamic coefficients could be sent for communication between control computation
runs, unlike in combinational logic implementation. A state machine implementation
allows convenient state-based branching in case of exception conditions, for example
overcurrent.

3.3 Pulse Width Modulation Architecture
The two basic PWM architectures were discussed in section 2.5.3. In this work, the
counter-based architecture has been chosen over the delay line based one because
of its more stable operation over varying conditions, easier portability and code
reuse. Furthermore, the chosen architecture is based on the synchronous architecture,
with fine resolution bits achieved by clock phase-shifting using a phase-locked loop.
Using synchronous logic eases static analysis and reduces PWM glitching while
making it easy to port the design to a different FPGA architecture in the future

31

Figure 15: LLC control algorithm

[17]. The counter-based PWM architectures rely on the stability of the system
clock, with low jitter and skew. The delay line based architectures rely on fixed
propagation delay of available logic gates. Many power supplies must be able to
function within industrial standard temperature range of -40◦C to +85◦C. In such a
great temperature range, the gate delays in FPGAs might vary substantially, causing

32

the PWM resolution and linearity to degrade. The gate delays are always specific to
certain FPGA architecture, which makes it challenging to port the design on another
FPGA. However, almost all FPGA architectures include a phase-locked loop or a
similar clock management IP, which allows creating clock signals with a fixed phase
difference. The counter-based synchronous PWM architectures are readily portable
to another FPGA architecture by making only the necessary configuration changes
to required I/O ports and switching the PLL IP to the one provided by the chosen
FPGA vendor to make the design work with the chosen FPGA.

The implemented VHDL code for the whole PWM architecture is included in
appendix A. The PWM architecture is shown in Figure 16.

Figure 16: Synchronous shifted-clock PWM architecture

3.3.1 The Phase-shifting

The essential element of the chosen PWM architecture is the phase-locked loop block.
In the ECP5 architecture, one PLL block can have up to four outputs [22, p. 18].
The input clock (CLK_IN) frequency is the same as the one used by the control law
generator, 100 MHz. The PLL is configured to multiply its input clock frequency to
generate four 130 MHz clocks, with 0◦, 45◦, 90◦ and 135◦ phase-shifts related to the
0◦ output clock (CLK_0, CLK_45, CLK_90 and CLK_135). The purpose of the

33

multiple phase-shifted clocks is to achieve higher effective clock frequency and thus
higher PWM resolution than would be possible with a single clock. With low-cost
FPGAs, it is very challenging to implement the necessary counter module within
the PWM with clock frequency higher than 300 MHz. However, with four 130 MHz
clocks, using both rising and falling edges, 8 different clock edges can be used.

feff = 8 · fclk = 8 · 130MHz = 1.04GHz (32)

→ teff = 1
feff

≈ 0.96ns. (33)

An effective clock frequency of 1.04GHz is obtained. The equivalent time resolution
of the design is then 0.96 ns, or around 10 bits at the control frequency of 1 MHz.
The clock frequency of the phase-shifted clocks was chosen based on the design
requirement of 1 ns time resolution. With LFE5UM-45F FPGA chip, after place
and route phase, CLK_0 was reported to be limited to the maximum frequency
of 154.083 MHz. This frequency limit is caused by the coarse counter module: the
sequential logic within that module cannot be clocked over 154.083 MHz. Based on
this report, the maximum time resolution for this PWM architecture on this FPGA
chip would be approximately 0.8ns.

With flip-flops that are configured to be sensitive to either rising or falling edge of
one of the clocks, the SETD signal and the CLRD signal can be selectively propagated
towards the output. The first two flip-flops in the pathway are sensitive to the rising
edge of CLK_0. These flip-flops ensure that there is no uncertainty related to the
instant when the SETD or CLRD signal crosses the clock domain between CLK_0
and the rest of the clocks. If SETD or CLRD is set to logic high at the first rising
edge of CLK_0, at the third rising edge of CLK_0 the signal propagates to the
inputs of the last flip-flops before the multiplexer. For example, in the case of low
to high PWM output transition illustrated in Figure 17, the output is set to logic
high at the falling edge of CLK_0. in Figure 16, this corresponds to SEL_SET[3]
having binary value ”100”, which selects SET_0 to the output. With SEL_SET[3]
binary value ”111”, the rising edge of CLK_45 would be chosen corresponding to
a single LSB delay in relation to the third rising edge of CLK_0. A value of ”000”
would be the fourth rising edge of CLK_0, which is full 8 LSB delay steps from the
third rising edge. With this synchronous design, we obtain three fine-resolution bits
within the clock cycle of CLK_0.

3.3.2 The Counter

The coarse counter counts rising edges of CLK_0. Furthermore, all the counting
and all the actions of the counter are performed synchronously to CLK_0, in low
resolution. High resolution is achieved by separately handling the three fine resolution
bits in an appropriate way, which corresponds to advancing and delaying the SETD
and CLRD signals as needed. The coarse counter increases until a maximum value,
which is calculated again within each PWM cycle. Since the PWM frequency is
dynamically configurable with high resolution, the counter maximum cannot stay

34

Figure 17: Screenshot from shifted clock simulation

fixed for a constant frequency setting, if the LSBs are not all zeros. For example,
PWM carrier frequency of 507.8125 kHz corresponds to FREQ_IN[14] set to ”00 1000
0010 0000”. This means that the counter would increment its value until 260.00 every
PWM cycle. However, if the carrier frequency was set to 499.7597 kHz, FREQ_IN[14]
would be ”00 1000 0010 0001”. Now the LSBs are not all zeros, and the required
counter value would be 260.125. This can be solved by delaying the individual PWM
pulses 0.125 clock cycles every PWM cycle, and count to 261 every eight PWM cycle,
otherwise to 260. At the 8th PWM cycle, the PWM pulse is advanced 0.875 clock
cycles and the process is repeated.

Delaying and advancing the individual PWM pulses requires that the set and
reset signals are determined with high resolution. These signals are also calculated
again within each PWM cycle. The operation principle of the implemented counter
module is shown in Figure 18.

Figure 18: High-resolution PWM operation

Middle points of the PWM pulses (mid_0, mid_1) are calculated in high resolution.
The next middle point depends on the previous middle point, counter maximum as

35

well as the current carrier frequency (period) command word FREQ_IN[14]. The
new period is added to the last middle point, and the current counter maximum (c_1)
is subtracted to give the new middle point (mid_1). This calculation is performed
at the point when the counter value equals the current middle point with the fine
resolution bits truncated away, equivalent to the previous rising edge of CLK_0. The
distance between the middle points corresponds to the frequency command word.
It must be noted that the calculated middle points are not necessarily the actual
middle points of the PWM pulses. If the duty command does not stay unchanged,
the latter PWM pulse half can be longer or shorter than the first. The coarse counter
maximum (c_1), also the zero of the next counter run, is also determined at the
previous middle point (mid_0). The counter maximum is obtained by dividing the
difference between the rising edges of CLK_0 previous to consecutive high-resolution
middle points by two and truncating the result.

From the calculated high resolution middle point, the next reset instant (rst_1)
is calculated by adding half of the current duty cycle command word DUTY_IN[14].
The next set instant (set_1) must then be the next high resolution middle point
(mid_1) minus half of DUTY_IN[14], yielding the desired pulse width as well as the
carrier period. The implemented PWM is then an up-count PWM, with the PWM
pulses around the middle point of the carrier. The counter module updates the values
of set and reset signals only during rising edges of CLK_0. The fine resolution bits
are simultaneously updated and used to select the outputs of appropriate flip-flops
within the signal paths of SETD and CLRD.

In addition to duty cycle and frequency, the synchronization of the channels
relative to the master channel can be configured in high resolution. This is an
important feature in bridge circuits within power supplies, where the high-side and
low-side switches must be out of phase. When the master counter reaches the middle
point (coarse), the counters of all other channels are assigned the value of 11 most
significant bits of respective synchronization command words (SYNCH_IN[14]). This
way the channel counters can be delayed or advanced relative to the middle point
of the master counter once every PWM cycle. The duty cycles of each channel can
also be separately configured, but the frequency is the same for all channels. The
LSBs of SYNCH_IN[14] are used to advance the set signal of the respective channel
0-7 high resolution steps. In similar way as the channels are synchronized, there is
an option to synchronize an AD-conversion to a certain point along the carrier of
the master PWM channel. This is also a requirement in power supplies, where some
current measurements must be performed at a point where the current represents
an average value. Measuring the current during the switching instants can result in
noisy and distorted measurements.

The individual channels can be separately disabled with FORCE_OFF signal.
The SETD signal is set to logic high only in the case that the FORE_OFF is not up.
This is done with combinational logic statements, which allow enabling and disabling
individual PWM pulses. This feature is useful for current and power limiting. If
the measured current is greater than the peak current limit, the PWM pulses can
be disabled starting from the very next pulse, until the measured current has again
fallen within safe limits. With similar combinational logic, it is also possible to ensure

36

that there can be no shoot-throughs in the high-side and low-side switches. Using
exclusive-or (XOR) and AND gates, the PWM signals can be configured to never
be at logic high simultaneously. This can be very useful feature in the early phases
of prototyping, when the correct control functionality is verified with actual power
supply hardware.

The number of channels can be easily increased or decreased. This requires
reconfiguring the coarse counter module VHDL code. Adding channels only adds
to the number of registers, multiplexers and the output latches. The number of
PLLs and coarse counter modules doesn’t increase, since all the channels use those
same modules. Similarly, the number of synchronized ADC measurements can be
easily increased and even added to other channels than the master channel without
having to add any additional modules. However, in this implementation the ADC
synchronization has been designed to use only the coarse resolution bits.

3.3.3 The Asynchronous Output

The whole PWM architecture implementation is synchronous except for the very last
part. In that part, the appropriate flip-flop output is selected by the asynchronous
8-input multiplexer. In the output of the PWM module, there is an asynchronous
set-reset latch. The latch toggles its output based on its input signals, set and reset.
A rising edge of set input causes the latch to output a logic high. Correspondingly, a
rising edge of the reset causes the latch’s output to reset to logic low. The ECP5
architecture doesn’t include hard set-reset latches in the logic fabric, which means
they have to be implemented using combinational logic statements.

3.4 Synchronous Rectifier Control
To minimize the losses caused by the switching of the secondary side rectifier circuit,
the switching must take place close to the instants of the zero crossing points of the
secondary current. This way the product of the instantaneous current through the
switches and the voltage over them is approximately zero. To properly synchronize
the secondary switches to the primary side switches, the relationship between the
phase of the secondary current and the voltage applied to the primary resonant
circuit must be calculated. Since the zero crossing points of the applied voltage take
place during switching instants on the primary side, the phase difference is directly
related to the required synchronization between the primary side and secondary side
switches.

3.4.1 Secondary Synchronization

In the following analysis, the goal is to find the phase difference between the primary
voltage and the secondary current. As it is shown in Figure 6, the secondary current
Is goes through RAC while the primary voltage is defined as the voltage over RAC.
VAC is the square wave which is applied into the resonant tank by the primary bridge
circuit. Since there is no phase difference between current and voltage in a pure

37

resistor, it is enough to find the phase difference between primary voltage Vp and
VAC. From Equation 20:

∠Vp − ∠VAC = ∠
−ω2CrLmRAC

j(ωLm − ω3CrLmLr)− ω2CrRAC(Lm + Lr) +RAC

(34)

→ ∠Vp −∠VAC = π −∠(j(ωLm − ω3CrLmLr)− ω2CrRAC(Lm + Lr) +RAC)
(35)

→ ∠Vp−∠VAC = ∠(j(ωLm−ω3CrLmLr)−ω2CrRAC(Lm +Lr)+RAC) (36)

→ ∠Vp − ∠VAC = arctan(ω3CrLmLr − ωLm

ω2CrRAC(Lm + Lr)−RAC

). (37)

As the controller operates on the switching period ts rather than angular frequency,
Equation 37 becomes:

∠Vp − ∠VAC = arctan(8π3CrLmLr − t2s2πLm

ts4π2CrRAC(Lm + Lr)− t3sRAC

). (38)

From Equation 38 it is evident that the required complexity of the secondary
synchronization control algorithm is relatively high. To calculate the PWM synchro-
nization in high resolution, the control algorithm must perform some multiplications
and subtractions. Additionally, the control algorithm must compute values of arctan
function. To simplify the control calculation, arctan can be estimated with piecewise
linear approximation. However, this will introduce some error to the synchronization.
The amount of acceptable error in the synchronization will have to be tested with
the actual power converter hardware and the implemented control. Besides the
synchronization itself, the optimum duty cycle for the secondary side switches must
be calculated separately. While the primary switches are always operated with a
duty cycle close to 50%, the secondary duty cycle must be reduced in the case the
switching frequency is below resonant frequency. As can be seen in Figure 9, the
secondary switches should conduct only for a portion of the primary switching cycle.

3.4.2 Dynamic Range Requirement

To find out whether it is feasible to use integers for the arithmetic, the necessary
dynamic range must be determined. As the typical values for reactive components like
inductors and capacitors are of the order of 10-6 or less, and the maximum switching
period with the minimum control frequency of 375 kHz is equivalent to about 2770
clock cycles of 0.96 ns resolution, it is inevitable that arithmetic operations on both
very small and very large numbers must be performed. Multiplying or subtracting
such numbers with each other cannot be avoided by rearranging the above equation.
Using the case mentioned, the required dynamic range is at least the following:

38

DR = 27703

10−6 ≈ 2 · 1016 ≈ 254. (39)

It would require then binary width of at least 54 to accurately represent the
operands and the results of intermediate calculations of the secondary side syn-
chronization. Arithmetic operations on binary words of this width would consume
excessive amount of FPGA resources and place strict restrictions on the maximum
control rate. For these reasons it is necessary to use floating-point arithmetic in the
secondary side synchronization algorithm.

3.5 Floating-Point Arithmetic
In floating-point representation, the sign bit, exponent and mantissa have separate
fixed-width bit fields reserved in the binary word. The mantissa contains the
significand of the number, while the exponent is used to scale the number. The
width of the mantissa defines the available resolution. Because of this, the largest
integer that can be precisely represented in floating-point format is dependent on
the mantissa bit width. Using floating-point representation of numbers allows for
much greater dynamic range than with integers with the cost of reduced precision.
However, absolute precision is not always required. In this work, the PWM duty
resolution is approximately 10 bits around the control frequency of 1 MHz. The
controller output doesn’t need to be designed for higher resolution than that. For this
reason, floating-point arithmetic is an appropriate choice to calculate the secondary
synchronization efficiently. The implemented VHDL code for all the floating-point
modules is included in appendix B.

3.5.1 Single-Precision Representation

Using the IEEE 754 single-precision format, the sign bit, exponent and mantissa
have separate bitfields reserved in a 32 bit word [24, p. 9]. The significand of
single-precision floating-point number is called the mantissa and is represented with
23 bits. It is assumed that the most significant 24th bit is always 1, and that is why
it is not explicitly kept in the actual binary word. Using s, e, and m for sign bit,
exponent bits and mantissa bits respectively, the decimal value represented by the
floating-point binary word is as follows:

(−1)s · 2(
∑7

n=0 en2n)−127 · (1 +
22∑

n=0
mn2n−23), (40)

where n is the index of bits, 0 being the least significant bit. Thus, the significand
can contain an equivalent decimal value between 1,0 and 2,0 - 2-23. The exponent
is represented by 8 bits. It is defined that the exponent is offset by an integer of
127, meaning that the exponent can have a value between 2-127 and 2128. However,
exponents -127 and 128 are reserved for special values. The range that can be used
is then between 2-126 and 2127. The dynamic range is then:

39

DR ≈ 2 · 228−2 = 2255 ≈ 1077. (41)
The above range is well enough for the secondary synchronization calculations.

3.5.2 Number Format Conversions

An unsigned 32 bit binary integer corresponds to following decimal value:

31∑
n=0

bn2n, (42)

where bn are the individual bits of index n in the binary word. To convert this
unsigned integer to floating-point format, we must represent it in a form similar
to Equation 40. Let p be the index of the most significant non-zero bit within the
unsigned integer:

31∑
n=0

bn2n = (−1)0 · 2p · (1 +
p−1∑
n=0

bn2n−p). (43)

It is easy to see then that the bit fields of the corresponding floating-point number
are:

s = 0 (44)

7∑
n=0

en2n = p+ 127 (45)

22∑
n=0

mn2n−23 ≈
p−1∑
n=0

bn2n−p. (46)

As Equation 45 shows, the exponent is simply the binary representation of the
index of the most significant non-zero bit, with an offset of 127. Equation 46 holds
precisely only in the case of the most significant non-zero bit being 23. If it is for
example 27, only 22 bits starting from 26 are included in the floating-point number.
This shows in practice how the floating-point format loses some of the precision.
However, if the most significant bit is less than 23, not all bits of the mantissa can
be filled. The remaining unassigned mantissa bits are then set to zero.

The conversion from floating-point to unsigned integer format works in a similar
way, but care must be taken because not all floating-point numbers can be converted.
The convertable range is the range of positive numbers between 0 and 232-1. First,
the sign bit is set to zero. The corresponding decimal value is calculated from the
exponent bits, subtracting the offset. At this point the result is checked to be limited
to the range of 0 to 31. This gives the index of the most significant non-zero bit.
If this is not bit 0, then the lower value bits are assigned the values of the most
significant bits of the mantissa of the floating-point number. If the most significant
non-zero bit of the integer is over 23, then the remaining lower value bits are set to
zero.

40

3.5.3 Subtraction

Feasibility of using FPGA logic for floating-point calculations have been studied [25],
and many floating-point adders and multipliers have been implemented on FPGAs
[26] - [27]. In this work, multiplication and subtraction are necessary, even though
subtraction is equivalent to addition with the sign of one of the operands inverted.
In spite of available floating-point units, custom units are designed and implemented.
This is because of the specific requirements of maximum control computation latency
as well as the 100 MHz system clock frequency that was chosen for the controller.

The basic steps of the floating-point addition or subtraction are the following
[28]:

1. Calculating the difference of exponents

2. Shifting right the mantissa of operand with smaller exponent

3. Adding or subtracting the mantissas depending on the sign bits

4. Normalizing the result

5. Rounding the result

The implemented steps are shown in Figure 19. The first steps are equivalent to
above steps 1. and 2. After that, the necessary operation (add or subtract) is
determined based on the sign bits of the operands. The difference of exponents is
used to determine the larger operand, the final sign bit as well as the possibility of
operands being equal, in which case a zero result must be separately handled. In
case of addition, there is a possibility for overflow and that is properly taken care of.
The result of the operation saturates to minimum or maximum in case of overflow.
Finally, the result is normalized. For example, subtracting two numbers with equal
exponents that are close to each other in value results to binary word with only
couple of the lower bits being non-zero. In that case, the radix point must be shifted
to the right side of the most significant non-zero bit, while decreasing the exponent
of the result accordingly. The rounding step mentioned above is implemented simply
as truncation, which decreases logic resource consumption and allows for greater
efficiency while adding quantization noise less than 1 LSB.

41

Figure 19: Flow chart of floating-point subtraction algorithm.

42

Floating-point subtraction algorithm is more complex than floating-point mul-
tiplication. Even though multiplication itself consumes more logic resources than
subtraction, subtraction algorithm has to take into account initial normalization,
finding the larger operand as well as keeping track of the possible carry bit from
the mantissa subtraction or addition. Since the total control computation latency
is limited, and the operations previous to any floating-point arithmetic already
consumes a relationally large portion of the total budget, the subtraction algorithm
must be carefully pipelined. The location of registers are shown as the dashed lines
in Figure 19, and were chosen in such a way that the sequential logic between any
two registers could be clocked to at least to 100 MHz. As a result, a five stage
pipeline was implemented. After assigning the operands, the result is ready after five
clock cycles. As can be seen in Equation 38, at least two subtractions are required
for the secondary synchronization calculations. The performance and logic resource
consumption is summarized in Table 4.

Table 4: Implemented floating-point subtraction module.

24 mantissa bits 18 mantissa bits
Pipeline stages 4 4
Consumed LUTs 1028 846

Maximum clock frequency (MHz) 104.6 120.9
DSP blocks used - -

3.5.4 Multiplication

While floating-point subtraction requires multiple sequential steps, multiplication
requires only few. The sign bit, exponent and mantissa can be calculated in parallel,
while only the normalization and saturation steps must be performed sequentially.
Floating-point multiplication of operands a and b is calculated with the following
equations [25]:

s = XOR(sa, sb) (47)

m = ma ×mb (48)

e = ea + eb − 127 + (1) (49)

The increment of one in Equation 49 is performed in case the result of the mul-
tiplication is equal to or greater than 2. As can be seen from above equations,
besides the mentioned increment, there is no common terms in the equations and
thus each bitfield of the result can be calculated separately in parallel. The effect of
the increment is that the final result must be normalized, which must be done after

43

all above steps have been completed. Additionally, the result must be checked for
overflows and underflows. The steps of the implemented multiplication algorithm
are shown in Figure 20.

Figure 20: Flow chart of floating-point multiplication algorithm.

Table 5: Implemented floating-point multiplication module.

24 mantissa bits 18 mantissa bits
Pipeline stages 3 3
Consumed LUTs 89 89

Maximum clock frequency (MHz) 110.5 184.0
DSP blocks used
MULT18x18D 4 1

ALU54B 2 0

The input, pipeline and output registers were enabled to maximize the system
clock frequency. The locations of the registers are marked as dashed lines in Figure 20.
To further optimize the resource consumption and computation speed, the operands
were truncated to 18 bit resolution. This allowed utilizing only one of the 18x18
hardware multipliers (MULT18x18D) available within one sysDSP slice of the ECP5

44

architecture [22, p. 18]. Again, the final rounding is accomplished with a simple
truncation. The resource consumption and performance summary of 24 bit and 18
bit resolution multiplier modules is shown in Table 5.

3.5.5 Estimation of Multiplicative Inverse

As is evident from Equation 38, floating-point division is also necessary to compute
the required angle. However, division is a complex and resource-hungry operation. It
is much more efficient in terms of consumed FPGA resources as well as computation
speed to find the multiplicative inverse of the divisor and then multiply the operands.
Actually calculating the multiplicative inverse would also take many clock cycles,
so an estimation was chosen in this work. 16 precalculated points were saved in an
array, which was indexed with the 4 most significant bits of the operand. With the
next 7 lower bits, a linear approximation was used between the precalculated points
to estimate the multiplicative inverse function. With this approach, the achieved
resolution for the operation was approximately 9 bits. The precalculated points as
well as the linear coefficients were chosen in a way to balance the approximation error
over the range of [1, 2[. The VHDL model consisting of the implemented estimation
function and a testbench feeding input data was implemented, and the results were
analyzed with MATLAB. The relative approximation error is shown in Figure 21.

Figure 21: Approximation error of multiplicative inverse.

As the relative error is about 0.1%, this is the part of the floating-point arithmetic
that introduces most of the error. However, since the secondary synchronization
command is always in the range of 0 to 1000 nanosecond steps, the maximum error

45

because of this estimation would be only one step. The effect of this would have to
be verified with the actual power converter hardware and implemented control. The
multiplicative inverse estimation was designed to fit within a single clock cycle of the
state machine clock. One of the available 9x9 hardware multipliers (MULT9X9D)
[22, p. 18] were used. The consumed resources are shown in Table 6:

Table 6: Implemented estimation of multiplicative inverse.

11 mantissa bits
Pipeline stages 1
Consumed LUTs 18

Maximum clock frequency (MHz) 115.0
DSP blocks used
MULT9X9D 1

46

4 Simulations
A complete behavioral VHDL simulation model was constructed to test and verify
the functionality of the controller and the submodules. The simulated cases include
static regulation as well as dynamic response to step changes in load and output
voltage reference setting. The switching waveforms and the timings are presented.
The operation of individual modules such as the PWM module and the floating-point
arithmetic modules is also presented in the section. For the LLC converter, VHDL
model with the following parameters was used:

Table 7: LLC converter parameters.

Resonant inductance 2.9 µH
Resonant capacitance 35.3 nF
Magnetizing inductance 18.6 µH
Transformer turns ratio 3.75
Resonant frequency 500 kHz
Minimum frequency 375 kHz
Maximum frequency 1.2 MHz
Output capacitance 1 mF

Input voltage 400 V
Output voltage 48 V

4.1 Start-Up And Static Regulation
In this simulation, the power converter model was run with zero initial voltages
and currents. The output voltage reference was set to 51 V and the output load
resistance to 1.5 Ω. The results of the VHDL simulation were imported to MATLAB
for plotting.

in Figure 22, it is shown that the output voltage rapidly reaches the reference level
with small overshoot. As the load is close to the nominal, the switching frequency
settles close to the resonant frequency of 500 kHz. The initial switching frequency
is selected to be 750 kHz, from where it decreases towards lower frequencies and
equivalently higher resonant tank gain to raise the output voltage to the desired
level. Even though the resonant inductor current envelope in this case seems to
stay within reasonable limits, it is possible for very large current peaks to appear in
the beginning of a cold start. This is why it is necessary to have a special start-up
routine implemented within the control.

Figure 23 shows the output voltage ripple in static conditions. In this simulation,
the peak-to-peak output voltage ripple in static conditions was less than 20 mV.
However, the PFC stage introduces some ripple to the intermediate DC bus voltage,
which was not taken into account. The actual output voltage ripple with the power
converter hardware could be somewhat higher for that reason.

47

Figure 22: Output voltage, resonant inductor current and switching frequency in
start-up

Figure 23: Output voltage ripple in static operation

4.2 Dynamic Response
In this simulation, the power converter dynamic response was studied by introducing
step changes first to the load resistance and then to the reference voltage. In the
first test, the load resistance was increased from 1.5 Ω to 3 Ω. This corresponds to
step reduction of load by 50%. After the output voltage had stabilized, the load
resistance was reverted back to 1.5 Ω, corresponding to an increase of the output
power by 100%.

As can be seen in Figure 24, the output voltage peaks immediately after the

48

Figure 24: Step changes in load

load steps before settling back towards the reference level. In the first load step, the
output voltage reaches 54.8 V. In the second load step, the output voltage drops
to 47.4 V. The load level and the performance of the controller can be observed
from the envelope of the resonant inductor current. Immediately after the load step
changes, the resonant inductor current amplitude settles to the required level. As
the controller is operating close to the resonant frequency, where the gain curves are
relatively steep, the required change in the switching frequency is quite limited.

Figure 25: Step changes in reference voltage

In the second test, step changes were introduced to the reference voltage. The
initial reference was the same as in previous simulations, 51 V. The reference was
then raised to 55.6 V, after which the reference was finally set to 46.4 V. Figure 25
shows the power converter responses. In the first two steps, the output voltage and
the controller output settle quickly. However, the final step causes a spike to the
controller output, which then settles towards the required level. Some ripple can

49

be seen in the switching frequency, which also appears in the output voltage. This
could be due to unoptimally tuned PI loops within the controller.

4.3 Pulse Skipping
In this simulation, the protective mode of the controller is demonstrated. In case
of overcurrent or too high switching frequency from the controller, the switch drive
pulses can be disabled for a period of time. In this case, the reference voltage
was set to a low value, implying a high frequency output from the controller. As
the controller reaches the maximum frequency, the protection is activated and the
switching is disabled to disrupt the transfer of power in the controller and let the
capacitances discharge. in Figure 26, this appears as consecutive periods of activity
and inactivity in the primary side switch. The resonant inductor current appears as
bursts of current, causing the output voltage to stay approximately at the reference
level but introducing a relatively large ripple amplitude of 400 mV peak-to-peak.

Figure 26: Burst mode

4.4 Synchronous Rectifier Control
Figure 27 shows the primary and the secondary gate pulses on same time line. The
scaled-down secondary current is also presented on top of the secondary gate pulses.
As was mentioned in section 2.3.1, the secondary switching should be timed to the
instants when the secondary current is zero to avoid switching losses. Additionally,
the switches should only conduct current to one direction to function similarly to
a rectifier bridge. To ensure this, the switch pulse durations should never exceed
the resonant period of the converter. In Figure 27a., the converter is operated
at the resonant frequency. The secondary side pulses are approximately in phase
with the primary side pulses. The pulse widths of the secondary switches are only
slightly shorter than the primary side switches, and ZCS conditions are approximately
achieved.

50

Figure 27: Synchronous rectifier gate pulses a) at resonant frequency b) above
resonant frequency c) below resonant frequency.

In Figure 27b., the converter is operated above the resonant frequency. Now
ZCS conditions are no longer possible, and the increased switching losses can be
easily observed. Especially during the turn-offs, switching takes place while the
current flowing through the switches is still fairly large. However, the secondary
synchronization algorithm seems to work fairly well, as the secondary pulses are
appropriately delayed in relation to the primary pulses.

In Figure 27c., the converter is operated below the resonant frequency. Higher
resonant tank gain can be seen as larger current amplitude in the secondary. As the
primary side pulse durations are now longer than the resonant period, the switches
in the secondary side must have some non-conducting time in between the current
pulses. The duty cycle of the secondary switches is correctly limited to the resonant
frequency duty cycle, and the pulses are properly advanced in relation to the primary
pulses. Zero-current switching is achieved.

4.5 PWM Module
Figure 28 is a screenshot taken from one of the VHDL simulations. It shows the
control pulses of the primary side switches as well as the related duty, period and
synchronization command words from the controller. The command words are
actually binary words with widths of 14 bits, but for convenience their radix has
been set to unsigned fixed point format in the simulator. As is shown in the figure,
the pulses are properly out of phase, with some dead time in between to avoid shoot
throughs. The synchronization command of 1.5 means that when the counter of the
first channel reaches its middle point, the counter of the second channel should be
at the value of 1.5. However, the counters can only assume integer values, so the
fractional part is achieved by advancing or delaying the rising and falling edges of
the pulses.

The duty command for both channels in the figure is set to 143.5. In nanoseconds,

51

Figure 28: Primary half-bridge PWM channels

with PWM clock rate of 130 MHz, this corresponds to:

Pulsewidth = 143.5 · 1
130 · 106Hz

= 1103.85ns. (50)

The period is always the same for all the channels within one PWM module. In this
case, the period command is set to 315.125, which corresponds to:

Period = 315.125 · 1
130 · 106Hz

= 2424.04ns. (51)

As can be seen in Figure 28, the PWM module outputs correspond to the command
words.

4.6 Floating-Point Arithmetic
In the following simulation screenshots, the floating-point subtraction and multipli-
cation is demonstrated. The radix of the binary words is chosen as floating-point in
the simulator interface for more convenient viewing.

Figure 29: Floating-point multiplication

in Figure 29, the floating-point multiplication is shown. After the operands op_a
and op_b have settled, signal result settles after 3 clock periods, corresponding to
the 3-stage pipeline implementation described in section 3.5.4. in Figure 30, the
floating-point subtraction is shown. 50 ns or five input clock periods after operands
have settled, the result settles.

52

Figure 30: Floating-point subtraction

4.7 Controller Delay

Figure 31: Control computation at maximum control rate

in Figure 31, the LLC converter is run at the maximum frequency of about
1.2 MHz. Below the upper primary switch signal, signal state is shown. Signal
state keeps track of the states, or steps of the control algorithm. When the control
computation is not active, the state machine is idly waiting in the first state, s0. As
the PWM counter reaches the point where the sampling is set to take place, the
analog-to-digital conversions are performed and the control is triggered upon the
completion of the conversions. State signal then begins running through all the states,
during which the control algorithm is computed and all the controlled variables are
assigned new values based on the past values and the current measurements. The
control computation takes 470 ns to complete, leaving at least 360 ns of idle time for
each switching cycle.

From the previous observations, it can be determined that an ADC with sampling
speed of at least 2.8 MSPS is required for one cycle control with maximum control
rate of 1.2 MHz. Since the control algorithm begins with the output voltage control
loop, the current sample is not required to be ready at the very beginning of the
control computation and its sampling can take somewhat longer. For the primary
current, an ADC with a speed of at least 2 MSPS is required.

53

5 Conclusions
The conventional solution for real-time digital control of switched-mode power supplies
has been high-performance microcontrollers. Their inherent limitation is the finite
processing time available for tasks. The clock frequency of the microcontroller
places a strict limit to the maximum complexity and execution rate of the control
algorithm. Demand for higher power density and higher efficiency together with
the new wide band-gap devices such as GaN switches has grown interest in higher
control rates and switching frequencies. As the FPGA technology offers parallel
computation, its capacity for complex high-frequency control is far greater than that
of microcontrollers. The limiting factor has been the relatively high cost of FPGA
chips and the necessary peripheral devices.

The goal of this thesis was to assess the feasibility of implementing complex
control for a telecom AC-DC power supply with a low-cost FPGA. To reach this
goal and gain an overview of the issues that should be accounted for, a resonant LLC
converter controller was implemented. The controller includes the control algorithm
itself as well as the necessary PWM and arithmetic modules. First, the best way
to partition both the physical and the functional side of the control was researched.
Several different control partitioning options were compared to each other. Factors
taken into account were cost, control performance, firmware upgradability, electrical
surge robustness and development effort considerations. Placing the FPGA chip
on the secondary side of the galvanic isolation and a low-cost DSP on the primary
side offered the best balance of mentioned factors. The advantages included lowest
cost, best protection against surge voltages and the possibility to raise the switching
frequency even higher in the future without requiring repartitioning the control
system. The main disadvantages of this partitioning were the requirement for an
internal control bus and the difficulty of updating the software and logic configuration
of the controllers in the field.

A synchronous high-resolution PWM module was implemented and simulated.
While most low-cost microcontrollers do not even have high-resolution PWM, on an
FPGA the modulator can be built directly from the needs of the application. In this
case, multiple channels had to be synchronizable to each other, and the frequency had
to be variable in high-resolution. Implementing such functionality by manipulating
the PWM registers of a microcontroller is challenging.

The secondary synchronization was analyzed using the first harmonic approxima-
tion. The required dynamic range implied the need for floating-point arithmetic. As
the requirements for the control computation delay was strict, custom floating-point
modules were implemented. These modules were designed for optimum execution
rate and delay to satisfy the needs of the control. The execution rate, delay and
resource consumption were balanced with a pipelined design. Available hardware
blocks were utilized to maximize the speed of the calculations. In addition to the
necessary number format conversions, the implemented modules were subtraction,
multiplication and multiplicative inverse.

Finally a complete VHDL simulation model was created and the individual
modules were connected into a working control system. The functionality of the

54

control was verified by running several simulations with different parameters such as
the load and the reference output voltage. The frequency modulation control of the
LLC primary half-bridge and the control of the synchronous rectifier were found to
operate well in varying conditions.

The next step would be to study the ways of implementing high-performance
analog-to-digital converters with resources available on low-cost FPGAs. If the
control measurements could be scaled appropriately, it might be possible to use
available high-speed, low-resolution FPGA ADC architectures for the measurements.
This would remove the need for external ADCs and reduce the control system cost
considerably. Additionally, it could be feasible to integrate the microcontroller into
the FPGA as well, using some of the available soft-core architectures. This would also
reduce the total cost of the control system. Together with low switching loss devices,
FPGA controllers allow the development of much smaller and efficient power supplies
that help fulfill the growing power demands of the telecommunication networks.

55

References
[1] Steigerwald, R. L. High-Frequency Resonant Transistor DC-DC Converters.

IEEE Trans. on Industrial Electronics, vol. 31, no. 2, pp. 1175–1204, 1984.

[2] Tötterman, M. and Grigore, V. Digital Control Partitioning for Telecom AC-DC
Power Supply. in Proc. IEEE 34th Intl. Telecommunications Energy Conf.
(INTELEC), pp. 1–6, 2012.

[3] IEC 61000-3-2. Electromagnetic compatibility (EMC) - Part 3-2: Limits. 4th
ed. International Electrotechnical Commission, 2014. 69 pages.

[4] Rashid, M. H. Power Electronics Handbook. 3rd ed., Elsevier Science, 2011,
ISBN 978-0-123-82037-2.

[5] Huber, L. et. al. Performance Evaluation of Bridgeless PFC Boost Rectifiers.
IEEE Trans. on Power Electronics, vol. 23, no. 3, pp. 1381–1390, 2008.

[6] Balogh, L. and Redl, R. Power-Factor Correction with Interleaved Boost
Converters in Continuous-Inductor-Current Mode. in Proc. IEEE 8th Appl.
Power Electronics Conf. (APEC), pp. 168–174, 1993.

[7] Choudhury, S. and Noon, J. P. A DSP based Digitally Controlled Interleaved
PFC Converter in Proc. IEEE 8th Appl. Power Electronics Conf. (APEC), pp.
648–654, 2005.

[8] Yang, B. et. al. LLC Resonant Converter for Front End DC/DC Conversion. in
Proc. IEEE 17th Appl. Power Electronics Conf. (APEC), pp. 1108–1112, 2002.

[9] STMicroelectronics. Application note AN2644. An introduction to
LLC resonant half-bridge converter. 2008. Available in URL http:
//www.st.com/content/ccc/resource/technical/document/
application_note/de/f9/17/b7/ad/9f/4d/dd/CD00174208.
pdf/files/CD00174208.pdf/jcr:content/translations/en.
CD00174208.pdf on 21.6.2017.

[10] Mohan, N. Power Electronics. A First Course. John Wiley & Sons, Inc., 2012,
ISBN 978-1-118-07480-0.

[11] Ghahderijani, M. M. et. al. Frequency-Modulation Control of a DC/DC
Current-Source Parallel-Resonant Converter. IEEE Trans. on Industrial Elec-
tronics, vol. 64, no. 7, pp. 5392–5402, 2017.

[12] Hauck, S. and DeHon, A. Reconfigurable Computing. The Theory and Practice
of FPGA-Based Computation. 1st ed., Elsevier Science, 2007, ISBN 978-0-080-
55601-7.

[13] Monmasson, E. and Cirstea, M. N. FPGA Design Methodology for Industrial
Control Systems - A Review. IEEE Trans. on Industrial Electronics, vol. 54,
no. 4, pp. 1824–1842, 2007.

http://www.st.com/content/ccc/resource/technical/document/application_note/de/f9/17/b7/ad/9f/4d/dd/CD00174208.pdf/files/CD00174208.pdf/jcr:content/translations/en.CD00174208.pdf
http://www.st.com/content/ccc/resource/technical/document/application_note/de/f9/17/b7/ad/9f/4d/dd/CD00174208.pdf/files/CD00174208.pdf/jcr:content/translations/en.CD00174208.pdf
http://www.st.com/content/ccc/resource/technical/document/application_note/de/f9/17/b7/ad/9f/4d/dd/CD00174208.pdf/files/CD00174208.pdf/jcr:content/translations/en.CD00174208.pdf
http://www.st.com/content/ccc/resource/technical/document/application_note/de/f9/17/b7/ad/9f/4d/dd/CD00174208.pdf/files/CD00174208.pdf/jcr:content/translations/en.CD00174208.pdf
http://www.st.com/content/ccc/resource/technical/document/application_note/de/f9/17/b7/ad/9f/4d/dd/CD00174208.pdf/files/CD00174208.pdf/jcr:content/translations/en.CD00174208.pdf

56

[14] García-Tenori, J. M. Digital Control Techniques for DC/DC Power Convert-
ers. Online Document. Master’s Thesis, Helsinki University of Technology,
Helsinki, Finland, 2009. Available in URL https://aaltodoc.aalto.fi/
bitstream/123456789/3111/1/urn100074.pdf on 21.6.2017.

[15] Ramsden, E. Hall-Effect Sensors - Theory and Application. 2nd ed., Elsevier
Science, 2006, ISBN 978-0-0805-2374-3.

[16] Peterchev, A. V. and Sanders, S. R. Quantization Resolution and Limit Cycling
in Digitally Controlled PWM Converters. IEEE Trans. on Power Electronics,
vol. 18, no. 1, pp. 301–308, 2003.

[17] Navarro, D. et. al. Synchronous FPGA-based High-Resolution Implementations
of Digital Pulse-Width Modulators. IEEE Trans. on Power Electronics, vol.
27, no. 5, pp. 2515–2525, 2012.

[18] Santa, C. H. et. al. FPGA based Digital Pulse Width Modulator with Time
Resolution under 2 ns. in Proc. IEEE 22nd Appl. Power Electronics Conf.
(APEC), pp. 877–881, 2007.

[19] Batarseh, M. G. et. al. Segmented Digital Clock Manager - FPGA based
Digital Pulse Width Modulator Technique. in Proc. IEEE Power Electronics
Specialists Conf. (PESC), pp. 3036–3042, 2008.

[20] Castro, A. de and Todorovich, E. DPWM vased on FPGA Clock Phase Shifting
with Time Resolution under 100 ps. in Proc. IEEE Power Electronics Specialists
Conf. (PESC), pp. 3054–3059, 2008.

[21] Quintero, J. et. al. FPGA based Digital Control with High-Resolution Syn-
chronous DPWM and High-Speed Embedded A/D Converter. in Proc. IEEE
24th Appl. Power Electronics Conf. (APEC), pp. 1360–1366, 2009.

[22] Lattice Semiconductor. Datasheet. ECP5 and ECP5-5G Family, 2017. Available
in URL http://www.latticesemi.com/view_document?document_
id=50461 on 21.6.2017.

[23] Lattice Semiconductor. Reference Manual. LatticeMico32 Processor, 2012,
version 3.9. Available in URL http://www.latticesemi.com/view_
document?document_id=52077 on 21.6.2017.

[24] IEEE 754-2008. IEEE Standard for Floating-Point Arithmetic. Institute of
Electrical and Electronics Engineers, 2008. 58 pages.

[25] Ligon, W. B. et. al. A Re-evaluation of the Practicality of Floating-Point
Operations on FPGAs. in Proc. IEEE Symp. on FPGAs for Custom Computing
Machines (FPGA), pp. 206–215, 1998.

[26] Fagin, B. and Renard, C. Field Programmable Gate Arrays and Floating Point
Arithmetic. IEEE Trans. on VLSI Syst. vol. 2, no. 3, pp. 365–367, 1994.

https://aaltodoc.aalto.fi/bitstream/123456789/3111/1/urn100074.pdf
https://aaltodoc.aalto.fi/bitstream/123456789/3111/1/urn100074.pdf
http://www.latticesemi.com/view_document?document_id=50461
http://www.latticesemi.com/view_document?document_id=50461
http://www.latticesemi.com/view_document?document_id=52077
http://www.latticesemi.com/view_document?document_id=52077

57

[27] Govindu, G. et. al. Analysis of High-performance Floating-point Arithmetic on
FPGAs. in Proc. 18th Intl. Parallel and Distributed Processing Symp. (IPDPS),
pp. 149–156, 2004.

[28] Oberman, S. F. et. al. The SNAP Project: Design of Floating Point Arithmetic
Units. in Proc. IEEE 13th Symp. on Computer Arithmetic. (ARITH), pp.
156–165, 1997.

58

A PWM module
In this appendix, the VHDL code for all of the submodules of the PWM implemen-
tation are included as listings.

A.1 Top-Level
1 -- This is the top PWM module.
2 -- clk_in is the input clock
3 -- dcycle_in_x are the duty cycle commands for x channels
4 -- adctime_in is the adc synchronization command
5 -- sync_x is the synchronization command for other channels than 1.
6 -- sforce_chx is the force_off signal for x channels
7 -- rst_n is the active-low reset
8 -- dfreq_in is the commond pwm period command for all channels
9 -- control_done is an input flag informing that the control computation is finished

10 -- adc_flag_out is an output flag informing that the AD conversion is ready
11 -- dpwm and dpwm_chx are the pwm outputs
12 -- Written by Tero Kuusijarvi, 27.7.2017
13
14 library ieee;
15 use ieee. std_logic_1164.all;
16 use ieee. std_logic_arith.all;
17 use ieee. std_logic_unsigned.all;
18 library lattice;
19
20 entity pwm_top is
21 generic (n_channels : integer := 4); -- must be equal or larger than 2
22 port(
23 clk_in : in std_logic;
24 dcycle_in : in std_logic_vector (13 downto 0);
25 dfreq_in : in std_logic_vector (13 downto 0);
26 adctime_in : in std_logic_vector (10 downto 0);
27 dcycle_in_2 : in std_logic_vector (13 downto 0);
28 sync_2 : in std_logic_vector (13 downto 0);
29 dcycle_in_3 : in std_logic_vector (13 downto 0);
30 sync_3 : in std_logic_vector (13 downto 0);
31 dcycle_in_4 : in std_logic_vector (13 downto 0);
32 sync_4 : in std_logic_vector (13 downto 0);
33 sforce_ch1 : in std_logic;
34 sforce_ch2 : in std_logic;
35 sforce_ch3 : in std_logic;
36 sforce_ch4 : in std_logic;
37 rst_n : in std_logic;
38 dpwm : out std_logic;
39 dpwm_ch2 : out std_logic;
40 dpwm_ch3 : out std_logic;
41 dpwm_ch4 : out std_logic;
42 adc_flag_out : out std_logic;
43 control_done : in std_logic
44);
45 end pwm_top;
46
47 architecture rtl of pwm_top is
48
49 component srlatch -- asynchronous set-reset
50 port (s_in,r_in: in std_logic;
51 q_out: out std_logic);
52 end component;
53
54 component pll_ecp551 -- pll module
55 port (clki: in std_logic; clkop: out std_logic;
56 clkos: out std_logic; clkos2: out std_logic;
57 clkos3: out std_logic);
58 end component;

59

59
60
61 component counter is -- duty and sync and sforces for channels 2 to n must be changed if

number of channels is changed
62 generic (n_channels : integer := 4);
63 port (
64 clock : in std_logic;
65 aclr : in std_logic;
66 freq : in std_logic_vector(13 downto 0);
67 duty : in std_logic_vector(13 downto 0);
68 adctime : in std_logic_vector(10 downto 0);
69 duty_ch2 : in std_logic_vector(13 downto 0);
70 sync_ch2 : in std_logic_vector(13 downto 0);
71 duty_ch3 : in std_logic_vector(13 downto 0);
72 sync_ch3 : in std_logic_vector(13 downto 0);
73 duty_ch4 : in std_logic_vector(13 downto 0);
74 sync_ch4 : in std_logic_vector(13 downto 0);
75 sforce_ch1 : in std_logic;
76 sforce_ch2 : in std_logic;
77 sforce_ch3 : in std_logic;
78 sforce_ch4 : in std_logic;
79 setd : out std_logic;
80 clrd : out std_logic;
81 adc_flag : out std_logic;
82 setd_ch : out std_logic_vector(2 to n_channels);
83 clrd_ch : out std_logic_vector(2 to n_channels);
84 dpwm_set_lsbs : out std_logic_vector(2 downto 0);
85 dpwm_reset_lsbs : out std_logic_vector(2 downto 0);
86 dpwm_set_lsbs_ch : out std_logic_vector((3*n_channels - 4) downto 0);
87 dpwm_reset_lsbs_ch : out std_logic_vector((3*n_channels - 4) downto 0));
88 end component;
89
90 component mux is
91 port (
92 sel : in std_logic_vector(2 downto 0);
93 in0 : in std_logic;
94 in1 : in std_logic;
95 in2 : in std_logic;
96 in3 : in std_logic;
97 in4 : in std_logic;
98 in5 : in std_logic;
99 in6 : in std_logic;

100 in7 : in std_logic;
101 output : out std_logic);
102 end component;
103
104 signal clock_0 : std_logic;
105 signal clock_45 : std_logic;
106 signal clock_90 : std_logic;
107 signal clock_135 : std_logic;
108
109 signal adc_flag : std_logic;
110
111 signal reset_lsbs, set_lsbs : std_logic_vector(2 downto 0);
112 signal set, reset : std_logic;
113 signal setd : std_logic;
114 signal clrd : std_logic;
115 signal dcycle_reg, dfreq_reg : std_logic_vector (13 downto 0) ;
116 signal adctime_reg : std_logic_vector(10 downto 0);
117
118 type ffabc is array (0 to 3) of std_logic;
119 signal ffabcd : ffabc;
120 type ff0123 is array (0 to 7) of std_logic;
121 signal ff01234567 : ff0123;
122 signal set_ff01234567 : ff0123;
123
124 -- the following signals must be changed if number of channels is changed
125 signal reset_lsbs_ch, set_lsbs_ch : std_logic_vector(3*n_channels - 4 downto 0);

60

126
127
128 type asynch_sr_type is array (2 to n_channels) of std_logic;
129 signal set_ch, reset_ch : asynch_sr_type;
130 signal setd_ch, clrd_ch : std_logic_vector(2 to n_channels);
131 type dcycle_reg_type is array (2 to n_channels) of std_logic_vector(13 downto 0);
132 signal dcycle_reg_ch, sync_reg_ch : dcycle_reg_type;
133
134 type ffabc_ch is array (2 to n_channels) of ffabc;
135 signal ffabcd_ch : ffabc_ch;
136
137 type ff0123_ch is array (2 to n_channels) of std_logic_vector(0 to 1);
138 signal ff04_ch, ff15_ch, ff26_ch, ff37_ch : ff0123_ch;
139 signal set_ff04_ch, set_ff15_ch, set_ff26_ch, set_ff37_ch : ff0123_ch;
140
141 type output_ch is array (2 to n_channels) of std_logic;
142 signal dpwm_ch : output_ch;
143
144 type sforce_type is array (1 to n_channels) of std_logic;
145 signal sforce_arr : sforce_type;
146
147 begin
148 --these must be reconfigured when number of channels is changed.
149 dpwm_ch2 <= dpwm_ch(2);
150 dpwm_ch3 <= dpwm_ch(3);
151 dpwm_ch4 <= dpwm_ch(4);
152
153 pll_exa_inst : pll_ecp551
154 port map (
155 clki =>clk_in,
156 clkop =>clock_0,
157 clkos =>clock_45,
158 clkos2 =>clock_90,
159 clkos3 =>clock_135
160);
161
162 srff_inst : srlatch
163 port map (
164 s_in => set,
165 r_in => reset,
166 q_out => dpwm
167);
168
169 mux_inst_rst : mux
170 port map(
171 sel => reset_lsbs,
172 in0 => ff01234567(0),
173 in1 => ff01234567(1),
174 in2 => ff01234567(2),
175 in3 => ff01234567(3),
176 in4 => ff01234567(4),
177 in5 => ff01234567(5),
178 in6 => ff01234567(6),
179 in7 => ff01234567(7),
180 output => reset);
181
182 mux_inst_set : mux
183 port map(
184 sel => set_lsbs,
185 in0 => set_ff01234567(0),
186 in1 => set_ff01234567(1),
187 in2 => set_ff01234567(2),
188 in3 => set_ff01234567(3),
189 in4 => set_ff01234567(4),
190 in5 => set_ff01234567(5),
191 in6 => set_ff01234567(6),
192 in7 => set_ff01234567(7),
193 output => set);

61

194
195 count_inst : counter -- duty and sync for channels 2 to n must be reconfigured if number

of channels is changed.
196 generic map (n_channels => n_channels)
197 port map (
198 clock => clock_0,
199 aclr => rst_n,
200 freq => dfreq_reg,
201 duty => dcycle_reg,
202 adctime => adctime_reg,
203 duty_ch2 => dcycle_reg_ch(2),
204 sync_ch2 => sync_reg_ch(2),
205 duty_ch3 => dcycle_reg_ch(3),
206 sync_ch3 => sync_reg_ch(3),
207 duty_ch4 => dcycle_reg_ch(4),
208 sync_ch4 => sync_reg_ch(4),
209 sforce_ch1 => sforce_arr(1),
210 sforce_ch2 => sforce_arr(2),
211 sforce_ch3 => sforce_arr(3),
212 sforce_ch4 => sforce_arr(4),
213 setd => setd,
214 clrd => clrd,
215 adc_flag => adc_flag,
216 setd_ch => setd_ch,
217 clrd_ch => clrd_ch,
218 dpwm_set_lsbs => set_lsbs,
219 dpwm_reset_lsbs => reset_lsbs,
220 dpwm_set_lsbs_ch => set_lsbs_ch,
221 dpwm_reset_lsbs_ch => reset_lsbs_ch);
222
223 gen_comp_ch : for n in 2 to n_channels generate
224 srff_inst_ch2 : srlatch
225 port map (
226 s_in => set_ch(n),
227 r_in => reset_ch(n),
228 q_out => dpwm_ch(n));
229
230 mux_inst_rst_ch : mux
231 port map(
232 sel => reset_lsbs_ch(3*n - 4 downto 3*n - 6),
233 in0 => ff04_ch(n)(0),
234 in1 => ff15_ch(n)(0),
235 in2 => ff26_ch(n)(0),
236 in3 => ff37_ch(n)(0),
237 in4 => ff04_ch(n)(1),
238 in5 => ff15_ch(n)(1),
239 in6 => ff26_ch(n)(1),
240 in7 => ff37_ch(n)(1),
241 output => reset_ch(n));
242
243 mux_inst_set_ch : mux
244 port map(
245 sel => set_lsbs_ch(3*n - 4 downto 3*n - 6),
246 in0 => set_ff04_ch(n)(0),
247 in1 => set_ff15_ch(n)(0),
248 in2 => set_ff26_ch(n)(0),
249 in3 => set_ff37_ch(n)(0),
250 in4 => set_ff04_ch(n)(1),
251 in5 => set_ff15_ch(n)(1),
252 in6 => set_ff26_ch(n)(1),
253 in7 => set_ff37_ch(n)(1),
254 output => set_ch(n));
255 end generate;
256
257
258 process(clock_0, rst_n) -- input register for duty, frequency
259 begin
260 if (rst_n = ’0’) then

62

261 dcycle_reg <= "00100100011000";
262 dfreq_reg <= "01010001010000";
263 adctime_reg <= "00101111001";
264 adc_flag_out <= ’0’;
265 sforce_arr(1) <= ’0’;
266 for i in 2 to n_channels loop
267 dcycle_reg_ch(i) <= "00100100011000";
268 sync_reg_ch(i) <= "01010001001000";
269 sforce_arr(i) <= ’0’;
270 end loop;
271 elsif(rising_edge(clock_0)) then -- when cnt >= dfreq_reg/2, registers get updated
272 if control_done = ’1’ then
273 dcycle_reg <= dcycle_in;
274 dfreq_reg <= dfreq_in;
275 adctime_reg <= adctime_in;
276 -- following must be changed if number of channels is changed.
277 dcycle_reg_ch(2) <= dcycle_in_2;
278 sync_reg_ch(2) <= sync_2;
279 dcycle_reg_ch(3) <= dcycle_in_3;
280 sync_reg_ch(3) <= sync_3;
281 dcycle_reg_ch(4) <= dcycle_in_4;
282 sync_reg_ch(4) <= sync_4;
283 sforce_arr(1) <= sforce_ch1;
284 sforce_arr(2) <= sforce_ch2;
285 sforce_arr(3) <= sforce_ch3;
286 sforce_arr(4) <= sforce_ch4;
287 end if;
288 adc_flag_out <= adc_flag;
289 end if;
290 end process;
291
292
293 process(clock_0, rst_n) -- registers clocked to clock_0
294 begin
295 if (rst_n = ’0’) then
296 ffabcd <= (others => ’0’);
297 ff01234567(0) <= ’0’;
298 ff01234567(4) <= ’0’;
299 set_ff01234567(0) <= ’0’;
300 set_ff01234567(4) <= ’0’;
301
302 for i in 2 to n_channels loop
303 ffabcd_ch(i) <= (others => ’0’);
304 ff04_ch(i) <= (others => ’0’);
305 set_ff04_ch(i) <= (others => ’0’);
306 end loop;
307
308 elsif(rising_edge(clock_0)) then
309 ffabcd <= (setd, clrd, ffabcd(0), ffabcd(1));
310 ff01234567(4) <= ff01234567(0);
311 set_ff01234567(4) <= set_ff01234567(0);
312
313 for i in 2 to n_channels loop
314 ffabcd_ch(i) <= (setd_ch(i), clrd_ch(i), ffabcd_ch(i)(0), ffabcd_ch(i)(1));
315 ff04_ch(i)(1) <= ff04_ch(i)(0);
316 set_ff04_ch(i)(1) <= set_ff04_ch(i)(0);
317 end loop;
318
319 elsif(falling_edge(clock_0)) then
320 ff01234567(0) <= ffabcd(3);
321 set_ff01234567(0) <= ffabcd(2);
322
323 for i in 2 to n_channels loop
324 ff04_ch(i)(0) <= ffabcd_ch(i)(3);
325 set_ff04_ch(i)(0) <= ffabcd_ch(i)(2);
326 end loop;
327 end if;
328 end process;

63

329
330
331 process(clock_45, rst_n)
332 begin
333 if (rst_n = ’0’) then
334 ff01234567(1) <= ’0’;
335 ff01234567(5) <= ’0’;
336 set_ff01234567(1) <= ’0’;
337 set_ff01234567(5) <= ’0’;
338
339 for i in 2 to n_channels loop
340 ff15_ch(i) <= (others => ’0’);
341 set_ff15_ch(i) <= (others => ’0’);
342 end loop;
343
344 elsif(rising_edge(clock_45)) then
345 ff01234567(5) <= ff01234567(1);
346 set_ff01234567(5) <= set_ff01234567(1);
347
348 for i in 2 to n_channels loop
349 ff15_ch(i)(1) <= ff15_ch(i)(0);
350 set_ff15_ch(i)(1) <= set_ff15_ch(i)(0);
351 end loop;
352
353 elsif(falling_edge(clock_45)) then
354 ff01234567(1) <= ffabcd(3);
355 set_ff01234567(1) <= ffabcd(2);
356
357 for i in 2 to n_channels loop
358 ff15_ch(i)(0) <= ffabcd_ch(i)(3);
359 set_ff15_ch(i)(0) <= ffabcd_ch(i)(2);
360 end loop;
361
362 end if;
363 end process;
364
365 process(clock_90, rst_n)
366 begin
367 if (rst_n = ’0’) then
368 ff01234567(2) <= ’0’;
369 ff01234567(6) <= ’0’;
370 set_ff01234567(2) <= ’0’;
371 set_ff01234567(6) <= ’0’;
372
373 for i in 2 to n_channels loop
374 ff26_ch(i) <= (others => ’0’);
375 set_ff26_ch(i) <= (others => ’0’);
376 end loop;
377
378 elsif(rising_edge(clock_90)) then
379 ff01234567(6) <= ff01234567(2);
380 set_ff01234567(6) <= set_ff01234567(2);
381
382 for i in 2 to n_channels loop
383 ff26_ch(i)(1) <= ff26_ch(i)(0);
384 set_ff26_ch(i)(1) <= set_ff26_ch(i)(0);
385 end loop;
386
387 elsif(falling_edge(clock_90)) then
388 ff01234567(2) <= ffabcd(3);
389 set_ff01234567(2) <= ffabcd(2);
390
391 for i in 2 to n_channels loop
392 ff26_ch(i)(0) <= ffabcd_ch(i)(3);
393 set_ff26_ch(i)(0) <= ffabcd_ch(i)(2);
394 end loop;
395
396 end if;

64

397 end process;
398
399
400 process(clock_135, rst_n)
401 begin
402 if (rst_n = ’0’) then
403 ff01234567(3) <= ’0’;
404 ff01234567(7) <= ’0’;
405 set_ff01234567(3) <= ’0’;
406 set_ff01234567(7) <= ’0’;
407
408 for i in 2 to n_channels loop
409 ff37_ch(i) <= (others => ’0’);
410 set_ff37_ch(i) <= (others => ’0’);
411 end loop;
412
413 elsif(rising_edge(clock_135)) then
414 ff01234567(7) <= ff01234567(3);
415 set_ff01234567(7) <= set_ff01234567(3);
416
417 for i in 2 to n_channels loop
418 ff37_ch(i)(1) <= ff37_ch(i)(0);
419 set_ff37_ch(i)(1) <= set_ff37_ch(i)(0);
420 end loop;
421
422 elsif(falling_edge(clock_135)) then
423 ff01234567(3) <= ffabcd(3);
424 set_ff01234567(3) <= ffabcd(2);
425
426 for i in 2 to n_channels loop
427 ff37_ch(i)(0) <= ffabcd_ch(i)(3);
428 set_ff37_ch(i)(0) <= ffabcd_ch(i)(2);
429 end loop;
430
431 end if;
432 end process;
433
434 end rtl;

65

A.2 Counter
1 -- This is the PWM counter module.
2 -- Written by Tero Kuusijarvi 05.04.2017
3
4 library ieee;
5 use ieee.std_logic_1164.all;
6 use ieee.std_logic_unsigned.all;
7 use ieee.numeric_std.all;
8
9 entity counter is

10 generic(n_channels : integer := 4);
11 port(
12 clock : in std_logic;
13 aclr : in std_logic;
14 freq : in std_logic_vector(13 downto 0);
15 duty : in std_logic_vector(13 downto 0);
16 adctime : in std_logic_vector(10 downto 0);
17 duty_ch2 : in std_logic_vector(13 downto 0);
18 sync_ch2 : in std_logic_vector(13 downto 0);
19 duty_ch3 : in std_logic_vector(13 downto 0);
20 sync_ch3 : in std_logic_vector(13 downto 0);
21 duty_ch4 : in std_logic_vector(13 downto 0);
22 sync_ch4 : in std_logic_vector(13 downto 0);
23 sforce_ch1 : in std_logic;
24 sforce_ch2 : in std_logic;
25 sforce_ch3 : in std_logic;
26 sforce_ch4 : in std_logic;
27 setd : out std_logic;
28 clrd : out std_logic;
29 adc_flag : out std_logic;
30 setd_ch : out std_logic_vector(2 to n_channels);
31 clrd_ch : out std_logic_vector(2 to n_channels);
32 dpwm_set_lsbs : out std_logic_vector(2 downto 0);
33 dpwm_reset_lsbs : out std_logic_vector(2 downto 0);
34 dpwm_set_lsbs_ch : out std_logic_vector((3*n_channels - 4) downto 0);
35 dpwm_reset_lsbs_ch : out std_logic_vector((3*n_channels - 4) downto 0));
36 end counter;
37
38 architecture rtl of counter is
39 signal counter_sig : unsigned(10 downto 0);
40 signal freq_in, duty_in : std_logic_vector(13 downto 0);
41 signal count : unsigned(10 downto 0);
42 signal mpt : unsigned(10 downto 0);
43 signal mp0 : unsigned(13 downto 0);
44 signal dpwm_set : unsigned(13 downto 0);
45 signal dpwm_reset : unsigned(13 downto 0);
46 signal mpt_passed : std_logic;
47
48 type cntr_sig_type is array (2 to n_channels) of unsigned(10 downto 0);
49 signal counter_sig_arr : cntr_sig_type;
50 type duty_in_type is array (2 to n_channels) of std_logic_vector(13 downto 0);
51 signal duty_in_arr : duty_in_type;
52 type sync_in_type is array (2 to n_channels) of std_logic_vector(13 downto 0);
53 signal sync_in_arr : sync_in_type;
54 type duty_saved_type is array (2 to n_channels) of unsigned(13 downto 0);
55 signal duty_saved_arr : duty_saved_type;
56 type count_type is array (2 to n_channels) of unsigned(10 downto 0);
57 signal count_arr : count_type;
58 type mpt_type is array (2 to n_channels) of unsigned(10 downto 0);
59 signal mpt_arr : mpt_type;
60 type mp0_type is array (2 to n_channels) of unsigned(13 downto 0);
61 signal mp0_arr : mp0_type;
62 type dpwm_set_type is array (2 to n_channels) of unsigned(13 downto 0);
63 signal dpwm_set_arr : dpwm_set_type;
64 type dpwm_reset_type is array (2 to n_channels) of unsigned(13 downto 0);
65 signal dpwm_reset_arr : dpwm_reset_type;
66 type mpt_passed_type is array (2 to n_channels) of std_logic;

66

67 signal mpt_passed_arr : mpt_passed_type;
68 type sync_glitch_type is array (2 to n_channels) of unsigned(0 downto 0);
69 signal sync_glitch_arr : sync_glitch_type;
70 type reset_calctd_type is array (2 to n_channels) of std_logic;
71 signal reset_calctd_arr : reset_calctd_type;
72
73 type onezero_type is array (1 to n_channels) of std_logic;
74 signal duty_one_arr : onezero_type;
75 signal duty_zero_arr : onezero_type;
76 signal sforce_arr : onezero_type;
77
78 type reset_comp_type is array (2 to n_channels) of std_logic;
79 signal rst_comp_arr : reset_comp_type;
80 signal set_comp_arr : reset_comp_type;
81
82 begin
83 process(clock, aclr)
84 variable counter_temp : unsigned(11 downto 0);
85 variable mpt_temp : unsigned(13 downto 0);
86 variable count_var : unsigned(10 downto 0);
87 variable mp0_temp : unsigned(13 downto 0);
88 begin
89 if(aclr = ’0’) then -- initial values
90 counter_sig <= "00000000001";
91 mpt_passed <= ’0’;
92 mp0 <= "00101000101000";
93 mpt <= "00101000101";
94 count <= "01010001010";
95
96 dpwm_set <= (others => ’1’);
97 dpwm_reset <= (others => ’0’);
98
99 for i in 2 to n_channels loop

100 count_arr(i) <= "01010001010";
101 counter_sig_arr(i) <= "00000000001";
102 dpwm_set_arr(i) <= (others => ’1’);
103 duty_saved_arr(i) <= "00100100011000";
104 mpt_arr(i) <= "00101000101";
105 mp0_arr(i) <= "00101000101000";
106 sync_glitch_arr(i) <= "0";
107 end loop;
108
109 elsif(rising_edge(clock)) then
110 if(counter_sig >= count) then -- resetting the counter
111 counter_sig <= "00000000001";
112 dpwm_set <= resize((’0’ & mp0) +
113 (’0’ & not(’0’ & unsigned(duty_in(13 downto 1)))) +
114 (to_unsigned(0, 14) & not(duty_in(0))), 14);
115
116 mpt_passed <= ’0’;
117 for i in 2 to n_channels loop
118 dpwm_set_arr(i) <= resize((’0’ & mp0_arr(i)) +
119 (’0’ & not(’0’ & unsigned((duty_saved_arr(i)(13 downto 1))))) +
120 (to_unsigned(0, 14) & not((duty_saved_arr(i)(0)))) -
121 (unsigned(sync_in_arr(i)(2 downto 0))), 14);
122
123 if(counter_sig_arr(i) >= count_arr(i) or
124 (counter_sig_arr(i) = to_unsigned(0, 11))) then
125
126 counter_sig_arr(i) <= "00000000001";
127 else
128 counter_temp := (’0’ & counter_sig_arr(i)) + to_unsigned(1, 12);
129 counter_sig_arr(i) <= counter_temp(10 downto 0);
130 end if;
131 end loop;
132 elsif(counter_sig >= mpt and not(mpt_passed = ’1’)) then -- crossing the middle

point of the carrier period
133 for i in 2 to n_channels loop

67

134 duty_saved_arr(i) <= unsigned(duty_in_arr(i));
135 count_var := resize((’0’ & mpt_arr(i)) +
136 ("00" & unsigned(freq_in(13 downto 4))), 11);
137
138 if(counter_sig_arr(i) = unsigned(sync_in_arr(i)(13 downto 3)) and
139 (((counter_sig_arr(i)(10 downto 0) >= dpwm_set_arr(i)(13 downto 3)))) and
140 (counter_sig_arr(i) < dpwm_reset_arr(i)(13 downto 3))) then
141
142 sync_glitch_arr(i) <= "1";
143 else
144 sync_glitch_arr(i) <= "0";
145 end if;
146
147 if(mp0(2 downto 0) = "000" and
148 ((counter_sig_arr(i)(10 downto 0) >= dpwm_set_arr(i)(13 downto 3))))
149 then -- synchronization glitch would happen here if not accounted for
150 -- glitch: counter_sig_ch2 keeps its value for 2 consecutive clock cycles
151 -- also count_ch2 is increased while setd_ch2 is already set
152 -- the next setd_ch2 set happens one cycle too late
153 -- with counter_sig_ch2 < dpwm_set_ch2, theres no glitch.
154 count_arr(i) <= resize(((’0’ & count_var) + ("011111111111")), 11);
155 else
156 count_arr(i) <= count_var;
157 end if;
158 counter_sig_arr(i) <= unsigned(sync_in_arr(i)(13 downto 3));
159
160 mp0_temp := resize(((’0’ & mp0_arr(i)) + (’0’ & unsigned(freq_in)) +
161 (’0’ & not(count_var & "000")) + to_unsigned(1, 15)), 14);
162
163 mp0_arr(i) <= (mp0_temp);
164 mpt_arr(i) <= mp0_temp(13 downto 3);
165 end loop;
166
167 count_var := resize((’0’ & mpt) + ("00" & unsigned(freq_in(13 downto 4))), 11);
168 count <= count_var;
169
170 mp0_temp := resize(((’0’ & mp0) + (’0’ & unsigned(freq_in)) +
171 (’0’ & not(count_var & "000")) + to_unsigned(1, 15)), 14);
172
173 mp0 <= mp0_temp;
174 mpt <= mp0_temp(13 downto 3);
175
176 dpwm_reset <= resize((’0’ & mp0) + ("00" & unsigned(duty_in(13 downto 1))), 14);
177 mpt_passed <= ’1’;
178
179 counter_temp := (’0’ & counter_sig) + to_unsigned(1, 12);
180 counter_sig <= counter_temp(10 downto 0);
181
182 else
183 counter_temp := (’0’ & counter_sig) + to_unsigned(1, 12);
184 counter_sig <= counter_temp(10 downto 0);
185
186 for i in 2 to n_channels loop
187 dpwm_set_arr(i) <= resize((’0’ & mp0_arr(i)) +
188 (’0’ & not(’0’ & unsigned((duty_saved_arr(i)(13 downto 1))))) +
189 (to_unsigned(0, 14) & not((duty_saved_arr(i)(0)))) -
190 (unsigned(sync_in_arr(i)(2 downto 0))), 14);
191
192 if(counter_sig_arr(i) >= count_arr(i) or
193 (counter_sig_arr(i) = to_unsigned(0, 11))) then
194
195 counter_sig_arr(i) <= "00000000001";
196 else
197 counter_temp := (’0’ & counter_sig_arr(i)) + to_unsigned(1, 12);
198 counter_sig_arr(i) <= counter_temp(10 downto 0);
199 end if;
200 end loop;
201

68

202 end if;
203 end if;
204 end process;
205
206 process(clock, aclr) -- setd/clrd for ch1
207 begin
208 if(aclr = ’0’) then
209 clrd <= ’1’;
210 setd <= ’0’;
211 dpwm_reset_lsbs <= (others => ’0’);
212 dpwm_set_lsbs <= (others => ’0’);
213 elsif(rising_edge(clock)) then
214 if(counter_sig >= dpwm_reset(13 downto 3) and mpt_passed = ’1’) then
215 clrd <= (not(duty_one_arr(1)));
216 setd <= ’0’; -----
217 dpwm_reset_lsbs <= std_logic_vector(dpwm_reset(2 downto 0));
218 elsif(counter_sig >= dpwm_set(13 downto 3) and mpt_passed = ’0’) then
219 setd <= (not(duty_zero_arr(1)) and not(sforce_arr(1)));
220 clrd <= ’0’;
221 dpwm_set_lsbs <= std_logic_vector(dpwm_set(2 downto 0));
222 elsif(counter_sig < dpwm_set(13 downto 3)) then
223 clrd <= (not(duty_one_arr(1)));
224 setd <= ’0’;
225 dpwm_reset_lsbs <= (others => ’0’);
226 else
227 setd <= ’0’;
228 end if;
229 end if;
230 end process;
231
232 process(clock, aclr) --mpt_passed for other channels
233 begin
234 if(aclr = ’0’) then
235 for i in 2 to n_channels loop
236 mpt_passed_arr(i) <= ’0’;
237 end loop;
238 elsif(rising_edge(clock)) then
239 for i in 2 to n_channels loop
240 if(counter_sig_arr(i) < mpt_arr(i)) then
241 mpt_passed_arr(i) <= ’0’;
242 else
243 mpt_passed_arr(i) <= ’1’;
244 end if;
245 end loop;
246 end if;
247 end process;
248
249 process(clock, aclr) -- setd/clrd for other channels
250 begin
251 if(aclr = ’0’) then
252 for i in 2 to n_channels loop
253 clrd_ch(i) <= ’1’;
254 setd_ch(i) <= ’0’;
255 reset_calctd_arr(i) <= ’0’;
256 dpwm_reset_arr(i) <= "00001100000000";
257 end loop;
258 dpwm_reset_lsbs_ch <= (others => ’0’);
259 dpwm_set_lsbs_ch <= (others => ’0’);
260 elsif(rising_edge(clock)) then
261 for i in 2 to n_channels loop
262 if((set_comp_arr(i) = ’0’)) then
263 clrd_ch(i) <= (not(duty_one_arr(i)));
264 setd_ch(i) <= ’0’;
265 dpwm_reset_lsbs_ch(3*i - 4 downto 3*i - 6) <= (others => ’0’);
266 reset_calctd_arr(i) <= ’0’;
267 elsif(mpt_passed_arr(i) = ’0’ and reset_calctd_arr(i) = ’0’) then
268 setd_ch(i) <= (not(duty_zero_arr(i)) and not(sforce_arr(i)));
269 clrd_ch(i) <= ’0’;

69

270 dpwm_set_lsbs_ch(3*i - 4 downto 3*i - 6) <=
271 std_logic_vector(dpwm_set_arr(i)(2 downto 0));
272
273 dpwm_reset_arr(i) <= resize((’0’ & dpwm_set_arr(i)) +
274 (’0’ & unsigned(duty_saved_arr(i))), 14);
275
276 reset_calctd_arr(i) <= ’1’;
277 elsif(rst_comp_arr(i) = ’1’ and mpt_passed_arr(i) = ’1’) then
278 clrd_ch(i) <= (not(duty_one_arr(i)));
279 setd_ch(i) <= ’0’;
280 dpwm_reset_lsbs_ch(3*i - 4 downto 3*i - 6) <=
281 std_logic_vector(dpwm_reset_arr(i)(2 downto 0));
282
283 reset_calctd_arr(i) <= ’0’;
284 else
285 setd_ch(i) <= ’0’;
286 end if;
287 end loop;
288 end if;
289 end process;
290
291 process(clock, aclr) -- input register. if number of channels is changed, this process

must be updated appropriately.
292 begin
293 if(aclr = ’0’) then
294 freq_in <= "01010001010000";
295 duty_in <= "00100100011000";
296 duty_one_arr(1) <= ’0’;
297 duty_zero_arr(1) <= ’0’;
298 sforce_arr(1) <= ’0’;
299 for i in 2 to n_channels loop
300 duty_in_arr(i) <= "00100100011000";
301 sync_in_arr(i) <= "01010001001000";
302 duty_one_arr(i) <= ’0’;
303 duty_zero_arr(i) <= ’0’;
304 sforce_arr(i) <= ’0’;
305 end loop;
306 elsif(rising_edge(clock)) then
307 freq_in <= freq;
308 sforce_arr(1) <= sforce_ch1;
309 sforce_arr(2) <= sforce_ch2;
310 sforce_arr(3) <= sforce_ch3;
311 sforce_arr(4) <= sforce_ch4;
312
313 if(duty >= freq) then
314 duty_in <= freq;
315 duty_one_arr(1) <= ’1’;
316 duty_zero_arr(1) <= ’0’;
317 elsif(duty = 0) then
318 duty_in <= (others => ’0’);
319 duty_zero_arr(1) <= ’1’;
320 duty_one_arr(1) <= ’0’;
321 else
322 duty_in <= duty;
323 duty_one_arr(1) <= ’0’;
324 duty_zero_arr(1) <= ’0’;
325 end if;
326 -- the following must be changed if number of channels is changed.
327 if(sync_ch2 > freq) then
328 sync_in_arr(2) <= freq;
329 else
330 sync_in_arr(2) <= sync_ch2;
331 end if;
332 if(duty_ch2 >= freq) then
333 duty_in_arr(2) <= freq;
334 duty_one_arr(2) <= ’1’;
335 duty_zero_arr(2) <= ’0’;
336 elsif(duty_ch2 = 0) then

70

337 duty_in_arr(2) <= (others => ’0’);
338 duty_zero_arr(2) <= ’1’;
339 duty_one_arr(2) <= ’0’;
340 else
341 duty_in_arr(2) <= duty_ch2;
342 duty_one_arr(2) <= ’0’;
343 duty_zero_arr(2) <= ’0’;
344 end if;
345
346 if(sync_ch3 > freq) then
347 sync_in_arr(3) <= freq;
348 else
349 sync_in_arr(3) <= sync_ch3;
350 end if;
351 if(duty_ch3 >= freq) then
352 duty_in_arr(3) <= freq;
353 duty_one_arr(3) <= ’1’;
354 duty_zero_arr(3) <= ’0’;
355 elsif(duty_ch3 = 0) then
356 duty_in_arr(3) <= (others => ’0’);
357 duty_zero_arr(3) <= ’1’;
358 duty_one_arr(3) <= ’0’;
359 else
360 duty_in_arr(3) <= duty_ch3;
361 duty_one_arr(3) <= ’0’;
362 duty_zero_arr(3) <= ’0’;
363 end if;
364
365 if(sync_ch4 > freq) then
366 sync_in_arr(4) <= freq;
367 else
368 sync_in_arr(4) <= sync_ch4;
369 end if;
370 if(duty_ch4 >= freq) then
371 duty_in_arr(4) <= freq;
372 duty_one_arr(4) <= ’1’;
373 duty_zero_arr(4) <= ’0’;
374 elsif(duty_ch4 = 0) then
375 duty_in_arr(4) <= (others => ’0’);
376 duty_zero_arr(4) <= ’1’;
377 duty_one_arr(4) <= ’0’;
378 else
379 duty_in_arr(4) <= duty_ch4;
380 duty_one_arr(4) <= ’0’;
381 duty_zero_arr(4) <= ’0’;
382 end if;
383 end if;
384 end process;
385
386 process(clock, aclr) -- adc synchronization
387 begin
388 if(aclr = ’0’) then
389 adc_flag <= ’0’;
390 elsif(rising_edge(clock)) then
391 if counter_sig >= unsigned(adctime) then
392 adc_flag <= ’1’;
393 else
394 adc_flag <= ’0’;
395 end if;
396 end if;
397 end process;
398
399 process(clock, aclr) -- detecting glitch conditions
400 begin
401 if(aclr = ’0’) then
402 for i in 2 to n_channels loop
403 rst_comp_arr(i) <= ’0’;
404 set_comp_arr(i) <= ’0’;

71

405 end loop;
406 elsif(rising_edge(clock)) then
407 for i in 2 to n_channels loop
408 if (resize((’0’ & counter_sig_arr(i)) + to_unsigned(1, 12) +
409 (to_unsigned(0, 11) & sync_glitch_arr(i)), 11) <
410 (dpwm_reset_arr(i)(13 downto 3))) then
411
412 rst_comp_arr(i) <= ’0’;
413 else
414 rst_comp_arr(i) <= ’1’;
415 end if;
416
417 if((dpwm_set_arr(i)(13 downto 3)) > ((counter_sig_arr(i)(10 downto 0)) +
418 to_unsigned(1, 12))) then
419
420 set_comp_arr(i) <= ’0’;
421 else
422 set_comp_arr(i) <= ’1’;
423 end if;
424 end loop;
425 end if;
426 end process;
427 end rtl;

72

A.3 Output Multiplexer
1 -- This is an 8-input asynchronous digital multiplexer.
2 -- Written by Tero Kuusijarvi, 27.7.2017.
3
4 library ieee;
5 use ieee.std_logic_1164.all;
6
7 entity mux is
8 port(
9 sel : in std_logic_vector(2 downto 0);

10 in0 : in std_logic;
11 in1 : in std_logic;
12 in2 : in std_logic;
13 in3 : in std_logic;
14 in4 : in std_logic;
15 in5 : in std_logic;
16 in6 : in std_logic;
17 in7 : in std_logic;
18 output : out std_logic);
19 end mux;
20
21 architecture rtl of mux is
22 begin
23 with sel select
24 output <= in0 when "000",
25 in1 when "001",
26 in2 when "010",
27 in3 when "011",
28 in4 when "100",
29 in5 when "101",
30 in6 when "110",
31 in7 when "111",
32 in0 when others;
33 end rtl;

73

A.4 Set-Reset Latch
1 -- This is an asynchronous SR latch.
2 -- Tero Kuusijarvi 23.2.2017
3
4 library ieee;
5 use ieee.std_logic_1164.all;
6 use ieee.std_logic_unsigned.all;
7
8 entity srlatch is
9 port(

10 s_in : in std_logic;
11 r_in : in std_logic;
12 q_out : out std_logic);
13 end srlatch;
14
15 architecture rtl of srlatch is
16 signal temp_q, not_q : std_logic;
17 begin
18 temp_q <= r_in nor not_q;
19 not_q <= s_in nor temp_q;
20 q_out <= temp_q;
21 end rtl;

74

B Floating-Point Arithmetic
In this appendix, the VHDL code for all of the implemented floating-point arithmetic
modules are included as listings.

B.1 Number Format Conversions
1 -- This package contains floating point algorithms and conversions:
2 -- fp_to_unsigned32(op_a, result) -- Converts a normalized fp value to 32bit unsigned

integer, expects normalized positive value.
3 -- unsigned32_to_fp(op_a, result) -- Converts a 32-bit unsigned integer to a floating

point value.
4 -- Written by Tero Kuusijarvi, 15.3.2017.
5
6 library ieee;
7 use ieee.std_logic_1164.all;
8 use ieee.numeric_std.all;
9

10 package fp_package is
11 procedure fp_to_unsigned32 (
12 op_a : in std_logic_vector(31 downto 0);
13 result : out unsigned(31 downto 0)
14);
15
16 procedure unsigned32_to_fp (
17 op_a : in unsigned(31 downto 0);
18 result : out std_logic_vector(31 downto 0)
19);
20 end fp_package;
21
22 package body fp_package is
23 procedure fp_to_unsigned32 (
24 op_a : in std_logic_vector(31 downto 0);
25 result : out unsigned(31 downto 0)
26) is
27 variable temp_result_tot : std_logic_vector(31 downto 0);
28 variable normalization_index : integer range 128 downto -128;
29 begin
30 temp_result_tot := (others => ’0’);
31 normalization_index := to_integer(unsigned(op_a(30 downto 23))) - 127;
32 if(normalization_index > 31) then -- overflow
33 temp_result_tot := (others => ’1’);
34 elsif(normalization_index > 23) then
35 temp_result_tot(normalization_index) := ’1’;
36 temp_result_tot(normalization_index - 1 downto normalization_index - 23) :=
37 op_a(22 downto 0);
38
39 elsif(normalization_index > 0) then
40 temp_result_tot(normalization_index) := ’1’;
41 temp_result_tot(normalization_index - 1 downto 0) :=
42 op_a(22 downto 23 - normalization_index);
43
44 elsif(normalization_index = 0) then
45 temp_result_tot := std_logic_vector(to_unsigned(1, 32));
46 else -- exponent is less than zero
47 temp_result_tot := (others => ’0’);
48 end if;
49 result := unsigned(temp_result_tot);
50 end fp_to_unsigned32;
51
52 procedure unsigned32_to_fp (
53 op_a : in unsigned(31 downto 0);
54 result : out std_logic_vector(31 downto 0)
55) is
56 variable exponent_normalization : integer range -256 to 256;

75

57 variable temp_result : unsigned(23 downto 0);
58 variable temp_result_tot : unsigned(31 downto 0);
59 variable normalization_index : integer range 31 downto -1;
60 begin
61 temp_result_tot := (others => ’0’);
62 normalization_index := -1;
63 for y in 31 downto 0 loop
64 if(op_a(y) = ’1’ and normalization_index = -1) then
65 normalization_index := y;
66 end if;
67 end loop;
68 if(normalization_index > -1) then
69 temp_result_tot(30 downto 23) := (to_unsigned(127 + normalization_index, 8));
70 if(normalization_index > 22) then
71 temp_result_tot(22 downto 0) :=
72 op_a(normalization_index - 1 downto normalization_index - 23);
73 else
74 temp_result_tot(22 downto 23 - normalization_index) :=
75 op_a(normalization_index - 1 downto 0);
76 end if;
77 result := std_logic_vector(temp_result_tot);
78 else
79 result := std_logic_vector(temp_result_tot); -- all zeros
80 end if;
81 end unsigned32_to_fp;
82
83 end fp_package;

76

B.2 Subtraction
1 -- This is a floating-point subtractor module with 4 pipeline registers.
2 -- reset is an active-low reset.
3 -- op_a_in and op_b_in are IEEE 32-bit single precision floating-point
4 -- operands.
5 -- Written by Tero Kuusijarvi, 27.7.2017
6
7 library ieee;
8 use ieee.std_logic_1164.all;
9 use ieee.numeric_std.all;

10
11 entity fp_subtract is
12 port(
13 clk_in : std_logic;
14 reset : in std_logic;
15 op_a_in : in std_logic_vector(31 downto 0);
16 op_b_in : in std_logic_vector(31 downto 0);
17 result_out : out std_logic_vector(31 downto 0)
18);
19 end fp_subtract;
20
21 architecture str of fp_subtract is
22 signal op_a, op_b, op_a_reg1, op_a_reg2, op_a_reg3, op_b_reg1,
23 op_b_reg2, op_b_reg3 : std_logic_vector(31 downto 0); -- for input registering
24 signal temp_result_tot_s, temp_result_reg1 : std_logic_vector(31 downto 0);
25
26 signal exponent_normalization, exponent_normalization_reg1 : integer range -256 to 256;
27 signal exponent_normalization_reg2,
28 exponent_normalization_reg3 : integer range -256 to 256;
29
30 signal normalization_flag, normalization_flag_reg1 : std_logic;
31 signal shifted_signific : unsigned(22 downto 0);
32 signal normalization_index : integer range 22 downto -1;
33 begin
34 process(clk_in, reset) -- input register
35 begin
36 if(reset = ’0’) then
37 op_a <= (others => ’0’);
38 op_b <= (others => ’0’);
39 exponent_normalization <= 0;
40 elsif(rising_edge(clk_in)) then
41 op_a <= op_a_in;
42 op_b <= op_b_in;
43 exponent_normalization <= to_integer(signed(’0’ & op_a_in(30 downto 23)) -
44 signed(’0’ & op_b_in(30 downto 23))); -- difference of exponents
45 end if;
46 end process;
47
48 process(clk_in, reset) -- scaling the smaller operand
49 begin
50 if(reset = ’0’) then
51 op_a_reg1 <= (others => ’0’);
52 op_b_reg1 <= (others => ’0’);
53 shifted_signific <= (others => ’0’);
54 exponent_normalization_reg1 <= 0;
55 elsif(rising_edge(clk_in)) then
56 op_a_reg1 <= op_a;
57 op_b_reg1 <= op_b;
58 exponent_normalization_reg1 <= exponent_normalization;
59 shifted_signific <= (others => ’0’);
60
61 if(op_a(31) = op_b(31) and exponent_normalization > 0) then -- subtract
62 shifted_signific <= not((shift_right(’1’ & (unsigned(op_b(22 downto 1))),
63 exponent_normalization - 1)));
64
65 elsif(op_a(31) = op_b(31) and exponent_normalization = 0) then -- subtract
66 shifted_signific <= not((unsigned(op_b(22 downto 0))));

77

67 elsif(op_a(31) = op_b(31) and exponent_normalization < 0) then -- subtract
68 shifted_signific <= not(((shift_right(unsigned(’1’ & op_a(22 downto 1)),
69 (-exponent_normalization - 1)))));
70
71 elsif(exponent_normalization > 0) then -- add
72 shifted_signific <= shift_right(’1’ & unsigned((op_b(22 downto 1))),
73 exponent_normalization - 1);
74
75 elsif(exponent_normalization = 0) then -- add
76 shifted_signific <= (unsigned((op_b(22 downto 0))));
77 else -- add
78 shifted_signific <= shift_right(unsigned(’1’ & op_a(22 downto 1)),
79 (-exponent_normalization) - 1);
80 end if;
81 end if;
82 end process;
83
84
85 process(clk_in, reset) -- performing the subtraction
86 variable temp_result : unsigned(23 downto 0);
87 variable temp_result_tot : std_logic_vector(31 downto 0);
88 begin
89 if(reset = ’0’) then
90 exponent_normalization_reg2 <= 0;
91 temp_result_tot_s <= (others => ’0’);
92 op_a_reg2 <= (others => ’0’);
93 op_b_reg2 <= (others => ’0’);
94 normalization_flag <= ’0’;
95 elsif(rising_edge(clk_in)) then
96 op_a_reg2 <= op_a_reg1;
97 op_b_reg2 <= op_b_reg1;
98 exponent_normalization_reg2 <= exponent_normalization_reg1;
99 temp_result_tot := (others => ’0’);

100 temp_result := (others => ’0’);
101 if(op_a_reg1(31) = op_b_reg1(31) and exponent_normalization_reg1 > 0) then
102 -- subtract
103 temp_result_tot(31) := op_a_reg1(31);
104 temp_result(23 downto 6) := unsigned(’0’ & op_a_reg1(22 downto 6)) +
105 (’0’ & (shifted_signific(22 downto 6))) + to_unsigned(1, 18);
106
107 normalization_flag <= not(temp_result(23)); -- subtract carry
108 temp_result_tot(30 downto 23) := std_logic_vector(op_a_reg1(30 downto 23));
109 temp_result_tot(22 downto 0) := std_logic_vector(temp_result(22 downto 0));
110 elsif (op_a_reg1(31) = op_b_reg1(31) and exponent_normalization_reg1 = 0) then
111 temp_result(23 downto 6) := unsigned(’0’ & op_a_reg1(22 downto 6)) +
112 (’0’ & (shifted_signific(22 downto 6))) + to_unsigned(1, 18);
113
114 normalization_flag <= ’1’;
115 temp_result_tot(31) := not(op_a_reg1(31) xor temp_result(23));
116 if(temp_result(23) = ’0’) then -- subtract carry
117 temp_result_tot(30 downto 23) := std_logic_vector(op_a_reg1(30 downto 23)) ;
118 temp_result_tot(22 downto 0) :=
119 std_logic_vector(not(temp_result(22 downto 0)) + to_unsigned(1, 23));
120 else -- no subtract carry
121 if(temp_result(22 downto 0) = to_unsigned(0, 23)) then
122 temp_result_tot(30 downto 0) := (others => ’0’);
123 else
124 temp_result_tot(30 downto 23) := std_logic_vector(op_a_reg1(30 downto 23));
125 temp_result_tot(22 downto 0) := std_logic_vector(temp_result(22 downto 0));
126 end if;
127 end if;
128 elsif (op_a_reg1(31) = op_b_reg1(31) and exponent_normalization_reg1 < 0) then
129 -- subtract
130 temp_result_tot(31) := not(op_b_reg1(31));
131 temp_result(23 downto 6) := (’0’ & (shifted_signific(22 downto 6))) +
132 (’0’ & (unsigned((op_b_reg1(22 downto 6))))) + to_unsigned(1, 18);
133
134 normalization_flag <= not(temp_result(23));

78

135 normalization_flag <= ’1’;
136 temp_result_tot(30 downto 23) := std_logic_vector(op_b_reg1(30 downto 23));
137 temp_result_tot(22 downto 0) := std_logic_vector(temp_result(22 downto 0));
138 elsif(exponent_normalization_reg1 > 0) then -- add
139 normalization_flag <= ’0’;
140 temp_result_tot(31) := op_a_reg1(31);
141 temp_result(23 downto 6) := unsigned(’0’ & op_a_reg1(22 downto 6)) +
142 (’0’ & shifted_signific(22 downto 6));
143
144 if(unsigned(op_a_reg1(30 downto 23)) > to_unsigned(253,8)) then -- overflow
145 temp_result_tot(30 downto 23) := std_logic_vector(to_unsigned(254,8));
146 temp_result_tot(22 downto 0) := (op_a_reg1(22 downto 0));
147 elsif(temp_result(23) = ’1’) then -- add carry
148 temp_result_tot(30 downto 23) := std_logic_vector
149 (resize(unsigned(’0’ & op_a_reg1(30 downto 23)) + (to_unsigned(1,9)), 8));
150
151 temp_result_tot(22 downto 0) :=
152 ’0’ & std_logic_vector(temp_result(22 downto 1));
153
154 else -- no add carry
155 temp_result_tot(30 downto 23) := std_logic_vector(op_a_reg1(30 downto 23));
156 temp_result_tot(22 downto 0) := std_logic_vector(temp_result(22 downto 0));
157 end if;
158 elsif (exponent_normalization_reg1 = 0) then -- add
159 normalization_flag <= ’0’;
160 temp_result_tot(31) := op_a_reg1(31);
161 temp_result(23 downto 6) := unsigned(’0’ & op_a_reg1(22 downto 6)) +
162 (’0’ & shifted_signific(22 downto 6));
163
164 if(unsigned(op_a_reg1(30 downto 23)) > to_unsigned(253,8)) then
165 temp_result_tot(30 downto 23) := std_logic_vector(to_unsigned(254,8));
166 temp_result_tot(22 downto 0) := (op_a_reg1(22 downto 0));
167 elsif(temp_result(23) = ’1’) then -- add carry
168 temp_result_tot(30 downto 23) := std_logic_vector(resize(
169 unsigned(’0’ & op_a_reg1(30 downto 23)) + (to_unsigned(1,9)), 8));
170
171 temp_result_tot(22 downto 0) :=
172 ’1’ & std_logic_vector(temp_result(22 downto 1));
173
174 else -- no add carry
175 temp_result_tot(30 downto 23) := std_logic_vector(resize(
176 unsigned(’0’ & op_a_reg1(30 downto 23)) + (to_unsigned(1,9)), 8));
177
178 temp_result_tot(22 downto 0) :=
179 ’0’ & std_logic_vector(temp_result(22 downto 1));
180 end if;
181 else -- add
182 normalization_flag <= ’0’;
183 temp_result_tot(31) := op_a_reg1(31);
184 temp_result(23 downto 6) := (’0’ & shifted_signific(22 downto 6)) +
185 (’0’ & unsigned((op_b_reg1(22 downto 6))));
186
187 if(unsigned(op_b_reg1(30 downto 23)) > to_unsigned(253,8)) then
188 temp_result_tot(30 downto 23) := std_logic_vector(to_unsigned(254,8));
189 temp_result_tot(22 downto 0) := (op_b_reg1(22 downto 0));
190 elsif(temp_result(23) = ’1’) then -- add carry
191 temp_result_tot(30 downto 23) := std_logic_vector(resize(
192 unsigned(’0’ & op_b_reg1(30 downto 23)) + to_unsigned(1, 9), 8));
193
194 temp_result_tot(22 downto 0):=
195 ’0’ & std_logic_vector(temp_result(22 downto 1));
196 else -- no add carry
197 temp_result_tot(30 downto 23) := std_logic_vector(op_b_reg1(30 downto 23));
198 temp_result_tot(22 downto 0) := std_logic_vector(temp_result(22 downto 0));
199 end if;
200 end if;
201 temp_result_tot_s <= temp_result_tot;
202 end if;

79

203 end process;
204
205 process(clk_in, reset) -- preparing for normalization
206 variable normalization_index_var : integer range 22 downto -1;
207 begin
208 if(reset = ’0’) then
209 op_a_reg3 <= (others => ’0’);
210 op_b_reg3 <= (others => ’0’);
211 normalization_flag_reg1 <= ’0’;
212 temp_result_reg1 <= (others => ’0’);
213 exponent_normalization_reg3 <= 0;
214 normalization_index <= -1;
215 elsif(rising_edge(clk_in)) then
216 normalization_flag_reg1 <= normalization_flag;
217 temp_result_reg1 <= temp_result_tot_s;
218 op_a_reg3 <= op_a_reg2 ;
219 op_b_reg3 <= op_b_reg2 ;
220 exponent_normalization_reg3 <= exponent_normalization_reg2;
221 normalization_index_var := -1;
222 for y in 22 downto 0 loop
223 if(temp_result_tot_s(y) = ’1’ and normalization_index_var = -1) then
224 normalization_index_var := y;
225 end if;
226 end loop;
227 normalization_index <= normalization_index_var;
228 end if;
229 end process;
230
231 process(clk_in, reset) -- output register
232 variable temp_result_tot_v : std_logic_vector(31 downto 0);
233 variable result : std_logic_vector(31 downto 0);
234 begin
235 if(reset = ’0’) then
236 result_out <= (others => ’0’);
237 elsif(rising_edge(clk_in)) then
238 temp_result_tot_v := (others => ’0’);
239 result := (others => ’0’);
240 temp_result_tot_v := temp_result_reg1;
241
242 if(normalization_index > -1 and normalization_flag_reg1 = ’1’ and
243 op_a_reg3(31) = op_b_reg3(31) and
244 (unsigned(temp_result_tot_v(30 downto 23)) > to_unsigned(23, 8))) then
245 -- final normalization
246 result(31 downto 23) := temp_result_tot_v(31) & std_logic_vector
247 (to_unsigned(to_integer(unsigned(temp_result_tot_v(30 downto 23)) -
248 (23 - normalization_index)), 8));
249
250 result(22 downto 0) := std_logic_vector(shift_left
251 (unsigned(temp_result_tot_v(22 downto 0)), 23 - normalization_index));
252 else
253 result := temp_result_tot_v;
254 end if;
255 result_out <= result;
256 end if;
257 end process;
258 end str;

80

B.3 Multiplication
1 -- This is a floating-point multiplier module with 2 pipeline registers.
2 -- reset is an active-low reset.
3 -- op_a_in and op_b_in are IEEE 32-bit single precision floating-point
4 -- operands.
5 -- multiply_enable must be set to ’1’ for operation.
6 -- Written by Tero Kuusijarvi, 27.7.2017
7
8 library ieee;
9 use ieee.std_logic_1164.all;

10 use ieee.numeric_std.all;
11
12 entity fp_multiply is
13 port(
14 clk_in : std_logic;
15 reset : in std_logic;
16 op_a_in : in std_logic_vector(31 downto 0);
17 op_b_in : in std_logic_vector(31 downto 0);
18 multiply_enable : in std_logic;
19 result_out : out std_logic_vector(31 downto 0));
20 end fp_multiply;
21
22 architecture rtl of fp_multiply is
23 signal op_a, op_b : std_logic_vector(31 downto 0);
24 signal temp_result_a, temp_result : unsigned(47 downto 0);
25 signal temp_result_mult_a, temp_result_mult : unsigned(8 downto 0);
26 signal sign_b, sign_b_a : std_logic;
27 begin
28 process(clk_in, reset) -- input register
29 begin
30 if(reset = ’0’) then
31 op_a <= (others => ’0’);
32 op_b <= (others => ’0’);
33 elsif(rising_edge(clk_in)) then
34 if(unsigned(op_a_in(30 downto 23)) = to_unsigned(0, 8)) then -- checking for zero
35 op_a <= (others => ’0’);
36 op_b <= (others => ’0’);
37 elsif(unsigned(op_b_in(30 downto 23)) = to_unsigned(0, 8)) then
38 -- checking for zero
39 op_a <= (others => ’0’);
40 op_b <= (others => ’0’);
41 else
42 op_a <= op_a_in;
43 op_b <= op_b_in;
44 end if;
45 end if;
46 end process;
47
48 temp_result_a <= unsigned(’1’ & op_a(22 downto 6) & "000000") *
49 unsigned(’1’ & op_b(22 downto 6) & "000000"); -- mantissa
50
51 sign_b_a <= op_a(31) xor op_b(31); -- sign bit
52
53 temp_result_mult_a <= (’0’ & unsigned(op_a(30 downto 23))) +
54 (’0’ & unsigned(op_b(30 downto 23))); --exponent
55
56
57 process(clk_in, reset) -- pipeline register
58 begin
59 if(reset = ’0’) then
60 temp_result <= (others => ’0’);
61 sign_b <= ’0’;
62 temp_result_mult <= (others => ’0’);
63 elsif(rising_edge(clk_in)) then
64 temp_result <= temp_result_a;
65 sign_b <= sign_b_a;
66 temp_result_mult <= temp_result_mult_a;

81

67 end if;
68 end process;
69
70 process(clk_in, reset) -- output
71 variable temp_result_tot : unsigned(31 downto 0);
72 variable vtemp_result_mult : unsigned(8 downto 0);
73 begin
74 if(reset = ’0’) then
75 result_out <= (others => ’0’);
76 elsif(rising_edge(clk_in)) then
77 if(multiply_enable = ’1’) then
78 vtemp_result_mult := (others => ’0’);
79 temp_result_tot(31) := sign_b;
80 if(temp_result_mult > to_unsigned(381,9)) then -- checking for overflow
81 result_out <= std_logic_vector(temp_result_tot(31) &
82 to_unsigned(253, 8) & not(to_unsigned(0, 23)));
83
84 elsif(temp_result_mult < to_unsigned(127, 9)) then -- checking for underflow
85 result_out <= std_logic_vector(temp_result_tot(31) & to_unsigned(0, 31));
86 else
87 vtemp_result_mult := ’0’ & resize(temp_result_mult +
88 ((’0’ & not(to_unsigned(127, 8))) + to_unsigned(1, 9)), 8);
89
90 if(temp_result(47) = ’1’) then
91 temp_result_tot(30 downto 23) := (resize(vtemp_result_mult(7 downto 0) +
92 to_unsigned(1, 9), 8));
93
94 temp_result_tot(22 downto 0) := temp_result(46 downto 24);
95 else
96 temp_result_tot(30 downto 23) := vtemp_result_mult(7 downto 0);
97 temp_result_tot(22 downto 0) := temp_result(45 downto 23);
98 end if;
99 result_out <= std_logic_vector(temp_result_tot);

100 end if;
101 end if;
102 end if;
103 end process;
104 end rtl;

82

B.4 Multiplicative Inverse
1 -- This is a floating-point multiplicative inverse module.
2 -- reset is an active-low reset signal.
3 -- op_a_in is a 32-bit single-precision floating-point operand
4 -- Wirtten by Tero Kuusijarvi, 27.7.2017
5
6 LIBRARY ieee;
7 USE ieee.std_logic_1164.all;
8 USE ieee.numeric_std.all;
9

10 ENTITY reciprocal IS
11 PORT(
12 clk_in : std_logic;
13 reset : in std_logic;
14 op_a_in : in std_logic_vector(31 downto 0);
15 result_out : out std_logic_vector(31 downto 0)
16);
17 END reciprocal;
18
19 ARCHITECTURE str OF reciprocal IS
20 signal op_a, op_b, op_a_reg1, op_a_reg2, op_a_reg3,
21 op_b_reg1, op_b_reg2, op_b_reg3 : std_logic_vector(31 downto 0);
22
23 signal normalization_flag, normalization_flag_reg1 : std_logic;
24 signal shifted_signific : unsigned(22 downto 0);
25 signal normalization_index : integer range 22 downto -1;
26 begin
27 process(clk_in, reset) -- Input register
28 variable f32Denominator : std_logic_vector(31 downto 0);
29 variable mult_inv : std_logic_vector(3 downto 0);
30 type recipr_lookup is array (0 to 16) of signed(11 downto 0);
31 constant recipr_points : recipr_lookup :=
32 (x"7FF",
33 x"70F",
34 x"639",
35 x"57B",
36 x"4CF",
37 x"432",
38 x"3A3",
39 x"322",
40 x"2AC",
41 x"23F",
42 x"1DA",
43 x"17C",
44 x"125",
45 x"0D3",
46 x"08A",
47 x"041",
48 x"000");
49
50 type recipr_coeff is array (0 to 15) of integer range -30 to -8;
51 constant coeffs : recipr_coeff :=
52 (-30, -27, -24, -22, -20, -18, -16, -15, -14, -13, -12, -11, -10, -9, -9, -8);
53 variable upperpoint, lowerpoint : signed(11 downto 0);
54 variable coeff : integer range -30 to -8;
55 variable linearapp : signed(15 downto 0);
56 begin
57 IF(reset = ’0’) THEN
58 result_out <= (others => ’0’);
59 f32Denominator := (others => ’0’);
60 ELSIF(rising_edge(clk_in)) THEN
61 f32Denominator := (others => ’0’);
62 f32Denominator(31) := op_a_in(31);
63 f32Denominator(30 downto 23) := std_logic_vector(to_unsigned(253, 8) -
64 unsigned(op_a_in(30 downto 23)));
65
66 mult_inv := op_a_in(22 downto 19);

83

67 upperpoint := recipr_points(to_integer(unsigned(mult_inv)));
68 coeff := coeffs(to_integer(unsigned(mult_inv)));
69 linearapp := (signed(’0’ & op_a_in(18 downto 12))*coeff);
70 f32Denominator(22 downto 10) := std_logic_vector((upperpoint & ’0’) +
71 (linearapp(12 downto 3)));
72
73 result_out(31 downto 23) <= f32Denominator(31 downto 23);
74 result_out(22 downto 12) <= f32Denominator(21 downto 11);
75 END IF;
76 end process;
77
78 end str;

	Abstract
	Abstract (in Finnish)
	Contents
	Symbols and abbreviations
	Introduction
	Theory and Background
	Telecom AC-DC Power Converter
	Power Factor Correction Circuit
	Power Factor
	Structure and Operation

	LLC Resonant Converter
	Structure
	Resonant Tank Gain
	Operation

	Field-Programmable Gate Array Technology
	Structure
	Routing, Interconnect and Clock Distribution
	Design Flow

	Digital Control of PFC-LLC Power Converter
	Data acquisition
	Control law generation
	Digital PWM generation

	Control Implementation
	Control System Partitioning
	The Galvanic Isolation
	Controller Requirements
	Partitioning Options

	Finite State Machine Structure
	Pulse Width Modulation Architecture
	The Phase-shifting
	The Counter
	The Asynchronous Output

	Synchronous Rectifier Control
	Secondary Synchronization
	Dynamic Range Requirement

	Floating-Point Arithmetic
	Single-Precision Representation
	Number Format Conversions
	Subtraction
	Multiplication
	Estimation of Multiplicative Inverse

	Simulations
	Start-Up And Static Regulation
	Dynamic Response
	Pulse Skipping
	Synchronous Rectifier Control
	PWM Module
	Floating-Point Arithmetic
	Controller Delay

	Conclusions
	References
	PWM module
	Top-Level
	Counter
	Output Multiplexer
	Set-Reset Latch

	Floating-Point Arithmetic
	Number Format Conversions
	Subtraction
	Multiplication
	Multiplicative Inverse

