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Abstract. We investigate the product Y1Y2 of two independent positive risks Y1

and Y2. If Y1 has distribution in the Gumbel max-domain of attraction with some

auxiliary function which is regularly varying at infinity and Y2 is bounded, then we

show that Y1Y2 has also distribution in the Gumbel max-domain of attraction. If

both Y1, Y2 have log-Weibullian or Weibullian tail behaviour, we prove that Y1Y2

has log-Weibullian or Weibullian asymptotic tail behaviour, respectively. We

present here three theoretical applications concerned with a) the limit of point-

wise maxima of randomly scaled Gaussian processes, b) extremes of Gaussian

processes over random intervals, and c) the tail of supremum of iterated processes.

Keywords and phrases : Gumbel max-domain of attraction; random scaling; log-

Weibullian tail behaviour; Weibullian tail behaviour; supremum of Gaussian pro-

cesses; iteration of random processes.

1. Introduction

Consider Y1 ≥ 0 and Y2 two independent random variables (rvs). If Y2 is bounded, say |Y2| ≤ 1

almost surely, then Y1Y2 is commonly referred to as a random contraction. A classical example

of this random structure is the case of Y1Y2 having an N(0, 1) distribution with Y 2
1 a chi-square

rv with 1 degree of freedom and Y2 a symmetric rv around 0 with Y 2
2 having Beta distribution

with parameters 1/2,1/2.

In this contribution we are interested also in the case that Y2 is unbounded. The study of

products of rvs is of interest for numerous applications, see e.g., [1–13]. We mention below three

recent fields of investigations:

i) An important instance of contraction models is the chaos of random vectors with radial

representation. Specifically, if W = (RU1, . . . ,RUd) is a d-dimensional random vector

with R > 0 independent of Ui’s, then X = h(W1, . . . ,Wd) is referred to as the chaos
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of W , if further h is a homogeneous function of order α > 0, i.e., h(cw1, . . . , cwd) =

cαh(w1, . . . , wd) for any c > 0 and all w1, . . . , wd ∈ R. Consequently,

X
d
= Rαh(U1, . . . , Ud) =: Y1Y2,(1.1)

with Y1 > 0 being independent of Y2. In our notation
d
= means the equality of the

distributions. A canonical instance is the Gaussian chaos, where W is a centred Gaussian

random vector with R2 being a chi-square distribution with d degrees of freedom, see

[14, 15] for recent results.

ii) In numerous applied problems the study of supremum of a random process Z(t), t ≥ 0

over a random time interval, say [0, S] with S a positive rv being independent of Z is of

particular interest, see e.g., [3, 6, 16, 17]. An interesting instance is Z = BH , with BH a

standard fractional Brownian motion with Hurst index H ∈ (0, 1). By the self-similarity

of BH we have

sup
t∈[0,S]

BH(t)
d
=
(

sup
t∈[0,1]

BH(t)
)
SH =: Y1Y2.(1.2)

iii) Let X(t), t ∈ R and Y (t), t ≥ 0 be two independent random processes. Motivated by

[18, 19] several contributions have investigated the basic properties of the iterated process

Z(t) = X(Y (t)), t ≥ 0, see e.g., [20–22] and the references therein. One particular

instance is X = BH , and thus by the self-similiarity of fractional Brownian motion we

have

Z(t)
d
= BH(1)|Y (t)|H =: Y1Y2(1.3)

for any t > 0. If X is a more general Gaussian process, for instance X being centred with

stationary increments the direct relation in (1.3) does not hold. In view of [5][Theorem

2.1], if both A1 = supt∈[0,T ] Y (t) and A2 = − inft∈[0,T ] Y (t) have for a given T > 0 a

power-exponential tail behaviour (see the definition given in (1.6) below)), then

P

{
sup
t∈[0,T ]

Z(t) > u

}
∼ P {X(A1) > u}+ P {X(A2) > u}(1.4)

as u→∞; here f1(u) ∼ f2(u) means limu→∞ f1(u)/f2(u) = 1.

Since X(Ai)
d
= σ(Ai)X(1) with σ2 the variance function of X, under tractable assump-

tions on σ the asymptotics of the right-hand side of (1.4) can be explicitly determined if

the tail asymptotic behaviour of the product σ(Ai)X(1) can be obtained. This motivates

our investigation of the tail asymptotics of products for unbounded Y1 and Y2, see our

result in Theorem 2.1 below.

The large values of Y1Y2 correspond to large values of both Y1 and Y2. However, if Y2 is bounded

(i.e., we have the contraction model), we expect that the asymptotic tail behaviour of Y1Y2 will

essentially be determined by that of Y1. This intuition is confirmed in Theorem 1.1 below for the
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case Y1 has a distribution with unbounded support, being further in the Gumbel max-domain

of attraction (MDA), i.e.,

lim
u→∞

P {Y1 > u+ a(u)t}
P {Y1 > u}

= exp(−t), ∀t ∈ R(1.5)

for some positive scaling function a(·). Note in passing that (1.4) implies that limu→∞
a(u)
u

= 0.

The Gumbel MDA consists of many important distributions including Gamma, Normal and log-

Normal one. Here we are concerned with a large class of such distributions that have a regularly

varying scaling function a(·) at infinity with index −τ for τ ≥ −1, i.e., limu→∞ a(ux)/a(u) =

x−τ , x > 0.

We abbreviate (1.5) as Y1 ∈ GMDA(a) and refer to, e.g., [23–25] for details on the Gumbel

max-domain of attraction and regular variation.

Hereafter, we shall assume without loss of generality that Y2 is a strictly positive rv.

Theorem 1.1. If condition (1.5) holds with a(·) being regularly varying at infinity with index

−τ for τ ≥ −1 and Y2 has distribution with right endpoint equal to 1, then Y1Y2 ∈ GMDA(a).

Remark 1.1. a) If X is the Gaussian chaos, for which (1.1) holds, and h is continuous and

non-negative, then Theorem 1.1 implies that X ∈ GMDA(a) with a(x) = Cx1−2/α, x > 0 for

some C positive, since R2 is in the Gumbel MDA with scaling function a(x) = 1/x. See [14] for

further results under additional conditions on h.

b) From [17][Lemma 3.2] we have that supt∈[0,1]BH(t) ∈ MDA(a) where a(x) = 1/x, x > 0.

Consequently, applying Theorem 1.1 to the contraction model given in (1.2) we obtain that

sup
t∈[0,S]

BH(t) ∈ GMDA(a), where a(x) = 1/x.

c) If Y1 = eW with W an N(0, 1) random variable, then we have that Y1 ∈ GMDA(a) with

a(x) = x/ log x, hence τ = −1 for case. By Theorem 1.1 the contraction Y1Y2 is in the Gumbel

MDA.

A canonical example for Y1 ∈ GMDA(a) is when Y1 has a power-exponential tail behaviour i.e.,

P {Y1 > u} ∼ C1u
α1 exp(−L1u

p1), u→∞,(1.6)

where C1, L1, p1 are positive constants and α1 ∈ R. Under assumption (1.6) we have Y1 ∈
GMDA(a), where a(x) = x1−p1/L1. Consequently, the assumption of Theorem 1.1 on a(·) holds

with τ = p1 − 1.

If both Y1 and Y2 can simultaneously take large values with non-zero probability, then the

asymptotic tail behaviour of X is known in few cases. In particular, if also Y2 satisfies (1.6) with

α2 ∈ R, C2 > 0, L2 > 0, p2 > 0, then in light of [17][Lemma 2.1]

P {Y1Y2 > u} ∼ C1C2A
p2
2
+α2−α1

(2πp2L2

p1 + p2

)1/2
u

2p2α1+2p1α2+p1p2
2(p1+p2) exp

(
−Bu

p1p2
p1+p2

)
(1.7)
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holds as u→∞, where

A = [(p1L1)/(p2L2)]
1

p1+p2 and B = L1A
−p1 + L2A

p2 .(1.8)

Our second result shows that the asymptotic tail behaviour of X can be derived explicitly for a

more general case when the power term in the tail expansion of Yi’s in (1.6) is substituted by some

regularly varying function, see Theorem 2.1 in Section 2. We refer to, e.g., [1, 2, 4, 10, 11, 15, 26–

28] for related results concerned with the asymptotic tail behaviour of the products of rvs.

As an illustration of Theorems 1.1 and 2.1, we shall analyze:

a) limiting behaviour of the maximum of randomly scaled Gaussian processes;

b) exact asymptotic tail behaviour of the supremum of Gaussian processes with stationary

increments over a random interval with length which has Weibullian tail behaviour;

c) exact asymptotic tail behaviour of supt∈[0,T ]X(Y (t)) with X a centered Gaussian pro-

cesses with stationary increments being independent of Y , extending the recent findings

of [5].

We organize this paper as follows: Section 2 derives the tail asymptotics of the product of two

independent (log-)Weibullian-type rvs. Our applications are presented in Section 3. Proofs of

all results are relegated to Section 4, which concludes this article.

2. Log-Weibullian and Weibullian Risks

We say that Yi, i = 1, 2 has a log-Weibullian tail behaviour (or alternatively Yi is a log-Weibullian

rv), if

lim
u→∞

log(P {Yi > u})
upi

= −Li(2.1)

for some positive constants pi, Li. The main result of this section is Theorem 2.1; statement (a)

therein shows that if (2.1) holds, then X = Y1Y2 has also a log-Weibullian tail behaviour.

The definition of Weibullian tail behaviour is formulated (motivated by (1.6)) by the following

condition:

P {Yi > u} ∼ gi(u) exp(−Liupi), u→∞(2.2)

for i = 1, 2, where g1, g2 are two given regularly varying at infinity functions and Li, pi, i = 1, 2 are

positive constants. We say alternatively that Y1 and Y2 are Weibullian-type rvs and abbreviate

this fact as

Yi = W (gi, Li, αi).

We note that if a rv is of Weibullian-type, then it is log-Weibullian.

For g1, g2 being regularly varying and ultimately monotone [29] shows that a similar result to

(1.7) is valid. In statement (b) of Theorem 2.1 we remove the assumption that g1 and g2 are

ultimately monotone.
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Theorem 2.1. Let Y1, Y2 be two independent positive rvs, and let Li, pi, i = 1, 2 be positive

constants.

(a) If Yi, i = 1, 2 satisfy (2.1) with pi, Li, i = 1, 2, then with B given in (1.8)

lim
u→∞

log(P {Y1Y2 > u})
up1p2/(p1+p2)

= −B.(2.3)

(b) If Yi = W (gi, Li, pi), i = 1, 2 and A,B are two constants as in (1.8), then

P {Y1Y2 > u} ∼ Du
p1p2

2(p1+p2) g1(u/cu)g2(cu) exp
(
−Bu

p1p2
p1+p2

)
∼ Du

p1p2
2(p1+p2)P {Y1 > u/cu}P {Y2 > cu}(2.4)

as u→∞, where cu = Aup1/(p1+p2) and D =

(
2π(p1L1)

p2
p1+p2 (p2L2)

p1
p1+p2

p1+p2

)1/2

.

Remark 2.1. Theorem 2.1 straightforwardly extends to the case of the product of n rvs. Namely,

if Yi, i ≤ n are positive independent rvs with tail asymptotics given by (2.2), then
∏n

i=1 Yi also

satisfies the condition (2.2) with some g∗, L∗ and p∗ = (
∑n

i=1 1/pi)
−1.

3. Applications

A direct application of Theorem 1.1 concerns the asymptotics of maxima of products. Specifi-

cally, let (Yn1, Yn2), n ≥ 1 be independent copies of (Y1, Y2) and let F← and H← be the generalized

inverse of the distributions of Y1 and Y1Y2, respectively. Define next

bn = F←(1− 1/n), b̃n = H←(1− 1/n), n > 1.

Under the assumptions of Theorem 1.1 for Y1 and Y2, we have that (see [30][Eq. (14)])

b̃n ∼ bn, n→∞.(3.1)

Hence by the regular variation of a we get a(bn) ∼ a(̃bn) and further

lim
n→∞

sup
x∈R

∣∣∣∣P{max
1≤k≤n

Yk2 ≤ a(bn)x+ bn

}
− exp(− exp(−x))

∣∣∣∣ = 0,

and

lim
n→∞

sup
x∈R

∣∣∣∣P{max
1≤k≤n

Yk1Yk2 ≤ a(bn)x+ b̃n

}
− exp(− exp(−x))

∣∣∣∣ = 0.

These derivations motivate our first application concerned with the investigation of the maxi-

mum of randomly scaled Gaussian processes.

The second one, which combines Theorem 2.1 with an interesting finding of [17], derives the as-

ymptotic behaviour of the tail distribution of supremum of Gaussian processes with stationary

increments over Weibullian and log-Weibullian random intervals. That result allows us to present

a third application concerned with the supremum of an iterated process Z(t) = X(Y (t)), t ≥ 0

with X Gaussian and Y some general process with continuous sample paths independent of X.
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3.1. Limit law of the maximum of deflated Gaussian processes. This application is

motivated by [31] which studies the point-wise maximum of independent Gaussian processes.

Instead of Gaussian processes treated therein, we consider here the point-wise maximum of

randomly deflated Gaussian processes. Let therefore Γ(·, ·) be a negative definite kernel in R2

and define a Brown-Resnick max-stable process as

ηBR(t) = max
i≥1

(
Υi + Zi(t)− σ2(t)/2

)
, t ∈ R,(3.2)

where {Zi(t), t ∈ R}, i ≥ 1 are mutually independent centred Gaussian processes with incre-

mental variance function V ar(Zi(t1)− Zi(t2)) = Γ(t1, t2), i ≥ 1 and variance function σ2(·) > 0,

being further independent of the Poisson point process on R denoted by {Υi}i∈N with intensity

measure exp(−x) dx, see for more details [32, 33].

In the following, for scaling of the Gaussian process, we shall use a generic positive rv S, which

has either a distribution with right endpoint 1, or it has a Weibullian tail behaviour satisfying

(2.2) with some p, L and g being regularly varying at infinity. Based on the findings of both

Theorem 1.1 and Theorem 2.1, our next result generalizes [34][Theorem 5.1], which can be

retrieved by setting S = 1.

Theorem 3.1. Let {Xni(t), t ∈ R}, 1 ≤ i ≤ n, n ≥ 1 be independent Gaussian processes with

mean-zero, unit variance function and correlation function ρn(s, t), s, t ∈ R. Let Sni, i, n ≥ 1 be

independent copies of S, and let H← be the generalized inverse of the distribution H of SX11(1).

Assume that Sni, Xni(t), t ∈ R are mutually independent for any i = 1, . . . , n. Suppose further

that either S is a bounded positive rv, or S = W (g, L, p). For dn = H←(1− 1/n) set cn = 1/dn

if S is bounded, and set cn = (2p log n)/(dn(2 + p)) otherwise. If further

lim
n→∞

2dn
cn

(
1− ρn(t1, t2)

)
= Γ(t1, t2) ∈ (0,∞), t1 6= t2 ∈ R,(3.3)

then, as n→∞

cn

(
max
1≤i≤n

SniXni(t)− dn
)

=⇒ ηBR(t), t ∈ R,(3.4)

where =⇒ means the weak convergence of the finite-dimensional distributions. Furthermore,

dn = (1 + o(1))
√

2 log n if S is bounded and dn = (1 + o(1))((log n)/B)(2+p)/(2p) otherwise, with

B = LA−p + A2/2, A = (pL)1/(2+p).

3.2. Supremum over random intervals for Gaussian processes with stationary incre-

ments. The main result of [17] derives the exact asymptotics (as u→∞) of

P

{
sup
t∈[0,T ]

X(t) > u

}
,

where {X(t), t ≥ 0} with X(0) = 0 almost surely is a mean-zero Gaussian process with stationary

increments and almost surely continuous trajectories being independent of T > 0, which has
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tail asymptotics given by (1.6). Based on the statement (a) in Theorem 2.1, the following result

extends Theorem 3.1 in the aforementioned paper.

Theorem 3.2. Let T be a nonnegative log-Weibullian rv that satisfies (2.1) with some L, p >

0 and let {X(t), t ≥ 0} be, an independent of T , centred Gaussian process with stationary

increments and continuously differentiable variance function σ2(t) = V ar(X(t)), t ≥ 0. Suppose

that σ2(t), t ≥ 0 is convex and limu→∞ σ
2(ux)/σ2(u) = xα, x > 0 with α ∈ (1, 2]. If further

σ2(t) ≤ Ktα holds for any t > 0 and some constant K > 0, then we have

P

{
sup
t∈[0,T ]

X(t) > u

}
∼ P {σ(T )N > u} , u→∞,(3.5)

where N is an N(0, 1) rv independent of T .

A combination of Theorem 2.1 with Theorem 3.2 leads to the following corollary.

Corollary 3.1. Under the setup of Theorem 3.2 suppose further that σ(t) ∼ Ctα/2 as t → ∞
with α ∈ (1, 2] and some constant C > 0.

(a) Then σ(T ) satisfies (2.1) with p̃ = 2p
α
, L̃ = L

Cp
and

lim
u→∞

u−2p̃/(p̃+2) log

(
P

{
sup
t∈[0,T ]

X(t) > u

})
= −L̃(L̃p̃)

−p̃
p̃+2 − 1

2
(L̃p̃)

2
p̃+2 =: −B̃.(3.6)

(b) If σ(T ) satisfies (2.2) with p̃, L̃ and some regularly varying at infinity function g̃, then

P

{
sup
t∈[0,T ]

X(t) > u

}
∼ (p̃+ 2)−

1
2 g̃
(

(L̃p̃)
−1
p̃+2u

2
p̃+2

)
exp

(
−B̃u

2p̃
p̃+2

)
, u→∞.(3.7)

Remark 3.1. Clearly, if we specify in the assumptions of Theorem 3.2 that σ2(x) = Cxα (i.e.,

X is a fractional Brownian motion with Hurst index α/2) and T is of Weibullian-type, then both

σ(T ) and N are Weibullian-type rvs, and thus the assumptions of Corollary 3.1 (b) are satisfied.

Hence Corollary 3.1 is an extension of [17][Theorem 4.1].

3.3. Supremum of iteration of random processes. In this section X(t), t ∈ R is a centred

Gaussian process satisfying the assumptions of Theorem 3.2. Let Y (t), t ≥ 0 be a random process

independent of X with continuous sample paths. In view of [5][Theorem 2.1], if both

A1 = sup
t∈[0,T ]

Y (t), and A2 = − inf
t∈[0,T ]

Y (t)

have for a given T > 0 a power-exponential tail behaviour specified in (1.6), then as mentioned

in the Introduction for Z(t) = X(Y (t)), t ≥ 0 the approximation (1.4) is valid. If we define

Z(t) = X(SY (t)), t ≥ 0 with S > 0 a positive rv independent of X and Y , then in order to

apply the aforementioned theorem, we need to have S such that Āi := SAi, i = 1, 2 has a

power-exponential tail behaviour. In view of our Theorem 2.1, statement (b), this is not always

the case. In the following we present an extension of Theorem 2.1 in [5], which in particular is
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applicable for the analysis of supt∈[0,T ]X(SY (t)) when S has a log-Weibullian asymptotic tail

behaviour.

Theorem 3.3. Let X(t), t ∈ R satisfy the assumptions of Theorem 3.2 and let Y (t), t ≥ 0 be

a random process independent of X with continuous trajectories. If further Ai’s have a log-

Weibullian asymptotic tail behaviour, then we have

P

{
sup
t∈[0,T ]

X(Y ((t)) > u

}
∼ P {σ(A1)N > u}+ P {σ(A2)N > u} ,(3.8)

where N is an N(0, 1) rv independent of A1,A2.

Remark 3.2. A canonical example that Ai has log-Weibullian asymptotic tail behaviour is when

Y is centered α(t)-locally stationary Gaussian process, see [35–37].

4. Proofs

It is well-known that for some rv U which has distribution with right endpoint equal to infinity

the assumption U ∈ GMDA(a) implies that the tail of U is rapidly varying at infinity, i.e.,

lim
u→∞

P {U > λu}
P {U > u}

= 0

holds for any λ > 1. First we present a result on random scaling of rvs with rapidly varying

tails which is of some interest on its own.

Lemma 4.1. Let S, Y, Y ∗ be three independent rvs. Suppose that S ≥ 0 has distribution

G with right endpoint equal to 1. If further Y has a rapidly varying tail and P {Y > u} ∼
L(u)P {Y ∗ > u} as u→∞ for some slowly varying function L(·), then

P {SY > u} ∼ P {SY > u, S > w} ∼ L(u)P {SY ∗ > u}(4.1)

holds for any w ∈ (0, 1).

Proof of Lemma 4.1 Since S and Y are non-negative, for any u > 0 and w ∈ (0, 1), we have

P {SY > u} ≤ P {Y > u/w}+ P {SY > u, S > w} .

The assumption that Y has a rapidly varying tail and the independence of S and Y imply for

any t ∈ (w, 1)

P {Y > u/w}
P {SY > u, S > w}

≤ P {Y > u/w}
P {SY > u, S > t}

≤ P {Y > u/w}
P {Y > u/t}P {S > t}

→ 0, u→∞.

Hence for any w ∈ (0, 1)

P {SY > u} ∼
∫ 1

w

P {Y > u/s} dG(s), u→∞.
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By the uniform convergence theorem for regularly varying functions (e.g., [24][Theorem A3.2])∫ 1

w

P {Y > u/s} dG(s) ∼ L(u)

∫ 1

w

P {Y ∗ > u/s} dG(s), u→∞.

The assumption P {Y > u} ∼ L(u)P {Y ∗ > u} as u → ∞ yields that Y ∗ has also a rapidly

varying tail at infinity. Hence in view of the above arguments and the fact that S and Y ∗ are

independent, we have that∫ 1

w

P {Y ∗ > u/s} dG(s) ∼ P {SY ∗ > u} , u→∞

establishing the proof. �

Proof of Theorem 1.1 The assumption Y1 ∈ GMDA(a) implies that the convergence

P {Y1 > u+ xa(u)}
P {Y1 > u}

→ exp(−x), u→∞(4.2)

holds uniformly for x on compact sets of R. Since Y1 has a rapidly varying tail at infinity, then

by Lemma 4.1 for any fixed z ≥ 0 and w ∈ (0, 1)

P {Y1Y2 > u+ a(u)z} ∼
∫ 1

w

P {Y1 > (u+ za(u))/s} dG(s), u→∞

holds with G the distribution of Y2. By the uniform convergence theorem for regularly varying

functions

lim
u→∞

a(ux)

a(u)
= x−τ

holds uniformly for x ∈ [w, 1], with w ∈ (0, 1) some arbitrary constant. Hence

zu,s :=
z

s

a(u)

a(u/s)
→ z

s1+τ
, u→∞

uniformly for s ∈ [w, 1], and thus

P {Y1 > u/s+ za(u)/s}
P {Y1 > u/s}

=
P {Y1 > u/s+ a(u/s)zu,s}

P {Y1 > u/s}
→ exp(−z/s1+τ ), u→∞

uniformly for s ∈ [w, 1]. For any ε > 0 we can find w ∈ (0, 1) such that for all s ∈ [w, 1]

(1− ε) exp(−z) ≤ exp(−z/s1+τ ) < (1 + ε) exp(−z)

implying that as u→∞

P {Y1Y2 > u+ a(u)z} ∼
∫ 1

w

P {Y1 > u/s+ a(u/s)zu,s} dG(s) ∼ exp(−z)P {Y1Y2 > u} .

Hence Y1Y2 ∈ GMDA(a) and thus the proof is complete. �

Proof of Theorem 2.1 Ad.(a). Since for any u > 0

P {Y1Y2 > u} ≥ P

{
Y1 >

(
p2L2

p1L1

)1/(p1+p2)

up2/(p1+p2)

}
P

{
Y2 >

(
p1L1

p2L2

)1/(p1+p2)

up1/(p1+p2)

}
,
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then we immediately get

lim inf
u→∞

log(P {Y1Y2 > u})
up1p2/(p1+p2)

≥ −

(
L1

(
p2L2

p1L1

) p1
p1+p2

+ L2

(
p1L1

p2L2

) p2
p1+p2

)
=: −B.

Next, for all u sufficiently large we have

P {Y1Y2 > u} ≤
[u(p2+p1/2)/(p1+p2)]∑
k=[up2/(2(p1+p2))]

P {Y1 ∈ [k, k + 1), Y1Y2 > u}

+P
{
Y1 < [up2/(2(p1+p2))], Y1Y2 > u

}
+ P

{
Y1 > [u(p2+p1/2)/(p1+p2)], Y1Y2 > u

}
=: Σ + P1 + P2.

Now observe that, as u→∞

log (P1) ≤ log
(
P
{
Y2 > u1−p2/(2(p1+p2))

})
∼ −L2u

(p1+p2/2)p2/(p1+p2)(4.3)

and

log (P2) ≤ log
(
P
{
Y1 > [u(p2+p1/2)/(p1+p2)]

})
∼ −L1u

(p2+p1/2)p1/(p1+p2).(4.4)

Moreover, for each ε > 0 sufficiently large u and k ∈
[
[up2/(2(p1+p2))], [u(p2+p1/2)/(p1+p2)]

]
log (P {Y1 ∈ [k, k + 1), Y1Y2 > u}) ≤ log (P {Y1 ≥ k, Y2 > u/(k + 1)})

≤ −(1− ε) (L1k
p1 + L2(u/k)p2)

≤ −(1− ε)Bup1p2/(p1+p2),(4.5)

where (4.5) follows from the fact that f(x) = L1x
p1 + L2

(
u
x

)p2 attains its minimum f(xu) =

Bup1p2/(p1+p2) at xu =
(
p2L2

p1L1

)1/(p1+p2)
up2/(p1+p2) and for any δ ∈ (0, 1) and all u large k/(k+1) >

1 − δ. Thus, using the fact that Σ consists of a polynomial (with respect to u) number of

elements, we have that

lim sup
u→∞

log(Σ)

up1p2/(p1+p2)
≤ −B.(4.6)

The combination of (4.3), (4.4) with (4.6) completes the proof of the statement (a).

Ad. (b). Suppose without loss of generality that L1 = L2 = 1. By [38][Lemma 1] if Y ∗1 and Y ∗2

are two positive independent rvs tail equivalent to Y1 and Y2, respectively, then

P {Y1Y2 > u} ∼ P {Y ∗1 Y ∗2 > u} , u→∞.

We define next Y ∗i = SiZi where Si has distribution Gi, i = 1, 2 with right endpoint equal to

1, and Z1, Z2 are independent of S1, S2. Let α∗1 and α∗2 be the index of the regular variation

of g1 and g2, respectively. Let αi > α∗i , i = 1, 2 be two arbitrary constants. The functions
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g̃i(x) = gi(x)x−αi are regularly varying at infinity with index α∗i −αi < 0. Hence, we can assume

without loss of generality, that

P {Si > 1− ai(u)/u} =
1

Γ(αi − α∗i + 1)
g̃i(u), u→∞,

where ai(u) = u1−pi , i = 1, 2, u > 0, and Γ(·) is the Euler Gamma function. In view of

[39][Theorem A.2] for i = 1, 2 we obtain

P {SiZi > u} ∼ P {Yi > u} , u→∞,

where Si, Zi, i = 1, 2 are independent and positive rvs, and

P {Zi > u} ∼ uαi exp(−upii ), u→∞.

Consequently, as u→∞

P {Y1Y2 > u} ∼ P {S1Z1S2Z2 > u} ∼ P {UW > u} ,

where U = S1S2 and W = Z1Z2. The tail asymptotics of U follows by a direct application

of [40][Theorem 2.1] whereas the tail asymptotics of W follows from (1.7). Hence, the tail

asymptotics of UW follows by applying again [39][Theorem A.2], and thus the proof is complete.

�

Proof of Theorem 3.1 The proof follows by the same arguments as the proof of [34][Theorem

5.1]. When S is a bounded rv, then in view (3.1) we have that

dn = (1 + o(1))
√

2 log n

and since the scaling function a(x) = 1/x, then cn = 1/dn follows. For the case S has a

Weibullian tail behaviour, the relation between cn and dn can be established using the same idea

as in the proof of the aforementioned theorem. �

Proof of Theorem 3.2 For chosen constants

γ1 = 2/(α + 2p), γ2 = 4/(2α + p), δ = δ(u) = 2
σ3(u)

σ′(u)
u−2 log2(u)

we have (write FT for the distribution of T )

P

{
sup
t∈[0,T ]

X(t) > u

}
≤

∫ uγ1

0

P

{
sup
t∈[0,s]

X(t) > u

}
dFT (s)

+

∫ uγ2

uγ1
P

{
sup

t∈[0,s−δ]
X(t) > u

}
dFT (s)

+

∫ uγ2

uγ1
P

{
sup

t∈[s−δ,s]
X(t) > u

}
dFT (s)

+

∫ ∞
uγ2

P

{
sup
t∈[0,s]

X(t) > u

}
dFT (s)

=: I1 + I2 + I3 + I4.
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As in the proof of [17][Theorem 3.1], we conclude that

I1 + I2 = o(P {X(T ) > u})

as u→∞ and for any ε > 0 and all u large enough

I3 ≤ (1 + ε)P {X(T ) > u} = (1 + ε)P {σ(T )N > u} ,

where N is an N(0, 1) rv independent of T . Thus it suffices to show that

I4 = o(P {X(T ) > u})(4.7)

as u→∞. Indeed, since for all large u we have I4 ≤ P {T > uγ2} , then

lim sup
u→∞

log(I4)

u4p/(2α+p)
≤ −L.

On the other hand, for each ε ∈ (0, α/2) and sufficiently large u, the assumption that σ(·) is

regularly varying at ∞ with index α/2 implies

P {σ(T ) > u} ≥ P
{
T α/2−ε > u

}
.

Hence, for some K > 0 by statement (a) of Theorem 2.1

lim inf
u→∞

log(P {X(T ) > u})
u2p/(p+α−2ε)

≥ lim inf
u→∞

log(P
{
T α/2−εN > u

}
)

u2p/(p+α−2ε)
≥ −K.

Consequently, since for sufficiently small ε > 0, we have 2p/(p + α − 2ε) < 4p/(p + 2α), then

(4.7) holds. �

Proof of Corollary 3.1 The proof boils down to checking, that for both cases (a) and (b)

the conditions imposed on σ(·) imply that T satisfies the assumptions of Theorem 3.2; therefore

we omit the details. �

Proof of Theorem 3.3 Without loss of generality we suppose that as u→∞

P {A1 > u} ≥ P {A2 > u} (1 + o(1))

and A1 is a log-Weibullian rv with parameters L1, p1. Since, by Theorem 3.2

P

{
sup

t∈[−A1,0]

X(t) > u

}
∼ P {σ(A1)N > u}

and

P

{
sup

t∈[0,A2]

X(t) > u

}
∼ P {σ(A2)N > u} ,

then following the same idea as given in the proof of Theorem 2.1 in [5], it suffices to show that

P

{
sup

t∈[−A1,0]

X(t) > u; sup
t∈[0,A2]

X(t) > u

}
= o(P {σ(A1)N > u}).
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We present the sketch of the proof, which follows the lines of the proof of Theorem 2.1 in [5].

By Theorem 2.1, for any ε > 0

P {σ(A1)N > u} ≥ exp
(
−u

2p1
α+p1

+ε
)
.

On the other hand, with a(u) = u
2

α+2p1A(u) = u
4

2α+p1 ,

P

{
sup

t∈[−A1,0]

X(t) > u; sup
t∈[0,A1]

X(t) > u

}
≤

≤

(∫ a(u)

0

+

∫ A(u)

a(u)

+

∫ ∞
A(u)

)
P

{
sup

(s,t)∈[−x,0]×[0,x]
(X(s) +X(t)) > 2u

}
dFA1(x)

= I1 + I2 + I3.

Then, and analogously to the proof of Theorem 2.1 in [5], for some δ > 0

I1 + I2 ≤ exp
(
−u

2p1
α+p1

+δ
)
,

while I3 ≤ εP {σ(A1)N > u} as u → ∞ (observe that the upper bound of I3 in the proof of

Theorem 2.1 in [5] does not depend on the asymptotic behaviour of the tail distribution of A1).

Hence the proof is completed. �
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