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Abstract. We investigate the product ;Y5 of two independent positive risks Y;
and Ys. If Y] has distribution in the Gumbel max-domain of attraction with some
auxiliary function which is regularly varying at infinity and Y5 is bounded, then we
show that Y;Y5 has also distribution in the Gumbel max-domain of attraction. If
both Y7, Y5 have log-Weibullian or Weibullian tail behaviour, we prove that Y;Y5
has log-Weibullian or Weibullian asymptotic tail behaviour, respectively. We
present here three theoretical applications concerned with a) the limit of point-
wise maxima of randomly scaled Gaussian processes, b) extremes of Gaussian

processes over random intervals, and c) the tail of supremum of iterated processes.

Keywords and phrases: Gumbel max-domain of attraction; random scaling; log-
Weibullian tail behaviour; Weibullian tail behaviour; supremum of Gaussian pro-

cesses; iteration of random processes.

1. INTRODUCTION

Consider Y; > 0 and Y5 two independent random variables (rvs). If Y5 is bounded, say |Ya| <1
almost surely, then Y1Y5 is commonly referred to as a random contraction. A classical example
of this random structure is the case of ¥;Y; having an N(0, 1) distribution with Y;? a chi-square
rv with 1 degree of freedom and Y; a symmetric rv around 0 with Y;? having Beta distribution
with parameters 1/2,1/2.

In this contribution we are interested also in the case that Y, is unbounded. The study of
products of rvs is of interest for numerous applications, see e.g., [1-13]. We mention below three

recent fields of investigations:

i) An important instance of contraction models is the chaos of random vectors with radial
representation. Specifically, if W = (RUj, ..., RU,) is a d-dimensional random vector
with R > 0 independent of U;’s, then X = h(W;,...,Wy) is referred to as the chaos
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(1.1)

i)

(1.4)

of W, if further h is a homogeneous function of order o > 0, i.e., h(cwy,...,cwy) =

c*h(wy, ..., wy) for any ¢ > 0 and all wy, ..., wy € R. Consequently,
X LROW(UY,. .., Uy) = Y1Ya,

with Y7 > 0 being independent of Y5. In our notation 2 means the equality of the
distributions. A canonical instance is the Gaussian chaos, where W is a centred Gaussian
random vector with R? being a chi-square distribution with d degrees of freedom, see
[14, 15] for recent results.

In numerous applied problems the study of supremum of a random process Z(t),t > 0
over a random time interval, say [0, S] with S a positive rv being independent of Z is of
particular interest, see e.g., [3, 6, 16, 17]. An interesting instance is Z = By, with By a
standard fractional Brownian motion with Hurst index H € (0, 1). By the self-similarity
of By we have

sup Bpy(t) L (sup BH(t)>SH =:Y1Ys.

t€[0,5] t€[0,1]

Let X(t),t € R and Y (¢),t > 0 be two independent random processes. Motivated by
[18, 19] several contributions have investigated the basic properties of the iterated process
Z(t) = X(Y(t)),t > 0, see e.g., [20-22] and the references therein. One particular
instance is X = By, and thus by the self-similiarity of fractional Brownian motion we
have

Z(t) £ By ()Y (t)|T = V1Y

for any ¢ > 0. If X is a more general Gaussian process, for instance X being centred with
stationary increments the direct relation in (1.3) does not hold. In view of [5][Theorem
2.1}, if both A; = supycop Y (t) and Ay = —inficpo ) Y (¢) have for a given T > 0 a

power-exponential tail behaviour (see the definition given in (1.6) below)), then

]P{ sup Z(t) >u} ~P{X(A) >u} +P{X(As) > u}

t€[0,T]

as u — o00; here fi(u) ~ fo(u) means lim, o f1(u)/fa(u) = 1.

Since X (A;) £ o(A;) X (1) with o2 the variance function of X, under tractable assump-
tions on ¢ the asymptotics of the right-hand side of (1.4) can be explicitly determined if
the tail asymptotic behaviour of the product o(.4;) X (1) can be obtained. This motivates
our investigation of the tail asymptotics of products for unbounded Y; and Y5, see our

result in Theorem 2.1 below.

The large values of Y1Y5 correspond to large values of both Y; and Y;. However, if Y5 is bounded

(i.e., we have the contraction model), we expect that the asymptotic tail behaviour of Y)Y, will

essentially be determined by that of Y;. This intuition is confirmed in Theorem 1.1 below for the
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case Y] has a distribution with unbounded support, being further in the Gumbel max-domain
of attraction (MDA), i.e.,

. P{Y1 > u+a(u)t}
(1.5) L T

=exp(—t), VteR

for some positive scaling function a(-). Note in passing that (1.4) implies that lim, . @ =0.
The Gumbel MDA consists of many important distributions including Gamma, Normal and log-
Normal one. Here we are concerned with a large class of such distributions that have a regularly
varying scaling function a(-) at infinity with index —7 for 7 > —1, i.e., lim, o a(uzx)/a(u) =
x~ T, x> 0.

We abbreviate (1.5) as Y1 € GMDA(a) and refer to, e.g., [23-25] for details on the Gumbel
max-domain of attraction and regular variation.

Hereafter, we shall assume without loss of generality that Y5 is a strictly positive rv.

Theorem 1.1. If condition (1.5) holds with a(-) being reqularly varying at infinity with index
—71 for 7 > —1 and Y3 has distribution with right endpoint equal to 1, then 1Y, € GMDA(a).

Remark 1.1. a) If X is the Gaussian chaos, for which (1.1) holds, and h is continuous and
non-negative, then Theorem 1.1 implies that X € GMDA(a) with a(x) = Cz'~%* z > 0 for
some C positive, since R* is in the Gumbel MDA with scaling function a(x) = 1/x. See [14] for
further results under additional conditions on h.
b) From [17][Lemma 3.2] we have that sup,cqy Bu(t) € MDA(a) where a(z) = 1/z,z > 0.
Consequently, applying Theorem 1.1 to the contraction model given in (1.2) we obtain that

sup By(t) € GMDA(a), where a(z) = 1/z.

te[0,5]
c) If Y1 = eV with W an N(0,1) random variable, then we have that Y, € GMDA(a) with
a(x) = z/logx, hence T = —1 for case. By Theorem 1.1 the contraction Y1Ys is in the Gumbel

MDA.

A canonical example for Y; € GM DA(a) is when Y] has a power-exponential tail behaviour i.e.,
(1.6) P{Y: > u} ~ Cru* exp(—LiuP*), u— oo,

where C, Ly, p; are positive constants and «; € R. Under assumption (1.6) we have Y; €
GMDA(a), where a(x) = z'77'/L;. Consequently, the assumption of Theorem 1.1 on a(-) holds
with 7 =p; — 1.

If both Y; and Y5 can simultaneously take large values with non-zero probability, then the
asymptotic tail behaviour of X is known in few cases. In particular, if also Y5 satisfies (1.6) with
az € R,Cy >0, Ly > 0,py > 0, then in light of [17][Lemma 2.1]

1/2 a a
(17) ]P){leyé > U} ~ C’16(2142%2—"_062_@1 (27TpT2L2> / UW exp <—Buppllf1§2>
b1+ P2
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holds as u — oo, where
(1.8) A= [(p1L1)/(psLs)]7+72 and B = LA™ 4 Ly AP,

Our second result shows that the asymptotic tail behaviour of X can be derived explicitly for a
more general case when the power term in the tail expansion of ¥;’s in (1.6) is substituted by some
regularly varying function, see Theorem 2.1 in Section 2. We refer to, e.g., [1, 2, 4, 10, 11, 15, 26—
28] for related results concerned with the asymptotic tail behaviour of the products of rvs.

As an illustration of Theorems 1.1 and 2.1, we shall analyze:

a) limiting behaviour of the maximum of randomly scaled Gaussian processes;
b) exact asymptotic tail behaviour of the supremum of Gaussian processes with stationary
increments over a random interval with length which has Weibullian tail behaviour;
c) exact asymptotic tail behaviour of sup,co 7 X (Y (t)) with X a centered Gaussian pro-
cesses with stationary increments being independent of Y, extending the recent findings
of [5].
We organize this paper as follows: Section 2 derives the tail asymptotics of the product of two
independent (log-)Weibullian-type rvs. Our applications are presented in Section 3. Proofs of

all results are relegated to Section 4, which concludes this article.

2. LOG-WEIBULLIAN AND WEIBULLIAN RISKS

We say that Y;, 7 = 1,2 has a log- Weibullian tail behaviour (or alternatively Y; is a log-Weibullian
rv), if

(2.1) i 8P AY: > u))

U—00 ubi

—_—

for some positive constants p;, L;. The main result of this section is Theorem 2.1; statement (a)
therein shows that if (2.1) holds, then X = ¥7Y5 has also a log-Weibullian tail behaviour.
The definition of Weibullian tail behaviour is formulated (motivated by (1.6)) by the following

condition:
(2.2) P{Y; > u} ~ g;(u) exp(—Lju”), u— o0

for i = 1, 2, where ¢;, g are two given regularly varying at infinity functions and L;, p;,7 = 1,2 are
positive constants. We say alternatively that Y; and Y; are Weibullian-type rvs and abbreviate

this fact as
}/i == W(gla Li7 ai)-

We note that if a rv is of Weibullian-type, then it is log-Weibullian.
For g1, go being regularly varying and ultimately monotone [29] shows that a similar result to
(1.7) is valid. In statement (b) of Theorem 2.1 we remove the assumption that g; and ¢, are

ultimately monotone.
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Theorem 2.1. Let Y;,Y5 be two independent positive rvs, and let L;,p;,i = 1,2 be positive
constants.
(a) If Y;,i = 1,2 satisfy (2.1) with p;, L;,i = 1,2, then with B given in (1.8)

log(P{Y1Ys >
(2.3) lim 081112 > u))

U300 uP1p2/(p1+p2)

- -B.

(b) If Y; = W(gi, Li,pi),i = 1,2 and A, B are two constants as in (1.8), then

P{ViY; > u} ~ Dumigy(u/e,)gac,) exp (—Bums )

(2.4) ~ DuTrma PLY; > u/e,} P{Ys > cu}

2853 gy 7 )
2 Lq)P1+P2 Lo)P1+P2
as u — 00, where ¢, = AuP"/P1#92) gnd D = | 2xeily) plﬂgfz 2) .

Remark 2.1. Theorem 2.1 straightforwardly extends to the case of the product of n rvs. Namely,
if i, i < n are positive independent rvs with tail asymptotics gwen by (2.2), then [[;_,Y; also
satisfies the condition (2.2) with some g*,L* and p* = (3" 1/p;)~".

3. APPLICATIONS

A direct application of Theorem 1.1 concerns the asymptotics of maxima of products. Specifi-
cally, let (Y,,1,Y,2),n > 1 be independent copies of (Y7, Y3) and let F<~ and H* be the generalized

inverse of the distributions of Y7 and Y;Y3, respectively. Define next
by=F<(1—1/n), by=H"(1—1/n), n>1.

Under the assumptions of Theorem 1.1 for Y; and Y5, we have that (see [30][Eq. (14)])

(3.1) by, ~ b,, n — o0.

Hence by the regular variation of a we get a(b,) ~ a(b,) and further

lim sup IP{ max Yo < a(b,)r + bn} — exp(— exp(—x))‘ =0,
n—00 ;cR 1<k<n
and
Jim suplP { s VoV < ah )+, | = esp(—exp(-2))| =0

These derivations motivate our first application concerned with the investigation of the maxi-
mum of randomly scaled Gaussian processes.

The second one, which combines Theorem 2.1 with an interesting finding of [17], derives the as-
ymptotic behaviour of the tail distribution of supremum of Gaussian processes with stationary
increments over Weibullian and log-Weibullian random intervals. That result allows us to present
a third application concerned with the supremum of an iterated process Z(t) = X (Y (t)),t > 0

with X Gaussian and Y some general process with continuous sample paths independent of X.
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3.1. Limit law of the maximum of deflated Gaussian processes. This application is
motivated by [31] which studies the point-wise maximum of independent Gaussian processes.
Instead of Gaussian processes treated therein, we consider here the point-wise maximum of
randomly deflated Gaussian processes. Let therefore I'(,-) be a negative definite kernel in R?

and define a Brown-Resnick max-stable process as
(3.2) npn(t) = max (i + Zi(t) - *(1)/2), tER,

where {Z;(t),t € R},i > 1 are mutually independent centred Gaussian processes with incre-
mental variance function Var(Z;(t;) — Z;(t2)) = T'(t1,t2),7 > 1 and variance function %(-) > 0,
being further independent of the Poisson point process on R denoted by {Y;};cny with intensity
measure exp(—z) dz, see for more details [32, 33].

In the following, for scaling of the Gaussian process, we shall use a generic positive rv S, which
has either a distribution with right endpoint 1, or it has a Weibullian tail behaviour satisfying
(2.2) with some p, L and g being regularly varying at infinity. Based on the findings of both
Theorem 1.1 and Theorem 2.1, our next result generalizes [34][Theorem 5.1], which can be

retrieved by setting S = 1.

Theorem 3.1. Let {X,;(t),t € R},1 < i < n,n > 1 be independent Gaussian processes with
mean-zero, unit variance function and correlation function p,(s,t),s,t € R. Let Sp;,i,n > 1 be
independent copies of S, and let H be the generalized inverse of the distribution H of SXi1(1).
Assume that Syp;, Xpi(t),t € R are mutually independent for any i = 1,...,n. Suppose further
that either S is a bounded positive rv, or S = W (g, L,p). Ford, = H" (1 —1/n) set ¢, =1/d,
if S is bounded, and set ¢, = (2plogn)/(d,(2 4 p)) otherwise. If further

2d,,
(3.3) lim C—<1 . pn(tl,t2)> = D(ti,t)) € (0,00), t #ts €R,
then, as n — oo
(3.4) Cn <1r£1.a<x SpiXni(t) — dn> — npr(t), teR,

where => means the weak convergence of the finite-dimensional distributions. Furthermore,
d, = (1+ o(1))y/2logn if S is bounded and d,, = (1+ o(1))((logn)/B) P/ otherwise, with
B =LA+ A?/2, A = (pL)"/Z+p),

3.2. Supremum over random intervals for Gaussian processes with stationary incre-

ments. The main result of [17] derives the exact asymptotics (as u — o0) of

P< sup X(t) >up,
te[0,7]

where {X (t),t > 0} with X (0) = 0 almost surely is a mean-zero Gaussian process with stationary

increments and almost surely continuous trajectories being independent of 7 > 0, which has
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tail asymptotics given by (1.6). Based on the statement (a) in Theorem 2.1, the following result

extends Theorem 3.1 in the aforementioned paper.

Theorem 3.2. Let T be a nonnegative log-Weibullian rv that satisfies (2.1) with some L,p >
0 and let {X(t),t > 0} be, an independent of T, centred Gaussian process with stationary
increments and continuously differentiable variance function o?(t) = Var(X(t)),t > 0. Suppose
that o2(t),t > 0 is conver and lim, o, o*(ux)/c*(u) = z*,z > 0 with o € (1,2]. If further
o?(t) < Kt holds for any t > 0 and some constant K > 0, then we have

(3.5) IP’{ s[uI;1 X(t) > u} ~P{o(T)N >u}, u— o0,

where N is an N(0,1) rv independent of T .
A combination of Theorem 2.1 with Theorem 3.2 leads to the following corollary.

Corollary 3.1. Under the setup of Theorem 3.2 suppose further that o(t) ~ Ct/? ast — oo
with a € (1,2] and some constant C' > 0.

(a) Then o(T) satisfies (2.1) with p = %,Z =& and

. N T PO
(3.6)  lim u /P2 ]og (IP’{ sup X (t) > u}> = —L(Lp)7* — S (Lp)7? =: —B.

UuU— 00 tG[O,'T]

(b) If o(T) satisfies (2.2) with p, L and some reqularly varying at infinity function g, then

(3.7) IF’{ sup X(t) > u} ~(F+2)777 ((Zﬁ)@%’uﬁ> exp (—Euﬁ%> , U — 0.
te[0,7]

Remark 3.1. Clearly, if we specify in the assumptions of Theorem 3.2 that o*(z) = Cz® (i.e.,

X is a fractional Brownian motion with Hurst index at/2) and T is of Weibullian-type, then both

o(T) and N are Weibullian-type rvs, and thus the assumptions of Corollary 3.1 (b) are satisfied.

Hence Corollary 3.1 is an extension of [17][Theorem 4.1].

3.3. Supremum of iteration of random processes. In this section X(¢),t € R is a centred
Gaussian process satisfying the assumptions of Theorem 3.2. Let Y'(¢),¢ > 0 be a random process
independent of X with continuous sample paths. In view of [5][Theorem 2.1}, if both
Ay = sup Y(t), and Ay = — inf Y(¢)
te[0,T) t€[0,T]

have for a given T' > 0 a power-exponential tail behaviour specified in (1.6), then as mentioned
in the Introduction for Z(t) = X (Y (¢)),t > 0 the approximation (1.4) is valid. If we define
Z(t) = X(SY(t)),t > 0 with S > 0 a positive rv independent of X and Y, then in order to
apply the aforementioned theorem, we need to have S such that A; := SA;,i = 1,2 has a
power-exponential tail behaviour. In view of our Theorem 2.1, statement (b), this is not always

the case. In the following we present an extension of Theorem 2.1 in [5], which in particular is



8

applicable for the analysis of sup;co 1 X(SY(t)) when S has a log-Weibullian asymptotic tail

behaviour.

Theorem 3.3. Let X(t),t € R satisfy the assumptions of Theorem 3.2 and let Y (t),t > 0 be
a random process independent of X with continuous trajectories. If further A;’s have a log-

Wewbullian asymptotic tail behaviour, then we have

(3.8) ]P’{ sup X(Y((¢)) > u} ~P{o(A)N > u} + P{o(A)N > u},

te[0,7)

where N is an N(0,1) rv independent of Ay, As.

Remark 3.2. A canonical example that A; has log- Weibullian asymptotic tail behaviour is when

Y is centered a(t)-locally stationary Gaussian process, see [35-37].

4. PROOFS

It is well-known that for some rv U which has distribution with right endpoint equal to infinity

the assumption U € GM D A(a) implies that the tail of U is rapidly varying at infinity, i.e.,

lim P{U > Au}

—— =
u—oo P{U > u}

holds for any A > 1. First we present a result on random scaling of rvs with rapidly varying

tails which is of some interest on its own.

Lemma 4.1. Let S,Y,Y* be three independent rvs. Suppose that S > 0 has distribution
G with right endpoint equal to 1. If further Y has a rapidly varying tail and P{Y > u} ~
L(uw)P{Y™* > u} as u — oo for some slowly varying function L(-), then

(4.1) P{SY >u} ~P{SY >u,S >w} ~ L(u)P{SY™" > u}

holds for any w € (0,1).

PROOF OF LEMMA 4.1 Since S and Y are non-negative, for any v > 0 and w € (0, 1), we have
P{SY >u} < P{Y >u/w}+P{SY >u,S > w}.

The assumption that Y has a rapidly varying tail and the independence of S and Y imply for
any t € (w,1)

P{Y > u/w} P{Y > u/w} P{Y > u/w}
PSY>uS>u] = B{SYsusS> P swgbssg " T

Hence for any w € (0,1)

P{SY > u} N/IIP{Y>U/8} dG(s), u— 0.

w
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By the uniform convergence theorem for regularly varying functions (e.g., [24][Theorem A3.2])

/ P{Y > u/s} dG(s) ~ L(u)/ P{Y* > u/s} dG(s), u— oo

The assumption P{Y > u} ~ L(u)P{Y* > u} as u — oo yields that Y* has also a rapidly
varying tail at infinity. Hence in view of the above arguments and the fact that S and Y* are

independent, we have that
1
/ P{Y* > u/s} dG(s) ~P{SY* >u}, u— o0

establishing the proof. 0
PROOF OF THEOREM 1.1 The assumption Y} € GM DA(a) implies that the convergence

P{Y: > u+ za(u)}

(4.2) BT

— exp(—x), u— o0

holds uniformly for x on compact sets of R. Since Y; has a rapidly varying tail at infinity, then

by Lemma 4.1 for any fixed z > 0 and w € (0,1)
1
P{YiY, > u+ a(u)z} ~ / P{Y, > (u+ za(u))/s} dG(s), u— oo

holds with G the distribution of Y5. By the uniform convergence theorem for regularly varying

functions
lim a(uz) =z 7
u—oo a(u)

holds uniformly for = € [w, 1], with w € (0,1) some arbitrary constant. Hence

z a(u) L F R
Zus = — U — 00
“ salufs)  osUT

uniformly for s € [w, 1], and thus

P{Y; > u/s+ za(u)/s} _ P{Y1 > u/s+a(u/s)zys}
P{Y; > u/s} P{Y; > u/s}

— exp(—2/s'"7), u— oo

uniformly for s € [w, 1]. For any € > 0 we can find w € (0,1) such that for all s € [w, 1]
(1 —¢)exp(—2) < exp(—2/s'"7) < (1 +¢)exp(—2)

implying that as u — oo

P{Y1Ys > u+a(u)z} ~ / P{Y: > u/s+ a(u/s)z,s} dG(s) ~ exp(—z)P{Y1Y2 > u}.

w

Hence Y Y, € GM DA(a) and thus the proof is complete. O
PROOF OF THEOREM 2.1 Ad.(a). Since for any u > 0

I 1/(p1+p2) I 1/(p1+p2)
P{Y1Ys > u} >P{Y; > <p2 2) w2/ i) Up iy, (pl 1) /o) |
- p1la Palo
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then we immediately get

Pl P2
log(PP{Y7Y5 Lo\ p1tr2 L1\ ritr2
lim inf og(P {V1Y> > u}) > — (Ll (M) + Lo (pl 1) ) =: —B.

P uP1p2/(p1+p2) P14 p2lo

Next, for all u sufficiently large we have

[u(P2+P1 /2)/(p1 +P2)]

P{YiY, >u} < > P{Y; € [k k+1),Y1Ys > u}

k:[upz/(Q(P1+P2))]
4P {Y1 < [upz/(2(p1+p2))]7 Y,Y, > u} +P {yl > [u(p2+p1/2)/(p1+pz)]’ Y Y, > u}
= E + Pl + PQ.

Now observe that, as u — oo

(4‘3) log (P1) < log (]p {YQ > ul—pz/(Q(p1+p2))}) ~ _LQU(p1+p2/2)p2/(p1+p2)
and
(4.4) log (P;) < log (p {yl > [u(p2+p1/2)/(p1+pz)]}) ~ _Llu(p2+p1/2)p1/(p1+pz)_

Moreover, for each ¢ > 0 sufficiently large u and k € [[ur?/er+p2)] [yP24p1/2)/r+p2)]]

log (P{Y; € [k,k+1), 1Yo >u}) < log(P{Y7 >k, Yo>u/(k+1)})
< = (=) (Lak™ + Lo(u/k)™)
(4.5) < —(1- 6)Bumm/(?r&-pz)7

where (4.5) follows from the fact that f(z) = Lz + L, (%)™ attains its minimum f(z,) =

1/(p1+p2) ’
Bupw2/012) gt g, = <§f—§f) e ) and for any § € (0,1) and all u large k/(k+1) >

1 — 4. Thus, using the fact that ¥ consists of a polynomial (with respect to ) number of

elements, we have that

. log(X)

The combination of (4.3), (4.4) with (4.6) completes the proof of the statement (a).
Ad. (b). Suppose without loss of generality that L; = Ly = 1. By [38][Lemma 1] if Y}* and Y

are two positive independent rvs tail equivalent to Y; and Y5, respectively, then
P{Y1Ys > u} ~P{Y}YS >u}, u— oo.

We define next Y;* = 5;Z; where S; has distribution G;,7 = 1,2 with right endpoint equal to
1, and Z;, Z, are independent of S1,S55. Let af and o be the index of the regular variation

of g1 and go, respectively. Let a; > af,7 = 1,2 be two arbitrary constants. The functions
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gi(x) = gi(x)x~% are regularly varying at infinity with index o —a; < 0. Hence, we can assume

without loss of generality, that

1
P SZ 1-— i - ~i ) )
(81> 1= i)/} = ), u— o
where a;(u) = uw'™P i = 1,2,u > 0, and ['(-) is the Euler Gamma function. In view of

[39][Theorem A.2] for i = 1,2 we obtain
P{S;Z; > u} ~P{Y; >u}, u— oo,
where S;, Z;,1 = 1,2 are independent and positive rvs, and
P{Z; > u} ~u“ exp(—ul’), u— oc.
Consequently, as u — oo
P{Y1Ys >u} ~ P{S12157Z; > u} ~P{UW > u},

where U = 515, and W = Z;Z,. The tail asymptotics of U follows by a direct application
of [40][Theorem 2.1] whereas the tail asymptotics of W follows from (1.7). Hence, the tail
asymptotics of UW follows by applying again [39][Theorem A.2], and thus the proof is complete.
U

PROOF OF THEOREM 3.1 The proof follows by the same arguments as the proof of [34][Theorem
5.1]. When S is a bounded rv, then in view (3.1) we have that

d, = (1+0(1))\/2logn

and since the scaling function a(x) = 1/x, then ¢, = 1/d, follows. For the case S has a
Weibullian tail behaviour, the relation between c¢,, and d,, can be established using the same idea
as in the proof of the aforementioned theorem. [l
PrOOF OF THEOREM 3.2 For chosen constants

o’(u)

o'(u)

1=2/(a+2), v =4/Catp), §=0o() =22 ulog’(u)

we have (write F7 for the distribution of 7T)

u1
P< sup X(t) >u < / P< sup X(t) > u p dFy(s)
t€[0,7] 0 te(0,s]

w2

+/ IP’{ sup X (t) > u} dFr(s)
u"1 te[0,5—4]
w2

+/ ]P’{ sup X(t) > u} dFr(s)
w1 te[s—d,s]

+/ IP’{ sup X(t) > u} dFr(s)
ur2 t€(0,s]

= Il+12+[3+14-
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As in the proof of [17][Theorem 3.1], we conclude that
I + I = o(P{X(T) > u})
as u — oo and for any € > 0 and all v large enough
L<(14+e)P{X(T)>u}=1+e)P{o(T)N > u},
where AV is an N(0, 1) rv independent of 7. Thus it suffices to show that
(4.7) Iy = o(P{X(T) > u})

as u — 00. Indeed, since for all large u we have Iy <P{T > u?}, then

MUSUD S 4/ ats) =

On the other hand, for each ¢ € (0,a/2) and sufficiently large u, the assumption that o(-) is

regularly varying at oo with index «/2 implies
P{o(T) > u} >P{T** > u}.

Hence, for some K > 0 by statement (a) of Theorem 2.1

a/2—e
i inf log(P{X(T) > u}) > lim inf log(P{T N >u})

U—+00 u2p/(p+a—2¢) U—+00 u2p/ (p+a—2¢)

> —K.

Consequently, since for sufficiently small € > 0, we have 2p/(p + a — 2¢) < 4p/(p + 2«), then
(4.7) holds. O
PROOF OF COROLLARY 3.1 The proof boils down to checking, that for both cases (a) and (b)
the conditions imposed on o(-) imply that 7 satisfies the assumptions of Theorem 3.2; therefore
we omit the details. 0

PrRoOOF OoF THEOREM 3.3 Without loss of generality we suppose that as u — oo
P{A; >u} >P{A; > u}(1+0(1))

and A; is a log-Weibullian rv with parameters Ly, p;. Since, by Theorem 3.2
IP’{ sup X(t) > u} ~P{o(A)N > u}
tE[—.Al,O}

and

]P’{ sup X(t) > u} ~P{o(A)N > u},

t€(0,Az]

then following the same idea as given in the proof of Theorem 2.1 in [5], it suffices to show that

IP’{ sup X(t) >u; sup X(t) > u} = o(P{o(A)N > u}).

te[—A1,0] t€[0,Az]
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We present the sketch of the proof, which follows the lines of the proof of Theorem 2.1 in [5].
By Theorem 2.1, for any € > 0

P{o(A)N > u} > exp (—uﬁél +5> .

On the other hand, with a(u) = wsm Au) = T ,

IP’{ sup X (t) > u; sup X(t)>u}§
te

[—.A1,0] t€[0,.44]
a(u) A(u) 0o
< / +/ +/ P sup (X (s) 4+ X(t)) > 2u p dF 4 (x)
0 a(u) A(u) (s,t)€[—x,0]x[0,z]
= L+ 1+ 1.

Then, and analogously to the proof of Theorem 2.1 in [5], for some 6 > 0

2
I + I < exp (—uaf;1 +6> ,

while I3 < eP{o(A;)N > u} as u — oo (observe that the upper bound of I3 in the proof of
Theorem 2.1 in [5] does not depend on the asymptotic behaviour of the tail distribution of A4, ).
Hence the proof is completed. O
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