
GENERALIZED PICKANDS CONSTANTS AND STATIONARY MAX-STABLE

PROCESSES
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Abstract. Pickands constants play a crucial role in the asymptotic theory of Gaussian processes. They are

commonly defined as the limits of a sequence of expectations involving fractional Brownian motions and, as
such, their exact value is often unknown. Recently, [1] derived a novel representation of Pickands constant as a

simple expected value that does not involve a limit operation. In this paper we show that the notion of Pickands
constants and their corresponding Dieker–Yakir representations can be extended to a large class of stochastic

processes, including general Gaussian and Lévy processes. We furthermore develop a link to extreme value

theory and show that Pickands-type constants coincide with certain constants arising in the study of max-stable
processes with mixed moving maxima representations. Brown–Resnick process and fractional Brownian motion

and Gaussian process and generalized Pickands constant and Lévy process and max-stable process and mixed

moving maxima representation; Dieker-Mikosch M3 representation.

1. Introduction

The seminal contribution [2] establishes the tail asymptotics of a centered stationary Gaussian process X with
continuous sample paths and unit variance under the restriction that its correlation function r satisfies for some
α ∈ (0, 2]

1− r(t) ∼ |t|α , t→ 0, r(t) < 1,∀t > 0.

Specifically, for any T > 0, δ ≥ 0 we have (set δZ = R if δ = 0)

P

{
sup

t∈u−2/αδZ∩[0,T ]

X(t) > u

}
∼ HδWTu2/αP {X(0) > u} , u→∞,(1)

where the Pickands constant HδW introduced in [3] is given by the following limit

HδW = lim
T→∞

T−1E

{
sup

t∈δZ∩[0,T ]

eW (t)

}
∈ (0,∞), W (t) =

√
2Bα(t)− |t|α ,(2)

with {Bα(t), t ≥ 0} a centered fractional Brownian motion with Hurst index α/2 ∈ (0, 1], that is, a mean zero
Gaussian process with continuous sample paths and covariance function

Cov{Bα(s), Bα(t)} =
1

2

(
|t|α + |s|α − |t− s|α

)
, s, t ≥ 0.

The only known values of HδW are for δ = 0 if α = 1, 2. Numerous papers have considered the calculation of
Pickands constants, with particular focus on the case δ = 0; see for instance [4–13].
Recently, the seminal contribution [1] derived an alternative representation for HδW

HδW = E
{
M δ

Sη

}
, ∀δ = η > 0, or δ = 0, η ≥ 0,(3)

where

Mδ = sup
t∈δZ

eW (t), Sη = η
∑
t∈ηZ

eW (t), S0 =

∫
R
eW (t) dt.(4)

The principal advantage of Dieker–Yakir representation (3) is that it is given as an expectation rather than as
a limit, which is particularly useful for Monte Carlo simulations of HδW .
Pickands constants traditionally appear in Gumbel limit theorems, see e.g., [14–16]. Such limit theorems are
recently formulated for max-stable processes and provide a first link of classical Gaussian tail asymptotics to
extreme value theory. Specifically, [17] showed that [see also 18, 19]

lim
T→∞

P

{
sup

t∈δZ∩[0,T ]

ξW (t) ≤ x+ lnT

}
= exp

(
−HδW exp(−x)

)
, x ∈ R,(5)
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where the so-called Brown–Resnick process ξW is defined as

ξW (t) = max
i≥1

(Pi +Wi(t)), t ∈ R.(6)

Here Π =
∑∞
i=1 εPi is a Poisson point process on R with intensity e−xdx, and Wi, i ≥ 1, are independent

copies of W , also independent of Π. We denote by εx the unit Dirac measure at x ∈ R. The Brown–Resnick
process ξW is both max-stable and stationary [20–24]. The stationarity means that the processes {ξW (t), t ∈ R}
and {ξW (t + h), t ∈ R} have the same distribution for any h ∈ R. Moreover, the process ξW arises naturally
as the limit of suitably normalized pointwise maxima of independent copies of stationary Gaussian processes
[20, Theorem 17]. This makes this class of processes a widely-used model in the risk assessment of spatial
extreme events. The result in (5) states that HδW coincides with the so-called extremal index of the stationary,
max-stable process ξW , a quantity that summarizes the temporal extremal dependence [c.f., 25].
Under certain conditions the process ξW in (6) admits a mixed moving maxima representation (for short M3)

ξW (t)
d
= max

i≥1
(Pi + Fi(t− Ti)), t ∈ R,(7)

with
∑∞
i=1 ε(Pi,Ti) a Poisson point process in R2 with intensity CF e

−pdpdt, where CF ∈ (0,∞) is a suitable
normalizing constant and the shape functions Fi are independent copies of a measurable càdlàg process {F (t), t ∈
R}. Restricting the class of possible shape distributions F makes the M3 representation unique and the constant
CF is well-defined. Efficient simulation of ξW relies on equality (6), see [26], and the unknown constant CF
has to be estimated numerically for this purpose. Surprisingly, it turns out that CF is in fact equal to the
Dieker–Yakir constant (3). Since the latter equals the Pickands constant HW under conditions derived in this
paper, this also holds for CF . Similar results are also shown for the discretized versions HδW and CδF . This
underlines the connection between max-stable processes and classical asymptotic theory of Gaussian processes.
As a side product of our results, we derive a new M3 representation based on the recent work by [17] that might
be of independent interest.
The objective of this paper is twofold. On the one hand, we consider generalized Pickands constants HδW in
(2), where W is replaced by more general stochastic processes than fractional Brownian motions, which are not
necessarily Gaussian. We are then interested in finding conditions for the existence and positiveness of the limit
in (2), and in deriving equivalent representations of these constants. More precisely, we show that for W chosen
such that ξW is max-stable and stationary, generalized Pickands constants can be defined in (0,∞), and, most
notably, that they admit a Dieker–Yakir type representation (3) under certain conditions. On the other hand,
we explore the connection between mixed moving maxima processes and generalized Pickands constants. Our
findings are beneficial for both the theory of extremes of max-stable stationary processes, and the asymptotic
theory of random processes.
The paper is organized as follows. In Section 2 we introduce generalized Pickands constants HδW and give
conditions under which they admit a Dieker–Yakir type representation. Examples for the process W will be
general Gaussian processes with stationary increments and Lévy processes. In Section 3 we show that the
Dieker–Yakir constant (3) conincides with the constant CF in the intensity of the classical M3 representation
(7). Combining the results of Sections 2 and 3, a new representation of Pickands constants HδW is provided in
Section 3. This link gives a simple proof of the positivity of generalized Pickands constants. All proofs are given
in Section 5. The Appendix comprises some facts on discrete mixed moving maxima representations which are
needed in Section 3.

2. Generalized Pickands constants

Let {B(t), t ∈ R} be a stochastic process with sample paths in the space D of càdlàg functions f : R→ R with
B(0) = 0 and finite E

{
eB(t)

}
<∞, for all t ∈ R. We introduce the drifted process

W (t) = B(t)− lnE
{
eB(t)

}
, t ∈ R(8)

and note that it satisfies E
{
eW (t)

}
= 1. We can therefore define the corresponding max-stable process ξW by

the construction (6) which has standard Gumbel margins. Hereafter we shall assume that W is chosen such that
the process ξW is stationary and has càdlàg sample paths; see Proposition 6 in [20] for a general stationarity
criterion.
Next, for the process W on the grid δZ for δ ≥ 0 we introduce the generalized Pickands constant as

HδW = lim
T→∞

1

T
E

{
sup

t∈δZ∩[0,T ]

eW (t)

}
.(9)



GENERALIZED PICKANDS CONSTANTS AND STATIONARY MAX-STABLE PROCESSES 3

The existence of the expected value in (9) when δ = 0 follows from the assumption that ξW has càdlàg sample
paths, since then for some large z > 0

0 < P

(
sup
t∈[0,T ]

ξW (t) ≤ z

)
= exp

(
−e−zE

{
sup
t∈[0,T ]

eW (t)

})
.

However, the existence and finiteness of the limit (9) is not obvious. In the sequel of the paper, we investigate:

a) the existence of the constant HδW ,
b) its finiteness and positivity,
c) equivalent representations that can for instance be used for efficient approximations.

In Section 2.1 we discuss question a) in a general setting. For question b) and c) we will concentrate on two
important examples for W such that the above assumptions are satisfied. In Section 2.2 we consider the general
Gaussian case, where

� B is a sample continuous centered Gaussian process with stationary increments and variance function
σ2(t), t ∈ R. With

W (t) = B(t)− σ2(t)/2, t ∈ R
the process ξW is max-stable and stationary. Its law depends only on the variogram γ(t) = Var(B(t)−
B(0)) and we can therefore assume without loss of generality that W (0) = 0; see [20, 22] for details.

The generalized Pickands constant can also be defined for non-Gaussian processes. In Section 2.3 we investigate
the case where

� {B(t), t ≥ 0} is a Lévy process such that Φ(θ) = lnE
{
eθB(1)

}
is finite for θ = 1 and set

W (t) = B(t)− Φ(1)t, t ≥ 0.

If {W (t), t ≤ 0} is defined as an exponentially transformed version of the corresponding {W (t), t ≥ 0},
then ξW can be shown to be stationary and max-stable; see [27, 28] for details.

Clearly, these are not the only examples. For instance, in the Gaussian case, a slight generalization is to
introduce an independent mixing random variable S > 0 and taking W (t) = SB(t) − S2σ2(t)/2 in (8). We
retrieve the variance-mixed Brown–Resnick process ξW , which is both max-stable and stationary [29, 30].

2.1. Existence and positivity of HδW . In order to prove the existence of the generalized Pickands constant
HδW we do not need any further assumptions on the process W . In fact, the stationarity of the process ξW and
the existing theory of max-stable processes are sufficient to give an immediate answer to a) and partially to b)
above. Indeed, for any compact E ⊂ R we define HW (E) = E

{
supt∈E e

W (t)
}

and observe that

− lnP
{

sup
t∈E

ξW (t) ≤ x
}

= HW (E)e−x, x ∈ R.(10)

Consequently, by stationarity of ξW for any a ∈ R, we have HW (a+E) = HW (E), where a+E := {a+x : x ∈ E}.
Since for any disjoint, non-empty compact sets E1, E2 ⊂ R

HW (E1 ∪ E2) = E
{

sup
t∈E1∪E2

eW (t)

}
≤ E

{
sup
t∈E1

eW (t)

}
+ E

{
sup
t∈E2

eW (t)

}
= HW (E1) +HW (E2),

the set-function HW (·), restricted on the sets δZ ∩ [0, T ], T > 0, is subadditive and by Fekete’s Lemma

HδW = lim
T→∞

HW (δZ ∩ [0, T ])

T
= inf
T>0

HW (δZ ∩ [0, T ])

T
∈ [0,∞).(11)

Therefore, the limit in (9) as T →∞ exists and is finite. Furthermore, in the case that δ > 0, (11) immediately
implies HδW ≤ 1/δ.
The following lemma is crucial for investigating the structure of HδW and establishing Dieker–Yakir type repre-
sentations. It extends Lemma 5.2 in [17], where it was considered for the case that W (t) = B(t)− σ2(t)/2 with
B a centered Gaussian process with stationary increments and variance function σ2.

Lemma 2.1. Suppose that W is such that the process ξW in (6) is max-stable and stationary, and W (t0) = 0
for some t0 ∈ R. If Γ is a Borel measurable, positive functional on D that is invariant under addition of any
constant function, then, given that the expectations below exist,

E
{
eW (t0+t)Γ(W )

}
= E {Γ(θtW )} , t ∈ R,(12)

where θt is the shift operator, that is, θtW (s) = W (s− t).

An application of equation (12) yields a way of rewriting the expectation in (9); see Corollary 2 in [1].
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Lemma 2.2. If µ is the Lebesgue measure on R or the counting measure on (kδ)Z ∩ [0, T ] with k ∈ N, δ > 0,
then

1

T
E

{
sup

t∈δZ∩[0,T ]

eW (t)

}
=

∫ 1

0

E

{
sups∈δZ∩[−uT,(1−u)T ] e

W (s)∫ (1−u)T

−uT eW (s)µ(ds)

}
µT (du),(13)

with µT (du) = µ(Tdu)/T, T > 0.

Using the result of Lemma 2.2, we establish a Dieker–Yakir representation of HδW for δ > 0 and then show that
HδW is strictly positive for δ ≥ 0.

Theorem 2.1. Let W be such that the corresponding max-stable Brown–Resnick process ξW is stationary and
has càdlàg paths. If for a given δ > 0 we have that P

{
Sδ <∞

}
= 1, then with M δ, Sδ defined in (4), we have

HδW = E
{
Mδ

Sδ

}
> 0.(14)

Further, if δ ≥ 0 and η = kδ for some k ∈ N, then

HδW ≥ E
{
Mδ

Sη

}
> 0.(15)

The restriction δ > 0 in (14) is somehow unsatisfactory. Moreover, it is of interest to have equality in (15)
for large classes of processes W . In the sequel we therefore consider two important special cases where we can
strengthen the above results to

HδW = E
{
Mδ

Sη

}
∈ (0,∞), δ = 0, η ≥ 0 or δ > 0, η = kδ, k ∈ N,(16)

which is motivated by the findings of [1] for W (t) =
√

2Bα(t)− |t|α. Therein (16) is shown if W is a fractional
Brownian motion and δ = 0, η > 0 or δ = η > 0.

2.2. Gaussian case. First, we consider the case where W (t) = B(t) − σ2(t)/2, with B a centered, sample
continuous Gaussian process that has stationary increments, variance function σ2 and W (0) = 0 almost surely.
In view of [20], the corresponding ξW is max-stable and stationary. In order to apply Theorem 2.1 we have to
ensure that Sδ <∞ almost surely. To this end, we shall impose the assumption that

lim inf
|t|→∞

σ2(t)

ln t
> 8,(17)

which by Corollary 2.4 in [31] implies

lim
|t|→∞

W (t) = −∞.(18)

Theorem 6.1 in [32] then yields that Sδ < ∞ almost surely. Consequently, under (17) and by Theorem 2.1 we
obtain both the positivity and Dieker–Yakir representation of HδW , δ > 0.
In order to deal with the case δ = 0, we need slightly stronger conditions on σ2, namely we shall assume that
there is an ultimately monotone, non-decreasing function ` : [0,∞)→ [0,∞) and a constant c ∈ (0, 1] such that
for all t large

c`(t) ≤ σ2(t) ≤ `(t), where lim
t→∞

`(t)

`(t+ k)
= 1, ∀k ∈ N,(19)

holds. Clearly, (19) is satisfied for σ2 being a regularly varying function with index α > 0. Note in passing that
the stationarity of increments implies that α ≤ 2, see also Lemma 2.1 in [31] for the existence of such Gaussian
processes.

Theorem 2.2. Let W be a Gaussian process as above whose variance function σ2 satisfies condition (19) with
c ∈ (0, 1] such that c2 + 8c− 8 > 0. If further

lim inf
t→∞

`(t)

ln t
>

8

c2 + 8c− 8
,(20)

then the generalized Pickands constant HδW possesses a Dieker–Yakir representation

HδW = E
{
Mδ

Sη

}
∈ (0,∞),(21)

which is valid for δ = 0 and η ≥ 0, or δ > 0 and η = kδ, k ∈ N.
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Remark 2.3. a) Conditions (19) and (20) are much weaker than the assumption that σ2 is regularly
varying at infinity. In [33] the positivity and finiteness of H0

W is shown under the two conditions C1
and C2 therein, which imply that σ2 is a smooth, regularly varying function at both infinity and zero.

b) Note that if c = 1, then (20) agrees with (17).

2.3. Lévy case. In [28], the so-called Lévy–Brown–Resnick processes were introduced as ξW , where W is
constructed from two independent Lévy processes. More precisely, suppose that {B+(t), t ≥ 0} is a Lévy
process such that its Laplace exponent Φ(θ) = lnE

{
exp
(
θB+(1)

)}
is finite for θ = 1. Define −W− to be the

exponentially tilted version (with tilting parameter θ = 1) of

W+(t) = B+(t)− Φ(1)t, t ≥ 0,

that is, the Laplace exponent of W− is

lnE
{
eθW

−(1)
}

= Φ(1− θ)− (1− θ)Φ(1).

For two independent processes W+ and W− we define W (t) = W+(t), t ≥ 0, and W (t) = W−(−t) if t < 0.
With this definition the corresponding process ξW is indeed max-stable and stationary; for details see [28] and
[34]. We remark that in this construction there are no further requirements on the mean of the Lévy process
and it might for instance be −∞.
In the case where B+ is a spectrally negative Lévy process, [28] computed the extremal index of the correspond-
ing max-stable process ξW explicitly. In view of (5), this index coincides with Pickands constant of the process
B+, and it is therefore given as

H0
W = Φ′(1).

For more general examples than spectrally negative Lévy processes, we show below that the Pickands constant
HW in the Lévy case possesses a Dieker–Yakir type representation. In fact, by [28] it follows that the conditions
of Theorem 2.1 are satisfied and thus HδW exists and is strictly positive. In what follows we suppose that B+

is not a compound Poisson process that has δZ as the support of the jump distribution.

Theorem 2.3. Let B+(t), t ∈ [0,∞) and W (t), t ∈ R be as above.
(1) If E

{
e(2+ε)|W (1)|} <∞ and E

{
e(2+ε)|W (−1)|} <∞ for some ε > 0, then

H0
W = E

{
M0

S0

}
∈ (0,∞).(22)

(2) If E
{
e(1+ε)|W (1)|} <∞ and E

{
e(1+ε)|W (−1)|} <∞ for some ε > 0, then

HδW = E
{
Mδ

Sη

}
∈ (0,∞), δ = 0, η > 0 or δ > 0, η = kδ, k ∈ N.(23)

Remark 2.4. a) Theorem 2.3 holds if both the left and the right tail probability of W (1) is sufficiently
light; for example if Φ(θ) <∞ for θ ∈ (−2−ε, 3+ε) for scenario (1) and θ ∈ (−1−ε, 2+ε) for scenario
(2). We conjecture that the claim of Theorem 2.3 is true under weaker assumptions on W .

b) Discrete Pickands-type constants appeared already in [35], see for more details Lemma 5.6 therein.
c) In [36] an alternative representation of the classical Pickands constants is derived heuristically.
d) Pickands constants related to semi-min-stable processes are recently calculated in [37].

3. Mixed moving maxima processes and Dieker–Yakir constants

In this section we introduce a new mixed moving maxima (M3) representation for a general stationary max-
stable process ξW , inspired by a construction in [17]. A normalizing constant appearing in this construction
turns out to be equal to the Dieker–Yakir constant in (3), and we show that it coincides with the constant
arising in the classical M3 representation.
As in the previous section, let W with W (0) = 0 a.s. be a càdlàg process such that the corresponding ξW
is max-stable and stationary. We recall from the introduction that the process ξW is said to admit an M3
representation if

ξW (t)
d
= max

i≥1
(Pi + Fi(t− Ti)), t ∈ R,(24)

with
∑∞
i=1 ε(Pi,Ti) a Poisson point process in R2 with intensity CF e

−pdpdt, where CF ∈ (0,∞) is a suit-
able normalizing constant and the shape functions Fi’s are independent copies of a measurable càdlàg process
{F (t), t ∈ R}. The representation (24) is not unique since the distributional equality can hold for different
processes F and constants CF . The standard Gumbel margins of ξW directly imply that

CF =

(
E
{∫

R
exp(F (t)) dt

})−1

∈ (0,∞).(25)
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Throughout this section we assume that ξW possesses an M3 representation which amounts to assuming one of
the equivalent conditions below; for details see [32] and Theorem 2 in [38].

Condition 1. We assume that one of the following equivalent conditions holds:

(1) The max-stable process {ξW , t ∈ R} possesses an M3 representation.
(2) The process {W (t), t ∈ R} satisfies

lim
|t|→∞

W (t) = −∞, a.s.

(3) The process {W (t), t ∈ R} fulfills ∫
R
eW (t)dt <∞, a.s.

In applications, it is typically required that almost surely

sup
t∈R

eF (t) = 1, arg max
t∈R

F (t) = 0(26)

since then exact simulation of ξW is possible [39, Theorem 4]. Moreover, for any ξW satisfying Condition 1, there
is a unique M3 representation with shape distribution, say F , that satisfies assumption (26). The corresponding
normalizing constant CF plays a crucial role in the simulation of the process ξW but its numerical evaluation is
time intensive and the exact value is, apart from special cases, unknown [26].
This classical M3 representations with shape functions safisfying conditions (26) have the drawback that the
distribution of the corresponding shape function F is often complicated. Indeed, if W is a Brownian motion
or a Lévy process (cf., Sections 2.2 and 2.3), then the shape functions F correspond to the respective process
conditioned to stay negative [34, 40]. For non-Markov processes such as fractional Brownian motions there are
no known results.
We introduce a new, much simpler class of M3 representations, which might be of independent interest. It is
based on the result by [17] that if ξW is a Gaussian Brown–Resnick process, then for any probability measure
µ on R, it can be written in distribution as

ξW (t) = max
i≥1

(
Pi +Wi(t− Ti)− ln

∫
R
eWi(s−Ti)µ(ds)

)
, t ∈ R,(27)

where
∑∞
i=1 ε(Pi,Ti) is a Poisson point process in R2 with intensity e−pdpµ(dt), and Wi are independent copies

of W . As noted by a referee, Lemma 2.1 can be directly used to extend representation (27) to general stationary
max-stable processes ξW satisfying Condition 1 and, most notably, to arbitrary σ-finite measures µ on R.

Theorem 3.1. Suppose that ξW is a stationary max-stable process satisfying Condition 1. For any σ-finite
measure µ, ξW admits a representation of the form (27). In particular, choosing µ(dt) = CDMdt, for any
constant CDM > 0, yields a new M3 representation with

FDM (t) = W (t)− ln

(
CDM

∫
R
eW (s)ds

)
(28)

and normalizing constant CFDM = CDM .

We omit the proof of this theorem since in view of Lemma 2.1 it goes along the lines of the proof of Theorem
2.1 in [17]. Note that for the validity of (28) the assumption∫

R
eW (s)ds <∞ a.s.,

is in view of Condition 1 equivalent to the existence of the M3 representation. The choice of CDM is arbitrary
and in order to define a canonical Dieker–Mikosch M3 representation, we require E

{
supt∈R e

FDM (t)
}

= 1, or
equivalently

CDM = E
{

supt∈R e
W (t)∫

R e
W (t) dt

}
.(29)

The right-hand side is nothing else than the Dieker–Yakir constant appearing in (3). The following auxiliary
lemma provides a relation between the normalizing constants (25) of different M3 representations.

Lemma 3.1. Suppose that the process ξW has two different M3 representations (24) with shape functions F and
G, and corresponding constants CF and CG in the intensities. Then CFE

{
supt∈R e

F (t)
}

= CGE
{

supt∈R e
G(t)

}
,

that is,

E
{

supt∈R e
F (t)

}
E
{∫

R e
F (t) dt

} =
E
{

supt∈R e
G(t)

}
E
{∫

R e
G(t) dt

} .(30)

In particular, E
{

supt∈R e
F (t)

}
= E

{
supt∈R e

G(t)
}

implies CF = CG ∈ (0,∞).



GENERALIZED PICKANDS CONSTANTS AND STATIONARY MAX-STABLE PROCESSES 7

Since the shape functions of the classical and the new canonical Dieker–Mikosch M3 representation, F and
FDM , satisfy

E
{

sup
t∈R

eF (t)

}
= E

{
sup
t∈R

eFDM (t)

}
= 1

the above Lemma readily yields the main results of this section.

Theorem 3.2. The constant CDM , and therefore the Dieker–Yakir constant, conincides with normalizing con-
stant in the classical M3 representation with shape functions satisfying conditions (26), that is,

CF = CDM = E
{

supt∈R e
W (t)∫

R e
W (t) dt

}
.(31)

Let us remark that even though the normalizing constants in the classical and the new Dieker–Mikosch M3
representations are the same, the distribution of the respective shape functions F and FDM are in general
quite different. For instance, it seems impossible to apply a simple transformation on FDM in order to safisfy
conditions (26) and thereby to recover F . Indeed, taking the example of W being a Brownian motion with
drift, then FDM is a randomly shifted version of this process, but, on the other hand, F is a three-dimensional
Bessel process of drifted Brownian motion [40].

4. An alternative representation of Pickands constants

In the previous section we proposed a new M3 representation with normalizing constant equal to the Dieker–
Yakir constant, which turn out to be identical with the normalizing constant CF in the classical M3 represen-
tation (cf., Theorem 3.2). In this section we restate this results for any discretization level δ ≥ 0; an proof is
provided in the Appendix. Most importantly, together with the results established in Section 2, in many cases
we can identify CF with the Pickands constant H0

W .
Since we are also interested in the case δ > 0, we show in the Appendix how to derive an M3 representation for
the discretized process ξδW = {ξW (t), t ∈ δZ}, with shape functions F δ and constant

CδF =

(
E
{∫

δZ
eF

δ(t)νδ(dt)

})−1

∈ (0,∞), δ > 0.

Here, νδ/δ for δ > 0 is the counting measure on δZ, and ν = ν0 is the Lebesgue measure. In the sequel the
superscript is omitted if it is 0, for instance we write CF and HW instead of C0

F and H0
W , respectively.

Proposition 4.1. If ξδW possesses an M3 representation, then for any δ ≥ 0

0 < CδF = E
{
Mδ

Sδ

}
≤ HδW .(32)

In particular, in this case the Pickands constant Hδ
W is strictily positive. Moreover, if the conditions in Theorem

2.1 ,2.2 or 2.3 on W and δ are satisfied, then CδF = HδW .

Remark 4.2. If ξW possesses an M3 representation, then (14) and (32) imply for any δ > 0

HW = H0
W ≥ HδW = CδF > 0.

Except for few special cases, the exact value of Pickands constant is unknown. There are several attempts to
assess its value by Monte Carlo simulation, most notably via the recent Dieker–Yakir representation in [1]. The
above Proposition states that the simulation problem of Pickands constant HδW is equivalent to the problem
of evaluating constants CδF , which are needed for simulation of max-stable processes, provided that ξW admits
an M3 representation and the Dieker–Yakir representation for HδW holds. This is a fruitful observation since
there is active research on the simulation of max-stable processes [17, 41] and even of the constant CδF [26]. We
conclude this section with three examples.

Example 4.3. If W (t) =
√

2Zt − t2, t ∈ R, where Z is an N(0, 1) random variable it is known [32] that ξW
has an M3 representation with deterministic shape functions

F (t) = −t2, t ∈ R.
Thus

CF =
(∫

R
e−t

2

dt
)−1

=
1√
π
,

and consequently, by Theorem 2.2 and Remark 4.2 we recover the well-known fact HW = 1/
√
π.

If W (t) =
√

2B(t)− |t| , t ∈ R, where B is a standard Brownian motion, then it follows by [40] that ξW has an
M3 representation whose shape functions F are given by a three-dimensional Bessel process and that CF = 1.
Thus, again by Theorem 2.2 and Remark 4.2 we recover HW = CF = 1, see e.g., [42].
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Example 4.4. Suppose that W is a sample continuous Gaussian process with stationary increments that fulfills
the assumptions of Theorem 2.2. Since in this case (17) holds and thus Condition 1 is satisfied, ξW admits an
M3 representation. Finding an explicit form for the corresponding shape distribution F is an open problem in
the general case, with the exception of the two special cases in the previous example. Nevertheless, Theorem 2.2
and Proposition 4.1 imply that HδW is positive for any δ > 0 and

CδF = HδW .

Furthermore, we have

lim
δ↓0

CδF = CF = HW = E
{
M0

S0

}
.

Example 4.5. If W is as in Section 2.3, [34] shows that the Lévy-Brown–Resnick process ξW admits an M3
representation where the constant CF is explicitly given by

CF =
k(0, 1)

k′(0, 0)
> 0,

where k is the bivariate Laplace exponent of the descending ladder process corresponding to W . In particular,
this implies that for δ = 0 by Proposition 4.1 HW ≥ CF and thus

HW ≥
k(0, 1)

k′(0, 0)
> 0.(33)

In order to have equality in the equation above, it is sufficient that the process W satisfies the conditions of
Theorem 2.3, since then

HW = E
{
M0

S0

}
= CF .

5. Proofs

Proof of Lemma 2.1: It is well-known that the stationarity of ξW is equivalent to the fact that for arbitrary
h ∈ R the two Poisson point processes {Ui +Wi : i ∈ N} and {Ui + θhWi : i ∈ N} on D have the same intensity;
see [20]. The latter holds if and only if for any Borel subset A∫

R
e−uP {u+W ∈ A} du =

∫
R
e−uP {u+ θhW ∈ A} du.

Let B ⊂ D be a shift-invariant Borel set in the sense that B + x = B for any x ∈ R, and recall that W (t0) = 0
almost surely. Consequently, for any h ∈ R we have

E
{
eW (t0+h)1{W ∈ B}

}
= E

{∫
R
e−u1{u+W (t0 + h) > 0}1{W ∈ B}du

}
=

∫
R
e−uP {u+W (t0 + h) > 0, u+W ∈ B} du

=

∫
R
e−uP {u+W (t0) > 0, u+ θhW ∈ B} du

=

∫
R
e−u1{u > 0}P {u+ θhW ∈ B} du

= P {θhW ∈ B} .

Furthermore, the above readily extends to Borel measurable, positive functionals Γ on D that are invariant
under addition of a constant function and, thus, the assertion follows. �
Proof of Lemma 2.2: Define the translation invariant functional

Γ(f) =
sups∈δZ∩[0,T ] e

f(s)∫ T
0
ef(s)µ(ds)

, T > 0.

Clearly, we have that for any t ∈ (kδ)Z

Γ(θtf) =
sups∈δZ∩[0,T ] e

f(s−t)∫ T
0
ef(s−t)µ(ds)

=
sups∈δZ∩[−t,T−t] e

f(s)∫ T
0
ef(s−t)µ(ds)

=
sups∈δZ∩[−t,T−t] e

f(s)∫ T−t
−t ef(s)µ(ds)

,
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where the last equality follows by the translation invariance of µ. Hence, as in the proof of Corollary 2 in [1] a
direct application of Lemma 2.1 yields

1

T
E

{
sup

t∈δZ∩[0,T ]

eW (t)

}
=

1

T

∫ T

0

E

{
eW (t)

sups∈δZ∩[0,T ] e
W (s)∫ T

0
eW (s)µ(ds)

}
µ(dt)

=
1

T

∫ T

0

E
{
eW (t)Γ(W )

}
µ(dt)

=
1

T

∫ T

0

E {Γ(θtW )}µ(dt)

=
1

T

∫ T

0

E

{
sups∈δZ∩[−t,T−t] e

W (s)∫ T−t
−t eW (s)µ(ds)

}
µ(dt).

Consequently, (13) follows by changing the variable t = uT . �
Proof of Theorem 2.1: Let first η = δ > 0, then if λδ denotes the counting measure on δZ, then applying
(13) with µ = λδ and T > 0 we obtain

1

T
E

{
sup

t∈δZ∩[0,T ]

eW (t)

}
=

∫ 1

0

E

{
sups∈δZ∩[−uT,(1−u)T ] e

W (s)

δ
∫ (1−u)T

−uT eW (s)µ(ds)

}
δµT (du).

By the assumption that Sδ = δ
∫
R e

W (s)µ(ds) <∞ it follows that sups∈δZ e
W (s) <∞ and lim|n|→∞,n∈ZW (nδ) =

−∞ almost surely. Hence the almost sure convergence

gT,δ(u) =
sups∈δZ∩[−uT,(1−u)T ] e

W (s)

δ
∫ (1−u)T

−uT eW (s)µ(ds)
→

sups∈δZ e
W (s)

δ
∫
R e

W (s)µ(ds)
= Qδ ≤

1

δ
, T →∞

holds for any u ∈ (0, 1). Clearly, the above convergence remains true if we replace u by a sequence uT , T > 0
such that limT→∞ uT = u ∈ (0, 1). Since for any u ∈ (0, 1), T > 0 we have gT,δ(u) ≤ 1/δ we obtain for any
u ∈ (0, 1) by dominated convergence

lim
T→∞

E {gT,δ(uT )} = E {Qδ} .

Since δµT converges weakly to the Lebesgue measure as T →∞, Theorem 5.5 in [43] implies that

HδW = lim
T→∞

∫ 1

0

E {gT,δ(u)} δµT (du) =

∫ 1

0

E {Qδ} du = E {Qδ}

establishing the first claim in (14).
Next, if µ = λη with η = kδ, k = 0, 1, . . . , or η > 0, δ = 0, by (13) and Theorem 1.1 in [44] for any
u ∈ (0, 1), T > 0

HδW = lim
T→∞

∫ 1

0

E {gT,η(u)} νTη (du)

≥
∫ 1

0

lim inf
T→∞,v→u

E {gT,η(v)} du

≥
∫ 1

0

E
{

lim inf
T→∞,v→u

gT,η(v)

}
du

= E {Qη} > 0,

hence (15) follows. �
Proof of Theorem 2.2: Our assumptions on σ2 imply that (17) holds, and thus δ

∑
t∈δZ e

W (t) < ∞ almost

surely for any δ ≥ 0. Recall that we interpret δ
∑
t∈δZ e

W (t) as
∫
R e

W (t) dt when δ = 0. Consequently, for any
δ, η ≥ 0, we have the almost sure convergence

Rδ,ηu,T =
M δ[−uT, (1− u)T ]

Sη[−uT, (1− u)T ]
:=

sups∈δZ∩[−uT,(1−u)T ] e
W (s)

η
∑
s∈ηZ∩[−uT,(1−u)T ] e

W (s)
→

sups∈δZ e
W (s)

η
∑
s∈ηZ e

W (s)
∈ (0,∞)(34)

for all u ∈ (0, 1), T → ∞. Together with (13), the claim of the theorem therefore follows if we can show the
uniform integrability

lim
A→∞

sup
T>0

sup
u∈(0,1)

E
{
Rδ,ηu,T ;Rδ,ηu,T > A

}
= 0.
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In order to give a self-contained proof (which follows along the same ideas as in [1]) we introduce the same
notation as therein. Namely, we let aj = j and we define

Jj = [aj , aj+1), J−j = (−aj+1,−aj ], Sηj = η
∑

k:ηk∈Jj

eW (ηk), Mη
j = sup

k:ηk∈Jj
eW (ηk),

with Sη,Mη as in (4). Note that in the aforementioned paper our W corresponds to Z.
Fix some λ > 0 and define Wλ(t) = W (λ

⌊
t/λ
⌋
), t > 0, and Wλ(t) = W (λ

⌈
t/λ
⌉
) otherwise. We have

Mλ
j

Sλj
≤ 1

λ
,

M δ
j

Mλ
j

= e
sups∈Jj W

δ(s)−sups∈Jj W
λ(s) ≤ esups∈Jj |W δ(s)−Wλ(s)|

and

Sλj
Sηj

=

∫ aj+1

aj
eW

λ(t)−Wη(t)eW
η(t) dt∫ aj+1

aj
eWη(t) dt

≤ esups∈Jj |Wη(s)−Wλ(s)|.

On the event {M δ = Mδ
j } for some j ∈ Z we have (assume that uT, (1− u)T ∈ Z)

Rδ,ηu,T ≤
Mδ
j

Sηj
=
Mλ
j

Sλj

M δ
j

Mλ
j

Sλj
Sηj

≤ 1

λ
e

sups∈Jj |Bδ(s)−Bλ(s)|+sups∈Jj |Bη(s)−Bλ(s)|+κλ(j)
=: Rδ,ηu,T (j),(35)

where B(t) = W (t) + σ2(t)/2 is a centered Gaussian process and

κλ(j) := sup
s∈Jj

∣∣V ar(W (s))− V ar(Wλ(s))
∣∣ .

Since Mδ[−uT, (1− u)T ] ≥ 1, we have

E
{
Rδ,ηu,T ;Rδ,ηu,T > A

}
=

∑
j∈Z

E
{
Rδ,ηu,T ;Rδ,ηu,T > A,M δ

j = M δ
}

≤ E
{
Rδ,ηu,T ;Rδ,ηu,T > A,M δ

0 = M δ
}

+ 2
∑
j≥1

E
{
Rδ,ηu,T (j);Rδ,ηu,T (j) > A,M δ

j ≥ 1
}

≤ E
{
Mδ

0/S
η
0 ;Mδ

0/S
η
0 > A

}
+ 2

∑
j≥1

E

{
Rδ,ηu,T (j);Rδ,ηu,T (j) > A, sup

s∈Jj
Bδ(s) ≥ inf

s∈Jj
σ2(δbs/δc)/2

}
=: E

{
Mδ

0/S
η
0 ;Mδ

0/S
η
0 > A

}
+ 2

∑
j≥1

πj(A).

In the following C > 0 may change from line to line. Since E
{
Mδ

0/S
η
0

}
<∞, then

lim
A→∞

E
{
M δ

0/S
η
0 ;M δ

0/S
η
0 > A

}
= 0.

For all t, s ∈ Jj and by (19) for all aj large enough, by the monotonicity of `

inf
s∈Jj

σ2(δbs/δc)/2 ≥ c`(δbaj/δc), sup
s∈Jj

V ar(Bδ(s)) ≤ `(δb(aj + 1)/δc).

Since for all j ∈ Z

E

{
sup
s∈Jj

Bδ(s)

}
= E

{
sup
s∈Jj

[Bδ(s)−Bδ(j) +Bδ(j)]

}

= E

{
sup
s∈[0,1]

(Bδ(s+ j)−Bδ(j))

}
≤ C,

where the last inequality is consequence of

sup
s∈[0,1]

V ar(Bδ(s+ j)−Bδ(j)) = sup
s∈[0,1]

σ2(δ[b(s+ j)/δc − bj/δc]) < C,
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then by Borell-TIS inequality, see e.g., [45]

P

{
sup
s∈Jj

Bδ(s) ≥ inf
s∈Jj

σ2(δbs/δc)/2

}
≤ P

{
sup
s∈Jj

Bδ(s) ≥ c`(δbaj/δc)/2

}

≤ C exp

(
(1− ε1)

c2`2(δbaj/δc)
8`(δb(aj + 1)/δc)

)
≤ C exp

(
−(1− ε2)

c2`(aj + 1)

8

)
for some ε1, ε2 positive arbitrary small and all j ≥ 1. Further, the fact that

sup
s∈Jj

V ar(Bδ(s)−Bλ(s)) = sup
s∈Jj

σ2(δbs/δc − λbs/λc) < C

for all j, that is, the variance is bounded implies (using again Borell-TIS inequality)

E
{
e
p sups∈Jj |Bδ(s)−Bλ(s)|} ≤ C

for any p > 1 and all j. Consequently, by the Hölder inequality for q = 1 + 1/(p−1) and ε > 0 sufficiently small

πj(A) ≤ 1

λ
eκλ(j)

(
E
{
e
p sups∈Jj |Bδ(s)−Bλ(s)|+p sups∈Jj |Bη(s)−Bλ(s)|})1/p

×

(
P
{
Rδ,ηu,T (j) > A

})1/(pq)(
P

{
sup
s∈Jj

Bδ(s) ≥ inf
s∈Jj

σ2(δbs/δc)/2

})1/q2

≤ C

(
P
{
Rδ,ηu,T (j) > A

})1/(pq)

exp

(
κλ(j)− (1− ε2)

c2`(aj + 1)

8q2

)
.

Further, by our assumptions on ` and c, for all j large and ε3 > 0 sufficiently small

κλ(j) = sup
s∈Jj

∣∣σ2(s)− σ2(λbs/λc)
∣∣

≤ max

(
`(aj + 1)− c`(λbaj/λc), `(λb(aj + 1)/λc)− c`(aj)

)
≤ (1− c+ ε3)`(aj + 1).

Choose q > 1 sufficiently close to 1. Then, by the assumption c2 + 8c− 8 > 0 and in view of (20), we can find
a constant B > 1 and take εi > 0, i ≤ 4, sufficiently small such that∑

j≥1

exp

(
κλ(j)− (1− ε2)

c2

8q2
`(aj + 1)

)
≤

∑
j≥1

exp

(
−
(

(1− ε2)
c2

8q2
− (1− c+ ε3)

)
`(aj + 1)

)
≤

∑
j≥1

exp
(
−(c2 + 8c− 8− ε4)`(aj)

)
≤

∑
j≥1

e−B ln aj =
∑
j≥1

1

aBj
<∞.

Consequently, as A→∞

∑
j≥1

πj(A) ≤
∑
j≥1

C

(
P
{
Rδ,ηu,T (j) > A

})1/(pq)
1

aBj
→ 0

establishing the proof. �
Proof of Theorem 2.3: The idea of the proof is similar to the proof of Theorem 2.2, with slight modifications
which we analyze below. We use the same notation as in the proof of the aforementioned theorem and focus on
the case that uT, (1− u)T ∈ Z.
Case η = 0. Since δ = 0 in this case, we set λ = 1 and observe that, on the event {Mδ = Mδ

j },

R0,0
u,T ≤ e

2 sups∈Jj |W (s)−W 1(s)| =: R̂0,0
u,T (j)
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and

E
{
R0,0
u,T ;R0,0

u,T > A
}
≤ E

{
R0,0
u,T ;R0,0

u,T > A,M0
0 = M0

}
+

∑
j∈Z\{0}

E
{
R̂0,0
u,T (j); R̂0,0

u,T (j) > A,M0
j ≥ 1

}
=: E

{
R0,0
u,T ;R0,0

u,T > A,M0
0 = M0

}
+

∑
j∈Z\{0}

π̂j(A).

As in the proof of Theorem 2.2 since E
{
M0

0 /S
0
0

}
<∞ we have

lim
A→∞

E
{
M0

0 /S
0
0 ;M0

0 /S
0
0 > A

}
= 0.

Thus we focus on an upper bound for π̂j(A). By the same argument as given in the proof of Theorem 2.2, for
any p > 1 and q = 1 + 1/(p− 1)

π̂j(A) ≤

(
E
{
e

2p sups∈Jj |W (s)−W 1(s)|})1/p(
P
{
R̂0,0
u,T (j) > A

})1/(pq)(
P

{
sup
s∈Jj

W (s) ≥ 1

})1/q2

.

Next, suppose that j ≥ 1. By (2.1) in [46] (see also Lemma 9.1 in [47]), for each u > u0 > 0

P

{
sup
s∈[0,1)

W (s) > u

}
≤ P {W (1) > u− u0}

P
{

infs∈[0,1)W (s) > −u0

}
and

P
{

inf
s∈[0,1)

W (s) < −u
}
≤ P {−W (1) > u− u0}

P
{

infs∈[0,1)−W (s) > −u0

} ,
which implies that

E
{
e

2p sups∈Jj |W (s)−W 1(s)|} = E
{
e2p sups∈[0,1)|W (s)|

}
≤ C1E

{
e2p|W (1)|

}
<∞(36)

for sufficiently small p > 1 and some C > 0.

In order to derive a tight upper bound for P
{

supt∈Jj W (t) > 1
}

, as j →∞, let us recall that W (t) = B+(t)−
Φ(1)t, for t ≥ 0, and observe that E {W (1)} = E {B+(1)− Φ(1)} < 0.
Let ε = 1

2 (Φ(1)−E {B+(1)}) > 0 and introduce the following Lévy process L(t) := W (t) + εt. It is straightfor-

ward to check that E {L(1)} < 0 and for ΦL(θ) := lnE
{
eθL(1)

}
we have

ΦL(0) = 0, Φ′L(0) = E {L(1)} < 0

and ΦL(1) = ε > 0. Hence, there exists 1 > γ > 0 such that ΦL(γ) = 0 and Φ′L(γ) < ∞. Now, following, e.g.,
Theorem 2.6 from [48]

P

{
sup
t∈Jj

W (t) > 1

}
≤ P

{
sup

t∈[0,∞)

(B+(t)− t(Φ(1)− ε)) > εj

}
≤ Ce−γεj(37)

for some C ∈ (0,∞) and all j ≥ 1. Therefore, combining (36) with (37), we get

lim
A→∞

∑
j≥1

π̂j(A) = 0.

The proof that limA→∞
∑
j≤−1 π̂j(A) = 0 follows by the same argument utisilzing further the fact that W (t) =

W−(−t) if t < 0, with

lnE
{
eθW

−(1)
}

= Φ(1− θ)− (1− θ)Φ(1).

Case η > 0. We set aj := ηj and observe that, on the event {Mδ = Mδ
j } (assume that uT, (1− u)T ∈ Z)

Rδ,ηu,T ≤
Mδ
j

Sηj
=
M δ
j

Mη
j

Mη
j

Sηj
≤ 1

η
e

sups∈Jj |W δ(s)−Wη(s)| ≤ 1

η
e

sups∈Jj |W (s)−Wη(s)|
.

The rest of the proof goes line by line the same as the proof of case η = 0, with the use of the fact that if η > 1,
then

E
{
ep|W (η)|

}
≤
(
E
{
ep|W (1)|

})dηe
.

This completes the proof. �
Proof of Proposition 4.1: For an M3 process as above, the finite dimensional distributions of ξδW for ti ∈
δZ, xi ∈ R, 1 ≤ i ≤ n, n ∈ N can be written as

− lnP
{
ξδW (t1) ≤ x1, . . . , ξ

δ
W (tn) ≤ xn

}
= CδFE

{∫
r∈R

max
j=1,...,n

exp
(
F δ(tj − r)− xj

)
νδ(dr)

}
.
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Since ξW has càdlàg paths by assumption, we have for any compact set E ⊂ R

− lnP
{

sup
t∈δZ∩E

ξδW (t) ≤ 0

}
= CδFE

{∫
δZ

sup
t∈δZ∩E

exp
(
F δ(t− r)

)
νδ(dr)

}
,

which, in view of equation (5), implies

HδW = lim
T→∞

CδF
T

E

{∫
δZ

sup
t∈δZ∩[0,T ]

exp
(
F δ(t− r)

)
νδ(dr)

}
.(38)

Set Tδ = T if δ = 0 and Tδ = δbT/δc otherwise. For any fixed T > 0

E

{∫
∈R

sup
t∈δZ∩[0,T ]

exp
(
F δ(t− r)

)
νδ(dr)

}
≥ E

{∫ 0

−Tδ
sup

t∈δZ∩[0,T ]

exp
(
F δ(t− r)

)
νδ(dr)

}
dr = Tδ,

since by the assumption supt∈δZ F
δ(t) = F δ(0) = 0 almost surely, for any r ∈ [−Tδ, 0] we have

sup
t∈δZ∩[0,T ]

exp
(
F δ(t− r)

)
= exp

(
F δ(0)

)
= 1.

Consequently,

HδW ≥ CδF lim
T→∞

Tδ
T

= CδF .

We show next (32) for δ = 0. Recall that we write CF instead of C0
F . Theorem 4.1 in [49] implies that the

process W with W (0) = 0 almost surely, can be obtained by the M3 representation in terms of the shape
function as

P {W ∈ L} = CF

∫
D

∫
R

1 {f(·+ s)− f(s) ∈ L} ef(s)dsPF (df),

where L is an arbitrary Borel subset of D. Consequently, for any PW -integrable functional Γ : D → R we have

E {Γ(W )} = CF

∫
D

∫
R

Γ(f(·+ s)− f(s))ef(s)dsPF (df).

Let now Γ be given by the mapping (on a suitable subspace of D with full PW measure)

f 7→
supt∈R e

f(t)∫
R e

f(t)dt
,

and observe

E
{

supt∈R e
W (t)∫

R e
W (t)dt

}
= CF

∫
D

∫
R

supt∈R e
f(t+s)−f(s)∫

R e
f(t+s)−f(s)dt

ef(s)dsPF (df)

= CF

∫
D

∫
R

ef(s)∫
R e

f(t+s)dt
dsPF (df)

= CF ∈ (0,∞),

where the second last equality follows from the assumption that supt∈R F (t) = 0 a.s. In the case δ > 0 we can
use the same arguments together with Theorem 6.1. �

Proof of Lemma 3.1: Let
∑∞
i=1 ε(Pi,Ti) and

∑∞
i=1 ε(P̃i,T̃i)

be Poisson point processes on R2 with intensity

CF e
−pdpdt and CGe

−pdpdt, respectively. Since, by assumption, the processes {maxi≥1(Pi + Fi(t− Ti)), t ∈ R}
and {maxi≥1(P̃i +Gi(t− T̃i)), t ∈ R} are equal in distribution, it follows that also the Poisson point processes
ΠF = {Pi +Fi(t− Ti), i ∈ N} and ΠG = {Pi +Gi(t− Ti), i ∈ N} with values in the space D of càdlàg functions
have the same distribution. Applying the measurable mapping

f 7→ (sup f, arg sup f, f(· − arg sup f)− sup f)

to ΠF and ΠG yields two equally distributed Poisson point processes on R×R×D with intensity measures ΛF
and ΛG. We compute for z ∈ R and t1 < t2

ΛF ([z,∞)× [t1, t2]×D) = CF

∫
R
e−p

∫
R
P(p+ supF ≥ z, arg supF (· − t) ∈ [t1, t2])dpdt

= CFE
{∫

R
e−(z−supF )1{arg supF (· − t) ∈ [t1, t2])}dt

}
= CF e

−z(t2 − t1)E{esupF }.

By the same calculation for ΛG and the fact that the intensities are equal, the claim follows. �
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6. Appendix

The notion of a mixed moving maxima process on R defined in (24) can be extended to the lattice δZ; see for
instance Remark 7 in [26]. Suppose that {ξδW (t), t ∈ δZ} is a stationary max-stable process (with standard
Gumbel margins) given by the construction (6) with a process W , restricted to δZ. Further suppose that
W (0) = 0 almost surely and let F δi be independent copies of a process F δ on δZ with

sup
t∈δZ

F δ(t) = F δ(0) = 0

almost surely, and

CδF =

(
E

{∑
t∈δZ

exp(F δ(t))

})−1

∈ (0,∞).(39)

We say that ξδW admits an M3 representation, if

ξδW (t) = max
i≥0

(F δi (t− T δi ) + P δi ), t ∈ δZ,

where
∑∞
i=1 ε(P δi ,T δi ) is a Poisson point process with intensity CδF e

−pdpνδ(dt). Here νδ/δ is the counting measure

on δZ. Below we present the counterpart of Theorem 4.1 in [49] for M3 processes on lattices. We omit its proof
since it follows with the same arguments as the aforementioned one.

Theorem 6.1. Suppose that the max-stable and stationary process ξW has càdlàg sample paths. The process
W δ, δ > 0, the restriction of W to δZ, can be expressed in terms of the spectral function F δ as

P(W δ ∈ L) = CδFE

{∑
t∈δZ

1
{
F δ(·+ t)− F δ(t) ∈ L

}
exp(F δ(t))

}
,

which is well-defined probability measure by (39).
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