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Abstract. Reactive frames are those whose structure is not fixed but
can vary according to the path chosen. This kind of frame has been study
and both a logic and an axiomatization for it were already developed. In
this paper we take this study further and define a notion of bisimulation
for reactive models. We show that the logic introduced by Marcelino ([7])
for these frames is invariant under our notion of bisimulation. Finally,
we proof the Hennessy-Milner theorem for a class of reactive models.

1 Introduction and motivation.

The idea of a frame whose structure can vary is not new. In fact, in 2005, Johan
van Benthem publishes a seminal paper where introduces the sabotage logic (see
[4]). In this logic, it is possible to delete an edge from the Kripke frame. In the
opposite way, we can also consider the bridge logic where we can have new edges
being created. Also, in [1], C. Areces et al. introduce the swap logic where the
direction of an edge is swapped after cross it. More information about these
logics and other generalizations can be found in [2].

In this paper, we focus our attention in reactiveness of frames and in the
logic proposed by Gabbay and Marcelino in [7] for reactive frames.

Our motivation to study such models is due to its ability of modelling complex
biochemical phenomena. Biological processes as those occuring in vaccination
sugest that biological systems present, in some sense, “memory”. To present
and example of a system where reactiveness occurs we introduce the directed
enzyme prodrug therapy. In this procedure, the prodrug (usually a chemical
compound) has not effect by itself when administrated, however, some other
enzyme can interact with the prodrug in order to convert it in an active form
which will have therapeutic effect. This kind of procedure has been experimented
in the treatment of cancer: enzymes are addministrated and accumulate near the
cancerous cells. When the prodrug is administrated, it becomes extremely toxic
by reacting with the enzyme. Because of this, we can destroy the cancerous cells
marked by enzymes and still avoid the damage to general cells (see [3]).

In Figures 1. and 2., the existence of a double arrows from an edge a to to
an edge b indicates that the edge b must be deleted when the edge a is crossed.

Example 1. We call the prodrug system referred in [8] where the authors pro-
pose and test three enzymes to bind tumor cells and administrate a prodrug
afterwards. This experiment had promising results and a reactive model of it is
shown in Figure 1.
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Fig. 1. Prodrug system.

This example shows the importance of these models and why is it necessary
to have theoretical tools to study them. In this paper we study the concept of
bisimulation which is an important tool to study and reduce models.

2 A Logic to reactive frames.

We assume that the reader in familiarized with the concepts of modal logic,
Kripke models and bisimulation. Otherwise, see [6] for more information.

Definition 1. Let W be a set (of vertices). W ∗ denotes the set of all finite
sequences (paths) over elements from W .

Let ∆ ⊆W ∗ be a nonempty set of paths. (W,∆) is a reactive frame if (w) ∈ ∆
for any w ∈W and if (w1, ..., wn, wn+1) ∈ ∆ implies (w1, ..., wn) ∈ ∆.

Let λ = (w1, ..., wn), be a path. We simply write λw when referring to the
path (w1, ..., wn, w). Also, if no ambiguity arises, we denote by w1 the path (w1).

Given a set W and a set of paths ∆ ⊆W ∗ (of finite length, always), we define
the function t : ∆→W by t(λ) = t(w1, ..., wn) = wn.

Definition 2. Let Π be a set of propositions and X ⊆ Π. A X-reactive model is
triple (W,∆, V ) where (W,∆) is a reactive frame and V : Π → 2∆ is a function
such that V (p)(λ) = V (p)(t(λ)) for any p ∈ X,λ ∈ ∆.

The set X contains the variables whose validity depend exclusively on the
last world of the path. Next, we introduce the syntax and the semantics of the
logic for reactive frames and some concepts which will be needed further.

Definition 3. Let (W,∆) be a reactive frame. Let R ⊆ ∆ ×∆ be a relation of
paths defined as R = {(λ, λw) : w ∈W}. Also, we define the relation P ⊆ ∆×∆
as P = {(λ, γ) : t(λ) = t(γ)}. Given a set Π of proposition, we define the set
of Lr-formulas by the least set containing Π and such that, for any formulas ϕ
and ψ, ¬ϕ, ϕ ∨ ψ, ♦Rϕ and ♦Pϕ are formulas.



Definition 4. We define the validity of a Lr-formula ϕ for a X-reactive model
M at λ ∈ ∆ and denote it by M,λ �X ϕ recursively as:

– M,λ �X p iff λ ∈ V (p)
– M,λ �X ¬ϕ iff M,λ 2X ϕ
– M,λ �X ϕ ∨ ψ iff M,λ �X ϕ or M,λ �X ψ
– M,λ �X ♦Rϕ iff ∃w ∈W (M,λw �X ϕ and λw ∈ ∆)
– M,λ �X ♦Pϕ iff ∃γ ∈ ∆ (M,γ �X ϕ and t(λ) = t(γ)

We note that, if ϕ ∈ X, then M,λ �X ϕ⇔M, (t(λ)) �X ϕ

3 Bisimulation for reactive-models

In this section, we define the bisimulation for reactive models and prove the
semantical equivalence between bisimular states.

Definition 5. Let (W,∆, V ) and (W ′, ∆′, V ′) be reactive models. We say that
a relation S ⊆ ∆ × ∆′ is a bisimulation if and only if ∀λ ∈ ∆,∀λ′ ∈ ∆′ such
that (λ, λ′) ∈ S:

atom: V (p)(λ) = V ′(p)(λ′), for all p ∈ Π
R-zig: ∀w ∈W (λw ∈ ∆⇒ ∃w′ ∈W ′, λ′w′ ∈ ∆′ such that (λw, λ′w′) ∈ S)
R-zag: ∀w′ ∈W ′(λ′w′ ∈ ∆′ ⇒ ∃w ∈W,λw ∈ ∆ such that (λw, λ′w′) ∈ S)
P -zig: ∀γ ∈ ∆(t(λ) = t(γ)⇒ ∃γ′ ∈ ∆′

(
t(λ′) = t(γ′) and (γ, γ′) ∈ S)

)
P -zag: ∀γ′ ∈ ∆′(t(λ′) = t(γ′)⇒ ∃γ ∈ ∆

(
t(λ) = t(γ) and (γ, γ′) ∈ S)

)
Example 2. In Figure 6, two bisimilar reactive models are shown. In fact, we can
verify that the following relation is a bisimulation:

{
(
(w1), (v1)

)
,
(
(w1, w2), (v1, v2)

)
,
(
(w2), (v2)

)
,
(
(w2, w3), (v2, v2)

)
,
(
(w4), (v1)

)
,(

(w4, w3), (v1, v2)
)
,
(
(w3), (v2)

)
,
(
(w3, w2), (v2, v2)

)
}

Fig. 2. Two bisimilar models.

A basic property of bisimulation is that it preserves validity. This is stated
in the following theorem.



Theorem 1. Let λ ∈ ∆,λ′ ∈ ∆′ and let S ⊆ ∆ × ∆′ be a bisimulation. Then
(λ, λ′) ∈ S implies M,λ �X ϕ⇔M ′, λ′ �X ϕ for any formula ϕ.

Proof. The proof is done via induction over formulas.
If ϕ ∈ Π, then M,λ �X ϕ⇔M ′, λ′ �X ϕ by definition of bisimulation.

M,λ �X ¬ϕ⇔M,λ 2X ϕ⇔M ′, λ′ 2X ϕ⇔M ′, λ′ �X ¬ϕ.

M,λ �X ϕ ∧ ψ ⇔M,λ �X ϕ and M,λ �X ψ
⇔M ′, λ′ �X ϕ and M ′, λ′ �X ψ ⇔M ′, λ′ �X ϕ ∧ ψ.

M,λ �X ♦Rϕ⇔ ∃w ∈W,λw ∈ ∆ and M,λw �X ϕ
⇔ ∃w′ ∈W ′, λ′w′ ∈ ∆′ and M ′, λ′w′ �X ϕ⇔M ′, λ′ �X ♦Rϕ.

M,λ �X ♦Pϕ⇔ ∃γ ∈ ∆, t(γ) = t(λ) and M,γ �X ϕ
⇔ ∃γ′ ∈ ∆′, t(γ′) = t(λ′) and M ′, γ′ �X ϕ⇔M ′, λ′ �X ♦Pϕ.

�

For the reciprocal of Theorem 1, we follow the idea of [2] in order to construct
a bisimulation which relates paths indistinguishable by Lr-formulas.

Definition 6. Let Σ be a set of formulas and (W,∆, V ) a X-reactive model.
Σ is satisfiable over a set of paths Λ ⊆ ∆ if there is a path λ ∈ Λ such that

λ �X ϕ for any ϕ ∈ Σ.
Σ is finitely satisfiable over a set of paths Λ ⊆ ∆ if, for any finite subset

Σ̄ ⊆ Σ, there is a path λ ∈ Λ such that λ �X ϕ for any ϕ ∈ Σ̄.
Consider a relation Z and let Zλ = {γ : λZγ}. A model is Z-saturated if,

for all λ, any set Σ is satisfiable over Zλ whenever Σ is finitely satisfiable over
Zλ.

Theorem 2. Let M and M ′ be two P -saturated and R-saturated cs-model. If
we define the relation S ⊆ ∆ ×∆′ such that (λ, λ′) ∈ S iff for any formula ϕ,
M,λ �X ϕ⇔M ′, λ′ �X ϕ. Then S is a bisimulation.

Proof. Let us now suppose that (λ, γ) ∈ R, for some γ ∈ ∆ and consider
Sat(γ) = {ϕ : M,γ �X ϕ}. Then, for each finite subset Σ′ ⊆ Sat(γ), we know
that M,λ �X ♦R

∧
ϕ∈Σ′ ϕ and, therefore, M ′, λ′ �X ♦R

∧
ϕ∈Σ′ ϕ. This means

that Sat(γ) is finitely satisfiable over Rλ′ and since M ′ is R-saturated, Sat(γ) is
satisfied over Rλ′ . Thus, exists a state γ′ such that (λ′, γ′) ∈ R and (γ, γ′) ∈ S.

Analogously, if (λ, λ′) ∈ S and (λ′, γ′) ∈ R, then there exists some w ∈ W
such that (λw, λ′w′) ∈ S.

Let us now suppose that (λ, γ) ∈ P , for some γ ∈ ∆ and consider Sat(γ) =
{ϕ : M,γ �X ϕ}. Then, for each finite subset Σ′ ⊆ Sat(γ), we know that
M,λ �X ♦P

∧
ϕ∈Σ′ ϕ and, therefore, M ′, λ′ �X ♦P

∧
ϕ∈Σ′ ϕ. This means that

Sat(γ) is finitely satisfiable over Pλ′ and since M ′ is P -saturated, Sat(γ) is
satisfied over Pλ′ . Thus, exists a state γ′ such that (λ′, γ′) ∈ P and (γ, γ′) ∈ S.

Analogously, if (λ, λ′) ∈ S and (λ′, γ′) ∈ P , then there exists some γ ∈ ∆
such that (λ, γ) ∈ P and (γ, γ′) ∈ S.

Finally, if (λ, λ′) ∈ S, then we can trivially verify that, ∀p ∈ Π, M,λ �X
p⇔M ′, λ′ �X p by definition.

�



We note that, without the condition that the models are R-saturated, this
theorem would be, in general, false. This result can be obtained from the coun-
terexample for the analogous theorem about standard Kripke frames which can
be found in [5].

4 Conclusion and future work

In this paper we continue the study of reactive frames in order to formalize and
provide tools to describe and characterize model with reactiveness. In particular,
we focused in the notion of bisimulation. Furthermore, we establish, under few
natural conditions, the complete Hennessy-Milner theorem.

This work gains importance due to the possibility of application in biochem-
ical systems as, for instance, those concerning Health and therapeutics.
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