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We study Dirac quasinormal modes of Schwarzschild–anti–de Sitter (Schwarzschild-AdS) black holes,
following the generic principle for allowed boundary conditions proposed in [M. Wang, C. Herdeiro, and
M. O. P. Sampaio, Phys. Rev. D 92, 124006 (2015).]. After deriving the equations of motion for Dirac fields
on the aforementioned background, we impose vanishing energy flux boundary conditions to solve these
equations. We find a set of two Robin boundary conditions are allowed. These two boundary conditions
are used to calculate Dirac normal modes on empty AdS and quasinormal modes on Schwarzschild-AdS
black holes. In the former case, we recover the known normal modes of empty AdS; in the latter case, the
two sets of Robin boundary conditions lead to two different branches of quasinormal modes. The impact
on these modes of the black hole size, the angular momentum quantum number and the overtone number
are discussed. Our results show that vanishing energy flux boundary conditions are a robust principle,
applicable not only to bosonic fields but also to fermionic fields.
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I. INTRODUCTION

Black holes (BHs) are often claimed to be the simplest
macroscopic bodies in Nature. This view arises from the
theoretical paradigm that BHs can be uniquely character-
ized by their mass, spin and charge—the no-hair conjecture
[1]. The first direct observations of gravitational waves,
recently reported [2–5], together with many other obser-
vations in the electromagnetic channel, are opening a new
era in testing strong gravity [6], and will, in time, provide
evidence for, or against, this paradigm.1

The aforementioned conceptual simplicity contrasts with
the technical complexity of BH physics. BHs are nonlinear
solutions of a highly nonlinear theory, and studying their
dynamical aspects is often a formidable challenge. In this
respect, perturbative methods are an important complement
to the large infratructure nonlinear numerics, and stand out
as a useful tool in studying the interactions between BHs
and fundamental test fields. Since the celebrated work by
Teukolsky [13], perturbation equations for different spin
fields have been obtained, which provide the foundations to
study various dynamical aspects, such as quasinormalmodes

and quasi-bound states. The former case is particularly
interesting—see, e.g. the reviews [14–16] and references
therein—since in asymptotically flat spacetimes it can be
used to test strong gravity in the gravitational wave era, while
in asymptotically AdS spacetimes it can be used to obtain the
timescale for the approach to thermal equilibrium.
Quasinormal modes of different spin fields on

Schwarzschild-AdS spacetimes have been studied exten-
sively, the scalar field being themost studied case [17–19]. In
the scalar case, the boundary condition taken requires the
scalar field itself to vanish at the asymptotic boundary. This
type of boundary condition was then generalized to study
quasinormal modes for theMaxwell, gravitational and Dirac
cases [20–23]. As we have pointed out in [24], however,
by taking the Maxwell field as an example, this scalarlike
boundary condition can not be applied to the Maxwell field,
when using the Teukolsky formalism, which is central to
separate perturbations on rotating BH backgrounds.2

To overcome this issue, and gain a more transversal
guiding principle, we have recently proposed a simple
perspective on the boundary conditions for quasinormal
modes in asymptotically AdS spacetimes. It follows the
idea that the AdS boundary may be viewed as a perfect
reflecting mirror in the sense that the energy flux vanishes
at the asymptotic boundary. As we have shown explicitly
by applying this principle to the Maxwell fields [24–27],
two families of boundary conditions are possible, yielding
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1Theoretically, there are many counterexamples to the no-hair

conjecture, see e.g. the reviews [7,8], including some hairy BHs
continuously connected to the Kerr solution [9,10] that may form
dynamically [11,12].

2In the Regge-Wheeler formalism, the scalarlike boundary
condition may miss one set of the modes.
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two branches of quasinormal modes. Moreover, the same
two branches are obtained for both the Regge-Wheeler and
the Teukolsky equations, showing the setup is consistent.
The physical principle we have proposed on boundary

conditions originates from the asymptotic AdS structure,
regardless of the spin of the perturbing field. As such, we
shall initialize a systematic study on Dirac field perturbations
in asymptotically AdS spacetimes, under vanishing energy
flux boundary conditions. Dirac quasinormal modes on
Schwarzschild-AdS BHs have been addressed in, e.g.
[22,23], wherein scalarlike boundary condition has been
imposed. Here, as the first paper of our study on Dirac fields
with the new boundary conditions, we focus on a massless
neutral Dirac field interactingwith a Schwarzschild-AdSBH.
To setup our study, we first present the Dirac equations

on Schwarzschild-AdS BHs, both by using the γ matrices
[28] method and by using the Teukolsky [13] approach.
Requiring the energy flux to vanish at the asymptotic
boundary, we then calculate the explicit boundary con-
ditions associated with the Dirac equations in the γ matrices
formalism. Similarly to the Maxwell case [24], we obtain
two sets of boundary conditions. These boundary con-
ditions are computed for both the R1 and R2 equations,
where R1 and R2 are the radial variables describing the two
degrees of freedom of the Dirac fields. The same quasi-
normal modes are obtained for both equations, by imposing
the corresponding boundary conditions. Furthermore, we
verify that the Dirac equations in the Teukolsky formalism
are simply related with the counterpart equations in the γ
matrices formalism. Based on this observation, one may
easily obtain the corresponding boundary conditions for
Dirac fields in the Teukolsky formalism. As expected, the
same quasinormal modes for Dirac fields may be obtained
using the two different formalisms.
The structure of this paper is organized as follows. In

Sec. II we introduce the Schwarzschild-AdS geometry and
derive the corresponding Dirac equations in the γ matrices
formalism. In Sec. III we show how to obtain two Robin
boundary conditions for Dirac fields in the aforementioned
background, satisfying the vanishing energy flux require-
ment, at the AdS boundary. In Sec. IV we solve Dirac
equations analytically, by applying the boundary condi-
tions obtained in the previous section, yielding the Dirac
normal modes on empty AdS and the quasinormal modes
on small Schwarzschild-AdS BHs. These calculations
show clearly how to employ two boundary conditions to
obtain two different sets of quasinormal modes. Numerical
methods and results are presented in Sec. V, to illustrate
how the parameters rþ (the BH size), l (the angular
momentum quantum number) andN (the overtone number)
affect the two sets of modes. Final remarks and conclusions
are presented in the last section. Some technicalities on the
Dirac equations in the Teukolsky formalism, as well as
some considerations on the number current for Dirac fields
are left to the Appendix.

II. BACKGROUND GEOMETRY
AND FIELD EQUATIONS

In this section, we briefly review basic properties of
Schwarzschild-AdS BHs, and derive the equations of
motion for test Dirac fields on this background geometry.

A. Schwarzschild-AdS BHs

The line element of a Schwarzschild-AdS BH can be
written as [observe we shall use a ðþ − −−Þ signature]

ds2 ¼ Δr

r2
dt2 −

r2

Δr
dr2 − r2dθ2 − r2sin2θdφ2; ð1Þ

with the metric function

Δr ≡ r2
�
1þ r2

L2

�
− 2Mr; ð2Þ

where L is the AdS radius and M is the mass parameter.
The event horizon rþ is determined as the largest root of
ΔrðrþÞ ¼ 0. For a given rþ the mass parameter can be
expressed as

M ¼ rþðL2 þ r2þÞ
2L2

:

Then, the Hawking temperature can be written in terms
of rþ

TH ¼ κ

2π
¼ 3r2þ þ L2

4πrþL2
: ð3Þ

B. Dirac equations in the γ matrices formalism

The equations of motion for a massless Dirac field on a
Schwarzschild-AdS background can be obtained in various
ways [28–30]. In this subsection, we derive the Dirac
equations in the γ matrices formalism, by adapting Unruh’s
original work [28], wherein the equations of motion for a
massless Dirac field on a Kerr BH was derived.
A massless Dirac field obeys the equation

γμð∂μ − ΓμÞΨ ¼ 0; ð4Þ

where the γ matrices are defined as

γt ¼
ffiffiffiffiffiffi
r2

Δr

s
γ0; γr ¼

ffiffiffiffiffiffi
Δr

r2

r
γ3;

γθ ¼ 1

r
γ1; γφ ¼ 1

r sin θ
γ2; ð5Þ

with the ordinary flat spacetime Dirac matrices
γiði ¼ 0; 1; 2; 3Þ in the Bjorken-Drell representation [31].
The spin connection is
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Γμ ¼ −
1

8
ðγaγb − γbγaÞΣabμ; ð6Þ

with

Σabμ ¼ eνað∂μebν − Γα
νμebαÞ:

Letting

Ψ ¼
�
η

η

�
; ð7Þ

with the ansatz

η ¼ e−iωteimφ

ðΔrr2sin2θÞ1=4
�
R1ðrÞS1ðθÞ
R2ðrÞS2ðθÞ

�
; ð8Þ

then Eq. (4) becomes a set of coupled first order equations

Δ1=2
r

�
d
dr

−
iωr2

Δr

�
R1ðrÞ ¼ kR2ðrÞ; ð9Þ

Δ1=2
r

�
d
dr

þ iωr2

Δr

�
R2ðrÞ ¼ kR1ðrÞ; ð10Þ

�
d
dθ

−
m

sin θ

�
S1ðθÞ ¼ kS2ðθÞ; ð11Þ

�
d
dθ

þ m
sin θ

�
S2ðθÞ ¼ −kS1ðθÞ: ð12Þ

Second order equations can be easily obtained, from
Eqs. (9)–(12); the radial part is

Δ1=2
r

d
dr

�
Δ1=2

r
dR1

dr

�
þH1ðrÞR1 ¼ 0; ð13Þ

Δ1=2
r

d
dr

�
Δ1=2

r
dR2

dr

�
þH2ðrÞR2 ¼ 0; ð14Þ

with R1 ≡ R1ðrÞ, R2 ≡ R2ðrÞ, and

H1ðrÞ ¼
K2

r þ i
2
KrΔ0

r

Δr
− 2iωr − k2;

H2ðrÞ ¼
K2

r − i
2
KrΔ0

r

Δr
þ 2iωr − k2;

where Kr ¼ ωr2, and the angular part is

d2S1
dθ2

þ
�
−

m2

sin2θ
þm

cos θ
sin2θ

þ k2
�
S1 ¼ 0; ð15Þ

d2S2
dθ2

þ
�
−

m2

sin2θ
−m

cos θ
sin2θ

þ k2
�
S2 ¼ 0; ð16Þ

with S1 ≡ S1ðθÞ, S2 ≡ S2ðθÞ. The solutions for these
angular equations are spin-weighted spherical harmonics,
and the corresponding eigenvalue is k2 ¼ ðlþ 1

2
Þ2 [32].

The radial part of the second order differential equations,
from Eqs. (13)–(14), are what we are going to study in the
remaining sections.

III. BOUNDARY CONDITIONS

To solve the differential Eqs. (13)–(14), one has to
impose physically relevant boundary conditions. At the
horizon, one imposes purely ingoing boundary conditions.
At the asymptotic boundary, a scalarlike boundary con-
dition is typically imposed [22,23]. Here, however, we are
going to study quasinormal modes for Dirac fields in
Schwarzschild-AdS BHs by imposing vanishing energy
flux boundary conditions, as proposed in [24–27]. This
requirement follows the spirit that the AdS boundary may
be regarded as a perfectly reflecting mirror in the sense that
no flux can cross it.
Comparing with the scalarlike boundary condition,

vanishing energy flux boundary conditions are applicable to
(i) the Dirac equations both in the γ matrices formalism

and in the Teukolsky formalism;
(ii) both the R1 equation and the R2 equation;

and one may obtain
(i) two different sets of explicit boundary conditions;
(ii) in particular, normal modes on empty AdS.
We start from the energy-momentum tensor for Dirac

fields, which is defined as

Tμν ¼
i
8π

Ψ̄½γμð∂ν − ΓνÞ þ γνð∂μ − ΓμÞ�Ψþ c:c:; ð17Þ

where Ψ̄≡Ψ†γ0, and c.c. stands for complex conjugate of
the preceding terms. Note that γμ ¼ gμνγν, where γν is given
in Eq. (5), the spin connection Γμ is given in Eq. (6), andΨ†

is the hermitian conjugate of Ψ.
To impose the boundary conditions we shall require, we

take the definition of the energy flux through a 2-sphere at
radial coordinate r:

F jr ¼
Z
S2
sin θdθdφr2Tr

t; ð18Þ

thus, we have to calculate Tr
t firstly, which is given by

Tr
t ¼ Tr

t;I þ Tr
t;II;

with

Tr
t;I ¼

ωþ ω�

2πr2 sin θ
ðjR1j2jS1j2 − jR2j2jS2j2Þ; ð19Þ

where ω� is the complex conjugate of ω, and Tr
t;II vanishes

after integrating over the sphere. Then, the energy flux
becomes
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F jr ∝ ðjR1j2 − jR2j2Þ; ð20Þ

up to a factor independent of the radial coordinate, and where
the angular functions S�ðθÞ are normalizedZ

π

0

dθjS1;2ðθÞj2 ¼ 1:

To obtain the asymptotic boundary condition forR1, wemake
the asymptotic expansion from Eq. (13), and get

R1 ∼ α1 þ β1
L
r
þO

�
L2

r2

�
; ð21Þ

where α1 and β1 are two integration constants.
With the relation between R1 and R2 in Eq. (9), and

making use of expansion for R1 in Eq. (21), at infinity the
energy flux in Eq. (20) becomes

F jr;∞ ∝ k2jα1j2 − jiωLα1 þ β1j2: ð22Þ
Now we are able to impose energy flux vanishing boundary
conditions, i.e. F jr;∞ ¼ 0, which implies

k2jα1j2 − jiωLα1 þ β1j2 ¼ 0: ð23Þ
It is easy to solve this quadratic equation and obtain the two
solutions3

α1
β1

¼ −i
lþ 1

2
− ωL

; ð24Þ

α1
β1

¼ i
lþ 1

2
þ ωL

; ð25Þ

which tell us that the physical requirement of vanishing
energy flux generates two sets of boundary conditions. This
means that, in Schwarzschild-AdS BHs, there are two
branches of quasinormal modes for Dirac fields, following
the same logic as for the Maxwell case [24–27].
We can also follow the same procedures to calculate the

boundary conditions for R2. As before, we first expand R2

from Eq. (14), and get

R2 ∼ α2 þ β2
L
r
þO

�
L2

r2

�
; ð26Þ

where α2 and β2 are two integration constants. Then
making use of the relation in Eq. (10), Eq. (20) gives
the conditions

α2
β2

¼ i
lþ 1

2
− ωL

;
α2
β2

¼ −i
lþ 1

2
þ ωL

: ð27Þ

Comparing boundary conditions for R1, Eqs. (24)–(25),
and for R2, Eq. (27), we notice that there is only a sign

difference. As we have checked, solving the radial Eq. (13)
with the corresponding boundary conditions (24), (25)
and the radial Eq. (14) with the corresponding boundary
conditions (27), the same quasinormal frequencies are
obtained. This implies that R1 and R2 encode the same
information. Therefore, for concreteness, and without loss
of generality, in the following we focus on the R1 equation
and the corresponding boundary conditions.

IV. ANALYTICS

In this section, we solve Dirac equations analytically,
both to calculate normal modes on empty AdS and to
calculate quasinormal modes on small Schwarzschild-AdS
BHs. These calculations are performed in order to show
how to employ the boundary conditions, Eqs. (24)–(25), to
get two sets of modes.

A. Dirac normal modes on empty AdS

In an empty AdS spacetime (no BH), the radial Dirac
Eq. (13) keeps the same form, but with

Δr ¼ r2
�
1þ r2

L2

�
: ð28Þ

Then, the general solution of Eq. (13), with (28) is

R1¼ rlþ1
2ðr− iLÞωL2 ðrþ iLÞ−l−1

2
−ωL

2

�
ð−1Þ2lþ12−2l−1

×

�
1þ iL

r

�
2lþ1

C1F

�
−l−

1

2
;−lþωL;−2l;

2r
rþ iL

�

þC2F
�
lþ1

2
;lþ1þωL;2lþ2;

2r
rþ iL

��
; ð29Þ

where Fða; b; c; zÞ is the hypergeometric function, C1 and
C2 are two integration constants.
By imposing the first boundary condition in Eq. (24),

one obtains the first relation between C1 and C2

C1

C2

¼ 22lþ1
l

l−ωL
A1

Fð1
2
−l;1−lþωL;1−2l;2Þ ; ð30Þ

while by imposing the second boundary condition in
Eq. (25), one obtains the second relation between C1

and C2

C1

C2

¼ 22lþ1l
lþ1þωL

lþ1

Fð3
2
þl;2þlþωL;2lþ3;2Þ

A2

;

ð31Þ

where

3Note that the relative phase between two moduli has been
fixed by calculating normal modes. That is, for empty AdS
normal modes are only allowed for this particular choice of phase.
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A1 ¼ F

�
lþ 1

2
;lþ 1þ ωL; 2lþ 2; 2

�

þ F

�
lþ 3

2
;lþ 1þ ωL; 2lþ 2; 2

�
;

A2 ¼ 2lF
�
−l −

1

2
;−lþ ωL;−2l; 2

�

þ ðl − ωLÞF
�
−lþ 1

2
;−lþ 1þ ωL; 1 − 2l; 2

�
:

Then, expanding R1 in Eq. (29) at small r, one gets

R1 ∼ C1

�
iL
2

�
2lþ1

r−l−
1
2 þ C2rlþ

1
2: ð32Þ

By requiring the solution to be regular at the origin, from
Eq. (32), one has to set C1 ¼ 0, which gives

A1 ¼ 0

⇒ ω1;NL ¼ 2N þ lþ 1; ð33Þ

F

�
3

2
þ l; 2þ lþ ωL; 2lþ 3; 2

�
¼ 0

⇒ ω2;NL ¼ 2N þ lþ 2; ð34Þ

where N ¼ 0; 1; 2;…, and l ¼ 1
2
; 3
2
;….

These are the Dirac normal modes on empty AdS. They
have been previously derived in, e.g. [33], wherein the
Dirac equations were written in a specific form and a
Cartesian gauge, by requiring the Dirac eigenfunctions to
be regular at the boundary. Thus, the physical principle
of vanishing energy flux boundary conditions is able to
recover these results. It is worthwhile to note that the Dirac
normal modes cannot be obtained by solving Eq (13) [or
equivalently Eq. (A1)] on an empty AdS spacetime with
the commonly used scalarlike boundary condition.
We observe that the Dirac normal modes have the same

expressions as in the Maxwell [24] and gravitational cases
[34] (see also [35]). Similarly to these cases, the two sets of
the Dirac normal modes are isospectral, up to one mode. In
the numerical calculations, we are going to show that, the
isospectrality will be broken when a BH is introduced in
the bulk of the AdS spacetime.

B. Analytic matching calculations for small
Schwarzschild-AdS

In this subsection, we perform an analytic calculation
of quasinormal frequencies for a Dirac field on a
Schwarzschild-AdS BH, with the two Robin boundary
conditions given in Eqs. (24) and (25). Such calculations
are only valid for small Schwarzschild-AdS BHs (rþ ≪ L),
in the low frequency limit.

Following the well-known matching procedure, we shall
divide the region outside the event horizon into two
subregions: the near region, defined by the condition
r − rþ ≪ 1=ω, and the far region, defined by the
condition rþ ≪ r − rþ. Then, we further require the con-
dition rþ ≪ 1=ω, so that an overlapping region exists
wherein solutions obtained in the near region and in the far
region are both valid. In the following analysis we focus on
small AdS BHs, which allows us to solve the frequencies
perturbatively, as deviations from the AdS normal modes.

1. Near region solution

In the near region, under the small BH approximation
(rþ ≪ L), it is convenient to define a new dimensionless
variable

z≡ 1 −
rþ
r
;

to transform Eq. (13) into

zð1 − zÞ d
2R1

dz2
þ 1 − 3z

2

dR1

dz
þ
�
ω̂
1 − z
z

−
k2

1 − z

�
R1 ¼ 0;

ð35Þ

with

ω̂≡
�
ωrþ þ i

4

�
2

þ 1

16
:

The above equation can be solved in terms of the hyper-
geometric function

R1 ∼ z
1
2
−iωrþð1 − zÞlþ1

2Fða; b; c; zÞ; ð36Þ

with

a ¼ lþ 1; b ¼ lþ 3

2
− 2iωrþ; c ¼ 3

2
− 2iωrþ;

where an ingoing boundary condition at r ¼ rþ has been
imposed.
In order to perform the matching with the far region

solution below, the near region solution, Eq. (36), should be
expanded for large r. To achieve this, by taking the z → 1
limit and using the properties of the hypergeometric
function [36], we obtain

R1 ∼ ΓðcÞ
�
Rnear
1;1=r

rlþ1
2

þ Rnear
1;r rlþ1

2

�
; ð37Þ

where
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Rnear
1;1=r ≡ Γð−2l − 1Þrlþ1

2þ
Γð−lÞΓð1

2
− l − 2iωrþÞ

;

Rnear
1;r ≡ Γð2lþ 1Þr−l−1

2þ
Γðlþ 1ÞΓðlþ 3

2
− 2iωrþÞ

: ð38Þ

2. Far region solution

In the far region, the BH effects can be neglected
(M → 0), so that the solution for Eq. (13) is the same as
for the empty AdS spacetime, Eq. (29). The two unde-
termined constants in Eq. (29) are related to each other by
Eqs. (30)–(31), in order to satisfy the boundary conditions.
In order to match this solution with the near region

solution, we expand Eq. (29) for small r, and obtain

R1 ∼
Rfar
1;1=r

rlþ1
2

þ Rfar
1;rr

lþ1
2; ð39Þ

with

Rfar
1;1=r ≡ 2−2l−1ðiLÞ2lþ1C1;

Rfar
1;r ≡ C2:

3. Overlap region

To match the near region solution Eq. (37) and the
far region solution Eq. (39) in the intermediate region,
we impose the matching condition Rnear

1;r Rfar
1;1=r ¼ Rfar

1;rR
near
1;1=r.

Then we get

Γðlþ 1Þ
Γð2lþ 1Þ

Γðlþ 3
2
− 2iωrþÞ

Γð−lþ 1
2
− 2iωrþÞ

Γð−2l − 1Þ
Γð−lÞ

�
rþ
L

�
2lþ1

¼
�
i
2

�
2lþ1 C1

C2

: ð40Þ

Given the relations between C1 and C2, Eq. (40) becomes

Γðlþ 1Þ
Γð2lþ 1Þ

Γðlþ 3
2
− 2iωrþÞ

Γð−lþ 1
2
− 2iωrþÞ

Γð−2l − 1Þ
Γð−lÞ

�
rþ
L

�
2lþ1

¼ i2lþ1
l

l − ωL
A1

Fð1
2
− l; 1 − lþ ωL; 1 − 2l; 2Þ ; ð41Þ

for the first boundary condition given by Eq. (24), and

Γðlþ 1Þ
Γð2lþ 1Þ

Γðlþ 3
2
− 2iωrþÞ

Γð−lþ 1
2
− 2iωrþÞ

Γð−2l − 1Þ
Γð−lÞ

�
rþ
L

�
2lþ1

¼ i2lþ1l
lþ 1þ ωL

lþ 1

Fð3
2
þ l; 2þ lþ ωL; 2lþ 3; 2Þ

A2

;

ð42Þ
for the second boundary condition given by Eq. (25).
Both Eqs. (41) and (42) can be solved perturbatively

around the normal mode solutions, to obtain the imaginary
part of quasinormal frequencies, in the small BH

approximation. For a small BH, the left term in Eqs. (41)
and (42) vanishes at the leading order, and we get the normal
modes in an empty AdS spacetime, given by Eqs. (33)
and (34).
When the BH effects are taken into account, a correction

to the frequency will be introduced

ωjL ¼ ωj;NLþ iδj; ð43Þ

where j ¼ 1, 2 for the two different boundary conditions,
and δ is used to describe the damping (i.e. the imaginary
part) of the quasinormal modes frequency. Replacing ωL in
the second line of Eqs. (41) and (42) by ω1L and ω2L as
given by Eq. (43), we can obtain δj perturbatively, in terms
of rþ=L.
Since the general expression for δj is quite messy, we

only analyze Eqs. (41) and (42) for a subset of concrete
values of the parameters. For the case with l ¼ 1

2
and

N ¼ 0, from Eq. (41), we get

δ1 ¼ −
1

4π

r2þ
L2

þO
�
r2þ
L2

�
; ð44Þ

and from Eq. (42), we get

δ2 ¼ −
3

4π

r2þ
L2

þO
�
r2þ
L2

�
: ð45Þ

Furthermore, by analyzing several cases with different l,
we observe that,

−δj ∝ r2lþ1
þ ;

for both boundary conditions, while for bosonic fields the
damping behaves as [24,37]

−δj ∝ r2lþ2
þ :

These analytic calculations may be used not only as the
initial guess in a numerical procedure (cf. next section) but
also to double check the numerical results that we shall now
address.

V. NUMERICS

In this part, we look for quasinormal frequencies for
Dirac fields on Schwarzschild-AdS BHs numerically by
applying the vanishing energy flux boundary conditions,
cf. Eqs. (24) and (25). We shall first briefly introduce
the numerical methods employed, and then illustrate their
application with some concrete examples.

A. Method

The numerical methods that we have employed to look
for the characteristic eigenfrequency ω are of two types: a
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direct integration method, and the Horowitz-Hubeny
method. The former works better for BHs with small size,
while the latter works better for large BHs. As a consistency
check, we find excellent agreement between these two
methods when both are applicable.

1. Direct integration approach

To solve the radial Eq. (13), we may use the direct
integration method, adapted from our previous works
[25,38–40]. First, we use Frobenius’ method to expand
R1 close to the event horizon

R1 ¼ ðr − rþÞρ
X∞
j¼0

cjðr − rþÞj;

with

ρ ¼ 1

2
−

iωrþ
1þ 3r2þ

;

to initialize Eq. (13), where the ingoing boundary condition
at the horizon has been imposed, and the series expansion
coefficients cj can be directly extracted after inserting these
expansions into Eq. (13).
The asymptotic behavior of R1 at infinity has been given

in Eq. (21), where two coefficients, α1 and β1, can be
extracted from R1 and its first derivative. For that purpose,
we define two new fields fχ;ψg, which will asymptote
respectively to fα1; β1g, at infinity. Such a transformation
can be written in matrix form by defining the vector
ΨT ¼ ðχ;ψÞ for the new fields, and another vector
VT ¼ ðR1; d

dr R1Þ for the original field and its derivative.
Then the transformation is given in terms of an r-dependent
matrix T defined through

V ¼
�
1 1

r

0 − 1
r2

�
Ψ≡ TΨ:

To obtain a first order system of ODE for the new fields,
we first define a matrix X through

dV
dr

¼ XV; ð46Þ

which can be read out from the original radial Eq. (13).
Then we obtain

dΨ
dr

¼ T−1
�
XT −

dT
dr

�
Ψ: ð47Þ

2. Horowitz-Hubeny approach

The other method to solve for quasinormal frequencies
for asymptotically AdS BHs, is the Horowitz-Hubeny
approach [17]. In order to employ this method, we first
rewrite Eq. (13) into the Schrodinger-like form

d2ϕ1

dr2�
þ ðω2 − VÞϕ1 ¼ 0; ð48Þ

with

V ¼ k2Δr

r4
−
2Δ2

r

r6
þ ΔrΔ0

r

r5
þ Δ02

r

16r4
−
ΔrΔ00

r

4r4

−
iωr2

2

d
dr

�
Δr

r4

�
; ð49Þ

where

ϕ1 ¼
r

Δ1=4
r

R1; ð50Þ

the tortoise coordinate r� is defined as

dr�
dr

¼ r2

Δr
;

and 0 denotes derivative with respect to r.
By analyzing the near horizon behavior for ϕ1 in

Eq. (48), we find

ϕ1 ∼ e�iω̄r� ;

where

ω̄ ¼ ωþ i
4rþ

�
1þ 3r2þ

L2

�
: ð51Þ

Then choosing the ingoing boundary condition and making
the transformation

ϕ1 ¼ e−iω̄r�Φ1; ð52Þ

Eq. (48) may be rewritten as

SðxÞ d
2Φ1

dx2
þ TðxÞ
x − xþ

dΦ1

dx
þ UðxÞ
ðx − xþÞ2

Φ1 ¼ 0; ð53Þ

where we change variable x ¼ 1=r, in order to map the
entire space outside the event horizon rþ < r < ∞ into a
finite region 0 < x < xþ, with

SðxÞ¼ ðc0x2þc1xþc2Þ2;
TðxÞ¼ ðc0x2þc1xþc2Þð3c0x2−2x−2iω̄Þ;

UðxÞ¼ω2− ω̄2þk2ðc0x3−x2−1Þþ1

2
iωð3c0x2−2xÞ

−
1

16
ð−15c20x4þ20c0x3−4x2þ24c0x−8Þ; ð54Þ

where
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c0 ¼
1þ x2þ
x3þ

; c1 ¼
1

x2þ
; c2 ¼

1

xþ
;

and where xþ ¼ 1=rþ.
To evaluate quasinormal modes by using Horowitz-

Hubeny approach, we expand all functions around xþ,

SðxÞ ¼
X4
n¼0

snðx − xþÞn;

TðxÞ ¼
X4
n¼0

tnðx − xþÞn;

UðxÞ ¼
X4
n¼0

unðx − xþÞn; ð55Þ

where the expansion coefficients fsn; tn; ung can be read
off from Eq. (54), and

Φ1 ¼ ðx − xþÞρ̂
X∞
j¼0

ajðx − xþÞj: ð56Þ

The index ρ̂ and recurrence relations between aj can be
obtained by substituting expansions in Eqs. (55) and (56)
into Eq. (53). At the lowest order, the index ρ̂ can be
found as

ρ̂ ¼ 0; ρ̂ ¼ −
1

2
þ 2iωxþ
3þ x2þ

:

Since the ingoing boundary condition has been imposed in
Eq. (52), here we fix ρ̂ ¼ 0. By comparing the other orders,
we obtain recurrence relations

aj ¼ −
1

Dj

Xj

n¼1

½snðj − nÞðj − n − 1Þ þ tnðj − nÞ þ un�aj−n;

ð57Þ

with

Dj ¼ s0jðj − 1Þ þ t0jþ u0:

From Eqs. (50) and (52), the boundary conditions in
Eqs. (24) and (25) are now transformed into

X
j

ajð−xþÞj
�
1þ j

γxþ

�
¼ 0; ð58Þ

with

γ ¼ γ1 ≡ i

�
lþ 1

2
− ðωþ ω̄Þ

�
; ð59Þ

for the first boundary condition, and

γ ¼ γ2 ≡ −i
�
lþ 1

2
þ ðωþ ω̄Þ

�
; ð60Þ

for the second boundary condition, where ω̄ is given
in Eq. (51).

B. Results

When the BH size exceeds the parameter region where
the analytic study is valid, quasinormal modes can only be
solved numerically. In this part, we are going to present
numerical results for Dirac quasinormal frequencies of
Schwarzschild-AdS BHs, by employing the numerical
methods described in the last subsection.
Before we exhibit our results, a couple of remarks are in

order. In the numerical calculations all physical quantities
are normalized by the AdS radius L and we set L ¼ 1.
Furthermore, we use ω1 (ω2) to represent the quasinormal
frequency corresponding to the first (second) boundary
condition.
In Table I, we list a few fundamental (N ¼ 0) quasi-

normal frequencies of ω1 (with l ¼ 3=2) and ω2 (with
l ¼ 1=2), for different BH sizes. As we mentioned in
the last section, the normal modes presented in Eqs. (33)
and (34), are isospectral under the mapping

l1 ↔ l2 þ 1; ð61Þ

except one mode for ω1, where l1 and l2 refer to the
angular momentum quantum number in the spectrum of ω1

and ω2. As one may observe from this table, the presence of
a BH breaks the isospectrality. Note that such breakdown
of the isospectrality occurs for all BH sizes, in particular
for large BHs, which is in contrast to what occurs for the
Maxwell case [24].
To illustrate the difference between the two sets of

modes, we present a few fundamental modes (N ¼ 0)
for ω1 and ω2 with the same lðl ¼ 1=2Þ, in Table II.
As one may observe, for both modes, the real part of
quasinormal frequencies first decreases then increases

TABLE I. Two sets of quasinormal frequencies of fundamental
modes for Dirac fields, for different BH size rþ and l.

rþ ω1ðl ¼ 3=2Þ ω2ðl ¼ 1=2Þ
0 2.5 2.5
0.2 2.4481 − 4.2096 × 10−4 i 2.1699 − 0.1041 i
0.5 2.3165 − 8.3949 × 10−2 i 1.9346 − 0.6738 i
0.8 2.2689 − 0.2647 i 1.9530 − 1.2424 i
1.0 2.2708 − 0.3861 i 2.0125 − 1.6134 i
5.0 2.8083 − 3.0906 i 3.6912 − 9.5907 i
10 3.1965 − 6.9125 i 4.9615 − 20.506 i
50 3.5619 − 37.326 i 7.3070 − 111.38 i
100 3.5808 − 74.911 i 7.5852 − 224.39 i
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when increasing the BH size, while the magnitude of
the imaginary part of quasinormal frequencies always
increases. For a fixed BH size rþ, the magnitude of the
imaginary part of ω2 is always larger than its counterpart of
ω1. This implies that the first set of modes dominates the
late time evolution of the interacting system.
For large BHs, as shown from Table I and Table II, the

real part for either set of quasinormal modes varies slowly
with the BH size (say from rþ ¼ 50 to rþ ¼ 100), while

the imaginary part for both modes scales linearly with the
BH size. This scaling law can be equally stated in terms of
the Hawking temperature, which relates to the BH size
through TH ¼ 3rþ=ð4πL2Þ for large BHs. We remark that
this behavior is quite different from the one observed for the
scalar case [17], for which both the real and imaginary parts
scale linearly with the BH size. In Table III, we list a tower
of quasinormal modes with different overtone numbers, N,
for a BH with rþ ¼ 100. As one may observe, the excited
modes (N ≥ 1) for both sets are approximately evenly
spaced in N.
For small BHs, as shown in Sec. IV by an analytic

matching method, the real part of the frequencies for both
modes approach to the corresponding normal modes on
empty AdS [41], given by Eqs. (33) and (34), while the
imaginary part of the frequencies approach to zero as

−ℑðωÞ ∝ r2lþ1
þ ;

which behaviors differently with bosonic fields.
Furthermore, we present a comparison between analytic
results and numeric data in the left panel of Fig. 1, and find
a good agreement for small rþ, which may be used to verify
the validity of the analytic calculations but also another
check for our numeric methods. In Table IV, we list a tower
of quasinormal modes with different overtone numbers N
for a BH with rþ ¼ 0.1. Observing the excited modes, we
find they are also approximately evenly spaced in N.
For intermediate BHs, it seems that the real part for both

quasinormal modes reaches a minimum. In Table V, we list
a tower of quasinormal modes with different overtone
numbers N for a BH with rþ ¼ 1. We observe that the
excited modes are again approximately evenly spaced in N.
Moreover, we consider BHs with rþ ¼ 1 to exemplify the
effect of the angular momentum quantum number l on
both frequencies. As one may see from the right panel of

TABLE II. Two sets of quasinormal frequencies of fundamental
modes for Dirac fields, for different BH size rþ but the same l.

rþ ω1ðl ¼ 1=2Þ ω2ðl ¼ 1=2Þ
0 1.5 2.5
0.2 1.4124 − 1.6293 × 10−2 i 2.1699 − 0.1041 i
0.5 1.3007 − 0.1784 i 1.9346 − 0.6738 i
0.8 1.2836 − 0.3789 i 1.9530 − 1.2424 i
1.0 1.2930 − 0.5130 i 2.0125 − 1.6134 i
5.0 1.6155 − 3.4826 i 3.6912 − 9.5907 i
10 1.7302 − 7.3217 i 4.9615 − 20.506 i
50 1.7907 − 37.459 i 7.3070 − 111.38 i
100 1.7929 − 74.980 i 7.5852 − 224.39 i

TABLE III. Quasinormal frequencies of the Dirac field on
Schwarzschild-AdS BHs with rþ ¼ 100, l ¼ 1=2 and different
overtone number N.

N ω1 ω2

0 1.7929 − 74.980 i 7.5852 − 224.39 i
1 32.379 − 364.31 i 83.299 − 480.41 i
2 146.19 − 593.52 i 209.76 − 707.40 i
3 273.44 − 821.03 i 337.27 − 934.48 i
4 401.23 − 1047.8 i 465.28 − 1161.0 i
5 529.42 − 1274.1 i 593.62 − 1387.2 i
6 657.89 − 1500.2 i 722.20 − 1613.1 i

FIG. 1. Left: comparison of the imaginary part of quasinormal frequencies for the fundamental modes of each branch of solutions,
between the analytic matching approximation for small BHs (dashed lines) and the numerical data (solid lines). Right: effects of the
angular momentum quantum number l on the quasinormal frequencies for intermediate BHs with rþ ¼ 1, and N ¼ 0.
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Fig. 1, for both modes, the real (imaginary) part of
quasinormal frequencies increases (decreases) in magni-
tude as l increases. This behavior is qualitatively similar
for other BH sizes.

VI. DISCUSSION AND FINAL REMARKS

In this paper we have studied Dirac quasinormal modes
on Schwarzschild-AdS BHs, from a new perspective on the
boundary condition. For this purpose we first derived the
Dirac equations and constructed the energy flux for Dirac
fields. Following the principle we proposed in [24] that
the energy flux should vanish at the AdS boundary, we
obtained two distinct sets of boundary conditions. These
boundary conditions were then employed to calculate Dirac
normal modes on empty AdS and quasinormal modes on
Schwarzschild-AdS BHs.
On an empty AdS spacetime, we solved the Dirac

equations analytically and obtained two branches of normal
modes, albeit isospectral, corresponding to the two sets of
boundary conditions. This is an interesting result because
Dirac normal modes on empty AdS cannot be obtained by
solving Eq. (13) [or equivalently Eq. (A1)] when imposing
the commonly used scalarlike boundary condition. We
remark these two spectra have the exact same expressions
as for the Maxwell [24] and gravitational [42] cases.
In the case of Schwarzschild-AdS, we used both analytic

and numericalmethods to studyDirac quasinormalmodes. In
the small BH limit, we obtained the imaginary part of the

quasinormal frequencies by an analytic matching method,
which shows explicitly how two branches of quasinormal
modes emerge from two sets of boundary conditions. We
found −ℑðωÞ ∝ r2lþ1

þ for the two sets of boundary con-
ditions. This behavior is different from that of the bosonic
fields, for which −ℑðωÞ ∝ r2lþ2

þ . We then varied the BH
size rþ, the angular momentum quantum number l, and the
overtone numberN in the numeric calculations, and analyzed
their effects on the two branches ofDirac quasinormalmodes.
In a nutshell, one observed the following trends. The

real part for both quasinormal modes first decreases and
then increases when increasing the BH size rþ, while the
magnitude of the imaginary part for both quasinormal
modes always increases. By increasing the angular momen-
tum quantum number l, the real part for both modes
increases roughly linearly, while the imaginary part
decreases but varies weakly. Varying the overtone number
N, we found that excited modes of both sets for all BH sizes
are approximately evenly spaced in N. Furthermore, the
first branch of modes dominate at the late time evolutions.
Dirac quasinormal modes were also calculated for R2

equation, and we obtained the exactly same results.
This framework can be applied not only to the γ matrices

formalism, but also to the Teukolsky formalism. For Dirac
fields, these two formalisms are simply related by the
transformations presented in Appendix A. Then one may
easily verify that two sets of boundary conditions can be
obtained for the Teukolsky variables. These conditions lead
to two branches of quasinormal modes, which are exactly
the same as we reported in the above, from the γ matrices
formalism.
Our work shows the robustness of the “vanishing energy

flux” principle, to set boundary conditions, in the sense that
they are applicable not only for bosonic fields but also for
fermionic fields. To fully explore these new boundary
conditions for a Dirac field, we are going to generalize the
present work to calculate quasinormal modes of charged
Dirac fields [43] and on rotating background [44], which
will be hopefully reported soon.
A final remark goes for the Dirac number current. As we

have shown in Appendix B, requiring a vanishing number
current leads to the same boundary conditions as requiring
a vanishing energy flux. Physically this is clear since
energy flux is equivalent to the number current up to the
particle’s energy. Technically, however, the number current
is much easier to calculate. Therefore, the Dirac number
current may be used as an alternative to the energy flux, to
study Dirac quasinormal modes.
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APPENDIX A: DIRAC EQUATIONS IN THE
NEWMAN-PENROSE FORMALISM

In the Newman-Penrose formalism, following the cel-
ebrated work by Teukolsky [13], the Dirac equations have
already been derived in [45,46]. In this appendix we rewrite
these equation by adapting to our notation, describing a
spin s (s ¼ �1=2) perturbation.
The radial equation is

Δ−s
r

d
dr

�
Δsþ1

r
dRsðrÞ
dr

�
þHðrÞRsðrÞ ¼ 0; ðA1Þ

with

HðrÞ ¼ K2
r − isKrΔ0

r

Δr
þ 2isK0

r þ
sþ jsj

2
Δ00

r − k2;

where

Kr ¼ ωr2; k2 ¼
�
lþ 1

2

�
2

;

while the angular equation is

1

sin θ
d
dθ

�
sin θ

dSlm;s

dθ

�
þ AðθÞSlm;s ¼ 0; ðA2Þ

with Slm;s ≡ Slm;sðθÞ, and where

AðθÞ ¼ −
m2

sin2θ
−
2ms cos θ
sin2θ

− s2cot2θ þ lðlþ 1Þ − s2:

Our purpose in presenting the Dirac equations in the
Newman-Penrose formalism is to argue the universality of
the results we have obtained with the vanishing energy flux
boundary condition. That is, these boundary conditions can
be applied either to Eqs. (13), (14) or to Eq. (A1), yielding
the same results. Comparing Eq. (A1) with Eqs. (13), (14)

and Eq. (A2) with Eqs. (15), (16), we observe that the two
sets of radial equations are simply related by the trans-
formations R1 ¼ R−1=2, R2 ¼

ffiffiffiffiffiffi
Δr

p
Rþ1=2; while the two

sets of angular equations are related by the transformations
S1 ¼

ffiffiffiffiffiffiffiffiffi
sin θ

p
S−1=2, S2 ¼

ffiffiffiffiffiffiffiffiffi
sin θ

p
Sþ1=2. Based on this obser-

vation, it easily follows that the vanishing energy flux
boundary conditions can be applied to the Teukolsky
formalism.

APPENDIX B: THE NUMBER CURRENT
OF DIRAC FIELDS

In this appendix, we present the derivation of the number
current for Dirac fields, and show explicitly that vanishing
energy flux leads to vanishing number current.
The number current for Dirac fields is defined as

Jμ ¼ Ψ̄γμΨ; ðB1Þ

with Ψ̄ ¼ Ψ†γ0, where Ψ† is the adjoint of Ψ.
The radial component of the number current is

Jr ¼ Ψ̄γrΨ: ðB2Þ

Substituting the γ matrices in Eq. (5), together with the
field’s decompositions in Eqs. (7), (8), Eq. (B2) becomes

Jr ¼ 2

r2 sin θ
ðjR1j2jS1j2 − jR2j2jS2j2Þ:

Then integrating the current over a sphere, we obtain

J jr ¼
Z
S2
sin θdθdφr2Jr ∝ ðjR1j2 − jR2j2Þ; ðB3Þ

where the normalization condition for S1 and S2 has been
employed.
Comparing Eq. (B3) with Eq. (20), one concludes that

vanishing energy flux leads to vanishing number current.
Since the calculation for the number current is much easier,
one may use the number current condition as an alternative
to calculate Dirac quasinormal frequencies, in particular, on
a more complicated background.
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