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Spherically symmetric bosonic stars are one of the few examples of gravitating solitons that are known to
form dynamically, via a classical process of (incomplete) gravitational collapse. As stationary solutions of
the Einstein–Klein-Gordon or the Einstein–Proca theory, bosonic stars may also become sufficiently
compact to develop light rings and hence mimic, in principle, gravitational-wave observational signatures
of black holes (BHs). In this paper, we discuss how these horizonless ultracompact objects (UCOs) are
actually distinct from BHs, both phenomenologically and dynamically. In the electromagnetic channel, the
light ring associated phenomenology reveals remarkable lensing patterns, quite distinct from a standard BH
shadow, with an infinite number of Einstein rings accumulating in the vicinity of the light ring, both inside
and outside the latter. The strong lensing region, moreover, can be considerably smaller than the shadow of
a BH with a comparable mass. Dynamically, we investigate the fate of such UCOs under perturbations, via
fully nonlinear numerical simulations and observe that, in all cases, they decay into a Schwarzschild BH
within a time scale of OðMÞ, where M is the mass of the bosonic star. Both these studies reinforce how
difficult it is for horizonless UCOs to mimic BH phenomenology and dynamics, in all its aspects.

DOI: 10.1103/PhysRevD.96.104040

I. INTRODUCTION

The true nature of astrophysical black hole (BH) can-
didates has been a central question in relativistic astro-
physics for decades. The observational elusiveness of their
defining property—the existence of an event horizon—
allows the possibility that they may, in reality, be some sort
of exotic horizonless compact objects, whose phenomenol-
ogy is sufficiently similar to that of BHs, so that current
observations are unable to distinguish these two types of
objects.
In this context, the recently opened gravitational-wave

window to the Cosmos [1–3], offers a particularly well-
suited channel to probe the nature of compact objects. Yet,
it has been recently emphasized that observational degen-
eracy may still remain in this channel [4]. The correspon-
dence between a BH’s natural oscillation frequencies (so
called quasinormal modes [5]) and light ring (LR) vibra-
tions [6–8], implies that compact objects with a LR—
henceforth ultracompact objects (UCOs)—but with no
event horizon can mimic the initial part of the ringdown
gravitational-wave signal of perturbed BHs. Later parts of
the ringdown signal may have signatures of the true nature
of the object (through the so called echos [9,10]), but the

corresponding lower signal to noise ratio challenges clean
detections of this part of the signal, at least in the near
future—see [11–16] for recent discussions.
Is there, consequently, a real risk of observationally

mistaking UCOs by BHs and vice-versa, with current and
near future gravitational-wave measurements? To address
this important question, one should start by revisiting the
theoretical foundations of concrete UCOs models. Even
though many variants of horizonless UCOs have been
proposed in the literature, either as stationary solutions of
well-defined models or as more speculative possibilities
(see, e.g., [17–22]), they generically suffer from the
absence of a plausible formation scenario. An exception,
in this respect, are (scalar) boson stars, which, in spherical
symmetry, have been shown to form from a process of
gravitational collapse, due to an efficient cooling mecha-
nism [23]. Moreover, boson stars are known to become
UCOs, in parts of their domain of existence [24].
In this paper, we shall take spherically symmetric scalar

boson stars, as well as their vector cousins, dubbed Proca
stars [22], collectively referred to as bosonic stars, as a
reference example of horizonless UCOs, and simultane-
ously as a proof of concept that BH mimickers are
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dynamically possible through known physics. We then aim
at assessing their quality as BH mimickers by performing
the following two inquires: (1) when in the UCO regime,
does all their LR associated phenomenology mimic that of
a Schwarzschild BH? (2) if perturbed, do they really
oscillate as a Schwarzschild BH?
Our study reveals that bosonic stars, both the scalar and

the vector ones, fail to pass either of these tests. First, the
same LR that allows them to, in principle, vibrate as BHs
do, gives rise to a quite distinct pattern of light lensing from
standard BH shadows. In a sense, the LR associated
electromagnetic channel phenomenology raises the degen-
eracy of the gravitational channel phenomenology. Second,
and more importantly, bosonic stars only become UCOs in
a regime wherein they are also perturbatively unstable.
Thus, the same perturbations that could make them vibrate
as a BH will actually induce their gravitational collapse into
one. By performing fully nonlinear simulations we show
that this is a fast process, and a horizon forms within a few
light-crossing times. All together, these results emphasize
the difficulty, at least in spherical symmetry, in constructing
a reasonable dynamical model of horizonless UCOs whose
phenomenology can mimic that of a BH, in all its aspects.
This paper is organized as follows. In Sec. II we review

the main physical properties of the ultracompact bosonic
stars we shall be analyzing. In Sec. III we shall analyze their
lensing, and compare it with that of a Schwarzschild BH. In
Sec. IV we consider their behavior under perturbations,
following, fully nonlinearly, their evolution and collapse
into a BH. In Sec. V we present our final remarks. One
Appendix addresses the 3þ 1 formalism used in Sec. IV B.

II. ULTRACOMPACT BOSONIC STARS

The ultracompact bosonic stars we shall be considering
in this paper are solutions of Einstein’s gravity minimally
coupled with a spin-s field, with s ¼ 0, 1. The scalar case
was first discussed in [25,26] and it is reviewed in [18]. The
vector case was first discussed in [22]. The models are
summarized by the action (we use units with c ¼ 1 ¼ ℏ
and 4πG ¼ 1)

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
4
þ LðsÞ

�
; ð1Þ

where the two corresponding matter Lagrangians are

Lð0Þ ¼ −gαβΦ̄;αΦ;β − μ2Φ̄Φ; ð2Þ

Lð1Þ ¼ −
1

4
F̄ αβF αβ −

1

2
μ2ĀαAα: ð3Þ

Here, Φ is a complex scalar field and A is a complex
4-potential, with field strength F ¼ dA. The overbar
denotes complex conjugate and μ is the field’s mass. In

this paper, the conventions for scalars and vectors are those
in [27] (see also [22,28,29]).
We shall be interested in spherically symmetric solu-

tions. They are obtained using the line element

ds2 ¼ −NðrÞσ2ðrÞdt2 þ dr2

NðrÞ þ r2ðdθ2 þ sin2θdφ2Þ; ð4Þ

where NðrÞ≡ 1 − 2mðrÞ=r,mðrÞ, σðrÞ are radial functions
and r; θ;φ correspond to Schwarzschild-type coordinates.
In particular the radial coordinate r is the geometrically
meaningful areal radius, meaning that the proper area of a
2-sphere (rt ¼ constant) is 4πr2. The matter fields ansatz is
given in terms of another real function ϕðrÞ [two real
functions ðVðrÞ; H1ðrÞÞ], for the scalar [vector] case:

Φ¼ ϕðrÞe−iwt; A¼
�
iVðrÞdtþH1ðrÞ

r
dr

�
e−iwt; ð5Þ

where w > 0 is the frequency of the field. The Einstein-
matter equations are solved, numerically, with appropriate
boundary conditions. The explicit form of these equations
and boundary conditions, together with some examples of
profiles of the matter and metric functions can be found in
[27] (see also [22] for the Proca case).
In Fig. 1 we exhibit various properties of the scalar (left

columns) and vector (right columns) bosonic stars which
are relevant for our study. The top panels show the domain
of existence of the solutions in an ADM mass, M, vs. a
bosonic field frequency, w, diagram. Regardless of the spin,
the solutions form a characteristic spiralling curve, starting
from the Newtonian regime (as w → μ) wherein the
bosonic stars tend to become dilute and weakly relativistic.
Following the spiral from this Newtonian limit, the ADM
mass reaches a maximum at some frequency. These
maximal mass and corresponding frequency are, in units
with μ ¼ 1, ðMmax; w½Mmax�Þ ¼ ð0.633; 0.853Þ for the
scalar case and ðMmax; w½Mmax�Þ ¼ ð1.058; 0.875Þ for the
vector case. Perturbation theory computations for both
the scalar [30,31] and vector cases [22] have shown that at
this point in the spiral an unstable mode develops. More
relativistic solutions become perturbatively unstable with
different possible fates [32,33]. Further following the
spiral, one finds several backbendings, each defining the
end of a branch. As it can be seen in the inset of the top
panels, the solution at which a LR is first seen (marked by a
green square—see [24,34,35] for quantitative details)
occurs in the third (fourth) branch for the scalar (vector)
case, corresponding to ðMLR; w½MLR�Þ ¼ ð0.8424; 0.383Þ
for the scalar case and ðMLR; w½MLR�Þ ¼ ð0.8880; 0.573Þ
for the vector case. These are highly relativistic solutions,
with redshift factors approaching those of an event horizon
toward the center of the solutions. In each case, we have
highlighted three solutions, denoted 1-3, in the insets of the
top panels of Fig. 1, corresponding to the solutions we shall
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FIG. 1. (Top panels) Domain of existence of scalar boson stars (left) and Proca stars (right) in an ADM mass (M)/Noether charge (Q)
vs. field frequency, w=μ, diagram. The green square marks the first solution with a LR. The three highlighted points correspond to the
configurations we have analyzed in detail, in each case. (Middle panels) Areal radius of the inner r− and outer rþ LRs, normalized to the
ADM mass, as a function of w, in the region where LRs appear. (Bottom panels) Compactness of the scalar boson stars (left) and Proca
stars (right), as measured byM99=2R99 (see main text). The inset shows the (log of the) central density. Observe that ρ can get extremely
large in the central region, although the solutions will not get more compact, as measured by M99=2R99.
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analyze below in more detail. These are ultracompact
solutions and their physical properties are summarized in
Table I. The top panels of Fig. 1 also show the Noether
charge of the solutions, Q (see, e.g., [27] for quantitative
expressions), corresponding to a locally conserved charge
associated with the globalUð1Þ symmetry of each family of
solutions. The ratio Q=M, in units with μ ¼ 1, provides a
criterion for stability: Q=M < 1 implies excess energy and
hence instability against fission into unbound bosonic
particles. The point at which, in both cases, solutions have
excess (rather than binding) energy occurs close to the
minimum frequency, and thus already in the region of
perturbative instability.
The middle panels in Fig. 1 exhibit the value of the areal

radius of each LR, in units of the ADM mass, and its
variation along the ultracompact bosonic star solutions.
When the LR first appears in the spiral representing the
family of bosonic star solutions it is actually degenerate.
This solution marks the beginning of the ultracompact
bosonic stars. Deeper into the center of the spiral, the
bosonic stars have two LRs; in fact, generically, smooth
ultracompact objects have an even number of LRs [36]. The
outermost one (with radial coordinate rðþÞ, blue line)
always corresponds to an unstable photon orbit; the inner-
most (with radial coordinate rð−Þ, red line) always corre-
sponds to a stable orbit [36]. As the figure shows, the two
radial coordinates start to bifurcate from the first ultra-
compact solution, but then converge again, towards the
center of the spiral. Interestingly, the areal radius of the LRs
is much smaller than that of a Schwarzschild BH, for which
r=M ¼ 3. This is associated with the fact these solutions
are not constant-density stars, having a much denser central
region (inset of bottom panels of Fig. 1). The three chosen
solutions are also highlighted in these plots, and the
corresponding LRs areal radii are given in Table I.
The bottom panel in Fig. 1 show a measure of the

compactness of the bosonic stars. Since these stars have no
hard surface, several measures of compactness are possible.
In view of their exponential fall-off of the matter density,
following, e.g., [28,37], we have defined compactness as
the ratio of the Schwarzschild radius for 99% of the mass,
denoted 2M99, to the areal radius that contains such mass,
R99. This quantity would be unity for a Schwarzschild BH.
Here we see that the compactness increases from the
Newtonian limit until the first back bending, but it

decreases along the second branch. Then it increases along
the third branch. Such compactness is not a monotonic
function along the spiral and indeed the ultracompact
solutions—in the sense of possessing a LR—are not the
most compact ones, according to this definition. On the
other hand, the central value of the energy density (see, e.g.,
[27] for quantitative expressions) is indeed a monotonically
increasing function along the spiral, as shown in the inset of
these plots. This behavior, together with the location of the
LRs, show that for nonconstant density stars, like these
bosonic stars, a global measure of compactness, such as
2M99=R99, may be misleading, as the star may have a
considerably denser central region, which is ultracompact,
whereas the star as a whole is not.

III. LENSING

LRs are bound planar photon orbits (see [35] for a
general discussion of bound photon orbits). Their existence
around a compact object implies strong lensing effects. For
the Schwarzschild BH, the LR occurs at an areal radius
r ¼ 3M and it is an unstable photon orbit. Thus, scattering
photons with an impact parameter (η ¼ L=E, where E, L
are the photon’s energy and angular momentum, respec-
tively) larger than (in modulus) that of the LR, ηLR, return
to spatial infinity; but, when η is close to ηLR, jηj≳ jηLRj,
the scattering angle can be arbitrarily large, in the sense that
the photon may circumnavigate the BH an arbitrary number
of times before bouncing back to infinity. If jηj < jηLRj, on
the other hand, the photon will end up falling into the BH.
Thus the LR, defines an absorption cross section for
light, the BH shadow [38,39]. This is a timely observable,
due to ongoing attempts to measure the BH shadow of two
supermassive BHs, by the Event Horizon Telescope [40,41].
In Fig. 2 (left panel) the BH shadow and lensing due to a

Schwarzschild BH is shown. The setup is the one intro-
duced in [42] and used by some of us in [24,34,35],
wherein the numerical ray-tracing method is also described.
In a nutshell, light emanates from a far away celestial
sphere that is divided into four quadrants, each painted with
one color (yellow, blue, green red). Black constant latitude
and longitude lines are also drawn in the light-emitting
celestial sphere. The observer is placed off-center, within
the celestial sphere at some areal radius robs. Directly in
front of the observer, there is a point in the celestial sphere
where the four quadrants meet, which is painted in white
and blurred. The Schwarzschild BH is placed at the center
of the celestial sphere.
The left panel of Fig. 2 has a few distinctive features. The

white circle is the lensing, due to the BH, of the celestial
sphere’s white dot, which would be right in front of the
observer if the BH would not be in the line of sight. It is an
Einstein ring [43]—see [44] for an historical account of the
prediction of multiple images of a source due to gravita-
tional lensing. The black central disk is the BH shadow,
whose edge corresponds to photons that skim the LR.

TABLE I. Ultracompact bosonic star models.

Model w=μ μMADM μ2Q rð−Þ=M rðþÞ=M

BS1 0.8397 0.3800 0.3274 0.074 0.126
BS2 0.8402 0.3767 0.3235 0.045 0.088
BS3 0.8417 0.3745 0.3209 0.024 0.053
PS1 0.8890 0.5666 0.4899 0.042 0.065
PS2 0.8911 0.5621 0.4849 0.016 0.034
PS3 0.8914 0.5636 0.4866 0.007 0.018
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In between this edge and the Einstein ring there are
infinitely many copies of the celestial sphere, that accu-
mulate in the neighbourhood of the shadow’s edge, in a
self-similar structure [42]. In the image only two of these
copies are clearly visible.
The right panel of Fig. 2 shows the lensing pattern due to

a bosonic star, model PS2, under similar observation
conditions, i.e., and observer placed at the same robs and
the BH replaced by the star at the center of the celestial
sphere. Since the gtt component of the metric is very close
to zero within the star region, the numerical integration of
the null geodesics is quite demanding. This issue is tamed
by performing a conformal transformation to a spacetime
with less extreme redshift factor, since such transformation
leaves invariant null geodesic paths. This is an efficient
procedure. We have checked different conformal trans-
formations lead to the same image, validating the method.
Comparing the left and right panels of Fig. 2, leads to

two main conclusions. First, the Einstein ring has a similar
dimension. Since there is only one scale for either solution
—the total mass—similar observation conditions imply the
lensing is due to objects with the same total mass. This
explains the same overall (weak) light bending that
originates the Einstein ring. Second, the strong lensing
region, which is due to photons with η ∼ ηLR, is smaller for
the star. This is a consequence of the smaller LRs, cf. the
previous section: for ultracompact bosonic stars they occur
at an areal radius ≪ 3M.
The lensing for the six selected models of ultracompact

bosonic stars (cf. Table I) is qualitatively similar. In Fig. 3

(left panel), we exhibit the one for model BS1, under
similar observation conditions robs ¼ 15M as the one for
PS2 shown in the right panel of Fig. 2. As expected the
Einstein ring has a similar scale, but the strong lensing
region is smaller for the Proca star, which is, qualitatively,
in agreement with its smaller (outer) LR. It is important to
emphasize, however, that the angular size in the image is
determined by the LR’s impact parameter, and not by its
areal radius [45].
The right panel of Fig. 3 shows a zoom of the left panel,

around its central region. Circles, which are Einstein rings,
are the lensing images of either the celestial sphere point in
front of the observer (white circles) or the one behind the
observer (black circles). These two types of circles alternate
and appear to accumulate at a given angular radius. This
can be confirmed in Fig. 4 (main panel), which displays the
initial angle (which one can regard as the radial coordinate
in the lensing images) vs. the scattering angle, i.e., the final
angle in the celestial sphere. The scattering angle is here
taken to be zero at the white dot of the celestial sphere
(directly on the observer’s line of sight, if the geometry
were flat). Hence, multiples of 2π signal the formation of a
white circle in the image, which can be seen by the
horizontal dashed lines in Fig. 4. The peak on the plot
is the finger print of the unstable LR. Had this been a BH,
instead of a bosonic star, the left part of the peak would not
exist, as it would correspond to the shadow. The region in
between each consecutive black and a white circles in
Fig. 3, contains a copy-image of the full celestial sphere. As
familiar from particle physics/quantum mechanics, the

FIG. 2. Lensing and shadow of a Schwarzschild BH (left panel) and a comparable bosonic star (right panel, model PS2), in similar
observation conditions, for which the observer is set at robs ¼ 15M. The Einstein ring has a similar dimension (white lensed region), but
the strongly lensed region—shadow and near its edge for the BH vs. central rings for the star—is much smaller for the star.
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outermost (unstable) LR, which is a bound state, appears as
a pole in the scattering amplitude—Fig. 4.
The scattering angle divergence near the LR is loga-

rithmic. This allows us to write the impact parameter of the
Einstein ring of order k, corresponding to a scattering angle
of 2πk as

ηðkÞER ¼ ηLR þ be−2πk=a; ð6Þ

where a, b are constants, the value of which depends on the
LR being approached with values of η above or below ηLR.
Fig. 4 (inset) shows this relation is a good approximation to

the numerical values, even for the lowest order
Einstein rings.
Whereas the LR is not emphasized in the plots in Figs. 2

and 3, it stands out if instead we plot the time delay
function. This function is defined as the variation of the
coordinate time t, in units of M, required for the photon
geodesic emanating from a particular pixel to reach a
corresponding point on the celestial sphere [34]. This is a
good diagnosis of the LR since photon trajectories that

FIG. 3. Lensing by the boson star model BS1 (left panel) and a zoom around the strong lensing region (right panel).
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skim the LR take much longer to return to spatial infinity. In
Fig. 5 the time delay for model PS2 is portrayed as a heat
map with the corresponding scale on the right of the image
indicating the variation of the coordinate time (in units of
M) for each photon to travel from the camera to the celestial
sphere. The LR clearly stands out (compare with Fig. 2,
right panel).
Figure 5 shows that UCOs like bosonic stars—made of

dark matter that only affect light through the spacetime
geometry—have a ring-like darker region, rather than a
disklike shadow. Of course, it is possible that in a more
realistic astrophysical environment, with an accretion disk
light source, the whole central region becomes an effective
shadow, cf. [46]. Likely, this depends on the accretion
modeling and, in any case, this effective shadow will
be considerably smaller than that of a comparable
Schwarzschild BH.
Let us close this section by remarking that the innermost

(stable) LR plays no significant role in the photon scatter-
ing problem we have just analyzed, but it potentially
impacts in the spacetime stability [36,47,48].

IV. NONLINEAR EVOLUTIONS

We now turn to the dynamical evolution of ultracompact
bosonic stars. As already mentioned, ultracompactness
only occurs in the region of perturbative instability, for
the model of bosonic stars we are analyzing. Thus, it is not
surprising that these models evolve into different configu-
rations when perturbed. As we shall see in the evolutions
presented here, ultracompact bosonic stars decay into BHs,
which is one of the possible fates already seen for unstable,
but not ultracompact, bosonic stars [32,33]. The simula-
tions herein, moreover, allow us to: (1) establish this is a
more generic fate in the ultracompact case; (2) observe the
timescale for the collapse, which turns out to be a short one.
A different interesting question, which we shall not address
herein since it is not the case for the solutions we are
studying, is if there are any bosonic stars models, say,
including rotation or self-interactions, for which ultra-
compact bosonic stars are perturbatively stable.
In the following we shall first consider the vector case

and then, more briefly, the scalar case. Our numerical
evolutions employ a Cauchy approach. We introduce the
3þ 1 decomposition of all dynamical quantities in the
standard fashion (see, e.g., [49–51] for details). Concretely,
we introduce the 3-metric

γμν ¼ gμν þ nμnν; ð7Þ

where nμ denotes a timelike unit vector with normalization
nμnμ ¼ −1. The full spacetime metric gμν can then be
expressed as

ds2 ¼ gμνdxμdxν

¼ −ðα2 − βiβiÞdt2 þ 2βidtdxi þ γijdxidxj; ð8Þ

where the lapse function α and shift vector βi describe the
coordinate degrees of freedom.

A. Proca stars

In the Proca case, the evolutions have been performed
using the same code and setup employed in [33], where we
have also addressed spherical Proca star evolutions, albeit
non-ultracompact. The Einstein-Proca equations are for-
mulated in the BBSN approach [52,53] and the usual
choice of 1þ log slicing condition and Gamma-driver shift
conditions is made for the gauge equations. The code
solves the evolution equations in spherical symmetry using
spherical polar coordinates and a second-order partially
implicit Runge-Kutta (PIRK) method [54,55].
Following [33,56], the Proca field is split into its 3þ 1

variables, namely its scalar potential Φ, 3-vector potentials
ai and three-dimensional “electric”E field. From the ansatz
(5), the initial value for the Proca field variables is given as
follows:

Φ ¼ −nμAμ ¼ −i
V
α
; ð9Þ

ai ¼ γμiAμ ¼
H1

r
; ð10Þ

Ei ¼ −i
γij

α

�
DiðαΦÞ þ ∂taj

�

¼ i
γrr

α

�
DrV þ w

H1

r

�
: ð11Þ

Further details on the Einstein-Proca system can be found
in [33,56].
For all evolutions presented herein, we have used the

same logarithmic radial grid that extends from the origin to
r ¼ 50. We choose a time step ofΔt ¼ CΔr, whereC is the
Courant factor. For the ultracompact models, the minimum
resolution close to the origin is Δr ¼ 0.0004 and a Courant
factor of C ¼ 0.4 for models PS1 and PS2, and Δr ¼
0.0002 and C ¼ 0.8 for PS3. It is worth pointing out the
difficulty in performing long-term stable evolutions of
these ultra-compact models as compared to the previous
ones of [33], due to the extreme accuracy requirements
close to the origin. The minimum radial step and time step
are two orders of magnitude smaller than in [33], which
involves a significant amount of computational time, even
in spherical symmetry.
Figure 6 shows some of the main results concerning the

evolutions of the models PS1-PS3. In the top panel of Fig. 6
we exhibit the time evolution of the Proca field energy EPF
(see Eq. (32) in [33]) and the irreducible mass of the
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apparent horizon (AH), once the latter forms in the
evolutions. The figure shows that for all three models,
the discretization error of the numerical solution is suffi-
cient to perturb the initial configurations and trigger the
collapse of the ultra-compact Proca stars into BHs. At an
early time in the evolution an AH forms. This is confirmed
in the middle panel, where the commencing time evolution
of the minimum of the lapse function is shown. This so-
called “collapse-of-the-lapse” is a distinctive feature of AH
formation. The time coordinates for which those three AHs
are found, computed using the AH finder implemented in
the code of [33], are indicated by the three vertical dashed
lines in the middle panel of the figure. The corresponding
times are (tPS1 ¼ 4.122, tPS2 ¼ 1.502, tPS3 ¼ 1.178) in
units of 1=μ. As expected, the time scales of AH formation
are smaller than those obtained for the much less compact
models in [33]. The same trend we found in our previous
work is also present in the ultracompact case—the more
compact the model, the faster the AH appears.
Following AH formation, the Proca field energy evolves

toward being absorbed by the Schwarzschild BH, but
within the timescale of our simulations some matter field
energy remains outside the horizon. This is confirmed in
the bottom (main) panel of Fig. 6, wherein we exhibit the
time evolution of the amplitude of the scalar potential at
some extraction radius outside the horizon and for model
PS1. The main plot shows that, when the BH forms, a part
of the Proca field remains outside the horizon, with the real
and imaginary parts oscillating with opposite phase. These
are quasi-bound states of the Proca field around a
Schwarzschild BH [33,56,57]. Moreover, a beating pattern
can be observed, a hint that more than one quasibound state
of the Proca field is present outside the Schwarzschild BH.
The corresponding frequencies of oscillation, obtained by
Fourier-transforming the time evolution in the main panel,
are displayed in the inset.
In order to assess the accuracy of our nonlinear evolu-

tions we have also performed a convergence test analysis
for the Gauss constraint and the Hamiltonian constraint.
The results are shown in Fig. 7 for model PS1. For both
constraints we obtain the theoretical second-order conver-
gence of the code.
To end this section, we comment that we have also

evolved the ultracompact Proca stars with an added
perturbation, instead of relying solely on the discretization
numerical error to trigger the nonlinear dynamics. In [33]
we observed this could change the fate of the star. For
instance, by multiplying the Proca field by a number
slightly smaller than one (namely 0.98), therefore intro-
ducing a constraint-violating perturbation, we noticed that
the fate of the star could change from collapsing into a
BH to either migrating or dispersing (see Table III in [33]).

FIG. 6. (Top panel) Time evolution of the Proca field
energy and AH mass for models 1, 2 and 3. (Middle panel)
Time evolution of the minimal value of the lapse for all
models. (Bottom panel, main) Time evolution of the ampli-
tude of the scalar potential extracted at some point outside
the horizon for model PS2. The inset shows the oscillation
frequencies.
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In the present case of ultra-compact stars, however, even
when multiplying the initial Proca field by 0.9, the final fate
of the nonlinear dynamics is still gravitational collapse.
This shows that ultra-compact bosonic configurations are
much more prone to rapidly decay into a Schwarzschild
BH, confirming our naive intuition.

B. Boson (scalar) stars

In the scalar case we use a completely independent
numerical code and computational infrastructure. The code
employed for the numerical evolutions makes use of the
EINSTEINTOOLKIT infrastructure [58–60], which uses the
CACTUS Computational Toolkit [61], a software framework
for high-performance computing. Mesh-refinement capa-
bilities are handled by the CARPET package [62,63] and
AHs are tracked with AHFINDERDIRECT [64,65]. The
evolution of the spacetime metric is handled by LEAN,
originally presented in [66] for vacuum spacetimes. Matter
terms are here coupled straightforwardly using a separate
thorn within the CACTUS framework.
As in the code of [33] employed in the Proca case, LEAN

also uses the BSSN formulation of the Einstein equations
[52,53] with the moving puncture method [67,68] and the
usual 1þ log slicing condition and Gamma-driver shift
conditions for the gauge equations. We employ the method-
of-lines, where spatial derivatives are approximated by
fourth-order finite difference stencils, and we use the
fourth-order Runge-Kutta scheme for the time integration.
Kreiss-Oliger dissipation is applied to evolved quantities in
order to damp high-frequency noise.
Some details about the 3þ 1 decomposition of the

Einstein-Klein-Gordon equations are presented in
Appendix A. Note that, whereas the code used for the
evolutions of Sec. IVA is a 1þ 1 spherically-symmetric
code, the one presented here evolves a three-dimensional
grid. This makes the numerical evolutions much more time-
consuming. For these evolutions we have used an octant

Cartesian grid extending from the origin to xi ¼ 20 (xi ¼ x,
y, z, andwe use unitswherewe fixμ ¼ 1) with 12 refinement
levels. Resolution at the innermost refinement level was
chosen to be Δxi ¼ 0.25

211
≃ 0.000122 and time step

Δt ¼ 0.4Δxi. Such high resolution is needed to properly
resolve the very steep gradients close to the origin due to the
high compactness of the star. The spatial discretization is
therefore two orders of magnitude smaller than the typical
one used for instance in [56], making these evolutions
extremely time-consuming.
The results in the scalar case mimic closely the ones in

the Proca case, despite the different spin of the fundamental
field that constitutes the star and the different code/
computational infrastructure used in the solutions, showing
the robustness of the conclusions. In Fig. 8 we exhibit
analogous plots, in the scalar case, to those shown in Fig. 6
for the Proca case. In the top panel of Fig. 8 we show the
time evolution of the scalar field energy EΦ, computed as

EΦ ≡
Z
r>rAH

dxdydzα
ffiffiffi
γ

p ðTi
i − Tt

tÞ; ð12Þ

and the irreducible mass of the AH, once the latter forms in
the evolution for model BS2. Again, the discretization error
of the numerical solution is sufficient to trigger the collapse
of the ultracompact scalar star into a BH. At an early time in
the evolution an AH forms (tBS2 ≈ 7.5), which is marked by
the red vertical dashed line in the plot. The formation of the
horizon is again confirmed in the middle panel, where the
time evolution of the minimum of the lapse function is
shown. As for the Proca models, the minimum of the lapse
function in the scalar case also tends to zero, signalling AH
formation. Likewise, following AH formation, the scalar-
field energy is increasingly absorbed by the Schwarzschild
BH, but, as in the Proca case, some of the energy remains
outside the horizon within the timescale of our simulations.
This is confirmed in the bottom panel of Fig. 8, wherein we

FIG. 7. Convergence analysis for model PS1 employing three different resolutions:Δr ¼ 0.0004, black curves,Δr ¼ 0.0004=
ffiffiffi
2

p
, red

curves, and Δr ¼ 0.0004=2, green curves. Left panel: L2 norm of the Hamiltonian constraint. Right panel: L2 norm of the Gauss
constraint. The curves have been conveniently rescaled for second-order convergence, hence the overlapping.
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display the time evolution of the scalar field at some
extraction radius outside the horizon. The real and imagi-
nary parts oscillate with opposite phase corresponding to a
quasi-bound start of the scalar field.
As we did in Sec. IVA for the Proca case, we also assess

the code employed in the 3D simulations of spherical
(scalar) boson stars presented in this section. To this aim we
show in Fig. 9 the results of a convergence analysis on the
Hamiltonian constraint violation at t ¼ 10 along the x-axis.
As expected, we observe the theoretical fourth-order
convergence of our code.
Let us conclude this section by remarking that, since

these simulations are computationally very demanding, and
take a very long time, we have only evolved models BS1
and BS3 up to horizon formation. We anticipate their
dynamics is identical to that of model BS2.

V. CONCLUSIONS AND FINAL REMARKS

The dawn of the era of gravitational-wave astronomy
[1–3] promises to deliver detailed information about the
nature of very compact objects in the Universe. The
standard paradigm is that these are either BHs or neutron
stars, but one cannot exclude, a priori, the possibility that
other compact objects, of an even more exotic nature, may
hide in the Cosmos.
Intriguingly, it has been recently pointed out that the

gravitational-wave ringdown of a horizonless UCO could
be identical, at least in its initial stages, to that of a BH,
since such ringdown stage is a signature of a LR, rather than
of a horizon [4]. Is therefore a risk of observationally

FIG. 8. (Top panel) Time evolution of the scalar-field
energy and AH mass for model BS2. (Middle panel)
Time evolution of the minimal value of the lapse for the
same model. (Bottom panel) Time evolution of the real and
imaginary part of the scalar field at a point outside the
horizon.

FIG. 9. Hamiltonian constraint violation at t ¼ 10 along the
x-axis. The resolution at the innermost refinement level for the
red curve is Δxi ¼ 0.000244, whereas for the blue curve Δxi ¼
0.000122was used. The blue curve has been multiplied by 16, the
expected factor for fourth-order convergence.
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mistaking UCOs by BHs and vice-versa, with current and
near-future gravitational-wave measurements?
In this paper we have tackled this question by consid-

ering a concrete UCO model. We have analyzed some of
the LR associated phenomenology of a class of exotic
compact objects: scalar and vector boson stars. On the one
hand, such compact objects are known to form from an
incomplete gravitational collapse, and, at least in spherical
symmetry, this formation is quite generic [23]. This
contrasts with other UCOmodels proposed in the literature,
for which no detailed formation scenario is known. On the
other hand, within the family of solutions of these objects,
some are ultra-compact, i.e., they develop a LR. Since the
spacetime geometry and matter field distribution for these
bosonic stars are explicitly known they yield a privileged
model to study the phenomenology of an UCO.
We have first analyzed the lensing of light by the

ultracompact bosonic stars. Here, we have assumed that
the scalar or vector matter (they are made of) interact very
weakly with light, and thus the propagation of light is
simply determined as the geodesic flow of the spacetime
geometry. In other words, these bosonic stars are made of
dark matter and thus they are permissive to electromagnetic
radiation. Our analysis leads to two main conclusions,
which are transversal to all explicit examples we have
analyzed. First, the UCO produces no shadow, in contrast
to a BH. Rather, it produces an annulus of darkness,
associated to photon trajectories that come close to the
LR and therefore take an arbitrarily long time to escape.
This annular-like shadow, however, may be blurred into an
apparent disk-like shadow, in an astrophysical context.
Thus, this property, albeit a clear theoretical distinction
from what happens for a BH, may not be a robust
observable signature. Second, for comparable objects,
the weak lensing region of the bosonic star and the BH
is similar (measured, say, by the outermost Einstein ring),
but the strong lensing region of the star is considerably
smaller than that of a BH, under similar observational
conditions. Thus, an ultracompact bosonic star and a
Schwarzschild BH with the same mass, observed at a
similar distance, will be distinguishable. That is, even if the
lensing of the bosonic star produces an effective disklike
shadow, due to the blurring of the annulus-like strong
lensing region, this disk is considerably smaller than that of
the shadow of the comparable Schwarzschild BH (e.g., ∼6
times smaller for model PS2). Thus, it seems that even if the
existence of a LR for a horizonless object can mimic a part
of its gravitational wave relaxation signal, it does not mimic
(simultaneously), its electromagnetic phenomenology.
After analyzing the lensing of light we have considered

the dynamics of a perturbed ultracompact bosonic star. It
was clear from the outset that, when in the ultracompact
regime, the bosonic stars of the model we are considering
(sometimes called mini-boson stars in the scalar case [18])
are unstable. Our fully nonlinear numerical simulations

have allowed us to establish two conclusions about their
fate. First, they collapse into a BH and this is a quite robust
fate. That is, even varying the perturbation, which for less
compact stars could change their fate into a migration or
dispersion [33], ultracompact stars still collapse into a BH.
Second, the collapse is fast, occurring within a few light
crossing times.
Overall, the two aspects analyzed in this paper (lensing

and dynamics) of this model of UCOs, emphasizes that it is
quite challenging for a UCO model to mimic all the
phenomenology and dynamics of a BH, at least in spherical
symmetry, even if it can mimic some of it (like its
ringdown). It would be quite interesting to see if by
changing the model of bosonic stars, e.g., by introducing
self-interactions or rotation, the conclusions we have
obtained herein for the spherically symmetric mini-bosonic
stars change.
Finally, we would like to emphasize that the UCOs we

have considered actually possess two LRs. The phenom-
enology described herein is associated with the outermost
unstable one. But the existence of an innermost stable one
also may have important dynamical consequences, in
particular with respect to the spacetime stability [47,48].
It has been recently proven [36] that for generic horizonless
UCOs forming smoothly from incomplete gravitational
collapse, within physically reasonable models, this stable
LR is always present, and therefore the instability it may
trigger, again challenging the possibility of physically
realistic horizonless UCOs in the Universe.
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APPENDIX: 3 + 1 DECOMPOSITION FOR
THE EINSTEIN-KLEIN-GORDON SYSTEM

Let us briefly present the 3þ 1 decomposed equations of
motion in the Einstein-Klein-Gordon case. To complete the
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characterization of the full spacetime we define the extrin-
sic curvature

Kij ¼ −
1

2α
ð∂t − LβÞγij; ðA1Þ

and analogously introduce the “canonical momentum” of
the complex scalar field Φ

KΦ ¼ −
1

2α
ð∂t − LβÞΦ; ðA2Þ

where L denotes the Lie derivative. Our evolution system
can then be written in the form

∂tγij ¼ −2αKij þ Lβγij; ðA3aÞ

∂tKij ¼ −Di∂jαþ αðRij − 2KikKk
j þ KKijÞ

þ LβKij þ 4πα½ðS − ρÞγij − 2Sij�; ðA3bÞ

∂tΦ ¼ −2αKΦ þ LβΦ; ðA3cÞ

∂tKΦ ¼ α

�
KKΦ −

1

2
γijDi∂jΦþ 1

2
μ2Φ

�

−
1

2
γij∂iα∂jΦþ LβKΦ; ðA3dÞ

where Di is the covariant derivative with respect to the
3-metric.
For the numerical simulations we rewrite the evolution

equations above in the BSSN scheme [52,53], which
renders the system well-posed. The full system of evolution
equations is then

∂t ~γij ¼ βk∂k ~γij þ 2~γkði∂jÞβk −
2

3
~γij∂kβ

k − 2α ~Aij; ðA4aÞ

∂tχ ¼ βk∂kχ þ
2

3
χðαK − ∂kβ

kÞ; ðA4bÞ

∂t
~Aij ¼ βk∂k

~Aij þ 2 ~Akði∂jÞβk −
2

3
~Aij∂kβ

k

þ χðαRij −Di∂jαÞTF þ αðK ~Aij − 2 ~Ai
k ~AkjÞ

− 8πα

�
χSij −

S
3
~γij

�
; ðA4cÞ

∂tK ¼ βk∂kK −Dk∂kαþ α

�
~Aij ~Aij þ

1

3
K2

�

þ 4παðρþ SÞ; ðA4dÞ

∂t
~Γi ¼ βk∂k

~Γi − ~Γk∂kβ
i þ 2

3
~Γi∂kβ

k þ 2α ~Γi
jk
~Ajk

þ 1

3
~γij∂j∂kβ

k þ ~γjk∂j∂kβ
i

−
4

3
α~γij∂jK − ~Aijð3αχ−1∂jχ þ 2∂jαÞ

− 16παχ−1ji; ðA4eÞ

∂tΦ ¼ −2αKΦ þ LβΦ; ðA4fÞ

∂tKΦ ¼ α

�
KKΦ −

1

2
γijDi∂jΦþ 1

2
μ2Φ

�

−
1

2
γij∂iα∂jΦþ LβKΦ; ðA4gÞ

with the source terms given by

ρ≡ Tμνnμnν;

ji ≡ −γiμTμνnν;

Sij ≡ γμiγ
ν
jTμν;

S≡ γijSij: ðA5Þ

For reasons of convenience, we evolve the real and
imaginary part of the scalar field Φ as separate, indepen-
dent, variables. Finally, the evolution is subject to a set of
constraints given by

H≡ R − KijKij þ K2 − 16πρ ¼ 0; ðA6Þ

Mi ≡DjKij −DiK − 8πji ¼ 0: ðA7Þ
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