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Abstract

Multi-Agent Epistemic Logic has been investigated in Computer Science [5] to represent and reason about
agents or groups of agents knowledge and beliefs. Some extensions aimed to reasoning about knowledge
and probabilities [4] and also with a fuzzy semantics have been proposed [6,13].
This paper introduces a parametric method to build graded epistemic logics inspired in the systematic
method to build Multi-valued Dynamic Logics introduced in [11,12]. The parameter in both methods is the
same: an action lattice [9]. This algebraic structure supports a generic space of agent knowledge operators,
as choice, composition and closure (as a Kleene algebra), but also a proper truth space for possible non
bivalent interpretation of the assertions (as a residuated lattice).
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1 Introduction

The analysis and the applications of concepts such as agent’s knowledge, every-

body’s knowledge and common knowledge became a stimulating research field, par-

ticularly in the last decades, when epistemic logics emerged. Although, the work of

Hintikka [8] can be considered the founder of modern modal epistemic logic, most
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of these logics are heavily influenced by the work of Halpern et al [5] on modal

logics of knowledge in a multi-agent systems framework. Modal logics of knowledge

describe how an agent reasons about his own knowledge and about the knowledge

of other agents. We say that an agent knows a fact ϕ if ϕ is true in every state

that the agent considers possible. “The intuition is that if an agent does not have

complete knowledge about the world, he will consider a number of possible worlds.

These are his candidates for the way the world actually is” [5].

Much of the agreement and cooperation in a group of agents is reached con-

sidering the interaction among the agents and the increasing group knowledge ac-

quisition. A fact ϕ is mutual knowledge in a group of agents, if each agent knows

ϕ. This group knowledge is also known as everybody’s knowledge. Suppose, for

instance, that each participant in a conference knows that the lecturer will arrive

late. The fact that the lecturer will arrive late is mutual knowledge among the

participants, but each participant may think that he is the only one who knows

about that. However, suppose that one of the participants makes an announcement

for the audience: “The lecturer told me that he will arrive late”. From this mo-

ment onwards, each participant knows that each participant knows that the lecturer

will arrive late, and each participant knows that each participant knows that each

participant knows that the lecturer will arrive late, and so on. The participant’s

statement turned the fact that was mutually known into a common knowledge fact.

There are many situations where we have uncertainty in our knowledge and

beliefs. It is not unusual to believe in some fact with some grade of possibility. For

instance, Anne believes that her father has a strong preference for Bob, which means

that she believes that he will give a sweet to Bob rather than to Clara. In a scale

from 0 to 5, her belief is 4. This kind of belief is not true or false. In this work we

deal with graded knowledge, but atomic propositions are true or false.

In [5] Multi-Agent Epistemic Logics has been investigated, to represent and rea-

son about agents or groups of agents knowledge and beliefs. There are many pro-

posals to extend these logics with uncertainty. Some extensions aimed to reasoning

about knowledge and probabilities [4]. In general, this is accomplished extending

the language with weighted formulas and adding probabilities to the semantics.

There are other attempts that provide a fuzzy or many valued semantics [6,13].

This work goes in the later direction.

The work of Fitting [6] proposes a many valued modal logic where the truth

values are taken from a lattice.It is presented two semantics, one where the atomic

propositions are many valued and a second one where the accessibility relation also

is many valued. Also, in [3], it is presented a many-valued modal logic over a finite

residuated lattice. In [13] it is introduced an epistemic logic based on the work of

Fitting. It differs from ours because they work with a particular lattice. Another

related work that uses a complete, distributive lattices as semantics for epistemic

and doxastic logics is presented in [7]. More recently, some interesting works have

appeared to deal with many valued dynamic epistemic logic [16,10].

In [11,12] it is proposed a method to build Multi-valued Dynamic Logics. In-

spired on this method, we introduce a method to build graded Multi-Agent Epis-

temic logics. Both methods are based on Action Lattices [9]. Using action lattices,

we are able to support a generic space of agent knowledge operators, as choice,
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composition and closure (as a Kleene algebra), but also a proper truth space for

possible non bivalent interpretation of the assertions (as a residuated lattice). We

use matricial algebra to be able to introduce knowledge representations as weighted

graphs, which enables us to capture a wide class of weighted scenarios, from the

classic bivalent perspective of knowledge, to other structured, discrete and continu-

ous, domains. It should be notice that, in this work, we only deal with the epistemic

notions of knowledge and their duals.

This paper is organized as follows. Section 2 presents all the background needed

about multi-agent epistemic logic. Section 3, introduces our method for building

graded Multi-Agent Epistemic logics. It also provides some concepts on Kleene

algebras and action lattices. Section 4 illustrates the use of our method with two

examples. Section 5 discusses some conditions where classical axioms of Multi-Agent

Epistemic Logic are valid and points out some future works.

2 Multi-Agent Epistemic Logic

Multi-agent epistemic logic has been investigated in Computer Science [5] to repre-

sent and reason about agents or groups of agents knowledge and beliefs.

2.0.1 Language and Semantics

Definition 2.1 The epistemic language consists of a set Φ of countably many

proposition symbols, a finite set A of agents, the boolean connectives ¬ and ∧,

a modality Ka for each agent a. The formulas are defined as follows:

ϕ ::= p | > | ¬ϕ | ϕ1 ∧ ϕ2 | Kaϕ | CGϕ

where p ∈ Φ, a ∈ A and G ⊆ A.

The standard connectives can be presented as abbreviations, namely ⊥ ≡ ¬>,

ϕ ∨ φ ≡ ¬(¬ϕ ∧ ¬φ), ϕ→ φ ≡ ¬(ϕ ∧ ¬φ) and EGϕ ≡
∧

a∈GKaϕ.

The intuitive meaning of the modal formulas are:

• Kaϕ - agent a knows ϕ;

• EGϕ - every agent a ∈ G knows ϕ;

• CGϕ - it is common knowledge among all members of group G that it is the case

that ϕ.

We also introduce, by definition, the dual operators Bϕ ≡ ¬K¬ϕ and MGϕ ≡
¬EG¬ϕ.

Definition 2.2 A multi-agent epistemic frame is a tuple F = (W,Ra) where

• W is a non-empty set of states;

• Ra is a binary relation over W , for each agent a ∈ A;

We also define the following relations

• RG =
⋃

a∈GRa

• R∗G = (RG)∗, where (RG)∗ is the reflexive, transitive closure of RG.
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Definition 2.3 A multi-agent model is a pair M = (F ,V), where F is a frame

and V is a valuation function V : Φ→ 2W .

In most applications of multi-agent epistemic logic the relations Ra are equiv-

alence relations. In this case, models are called epistemic models and, in these

structures, if G is not the empty group of agents, R∗G coincides with R+
G, for R+

G

being the transitive closure of RG.

Definition 2.4 Given a multi-agent model M = 〈S,Ra, V 〉. The notion of satis-

faction M, s |= ϕ is defined as follows

• M, s |= p iff s ∈ V (p)

• M, s |= ¬φ iff M, s 6|= φ

• M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

• M, s |= Kaφ iff for all s′ ∈ S : sRas
′ ⇒M, s′ |= φ

• M, s |= CGφ iff for all s′ ∈ S : sR∗Gs
′ ⇒M, s′ |= φ

It is easy to see that M, s |= EGφ iff for all s′ ∈ S : sRGs
′ ⇒M, s′ |= φ.

Example 1 (An adaptation from [17]) Suppose a father has three envelopes,

each containing: 0, 1 and 2 dollars inside respectively.The father has three children:

anne, bob and clara. Each child receives one envelope and do not know content of

the envelopes of the other children.

We use proposition symbols 0x, 1x, 2x for x ∈ {a, b, c} meaning “child x has

envelope 0, 1 or 2. We name each state by the envelope that each child has in that

state, for instance 012 is the state where child a has 0, child b has 1 and child c has

2. A state name underlined means current state. The following epistemic model

represents the epistemic state of each agent 6 .
Hexa = 〈S,Ra, Rb, Rc, V 〉:
• S = {012, 021, 102, 120, 201, 210}
• Ra =

{(012, 012), (012, 021), (021, 021), . . . },
...

• V (0a) = {012, 021}, V (1a) =

{102, 120}, ...

012 a

c

b

021

c

b

102 a

b

120

c

201 a 210

It is not difficult to see that 012 |= Bb0a and 012 |= BaKc2c hold, but

021 |= Eac2b does not hold.

3 Parametric construction of Graded Epistemic Logics

We introduce, in this paper, a parametric method to build graded epistemic logics

inspired in the systematic method to build multi-valued dynamic logics introduced

in [11,12]. Both methods are based in the same parameter: an action lattice [9].

6 We omit the reflexive loops in the picture
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3.1 Kleene algebras, action lattices and graded knowledges representation

Action lattices support a generic space of agent knowledge operators, as choice, com-

position and closure (as a Kleene algebra), but also a proper truth space for possible

non bivalent interpretation of the assertions (as a residuated lattice). Observe that

the original motivations of Kozen to introduce Action Lattices were very different

for these ones. Originally, the residues were introduced within Action Algebra [15]

as a necessary technicality to obtain a finitely-based equational variety to reason

about imperative programs. Then, Kozen adjusted this notion into the Action Lat-

tice in [9] by introducing and axiomatizing a meet operation, in order to recover

the closeness by matricial formation of the Kleene Algebras [2]. We overview, in

the following, the action algebra with some relevant examples in the context of our

purpose. A lot of other examples and properties can be found in [11]. The structure

of Kleene algebra will be used to model the set of agent knowledge operators over

a set of agents A. In our setting, the valuations of propositions are crisp, i.e., true

or false. This forces the integrability on the action lattices adopted.

a+ (b+ c) = (a+ b) + c (1)

a+ b= b+ a (2)

a+ a= a (3)

a+ 0 = 0 + a = a (4)

a; (b; c) = (a; b); c (5)

a; 1 = 1; a = a (6)

a; (b+ c) = (a; b) + (a; c) (7)

(a+ b); c= (a; c) + (b; c) (8)

a; 0 = 0; a = 0 (9)

1 + a+ (a∗; a∗)≤ a∗ (10)

a;x ≤ x⇒ a∗;x ≤ x (11)

x; a ≤ x⇒ x; a∗ ≤ x (12)

a;x ≤ b⇔ x ≤ a→ b (13)

a→ b ≤ a→ (b+ c) (14)

(x→ x)∗ = x→ x (15)

a · (b · c) = (a · b) · c (16)

a · b = b · a (17)

a · a = a (18)

a+ (a · b) = a (19)

a · (a+ b) = a (20)

Fig. 1. Axiomatisation of action lattices (from [9])

Definition 3.1 (Kleene Algebra) A Kleene algebra is an idempotent (and thus

partially ordered) semiring endowed with a closure operator ∗, i.e. it consists of a

tuple (A,+, ; , 0, 1, ∗) where A is a set, + and ; are binary operations, ∗ is an unary

operation and 0, 1 are constants satisfying the axioms (1)–(12) (the relation ≤ is

the natural order induced by the operation +: a ≤ b iff a+ b = b).

Note that (4) implies that 0 is the minimum element in any Kleene algebra. Conway

shown in [2] that we can endow the class of all matrices over a Kleene algebra

with a Kleene structure. We recall this procedure here: given a Kleene algebra

A = (A,+, ; , 0, 1, ∗) we define a Kleene algebra Mn(A) = (Mn(A),+, ;,0,1,*) as

follows:

(i) Mn(A) is the space of (n× n)-matrices over A

(ii) for any A,B ∈Mn(A), define M = A+B by Mij = Aij +Bij , i, j ≤ n.

(iii) for any A,B ∈ Mn(A), define M = A ; B by Mij =
∑n

k=1(Aik;Bkj) for any

i, j ≤ n.
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(iv) 1 and 0 are the (n× n)-matrices defined by 1ij =

{
1 if i = j

0 otherwise
and 0ij = 0,

for any i, j ≤ n.

(v) for any M = [a] ∈M1(A), M* = [a∗]; for any M =

A B

C D

 ∈Mn(A), n > 1,

where A and D are square matrices, define

M* =

F * F * ;B ;D*

D∗;C;F ∗ D*+(D* ;C ;F * ;B ;D*)


where F = A + B ;D* ;C. Note that this construction is recursively defined

from the base case (n = 2) where the operations of the base action lattice A

are used.

In the present work we take advantage of this matricial algebra to be able to

operate knowledge representations as weighted graphs or, more precisely, weighted

labelled transition systems. As we will see, this abstract structure capture a wide

class of weighted scenarios, from the classic bivalent perspective of knowledge, to

other structured, discrete and continuous, domains.

Moreover, as stated, we are interesting in the definition of Graded Epistemic

logics with non necessarily boolean degrees of truth. In this view, in order to be able

to interpret other logical connectives, we extend our Kleene Algebra of knowledge

with some additional structure - namely, with a residue for the interpretation of the

logical implication and an infimum to interpret the logical conjunction. This can

be found in the following notion of Action Lattice introduced by D. Kozen in [9].

Note, however, that the seminal motivation for this definition was quite distinct

of the stated one. In particular, it aimed to adjust the finitely-based equational

variety “Action Algebra” of Pratt [15], to an algebra closed under the matricial

constructions. Let us recall this notion:

Definition 3.2 A action lattice is a tuple A = (A,+, ; , 0, 1, ∗,→, ·), where A is a

set, 0 and 1 are constants, ∗ is an unary operation in A and +, ; ,→ and · are binary

operations in A satisfying the axioms enumerated in Figure 5, where the relation ≤
is induced by +: a ≤ b iff a+ b = b. An integral action lattice consists of an action

lattice satisfying a ≤ 1.

Beyond the bivalent {0, 1}-action lattice we consider the following two action

lattice that will be used to illustrate our method in Section 4. More examples and

properties of action lattices can be found in [11].

Definition 3.3 ( L - the  Lukasiewicz arithmetic lattice) The  Lukasiewicz

arithmetic lattice is the structure  L = ([0, 1],max,�, 0, 1, ∗, → , min), where

• x→ y = min(1, 1− x+ y),

• x� y = max(0, y + x− 1) and

• x∗ = 1.
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Definition 3.4 (Wk finite Wajsberg hoops) We consider now an action lat-

tice endowing the finite Wajsberg hoops [1] with a suitable star operation. Hence,

for a fix natural k > 0 and a generator a, we define the structure Wk =

(Wk,+ , ; , 0, 1, ∗,→, ·), where Wk = {a0, a1, · · · , ak}, 1 = a0 and 0 = ak, and for

any m,n ≤ k,

• am + an = amin{m,n}

• am; an = amin{m+n,k}

• (am)∗ = a0

• am → an = amax{n−m,0}

• am · an = amax{m,n}

3.2 A method to build Graded Epistemic Logic

In this section we introduce a method to build multi-agent epistemic logics parame-

terized by an action lattice. The “on-demand grading” of the logic is only reflected

in its semantics; the syntax is the same as in the standard case. The proposition

assignment is crisp and only the agent’s relations are graded on the underlying ac-

tion lattice. This non orthodox feature is naturally expressed on the definition of

satisfaction.

Let us fix a complete action lattice A = (A,+, ; , 0, 1, ∗,→, ·). We introduce, in

the following, a method to generate an A-graded epistemic logic GE(A):

• Signatures (At,Ag) where At is a set of atomic propositions and Ag is a finite set

of agents.

• Sentences are the standard sentences of Multi-Agent Epistemic Logic:

ϕ ::= p | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | Kaϕ | Baϕ | EGϕ |MGϕ | CGϕ

where p ∈ At, a ∈ Ag, G ⊆ Ag. Note that, here we are explicitly considering

the or connective and the dual operators of the ones introduced in Definition 2.1

. Actually, here these operators are not definable because we do not have, in

general, a negation.

• Models are structures (W,R, V ) where W is a non empty set of states, with

cardinality n; R is an Ag-family of (n× n)-matrices of M(A) and V : At×W →
{0, 1} is a valuation function. We use the notation Ra(w,w′) to denote the cell

(w,w′) of the matrix Ra.

• Satisfaction:

· (w |= ⊥) = 0

· (w |= p) = V (p, w), for any p ∈ At

· (w |= ϕ ∧ ϕ′) = (w |= ϕ) · (w |= ϕ′)

· (w |= ρ ∨ ρ′) = (w |= ρ) + (w |= ρ′)

· (w |= ϕ→ ϕ′) = (w |= ϕ)→ (w |= ϕ′)

· (w |= Ka ϕ) =
∧

w′∈W
(
Ra(w,w′)→ (w′ |= ϕ)

)
· (w |= Ba ϕ) =

∨
w′∈W

(
Ra(w,w′); (w′ |= ϕ)

)
· (w |= EG ϕ) =

∧
w′∈W

(
RG(w,w′)→ (w′ |= ϕ)

)
· (w |= MG ϕ) =

∨
w′∈W

(
RG(w,w′); (w′ |= ϕ)

)
· (w |= CG ϕ) =

∧
w′∈W

(
R∗G(w,w′)→ (w′ |= ϕ)

)
for RG =

∑
a∈GRa
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4 Examples

We have already discussed an example of epistemic logic in the background section.

Such example can be seen as an instantiation of our method over the {0, 1} standard

action lattice (see [11]). We present two more examples, namely one that deals with

discrete degrees of knowledge and, on the same context, another one that admits

knowledge ranging over a continuous scale.

Example 2 Consider here the Graded Epistemic Logic generated by the Wajsberg

hoop W5 over {a0, a1, a2, a3, a4, a5} (Definition 3.4). Recall that the order in W5

is a5 < a4 < a3 < a2 < a1 < a0. In order to simplify the example, we denote ak by

5− k, for k = 0, . . . , 5. This logic is useful to reasoning about the following variant

of Example 2.

Suppose now that the children are jealous and they have the following beliefs:

(i) anne believes that the father has a strong preference for bob, which means that

she believes that he will give the envelop with higher value to bob than to clara.

In a scale from 0 to 5, her belief is 4; Conversely, her belief that the envelop

bob received has a smaller value is 1.

(ii) clara also believes that the father has a preference for bob . In a scale from

0 to 5, her belief is 3; and conversely, her belief that the envelop bob received

has a smaller value is 1. But if she has the envelop 2 then she believes that the

father has no preference between anne and bob; in that case her belief is 4.

(iii) bob does not believe that the father has any preference between anne and clara.

So his belief is 3 indifferently about any situation.

The following draws represent the beliefs of anna, bob and clara. We draw it

separately for clarity sake. Moreover, we omit the reflexive loops in the picture with

value 5.

012

4
  
021

1
^^

102
4 ((

120
1

hh

201
4   

210

1

^^

012

3

021
3

102
3

120

201 210

012

4

021

1

vv

102 120

1
nn201

3

66

210

4
00

Fig. 2. anna’s, bob’s and clara’s beliefs

We evaluate some formulas in this model. In order to simplify the calculations

we use the fact that a5 → x = a0(i.e., 0→ x = 5) and a5;x = a5 (i.e., 0;x = 0).
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012 |= Bb0a =
∨{

Rb(012, 012); 012 |= 0a, Rb(012, 210); 210 |= 0a
}

=
∨
{5; 5, 3; 0} = 5

012 |= BaKc2a =
∨{

Ra(012, 012); 012 |= Kc2a, Ra(012, 021); 021 |= Kc2a
}

=
∨{

5;
∧{

Rc(012, 012)→ 012 |= 2a, Rc(012, 102)→ 102 |= 2a
}
,

4;
∧{

Rc(021, 021)→ 021 |= 2a, Rc(021, 201)→ 201 |= 2a
}}

=
∨{

5;
∧{

5→ 0, 4→ 0
}
, 4;
∧{

5→ 0, 1→ 5
}}

=
∨{

a0;
∧{

a0 → a5, a1 → a5
}
, a1;

∧{
a0 → a5, a4 → a0

}}
=

∨{
a0; a5, a1; a5

}
= a5(= 0)

To calculate Mac2b at 021 we first calculate the matrix of Rac = Ra +Rc.

Rac =

012 021 102 120 201 210

012 5 4 4 0 0 0

021 1 5 0 0 1 0

102 4 0 5 4 0 0

120 0 0 1 5 0 1

201 0 0 0 4 5 4

210 0 0 0 4 1 5

Then we have,
021 |= Mac2b =

∨{
Rac(021, 012); 012 |= 2b, Rac(021, 021); 021 |= 2b,

Rac(021, 201); 201 |= 2b
}

=
∨
{1; 5, 5; 5, 1; 0} = 5

If we consider the group knowledge we have

021 |= Eac2b =
∧{

Rac(021, 012)→ 012 |= 2b, Rac(021, 021)→ 021 |= 2b,

Rac(021, 201)→ 201 |= 2b
}

=
∧
{1→ 0, 5→ 5, 1→ 0} =

∧
{4, 5, 4} = 4

Example 3 Consider now the Graded Epistemic Logic generated by the  Lukasie-

wicz arithmetic lattice  L = ([0, 1],max,�, 0, 1, ∗, → , min) (Definition 3.3). This

logic is adequate to reasoning about knowledge expressed in the continuous scale

[0, 1]. Let us look to the following variant of Example 2.

Suppose now that the children have the following beliefs:

(i) anne believes that the father has a strong preference for bob, which means that

she believes that he will give the envelop with higher value to bob than to clara.

Her belief is 4
5 ; moreover her belief that the value is less is 1

5

(ii) cath also believes that the father has a preference for bob. Her belief is 3
5 .

But if she has the envelop 2 then she believes that the father has no preference

between anne and bob.In such case her belief is 1.

(iii) bob does not believe that the father has any preference between anne and clara.

So, his beliefs are all 1.

The draws in figure 3 represent the beliefs of anna, bob and clara. We draw it

separately for clarity sake.

We will evaluate the same formulas as in previous example:

012 |= Bb0a =
∨{

Rb(012, 012)� 012 |= 0a, Rb(012, 210)� 210 |= 0a
}

=
∨
{1� 1, 1� 0} = 1

012 |= BaKc2a =
∨{

Ra(012, 012)� 012 |= Kc2a, Ra(012, 021)� 021 |= Kc2a
}

=
∨{

1�
∧{

Rc(012, 012)→ 012 |= 2a, Rc(012, 102)→ 102 |= 2a
}
,

4
5
�
∧{

Rc(021, 021)→ 021 |= 2a, Rc(021, 201)→ 201 |= 2a
}}

=
∨{

1�
∧{

1→ 0, 1→ 0
}
, 4
5
�
∧{

1→ 0, 2
5
→ 1

}}
=

∨{
1�

∧{
0, 0
}
, 4
5
�
∧{

0, 1
}}

=
∨{

1� 0, 4
5
� 0
}

=
∨{

0, 0} = 0
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012

1
5

��

4
5

��
021

1
5

\\

4
5

��

102

1
5

��
4
5 ''

120

4
5

��

1
5

gg

201

1
5�� 4

5 ��
210

1
5

\\

4
5 ��

012

1

021

1

102

1

120

201 210

012

1

021̂̂

��

2
5

ww
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5

nn
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5[[
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3
5

77

210

3
5
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%%
2
5__

Fig. 3. anna’s, bob’s and clara’s beliefs

To calculate Mac2b at 021 we first calculate the matrix of Rac = Ra +Rc.

Rac =

012 021 102 120 201 210

012 1 4
5

1 0 0 0

021 1
5

4
5

0 0 2
5

0

102 1 0 1 4
5

0 0

120 0 0 1
5

4
5

0 3
5

201 0 3
5

0 0 2
5

4
5

210 0 0 0 3
5

1 4
5

Then we have,
021 |= Mac2b =

∨{
Rac(021, 012)� 012 |= 2b, Rac(021, 021)� 021 |= 2b,

Rac(021, 201)� 201 |= 2b
}

=
∨
{ 1
5
� 1, 4

5
� 1, 2

5
� 0} =

∨
{ 1
5
, 4
5
, 0} = 4

5

If we consider the group knowledge we have
021 |= Eac2b =

∧{
Rac(021, 012)→ 012 |= 2b, Rac(021, 021)→ 021 |= 2b,

Rac(021, 201)→ 201 |= 2b
}

=
∧
{ 1
5
→ 1, 4

5
→ 1, 2

5
→ 0} =

∧
{1, 1, 3

5
} = 3

5

5 How epistemic GE(A) logics are?

The study of each one of these instantiation of the logics generated in the previ-

ous section, as logics with ‘its own rights’, is very challenging. Obviously, there

are aspects that have to be studied instantiation-by-instantiation. In this section,

however we approach this in a more systematic perspective, trying to respond the

question How epistemic GE(A) logics are? by studying the validity of the standard

axioms of epistemic logic in Fig 5 on the generated logics.

We obtain some generic results for specific classes of generated logics, with re-

spect to specific classes of action lattices and imposing constrains on the achieved

models. The latter also happens in the standard epistemic logic, which the com-

pleteness is established for a restricted class of models, for instance, the epistemic

ones (i.e., models whose accessible relations are equivalence relations) [17].

10
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(i) All instantiations of propositional tautologies,

(ii) Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ),

(iii) Kaϕ→ ϕ,

(iv) Kaϕ→ KaKaϕ (+ introspection),

(v) ¬Kaϕ→ Ka¬Kaϕ (− introspection),

(vi) CGϕ↔ EGCGϕ

(vii) CG(ϕ→ EGϕ)→ (ϕ→ CGϕ)

Fig. 4. Axiomatics of epistemic logic [5,17]

We follow the strategy adopted in [11,12] (in the context of generated graded

dynamic logics). The integrability (a ≤ 1) on action lattices provides a nice proof

strategy to work at this generic level: as it is well known, in any integral action

lattice, we have

(a→ b) = 1 ⇔ a ≤ b (21)

Theorem 5.1 Let A be an integral ;-idempotent, ;-commutative action lattice. The

property

(ii) Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ)

is valid in the logic GE(A).

Proof. This proof can be extracted from Lemma 9 of [11]. 2

In a similar way, but by imposing commutativity on the operation ; we can

extract the proof for the axiom (vii):

Theorem 5.2 Let A be an integral action lattice such that ; = ·. Then the property

(vii) CG(ϕ→ EGϕ)→ (ϕ→ CGϕ)

is valid in the logic GE(A).

Proof. This can be directly adapted from Lemma 10 of [11]. 2

So, we have to study the remaining axioms, specifically the ones that distinguish

epistemic logic from other modal logics - the axioms (iii), (iv), (v) and (vi). In this

view, we have to impose further properties on the structure of the models. In

particular, we have to generalize the reflexivity and transitivity conditions for our

graded setting to guarantee the validity of (iii) and (iv). What the conditions needed

for the cases (iii) and (iv) are still in study.

Definition 5.3 Let A be an action lattice and M be a model in GE(A). We say

that M is graded-reflexive if for any a ∈ Ag, w ∈W ,

Ra(w,w) = 1 (22)

and that it is graded-transitive, whenever any a ∈ Ag

for any w,w′, w′′ ∈W,Ra(w,w′′) ≥ Ra(w,w′) ; Ra(w′, w′′) (23)

Theorem 5.4 Let A be an integral action lattice. Then, the axiom

11
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(iii) Kaϕ→ ϕ,

is valid in graded-reflexive models.

Proof. Since A is integral, we have by (21) that it is sufficient to prove that, for

any model M , and for any state w ∈ W , (w |= Kaϕ) ≤ (w |= ϕ). In this view, we

observe that:

(w |= Kaϕ)

= { |= defn}∧
w′∈W

(
Ra(w,w′)→ (w′ |= ϕ)

)
≤ { infimum properties}(

Ra(w,w)→ (w |= ϕ)
)

= { (22)}(
1→ (w |= ϕ)

)
= { in any action lattice 1→ a = a (cf. [11])}

(w |= ϕ)

2

Theorem 5.5 Let A be an integral ;-commutative action lattice. Then, the axiom

(iv) Kaϕ→ KaKaϕ (+ introspection),

is valid in graded-transitive models.

Proof. Since A is integral, we have by (21) that it is sufficient to prove that, for

any model M , and for any state w ∈W , (w |= Kaϕ) ≤ (w |= KaKaϕ). In this view,

we observe that:

for any w′, w′′ ∈W,Ra(w,w′′) ≥ Ra(w,w′);Ra(w′, w′′)

⇔ { ;-commutative}

for any w′, w′′ ∈W, Ra(w,w′′) ≥ Ra(w′, w′′);Ra(w,w′)

⇔ { a ≤ b⇒ b→ c ≤ a→ c (cf. [11])}

for any w′, w′′ ∈W, Ra(w,w′′)→ (w′′ |= ϕ) ≤
(Ra(w′, w′′);Ra(w,w′))→ (w′′ |= ϕ)

⇔ { infimum properties}

for any w′′ ∈W,Ra(w,w′′)→ (w′′ |= ϕ) ≤∧
w′∈W

(
(Ra(w′, w′′);Ra(w,w′))→ (w′′ |= ϕ)

)
⇔ { in any action lattice a→ (b→ c) = (b; a)→ c (cf. [11])}

for any w′′, Ra(w,w′′)→ (w′′ |= ϕ) ≤

12



Benevides, Madeira and Martins

∧
w′∈W

(
Ra(w,w′)→ (Ra(w′, w′′)→ (w′′ |= ϕ))

)
⇔ { inf. monotocity}∧

w′′∈W
Ra(w,w′′)→ (w′′ |= ϕ) ≤∧

w′,w′′∈W

(
Ra(w,w′)→ (Ra(w′, w′′)→ (w′′ |= ϕ))

)
⇔ { in any complete action lattice, x→ (

∧
i∈I yi) =

∧
i∈I(x→ yi) (cf. [11])}∧

w′′∈W
Ra(w,w′′)→ (w′′ |= ϕ) ≤∧

w′∈W

(
Ra(w,w′)→

∧
w′′∈W

(Ra(w′, w′′)→ (w′′ |= ϕ))
)

⇔ { |= defn twice}

(w |= Kaϕ) ≤ (w |= KaKaϕ)

2

6 Conclusions and future work

This paper starts with a research program on the parametric generation of graded

epistemic logics. The approach is based on the application of the method introduced

in Section 3, and should be explored as an effective source of logics to reason on agent

knowledge scenarios with distinct degrees of Knowledge/Belief. The generality of

the method was illustrated with three graded epistemic logics (note that the stan-

dard multi-agent epistemic logic corresponds to the instantiation of the action lattice

2), but a lot of other examples can be considered - from a {false, unknown, true}-
three valued epistemic logic, achieved by instantiating the action lattice 3 to a more

‘esoteric’ graded epistemic logic to deal with knowledge/belief scenarios involving

resource aware constraints (built on the Floyd Warshall algebra - see [11]). Beyond

of their philosophical interest, the study of each one of these instantiations as a

logic with ‘its own rights’ is very challenging. Indeed, as discussed in Section 5,

it is possible to characterize specific classes of graded epistemic logics (parametric

on specific subclasses of action lattices and by imposing further condition on the

models) that preserves the essence of the bivalent epistemic logic.

There is, however, a lot of work to do in this line of research. To establish suffi-

cient conditions for validating the negative introspection axiom (and of (vi)) is still

work in progress for us. It seems that, beyond of a generalization of the Euclidean

property on models, some new conditions should be imposed in the action lattices,

particularly with respect to their negation (note that, in its generic form, there is

no negation involution in general). The parametric generation of calculus and the

study of complexity of generated epistemic logic w.r.t. to specific classes of action

lattices are also in our agenda. Another interesting line of research is to investigate

the concepts of simulation and bisimulation for our knowledge representations on

the lines proposed in [18,14] for generic fuzzy labelled transition systems.

13
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Finally, it would be interesting to investigate whether our approach allows for

the representation of epistemic actions. Public announcements or private commu-

nications. More interesting is to look for epistemic actions that make sense only

in this (or similar) setting. For example, one can think of situations in which the

agent has a belief of some grade n, and then some new information ’downgrades’ or

’upgrades’ this belief (some form of belief revision, but now in a ’graded’ fashion).

References

[1] W. J. Blok and I. M. A. Ferreirim. On the structure of hoops. algebra universalis, 43(2-3):233–257,
2000.

[2] J. H. Conway. Regular Algebra and Finite Machines. Printed in GB by William Clowes & Sons Ltd,
1971.

[3] L. Godo F. Bou, F. Esteva and R.O. Rodriguez. Many-valued modal logic over a nite residuated lattice.
Journal of Logic and Computation, 21(5):739–790, 2011.

[4] R. Fagin and J. Halpern. Reasoning about knowledge and probability. Journal of the ACM, 41(2):340–
367, 1994.

[5] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge. MIT Press, USA, 1995.

[6] Melvin Fitting. Many-valued modal logics. Fundam. Inform., 15(3-4):235–254, 1991.

[7] Michell Guzmán, Stefan Haar, Salim Perchy, Camilo Rueda, and Frank D. Valencia. Belief, knowledge,
lies and other utterances in an algebra for space and extrusion. J. Log. Algebr. Meth. Program.,
86(1):107–133, 2017.

[8] J. Hintikka. Knowledge and Belief. Cornell University Press, Ithaca, N.Y, 1962.

[9] Dexter Kozen. On action algebras. Logic and Information Flow, pages 78–88, 1994.

[10] Alexander Kurz and Alessandra Palmigiano. Epistemic updates on algebras. Logical Methods in
Computer Science, 9(4), 2013.

[11] Alexandre Madeira, Renato Neves, and Manuel A. Martins. An exercise on the generation of many-
valued dynamic logics. J. Log. Algebr. Meth. Program., 85(5):1011–1037, 2016.

[12] Alexandre Madeira, Renato Neves, Manuel A. Martins, and Lúıs Soares Barbosa. A dynamic logic for
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