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abstract Energy efficiency plays a large role in the sustainability effort of water utilities
since, globally, 35% of the total expenses with water production (12 billion
euros) are being spent on energy. The main obstacle for the efficiency
improvement in water supply systems is mostly related to the complexity of the
systems and also to the low levels of resilience in their operations.
The main goal of this thesis is the development of an automatic computational
methodology capable of (i) applying distinct techniques for the optimal operation
of any water network and (ii) searching for possible locations for energy
recovery using turbines and then selecting the most adequate type of turbine.
Four major topics that play crucial roles in the networks efficiency improvement
are addressed: (i) modelling and simulation of the networks, (ii) operational
optimisation, (iii) water demand forecasting and (iv) energy recovery using
hydroturbines.
An optimisation approach dealing simultaneously with valves, fixed-speed
pumps and variable-speed pumps is proposed. The operating periods of all
valves and pumps and also the speed settings of variable-speed pumps are
used as decision variables in an optimisation problem in order to minimise the
energy costs associated to a network operation. The hydraulic simulator
EPANET 2.0 is used to verify and ensure the feasibility of the obtained
solutions. Benchmark networks are tested with distinct optimisation techniques
including several algorithms, such as Nelder-Mead Simplex, Genetic Algorithms
(GA), Particle Swarm Optimisation (PSO) and Differential Evolution (DE).
A novel formula for predicting the pumps efficiency changes with speed is
proposed and compared with the few existing methods, including the one used
by EPANET.
An automatic process for the analysis of any water network in order to locate
sites and select turbines for energy recovery is implemented and validated with
a case-study.
Finally, models for predicting short-term water demands are developed and
tested with data collected from a Portuguese water network. Traditional
forecasting models based on exponential smoothing and naïve models are
developed using a spreadsheet while artificial neural network-based models are
developed in Matlab. The effect of distinct input variables (including anthropic
and meteorological variables) in the ANN-based models is analysed.





palavras-chave abastecimento e distribuição de água, aproveitamento de energia, eficiência
energética, modelação hidráulica, optimização, previsão de consumos

resumo A eficiência energética representa um papel significativo no esforço para a
sustentabilidade por parte das empresas das águas, uma vez que,
mundialmente, 35% dos custos totais com a produção de água (12 mil milhões
de euros) estão a ser gastos em energia. Os principais obstáculos à melhoria
da eficiência energética dos sistemas de abastecimento de água estão
essencialmente relacionados com a complexidade dos sistemas e também com
os baixos níveis de resiliência a nível operacional.
O principal objectivo desta tese é o desenvolvimento de uma metodologia
computacional automática capaz de: (i) aplicar diferentes técnicas para
operação optimizada de qualquer rede de água, (ii) procurar por possíveis
localizações para recuperação de energia utilizando turbinas e, posteriormente,
seleccionar o tipo de turbina mais adequado.
Quatro tópicos fundamentais que representam um papel crucial na melhoria da
eficiência energética das redes são abordados: (i) modelação e simulação das
redes, (ii) optimização operacional, (iii) previsão de consumos de água e (iv)
aproveitamento de energia utilizando hidroturbinas.
Uma abordagem de optimização para lidar simultaneamente com válvulas,
bombas de velocidade fixa e bombas de velocidade variável é proposta. Os
períodos de operação de todas as válvulas e bombas, assim como as
velocidades das bombas de velocidade variável são utilizados como variáveis
de decisão num problema de optimização de forma a minimizar os custos
energéticos associados à operação de uma rede. O simulador hidráulico
EPANET 2.0 é utilizado para verificar e garantir que as soluções obtidas são
viáveis. Redes benchmark são testadas com diferentes técnicas de
optimização, incluindo vários algoritmos, tais como Nelder-Mead Simplex,
Algoritmos Genéticos (GA), optimização por bando de partículas e evolução
diferencial.
Propõe-se uma nova formulação para prever a variação de curvas de eficiência
das bombas com a velocidade e esta é comparada com os poucos métodos
existentes para o efeito, incluindo o utilizado pelo EPANET.
Um processo automático para a análise de qualquer rede hidráulica de forma a
identificar locais e seleccionar turbinas para aproveitamento de energia é
implementado e validado com um caso de estudo.



Finalmente, modelos para previsão de consumos de água a curto prazo são
desenvolvidos e testados com dados recolhidos de uma rede de água

Portuguesa. Modelos de previsão tradicionais baseados em modelos de
alisamento exponencial e modelos naïve são desenvolvidos utilizando folhas de
cálculo, enquanto que os modelos baseados em redes neuronais artificiais são

desenvolvidos no Matlab. Analisa-se ainda o efeito de diferentes variáveis de
entrada (incluindo variáveis antrópicas e meteorológicas) nestes últimos

modelos.
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X0 - matrix of the initial decision variables
Pe,max - maximum value of pump power needed
Lmax - maximum water level of a tank
Pmin - minimum manometric/head pressure required
Lmin - minimum water level of a tank
xmin/xmax - minimum/maximum values of xnon-scaled

Km - minor headloss coefficient
β - model regression parameter
ηm - motor efficiency
ψ - moving average (MA) order
Hnet - net head
Pnet - net power
Hf - nodal fixed-grade
f NL - non-linear function
xnon-scaled - non-scaled decision variable
ncomp - number of components that constitutes the decision variables (2nVSP +nFSP +nValves)
ncnodes - number of control/demand nodes
ndays - number of days
nvar - number of decision variables
K - number of equality constraints
nFSP - number of fixed-speed pumps
nG - number of generations
nhidden - number of hidden nodes
J - number of inequality constraints
nin - number of input nodes



xvi Nomenclature

niter - number of iterations
njet - number of jets
nnodes - number of nodes
Ot - number of observations used for training
O - number of observations
nout - number of output nodes
npumps - number of pumps
ntanks - number of tanks
nPe,max - number of times the maximum power is required by the pump
nsteps - number of time-steps
nturb - number of turbines
nValves - number of valves
nVSP - number of variable-speed pumps
nwarn - number of warning messages
y - observed variable
tFSP
op - operating time for fixed-speed pumps

tValve
op - operating time for valves

tVSP
op - operating time for variable-speed pumps

top - operating time
Qout

i - outflow in node i (or demand)
η - overall (wire-to-water) pump efficiency
ϕh - partial autocorrelation at lag h
Pbest - particle best position
ηP - Pelton turbine efficiency
rh - penalty coefficient for equality constraints
rg - penalty coefficient for inequality constraints
m - period of seasonality (season)
D - pipe diameter
L - pipe length
hL - pipes headloss
nP - population size
Erecov - potentially recoverable energy
λP - power parameter
Pd - power to be installed in a hydropower scheme
s - pressure head exponent
p - pressure
T - price of energy (or tariff)
ηprop - propeller turbine efficiency
ηprop,peak - propeller turbine peak efficiency
ω - pump angular velocity
r, n - pump curve coefficients
ηp - pump efficiency
hp - pump head gain
hloss

p - pump headloss
Dp - pump impeller diameter



xvii

M - pump relative speed
N - pump rotational speed (N = (ω/2π)×60)
h0 - pump shut-off (or cut-off) head
Irand - random integer from 1, ...,ν
r1, r2, r3 - random integers from 1, ...,nP

R - rank number
rc - rate of crossover (or crossover probability)
rm - rate of mutation (or mutation probability)
xr - reflected point of a simplex
αr - reflection coefficient
ν , θ , σ - regression parameters
a - resistance coefficient
Re - Reynolds number
mRe - Reynolds ratio exponent
d - search direction
φs - search step size
Φ - seasonal AR order
ϒ - seasonal differencing order
Ψ - seasonal MA order
σs - shrink coefficient
αs - smoothing parameter (or discount factor)
tstep - step size (duration of a time-step)
Cstop - stop criteria
Linitial - tank water level in the beginning of the simulation period
Lfinal - tank water level in the end of the simulation period
xG - target vector
t - time instant
εstop - tolerance value for the stop criteria
Ctotal - total cost (objective function)
ηtransf - transformer efficiency
Ptrans - transition probability
ZT - transpose of the matrix of predictor variables
T s - trend component/smoother
uG+1 - trial vector
Qd - turbine design flow
Hd - turbine design head
ηturb - turbine efficiency
Cinstal - turbine installation cost
Rm - turbine manufacture/design coefficient
Dout - turbine outside runner diameter
Qpeak - turbine peak efficiency flow
Qt - turbine rated flow
Ht - turbine rated head
Dt - turbine runner diameter



xviii Nomenclature

ηT - Turgo turbine efficiency
Cf - unit conversion factor
ηVFD - variable frequency drive efficiency
aggregDemand- vector of demand aggregated steps
y - vector of observations over a time period (time series)
εεε - vector of random errors
βββ - vector of regression coefficients
aggregTariff - vector of tariff aggregated steps
v - vector velocity
F - weight coefficient (or mutation factor)



Part I

Introduction and opening remarks

1





1. Water supply systems efficiency -
problems versus opportunities

An introduction to the current global situation of the water sector and to the main challenges
encountered in water supply systems is presented. The topic concerning the water-related

energy consumption is further explored. The concept of smart water grid is introduced as a
key for the global improvement of the water sector.

Changes in lifestyles and eating habits together with the world’s population growth by roughly 80
million people each year are leading to an increase in freshwater demand of 64 billion cubic meters a
year. At the same time, energy demand is also accelerating, with corresponding implications for water
prices. It is expected the global water-sector spending to reach the trillions by 2025. By 2050, the
pace of urbanisation will be such that achieving universal access to the supply of water and sanitation
will cost the developing world an additional 1 % of gross domestic product (US$ 7.6 billion) every
year compared to current needs. Consequently, water utilities are facing some main challenges that
can be summarised as: population growth, increasing energy costs, water scarcity, climate change,
water quality and the design and management of water infrastructure (Grafton, Wyrwoll, White, &
Allendes, 2014; SENSUS, 2012; Worldometers, 2015).

“Water not only feeds bodies, it also feeds countries.”
(SENSUS, 2012)

The water industry provides drinking water and waste water services to residential, commer-
cial, and industrial sectors of the economy. With a current annual expenditure of US $184 billion
(e 166 billion), including all water and waste water processes, water utilities worldwide are spending
around US $40 billion (e 36 billion) in the production of water from which US $14 billion (e 12 bil-
lion) are being spent on energy for pumping such water (SENSUS, 2012).

Figure 1.1 represents a scheme of the course of water from the source to the final consumers.
Although a number of water systems are gravity fed (i.e. the storage tanks are located in elevated
places), the entire course of water still needs the support of pumping stations (i) to extract the water
and transport it to treatment plants, (ii) to transport the clean fresh water to storage tanks, (iii) to
distribute the water to secondary tanks and to customers, (iv) to collect the waste water and transport
it to treatment plants and, finally, (v) to the disposal (or reuse) of such waste water.

3



4 1. Water supply systems efficiency - problems versus opportunities

Figure 1.1: Simplified scheme of the main sections of a water supply system from the source to the
end users (adapted from ERSAR, 2012).

It is a fact that the water cycle requires large amounts of energy to work, leading to huge operating
costs. The impact of pumping in water networks can be demonstrated, for instance, by the following
real numbers:

1. In California (most populous US state, 38M inhabitants), 19 % of the electricity consumption
in the state is for moving water from the treatment plants to the consumers, corresponding to
more than 48000 GWh of water-related energy use per year. More than 14000 water pumps are
controlled in the water networks of this state (California Energy Comission, 2005).

2. In Portugal (10M inhabitants), the annual expenses with water supply exceeds the US$ 1784 M
(around US$ 740.9 M in bulk water services and more than US$ 1043.7 M in retail services);
the pumping energy consumption for water and waste water services is superior to 644 GWh
a year. The bulk services (water collection, treatment and transport) account for the control
of more than 400 pumping stations while the retail water services (distribution) include the
operation of more than 1800 pumping stations (ERSAR, 2012).

The most common current solution for the operation of pumping stations in water networks is
typically based on the water levels in the storage tanks. The control operator switches the pumps on
to fill the tanks and then switches them off while the consumers are being supplied until those tanks
reach again the minimum level. Although this solution works, it is far from being efficient. This
type of operation could be highly improved by adjusting the pumps operation to periods of lower
electricity price and by using variable-speed drives in order to adapt the pump operation to the water
demands and the network requirements. The main challenges associated to these types of solutions
are related to the high level of difficulty for a control operator to predict water demand patterns from
all type of consumers (from domestic to industrial) by intuition and, at the same time, to deal with
the high variability of energy tariffs, with the low capacity of tanks and, moreover, to find adequate
control settings for variable-speed pumps without pursuing information about near-future demands.
With so complex and large systems, this attempt to improve the operational efficiency could be like
a “shot in the dark”, which could lead to serious implications in the minimum requirements for a
reliable operation of the networks (such as pressures or security of supply).

Despite some improvements that have been made in the water supply sector, most water networks
are still largely inefficient both in terms of operation and management. According to the Black &
Veatch’s report (Black & Veatch, 2015), energy efficiency plays a large role in the sustainability
effort of water utilities. This is more than expected since, globally, 35 % of the total expenses with
water production are being spent on energy. Furthermore, the tendency is the intensification of such
concerns with the increases in energy prices.

The main obstacle for the efficiency improvement in water supply systems is mostly related to
the complexity of the systems (both in terms of networks configurations and number of variables to
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control) and also to the low levels of resilience in the current systems operations. At the same time,
factors such as the lack of funding, unfavourable economics and/or lack of political and regulatory
support for the implementation of efficiency measures can represent significant challenges to the
sector (SENSUS, 2012).

1.1 Smart water grids

Currently, there is no standard definition for the smart water grids. However, the use of innovative
(smart) technologies is always attached to it. Smart leakage and pressure management techniques,
smart monitoring, smart data management, smart network operations and maintenance and smart
techniques for water treatment are topics that usually stand out within this market (ARUP, 2013; SEN-
SUS, 2012). In fact, the integration of the knowledge of information and communication technologies
(ICT) in the water networks operation and management is largely contributing for the development
of smart water grids, which, in turn, has becoming a driving force for the efficient and sustainable
development of the water industry.

SENSUS (2012) enumerates five main components/layers for a comprehensive smart water net-
work solution:

1. Measurement and sensing devices, to collect data from the networks (flow, pressure, quality,
etc.);

2. Real-time communication systems, to gather the collected data and/or to send execution actions
(e.g. pumps or valves shut-off);

3. Data management software, to efficiently handle the collected data by means of automatic
processing;

4. Real-time data analytics and modelling software, to obtain useful insights from the network
data, monitor and evaluate the potential impact of possible changes in the network (e.g. patterns
detection, predictive analysis of control scenarios, etc.);

5. Automation and control tools, for the automatic and remote execution of actions/tasks received
by means of real-time communication channels.

Figure 1.2 provides an overview of the water course from its extraction to its discharge back
into the water course, demonstrating where smart water technologies could be implemented. In such
mentioned technologies may be included smart water meters, smart pumps and valves, smart pipes
and/or smart monitoring (ARUP, 2013).

It should be noticed that utilities of different dimensions or different economic situations may
present distinct adoption rates to this type of technologies and services (SENSUS, 2012). While, on
the one hand, a large water utility having a complete monitor and sensing system with communi-
cations channels installed (e.g. SCADA) might be willing to implement the next steps for a com-
prehensive smart water network solution, on the other hand, a small water utility without sufficient
IT capacity and data analysis software in-house may not be interested (neither have the capacity)
in implementing a full smart solution including all the components previously enumerated. Instead,
such utility could prefer, for instance, a "software-as-a-service" (SENSUS, 2012), such as a decision-
support software, capable of providing control and management solutions that may be implemented
without access to real-time communication systems neither automation or control tools.
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Figure 1.2: Opportunities for smart technologies in the water value chain (adapted from ARUP, 2013).

1.2 Renewable energy sources

The concept of sustainable systems is correlated with reduced carbon footprints. Such reduction
can be also achieved with the introduction of renewable energy sources as a response to the huge
energy demand in the water and waste water sector, diminishing the consumption of fossil fuels and
hence, reducing the carbon emissions. Smart energy grids are already closely tied to technologies for
renewable energy generation (ARUP, 2013). It makes all sense to also tie such concepts to the smart
water grids. Since the growth in renewable energy is recognised as one of the principal drivers of
change in the smart energy market (ARUP, 2013; SENSUS, 2012), a similar approach could also be
followed to foster adoption in the water market.

Renewable sources such as solar or wind produce intermittent supply which threaten the stability
and reliability of electricity networks. However, the application of such alternative energy sources in
water networks may benefit from the storage capacity of this specific networks, i.e. it is possible to
use the available energy (even if in intermittent periods) to pump the water to storage tanks for a later
distribution by gravity.

When the subject is water, the hydropower generation is probably the renewable energy solution
that arises in the first place. In fact, a topic that has received particular attention in the last years is
related with the energy recovery in water supply systems from the excess of pressure in the networks
using turbines (or pumps-as-turbines) for hydropower generation. However, the process of identifying
reliable locations for the installation of hydroturbines in the networks is not easy due to the large
dimension and complexity of the pipe networks and also the high variability typically associated to
the operation of such systems, which also makes this task a very time consuming one.



2. Motivation - a brief market assessment

An assessment of the numerous opportunities in the smart water grids market, both in terms
of technology and smart management of water networks, is presented. The main
motivational aspects that boosted the work presented in this thesis are described.

Nowadays, it is of the most importance to perform a proper connection between the academic and
industrial communities, especially when it comes to engineering fields. The transition from the re-
search & development in the universities to the real application in the industry is only possible when
there is a solution to the market needs. For this reason, a brief market assessment that justifies the
main motivation of this thesis is presented.

2.1 Smart water grids market

Smart water grid market is a growing industry, especially due to the numerous drivers of change in
the water sector. Such drivers are influenced by geography, politics, history, climate and availability
of funding. However, the motivation to improve this sector is being essentially driven by a growing
public awareness that water is a scarce resource and measures had to be taken to guarantee water
supply in an affordable and sustainable manner (ARUP, 2013).

According to SENSUS report (SENSUS, 2012), water utilities could save between $ 7.1 billion
and $ 12.5 billion each year from using smart water solutions. These potential savings would come
from changes in four key areas in the water sector: (i) leakages and pressure management, (ii) strategic
capital expenditure, (iii) water quality monitoring and (iv) network operations and maintenance. The
amount of potential savings for each case can be seen in Table 2.1.

Table 2.1: Global opportunities in the water sector - potential savings (SENSUS, 2012).

Amount ($ billion) Sector

3.4 Leakages and pressure management
4.3 Strategic Capital Expenditure
0.4 Water quality monitoring
1.6 Network operations and Maintenance

In terms of the main goals of water utilities, the improvement of the networks’ efficiency and the
costs reduction has been highlighted. Figure 2.1 presents the percentage of importance of each key
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goal for water utilities. The presented numbers are a result of a survey performed by TaKaDu, Lda.,
where the participants selected three key challenges related to water network management. As can
be depicted, Improve network operational efficiency and Reduce energy consumption reflects 40 %
of the overall goals, making this segment the current largest concern in this industry, followed by the
concerns with water losses reduction.

Figure 2.1: Water utilities key goals concerning the water networks management. Results of a survey
performed by TaKaDu (adapted from ARUP, 2013).

If, on the one hand, the main savings are identified in the sector of leakages control and pressure
management (Table 2.1), on the other hand, the main concerns of water utilities are focused in efficient
and low-energy networks operations. Although these seem different goals, there is a strong connection
between them. Starting from the first, not only the pressure management contributes to the leakages
control but also a reduction in water leakages leads to lower needs of pumping, reducing the energy
consumption and improving the efficiency of the operations. At the same time, the improvement of
the networks operations is associated to more reliable and stable systems, which may also contribute
to stabilise the pressures along the network, and hence, contribute to the losses reduction.

In previous years, a number of measures for efficiency improvement in water supply systems have
been applied in several countries (Coelho & Andrade-Campos, 2014). However, most water networks
are still inefficiently operated, leading to unnecessary operating costs which reveal a huge market op-
portunity. The market solutions for achieving efficient operations are essentially related with data
analytics and modelling software. Real-time data analysis, demand prediction and modelling repre-
sent key activities for achieving optimised operational solutions in a reliable way.

2.2 Market segments and addressable market

The total market for smart solutions for water utilities is a growing market, with an estimated value
over $ 5 billion and expected to grow at 20 % per year, reaching over $ 20 billion by 2020. This eval-
uation includes the total market of smart utilities for investments in innovation, design consultancy,
hardware development and installation, automation and control and software (ARUP, 2013). Figure
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2.2 depicts the dimension of the smart water market in terms of distinct segments. Although the smart
water infrastructure represented the largest market size in 2010, the second largest value was for the
ICT, software and analytics segment, which present the highest annual growth rate (CAGR∗) from all
the analysed segments.

Figure 2.2: Smart Water Grid Market: global vertical market attractiveness by segment, 2010-2020
(adapted from ARUP, 2013).

Figure 2.3 reveals expected returns between 15 % and 20 % for Asia and the emerging markets
in Latin America and Africa, respectively. However, the expected strongest markets for smart water
grids are located in North America and Europe.

Figure 2.3: Smart Water Grid Market: Regional Attractiveness by region, 2010-2020 (adapted from
ARUP, 2013).

For the estimation of the addressable market for data analytics and modelling software, it was
considered only two thirds (2/3) of the ICT, software and analytics segment, which leads to a total
∗Compound annual growth rate (CAGR) between 2010 and 2020 is a business term for a geometric progression ratio

that provides a constant rate of return over the time period. It is particularly useful to compare growth rates from different
data sets such as revenue growth of companies in the same industry.
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addressable market superior to $ 650 million. Considering that this segment is equally distributed be-
tween regions (which does not represent accurately the reality, but an approximation) then, consider-
ing the total market for smart water grids distributed by region (Figure 2.3), the expected addressable
market for data analytics and modelling software, geographically distributed, is represented by the
values provided in Figure 2.4.

Figure 2.4: Addressable data analytics and modelling software market within the smart water market
by region.

Based on the previous criteria, the geographical regions more suggestible to implement software-
related products are the markets of Europe and North America, representing over 70 % of the total
addressable market. However, it should be noticed that the emerging countries from Asia-Pacific,
Latin America, Middle East and Asia may also represent, in the future, attractive markets. Since
these countries are starting designing and building new water networks, it may be easier to provide
an integrated solution for a comprehensive implementation of a smart water grid.

“The idea of intelligent systems and smart water systems is here to stay.”
(Fred Ellermeier, Black & Veatch)

“All of our findings on smart water networks point to a massive opportunity for utilities and could
truly revolutionise water distribution networks around the world - many of which have remained

largely static and untouched for decades.”
(SENSUS, 2012)



3. Thesis objectives and guidelines

The objectives defined for this thesis that resulted from the motivational aspects discussed in
the previous chapters are described and justified accordingly. The layout of the thesis is
explained, providing guidelines to the reader. An overview on the main contents of the

chapters that compose each part of the thesis is provided.

From the previous chapter, it became clear that software-related products have a strong position in
the market of smart water networks. At the same time, the research works performed in universities
can provide a very important contribution for the development of such kind of solution. Despite that,
SENSUS (2012) reported an important concern shared by water utilities that is related with the “lack
of a clear, user-friendly integrated technology solution”.

This thesis intends to provide a first step for a response to such concern. The idea is to develop a
computational tool capable of automatically provide optimal solutions for the efficient and sustainable
operational control of any water supply network. Two main approaches are followed for achieving the
efficiency of the networks operations: (i) application of optimisation techniques for the minimisation
of pumping energy costs and (ii) implementation of an automatic methodology for detecting potential
locations for turbines installation in the networks in order to reduce energy wastes.

In order to achieve the main objective with success, a number of research objectives must be
attained: (1) Review the most important optimisation techniques applied to water supply systems;
(2) review the existent solutions for modelling water networks; (3) review the works related with
implementation of turbines in water networks for energy recovery; (4) investigate the use of distinct
forecasting techniques for predicting short-term water demands; (5) define a methodology for the con-
trol optimisation of different water networks; (6) implement the defined optimisation methodology in
order to use distinct optimisation algorithms and also to allow further implementations of additional
algorithms; (7) test the implemented optimisation methodology with the distinct optimisation algo-
rithms in benchmark water networks characterised by distinct dimensions and distinct number and
type of elements to control; (8) define a methodology for the identification of sites in water networks
with potential for energy recovery using turbines; (9) implement the defined methodology for energy
recovery and turbines selection/design; (10) test the implemented methodology using a comparative
case study; (11) disseminate the results obtained from the developed and implemented methodologies
incorporated in the computational tool through conferences presentations and papers publication.

As mentioned in the beginning of the chapter, this thesis intends to provide an initial contribution
for the development of a completely integrated smart solution. Despite the mission has been the ap-
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plication of optimisation techniques and an automatic method for finding locations in the networks for
turbines installation, the presented tool was developed with the aim of facilitate future developments
including the implementation of additional techniques in order to provide responses to other chal-
lenges faced in water supply systems, such as pressure management, leakages control and reduction,
predictive maintenance, etc.

The presented document is divided into six parts: (i) Introduction and opening remarks, (ii) Litera-
ture review and state-of-the-art, (iii) Methodology and mathematical modelling, (iv) Implementation,
(v) Validation, results and discussion, and finally, (vi) Conclusion and closing remarks. Each part is
composed of chapters, as described below, organised into sections and subsections. In the end of each
part, a list of the corresponding references is provided. Some supporting information is included in
the appendices at the end of the document.

Part I - Introduction and opening remarks

This first part of the thesis introduces the main problems and opportunities in current water supply
systems, focusing essentially in the challenges for the efficiency improvement (Chapter 1). A brief
assessment of the potential of smart water solutions is provided in Chapter 2 in order to demonstrate
the main motivation for the development of research work in this thematic. The thesis objectives and
layout are described in Chapter 3.

Part II - Literature review and state-of-the-art

The second part of the thesis is composed of three chapters. The first chapter (Chapter 4) provides
an introduction to the water supply systems, their current situation and main configurations and ex-
plores measures for achieving energy efficiency in such systems, introducing the use of renewable
energy sources and mainly the use of turbines for energy recovery. This chapter is also devoted to the
state-of-the-art of the hydraulic simulation, exploring the existing computer programmes. In Chapter
5, a review on the application of optimisation techniques in WSS is provided, discussing the main
works in the area. Works related with water demand forecasting are also discussed. Finally, Chapter
6 crosses the topics addressed in this thesis with the current industry requirements and provides a
general discussion as well as some conclusions.

Part III - Methodology and mathematical modelling

This part of the thesis, comprised of four main chapters, is devoted to the explanation of the main
methodologies commonly applied within the topics covered in this thesis (modelling, optimisation,
forecasting and energy production), focusing mainly in the mathematical modelling approaches fol-
lowed in the developed work. The first chapter presented (Chapter 7 ) is devoted to the methodologies
related to the water supply systems modelling; Chapter 8 addresses the proposed optimisation ap-
proach and explains the selected optimisation algorithms and constraint-handling techniques for this
work; Chapter 9 is devoted to the main methodologies commonly used for the development of time
series forecasting models which can be applied for the prediction of water demands; finally, Chapter
10 exposes the methodologies followed for the identification of possible locations for turbines in-
stallation in water networks as well as for the selection of the most adequate type of turbine for the
identified location(s).
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Part IV - Implementation

This part of the thesis is devoted to the implemented methodologies including the detailed descrip-
tion on how such implementations were performed. A single-chapter organised into three sections
is presented (Chapter 11). A general overview of the developed integrated tool is initially provided.
Then, in each section, the distinct modules that compose the developed tool are described with more
detail. The first section goes into detail on the implementation of the simulation module based on the
hydraulic simulator EPANET 2.0. The second section describes all the particularities of the optimi-
sation module and the third and last section is devoted to the implementation of the energy recovery
module using hydroturbines.

Part V - Validation and results

This part of the thesis provides selected results of the developed work. Four main chapters are pre-
sented, each one devoted to particular studies and/or analysis concerning the main topics addressed in
this thesis (modelling, optimisation, forecasting and energy recovery). The first chapter (Chapter 12)
provides the results concerning the modelling of a simple network under distinct operational and de-
sign conditions, including the use of variable-speed pumps. Chapter 13 provides the results obtained
from the use of the developed optimisation tool in distinct examples of water networks applying the
studied optimisation techniques. In Chapter 14, the forecasting results of the studied models applied
to data sets obtained from a Portuguese water network are presented. Finally, Chapter 15 provides the
results concerning the application of the energy recovery module.

Part VI - Conclusion and closing remarks

The last part of the thesis is devoted to the conclusions concerning each topic addressed in this work
(Chapter 16). As closing remarks, an overview of the main scientific and industrial contributions of
the presented work is provided as well as some recommendations for future works (Chapter 17).

Appendices

This part of the thesis is composed of nine appendices. Appendix A provides an overview about
design and operational optimisation methods applied to water supply and distribution systems. Ap-
pendix B also provides an overview but related with methods for the prediction of water demands. In
appendix C, information concerning the roughness coefficient for the computation of headlosses in
pipes is provided. Appendix D provides the EPANET input files of the water networks used in this
thesis for the validation and testing of the developed and implemented methodologies. Finally, ap-
pendix E presents the results for the performance of the ANN-based forecasting models implemented.
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4. Introduction

An introduction to water supply and distribution systems is provided and distinct measures
for improving their efficiency are discussed. Renewable energy sources, including solar,

wind and hydropower generation, are presented as potential solutions for the high energy
consumption in such systems. The existing available software for modelling water supply

and distribution systems are also presented and briefly described.

Water and Energy are essential elements for the well-being of the societies. The world energy con-
sumption for water distribution is about 7 % of global energy (James, Godlove, & Campbell, 2002).

Nowadays, it is observed an increase distance between populations and water sources due to the
population growth, leading to fast expansions of several water networks. At the same time, the global
water consumption has quadrupled in the last 50 years and it is expected that this value continue
to increase (Umweltbundesamt, 2010). Consequently, the immediate consumers supply without any
planned strategy has led to inefficient operated systems, increasing the energy costs for water supply
and distribution.

With the actual concerns about sustainable development, the improvement of energy efficiency in
Water Supply Systems (WSS) must be of major importance.

The improvements of energy efficiency in WSS can pass through simple monitoring operations
for leakages control to more complex operations such as the consumption predictions, pump systems
optimisation, storage/production reservoir systems optimisation and real-time operations. Compu-
tational modelling becomes an important auxiliary tool for these more complex studies of energy
efficiency in WSS (Martins et al., 2006).

4.1 Revisiting water supply systems concepts

Water supply and distribution systems should satisfy the requirements of several consumption sec-
tors, responding to the demand in each place, in each time and with appropriate pressures (Viessman,
Hammer, Perez, & Chadik, 2009). Despite the large size variation and complexity of water distribu-
tion systems, all these have the function of deliver water from the source to the consumer (Walski,
Chase, & Savic, 2001).

Generally, a WSS comprises four main sections (Swamee & Sharma, 2008): (i) water sources and
intake works, where the water extraction is made by intake structures and pumping stations; (ii) treat-
ment works and storage, (iii) transmission mains (pumping and/or gravity), where the bulk water is
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transported to treatment plants and then to storage reservoirs; and (iv) the distribution network which
delivers water to consumers through service connections. The distribution networks configuration can
be looped, branched or, as in most of cases, mixed (a combination of looped and branched networks).
Branched networks, commonly used for rural and industrial water supply (Amit & Ramachandran,
2009), only enable one flow direction whereas looped networks, with connected pipes that constitute
loops, allow changes in flow direction according to the different demands in each node. The main
advantage of the looped configuration is the guarantee of water supply when some pipe break occurs
(for maintenance, for example). Another advantage of looped networks is related with lower veloc-
ities (due to the existence of more than one path for water) that enlarge the system capacity (Walski
et al., 2001). For these reasons, looped systems are generally more desirable in urban environments
(Amit & Ramachandran, 2009).

The main components of a water supply system are (Viessman et al., 2009): pipes, junctions,
storage reservoirs (tanks or variable level reservoirs), water sources (or fixed level reservoirs), pumps
and valves. In energy efficiency studies of WSS, some concepts about these main components must
be taken in account.

Pipes are responsible for carrying water. Headlosses (or energy losses) that occur along the pipe
walls are usually called friction losses and can be represented by an expression related with the pipe
resistance (or roughness) coefficient (Walski et al., 2001). Headlosses can also occur at other sections
of the networks such as valves, bends, reducers, etc., due to turbulence within the flow through fittings
and bends. These kinds of losses are usually called minor headlosses (or local losses).

Pumps are essential components on energy efficiency studies of WSS. A pump is a device that
transfers the mechanical energy to the fluid as hydraulic head. This head, called pump head, is
generally a function of the flow that passes through the pump. The pumps are used when the WSS
needs energy to overcome elevation differences and headlosses. Centrifugal pumps are the mostly
used in this kind of system (Walski et al., 2001). The relationship between pump head and pump
flow rate is represented by the pump head characteristic curve. This is a non-linear curve that shows
a decreasing head with the flow rate through the pump. Pumps can be of constant- or variable-speed
and must operate inside the limits imposed by the characteristic head curves.

Another important issue concerning the pumps is the operating point given by the crossing point
between the pump head curve and the water system resistance curve (see Figure 4.1). The operating
point represents the discharge that will pass through the pump and the head that will be added by the
pump (Walski et al., 2001). When the system head variation or the water demand variation occurs,
the pump can operate outside the nominal work point with lower efficiency conditions (Gomes et al.,
2007).

In variable-speed pumps, the pump discharge is directly proportional to pump speed and the pump
head is proportional to the square of the speed (Walski et al., 2001). According to this relation, the
characteristic curve of this kind of pump shifts as the speed changes (Rossman, 2000).

The valves are elements that can be open or closed to control the movement of the water through-
out a pipeline. According to their specific functions, valves are commonly classified into the follow
categories (Walski et al., 2001): (i) isolation valves (gate and butterfly valves), the mostly used in
WSS, which can be manually closed to block the flow (useful for maintenance and emergencies); (ii)
directional valves, also called check valves, which prevent the change of the flow direction throughout
the pipeline; (iii) altitude valves, used to control storage reservoirs levels; (iv) air release and vacuum
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Figure 4.1: Definition of the pump operating point.

breaking valves to release the trapped air in the system or to discharge air upon the system to solve
negative pressures; and (v) control valves (or regulating valves), which can be subdivided according
to the type of control - Flow Control Valves (FCVs), Pressure Reducing Valves (PRVs), Pressure
Sustaining Valves (PSVs) and Throttle Control Valves (TCVs).

The storage reservoirs are also important elements in WSS. Besides being the elements with the
higher visibility, they present several purposes (Eleotero, 2008): flow regulation, pressure regulation,
supply security and water reserve for fires.

Pumped systems can present distinct configurations that can be characterised from direct pumping
from a reservoir to the distribution network to pumping from and to storage tanks available in the net-
work. Walski et al. (2001) enumerates the main existent alternative configurations: (i) pump feeding
directly the network (constant or variable speed), (ii) pump feeding through a pressure reducing valve
(PRV), (iii) pump with a parallel pressure relief valve, (iv) pump into an hydropneumatic tank, (v)
pump feeding directly a network containing a storage tank floating on the system, and (vi) pumped
storage configuration (not floating on the system).

4.2 Achieving energy efficiency

The estimative of water loss in the world is around 30 %, meaning that a similar portion of energy is
also lost (Feldman, 2009). Multiple factors contribute to these energy losses in water sector (Feldman,
2009): inefficient pump stations, poor design of the networks, installations and maintenance, old pipes
with headloss, bottlenecks in the networks, excessive pressures and inefficient operation strategies.

According to Feldman (2009), the main improvements in energy efficiency can be obtained with:
(i) pump stations design improvement, (ii) systems design improvement, (iii) variable speed drives
(VSD) installation, (iv) efficient operation of pumps and (v) leakages reduction through pressure
modulation. The last two topics may present a certain conflict. An efficient pump operation leads to
a major use of the pumps during the night (off-peak period) increasing the pressure during that time.
On the other hand, the goal of pressure modulation is to minimise pressure over the night in order to
reduce leakages. A solution for this conflict can be the isolation of distribution areas (using valves,
for example) by means of pressure controlled District Metered Areas (DMA) (Feldman, 2009). This
enables the combination of the two methods.
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Inefficient pump stations can be caused by inefficient control of the pumps or even by the oversize
of the systems. Most existent pump systems are oversized and many of them by more than 20 %
(Europump and Hydraulic Institute, 2004), representing an opportunity for the energy efficiency in
WSS.

For the flow control in pump stations, bypass lines, throttling valves or pump speed adjustments
can be used. However, the pump speed control is the most efficient of these methods (Europump and
Hydraulic Institute, 2004). Variable speed drives (VSD) for centrifugal pumps allow their operation
with fixed pressure and variable flow or with fixed flow and variable pressure. This allows the re-
duction of the number of switches (on/off) by the pumps and the reduction of pipe breaks (Feldman,
2009). Furthermore, according to Gellings (2009), these drives have potential to save from 10 to 20 %
of total pumping energy and Kiselychnyk, Bodson, and Werner (2009a) indicates a possible energy
reduction of 27 % only with 10 % of pump speed decrease.

The difference between the use of control valves or VSD to control the pumps is that, in the first
case, with the closure of the valve, an increase on the head occurs, meaning a large dissipation of
energy. In the second case, the reduction of the pump operating speed requires a small operating
head, implying less power consumption. Fetyan, Younes, Helal, and Hallouda (2007) presented in
their work a comparative study between a pump connected to a control valve and a pump using two
different kinds of VSD for the speed control (scalar and direct torque control). In both cases, a
reduction in the input power with the speed reduction was observed. However, this reduction was
larger with the use of VSD applying the direct torque control.

In the cases with no flow rate variation, the use of VSD is not the best choice for saving energy
costs (Europump and Hydraulic Institute, 2004). Alternatively, the pump resize, the reduction of the
impeller diameters or even the pump replacement for a new one, can be more efficient interventions
(Europump and Hydraulic Institute, 2004).

Other measures to enhance the efficiency of the WSS, not referred previously, can be applied,
such as (i) the replacement of inefficient equipment, (ii) the leakages management by regular mon-
itoring and maintenance, preventing from both water and energy wastes, (iii) the simple selection
of a suitable energy tariff system, or even (iv) the incorporation of renewable energy sources in the
systems, reducing fossil fuel dependency.

From all the measures presented, some of them can imply high investment costs, such as the
equipment replacements or even the incorporation of new equipment. However, some of the measures
do not present significant investment costs when compared with the benefits obtained. Moreover,
some measures related to management do not need any significant investment, meaning that, in some
cases, the efficiency improvement of the WSS can be obtained without too much effort.

The replacement of some inefficient equipment by high-efficiency pump/motor systems can pro-
vide around 10-30 % of pumping energy savings (Gellings, 2009).

In addition to the energy tariff system modification and the introduction of VSD in pumps, Tsutiya
(1997) refers some ways to minimise energy costs by reducing the total head of the systems. This can
be obtained by reducing the geometric head and the headlosses. Headlosses reductions can be made
by (Tsutiya, 1997): (i) the correct choice of the pipe diameters in order to obtain an economic velocity
of the water (lower velocities reduce headlosses) or (ii) by the pipes cleaning and/or coating, reducing
the roughness of the pipes. Tsutiya also provides the relation between the Hazen-Williams coefficient
and the energy cost variations also listed in Table 4.1 (note that the roughness coefficient increases
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with the reduction of the H-W coefficient). It should be noticed that, when the Hazen-Williams
coefficient pass from 130 to 90, the increase on annual energy costs is 97 % (Tsutiya, 1997).

Table 4.1: Values for the annual energy cost increase when the Hazen-Williams coefficient (or C-
factor) is reduced from the value 130 (Tsutiya, 1997).

Hazen-Williams Coefficient 120 110 100 90 80 70 60 50
Energy Cost Increase (%) 16 36 62 97 145 214 318 486

In Tsutiya work it is also shown that the modification of the tariff system can reduce the monthly
cost in 50 % and the introduction of VSD on constant speed pumps for flow control can bring energy
savings of 38 %. This method has demonstrated to be better than the control by valves using a by-pass
system which presented more 42 % of energy consumption (Tsutiya, 1997).

4.2.1 Renewable energy sources

Despite the huge contribute of the previously mentioned measures for the improvement of the energy
efficiency in WSS, the dependence of these systems on fossil fuel will still being notorious. The best
way to make these systems energetically sustainable is through the introduction of renewable energy
sources or even extracting the excess of available energy using turbines, for example.

In effect, due to a large number of advantages (environmental and economic), the implementa-
tion of renewable energy production in WSS is becoming very common, increasing significantly the
number of studies in this subject.

As shown below, there are essentially three distinct kinds of solution for energy production in
WSS, i.e., solutions provided by (1) solar, (2) wind and (3) hydropower generation. The main char-
acteristics of the three types of system actually investigated are briefly described in this section.

Still regarding to these solutions, Chapter 5 addresses a number of works demonstrating suc-
cessful real applications of renewable energy production in some WSS (essentially wind/hydropower
plants), integrating the operational optimisation of the entire systems.

The main obstacle to the implementation of this type of solution for WSS efficiency is related
to the implementation cost. In the particular case of hydropower generation, a more economical
alternative can be the use of pumps as turbines (PATs) instead of the installation of a hydroelectric
plant which requires costs for both land and new equipment.

hydropower generation

Among several alternatives, the installation of micro hydroelectric plants has standing out. In hy-
dropower systems it is usual the use of turbines or pumps operating as turbines (PATs) for the recov-
ery of the excess of energy that is generally lost in the WSS due to the use of pressure reducing valves
(PRVs).

As the pumps available in the market are more adequate for reduced power and flows and, at the
same time, represent lower investment costs, they present advantages for using in micro-hydroelectric
plants (5 to 100 kW) either as pump or as turbine (Gonçalves & Ramos, 2008). Furthermore, accord-
ing to Ramos, Mello, and De (2010), it is possible to use pumps as turbines with relatively higher
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efficiency (up to 85 %). The main disadvantage is the high PAT dependency on flow rate, which do
not allows medium and high variations of flow (Caxaria, Sousa, & Ramos, 2011).

Most studies in this field are related to the analysis of the feasibility of the PATs compared to
other solutions (Carravetta, Del Giudice, Fecarotta, & Ramos, 2012; Caxaria et al., 2011; Fontana,
Giugni, & Portolano, 2011; Lopes & MARTINEZ, 2006).

The study of Lopes and MARTINEZ (2006) demonstrated that the use of pumps as turbines
(PATs) can represent a viable choice especially for installations inferior to 4 kW. A study-case pro-
vided feasible options with times of investment return from 4 to 22 months maximum (Lopes &
MARTINEZ, 2006).

Caxaria et al. (2011) compare the performance of the use of a PAT with the use of a five-blade
propeller turbine for hydropower generation. The five-blade propeller turbine demonstrated to be a
very promising solution, with high hydromechanical efficiency values. Although the application of a
PAT is a viable choice, the five blade turbine has the advantage of non-interference with the normal
flow behaviour in the piping.

The work of Fontana et al. (2011) provides a study of the use of PATs instead of PRVs for losses
reduction and energy production in WSS. Experimental tests were performed in the city of Naples
(Italy). At an initial phase, the authors used a simulation model and genetic algorithms for the optimal
location of PRVs for losses reduction. Then, the global or partial replacement of the PRVs by PATs
was implemented for hydropower generation. Although the optimal location of PRVs for losses
reduction does not maximise the energy production, results have shown that a relatively large energy
recovery can be obtained with significant reduction in water losses.

Carravetta et al. (2012) proposed a PAT design method, based on a variable operating strategy,
for the identification of the PAT performance curve that maximises the produced energy for a certain
flow and pressure head distribution pattern. The authors pointed out two main problems related to
the design of a small hydropower plant: (i) the lack of complete series of characteristic curves of
industrial PATs and (ii) the need of a strategy for turbine selection.

Photovoltaic and wind power generation

Wind water pumping, resorting to mechanically coupled wind turbines, has been used since ancient
history. However, more recently, turbines have also been electrically coupled (Muljadi, 1997). The
advantage of the electrical coupling is the location of the wind turbine that is independent of the water
pumping location (Muljadi, 1997). However, photovoltaic water pumping systems are actually being
applied especially in WSS with poor electrical requirements (Kiselychnyk et al., 2009a).

The implementation of optimisation strategies for the operational improvement of water supply
systems containing solar- and/or wind-hydropower plants requires the availability of power forecasts,
which can be possible to obtain, for example, through time-series analysis or prediction algorithms
based on neural networks or fuzzy logic (Castronuovo & Lopes, 2004).

The work of Muljadi (1997) provides an analysis of the dynamics of a wind-turbine water pump-
ing system. The analysis process was illustrated by the simulation results of the system. It was
observed that the operating point of the wind turbine was affected by the motor and the water pump
characteristics. Non corresponding wind turbine characteristics with water pump characteristics (such
as the size) lead to an efficiency degradation and also to a reduction in the operating rotor speed range.
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Kolhe, Joshi, and Kothari (2004); Muljadi (1997); Nayar, Vasu, and Phillips (1993); Vongmanee
(2005) provided works dealing with reasonable efficient photovoltaic (PV) water pumping systems.

The overall optimal operation of a PV pumping water system is only achieved if the transformed
mechanical load, converted by the electric motor, matches the maximum power line of the PV gener-
ator and if that power line matches the maximum hydraulic output of the pump (Nayar et al., 1993).
Additionally, Kolhe et al. (2004) tested the effect of changing the orientation of the PV array and
concluded that the output obtained is 20 % superior to the compared fixed PV array.

4.3 Hydraulic simulation

Simulation models are computational representations and/or reproductions of real systems behaviour
through functions (Walski et al., 2001). Hydraulic simulators are numerical programmes in which it
is possible to implement models for water transportation and distribution. These models replicate the
non-linear dynamics of the networks by solving a set of hydraulic equations including conservation
of mass and conservation of energy (Machell, Mounce, & Boxall, 2010). Therefore, this kind of tool
allows the users to get details about all elements of a certain network represented at specific times,
providing an important support for management and operational control even for the most complex
systems. However, a unique approach for modelling does not exist, not even for the simplest WSS.

The first pipe network digital models appeared with the coming of the digital computers and the
FORTRAN programming language between the sixties and the seventies (Walski et al., 2001). Even
during the seventies, models became more powerful by running not only steady-state simulations
but also extended period simulations and later, in early eighties, the first water quality model was
developed (Walski et al., 2001).

4.3.1 Types of hydraulic models

Diverse types of models based in hydraulic equations have been used, such as mass-balance mod-
els, regression models, simplified hydraulics and full hydraulic simulation models (López-Ibáñez,
2009). More recently, the recourse to Artificial Neural Networks for capturing the knowledge base
of a hydraulic simulator, reducing the computational burden, is being proposed and applied (see, for
instance, Rao and Salomons (2007)).

A mass-balance model is the simplest method of calculation. This model considers only the flow
rate variations in a tank assuming that a pump or some pumps generates the levels variations in the
tank. However, the pump’s head and the minimum pressure at nodes are neglected (López-Ibáñez,
2009).

Regression models are more accurate than mass-balance models. This kind of model is based
on a set of non-linear equations obtained with the responses of a certain network subject to distinct
demands. The problem of this model is the sensitivity to the data used for the construction of the
model, meaning that some changes in the network can produce invalid results (López-Ibáñez, 2009).

The method of simplified hydraulics incorporates the effect of connected components that com-
pose the network into a single equation. In particular cases, some linear equations are enough to
represent the system hydraulics (López-Ibáñez, 2009). However, it becomes different in complex real
cases. Models based in a full hydraulic simulation are robust in terms of system modifications and
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demand variations (López-Ibáñez, 2009). These kinds of models solve both the equations of mass
and energy conservation and these are the most used currently.

Over recent years, there has been a significant increase in the number of software applications in
this field (Schmid, 2002). The appearance of such hydraulic simulators has developed from trial and
error to more advanced optimisation methodologies (Machell et al., 2010) in order to improve the
efficiency of the WSS.

4.3.2 GIS integration

Nowadays, the integration of Geographic Information Systems (GIS) with hydraulic simulators is
quite common (Dorsch Gruppe: DC Water Design Extension, 2006; Engineering, 2008; Hunter
GIS: EPANET INP Support Module, 2012; Macke, 2012; REDHISP Group, 2004; Zonum Solutions,
2008a). A GIS is a system that allows capturing, managing, analysing and displaying information
geographically referenced (Geographic Information Systems, 2012). These systems are useful for the
management of projects involving large volume of data and for the application of some analytical
tools. In hydraulic simulation works, importing the model results into GIS provides high quality re-
sult display and additional analysis possibilities (Macke, 2012). Therefore, this tool can be used as
a source for modelling data and for decision support (Walski et al., 2003), aiding with time and cost
savings and contributing to the efficiency improvement.

The typical benefits of combining GIS with a hydraulic simulator are (Macke, 2012): (i) automatic
calculation of the pipes length, (ii) a map display with more details, scale-dependent, more flexible,
etc., (iii) advanced editing capabilities, (iv) interpolation of the elevation data and (v) demand calcu-
lation. Contrary to some hydraulic simulators, in GIS, pumps and valves are usually represented by
points (or nodes) and not by links, which requires a special treatment (Macke, 2012).

4.3.3 Existing software

Currently, several software programmes for the hydraulic simulation incorporates a number of others
additional tools including SCADA systems, optimisation and calibration modules. Some of these
programmes are available in free versions and most of them have no limitation in the networks size.

EPANET 2.0, for example, is a free open source software, developed by EPA (U.S. Environmen-
tal Protection Agency), that performs extended period simulation of hydraulic and quality behaviour
within pressurized pipe networks (EPA - Drinking Water Research, 2012). This simulator is char-
acterised by a robust model with a large community of users in the world (Vieira & Ramos, 2009),
offering an optional user interface and no limitation on the network elements number. It allows the
use of metric or US units and supports the commonly used headloss calculation: Darcy-Weisbach,
Hazen-Williams and Chezy-Manning.

Several applications using EPANET have been developed, such as:(1) EPANET Z displays online
maps/imagery as a background (Zonum Solutions, 2008b); (2) EpaSens performs sensitivity analy-
ses to the network parameters (Zonum Solutions, 2008c); (3) epa2GIS exports the network map and
outputs from EPANET to a Geographic Information System environment (Zonum Solutions, 2008a);
(4) GHydraulics also integrates EPANET with GIS and calculates economic diameters for specific
flow rates (Macke, 2012); (5) GISRed integrates EPANET with a ArcView GIS (REDHISP Group,



4.3. Hydraulic simulation 27

2004); (6) EISM is another add-on that allows to import/export data for MapGuide through INP for-
mat (Hunter GIS: EPANET INP Support Module, 2012); (7) DC Water Design Extension is another
ArcView solution (Dorsch Gruppe: DC Water Design Extension, 2006); (8) HydrauliCAD, an Auto-
CAD hydraulic analysis water modelling programme that uses EPANET calculations (HydrauliCAD,
1998); etc. Due to all these facilities and the fact of being of public domain, EPANET is the hydraulic
simulator mostly used in academic field. However, several commercial programmes are already ap-
plied in industry. A number of these existing commercial computer programmes employ EPANET as
a basis for the hydraulic modelling and separate modules for the networks optimisation. This is, for
example, the case of:

• AQUIS (AQUIS: 7-technologies, 2012), a water distribution modelling and management pro-
gramme that includes not only hydraulic simulation but also pipe design and control optimisa-
tion and integrates a calibration module, SCADA and GIS systems;

• Aquadapt (Derceto, Inc: Introducing Derceto Aquadapt, 2011), that allows to obtain the opti-
mal operations (with minimum energy) of an entire network making use of SCADA facilities;

• ENCOMS/CAPCOMS (Halcrow: Water supply and distribution systems optimization soft-
ware, 2011), that incorporates calibration, pipe design and control optimisation modules with
a SCADA system;

• Helix delta-Q (Helix Technologies: Helix delta-Q Pipe Networks, 2011), that only allows the
design optimisation of the networks;

• H2ONET/H2OMAP (Innovyze, 2012) provides calibration, pipe design and control optimisa-
tion, GIS and SCADA facilities;

• Mike Net (DHI: MIKE - MODELLING THE WORLD OF WATER, 2011), that incorporates
optimisation and calibration modules, uses a GA and includes SCADA and GIS facilities;

• optiDesigner (OptiWater, 2012), that also uses GA to find the least-cost design of the networks;

• Optimizer WDS (Optimatics, 2011), that allows design and operational optimisation in real-
time and the application of distinct optimisation algorithms for distinct cases, such as Evolu-
tionary Algorithms, Genetic Algorithms, Non-Linear Programming and also Artificial Neural
Networks when a reduced computer run-time is needed;

• SynerGEE Water (GL Water, 2012), that includes GIS and SCADA system and provides a
module for pipe design optimisation;

• STANET (STANET, 2010), like the SynerGEE Water, includes GIS and SCADA facilities and
a pipe design optimisation module;

• Wadiso (Doig, 2002), also for the optimal design of the networks, integrating GIS and SCADA
systems;

• WaterCAD/WaterGEMS (Bentley: WaterCAD V8i, 2010), a robust hydraulic simulator based
on EPANET that incorporates GIS facilities (WaterGEMS) and both calibration, optimisation
(design and control) and SCADA modules.
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Other kind of commercial hydraulic simulators not based on EPANET are also available in the
market, such as:

• Aquadapt (Derceto, Inc: Introducing Derceto Aquadapt, 2011), that includes management op-
timisation of the networks making use of GIS and SCADA facilities;

• AquaNet (INAR, 2003), a simple pipe system modelling software;

• Cross (rehm, 2012), another computer programme that only performs pipe systems simulation;

• Eraclito (PROTEO S.p.A., 2012), a hydraulic simulator with similar characteristics to the
Aquadapt;

• HYDROFLO (Tahoe Design Software, 2010) also for hydraulic simulation; the developers of
this simulator also offers the PumpBase 2.0, an advanced pump selection software;

• MISER (Tynemarch Systems Engineering Ltd, 2012), similarly to Aquadapt and Eraclito, this
is a hydraulic simulator that also allows the optimisation of the networks management, incor-
porating GIS and SCADA systems;

• Pipe2012 (KYPipe, 2009) is a more advanced computer programme for water network man-
agement, grouping modules such as calibration and optimisation (design and control) and using
GIS and SCADA facilities.

Although EPANET 2.0 is actually the most widely used hydraulic simulator, other public domain
computer programmes exists, however, with some limitations. It is the case of:

• Branch/Loop, where Branch calculates the least-cost design of branched water distribution net-
works using linear programming and Loop simulates the hydraulic behaviour of looped net-
works. The main disadvantage of Branch/Loop software is the limitation on the size of the
networks (Schmid, 2002).

• NeatWork (NeatWork, 2010), that uniquely determines the optimal design of water gravity
networks for rural areas.



5. Water supply systems optimisation

The main techniques that have been applied for design and operational optimisation are
presented and discussed. Studies concerning networks operational optimisation in real-time
and also including the production of renewable energy in their operations are presented. A

review on the most applied techniques for water demand forecasting is presented. A specific
focus is given to short-term forecasting techniques, namely, hourly, daily and weekly

forecasts.

The development of water supply systems without the use of optimisation provides non-optimal struc-
tures, based essentially on the immediate response to the growing water demand of population and
industry (Kiselychnyk et al., 2009a). These non-optimal structures are translated into non-efficient
systems in terms of design and operation.

Although reproducing the hydraulic behaviour of the systems, a hydraulic simulator does not
allow the determination of the optimal structures or the optimal operational conditions of the systems.
For these reasons, the use of optimisation tools is crucial.

Optimisation problems can be solved using conventional trial and error methods or more effective
optimisation methods. However, in water supply systems, the optimisation process by trial and error
methods can present difficulties due to the complexity of these systems: multiple pumps, valves and
reservoirs, headlosses, large variations in pressure values, several demand loads, etc. For this reason,
innovative non-linear optimisation algorithms are becoming more widely explored in optimisation
processes of the water supply systems.

Actually, there is no “perfect” algorithm to solve all the optimisation problems. For the WSS
case, this can be also observed. During the past decades, a large variety of non-linear optimisation
techniques have been applied for the design and operational optimisation of the water networks.

Non-linear optimisation algorithms can be distinguished according two general classifications
(Coelho & Andrade-Campos, 2012): (i) classical algorithms, based essentially on the computation
of the objective function gradient and/or function evaluations and (ii) heuristic algorithms, consisting
essentially on exploratory search and generally based on phenomena that occur in nature or even
based on artificial intelligence.

The classic algorithms applied in WSS optimisation comprise: Linear Programming (LP), Non-
linear Programming (NLP), Integer Non-linear Programming and Dynamic Programming. These
kinds of algorithms enable finding the exact position of an optimal solution. However, they usually
converge to local optimal solutions which could not be the global optimum. In addition, the need of
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derivative evaluations can make, in some cases, the optimisation process more complex.
From the group of heuristic algorithms, it is usual to find works applying mostly Genetic Algo-

rithms (GA) and Evolutionary Algorithms (EA). However, other techniques have also been inves-
tigated, such as Particle Swarm Optimisation (PSO), Tabu Search (TS), Ant Colony Optimisation
(ACO), Simulated Annealing (SA), Shuffled Complex Evolution (SCE) and Harmony Search (HS).
These techniques provide the advantages of not requiring derivatives calculations and not relying on
the initial decision variables (Coelho & Andrade-Campos, 2012). Due to the exploratory nature of the
heuristic algorithms, the probability of finding global optimal solutions using these advanced tech-
niques is higher (Coelho & Andrade-Campos, 2012). On the other hand, the main disadvantage of
these methods is related to the higher computational effort (Coelho & Andrade-Campos, 2012).

The concept of hybrid algorithms combining global optimisation with local search techniques in
order to increase the convergence is also largely observed in the literature for the optimisation of
WSS.

Some researchers frequently explore the optimisation problems through a multi-objective per-
spective, dealing with the minimisation (or maximisation) of a number of functions or even dealing
with conflicting objectives, which imply the minimisation of some functions and, at the same time,
the maximisation of other functions.

The goal of a multi-objective problem (MOP) is then to optimise (minimise and/or maximise) a
number of objective functions simultaneously (Coello, Lamont, & Van Veldhuizen, 2007). Cheung,
Reis, Formiga, Chaudhry, and Ticona (2003) pointed out five objectives that constitute a complex
MOP for a WSS: (1) hydraulic capacity, (2) physical integrity, (3) flexibility, (4) water quality and
(5) economy. However, in the literature, most MOPs applied to WSS optimisation are represented by
two general objectives: costs minimisation and hydraulic benefits maximisation.

Multi-objective optimisation methods have the advantage of providing a set of optimal solutions,
called Pareto optimum, instead of a unique optimal solution (Coello et al., 2007). This allows the
system operator to analyse the set of Pareto optimal solutions and choose one solution considering
additional criteria.

Evolutionary algorithms are usually the most used for solving MOPs. While the evolutionary
methods deal with a set of solutions during the search procedure, allowing to obtain a set of Pareto
optimal solutions in a single run, the classic methods only lead to a single solution and cannot guar-
antee the generation of different points on the Pareto front (non-dominated Pareto solutions) (Coello
et al., 2007).

Respecting to the constraints to which the objective function should respect in order to not repro-
duce infeasible solutions, Michalewicz (1995) and then Coello et al. (2007) provided reviews about
the state-of-the-art constraint-handling techniques applied on evolutionary computation. Michalewicz
(1995) classified the techniques possible to be used in nature-inspired algorithms as: (1) penalty func-
tions, which can be static (function of the degree of violation of constraints) or dynamic (function of
both the degree of violation and the number of iterations); (2) rejection of infeasible individuals;
(3) specialised operators; (4) the assumption of the superiority of feasible over infeasible solutions;
(5) behavioural memory; (6) repair algorithms; (7) multi-objective optimisation; (8) co-evolutionary
models or even (9) cultural algorithms. Coello et al. (2007) follow a similar classification and also
point out the specific advantages and disadvantages of each type of constraint-handling technique.

Recently, Mallipeddi and Suganthan (2010) also provided a work dealing with constraints. Mo-
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tivated by the fact that different constraint-handling techniques can be effective in distinct stages of
the optimisation, the authors proposed and tested the behaviour of an ensemble of constraint-handling
techniques (ECHT) to solve constrained real-parameter optimisation problems. The ensemble is com-
posed of four distinct techniques. Results showed that the ECHT outperformed each the constraint-
handling method that constitutes the ensemble (Mallipeddi & Suganthan, 2010).

5.1 Design optimisation

Design optimisation problems in WSS are based on searching the system characteristics which min-
imise the total system cost without affecting the proper operation of the hydraulic system and the
consumers supply. This means that the system must be economic and reliable. However, reliability
increase can imply higher costs (Swamee & Sharma, 2008).

According to Gellings (2009), pipeline optimisation can save from 5 to 20 % of pumping energy.
The main obstacles to design highly-efficient systems are (Amit & Ramachandran, 2009; Kise-

lychnyk, Bodson, & Werner, 2009b): their complexity, spatial distribution, changeable structure,
time-varying parameters, availability of discrete and continuous control actions and large range of
possible combinations of pipe materials.

Typically, in this kind of optimisation problem, the objective function is expressed in function
of costs that can be associated to distinct water supply components such as sources/pumping plants,
pipelines, reservoirs and residential connection or even costs associated to energy consumption and
establishment costs related to the land, to the operational staff or other facilities (Swamee & Sharma,
2008).

The total costs can also be classified into two main types (Swamee & Sharma, 2008): (1) capital
costs, associated to the initial investment and (2) recurring costs, required to keep the operational
conditions. Thus, the general WSS design problem can be formulated as the minimisation of the total
costs represented by the sum of these two main types of cost (capital and operational), subject to the
conservation laws of mass and energy, to the water demand constraints and to the nodal head require-
ments (Amit & Ramachandran, 2009). Nevertheless, other constraints can also be considered in order
to improve the model, such as constraints related to the layout, multiple loadings, uncertainty due to
lack of information, operations, water quality, reliability and rehabilitation (Amit & Ramachandran,
2009).

Swamee and Sharma (2008) proposed single expressions, essentially dependent on the materials
and dimensions of the elements, for the contribution of each water supply component (pumps, pipes,
high-pressure pipes, service reservoirs, surface reservoirs and service connexions) for the total capital
costs.

The annual recurring cost of energy consumed in maintaining the flow (or pumping energy cost)
can be obtained by multiplying the average pump power by the electricity cost and the total number
of hours in a year.

As referred by Amit and Ramachandran (2009), in order to develop a good model for the design
optimisation of WSS, some aspects must be included: (a) pipe layout and sizes, (b) location and
capacity of tanks, (c) location, types, capacity and operating schedule of pumps and (d) location,
types and settings of valves. Additionally, multiple loading demands, reliability, uncertainty and
water quality should also be considered in order to satisfy the requirements of real WSS.
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The design optimisation review paper published by Amit and Ramachandran (2009), based on
the networks configurations, provides distinct models developed either for branched or for looped
networks.

Ostfeld and Tubaltzev (2008) classified the design optimisation models developed and published,
since the seventies, into six different types, according to the optimisation methodology applied: (1)
Decomposition, where the problem is solved using linear programming for a number of fixed flows
and the alteration of the flows is made by gradient-based methods; (2) Simulation and Non-linear
Programming, based on a connection between a network simulator and a non-linear algorithm; (3)
Non-linear Programming, models based only in the use of a non-linear programming formulation;
(4) Evolutionary/Meta-heuristic Methods, where, most of times, the Genetic Algorithms are used, but
also the Simulated Annealing, the Ant Colony Optimisation, etc.; (5) Multi-objective Evolutionary
Methods, which evaluate the least-cost design in parallel with other related objectives; and (6) Other
methods, like Dynamic Programming and Integer Programming.

In most works dealing with optimisation design of WSS, some benchmark networks have been
constantly used for the comparison between distinct developed methodologies: (a) the two-loop net-
work, a gravity network with a single source, firstly introduced by Alperovits and Shamir (1977), (b)
the two-reservoir network, introduced by Gessler (Gessler (1985) apud Simpson, Dandy, and Murphy
(1994)), (c) the New York City Tunnels (Schaake et al. (1969) apud Dandy, Simpson, and Murphy
(1996)), (d) the Hanoi network in Vietnam (Fujiwara and Khang(1990) apud Liong and Atiquzzaman
(2004)) and (e) the Anytown, USA, introduced by Walski et al. (1987). Both networks are represented
in Figure 5.1.

The objective of the simple two-loop problem (see Figure 5.1a) is to modify the pipe diameters in
order to find the least cost.

The problem of the two-reservoir network (Figure 5.1b) consists in the diameter selection of five
new pipes and the clean, duplication or left alone of three existing pipes. The system also includes
three demand patterns to satisfy.

The New York City Tunnels problem (Figure 5.1c) consists essentially of a single source in Hill
View and two main city tunnels. The objective of this problem is to determine the need of laid a new
pipe paralleling to the existing ones and also to determine their diameters. A unique demand case is
considered.

The Hanoi network (Figure 5.1d) contains three loops and also ramifications. The objective of
this problem is to find the least-cost diameters for all pipes while respecting the minimum value for
the head pressure at each node.

Finally, the Anytown problem (Figure 5.1e) is the more realistic system, providing some typical
features and problems such as pump and tank sizing and location and also pipe sizing. However, the
problem does not consider multiple pressure zones neither multiple demand loads.

Alperovits and Shamir (1977), Kessler and Shamir (1989) and Eiger, Shamir, and Ben-Tal (1994)
are examples of works whose decomposition methodology was applied.

First proposed by Alperovits and Shamir (1977), the decomposition approach consists in a hierar-
chical two-stage decomposition of the optimisation problem. In the first stage, the flows are provided
by the user and the local optimal conditions of the network (pipe segments and nodal pressure heads)
are obtained solving a linear problem. For the second stage, the authors propose the calculation of
the gradient of the total cost with respect to the changes in flow in order to find the flows which pro-
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(a) (b) (c)

(d) (e)

Figure 5.1: Representation of the most tested benchmark water supply networks for design optimisa-
tion: (a) two-loop network (Alperovits & Shamir, 1977), (b) two-reservoir network (Gessler (1985)
apud Simpson et al. (1994)), (c) New York City Tunnels (Schaake et al. (1969) apud Dandy et al.
(1996)), (d) Hanoi (Fujiwara and Khang (1990) apud Liong and Atiquzzaman (2004)) and (e) Any-
town (Walski et al. (1987) apud Farmani et al. (2006)).
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vide the minimum cost. The main advantages of this linear programming gradient model is that (a) it
deals with dimensions, locations, capacities and/or operation of the several elements of the networks,
(b) deals with multiple loadings and, (c) for each loading, it provides hydraulically feasible designs
(Alperovits & Shamir, 1977). On the other hand, some weaknesses can also be pointed, such as (i)
the need for selection of the initial flow distribution of the networks, (ii) the objective function do
not reflect aspects like performance and reliability of the networks and (iii) the flows in reservoirs are
considered fixed, meaning that their capacity is not considered (Alperovits & Shamir, 1977).

Kessler and Shamir (1989) reformulated the previous model applying matrix notations by mean
of graph theory formulation. This change in the formulation has brought independence to the gradient
of the objective function of the sets of loops and paths selected in the first stage. The search in the
second stage was improved by using the projected gradient method.

The works following the approach of Alperovits and Shamir using gradient calculations ignored
the fact that it is not always possible to calculate the gradient. An example to overcome this problem
can be seen in the work of Eiger et al. (1994) that presented a strategy applying a global search in the
decomposition method considering the gap between the solution and the global optimum. The authors
applied a Branch and Bound algorithm that reaches the solution through the combination of a primal
process to improve local solutions with a dual process to compress the global bound. It was observed
that the algorithm stops in a defined gap between the best value obtained and the lower global bound.
When compared with previous results obtained with a decomposition method, for the same examples
of networks (including the two-loop and the Hanoi networks), this new approach using global search
seems to have greater potential. However, also in this model, there were no considerations to the
systems reliability or neither with water quality constraints.

A reliable WSS is a system that satisfies nodal demands and pressure heads for a number of
possible pipe failures (Su, Mays, Duan, & Lansey, 1987). To determine the reliability of a WSS,
the Minimum Cut-Set Method was considered by Tung (1985) as the most efficient method when
compared with other five techniques: (1) Conditional Probability Approach, (2) Tie Set Analysis,
(3) Connection Matrix Method, (4) Event Tree Technique and (5) Fault Tree Analysis. A minimum
cut-set is a set of components of the WSS that makes the system fail only when failures occur in the
entire set (Su et al., 1987). The main failures in water systems occur essentially due to corrosion,
excessive load or temperature (Mays, 1989).

Su et al. (1987) introduced continuity and reliability constraints in their model. The developed
model is composed by three linkable modules: (1) a steady-state simulation module which incorpo-
rates a KYPIPE simulator (referred in section 4.2), (2) a reliability module and (3) an optimisation
module based on a generalised reduced-gradient method (Su et al., 1987).

In the work presented by Su et al. (1987), the reliability of a system is expressed in terms of failure
probability of the minimum cut-set that can be determined by the Poisson probability distribution. The
disadvantages pointed in the model developed by Su et al. (1987) are: (1) the resulting pipe diameters
that could not be commercially available, (2) the considerable computational effort required for large
looped networks, (3) no multiple loading conditions were considered and (4) the need to incorporate
several components (pumps, tanks, valves, etc.), that difficult the problem when the reliability for
each component must be defined.

Mays (1989) provides in detail definitions of reliability for each component of a WSS.

Over the years, Genetic Algorithms (GAs) have demonstrated to be effective at solving water
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design optimisation problems, however the search for optimal or near optimal solutions become more
difficult with the increase of the problems dimension.

Simpson et al. (1994) provided a comparative study between GAs and other techniques for pipe
optimisation: (1) Complete Enumeration and (2) Generalised Reduced Gradient (through a non-linear
package based on this algorithm). The three methods were used to optimise the two-reservoir network
and the results were compared with the firstly obtained by Gessler (Gessler (1985) apud Simpson et
al. (1994)). Multiple loading conditions were considered and a steady-state solver was used for the
hydraulic analysis of the network. Using the Complete Enumeration, the same solution obtained
previously by Gessler and also an even better solution were found (Simpson et al., 1994). This
technique demonstrated to be effective for networks with few pipes (Simpson et al., 1994). With
respect to the non-linear method applied, it looked to work well for small extensions of the networks
(Simpson et al., 1994). The GA was particularly effective in finding global optimal or near-optimal
solutions with the advantage of providing alternative solutions which sometimes could be preferred
(Simpson et al., 1994). In this case, binary strings were used for the codification of the available pipe
sizes.

Dandy et al. (1996) presented an improved GA that led to better results than the simple GA. The
improvements include (Dandy et al., 1996): (a) use of Gray codes, (b) use of an exponent fitness
scaling, where the value of the exponent is adapting and increases in generations without stagnation,
and (c) application of an adjacent (or creeping) mutation operator, based on the replacement of a
complete decision variable substring by an adjacent possibility from the list of decision variables.
The improved GA was applied to the New York City water supply tunnels. The obtained results were
compared with solutions using other techniques (Linear Programming, decomposition techniques and
heuristic methods) and improvements were achieved with feasible solutions (Dandy et al., 1996).

After discover, in previous works, inconsistencies in network performance predictions caused by
distinct interpretations of the Hazen-Williams equation, Savic and Walters (1997) tested the applica-
tion of different numerical conversion constants C f for the headloss equation that can be defined by
(Walski et al., 2003):

hL =
C f L

CbD4.87 Qb, (5.1)

where L and D are, respectively, the length and the diameter of the pipe, C represents the Hazen-
Williams roughness coefficient, Q is the pipe flow rate and b = 1.85 (SI units). The use of distinct
values for this conversion factor was also observed in later works (see, for instance, results presented
on Appendix A.3).

The developed computer model GANET (a GA in cooperation with EPANET) was used and the
values tested for the constants were C f = 10.9031 and C f = 10.5088. The benchmark networks
tested were (1) the two-loop, (2) the Hanoi and (3) the New York City Tunnels, and distinct results
were obtained for each constant used. It should be pointed out that their results were improved
compared to some obtained by other researchers, demonstrating the potential of GANET for the
design optimisation. The improvements applied to GA in the GANET include (Savic & Walters,
1997): (a) Gray codes for the variables representation instead of the common binary codes and (b)
penalty terms added to the fitness function in the case of pressure-infeasible solutions (the penalty is
a function of the distance from the feasibility).

Djebedjian, Herrick, and Rayan (2000) tested the two-loop network design optimisation dealing
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with constraints by applying the Sequential Unconstrained Minimisation Technique (SUMT) pro-
posed by Fiacco and McCormick (Fiacco & McCormick (1964) apud Djebedjian et al. (2000)) how-
ever firstly introduced by Carroll (1961) apud Djebedjian et al. (2000)). Results were identical to that
obtained previously by Savic and Walters (1997).

Wu and Simpson (2001) investigated the use of Genetic-Evolutionary optimisation algorithms in
water networks. The authors developed an algorithm, called messy GA, which is characterised by
a modified GA according to the following issues (Wu & Simpson, 2001): (a) strings with variable
length, (b) search technique using building blocks, where genes in a string are randomly deleted in
order to find building blocks containing only good genes, (c) threshold selection in order to ensure that
strings only compete when containing some genes from the same gene locus, and (d) cut and splice
operators, used for a messy genetic reproduction. In their work, Wu and Simpson (2001) integrated
the messy GA with the hydraulic simulator EPANET for solving the systems hydraulic equations in
each iteration. Also constraints for pressure, pipe flow, pump capacity, valve settings and tank flow
were considered. The model was applied in the two-reservoir network, also tested by Gessler (Gessler
(1985) apud (Simpson et al., 1994)) and Simpson et al. (Simpson et al., 1994), and in the New
York City Tunnels. The performance of the model in a real WSS in Morocco was also investigated.
Results showed that in the two benchmark problems, the messy GA found good solutions when
compared with the previous studies, always with a significantly reduced computational effort (Wu &
Simpson, 2001). In the real case of Morocco, the messy GA demonstrated a faster convergence to
better solutions when compared with a simple GA, both starting with similar initial design solutions
(Wu & Simpson, 2001).

Later, Wu and Simpson improved their messy GA and introduced the Self-Adaptive Boundary
fast messy GA that was tested in the New York City Tunnels problem (Wu & Simpson, 2002). The
algorithm was able to find the same solution as the obtained using the messy GA but with a reduced
number of the objective function evaluations (Wu & Simpson, 2002).

Abebe and Solomatine (1998) integrated the simulator EPANET with a global optimisation tool
(GLOBE) composed by various search algorithms including: controlled random search (two distinct
versions, CRS2 and CRS4), genetic algorithm (GA) and adaptive clustering covering with local search
(ACCOL). The authors handled the constraints grouping them into hydrodynamic, minimum head and
commercial constraints. The hydraulic simulator automatically deals with hydrodynamic constraints,
however, for the minimum nodal head violations, penalty functions are applied. The commercial
constraints are directly related to the available pipe sizes (discrete space search).

The programme developed by Abebe and Solomatine (1998) was tested with the two-loop and the
Hanoi networks. The results demonstrated, as in previous works, the good performance of the GA
dealing with this kind of problem. The ACCOL also demonstrated a good performance in both tested
networks of the literature.

A comparison between Ant Colony Optimisation (ACO) and Genetic Algorithms applied to the
design optimisation of WSS is provided by Maier et al. (Maier et al., 2003). In their model, ACO is
linked with the hydraulic solver Wadiso. The ACO has the advantage of consider more available pipe
sizes (a larger search space) due to the binary strings dimension. The algorithm has also an improved
search into regions where good solutions have been found before.

The ACO demonstrated a similar performance to the GA of Simpson et al. (1994) in the two-
reservoir network and a slightly better performance in the New York City Tunnels, obtaining a feasible
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global solution (Maier et al., 2003).

Zecchin, Maier, Simpson, Leonard, and Nixon (2007) provide a comparison between five ACO
algorithms applied to the two-reservoir problem, to the New York City Tunnels, to the Hanoi problem
and to a doubled New York Tunnels problem (2NYTP), consisting of two New York Tunnels networks
connected via the single reservoir. The compared algorithms were: (1) Ant System (AS), the original
and simplest ACO (Dorigo et al. (1996) apud Zecchin et al. (2007)), (2) Ant Colony System (ACS),
that adds probabilistic rules to determine whether an ant is to act and also present a ”local” updating
of the pheromone, encouraging the exploration of alternative edges (Dorigo & Gambardella (1997)
apud Zecchin et al. (2007)), (3) Elitist Ant System (ASelite), consisting in the use "elitist ants" in
order to maintain the global-best paths after each iteration (Dorigo et al. (1996) apud Zecchin et al.
(2007)), (4) Elitist-Rank Ant System (ASrank), that includes a rank-based updating at each iteration
(Bullnheimer, Hartl, and Strauss (1997) apud Zecchin et al. (2007)), and (5) Max-Min Ant System
(MMAS), that was developed to solve premature convergence by encouraging local search around
the best solution found in each iteration (Stutzle & Hoos (2000) apud Zecchin et al. (2007)). The
performance of these five ACO algorithms was also compared to other techniques previously applied
in the same networks, some of them presented in this paper.

In the case of the New York City Tunnels and the Hanoi network, previous studies have reached
lower values for the cost function (Savic & Walters, 1997; Wu & Simpson, 2001), however Zecchin
et al. (2007) stated that those solutions have revealed to be infeasible when analysed by EPANET 2.0.
ASrank produced the better average performance for the NYCT and MMAS demonstrated to be the
best performing algorithm for the Hanoi network (Zecchin et al., 2007).

For the two-reservoir network, although both ACO algorithms reached the global optimum, the
ASelite and ASrank demonstrated higher efficiency (Zecchin et al., 2007) even when compared with
the best value obtained from other studies (Maier et al., 2003). The MMAS is referred to present the
best performance for the 2NYTP (Zecchin et al., 2007).

Globally, the ASrank and the MMAS presented consistently good performances in both case
studies standing out from the others algorithms (Zecchin et al., 2007).

Ostfeld and Tubaltzev (2008) applied an ACO algorithm linked with EPANET for the Anytown
least-cost design and operation. The design variables considered in this work were the pipe diameters,
the pumping maximum power and the tanks storage. Domain pressures at the consumer nodes, max-
imum amount of water allowed from the source and tanks storage closure were treated as constraints.
The Anytown network was slightly modified by an additional source connected to node 9 and a tank
to node 4 (see Figure 5.1e). The objective function, in this optimisation problem, includes not only
pipe construction cost but also operational and construction cost of pumps and tanks. The proposed
algorithm scheme is based on Dorigo et al. (Dorigo et al. (1996) apud Ostfeld and Tubaltzev (2008))
and Maier et al. (2003) with some modifications. The only restrictions pointed out by the authors
for their methodology are: the fact of the pumps efficiency being considered constant, reliability im-
provements and fire flow requirements not considered and the use of linear penalty functions instead
of more sophisticated constrained handling mechanisms.

Liong and Atiquzzaman (2004) proposed an algorithm called Shuffled Complex Evolution (SCE)
for the design optimisation of a WSS. The SCE, developed by Duan et al. (Duan et al. (1992) apud
Liong and Atiquzzaman (2004)), consists on a synthesis of four successful concepts in global opti-
misation: (1) combination of probabilistic and deterministic concepts, (2) clustering, (3) systematic
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evolution of a complex of points covering the search space in direction to a global improvement and
(4) competitive evolution. The global improvements are made through the modification of points from
each complex using the Nelder and Mead Simplex method (Nelder & Mead, 1965). Pressure head
constraints were treated with penalty cost functions based on the degree of pressure head violation.

The methodology proposed by Liong and Atiquzzaman (2004), coupling the SCE algorithm with
EPANET, was tested in the two-loop and Hanoi networks. For the two-loop network, the results
were the same obtained by other techniques applied before (GA, GLOBE, Simulated Annealing and
Shuffled Frog Leaping Algorithm). However, these results were obtained with a considerable lower
number of function evaluations. In the Hanoi case, the optimum obtained by the SCE algorithm was
also reached in a considerable reduced computational effort.

M. C. Cunha and Ribeiro (2004) proposed the use of Tabu Search algorithms for the optimal
design of a WSS. Two configurations of this kind of algorithm were tested in five examples of network
including the two-loop, the New York City Tunnels and the Hanoi. The proposed algorithms were
able to obtain identical solutions to the best ones found in previous works for the two-loop and the
Hanoi networks. In the case of the New York City Tunnels, the Tabu Search technique was able
to find a solution with the same cost obtained by Savic and Walters (1997). For the remaining two
cases (one containing a single tank, another with two tanks and both of them with multiple loops),
improvements were achieved, demonstrating that the number of benchmark networks being tested in
the literature is not enough to conclude about which meta-heuristic algorithm is the most appropriate
for this kind of problem.

Geem (2006) developed an algorithm called Harmony Search (HS) which was connected to
EPANET for the optimisation of the following networks: (i) two-loop, (ii) Hanoi, (iii) New York
City Tunnels and (ii) two distinct networks from South Korea. Cost penalties were applied in the
case of constraints violation (Geem, 2006). In the two-loop network, the results were identical to the
obtained by the SCE algorithm of Liong and Atiquzzaman (2004). For the New York City Tunnels,
the HS was the algorithm that demonstrated the best performance, presenting the lowest cost for the
network with a significantly reduced CPU time when compared with the methods mentioned before.
The solution obtained for the Hanoi case was the same obtained by Cunha and Sousa using the SA
(M. C. Cunha and Sousa (1999) apud Geem (2006)) and by Cunha and Ribeiro using the Tabu Search
approach (M. C. Cunha & Ribeiro, 2004). In the case of the networks in South Korea, the HS demon-
strated a similar performance compared to a GA and a better performance than an algorithm based on
NLP (Geem, 2006).

Later, in 2009, Geem tested the HS algorithm in a network containing a pump (Geem, 2009).
The objective function included not only pipe capital costs but also capital and energy costs related
to the pump. Also a penalty function, to solve pressure head constraints, was added for infeasible
solutions proportional to the distance away from the feasible solution area. The same problem was
solved by Costa, Medeiros, and Pessoa (2000) using Simulated Annealing. The HS model found the
same solution as the SA. However, HS demonstrated to converge faster in finding the optimal solution
(Geem, 2009).

Particle Swarm Optimisation (PSO), developed by Kennedy and Eberhart (1995), was tested in
2008 by Montalvo, Izquierdo, Pérez, and Tung (2008) to optimise the design of the New York City
and the Hanoi networks. Although the good results obtained, the Harmony Search algorithm of Geem
(2006) was still presenting the best performance for both network benchmarks.
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A modified harmony search algorithm incorporating particle swarm concept (Particle-swarm har-
mony search, PSHS) was proposed by Geem (2009). This hybrid concept was tested in three network
benchmarks: two-loop, Hanoi and NYCT. The improved HS demonstrated to converge faster than the
simple HS, however, it might converge too early. In the case of the two-loop and the Hanoi networks,
the PSHS found the same optimum obtained with the simple HS, however faster. In the NYCT, PSHS
reached the solution also quickly; however, the cost was slightly higher than the obtained with HS
(Geem, 2009).

Differential Evolution was also applied in this kind of problem. Vasan and Simonovic (2010)
tested the algorithm in the Hanoi and New York City problems, using EPANET 2.0 for the hydraulic
evaluation in each iteration. In the Hanoi case, the same solution obtained previously with HS (Geem,
2006) and with Tabu Search (M. C. Cunha & Ribeiro, 2004) was found in a reduced number of func-
tion evaluations. For the NYCT, the DE algorithm took a significantly higher function evaluations
number and only reached the same solution obtained with the PSHS algorithm (a near-global solu-
tion).

Recently, Bragalli, D’Ambrosio, Lee, Lodi, and Toth (2012) optimised the Hanoi and the New
York City water networks using a Mixed Integer Non Linear Programming formulation (MINLP).
The authors resorted to Bonmin (COIN-OR: Bonmin Homepage, 2011), an open source C++ code for
solving general MINLP problems, with a few modifications. The developed formulation allowed a
faster achievement of the global optimum in the Hanoi case and the lowest cost function found for
the NYCT. Furthermore, the configuration of the solutions obtained by the approach of Bragalli et
al. demonstrated to be ready for immediate use in practice, providing a correct hydraulic operation
of the networks and a beneficial effect on water quality (Bragalli et al., 2012). This characteristic
does not usually occur in designs obtained by some meta-heuristic algorithms based in probabilistic
approaches.

Some researchers have verified in practice that the constraints should not be so restricted and nei-
ther treated with penalties which can difficult the optimisation process. Instead of that, they claim that
some constraints should be treated as optimisation criteria, leading to the concept of multi-objective
optimisation.

The Anytown problem was solved through a multi-objective approach, by Walters, Halhal, Savic,
and Ouazar (1999), using the Structured Messy Genetic Algorithm, firstly introduced by Halhal, Wal-
ters, Ouazar, and Savic (1997). The methodology of Walters et al. (1999) considered two objectives:
minimisation of costs and maximisation of benefits resulted from a certain solution (these benefits
were evaluated in terms of pressure and storage deficits reduction). In their approach, pumping and
storage were included in the optimisation problem. The authors presented two selected feasible so-
lutions (the cheapest and the preferred in terms of operational performance of the network) which
demonstrated to be better than any previously published solutions for this specific problem.

Cheung et al. (2003) provide a comparative study between the non-elitist Multi-Objective Ge-
netic Algorithm (MOGA) and the elitist Strength Pareto Evolutionary Algorithm (SPEA). The two-
reservoir problem was used to test the performance of distinct algorithms and the hydraulic evalua-
tion was guaranteed by EPANET 2.0. In this work, the considered objectives were costs and pressure
deficits minimisation. SPEA demonstrated to be faster than MOGA, requiring smaller processing
time (Cheung et al., 2003). The best solution obtained using the multi-objective approach was even
lower than the minimum obtained through single-objective approaches.
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Formiga, Chaudhry, and Vieria (2006) tested the fast elitist Non-dominated Sorting Genetic Al-
gorithm (NSGA-II), suggested by Deb, Agrawal, Pratap, and Meyarivan (2000), in the two-loop case
with some modifications of the original problem including the use of the Darcy-Weisbach formula in-
stead of the Hazen-Williams and the consideration of leakages in pipes. In this case, three objectives
were considered for the optimisation of the WSS: minimisation of costs and leakages and maximi-
sation of the reliability (represented by entropy and resilience). The best solution found was 7.4 %
superior to the lowest values obtained in previous works, although it might be due to the modifications
at the original problem. Nonetheless, the algorithm demonstrated to be capable of find a well-defined
Pareto front in a little more than fifty generations.

Farmani et al. (2006) went further and tested the Anytown problem with an Evolutionary multi-
objective optimisation method including pump operation schedules in the problem (for a 24-hour
period). Their approach included the maximisation of the reliability (resilience only) and the minimi-
sation of costs and residence time (to meet water quality standards). The function for the total cost
was defined as the sum of pipe and tank capital costs and pumping operating costs. The cheapest
solution found was superior to the obtained previously by Walters et al. (1999) using also a multi-
objective approach. However, it has to be noticed that the conditions considered in both cases, such
as the number of objective functions, were distinct, which affect the results. Anyway, the fact of
Farmani et al. (2006) have considered simultaneously design and operation parameters, as well as
included cost, reliability and water quality as objective functions, allowed the achievement of high
quality solution networks capable of operate under five loading conditions.

Perelman, Ostfeld, and Salomons (2008) proposed the application of the Cross Entropy (CE)
methodology for multi-objective optimisation, firstly introduced by Rubinstein (1999). This method-
ology incorporates elements from multi-objective evolutionary algorithms and makes use of gener-
ated elite solutions for the CE probabilities update instead of use the values of best-fitness functions
(Perelman et al., 2008). The approach was tested in the NYCT problem and was capable of reach
near-optimal solutions with zero maximum pressure deficits.

Olsson, Kapelan, and Savic (2009) investigated three distinct algorithms based in the Building
Blocks strategy for multi-objective design of WSS: (1) Univariate Marginal Distribution Algorithm
(UMDA), (2) Hierarchical Bayesian Optimisation Algorithm (hBOA) and (3) Chi-Square Matrix
(CSM). The building block identification was one of the strategies tested before by Wu and Simp-
son (2001) in a single-objective approach (also cited above). The NSGA-II, introduced by Deb et al.
(2000), was also used in this work and compared jointly with the other three algorithms. The NYCT
and the Anytown were the benchmark problems tested for this comparative study. In the NYCT case,
only the NSGA-II and the UMDA were able to find the minimal cost solution (zero cost due to no du-
plication of any pipe). The hBOA and the CSM presented poor Pareto front coverage. The best zero
deficit solution was found by the NSGA-II (Olsson et al., 2009). Respecting to the Anytown case, the
UMDA and CSM presented the lowest solutions with zero deficits. Olsson et al. (2009) concluded
that the loss of front coverage for small problems make the building blocks identification algorithms
unsuitable. However, for large problems, these algorithms outbalance the coverage problem and offer
serious advantages over the NSGA-II (Olsson et al., 2009).

To finalise, it should be pointed out that some studies, and especially the ones applying classic
algorithms, tend to oversimplify the problems in order to make possible the application of several
optimisation techniques in distinct WSS. However, it is very important to focus not only on the per-
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formance of the optimisation algorithms but also, primarily, on the details of the design problem
without forgetting essential elements in order to always ensure the proper operation of the networks.

D. Kang and Lansey (2011) provide a study that demonstrates the importance of not only consider
the transmission mains when optimising the design of a WSS but also include the distribution mains.
The authors verified that the simplification of the systems ignoring the local distribution pipes results
in oversized optimised systems, followed by excessive pressures. The only difficulty of including
local distribution pipes is the increase of the problem complexity. However, to solve this, D. Kang and
Lansey (2011) propose a methodology that consists on fixing the local pipes size at their minimum
allowable diameters. This strategy allows the inclusion of local distribution pipes in the models
without the increase of the number of decision variables.

Respecting to the performance of the optimisation algorithms, D. Kang and Lansey (2011) also
proposed an approach to improve the convergence of GAs in order to obtain good solutions with much
less computational effort. Their approach is based in the generation of logical initial populations
using engineering judgement instead of the typical random generation. Results showed a consistent
optimised pipe layout using this heuristic approach and an inconsistent optimised layout using the
random generation.

5.2 Operational optimisation

The WSS control operations can be included in design optimisation problems. However, due to the
burden of operational costs in the total cost of a WSS, the control optimisation can emerge as a
particular optimisation problem.

The optimisation of the WSS operation consists in find the best strategies for the control elements
minimising the total costs while satisfying the consumers demand in terms of flow and pressure
conditions (Cembrano, Brdyś, Quevedo, Coulbeck, & Orr, 1988). In several scientific works, the
control optimisation problem is treated as a single-objective problem consisting in the minimisation
of the operational costs and the use of constraints to satisfy the WSS requirements. However, other
works look into this kind of problem as a multi-objective optimisation problem: minimisation of
costs and maximisation of hydraulic benefits (Carrijo, Reis, Walters, & Savic, 2004; Savic & Walters,
1997), in resemblance to what was shown previously for design optimisation.

A control optimisation strategy can also be static or dynamic when real-time systems are used
simultaneously (A. A. R. Cunha, 2009). Real-time control approaches are discussed in section 5.2.2.
Control optimisation models have been proposed since the seventies, exploring several optimisation
techniques such as the most traditional (i) Linear Programming (Firmino, Albuquerque, Curi, & Silva,
2006; Vieira & Ramos, 2008, 2009) and (ii) Non-linear Programming (Brion & Mays, 1991; Cem-
brano et al., 1988; Cembrano, Wells, Quevedo, Pérez, & Argelaguet, 2000; El Mouatasim, Ellaia,
& Al-Hossain, 2012; Vieira & Ramos, 2008), but also the meta-heuristics derived from nature such
as (i) Genetic Algorithms (Carrijo et al., 2004; Mackle, Savic, & Walters, 1995; Rao & Salomons,
2007; Savic & Walters, 1997; Shihu et al., 2010), (ii) Simulated Annealing (Goldman & Mays, 2005;
Shihu et al., 2010), (iii) Ant Colony Optimisation (López-Ibáñez, 2009), etc. Genetic Algorithms
and mainly Hybrid Genetic Algorithms (Shihu et al., 2010; Van Zyl, Savic, & Walters, 2004) have
standing out for their strong ability to solve optimisation problems with high level of non-linearity
and also for their performance dealing with the multi-objective optimisation perspective.
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In the literature, the most used water networks benchmarks for control optimisation are mainly:
(i) the case-study of Van Zyl, (ii) the Richmond network in UK, (iii) the network of the city of Austin
in Texas and (iv) the North Marin Water District in California.

5.2.1 Pumping systems

In WSS, pumping energy costs usually represent the main costs of the water companies (Van Zyl et
al., 2004; Vieira & Ramos, 2008). Pumping systems represent nearly 20 % of the world’s energy
used by electric motors and 25 to 50 % of the total electrical energy required in some industries
(Europump and Hydraulic Institute, 2004). All these facts imply an increasing demand to control
pumps efficiently by the water industry.

Inefficient pumps, inefficient pump combinations and inefficient pump scheduling are the three
main problems that are commonly found in pump stations. Thus, the use of optimisation techniques
for the improvement of the pumping systems is crucial, either for the optimal schedules computation
or for the optimal combinations.

Pumps can be controlled according to variations in suction pressure or even by time controls
(Feldman, 2009). However, in most of cases, pumps are controlled by the reservoirs water level
variations. In these cases, pumps are only switched on when the reservoirs responsible for supply
certain populations are empty (or in the minimum level) and switched off when the same reservoirs
reach the maximum level allowable. If the pumps operated according to the variation of the energy
tariff during a day and according to the water consumption patterns, then the associated costs would
been significantly reduced (Coelho & Andrade-Campos, 2012).

When optimising the pumps operation it is possible to obtain not only energy savings but also
better performances, improved reliability and even reduction in life cycle costs (Europump and Hy-
draulic Institute, 2004).

Nowadays, there are a large number of scientific works dealing with operational pump optimi-
sation, usually referred as pump scheduling optimisation (López-Ibáñez, Prasad, & Paechter, 2008;
Savic, Walters, & Schwab, 1997; Van Zyl et al., 2004).

In the literature, there are essentially two kinds of explicit pump schedule optimisation problems:
(i) the most common deals with constant speed pumps, where only two solution variables are consid-
ered for the pump operation (with the values 1 or 0, usually representing the pump status switched
on or switched off), and (ii) the other deals with variable speed pumps, where the values of the op-
timisation variables are defined by the set of speeds of the pump. Some works also investigate the
operational optimisation of the pumping systems through the perspective of other elements of the net-
work (implicit formulation), where the decision variables can be represented by the reservoir levels
variation, the pump station discharge, the supply pressure or the time of pumps operation (Ormsbee,
Lingireddy, & Chase, 2009).

Typically, to solve this kind of problem, simulation periods of 24 hours with 1-hour time-steps are
used. However, Bene and Hős (2011) had demonstrated with their study of least-cost filling reservoir
that the choice of time-steps smaller than 1 hour can provide better results. The main conclusion
of their work was that by fixing a temporal time-step and sequentially setting the pump operating
point (minimal energy consumption), a globally reservoir filling policy can be realised. However, the
technique loses its optimality if the energy tariff or the consumption changes during the optimisation
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process (Bene & Hős, 2011).

Ormsbee et al. (2009) provided three mathematical formulations for pump scheduling to minimise
the associated energy costs, described by: (1) an implicit formulation, where the decision variables
can be the pump stations discharge, the tanks water levels or the pressure and then, the pump schedule
associated to the obtained solution need to be found; (2) a discrete explicit formulation, where the
number of decision variables is given by the product between the number of pumps and the time
intervals in which each pump operates (these time intervals can be restricted or unrestricted, i.e. can
be restricted to some periods of the simulation time horizon or can include all the time horizon);
and (3) a composite explicit formulation, in which is attributed a single decision variable for each
pump station. These formulations can be solved through unconstrained methods applying penalties
or through constrained methods where the constraints can be directly incorporated in the algorithm
(Ormsbee et al., 2009).

The gradient-based optimisation methods were the first being tested for pump scheduling optimi-
sation (Brion & Mays, 1991; Cembrano et al., 1988) and then, the nature-based algorithms became to
emerge (Goldman & Mays, 1999; Mackle et al., 1995; Savic & Walters, 1997), demonstrating to be
more adequate since there is no need of oversimplification of the problems using. In the last ten years,
a large variety of studies applying a number of distinct meta-heuristic algorithms combining global
and local search techniques, which tend to improve the convergence of the methods, have emerged.

The works of Cembrano et al. (1988) and Brion and Mays (1991) are examples of well-succeed
applications of classic algorithms for the pump schedules optimisation.

Cembrano et al. (1988) tested the Conjugate Gradient method in the Barcelona network (Spain)
using a single-objective approach to minimise operational costs considering as decision variables the
flow combination provided by the pump stations, valves or turbines (continuous variables). Although
the Barcelona network is composed of 4 sources, 5 valves, 7 pump stations (of fixed-speed), 2 tur-
bines, 11 demand areas with distinct pressure zones and 11 storage reservoirs, a linear model for the
dynamic behaviour of the system was considered. State and boundary constraints were considered
by the authors and penalty functions were used in the case of constraints violation. Their model was
able to find optimal schedules for the pumps and optimal valves control capable of reducing the op-
erational costs associated. The optimised operational results obtained were similar to the obtained in
a previous work using Dynamic Programming. However, the computational effort required by their
latter methodology was lower (Cembrano et al., 1988).

Brion and Mays (1991) resorted to KYPIPE computer programme to optimise the operations
of the Austin network (Texas) which comprises 1 pump station with 3 parallel fixed-speed pumps, 8
pressure zones and 2 storage reservoirs. The model applies a Generalised Reduced Gradient algorithm
and an Augmented Lagrangian method for the application of penalties. Considering a time horizon
of 24 hours divided into 12 2-hour time-steps for the pump schedules, Brion and Mays obtained a
reduction in the Austin operational costs of 17.3 % (Brion & Mays, 1991). The authors verified that
the algorithm used were very sensitive to the Lagrangian coefficients.

The network of the city of Austin was later optimised by Goldman and Mays (1999) using Sim-
ulated Annealing (SA). Constraints to the tanks levels, to the nodal pressures, continuity and water
quality were taken into account in their optimisation process. The pump operational costs were re-
duced 4.1 % taking twice the number of iterations required by a Non-linear Programming (NLP)
method. The costs reduction was quite small, however, it should be noticed that additional constraints
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were included. At the same time, SA demonstrated to be more flexible and adaptable than NLP,
providing a number of optimal pump schedules instead of only one (Goldman & Mays, 1999). The
same model was also applied to the North Marin Water District network (California), comprised of
2 sources, 2 fixed-speed pumps and 3 tanks, and demonstrated once again a good performance in
finding optimal pump schedules (Goldman & Mays, 1999).

The good performance of the Genetic Algorithms (GA) applied to the operational optimisation
of a WSS was soon demonstrated by Mackle et al. (1995). The authors tested this algorithm in a
simple network containing one source, four parallel fixed-speed pumps and a single storage reservoir.
Considering continuity and reservoir water levels constraints, an optimised pump schedule adapted to
the energy tariff was obtained in just 20 minutes (10000 generations).

The network of Richmond (UK) has been subject of many control optimisation studies (Atkinson,
Van Zyl, Walters, & Savic, 2000; López-Ibáñez et al., 2008; López-Ibáñez, Prasad, & Paechter, 2011;
Van Zyl et al., 2004). This benchmark network, presented in Figure 5.2a, is composed of a unique
water source, a pump station containing two parallel fixed-speed pumps, five booster pump stations
(with a single pump each), six tanks and distinct pressure zones.

(a) (b)

Figure 5.2: Representation of the most tested benchmark water supply networks for control optimi-
sation: (a) the Richmond water network and (b) the Van Zyl network case- study (both adapted from
Van Zyl et al. (2004)).

In 2000, Atkinson et al. (Atkinson et al. (2000) apud Van Zyl et al. (2004)) reduced in 19 %
the operational costs of the Richmond network using a commercial hydraulic simulator and GAs.
However, due to the burden of the simulator, the computational time was extremely high (69 hours).

Later, Van Zyl et al. (2004) developed a hybrid optimisation strategy, combining a Genetic Al-
gorithm with two types of Hill Climber methods: (i) Fibonacci coordinate search and (ii) Hooke and
Jeeves pattern search. As the GA is efficient in identifying the region of the optimal solution but
less efficient in finding the optimal point in that region, the introduction of a technique like the Hill
Climber can improve the local search. In this study, the optimisation variables were defined in terms
of tank level controls. A pump penalty cost and a tank penalty cost were used to impose the system
constraints (tank water levels and number of pump switches). These penalties were determined by a
trial and error approach. Applied to the Richmond network, the hybrid method proved to be superior
to the pure GA, reducing more than 25 % of the operational costs. The developed methodology was
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also applied to a particular case study (see Figure 5.2b), introduced by the authors, comprising 1 water
source, 1 pump station (2 parallel fixed-speed pumps), 1 booster pump station (1 pump) and 2 tanks.
Also in this case, the hybrid GA performed better than the pure GA both in convergence speed and
quality of solutions (Van Zyl et al., 2004). The best results obtained for the hybrid algorithm were
with the Hooke and Jeeves technique. The greatest difficult in this work, as referred by the authors,
was to decide when to change from the GA to the Hill Climber method. This is a typical difficult task
to solve for those who work with more than one optimisation algorithm.

Comparing their work with the previous published by Atkinson et al. (Atkinson et al. (2000) apud
Van Zyl et al. (2004)), Van Zyl et al. stated that the same reduction of 25 % could be obtained using
the methodology of Atkinson et al. if the constraint for the 95 % full requirement of the tanks have
been applied at 7:00 instead of 5:00.

Trying to reduce the computational effort of the optimisation problem in the Richmond network,
López-Ibáñez et al. (2008) proposed the use of a parallel Ant Colony Optimisation (ACO) technique
instead of the common sequential technique, i.e. instead of a sequential iteration between ants during
the optimisation, the authors propose the iteration through some threads in parallel. EPANET library
was then combined with a parallel ACO algorithm. Results of the application of this methodology
in the Richmond network showed that the optimal solution was found in 8000 iterations (the same
required by the hybrid GA of Van Zyl et al. (2004)) consuming less than half an hour, while using
a sequential technique would take around two hours. The authors also verified that, in the parallel
ACO, a higher number of ants reduces computation time, which is the opposite in the sequential ACO.
Another advantage of the high number of ants is the possible improvement of the final solution.

A study comparing three distinct representations of the decision variables for fixed-speed pumps
is provided by López-Ibáñez et al. (2011), in which both methodologies were tested in the case-
study of Van Zyl et al. (2004) and also in the Richmond network. The authors compared (i) the
common binary representation, (ii) the level-controlled triggers and (iii) the time-controlled triggers
representations using the Simple Evolutionary Algorithm (SEA) linked to EPANET. The violation of
the constraints related to tanks water levels, continuity, nodal pressure head, number of pump switches
and to the occurrence of warnings on EPANET were handled by a method based on ranking solutions
with respect to the constraint violation (López-Ibáñez et al., 2011). Globally, the SEA with time-
controlled triggers demonstrated better performance when compared to the SEA with both binary
and level-controlled triggers or even compared to the Hybrid GA of Van Zyl et al. (2004), also using
level-controlled triggers. It should be worthy noticed that López-Ibáñez et al. (2011) believed that
adapting the hybrid GA of to the time-controlled triggers may further improve the results.

The case study of Van Zyl et al. (2004) had also been analysed by López-Ibáñez, Prasad, and
Paechter (2005) using a multi-objective approach with the SPEA2, a second version of the Strength
Pareto Evolutionary Algorithm coupled with EPANET 2.0. Their model conjugates a number of
improvements that had been implemented in other works using multi-objective approaches. The ob-
jectives considered on this model were the minimisation of both costs and number of pump switches.
Constraints for tanks water levels and nodal pressures were handled by a method based on ranking
solutions with respect to their constraint violations. Results demonstrated that, considering a 24-hour
horizon (1-hour time-steps) and using a binary encoding of the decision variables, better solutions are
obtained when compared to the same approach for a single-objective optimisation (López-Ibáñez et
al., 2005).
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Other works have also been presenting the performance of other optimisation algorithms and
innovative techniques. However, it is notorious the lack and, consequently, the need for comparison
of some of these methodologies in benchmark networks in order to obtain more valuable results.

For a case study in Brazil (Goiania network), Carrijo et al. (2004) used the SPEA connected to
EPANET 2.0 for the minimisation of operational costs (pumps and valves) and the maximisation
of hydraulic benefits (evaluated through indexes for pressure requirements, demands and reservoir
levels). In this work, it is also introduced the use of data mining to extract operational rules for the
system in order to reduce the dependence on experts for the choice of the most adequate solution in
the obtained Pareto front.

The work of von Lücken, Barán, and Sotelo (2004) offers a comparative study using sequential
and parallel implementations of six distinct Multi-Objective Evolutionary Algorithms (MOEAs): (1)
Multiple Objective Genetic Algorithm (MOGA); (2) Niched Pareto Genetic Algorithm (NPGA); (3)
Non-Dominated Sorting Genetic Algorithm (NSGA); (4) Strength Pareto Evolutionary Algorithm
(SPEA); (5) NSGA-II; and (6) Controlled Elitist NSGA-II (CNSGA-II). The objective of the work
consisted on the minimisation of both (i) energy cost, (ii) number of pump switches, (iii) maximum
power peak and (iv) reservoirs levels variation (von Lücken et al., 2004). Parallel implementation of
MOGA, NPGA and NSGA do not find any non-dominated Pareto solution. On the other hand, the
best position was obtained by the parallel implementation of CNSGA-II using 16 processors (von
Lücken et al., 2004). The authors identified several improvements of their parallel strategy over
sequential MOEAs (von Lücken et al., 2004): (i) exploration in larger areas due to a larger number
of populations; (ii) introduction of cooperation between populations which helps the search for good
solutions; and (iii) inclusion of a process for elitism reinforcement, preserving solutions that could be
lost.

J.-Y. Wang, Chang, and Chen (2009) were the first researchers considering the land subsidence
due to groundwater pumping all day long, which can be solved using intermittent pumping. In their
model, a Genetic Algorithm is used for the minimisation of both pump operational cost, number of
switches and total work time for each pump. Constraints to control the reservoir levels and the flow
in the system, to avoid underflow or overflow, were handled with penalty functions. The model also
includes local search for the improvement of the solution quality and the pump control was performed
by time interval representation using a real-number array instead of a binary bit string. A number of
possible solutions with lower electricity cost and, at the same time, with eco-aware schedules were
achieved. However, the authors considered that the convergence speed could be improved (J.-Y. Wang
et al., 2009).

Firmino et al. (2006) used a two-stage optimisation method based on Linear Programming and
Integer Linear Programming by an optimisation toolbox of MATLAB 7. This method was applied to
Campina Grande WSS in Brazil, containing three pumping stations, and has saved around 15 % of
the costs and energy consumption (single-objective approach). Constraints to the reservoirs levels, to
the maximum allowable pump flow and for the guarantee of periodicity of the schedules (continuity)
were considered.

A case study in China (Shihu et al., 2010) of a large-scale WSS, containing fixed- and variable-
speed pumps, demonstrated a reduction on energy costs of 6.04 % using a Hybrid Genetic Algorithm
called Genetic Simulated Annealing (GSA) for the optimisation of the pump schedules. The devel-
oped methodology considers a single objective function which includes not only electricity cost of
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pumping but also the water production cost. Constraints to the tanks water levels, continuity, velocity
limits of the variable-speed pumps and also to the number of pump switches were considered (Shihu
et al., 2010). It has to be noticed that this problem deals both with fixed- and variable-speed pumps,
which implies distinct decision variables and increases the complexity of the optimisation problem.
At the same time, a good algorithm for the optimisation of fixed-speed pump schedules could not be
adequate in the case of variable-speed pumps. This topic was not yet analysed in detail in previous
works and it is of large importance since most actual WSS can be constituted by distinct kinds of
pumps.

Recently, El Mouatasim et al. (2012) proposed the use of a reduced gradient algorithm for the
problems of Kanitra and Agadir cities in Morocco. Their methodology based on the algorithm called
Stochastic Perturbation of Reduced Gradient (SPRG) was compared with the optimisation solver
LINGO. The objective function considered is the sum of the cost function of every wells and treatment
plants existent in the networks. The pumps were only allowed to operate in three time periods of the
24-hour horizon. Results for both networks indicated a significant better performance of the SPRG
compared to the LINGO solver (El Mouatasim et al., 2012).

Also Coelho, Tavares, and Andrade-Campos (2012) provided a work comparing distinct optimi-
sation algorithms applied to water networks evaluated using EPANET 2.0. The authors tested three
distinct algorithms: (i) an Evolutionary Algorithm (EA), (ii) a gradient-based algorithm and also (iii)
an hybrid algorithm, called HDEPSO (Caseiro, Valente, Andrade-Campos, & Yoon, 2011), which
combines Differential Evolution (DE) with Particle Swarm Optimisation (PSO). The operation of
variable-speed pumps during a time horizon of 24 hours was optimised taking into account the water
consumption of the population and the variation of the energy tariff.

5.2.2 Real-time operations

A Supervisory Control and Data Acquisition (SCADA) is a system also used in Water Supply Systems
for the real-time control and monitor of several elements such as pumps, valves, reservoirs, etc.
(Walski et al., 2003). Real-time strategies allow optimal operational adjustments to possible variations
in the networks such as sudden fluctuations in demand, contributing for the efficiency improvement
of the WSS.

According to Gellings (2009), the potential savings of the use of SCADA systems are from 10 to
20 % of total WSS energy consumption. Becoming the system automatic, efficiency is increased and
a reduction on costs occurs.

A SCADA is basically a system composed by one or more field data interface devices such as
reservoir level meters, water flow meters, valve position transmitters, power consumption meters and
pressure meters (Walski et al., 2003). The all system must incorporate (Walski et al., 2003): (i)
a central host computer server (or servers), (ii) a type of communication to transfer data between
field data interface devices and the computers of the central host (radio, cable, satellite, telephone,
combinations of these or others), and (iii) a software to allow central host and terminal operator
applications and to support the communications and the devices. Thereby, the main functions of a
SCADA system are (1) data acquisition, (2) data communication, (3) data presentation and (4) control.

Figure 5.3 shows an example of a scheme for the optimal operation of a WSS using a SCADA
system. The scheme incorporates modules for water demand prediction, optimisation and hydraulic
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simulation. The automated real-time control system allows the data management and the transmission
of information between both modules and the WSS that is intended to optimise. A data base is also
necessary to record the historic of water consumption and all the characteristics of the real network.

Figure 5.3: Scheme describing the optimal operation of a Water Supply System using a SCADA
system.

A large number of works dealing with real-time operational optimisation of WSS were already
published (e.g. Bunn (2007); Cembrano et al. (2000); Coulbeck, Orr, and Brdyś (1988); Martinez,
Hernandez, Alonso, Rao, and Alvisi (2007); Rao and Salomons (2007); Salomons, Goryashko, Shamir,
Rao, and Alvisi (2007)). Fallside and Perry (1975) and Coulbeck et al. (1988) were some of the first
researchers publishing in this area.

A similar scheme to the represented in Figure 5.3 is presented by Coulbeck et al. (1988), de-
scribing with more detail the basic modules (prediction, optimisation and simulation) and procedures
for the successful implementation of a real-time completely automated optimal control strategy. The
prediction module (called GIDAP, in this case), integrating demand analysis and prediction, involves
distinct processes (Coulbeck et al., 1988): (i) screening of the telemetry data (error values are replaced
by interpolation or previously predicted values); (ii) data smoothing, to remove possible disturbances;
and (iii) trend estimation, for the demand estimation through the use of screened and smoothed data.
More details about demand prediction can be consulted in Section 5.3. In the optimisation module
(called GIPOS for a single water source and GIMPOS for multiple sources), pumping and storage
are controlled by the computation of optimised pump schedules taking into account constraints of
the reservoirs water levels, the consumers demand (provided by the prediction module) and also the
general constraints related to the system operation (Coulbeck et al., 1988).

The success of the optimisation procedure has a strong dependence on the hydraulic model of
the system. In some cases, the system model can be incorporated in the optimisation procedure
although it tends to become oversimplified. For this reason, the recourse to a hydraulic simulator is
usually desirable for providing a better approximation of the system performance. At the same time,
the hydraulic module can be used to compare the actual performance of the real network with the
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performance after optimisation and also used for non-routine or emergency situations (Coulbeck et
al., 1988).

The typical data transferred by the SCADA systems comprise (Coulbeck et al., 1988): pump and
pipe flows, pressures, control states and reservoir levels. System monitoring, usually carried out by
means of telemetry, is required to guarantee the correct operation of the network since regulatory
actions are dependent on the predicted behaviour of the system under a set of conditions (Coulbeck
et al., 1988).

Coulbeck et al. (1988) also refers the importance of a unique data base, which allows the com-
bination between the recent telemetry information and all the other data required for the individual
modules.

The real-time control scheme of Coulbeck et al. (1988) was implemented in a network in the
United Kingdom providing not only automatic least-cost pump schedules but also instantaneous sys-
tem assessment and automated system operations. Fallside and Perry (1975) introduced a hierarchical
approach for the online optimisation of a water supply network. This hierarchical approach consisted
firstly on the use of linked computers, one for optimisation calculations and the others for data mea-
surement and system control (decentralised optimum computer control). Secondly, the optimisation
process was based on a hierarchical decomposition technique employing Lagrange duality theory.
Basically, the dual of the original problem is formed and then, a decomposition technique allows
obtaining a set of smaller and independent problems easier to solve through a standard method.

The methodology of Fallside and Perry (1975) was applied to the East Worcestershire system that
operates 7 source stations, 5 spring sources, 15 pressure boosters, 21 service reservoirs and 6 water
towers. Pumps were operating in fixed- or variable-speed to maintain the best efficiency in the oper-
ating range. The system was also provided of an automatic control consisting on a central computer
connected to all major elements of the system by radio or land-line. The control system was able
to provide information about 200 elements every 65 seconds (Fallside & Perry, 1975). The devel-
oped hierarchical techniques allowed essentially the reduction of the computational burden (Fallside
& Perry, 1975).

Cembrano et al. (2000) developed an online optimal control tool using an optimisation solver
called WATERNET and other management tools for simulation and quality control, both linked to a
SCADA system. The developed user interface allows the easy control optimisation of distinct water
networks. The methodology of Cembrano et al. (2000) consisted on the use of a Generalised Reduced
Gradient algorithm for the real-time optimal valve and fixed-speed pump controls. The entire control
system was then composed by an optimiser, a demand forecast and a SCADA system. This type
of control was tested in a prototype of the network of Sintra (in Portugal), resulting on a total cost
reduction of around 18 % (Cembrano et al., 2000).

Pegg (2001) showed the implementation of the Derceto’s computer programme for the opera-
tional optimisation of the Wainuiomata-Waterloo network (Wellington), which comprises 3 water
treatment plants, 12 reservoirs, 5 fixed-speed pumps (4 standby), 2 variable-speed pumps (1 standby),
1 dual-speed pump (standby) and 1 control valve. The programme was set to run every half-hour and
previous solutions were maintained until a new one was provided.

For the real-time control, Pegg (2001) implemented Derceto’s programme in a computer, running
WindowsNT and linked to the control system responsible for provide telemetry information. The
selected operator interface was a SCADA system called Citect (for more information about Citect see
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Schneider Electric (2012)).

The main steps in Derceto’s programme operation includes (Pegg, 2001): (1) initialisation of
system data, (2) determination of the mass-balance required to get all the reservoirs full in the end
of the day, (3) computation of the lowest cost schedules and (4) checking of the results using the
simulator EPANET. These stages typically run several times to improve the accuracy and then, the
information is passed to the telemetry or central control system.

Pegg’s work results demonstrated a reduction on energy cost of the Waterloo network of approx-
imately 10%. During the real-time implementation, some events such as (i) pump failure, (ii) pipe
maintenance, (iii) telemetry failure or (iv) systematic errors on metered data have occurred. How-
ever, the used programme was able to deal with the unusual situations by a quickly adaptation to the
unexpected changes (Pegg, 2001).

Later, a work containing results of the real-time optimisation using Derceto’s programme (Aquadapt)
in two distinct cases was provided by Bunn (2007). The tested systems were the East Bay Municipal
Utility District (EBMUD) and the Washington suburban system. EBMUD already had a centralised
pump scheduling package which facilitated the application of Aquadapt, allowing energy cost savings
of 13.1 %. The case of the Washington suburban system presented more difficulties in the interface
because there was no centralised Programmable Logic Controller (PLC). Thus, the existent Remote
Terminal Units (RTUs, also referred as Remote Telemetry Units) were replaced by smart PLC. Re-
sults showed energy cost reductions up to $1000/day in the third week of implementation (Bunn,
2007). All these savings were obtained by (i) moving energy use to cheaper periods, (ii) reducing
peak demand charges and (iii) reducing the energy required for pumping (Bunn, 2007).

Although PLCs have similar functionality as RTUs, they present the advantage of combine large
quantities of digital and analogue data and produce algorithms of high complexity (Bunn, 2007). On
the other hand, an RTU usually does not support control algorithms or control loops.

The JEA’s Operation Optimisation System (OOS) project presented by Barnett et al. (2004) is
another case incorporating demand forecasting, modelling, simulation and optimisation coordinated
by a SCADA system. The hydraulic model used in this project was the WaterGEMS and its calibra-
tion was through historical samples and real-time data from the Jacksonville water network (Florida,
USA). This network, composed of 32 wells, was also used for testing the real-time OOS. The auto-
matic model developed in this project included techniques such as (Barnett et al., 2004): (i) neural
networks for consumption prediction, (ii) non-linear constrained optimisation for pump and valve
schedules and (iii) mechanistic hydraulic and mass-balance for water supply modelling.

The most significant improvement in the Jacksonville network provided by the real-time opti-
misation was the capital costs reduction. Energy savings and water quality improvement were also
identified and, moreover, the return on investment for this project was less than one year (Barnett et
al., 2004).

The POWADIMA research project (Rao & Salomons, 2007) has developed a real-time methodol-
ogy which combines the use of an Artificial Neural Network (ANN) for predicting the consequences
of different pump and valve control settings (hydraulic behaviour) and a GA optimiser for selecting
the best controls combination. Constraints to pressures, flow velocities and reservoirs levels were
also included. A SCADA system was responsible for providing data updates for each 24 hours. This
methodology was applied in the Haifa-A WSS of Mount Carmel, comprising 9 storage reservoirs and
17 fixed-speed pumps (5 pump stations), reducing in 25 % the energy costs (Salomons et al., 2007).
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The Valencia WSS (Spain), containing 10 fixed-speed pumps (3 standby), was also tested, indicating
an operational cost savings of 17.6 % (Martinez et al., 2007). Comparing the same methodology
combined with EPANET for the hydraulic behaviour verification instead of the recourse to the ANN,
it was verified, for the Haifa-A case, that the GA-ANN model was approximately 25 times faster than
a 112-node GA-EPANET model (Salomons et al., 2007).

Ingeduld (2007) investigated the use of EPANET on real-time operations. According to the author,
linking a SCADA system to the hydraulic simulator EPANET allows the water network to operate
into the following modes (Ingeduld, 2007): (a) Virtual-Sensor Mode, based on the WSS conditions
which provides information about locations without measurements; (b) Hindcasting Mode that allows
to obtain simulations of past events in the network; (c) Event-Simulation Mode that provides the
response of a system when a specific modification is applied; and (d) Predictive Mode that provides a
prediction of the system behaviour for a certain time horizon.

To provide data transfer between the SCADA system and the hydraulic simulator, Ingeduld (2007)
pointed out the use of a Data Integration and Management System (DIMS) based on a SQL (Struc-
tured Query Language) client-server (see Figure 5.4). The data communication is provided by online
hosts and data drivers.

Figure 5.4: General scheme of the online EPANET solution presented by Ingeduld (2007).

The online solution presented by Ingeduld (2007) was applied in two case studies: (i) one at Czech
Republic and (ii) another at Libya (specifically in the well-known Great Man-Made River project).
In the first case, a SCADA SCX system and the MikeNet (see section 4.2) were used. For the Great
Man-River project, a Siemens SCADA system was selected for the data collection. In this second
case, updates every 5 minutes and consequent analysis of the system were executed. Furthermore,
historical data analysis and prediction of the system behaviour for the following 72 hours were also
performed.

The work of Machell et al. (2010) also provides an insight about online modelling of WSS and
demonstrates its potential to detect events in the networks like ruptures. The authors used the AQUIS
software, an industry standard modelling package in the UK, that receives, every 30 minutes, flow
and pressure data in real-time obtained by a GPRS communication. The online model was linked to
DataManager, a database for configuring, pre-processing and administering that allowed to check out
for missing and corrupt data (Machell et al., 2010). The online model based on a SCADA system,
applied to a UK case study, demonstrated to be able to provide early warnings of effects in each pipe
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of the networks and information about which customers were affected (Machell et al., 2010).

Dötsch, Denzinger, Kasinger, and Bauer (2010) provided a decentralised approach for the real-
time control of a WSS. This approach consists on the communication between equipment (called
agents) installed at each pump and tank of the WSS for the minimisation of energy costs associated to
their operation. For the self-organised and decentralised coordination of the agents communication,
the authors have resorted to a chemical stimuli strategy based on a biological phenomenon applied
by plants to keep the herbivores away (Dötsch et al., 2010). Two variants of their approach were
compared (Dötsch et al., 2010): (i) Greedy Mode (GM), the simple variant where the solution is based
on the switch on and off of the pump nearest to a tank; and (ii) Coordinated Greedy Mode (CGM), a
variant where the pump agents compare all possible solutions according to additional expected costs
information and choose the most efficient. Experimental results, using EPANET for the hydraulic
evaluation of the networks, demonstrated that both variants provide optimal solutions. Moreover,
it was also showed that in the CGM, more cost efficient controls can be obtained when additional
information is provided to the agents (Dötsch et al., 2010).

In these sections, relating to the influence of the connection between SCADA and optimisation
modules, it is worth notice that no investigation was made in the ability of the algorithms to adapt
to small changes in constraints conditions such as online changes in predicted demand and current
reservoir levels.

5.2.3 Systems with energy production

With the increasing introduction of renewable energy production in WSS, the study of control optimi-
sation techniques including possible new elements such as hydroturbines or wind-turbines is of high
importance in order to keep the maximum energetic and economic efficiency of the systems.

The control problems of installations containing renewable energy sources are similar to the prob-
lems mentioned before. For pumps operating as turbines, for example, during the normal pump op-
eration, both values of the characteristic curves (flow, head and speed) are positives; however, in the
turbine mode, the discharge and speed present negative values (Ramos et al., 2010). Usually, pump
manufacturers do not provide the characteristic pump curves when it operates as turbines (Ramos et
al., 2010).

Ouarda and Labadie (2001) presented in their work the operational optimisation of a four-reservoir
case study of Argentina (Hidronor river basin) containing hydropower plants. The authors used a
chance-constrained optimal control resorting to optimal control theory (OCT) that involves the use
of ordinary and partial differential equations in continuous formulations (Ouarda & Labadie, 2001).
This kind of formulation usually requires less computational effort than the typical mathematical pro-
gramming (MP) techniques. At the same time, the presented technique is normally used for several
continuous-time optimal control problems under constraints (Ouarda & Labadie, 2001).

The main objective of the Ouarda and Labadie work (Ouarda & Labadie, 2001) was the max-
imisation of the total energy production at hydroelectric plants. For that, two representations of the
objective function were considered with the aim of evaluating the performance of the optimisation al-
gorithm with distinct representations. The difference between both representations is that in the first,
only the total energy production is considered and, in the second, the energy rate per turbine discharge
is also considered (Ouarda & Labadie, 2001). Using the first representation of the objective function,



5.2. Operational optimisation 53

a local optimum was obtained. The better values were achieved using increasing penalty weights (for
the constraints violation) by multiples of five to fifty, leading to final objective values up to 96.4 %
of the true global optimum. Using the second representation of the objective function, the algorithm
converges for the optimal optimum (Ouarda & Labadie, 2001). The authors also have considered
measures for the system reliability, considering a range from 5 to 95 % (high to low theoretical risk)
and the results provided optimal values reflecting several levels of reliability.

Teegavarapu and Simonovic (2002) compared the performance of a mixed integer non-linear pro-
gramming with an improved simulated annealing technique applied to a real-time four-reservoir hy-
dropower system at Canada. The considered improvements of the SA passed through repair strategies
to generate feasible solutions for any configuration of the reservoir systems and heuristic rules to de-
fine the range of discharge variables (Teegavarapu & Simonovic, 2002). The objective of the problem
was to minimise the cost of power generation, considering half-day scheduling and 14 time intervals
(1 week). A constraint is applied in order to guarantee that the total power demand by the reservoirs
for both SA and MINLP models is the same (43 GWh). At the same time, discharge ranges are de-
fined according to the variation of the generation cost. The SA model provided the best value for the
objective function with less computational effort when compared with the MINLP formulation. The
higher computational effort required by the MINLP is related to the high number of binary variables
proportional to the number of time intervals. For both used techniques, it was also observed that
the generation values were significantly higher for periods of lower generation cost (Teegavarapu &
Simonovic, 2002).

Gonçalves and Ramos (2008) proposed an optimisation methodology based on an economic anal-
ysis for the use of pumps-as-turbines (PATs). The main objective of this work was the identification
of regions constituting potential for energy production in the WSS of the district of Aveiro (Portugal).
Then, it was intended (i) the evaluation of the available energetic potential, (ii) the calculation of en-
ergetic production, (iii) the study of viability and economic analysis and, finally, (iv) the development
of the optimisation proposal (Gonçalves & Ramos, 2008).

For the energetic potential evaluation, pressures and flows were analysed in five areas contain-
ing pressure reduction valves (PRV). All the hydraulic analyses were performed with the hydraulic
simulator EPANET. The estimation of the energy production was based (i) on the headloss measured
at each PRV using EPANET and (ii) on the demand prediction considering a population growth dur-
ing 10 years (Gonçalves & Ramos, 2008). Concerning to the economic analysis, for the possible
flows and powers to install, the authors considered a criteria based on the Net Present Value (NPV)
determined by the difference between the annual profits and the annual costs related to installation
and maintenance, which allow increasing the profitability of the systems. For the optimisation of the
system operation, considering the real-time consumption patterns and reservoirs levels variations, the
authors proposed the use of a multi-objective genetic algorithm (MOGA) connected to EPANET for
the hydraulic behaviour evaluation and to a module for water demand prediction using neural net-
works. The main objectives were the minimisation of operational costs and maximisation of benefits
from energy generation. The study of Gonçalves and Ramos (2008) showed possible payback periods
from 5 to 8 years for the installation of PATs.

The work of Ramos et al. (2010) offers a comparative study for pressure control by using a
pressure reducing valve (PRV) and a PAT for simultaneous energy recovery. Similarly to Gonçalves
and Ramos (2008), Ramos et al. (2010) stated that, for PATs in the range of 5 to 500 kW, the payback
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time is significantly inferior than for a conventional turbine (less than 5 years). In their work, the
authors developed a mathematical model linking EPANET to a GA for the minimisation of the nodal
pressure by valve control subject to a constraint for the established minimum pressure. Performance
curves of different pumps in the two operating modes (pump and turbine) were developed in order to
select the best characteristic curve of the turbo-machine to be used to control pressure. The micro-
hydro implementation was conducted in a case study at Algarve (Portugal), in a network beginning
at the Beliche dam, passing through a pump station and continuing to the treatment plant. Results
have shown similar operation conditions either using a PAT or a PRV. However, installations with
hydropower systems allow a considerable energy reduction by using its own generation (Ramos et
al., 2010).

A recent study dealing with quarter-hourly operation was published (J. Wang & Liu, 2011). The
model presented in this study handles hydropower reservoirs with pump storage plants. The optimi-
sation problem was divided into seven sub-horizons of 6 hours each and a quarter-hourly scheduling
was performed. The authors believe that this procedure could be one of the keys to make this kind of
problem easier to solve, avoiding, for example, the problem of the schedules providing simultaneous
generating and pumping (identified in some 1-hour time-step problems according to J. Wang and Liu
(2011)).

The work of Castronuovo and Lopes (2004) deals with the operational optimisation of a network
containing a hybrid wind-hydropower plant. The wind power forecast is obtained by time-series, for
a time horizon of 48 hours. The daily operation strategy for each one of the determined time-series
scenario is optimised by a linear hourly-discrete algorithm. The predicted average economic gain of
this optimisation was assumed to be between 425.3 and 716.9 ke for an analysed test case. The
authors also refer that the use of water storage ability allows improving the hybrid wind-hydro park
profits. This is because the energy can be delivered to the network during the peak energy price
(Castronuovo & Lopes, 2004).

Vieira and Ramos (2009) presented a work dealing with hydroturbines and wind power generation
for pumping supply. A simplified system containing a pump station and excess of available energy
in the gravity branch was tested. In order to use this excess of energy, the existent pressure reducing
valve was replaced by a water turbine. A model based on LP and linked to EPANET was used to
optimise the pump station operations during 24 hours of simulation and considering the reservoirs
levels variations as the decision variables (Vieira & Ramos, 2009). Operations for both winter and
summer conditions were also considered. With the pumping operations optimisation, energy costs
were saved up to 47 %. Considering the inclusion of a wind turbine, the electricity needs for pumping
the water were almost filled. The daily economic benefits obtained in the gravity system demonstrated
to be dependent on the available energy, initial level of the downstream reservoir and its capacity
(Vieira & Ramos, 2009).

Later, in Madeira (Portugal), the Socorridos WSS, a system with water consumption and inlet
discharge, was tested with the methodology proposed by Vieira and Ramos (2008). The authors
used Linear Programming and Non-linear Programming tools for the operational optimisation and
again EPANET for the hydraulic simulation. Savings of nearly 100 e/day were obtained with the
Non-linear Programming approach and, when a wind park is added to the system, the profits are ap-
proximately 5200 e/day. The pump and turbine controls, using NLP with and without wind turbines,
were different from each other due to the non-linearity of the objective function and also due to the
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availability of wind energy (Vieira & Ramos, 2008).

5.3 Water demand forecasting

Future water demand have been predicted for a variety of purposes, such as understand spatial and
temporal patterns of water use, optimise system operations, plan for future system expansion or even
prepare for future revenue and expenditures. According to the purpose of the forecast, distinct scales
for the forecasting methods are defined, from short-term to long-term scales.

5.3.1 Time scales of forecasting models

Medium- to long-term forecasts (months to decades) are mostly used in strategic planning and to
determine future resource requirements (Hyndman & Athanasopoulos, 2013). Sizing system capacity,
staging system improvements and assessing how future environmental and economic conditions are
likely to change water supply and demand are the main purposes of this forecast scale.

There are a number of recent works dealing with monthly water demand forecasting, applying
from ARIMA models (Ghiassi, Zimbra, & Saidane, 2008) to ANN models (Babel & Shinde, 2011;
Ghiassi et al., 2008) and also hybrid ANN models (Tiwari & Adamowski, 2013, 2014), where the
ANN-based models commonly outperform the classic ones.

Short-term scales, in turn, are mostly used in scheduling processes (Hyndman & Athanasopou-
los, 2013), including optimisation and management of systems operations. Hourly, daily and weekly
forecasts are commonly included in this scale. Comparatively to the medium/long-term forecasts, a
lot more studies can be found related to (i) hourly forecasts (Alvisi, Franchini, & Marinelli, 2007;
Ghiassi et al., 2008; Herrera, Torgo, Izquierdo, & Pérez-García, 2010; H.-S. Kang et al., 2015; Mar-
tinez et al., 2007; Odan & Reis, 2012; Romano & Kapelan, 2014; Salomons et al., 2007; Santos
& Pereira Filho, 2014), (ii) daily forecasts (J. Adamowski, Fung Chan, Prasher, Ozga-Zielinski,
& Sliusarieva, 2012; J. F. Adamowski, 2008; Alvisi et al., 2007; Babel & Shinde, 2011; Bakker,
Van Duist, Van Schagen, Vreeburg, & Rietveld, 2014; Ghiassi et al., 2008; Msiza, Nelwamondo, &
Marwala, 2008; Tabesh & Dini, 2009) and (iii) weekly forecasts (J. Adamowski & Karapataki, 2010;
K. Adamowski, Adamowski, Seidou, & Ozga-Zieliński, 2014; Bougadis, Adamowski, & Diduch,
2005; Ghiassi et al., 2008; Jain, Varshney, & Joshi, 2001; Tiwari & Adamowski, 2013, 2014).

Since this work is focused on short-term forecasting, more specifically in hourly scales, the liter-
ature review provided is focused in short-term water demand forecasting studies.

A resume on the analysis of the reviewed works are provided in appendix B. Figures B.1 and B.2
provide the results of the performance of the best distinct forecasting models obtained in each work.
Figure B.3 resumes the input variables tested in each work as well as the ones that provided the best
result for each case.

5.3.2 Short-term forecasting models

One of the first works applying artificial intelligence-based methods for the short-term water demand
forecasting was the work of Jain et al. (2001). Since then, several authors have compared distinct
innovative intelligence-based techniques with the traditional time series and regression methods. Jain
et al. (2001) compare distinct Artificial Neural Networks (ANN) with the traditional methods for
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the weekly water demand forecasting in an Indian Institute. The authors also analyse the influence
of weather variables in this particular case-study, namely the maximum air temperature, the occur-
rence of rainfall and the rainfall amount. For this case-study, the ANN methods outperformed the
autoregressive models (AR), the Multiple Linear Regression (MLR) and the Multiple Non-Linear
Regression (MNLR). The authors also realised that, for both linear regression and ANN methods, the
use of rainfall occurrence variables (binary) provides better results than considering the total rainfall
amount.

Later, Bougadis et al. (2005) compared similar methods, including MLR, ARMA and ANN meth-
ods, for the peak weekly water demand forecasting in the city of Otawa (Canada), with the aim of de-
veloping an expansion strategy. The authors also tested the same input variables as Jain et al. (2001).
Also in this case-study, the ANN outperformed the regression and time series models. However,
concerning the input variables, the rainfall amount provided larger improvements in the models per-
formance when compared to the rainfall occurrence (in opposition to the results of Jain et al. (2001)).
At a first glance, these diverging results could be associated to the fact of two distinct case-studies (in
different regions) are analysed.

Another work using a case-study also from the city of Otawa in Canada, however for the peak
daily summer water demand forecasting, was published by J. F. Adamowski (2008). The results
provided in this work demonstrate that the rainfall occurrence has a larger influence in the fore-
casting models performance. The main differences that stands out between this work and the work of
Bougadis et al. (2005) is the time scale of the forecasting models (one weekly and other daily) and also
the amount of data used for the forecasting models development. While Bougadis et al. (2005) used
4 months of data (around 16 weeks, 16 data points) to develop their models, J. F. Adamowski (2008)
used 10 years of data, considering only the months from May to August (around 1200 days/data
points). This means that the most adequate input variables for a certain forecasting model may be not
only dependent on the model scale or time scale but also dependent on the amount of data available.

The work of J. F. Adamowski (2008) demonstrated that the ANN models are better predicting the
peak daily demand than the regression or time series models.

In order to address the problem of drought in Cyprus, J. Adamowski and Karapataki (2010)
developed a work to predict the peak weekly water demand in two different regions of Nicosia city
(Athalassa and Public Garden). The authors decided to test a MLR model with ANN models differing
in the training method: (i) Levenberg-Marquardt (LM), (ii) Conjugate Gradient Powell-Beale (CGPB)
and (iii) Resilient Back-propagation. For both regions, the ANN-LM models provided average better
results than all the other methods. Also the occurrence of rainfall demonstrated to be more relevant
than the amount of rainfall, supporting the findings of Jain et al. (2001). In this case, 6 years of data
(288 weeks) were used to develop the forecasting models.

The use of bootstrap data re-sampling techniques and wavelet analysis for the series decomposi-
tion applied to ANN models for water demand forecasting was introduced by Tiwari and Adamowski
(2013). The authors tested such techniques for daily and weekly water demand forecast for the city of
Montreal (Canada). Four distinct ANN methods were developed and compared to ARIMA models:
(i) a simple ANN, (ii) a bootstrap artificial neural network (BANN), using bootstrap data samples
from 100 ANN outputs, (iii) a wavelet ANN (WANN), using, as input, 4 distinct components of the
series (water demand, temperature and precipitation) and (iv) a wavelet bootstrap ANN (WBANN),
using 100 data samples of the wavelet series components (100 WANN). Results demonstrated that
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the WANN outperform the other methods in the daily forecast, however, the WBANN provided better
results in the weekly forecast scale.

Later, Tiwari and Adamowski (2014) and K. Adamowski et al. (2014) tested the previously men-
tioned bootstrap and wavelet-based ANN models for weekly water demand forecasting in the city of
Calgary (Canada) considering limited data availability (around 2 years and 9 months). Similar to the
previous case-study, the WBANN provided the best results, with the wavelet analysis improving the
model performance and the bootstrap technique increasing the reliability of forecasts by producing
ensemble forecasts.

Ghiassi et al. (2008) introduced a dynamic artificial neural network model (dynamic ANN) for
weekly, daily and hourly water demand forecast and tested it in a case-study including the city of San
Jose (California) and some other surrounding cities. The authors compare such developed forecasting
method with a simple ANN and a traditional ARIMA and also investigate the influence of weather
and anthropic variables (average temperature, type of day - week/weekend, and period of the day -
day/night) in some models.

This dynamic ANN proposed by Ghiassi et al. (2008) defines the ANN architecture dynamically
according to the complexity of the process and the desired accuracy. The outputs are obtained by a
linear combination of three types of neurons: (i) constant elements, (ii) residuals non-linear elements
and (iii) accumulated knowledge elements. At a first stage, the linear component is assessed and if
the required accuracy is not reached, the model generates additional layers to capture the non-linear
component of the process (by minimising the error).

For all time horizons (weekly, daily and hourly), the dynamic ANN proved to be effective achiev-
ing accuracies superior to the forecasting methods compared (Ghiassi et al., 2008).

In order to evaluate the effect of other variables, Ghiassi et al. (2008) decided to develop distinct
models. For the weekly forecasts, after identifying distinct seasonal behaviour in data, the authors
decided to divide the data into two sets (warm and cold seasons, i.e. May to September and October
to April) and generate separated seasonal forecasts to be further combined and compared to the other
model. This method improved the forecast accuracy by only 2 %.

Concerning the daily forecasting models, the authors decided to develop distinct models for week
and weekend days (Monday to Friday and Friday to Sunday, where Friday is the transitional day).
Forecast accuracy was improved by 22%, demonstrating the significant effect of these factors in this
type of models (Ghiassi et al., 2008).

In the case of hourly forecasts, two distinct variables were tested for each representative month
(April, the most difficult to predict and September, the most typical): (i) the type of day (week/weekend)
and (ii) the period of the day (day/night). Thus, similarly to the weekly forecasts, the data was divided
into two sets (week/weekend) to generate distinct models, which improved the forecasts accuracy by
8%. The other models were obtained by separating the data into day and night sets (5 a.m. to 2 p.m.
and 3 p.m. to 4 a.m., respectively) and, in this case, forecast accuracy improvements of 9 % were
obtained for the month of April and 14 % for the month of September. These last models for each pe-
riod of the day were also tested using historical temperature variables as input. The forecast accuracy
for the April model was improved by 8 % and for the September model by 18 %. This was expected
since the temperature variation in September, for this case-study, is notably higher than in April.

Later, Odan and Reis (2012) applied the same dynamic ANN proposed by Ghiassi et al. (2008) in
Araraqua city (Brazil) for the hourly water demand forecasting. The authors compared such method
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with a simple ANN (testing distinct numbers of hidden layers) and also with hybrid ANN and hybrid
dynamic ANN, consisting in the additional use of Fourier Series as input of the networks. The best
results (both for 1h and 24h time horizon) were obtained with the dynamic ANN model using past
demand observations and Fourier Series as input (not requiring weather information).

Babel and Shinde (2011) evaluated the effect of weather variables as ANN inputs for daily and
monthly water demand forecast in the city of Bangkok (Thailand). In the daily forecasts, no significant
differences were found in the forecast accuracy when including weather variables (rainfall, average
temperature and relative humidity) in their models. On the other hand, in the monthly forecasts,
the influence demonstrated to be slightly superior. However, in this last case other variables were
additionally included in the models: population, per capita Gross Provincial Product, education status
and household connections.

To face the problem of water scarcity in the South Africa’s Gauteng Province, Msiza et al. (2008)
developed a work on the daily water demand forecast using ANN and Support Vector Machines
(SVM). The authors tested distinct training algorithms and distinct activation functions for Multilayer
Perceptron and Radial Basis Function ANNs (ANN-MLP and ANN-RBF) and, in the case of the
SVM, distinct kernel functions were also tested. The best results were obtained with an ANN-RBF
using a linear activation function and a scaled conjugate gradient algorithm for training the model.
This ANN-RBF model also outperformed the best SVM model.

Fuzzy and Neural-fuzzy forecasting techniques for daily water demand forecasting were proposed
by Tabesh and Dini (2009) and compared with ANN using a case-study in Tehran (Iran). In order to
face an expected water crisis, a short-term forecast of water demand in this city is necessary for the
development of a water conservation programme to achieve the optimal operation of the networks.
The authors found that fuzzy models, in general, do not produce good results for this case-study.
However, the Neural-fuzzy models reveal to be comparable to ANN models, with similar forecast
accuracy.

In the work of Tabesh and Dini (2009), the use of random input variables was also tested, demon-
strating, in general, slightly improvements in the neural-fuzzy models performance. The best results
were obtained with the models considering only past water demand variables as input (for both ANN
and neural-fuzzy approaches).

Demand forecasting techniques have already been applied to real projects to support real-time
optimal control of water supply systems. The research project called POWADIMA (POtable WAter
DIstribution MAnagement) is an example of that (Alvisi et al., 2007; Martinez et al., 2007; Salomons
et al., 2007). The idea of this project is to base the daily operational decisions on the expected
future demands for water. Thus, a pattern-based methodology to forecast one-day ahead hourly water
demand was developed. This specific methodology works based on two stages. The first stage uses
Fourier Series to determine the average daily water demand taking into account the seasonal and
weekly patterns. In the second stage, the determined daily term (periodic component) and a daily
persistence component (based on the deviation computed using an AR process) is combined with
the daily patterns and the hourly forecasts are determined using Time Series analysis. The hourly
forecast deviation (what the authors call hourly persistence component) is hourly updated through
a regression method whose coefficients are dependent on the hour of the day (Alvisi et al., 2007).
The authors realise that updating the model with daily and hourly persistence components allow
to improve the forecast performance. Such methodology was firstly tested in the municipality of
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Castelfranco Emiliana in Italy (Alvisi et al., 2007) and then in larger case-studies such as the Haifa-A
WSS in Israel (Salomons et al., 2007) and the WSS of the city of Valencia in Spain (Martinez et al.,
2007). Similar forecast accuracy where obtained when comparing the smaller with the largest case-
studies, which demonstrated the aptitude of the developed forecasting model for real applications.

Herrera et al. (2010) published an interesting work on the hourly water demand forecasting. These
authors not only compare distinct non-linear forecasting methods but also provide a study on the data
update for training the models. The idea of this study is to verify if the models demonstrate the same
performance when using only the last observations (slide window approach, as denominated in the
paper) as when using accumulated data (growing windows approach).

In the work of Herrera et al. (2010) the forecasting methods tested are: (i) simple 1 hidden layer
ANN, (ii) Projection Pursuit Regression (PPR), a regression method that explains the target variable as
a sum of spline functions of projections of the input variables, (iii) Multivariate Adaptive Regression
Splines (MARS) that uses a linear combination of the splines to model the target variables, (iv)
Support Vector Regression (SVR) that performs a non-linear mapping of data and obtains a linear
regression model in the new space, (v) Random forests, an ensemble of tree-based regression models
and (vi) weighted pattern-based model that uses the water demand seasonal properties (similar to the
model proposed by Alvisi et al. (2007)). This last model was specifically used for comparison with the
others. All the methods significantly outperformed the pattern-based method. The authors mention
a disappointing performance of the ANN model, however, it should be notice that, in their study, no
different number of hidden layers were tested, which was demonstrated in previous studies that may
have a significant influence. Although all the models performance accuracy were quite similar, the
SVR stand out.

Candelieri and Archetti (2014) also decided to use a SVM model for the hourly water demand
forecast in the city of Milano (Italy), one of the case-studies of the ICeWater project (ICT Solutions for
efficient Water Resources Management). The main difference introduced in this recent work applying
SVM is the use of clusters that characterise the water demand patterns and the posterior training of
separate SVM models for each distinct cluster identified in the raw data. The clusters are defined
in daily time windows according to the time series similarity in time. For the tested case-study, six
typical daily patterns (and thus, six clusters) were identified. The values of MAPE measured for the
forecast with each cluster presented a 0.79%-14.33% range, with an average of 5.29%.

Recently, Santos and Pereira Filho (2014) published a work on the hourly water demand forecast
in São Paulo Metropolitan area (Brazil). The authors decided to investigate the influence of distinct
input variables (demand, anthropic and meteorological) with several lag times (up to 24 hours in
the past) and distinct output lead times (forecast of hour 1, 6, 12, 18 and 24) in ANN models. The
forecasting performance is also compared with a MLR model, which demonstrated to be less accurate
than the best ANN. The only drawback observed in this study is that no ANN model is tested using
only previous water demand (excluding anthropic and/or weather variables). At the same time, it
is not clear what are the variables included in the MLR model. Since some of the ANN models
performed worst then the classic MLR model, using different variables to develop the MLR model
could also provide distinct results.

Romano and Kapelan (2014) test hourly ANN forecasting models (1 and 24 hours predicted in
advance) using data measured at distinct zones in the Yorkhire WSS (United Kingdom): at 3 dis-
tinct District Metered Areas (DMA), each one supplying different population sizes, and at 1 reservoir
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outlet. According to the provided results (see table B.2), no significant differences in the forecast ac-
curacy are found for the distinct model scales tested (comparing MAPE and NSE accuracy measures).
The authors tested the use of an Evolutionary Algorithm to automatically find the best parameters and
structure of the ANN (EA-ANN) instead of using fixed user-defined structures. This approach pro-
vided significant improvements in the models performance (Romano & Kapelan, 2014).

Another approach proposed by Romano and Kapelan (2014) for the 24h forecast horizon is the
use of multiple parallel ANN (for each hour to predict) instead of a single ANN. Results illustrated
slightly improvements (but with increased computational effort) using such approach for both the
EA-ANN and the fixed-structure ANN.

For the optimal control and to detect pipe bursts in water distribution networks, Bakker (2014)
(also (Bakker, Vreeburg, Van Schagen, & Rietveld, 2013)) proposed the use of 15-min time-steps to
better describe the water demand variations instead of the typical 1-hour time-steps. Since the existent
models to detect pipe bursts are typically in smaller time-steps, Bakker (2014) decided to use such
time scales for water demand forecasting and pumps control. This approach was used to predict the
future 48 hours of water demand in six different cities in the Netherlands (all with differing number
of consumers). In order to implement the forecasting model in real WSS, the authors developed a
pattern-based model that only uses past water demand and anthropic variables (the seven days of
the week and other specific deviating day types) and uses a functionality based on factors update
to identify deviating weather-related water demand. Thus, at each 15-min time-step, a new 48h
forecast is calculated considering the updated factors. To assess the developed forecast model, the
authors computed the accuracy measures considering a 24-hour forecast intervals (obtained from the
average of the 15-min steps) and 15-min intervals. Although the RMSE and the MAPE presented
significantly better (lower) values for the 24-hour forecast, the 15-min forecast demonstrated a better
fit, providing higher values for the NSE. The case-studies of cities with a larger number of consumers
also demonstrate to be easier to predict Bakker (2014); Bakker et al. (2013), which is showing again
the dependence of the forecasting models with the model scales.

The previously mentioned case-studies from the Netherlands were also used to test the perfor-
mance of forecasting models using weather variables (average daily temperature, in this case) as
input Bakker (2014); Bakker et al. (2014). Daily forecasts were computed using the same datasets.
Results obtained using the previously described adaptive pattern-based method were compared with
a MLR model and a transfer-/noise method (combination of an ARIMA model with a linear transfer
model).

Using the weather variables, the largest forecasting errors were reduced by 9.4 % and the average
by 6.3 % (Bakker, 2014; Bakker et al., 2014) even in these case-studies with low variability in weather
conditions, which means that for other case-studies presenting higher weather influences, the differ-
ences can be larger. Concerning the distinct methods applied, although the introduced tranfer-/noise
model provided slightly better results than the adaptive pattern-based model, the authors mention that
the later may be better accepted for real implementations since it is easier to understand by the control
operators.

In other recent works for the hourly water demand forecast, instead of applying the innovative
machine learning techniques that demonstrated good performances in previous works, researchers
have decided to use combinations of classic ARIMA and Exponential Smoothing methods in order
to improve the models performance (such as Y. Wang, Ocampo-Martinez, Puig, and Quevedo (2014)
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and H.-S. Kang et al. (2015)).
Y. Wang et al. (2014) proposed a Double-Seasonal multiplicative Holt-Winters model combined

with a Gaussian Process regression (with uncertainty propagation) for multiple-step ahead forecasts
(since a typical exponential smoothing forecast is only based on the last known value). This approach
was applied to the WSS of Barcelona (Spain).

(H.-S. Kang et al., 2015) combined an ARIMA model with Exponential Smoothing to forecast
the hourly water demand in a WSS in the Gallella region (Sri Lanka), typically a rural area. While
the ARIMA-alone method failed to predict the lower water demands, the combination with the Ex-
ponential Smoothing method with the smoothing parameter α set to 0.9 allowed to overcome such
drawback, improving the forecast accuracy. Although this results are not compared with other meth-
ods, it is possible to compare this case-study (with an average demand of 450 m3/day) with another
rural area in Netherlands, the city of Hulsber (440 m3/day) presented by Bakker (2014). Comparing
the values of the accuracy measures (see table B.2), it is observed that the models used by Bakker
(2014) provided more accurate results.

From the analysis to the previously mentioned works, it is possible to understand that, the data
analysis and pre-processing represents an important role in the forecasting process with influence in
the models accuracy.

Although distinct amounts of data have been used to develop the distinct forecasting models, the
work of (Herrera et al., 2010) demonstrated that, for hourly forecasts, the accumulation of available
data for training the models does not provide significant changes in the models performance. This
means that using the most recent weeks of available data should be enough to train hourly water
demand forecasting models. The only problem on following this approach is the possible occurrence
of failures in the data measurement and/or communication, which can significantly reduce the amount
of existent data for training the model. Thus, it is recommended to always select a larger amount of
data (if possible).

The mean absolute relative errors for the best hourly forecast models reviewed in this work are
typically in the 3.4 % – 15.0 % range for ARIMA and regression models and in the 0.8 % – 14.3 %
range for models based on artificial intelligence.

It is also possible to conclude that to develop an automatic forecasting model for operation in
real-time, two main characteristics should be presented by the model: (i) scalability, to provide good
performances for distinct model scales, and (ii) adaptability, to easily adapt to possible changes in the
WSS conditions (self-learning capability) and avoid unnecessary model maintenance and calibration
(and thus, avoiding the associated cots).





6. Overview and discussion

The main identified obstacles to the introduction of works developed in academia into
industrial environment are discussed. Some tips to overcome such obstacles are provided. A

general discussion on the addressed topics and some relevant conclusions are presented.

6.1 Water industry requirements

Most developed methodologies for water systems improvement have been oriented towards determin-
ing least-cost design and pump-scheduling strategies. However, the acceptance of some innovative
methods by water industries for real applications can be partially limited due to (Rao & Salomons,
2007): (a) the confinement of some techniques to minimise energy costs ignoring the network perfor-
mance, (b) the complexity of the problem formulation due to considerable amount of mathematical
sophistication, (c) the complexity of the networks that is dependent of their size, (d) usually oversim-
plification of the systems and (e) the excessive run times and easy trapping at local optima.

For a better acceptance of the methods by the industry, it is important to develop robust software
programmes applying the corresponding methods with: (a) intuitive and attractive graphic interfaces,
(b) easy adaptation to new situations and, maybe the most important issue, (c) a specific attention to
the network performance and the consumers supply requirements. For the guarantee of this last topic,
the use of a calibrated hydraulic simulator in order to reflect the true operational characteristics of the
networks is crucial. The calibration process requires a considerable amount of data, usually collected
manually, and manipulation of model variables (Machell et al., 2010). Bunn (2007) also pointed out
that any optimised solution must (i) be obtained quickly enough to respond to real-time changes in
the system, (ii) not interfere with protection mechanisms and (iii) not cause negative impact on water
quality.

The best way to reach all this objectives is working in parallel with water industries during the
methodologies development in order to respond to particular industry requirements. At the same time
it is important to notice that the best way to meet all the needs implies the use of a combination of
complementary tools in order to manage the complexity of water-related challenges (Marton-Lefevre
& Bakker, 2012).

For the analysis of real water systems efficiency, global and local water situations should be
assessed and then a focus on critical points should be done, implementing action and setting targets.
During these steps, water risks must be identified and controlled through monitor and communication
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means. Even with all the steps completed, water companies should revisit their strategies and reassess
opportunities for continuous improvement (Marton-Lefevre & Bakker, 2012).

6.2 General discussion

Water supply systems are characterised by a large variety and complexity providing a huge opportu-
nity to act in the economic and/or energetic efficiency improvement. For the distinct existing networks
there are several possible measures to apply, where some of them imply large investment and others
not so much.

Although the installation of variable-speed drives in pumps allied to the control optimisation may
provide the greatest reductions of energy and costs associated to the network operation, it should be
noticed that this measure is more capable of providing such results in installations presenting flow
rate variation. For installations with no flow rate variation, the energy tariff can always be checked
and maybe changed by a more suitable one.

Despite the high investment cost, the implementation of hydroturbines in areas containing exces-
sive pressures can be an attractive measure when presenting low payback times.

The use of hydraulic simulators is essential during the application of improvement measures in
order to guarantee proper operation of the networks. The choice of the hydraulic simulator presents
a significant impact on the optimisation process since it determines the feasibility of the optimal
solutions. A quick evidence of this fact can be observed, for instance, when some solutions obtained
in older studies are considered not feasible in current studies due the use of of improved hydraulic
simulators. It is observed that studies making use of EPANET 2.0, for example, have resulted in better
solutions (see resume of results in Appendix A).

For real applications, the use of calibrated hydraulic models is decisive for the success of the
improvement measures. The process of calibration of such models can usually represent the most
time-consuming step in the entire optimisation process of a WSS.

Still concerning the optimisation, it is possible to identify the need of some studies comparing the
performance of several algorithms in a networks containing all possible complexities existent in the
real world. In the case of the design optimisation, the use of benchmark networks for comparative
studies has been very common. However, the same is not occurring for operational optimisation.
Another important issue is related to the lack of comparative studies performed under the same con-
ditions such as the constraints and initial parameters considered for the networks modelling.

One of the main questions that is pointed out for the control optimisation problems is concerning
the decision for the optimisation variables formulation. It is not clear that an explicit formulation
is the best choice since it deals directly with pumps. At the same time, it is also not clear that the
alternative implicit formulation (such as the tanks water levels variation) provide better solutions.
When dealing with fixed-speed pumps and, at the same time, when tanks are directly connected to the
pump stations, the relation between tanks water levels variations and the desired pump controls for
such variations can be easy. However, in complex networks, the decision of the best pumps operation
according to certain variations in water tanks levels can be difficult. It is the case when the networks
present variable-speed pumps, several pumps with distinct characteristics, multiple storage tanks with
no direct connexion to the pump stations, etc. In such cases, the explicit optimisation of pumps (and
even valves) may allow achieving better solutions. On the other hand, dynamic optimisation could be
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an option to solve these more complex cases through an implicit formulation.
Regarding the influence of the connexion between real-time systems and optimisation modules,

it is worth noticing that no investigations were made in the ability of the algorithms to adapt to small
changes in constraints conditions such as online changes in predicted demand and current reservoir
levels.

By analysing the collected works related to water demand prediction, the advantage of combine
distinct forecasting models becomes clear. Artificial Neural Networks, for example, can present a
great performance when enough historical data is available for the process of training required by this
method. However, when these kinds of methods fail, time-series and regression models can provide
some guarantees. It is most important to refer that the stage of water prediction during an optimisation
process determines the success of reaching the best solution.

Scientific works, as the ones discussed in this part, developed in parallel with water companies,
present higher probability of success and feasibility in the large variety of real systems since they
allow important adaptations during the development and the implementation of innovative techniques
and methodologies. Furthermore, as it became clear in this discussion, both the reviewed subjects
contribute decisively for the achievement of the best efficiency improvements and, for this reason,
should not be treated separately. The process of optimisation of a water network, for example, can
never provide significant improvements (i) if the hydraulic model for simulation is not adequate, (ii)
if the water demand prediction model fails, or even (iv) if the formulation of the problem being solved
does not consider specific requirements of the system.

Since the attention to the sustainability in the world is continuously growing, the importance of
including hydro, wind and/or solar energy systems in this field is also increasing. This inclusion not
only contributes towards the sustainability of the water systems but also promotes the development
of clean and renewable energy production, reducing the dependence of fossil fuels and consequently
reducing environmental impact. However, as already referred by Ramos et al. (2010), some energy
policies required to impose the implementation of these strategies by water companies are missing.

The concept of smart water networks (or smart grids for water) is an emerging market similar and
parallel to the established electrical smart grids. According to the IDC Energy Insights report “Smart
Water Market Overview” (SmartGridNews, 2012), smart water network management solutions will
grow faster than smart water metering and the major benefits will correspond to water loss reduction.

The solutions presented in this state-of-the-art review, especially the ones related to the networks
automation and real-time operation, can reveal a huge contribution for the development of this recent
concept.
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7. Hydraulic modelling

The general concepts concerning the modelling of water supply networks are presented. The
methodology used by EPANET, the modelling and simulation software used in this work, is

explained and a new approach for modelling variable-speed pumps is proposed and
compared.

The worldwide concerns with economic and environmental sustainability increase the importance of
a detailed understanding on the operation of certain systems in order to control them efficiently (on
both energetic and economic points of view). This is the case of the water supply systems that deal
with large amounts of energy usually responsible for a large portion of the total costs associated to
their operation.

Since the water networks are very complex systems, understanding some aspects in their opera-
tion and, at the same time, dealing with a large number of elements such as multiple pumps, valves
and tanks is a difficult task. Consequently, workers and researchers in the water field often rely on
computer programmes for supporting the management, operation and analysis of water systems.

Simulation models allow the computational representation/reproduction of real systems behaviour.
Therefore, the use of such models for the operational efficiency analysis of water supply networks is,
in fact, the most common practice among researchers and students of hydraulic engineering.

7.1 Modelling water networks

Water supply and distribution networks are characterised by interconnected hydraulic elements in-
cluding pipes, junctions, tanks, reservoirs, pumps and valves. The connections between such elements
are defined by the principles of mass and energy conservation (Walski, Chase, & Savic, 2001).

According to the computational models representation, networks are comprised of nodes, which
represent specific locations, and links, which define the relationship between nodes (Walski et al.,
2001). Typically, junctions, tanks and reservoirs are represented as nodes and pipes are represented
as links. In turn, pumps and valves can be represented by nodes or links, depending on the defined
methodology.

Reservoirs represent infinite sources of water, i.e. elements with a large capacity that keeps
the hydraulic grade constant. These elements intend to represent lakes, groundwater wells or even
treatment plants (Walski et al., 2001). The information required to model this type of element is the
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water surface elevation (hydraulic grade line or hydraulic head) and the water quality (when water
quality analyses are required).

Tanks, or storage reservoirs, are finite sources of water. While in steady-state simulations the
tank is hydraulically identical to a reservoir for a given hydraulic grade line, in extended period
simulations, the water level in the tank is allowed to vary over time, influencing the hydraulic grade
line. Thus, the necessary input properties to model a tank include: the elevation∗, the tank dimensions,
the initial, minimum and maximum water levels and, when necessary, the initial water quality.

Junctions typically represents the location where two or more pipes met. However, it may also
represent the end of a single pipe (Walski et al., 2001). Only the elevation needs to be specified by the
modeller. This kind of element can also be used to model a point with an associated water demand
or a specific water injection in the network (negative demand). In this case, a demand pattern should
also be specified.

Pipes are the elements that transport the water from one node to another. The main necessary
characteristics to model a pipe are: length, diameter and material.

Valves are elements that can be open and closed in order to limit the flow in a certain part of the
network, controlling the movement of the water. Valves are generally classified in five main categories
(Walski et al., 2001):

• Isolation valves (gate, butterfly, globe and plug valves), are used to block the flow of water
for maintenance or emergencies. In most cases, it is not necessary to include such valves in
hydraulic models. Instead, their influence in the network can be included in the pipes properties
(through minor losses).
• Directional valves (or check valves), used to ensure the water flow through only one direction

(i.e. to avoid back-flow). Can also be modelled by editing the pipes properties.
• Altitude valves, normally installed in the entrance of the tanks (inflow) in order to avoid the

entrance of more flow when the tank is full (overflow). In modelling computer programmes,
such behaviour is usually incorporated in the tanks.
• Air release or vacuum breaking valves, used to release trapped air or discharge air (to respond

to negative pressures) in the system. Such elements are usually not included in the networks.
Their main purpose is for advanced studies such as transient analysis.
• Control valves (or regulating valves), used to regulate flow, throttle (minor loss) or pressure in

the system. Hydraulic models typically support this type of valves, including:

– Flow Control Valves (FCV) that maintain the flow rate under a user-specified limit;
– Throttle Control Valves (TCV) that throttle to adjust the minor loss coefficient based on

some attribute of the system (a critical nodal pressure, a tank level, etc.).
– Pressure Reducing Valves (PRV) that automatically throttle the flow to prevent the hy-

draulic grade from exceeding a certain value and avoid excessive pressures in specific
zones of the network. For this reason, these are typically installed between two pressure
zones.

– Pressure Sustaining Valves (PSV) that also automatically throttle the flow to prevent the
hydraulic grade from dropping below a certain value. Such element is then characterised
by the upstream pressure it tries to maintain.

∗Should not be confused with the hydraulic head, which, in this case, corresponds to the water surface elevation and is
obtained as a model output.
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Pumps are elements that provide hydraulic energy to the system (the mechanical energy of the
rotating impeller is imparted to the water), increasing the hydraulic grade. This kind of element is
typically used to overcome piping headlosses and physical elevation differences. In water distribution
systems, the most common used pumps are centrifugal (Walski et al., 2001). To model a pump,
only the characteristic head curve (i.e. head added by the pump, H, versus discharge, Q) is necessary.
However, to compute the energy consumption, the associated efficiency curve should also be included
in the model (also as a function of the discharge). Pumps operating at variable-speed produce different
head and discharge characteristics that should also be taken into account when modelling the systems.

After defining the basic elements of a network and its topology, the integral formulation model can
be refined depending on its purpose. The two main types of hydraulic simulation typically performed
are: (i) the steady-state simulation and (ii) the extended period simulation. While the first one assumes
no changes in the system with time, providing only the state of the modelled system, the second one
computes a kind of dynamic behaviour of the system over a period of time in order to predict changes
in the system. Thus, in this last case, some additional information should be provided to the model,
including (Walski et al., 2001): (i) the simulation duration (typically, a multiple of 24 hours is used,
however, it is possible to simulate an entire week or more), (ii) the hydraulic time step, which should
not be too large in order to avoid abrupt hydraulic changes (1-hour time steps are normally acceptable,
however, the simulation accuracy can be improved by reducing the step), and (iii) specific changes
that do not occur in time increments.

7.1.1 Principles of mass and energy conservation

In fluid dynamics, pipe network analysis is the integral formulation analysis of the fluid flow through
an hydraulic network in order to determine the flow rates, heads and pressures in specific locations
of the network. In order to perform such analysis, the principles of mass and energy conservation are
applied to each element of the network.

The principle of Conservation of Mass (or flow continuity) states that the fluid mass that enters
into a pipe (inflow) is equal to the mass that leaves the pipe (outflow). In networks modelling, the
flow continuity is considered for each node, instead of pipes (Walski et al., 2001). Thus, according to
this principle, the difference between a node i inflow from node j, Qi j (m3/s), and the node i outflow
(or demand at node i), Qout

i (m3/s), should be zero, which gives:

∑
j

Qi j−Qout
i = 0, for i = 1, ...,nnodes, (7.1)

where nnodes represents the number of nodes.
Specifically for tanks, in extended period simulations, the changes in storage should also be taken

into account and Equation 7.1 should be re-written as (Walski et al., 2001):

∑
j

Qi j−Qout
i −

dS
dt

= 0, for i = 1, ...,nnodes, (7.2)

where dS
dt , in m3/s units, represents the change in storage in the time interval t.

The principle of Conservation of Energy states that the difference in energy between two points
should be the same. In hydraulic analysis, the equation that describes this principle is written in terms
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of head. Thus, in a link (or links) between nodes i and j, the equation that describes the energy
conservation (also known as the Bernoulli equation) can be given by (Walski et al., 2001):

Zi +
pi

γ
+

v2
i

2g
+

npumps

∑ hp = Z j +
p j

γ
+

v2
j

2g
+

npipes

∑ hL +
npipes

∑ hm, (7.3)

where Z is the elevation, p is the pressure, γ is the fluid specific weight, v is the fluid velocity,
g = 9.81 m/s2 is the gravitational acceleration, hp is the head added at pumps, hL is the headloss in
pipes and hm is the headloss due to minor losses. This shows that the energy difference between the
two nodes is equal to the energy gains from pumps and energy losses in pipes (and fittings) that occur
in the path between them (Walski et al., 2001), i.e.

H j−Hi =
npumps

∑ hp−
npipes

∑ hL−
npipes

∑ hm, (7.4)

where H j and Hi are, respectively, the total head (or energy) in nodes j and i.

In hydraulic models, according to the previous described equations, typically one continuity equa-
tion is developed for each node and one energy equation is developed for each link in the network
(Walski et al., 2001). The method used to solve the set of equations can vary between hydraulic
simulators.

7.1.2 EPANET methodology

EPANET is the most widely used free software for simulation of pressurised water networks. Be-
sides being a Windows R© programme freely distributed in the public domain, EPANET comes with a
Programmer’s Toolkit, a dynamic link library (DLL) of functions that allow developers to customise
EPANET to their own needs (US EPA: EPANET , 2015), which was used to incorporate the code
developed in this work using the programming language C/C++.

In EPANET, pumps and valves are represented by links. In the case of pumps, both constant- and
variable-speed pumps can be modelled. To each pump, a characteristic operating curve (head versus
flow) should be assigned. It is also possible to assign an efficiency curve and a pattern of the speed
settings (for variable-speed pumps). By default, a relative speed setting of 1 is associated to the pump
characteristic curve supplied by the user. In the definition of a speed pattern, if the user intends, for
instance, to double the pump speed, the setting should be set to 2. On the other side, if the pump is
intended to run at half the speed, the setting should be set to 0.5. A schedule of energy prices can also
be assigned for the energy cost computation (Rossman, 2000).

With respect to the valves, an EPANET model supports the four main types of control valves
(PRV, PSV, FCV and TCV) and also a General Purpose Valve (GPV), used to model special flow-
headloss relationships required by the users. This last type of valve is typically used to model turbines
(Rossman, 2000). Check valves are modelled through pipes by changing their status. Isolation valves
can be modelled by changing the minor loss coefficient associated to a pipe according to the adequate
value for each type of valve.

Minor headlosses (or local losses), associated to pipes, are used to represent the added turbulence
in the systems related to bends and fittings (such as valves, elbows, tees, reducers). The equation to
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compute such losses is given by (Rossman, 2000):

hm = Km

(
v2

2g

)
, (7.5)

where Km represents a dimensionless minor loss coefficient, v is the fluid velocity and g is the gravi-
tational acceleration. The minor headlosses, hm, are given in length units.

The headlosses due to the fluid friction with the pipe walls can be computed by selecting one
of three available formulas: (i) the Hazzen-Williams, (ii) the Darcy-Weisbach or (iii) the Chezy-
Manning formula. The Chezy-Manning (C-M) formula is not commonly used for water distribution
modelling but typically for open channel flow. The Hazzen-Williams (H-W) formula, an empirically-
based formula, is the most used in U.S. and can only be used when the fluid is water and typically
under turbulent flow. On the other hand, the Darcy-Weisback (D-W) equation, more used in Europe,
is a physically-based formula developed using dimensional analysis and can be applied to all liquids
over all flow regimes (Rossman, 2000; Walski et al., 2001).

In EPANET, the friction headlosses between the start and the end node of a pipe, hL, are computed
using the general formula (Rossman, 2000):

hL = aQb
i j, (7.6)

where Qi j is the flow rate between the start and end nodes, i and j, and a and b are, respectively, the
resistance coefficient and the flow exponent. These last two variables are computed according to the
headloss formula considered. Using the H-W formula, Equation 7.6 becomes:

hL(H-W) =
C f L

C1.852D4.87 Q1.852
i j , (7.7)

where L is the length of the pipe, C is the dimensionless Hazen-Williams roughness coefficient† (or
C-factor), D is the pipe diameter and C f is a unit conversion factor (in S.I. units C f = 10.7). In turn,
if the D-W formula is considered, Equation 7.6 takes the form:

hL(D-W) =
8 f (Re, ε

D)

π2g
L

D5 Q2
i j, (7.8)

where f is the dimensionless Darcy-Weisback friction factor (also called Moody diagram friction
factor) that is function of the Reynolds number, Re = vD

ν
(where ν is the kinematic viscosity), the

Darcy-Weisback roughness coefficient, ε , and the pipe diameter, D. For laminar flow (Re ≤ 2000),
EPANET determines f by the Hagen-Poiseuille formula, f = 64

Re (Rossman, 2000). For turbulent flow
(Re≥ 4000), the following approximation to the Colebrook-White equation is used (Rossman, 2000):

f =
0.25[

ln
(

ε

3.7D + 5.74
Re0.9

)]2 . (7.9)

Finally, for flow in the transition regime (2000<Re< 4000), EPANET performs a cubic interpolation
from Moody Diagram‡ (for more detail on this, see Rossman, 2000).

†See C-factors for various pipe material in Table C.1 of Appendix C.
‡Moody Diagram available in Figure C.1 of Appendix C.
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As previously stated, a GPV is typically used to model turbines. Instead of following a standard
hydraulic formula, a GPV allows the user to provide a curve representing the intended headloss re-
lationship with the flow through the link. Another possible way to model turbines is by means of
emitters. This method can be used for water excess turbines, such as Pelton turbines with free outflow
(Sitzenfrei, Berger, & Rauch, 2015). An emitter is defined as a junction property in EPANET and not
as a separate network component. The user should provide the value of the emitter coefficient that
represents the flow that occurs at a pressure drop of 1 m (or psi). The flow rate through the emitter,
Q, will then vary as a function of the pressure head Pman (or manometric pressure) available at the
junction node according to (Rossman, 2000):

Q =CePs
man, (7.10)

where Ce represents the emitter coefficient and s is the pressure exponent. Typically s = 1/2.

When an emitter coefficient is associated to a junction node, the emitter is modelled as a fictitious
pipe between the junction and a fictitious reservoir. The pipe’s headloss coefficients (see Equation
7.11) are given by a = (1/Ce)

1/s, b = 1/s and Km = 0. The head at the fictitious reservoir is the
elevation of the junction node and the computed flow through the fictitious pipe becomes the flow
associated with the emitter (Rossman, 2000).

EPANET solves the flow continuity and energy equations that characterise the hydraulic state
of all nodes and links in the network at each defined time period in which the simulation time is
divided. For pipes, the headlosses between nodes i and j for each time-step are determined by the
flow-headloss relation (Rossman, 2000):

Hi−H j = hL +hm = aQb
i j +KmQ2

i j. (7.11)

For pumps, the equation that describes the relation between the pump headloss (negative of the head
gain) and flow is mathematically defined as Rossman (2000):

hloss
p =−M2h0 +M2r

(
Qi j

M

)n

, (7.12)

where M is a relative speed setting, r and n are pump curve coefficients, and h0 is the pump shut-off
(or cut-off) head.

The set of equations that result from the mass and energy conservation in all elements of the
network (i.e. Equations 7.2, 7.11 and 7.12) are dependent on each other, leading to a system of
equations where the unknowns are the nodal heads, H, the pumps head gains, hp, the pumps flow
rates, Q, and the pipes headlosses, hL. To solve the systems of equations, EPANET follows a node-
loop approach, also called gradient method (Rossman, 2000).

The gradient method starts with an initial estimation of pipe flows that may or not satisfy the flow
continuity. Then, iteratively, new nodal heads are computed by solving the matrix equation (Rossman,
2000):

AH = F, (7.13)

where H is a matrix of size nnodes× 1 of the unknown nodal heads, A (nnodes× nnodes) is a Jacobian
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matrix and F (nnodes×1) is a matrix of the right hand side terms. The diagonal elements of matrix A
are:

Aii = ∑
j

Bi j, (7.14)

and the non-zero elements outside the diagonal are:

Ai j =−Bi j, (7.15)

where Bi j is the inverse of the derivative of the headloss in links between node i and j (described by
Equations 7.11 and 7.12). For pipes,

Bi j =
1

ab|Qi j|b−1 +2Km|Qi j|
, (7.16)

and for pumps,

Bi j =
1

nM2r (Qi j/M)n−1 . (7.17)

The elements of matrix F are given by an equation where a correction factor is added to the flow
balance at a node:

Fi =

(
∑

j
Qi j−Qout

i

)
+∑

j
qi j +∑

f
Bi f H f , (7.18)

where the last term applies to any link connecting node i to a node f with a fixed-grade H f . For pipes,
the flow correction factor qi j is given by:

qi j = Bi j

(
a|Qi j|b +Km|Qi j|2

)
sng(Qi j) , (7.19)

and for pumps:
qi j =−Bi j

[
M2h0−M2r (Qi j/M)n] , (7.20)

where sng(Qi j) is 1 if Qi j is positive or −1 if negative. For pumps, Qi j is always positive (Rossman,
2000).

After computing the new nodal heads by solving the matrix equation 7.13, the flows are updated
by (Rossman, 2000):

Qi j = Qi j− [qi j−Bi j (Hi−H j)] , (7.21)

which always results in flow continuity around each node after the first iteration.

Equations 7.13 and 7.21 are repetitively solved until the sum of absolute flow changes relative to
the total flow in links reaches a value smaller than a tolerance value (e.g. 0.001). For more detail on
the EPANET iterative method see Rossman (2000).

Besides the network analysis, EPANET is also able to compute the energy consumption associated
to each pump operation during a certain simulation period. The electric power consumed by each
pump is computed by:

P = γ
QH
η

, (7.22)

where Q and H are, respectively, the flow discharge and head gain, γ = ρg is the specific weight of
the water (with ρ representing the water density) and η is the overall (wire-to-water) pump efficiency.
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In the methodology of EPANET, if instead of considering a constant efficiency, an efficiency
curve is assigned to the pump, then, the value of the pump efficiency at each time-step of the sim-
ulation is determined by an interpolation of the values of such curve for the corresponding pump
flow. However, it is important to note that EPANET always considers the same efficiency curve, even
for distinct pump speeds which, in some cases, does not correspond to good approximations of real
pumps behaviour. This particular topic is discussed in section 7.2.

It must be noted that the overall efficiency, η , presented in Equation 7.22, is given by:

η = ηm.ηVFD.ηp, (7.23)

where ηp corresponds to the pump efficiency, ηm is the efficiency of the motor coupled to the pump
and ηVFD corresponds to the efficiency of the variable frequency drive, which can be considered equal
to 1 when no drive is used.

Since the pump energy consumption (E) can be determined for each time period by the multipli-
cation between the power (P) and the pump operating time, top, i.e. E = P× top, then, the total energy
consumption associated to a pipe network operation can be determined by:

Etotal = γ

npumps

∑
p=1

nsteps

∑
s=1

(
Hp,sQp,s

ηp,s
× top,p,s

)
, (7.24)

where nsteps is the number of time-steps in which the simulation is divided and npumps is the number
of pumps in the network.

7.2 Modelling variable-speed pumps

Pumps are essential components on energy efficiency studies of WSS. A pump is a device that trans-
fers the mechanical energy to the fluid as hydraulic head. This head, called pump head, is a function
of the flow that passes through the pump. Thus, the pumps are used when the WSS needs energy to
overcome elevation differences. Centrifugal pumps are the mostly used in this kind of system (Walski
et al., 2001).

The relationship between a pump head gain, H, and discharge, Q, is represented by the pump
head characteristic curve defined by the general equation:

H = h0− rQn, (7.25)

where h0 represents the pump shut-off head and r and n represent the curve coefficients. This is a
non-linear curve that shows a decreasing head with the flow rate through the pump.

Pumps can be of constant or variable speed and should operate inside the limits imposed by their
characteristic head curves.

Modelling the behaviour of pumps operating at variable-speed resulting from the use of Variable
Frequency Drives (VFDs) implies the adaptation of the pump characteristic curve and the power and
hence the efficiency curves for each distinct speed. For the prediction of such curves, the affinity
laws are commonly used (Rossman (2000), Quintela (1981), Walski, Zimmerman, Dudinyak, and
Dileepkumar (2003), etc.). Such laws reflect the fact that dimensionless characteristics, such as the
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dimensionless flow (CQ), the dimensionless head (CH) and the dimensionless power (CP), are constant
for similar pumps (Simpson & Marchi, 2013).

Derived from the dynamic similitude (or dimensionless representation of test results), considering
single-phase liquid flow and negligible viscous forces, the dimensionless pump characteristics relate
flow, head and power to the speed and the impeller diameter of the pump according to the following
expressions (Martin, 2000):

(a) CQ =
Q

ωD3
p
, (b) CH =

gH
ω2D2

p
, and (c) CP =

P
ρω3D5

p
, (7.26)

where ω is the angular velocity of pump, Dp is the impeller diameter and ρ is the liquid density (water
density, in this case). The efficiency, η , is indirectly described by the equation of the pump power
consumption, previously presented (Equation 7.22).

For variable-speed pumps, considering that the impeller diameter is kept constant and only the
pump speed is modified, then the affinity laws can be derived from equations 7.26a to 7.26c. These
laws show that pump flow, head and power are, respectively, linear, quadratic and cubic functions of
the pump speed:

(a)
Q1

Q2
=

N1

N2
, (b)

H1

H2
=

(
N1

N2

)2

, and (c)
P1

P2
=

(
N1

N2

)3

, (7.27)

where N1 and N2 correspond to two different pump speeds (N = (ω/2π)×60 is the rotational speed,
in rpm). The described laws consider that the value of the pump efficiency at the best efficiency point
(BEP) is kept constant with the speed variation. The efficiency curve is only moved to the left when
the pump speed is reduced or moved to the right when increased (Marchi & Simpson, 2013).

Thus, for variable-speed pumps, Equation 7.25 must be modified according to the affinity laws
for flow and head, provided in equations 7.27a and 7.27b. Changing the pump speed from N1 to N2,
the modified characteristic curve can be obtained by replacing H1 and Q1 (head and flow at speed N1)
with the expressions given for the affinity laws, which leads to:

H2 = h0

(
N2

N1

)2

− r
(

N2

N1

)2
[

Q2(N2
N1

)]n

, (7.28)

which is equivalent to the equation used by EPANET for the headloss§ and flow relationship for
pumps (equation 7.12). Figure 7.1 shows an example of a pump characteristic curve change with
speed variation.

Understanding the effect of the speed variation in the pump design curves (head, power and
efficiency) is important for a real perception of the savings resulted from the installation of variable-
speed drives or from the replacement of fixed-speed pumps by variable-speed pumps.

According to Martin (2000), the affinity laws for flow discharge and head are accurate since they
are based on actual tests for all types of centrifugal pumps. On the other hand, as efficiency increases
with the size of the pump, the affinity law for power is not so accurate. In fact, the main limitations of
the affinity laws are related to factors that do not scale with velocity and whose magnitude depends

§In fact, the equation is symmetric to equation 7.12, since, in this case, it represents the pump head gain and not the
headloss.



88 7. Hydraulic modelling

Figure 7.1: Example of a pump characteristic curve change with speed reduction in 90 % and 80 %
of the nominal speed N.

on the machine size (Simpson & Marchi, 2013).
Morton (1975) and Sárbu and Borza (1998) provided charts showing an approximation on how

speed variation affects the design flow, head, power and/or efficiency of centrifugal pumps. Similarly
to the presented by these authors, Figure 7.2 provides graphical relationships between the ratio of
each pump design characteristic with the ratio of speed reduction from the nominal speed. The rep-
resentations for both pump flow and head are exactly in agreement with the presented in the works
of Morton (1975) and Sárbu and Borza (1998), showing the flow varying directly with speed and the
head with the square of speed, which also meets the affinity laws for flow and head (equations 7.27a
and 7.27b).

Figure 7.2: Approximated representation of the variation of the design head, flow, power and ef-
ficiency of a centrifugal pump when varying the speed from its nominal speed N1 (adapted from
Morton, 1975 and Sárbu & Borza, 1998).

Concerning the pump power, the curve represented in Figure 7.2 reflects the cubic variation of
the pump power with the percentage of speed decrease, such as the represented by the affinity law for
power in equation 7.27c and also shown by Sárbu and Borza (1998) in their graphical representation
of the pump power affected by speed reduction.

The pump efficiency curve, in turn, requires a more detailed analysis. Reproducing the pump
efficiency curves graphically presented in the works of Morton (1975) and Sárbu and Borza (1998),
such as the represented in Figure 7.3, it is possible to observe that the curves are not coincident. In
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fact, while Morton (1975) only provided a graphical approach for the efficiency prediction, Sárbu and
Borza (1998) also related the speed-adjusted efficiency (η2) with the original efficiency (η1) through
the following equation:

η2 = 1− (1−η1)

(
N1

N2

)0.1

. (7.29)

Figure 7.3: Reproduction of the curves provided in the works of Morton (1975) and Sárbu and Borza
(1998) for the representation of the pumps efficiency variation with speed.

Morton (1975) stated that this prediction of pump efficiency (referred as an estimate for average
conditions) should only be considered accurate for pump speeds between the full-speed and 50 % of
the full-speed. Below those speed values (such as the represented by the efficiency dashed line in
Figure 7.3), the efficiency reduction tends to be greater than the predicted for small pumps and lower
for large pumps.

As already mentioned by Simpson and Marchi (2013), equation 7.29 can be considered as an ap-
proximation to the equation presented by Gulich (2003) of the efficiency estimation for hydraulically
smooth surfaces, which considers the effect of the Reynolds number (Re) and assumes that only a
fraction V of the energy losses are Re dependent:

1−η2

1−η1
=V +(1−V )

(
Re1

Re2

)mRe

, (7.30)

where Re1 and Re2 correspond to the Reynolds number at the speeds N1 and N2, respectively. The
exponent m, dependent on the Reynolds number and roughness, can vary between 0 for the fully
rough (turbulent) flow region and 1 for laminar flow. Gulich (2003) pointed out that other authors
found V = 0 to 0.57 and mRe = 0.1 to 0.5 in experimental data. Equation 7.30 can become equation
7.29 assuming V = 0 (energy losses not dependent on Re), m = 0.1 and replacing Re1/Re2 by N1/N2,
since the fluid velocity is proportional to the pump speed (Simpson & Marchi, 2013).

The advantage of the equation proposed by Sárbu and Borza (1998) (equation 7.29) for the effi-
ciency prediction is related with the ability to predict distinct efficiency curves for distinct original
efficiency points (η1), as demonstrated in Figure 7.4.

Sárbu and Borza (1998) mentioned that, especially for large pumps, the changes in efficiency can
be neglected for rotational speeds reductions until 1/3 of the nominal speed. Observing Figure 7.7, it
can be also noted that, according to the SB equation (Equation 7.29), the reduction in efficiency with
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Figure 7.4: Curves predicted with the formulation proposed by Sárbu and Borza (1998) for the effi-
ciency change with speed, considering different original efficiencies (η1).

the speed decrease is greater for lower original efficiencies. However, as already stated by Sárbu and
Borza (1998), their formulation can lead to negative values of the efficiency, which may represent a
disadvantage.

In this work, a distinct formulation for the efficiency curves prediction with speed variation that
overcomes the main drawback stated by Sárbu and Borza (1998) for their formulation is proposed.
The method used to derive such formulation is explained in the following subsection.

7.2.1 Proposing a new formulation for the speed-adjusted efficiency curves

Despite the affinity laws assume that the BEP is maintained with the pump speed reduction, in real
pumps operation, a reduction in its efficiency is verified when decreasing the rotational speed.

Trying to obtain an equation to describe a similar graphical representation of the efficiency varia-
tion with speed with the presented by both Morton (1975) and Sárbu and Borza (1998) (Figure 7.3),
a theoretical formulation derived from the graphical representation of the pump power function of
Figure 7.2, is proposed (Coelho & Andrade-Campos, 2016).

In Figure 7.5, the curve that represent the cubic variation of a pump power (P) with speed variation
(N) is shown in quadrant I (see the grey area). Extending this power function to quadrant III, the shape
of the observed curve is in accordance with the curve shape expected for the efficiency variation
with speed. Thus, starting from the function that describes the power variation, P(N), performing
an horizontal translation to such function (step A) and finally, applying a vertical translation to the
obtained function (step B), leads to a function that describes a pump efficiency variation with speed
changes. Mathematically, the described translations can be represented as:

η(N) = P(N−1)+1. (7.31)

The variables P, N and η were used for simplification in order to explain how the proposed
formula was derived from the graph. Replacing them by the proper expressions, P = P2/P1, N =

N2/N1 and η = η2/η1, and considering the affinity law for power (Equation 7.27c), then Equation
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Figure 7.5: Representation of the translations of the power curve, P(N), that lead to the proposed
formulation for the efficiency curves prediction. P(N− 1) is an horizontal translation of P(N) and
P(N−1)+1 is a vertical translation of P(N−1).

7.31 can be expressed as:
η2

η1
=

(
N2

N1
−1
)3

+1, (7.32)

which reveals a new equation for speed-adjusted efficiency curves of centrifugal pumps (Coelho &
Andrade-Campos, 2016).

Figure 7.6 demonstrates that the efficiency curve proposed in this work approximates the curves
presented in the works of Morton (1975) and Sárbu and Borza (1998). However, besides this new
formulation never reaches negative values, it can be seen in Figure 7.7 that, independently on the
original efficiency considered, the change in efficiency with speed remains the same.

Figure 7.6: Curve representing the relationship proposed in this work for the efficiency reduction with
speed decrease compared with the ones proposed by (Morton, 1975) and by (Sárbu & Borza, 1998).
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Figure 7.7: Prectiction of the efficiency variation with the speed reduction, considering distinct orig-
inal efficiencies, η1, using the (Sárbu & Borza, 1998) equation (SB) and comparison with the curve
proposed in this work.



8. Control optimisation

The formulation of the optimisation problem according to the proposed approach is
presented. The optimisation algorithms with relevance for this work are explained,

particularly the Nelder-Mead Simplex, the Genetic Algorithms, the Differential Evolution,
the Particle Swarm Optimisation and the Simulated Annealing. Penalty-based

constraint-handling methods are also described.

Nowadays, the major expenses in water supply systems (WSS) are related to energy consumption.
The fast expansion of several water supply systems due to the population growth and the immediate
consumers supply without any planned strategy have led to inefficiently operated systems. In these
systems, pump stations usually represent the main operational costs (Van Zyl, Savic, & Walters,
2004; Vieira & Ramos, 2009) revealing an important opportunity for the efficiency improvement of
the water supply systems. In fact, the demand by industry to control pump systems efficiently has
been increasing.

Generally, in most WSS, the pump stations operations are only based on the pumps on/off, without
taking advantage of variable-speed equipment. The pumps are switched on when the tanks, respon-
sible for supplying the populations, reach their minimum levels. These pumps are only switched
off when the tanks reach their maximum levels. In the cases where variable-speed equipment is used,
planned control strategies are almost always missing. The introduction of operational pump schedules
adapted to the energy prices variation and to the consumption patterns of the populations can optimise
pumping stations operations, minimising energy consumption and costs significantly. However, the
process of finding the best pump pattern can present difficulties due to the complexity of some WSS
(multiple pumps, multiple reservoirs, non-linear behaviour of the systems, etc.). At the same time,
water supply and distribution systems should satisfy the consumption, attending to the demand in
each place and time and with appropriate pressures (Viessman, Hammer, Perez, & Chadik, 2009). All
these factors need to be taken into account during any operational control procedure, which increase
the difficulty of the task.

8.1 Optimisation approach and problem formulation

In this work, a methodology for the optimal control of pumps and valves in water supply and distri-
bution systems is proposed. The proposed methodology is based on an explicit control optimisation
problem where the decision variables include (i) the pumps operating times and relative speed (if
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applicable) as well as (ii) the valves operating times (opening time periods). The idea is to simul-
taneously optimise the control of all pumps (of variable- and fixed-speed) and valves of a network,
taking into account the variation of the energy price and the network requirements. Both the variables
operating time, top ∈ [0, tstep] (where tstep is the step size), and relative speed, M ∈ [Mmin,Mmax] (where
M = N2/N1), are scaled (normalised) in the range [0,1], according to the equation:

xscaled =
xnon-scaled− xmin

xmax− xmin
, (8.1)

where xscaled represents the scaled variable and xmin and xmax, the maximum and minimum values of
the non-scaled variable xnon-scaled. This procedure is particularly useful when dealing with variables of
different units and scales. Moreover, this normalisation procedure has the advantage of not restricting
the operating times to a certain fixed step size (such as the typical 1-hour steps), being adaptable to
any dimension pre-defined by the user for the simulation step size. With this approach, instead of
considering, for instance, typically fixed 1-hour time-steps for the optimisation procedure, the oper-
ating time of a pump is allowed to be inferior to the pre-defined hydraulic step of the model. It is
also allowed to present different operating times in each time-step of the simulation. The same ap-
proach is followed for the valves settings (open/closed). Instead of considering fixed 1-hour opening
times (fully or partially open), the valves are allowed to be open (fully open, in this case) during time
periods inferior to the defined hydraulic step, which, in terms of hydraulic results, leads to a similar
solution since the hydraulic computation is performed for each step.

A single-objective optimisation approach is considered, where the purpose is to reduce the energy
costs associated to the network operation. Since each network, depending on its configuration and
on the regulation (that vary for distinct countries) presents for specific operating conditions distinct
requirements, then the fulfilment of such requirements is ensured by the use of penalties.

Mathematically, a general optimisation problem can be described by the minimisation (or max-
imisation) of a function f (objective function) subject to the bounds of nvar decision variables (xmin

and xmax) and subject to J inequality constraints (g j) and/or K equality constraints (hk):

minimise
x

f (x), x = [x1 x2 ... xnvar ]
T ;

subject to: g j(x)≤ 0, j = 1, ...,J,

hk(x) = 0, k = 1, ...,K;

xmin
i ≤ xi ≤ xmax

i , i = 1, ...,nvar.

(8.2)

Considering that the main goal in the present study is to minimise the costs associated to water
pumping in a WSS, the objective function corresponds to the costs associated to the pumps operation.
This cost is calculated through the use of the hydraulic simulator EPANET 2.0 (Rossman, 2000).

During the hydraulic analysis of each network model, EPANET solves the flow continuity and
headloss equations as previously explained in Chapter 7. Considering the pumping energy computa-
tion formula used by EPANET (see equation 7.24), the objective function can be obtained by the cost
associated to such energy consumption taking into account the energy tariff associated to each pump,
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which leads to:

Ctotal = Cpumping +Cdemandcharge

= γ

npumps

∑
p=1

nsteps

∑
s=1

(
Hp,sQp,s

ηp,s
× top,p,s×Tp,s

)
+

npumps

∑
p=1

(DCp×αp) ,
(8.3)

where nsteps is the number of time-steps in which the simulation is divided, npumps is the number of
pumps to control, top is the pump operating time and Tp,s is the price per energy unit defined for each
pump p according to the tariff value for the time step s.

The second term of equation 8.3 corresponds to additional costs that can be included in periods of
peak demand, which, in EPANET, is determined by the periods of pumping at maximum power. Such
additional cost is computed by first searching, for all steps, the maximum value of power needed for
each pump during the simulation (Pmax) and accounting the number of times it occurs. Then, the later
value is multiplied by a demand charge (DCp) defined by the user for each pump. Thus, αp is given
by the multiplication between the maximum power computed for a pump p, Pmax, and the number of
times this value is repeated during the simulation, nPmax , i.e.

αp = Pmax×nPmax . (8.4)

Therefore, the first part of equation 8.3 corresponds to the electric energy consumption of pumps and
the second part is related to additional costs related to the pumps when operating at maximum power.

As previously mentioned, the optimisation decision variables considered in the proposed method-
ology are defined by the relative pump speed M (fraction between the actual speed and the nominal
speed, N2/N1) at each time-step of the simulation and also by the fraction of time of pump operation
for the correspondent time-step as well as the fraction of time of the valves opening. Thus, the number
of decision variables, nvar, can be determined by:

nvar = (2nVSP +nFSP +nvalves)nsteps, (8.5)

that represents two decision variables (speed and operating time) for each variable-speed pump of the
network to be controlled at each time-step of the simulation and one variable (operating time) for each
valve and/or fixed-speed pump of the network to be controlled also at each time-step. The number of
variable-speed pumps, fixed-speed pumps, valves and time-steps are, respectively, nVSP, nFSP, nvalves

and nsteps. Each variable can take values between 0 and 1, where 0 represents the minimum pump
operating time or a pump relative speed inferior to the minimum allowed (user-defined value) and 1
represents the corresponding maximums.

In this work, a constraint to guarantee the continuity between the water levels in tanks in the
beginning and in the end of simulation is considered. The equation that describes the continuity
constraint is:

h1,i = Li,final−Li,initial = 0, i = 1, ...,ntanks, (8.6)

where Li,final and Li,initial are, respectively, the final and initial water level of each tank i and ntanks is
the number of tanks. Alternatively, and to simplify the optimisation problem∗, this constraint may be

∗Note that inequality constraints are easier to handle than equality constraints (Andrade-Campos, Dias-de-Oliveira, &
Pinho-da-Cruz, 2015).
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defined as an inequality:

g1,i = Li,final−Li,initial ≤ 0, i = 1, ...,ntanks. (8.7)

Naturally, a solution with lower costs associated will be obtained for differences between the initial
and the final water levels close to zero.

Constraints for the maximum and minimum tank water levels are also applied. The constraint for
the maximum water level allowed is given by:

g2,i = Li−Li,max ≤ 0, i = 1, ...,ntanks (8.8)

and for the minimum water level allowed by:

g3,i = Li,min−Li ≤ 0, i = 1, ...,ntanks (8.9)

where Li,max and Li,min are the maximum and the minimum water levels of operation for each tank i,
respectively.

Concerning the nodal pressure constraints, the hydraulic simulator EPANET only controls mini-
mum pressures by not allowing negative values. However, in water networks there are minimum (and
sometimes maximum) values for pressure in certain nodes that need to be respected. Thus, similarly
to the water levels in tanks, a constraint for the minimum pressure allowed is treated as:

g4,i = Pi,min−Pi ≤ 0, i = 1, ...,ncnodes (8.10)

where Pi,min is the minimum pressures allowed in each i control node and ncnodes represents the num-
ber of nodes that need to be controlled in terms of pressure. In case of violation of the described
constraints, the objective function is penalised through the use of penalty methods (see Section 8.3).

Other constraints are defined by the hydraulic simulator through the set of equations for mass and
energy conservation. During the evaluation of energy costs, the hydraulic simulator may converge to
unbalanced/unstable results (in case it is not possible to converge to a hydraulic solution) or produce
errors such as negative pressures or pumps operating outside the limits imposed by their curves. In or-
der to ensure the proper system operation, variables that induce such errors are considered infeasible
and cannot be accepted. For this reason, in the presented work, hydraulic unbalanced results are also
treated as constraints, controlled by the addition of a penalty to the objective function in case of con-
straint violation. For any kind of unbalanced or unstable hydraulic situation (not possible to converge
to a stable/balanced system operation or elements operating outside their limits), EPANET sends out
a warning message. Thus, a warning-related constraint function was defined, constraining the number
of warning messages (nwarn) resulting from the hydraulic analysis to zero (equality constraint):

h2 = nwarn = 0. (8.11)

In summary, the optimisation approach presented in this work can be mathematically described
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by:

minimise
X

Ctotal(X) = γ

npumps

∑
p=1

nsteps

∑
s=1

[
Hp,s(X)Qp,s(X)

ηp,s(X)
top,p,sTp,s

]
+

npumps

∑
p=1

[DCpαp(X)] ,

subject to: g1, j(X) = L j,final(X)−L j,initial(X)≤ 0, j = 1, ...,ntanks,

g2, j(X) = L j(X)−L j,max ≤ 0, j = 1, ...,ntanks,

g3, j(X) = L j,min−L j(X)≤ 0, j = 1, ...,ntanks,

g4,k(X) = Pk,min−Pk(X)≤ 0, k = 1, ...,ncnodes,

h2(X) = nwarn(X) = 0,

0≤ xi ≤ 1, i = 1, ...,nvar,

(8.12)

where

X =


x1,1 · · · xncomp,1

...
. . .

...
x1,nsteps · · · xncomp,nsteps


T

=


tVSP
op,1,1 · · · tVSP

op,vs,1 M1,1 · · · Mvs,1 tFSP
op,1,1 · · · tFSP

op, f s,1 tValve
op,1,1 · · · tValve

op,vl,1
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
tVSP
op,1,s · · · tVSP

op,vs,s M1,s · · · Mvs,s tFSP
op,1,s · · · tFSP

op, f s,s tValve
op,1,s · · · tValve

op,vl,s


T (8.13)

represents the matrix of the decision variables, with ncomp = 2nVSP +nFSP +nValves, vs = nVSP, f s =
nFSP, vl = nvalves and s = nsteps. The number of components, ncom, includes (i) the operating times
for variable-speed pumps, fixed-speed pumps and valves that are represented by tVSP

op , tFSP
op and tValve

op ,
respectively and (ii) the relative speed for variable-speed pumps, represented by M.

8.2 Optimisation methods

Optimisation processes can be seen in people day-to-day life and in nature. In nature, for instance,
physical systems tend to states of minimum energy, the species evolve by knowledge transmission
and by keeping the best genes through generations. In our day-to-day, optimisation is applied to a
wide range of areas, maximising the efficiency of processes, minimising the amount of material in
certain structures, finding the best routes, etc. Even in the execution of simple tasks (such as cooking,
playing a game, etc.), people and animals learn with experience and tend to improve/optimise the tasks
execution in the future. These last examples are a kind of trial-and-error optimisation techniques.

Nowadays, the industry requires the best results as fast as possible in almost all situations. The
use of trial-and-error techniques are not efficient for these cases for being so time consuming and
not cost-effective at all. For this reason, engineers often rely on computer programmes applying
optimisation algorithms to solve the wide range of existing problems that appear in the real world.
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8.2.1 Classification of non-linear optimisation methods

Dealing with real problems implies facing non-linear problems, characterised by non-linear objective
functions and/or by non-linear constraint functions.

Non-linear optimisation methods can be characterised according to three main families: (i) the
gradient-based methods that use approximations of the Hessians (Newton’s method or Quasi-Newton
methods) or the gradients of the objective function (Steepest Descent, Conjugate Gradient meth-
ods, etc.); (ii) the direct-search or derivative-free methods, considering only the function values,
such as the Hill Climbing method, the Powell’s method (or conjugate directions method) or the
Nelder-Mead Simplex method; and (iii) the nature-inspired methods, including the evolutionary algo-
rithms (Genetic Algorithms, Differential Evolution, etc.), the algorithms based on collective knowl-
edge of groups (Ant Colony Optimisation, Particle Swarm Optimisation, etc.) or even the artificial-
intelligence-based algorithms (Fuzzy Systems, Artificial Neural Networks, etc.). However, optimi-
sation techniques are often classified in several distinct ways. Rao (2009), for example, classify the
optimisation methods according to two main families: (i) the classical or traditional methods and
(ii) the modern or non-traditional methods, distinguishing essentially the mathematical programming
techniques from the modern ones typically inspired on nature. In turn, Nocedal and Wright (2006)
distinguishes the algorithms according to the nature of the optimisation problem: (i) constrained or
(ii) unconstrained optimisation. Yang (2010) classifies the optimisation algorithms as (i) determinis-
tic, including the most conventional or classic algorithms such as non-linear programming, gradient-
based, gradient-free, and (ii) stochastic, referring to heuristic and/or meta-heuristic algorithms from
the population-based to the trajectory-based ones.

The non-linear optimization methods based on the gradient function can find local minima through
an iterative process whatever the initial guess of solution. However, frequently these are not the abso-
lute minimum values. In major situations, the solution also depends on the initial parameters, leading
to different final results (Valente, Andrade-Campos, Carvalho, & Cruz, 2011). The modern meth-
ods based on nature have the advantage of not requiring the function derivatives revealing a large
flexibility in modelling engineering problems but, at the same time, present as main disadvantage
the typically larger computational times (Costa, 2003). These kinds of algorithms are probabilistic.
Consequently, these do not depend on the initial variables and are probabilistic capable of finding the
global minimum.

In the following subsections, a brief description concerning the optimisation algorithms addressed
in this work is provided.

8.2.2 Nelder-Mead Simplex - NMSimplex

The Nelder-Mead Simplex (NMSimplex) method, also known as downhill simplex†, is a derivative-
free pattern-search algorithm for unconstrained optimisation (Yang, 2010) and was developed by J.
A. Nelder and R. Mead in 1965 (Nelder & Mead, 1965).

A simplex is a geometric figure formed by a set of ν + 1 vertices in a ν-dimensional space‡. In
the iterative optimisation procedure, the NMSimplex algorithm compares the values of the objective

†This method is called simplex due to the use of a geometrical simplex. It is not related with the simplex method used
in linear programming
‡Considering two variables, i.e. a two dimensional space, the simplex is a triangle.
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function at the ν +1 vertices and gradually move the simplex toward the optimum point (Rao, 2009).
In other words, the idea is to remove the vertex with the worst function value and replace it by
a point with a better value, obtained by reflecting, expanding or contracting the simplex. These
movements of the simplex are performed along the line joining the worst vertex with the centroid of
the remaining vertices. If no better point is found, the vertex with the best value is maintained and the
remaining vertices are moved toward such value (Nocedal & Wright, 2006). This is an effective and
computationally compact algorithm (Nelder & Mead, 1965).

The method starts by (i) choosing an initial simplex (by picking a random location, for example),
(ii) taking unit vectors for the edges, (iii) evaluating the objective function values at each vertex and
(iv) ordering such values (Nocedal & Wright, 2006; Walski et al., 2001; Yang, 2010):

f (x1)≤ f (x2)≤ ...≤ f (xν+1), (8.14)

with f (x1) representing the best value and f (xν+1) the worst, considering a minimisation problem.
After that, the centroid (mean) of the simplex, x0, is computed excluding the worst vertex:

x0 =
1
ν

ν

∑
i=1

xi. (8.15)

After obtaining the centroid, the operations for moving the simplex are performed. First, the
reflected point xr is computed by:

xr = (1+αr)x0−αrxν+1, with αr > 0, (8.16)

where αr is the reflection coefficient and can be defined by (Rao, 2009):

αr =
distance between xr and x0

distance between xν+1 and x0
. (8.17)

The objective function is then evaluated at xr and one of the three possibilities can occur:

• If the reflected point is not the best neither the worst of the simplex, then the worst point, xν+1,
gets its value and a new iteration starts;

• If the reflected point is better than the current best, then continue in this direction, expanding
the vertex, trying to improve further:

– The expanded point, xe, is computed by

xe = γexr +(1− γe)x0, with γe > 1, (8.18)

where γe is the expansion coefficient and can be defined by (Rao, 2009):

γe =
distance between xe and x0

distance between xr and x0
. (8.19)

The objective function is then evaluated at xe.

– If the expanded point is better than the reflected point, then it replaces it and a new itera-
tion starts.
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– Otherwise, the reflection point replaces the worst point, xν+1, and a new iteration starts.

• If the reflected point is the worst of the simplex, i.e. there is no improvement, then the size of
the simplex is reduced by contraction:

– The contracted point, xc, is computed by:

xc = βcxν+1 +(1−βc)x0, with 0≤ βc ≤ 1, (8.20)

where βc represents the contraction coefficient (usually βc = 1/2) and can be determined
by:

βc =
distance between xc and x0

distance between xν+1 and x0
. (8.21)

The objective function is then evaluated at xc.

– If the contracted point improves the worst (xν+1), then it replaces the worst and a new
iteration starts;

– Otherwise, the simplex is reduced towards the best vertex x1 (shrink operation):

xi = δxi +(1−δs)x1, for i = 2, ...,ν +1, (8.22)

i.e. all the points, except the best, are replaced and then a new iteration starts. The
coefficient δs is usually called the shrink coefficient.

Standard values for the operations coefficients are αr = 1, γe = 2, βc = 1/2 and δs = 1/2.
The stop criteria for this method can be defined according to a maximum number of iterations or

when the convergence criteria is reached, i.e. (Rao, 2009),

Cstop =

√
1

ν +1

ν+1

∑
i=1

[ f (xi)− f (x0)]
2 ≤ εstop, (8.23)

which states that the standard deviation of the function at the ν +1 vertices is smaller or equal to an
user-defined small quantity εstop (e.g. εstop = 0.2).

The pseudo-code for the implementation of the Nelder-Mead Simplex is provided in Algorithm
1. Figure 8.1 provides examples of the previously described operations in a simplex generated by 2
variables (triangle).

8.2.3 Genetic Algorithms - GA

Genetic Algorithms (GA) are adaptive heuristic search algorithms based on the evolutionary ideas of
natural selection and genetics. The theory behind GA was firstly introduced by John Holland in the
early seventies and further developed by Goldberg and other collaborators (Walski et al., 2001).

The basic techniques applied in GA attempt to simulate processes of natural evolution, sustained
by the evolutionary theory of Charles Darwin of survival of the fittest individuals through gener-
ations by competing and dominating the weakest individuals. Individuals with better fitness have
large probability to survive, to attract mates and thus, to propagate their genetic information through
generations.
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Algorithm 1 Pseudo-code for Nelder-Mead Simplex
1: Initialise a simplex with ν +1 vertices in ν dimension and operation algorithm coefficients;
2: while Cstop > εstop do
3: Order the points (solution) such that f (x1)≤ f (x2)≤ ...≤ f (xν+1), where x1 represents the

best and xν+1 the worst solution;
4: Find the centroid, x0 = ∑

ν
i=1 xi/ν , excluding xν+1;

5: Generate a reflected point xr = (1+αr)x0−αrxν+1;
6: if f (x1)< f (xr)< f (xν+1) then
7: xν+1← xr;
8: go to step 3.
9: else

10: if f (xr)< f (x1) then
11: Expand in the direction of reflection xe = γexr +(1− γe)x0;
12: if f (xe)< f (xr) then
13: xν+1← xe;
14: go to step 3.
15: else
16: xν+1← xr;
17: got to step 3.
18: end if
19: else
20: if f (xr)> f (xν+1) then
21: Contract by xc = βcxν+1 +(1−βc)x0;
22: if f (xc)< f (xν+1) then
23: xν+1← xc;
24: go to step 3.
25: else
26: Reduce by xi = δsxi +(1−δs)x1, with i = 2, ...,ν +1;
27: go to step 3.
28: end if
29: end if
30: end if
31: end if
32: end while
33: return Best solution.

Figure 8.1: Operations performed in the Nelder-Mead Simplex algorithm considering a simplex in a
two-dimensional space. xh represents the highest (worst) point, x0 the centroid (mean) and xr, xe and
xc represent, respectively, reflected, expanded (after reflection) and contracted (also after reflection)
points.
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The main steps followed by a GA can be simply described as (Walski et al., 2001):
1. Random generation of an initial population of solutions;
2. Fitness computation (evaluation of the objective function) of each solution in the initial popu-

lation;
3. Generation of a new population using biologically inspired operators (selection, crossover and

mutation);
4. Fitness computation of the new solutions;
5. Generations evolution§ by repeating the steps 3 to 5 until find the desired conditions (stop

criteria).
This algorithm starts not with a single initial solution but a set of possible solutions (that can be

randomly generated), called population of individuals. Each individual (solution) is represented by a
chromosome that, in turn, is constituted by genes (variables). In a standard GA, the chromosomes are
encoded with binary numbers. However, sequences of real numbers, characters or objects can also be
used for encoding the variables of a solution. In a problem with nvar variables, the population size is
typically set to 2nvar to 4nvar (Rao, 2009).

The evaluation of the objective function for a certain solution gives the fitness, a measure of how
good the individual (solution) is at competition. In case of minimisation problems, the best fitness
corresponds to the lowest value of the objective function.

Since the generation of new species occurs from sexual reproduction, in the GA algorithm similar
processes of individuals’ selection and combination of the genetic material (chromosomes) for the
generation of new individuals are performed.

The selection of individuals is performed using a selection operator, based on a probabilistic
procedures to pick individuals from the current population. Usually, the probability of selection of an
individual is proportional to its fitness (Rao, 2009). The idea is to give preference to better individuals,
allowing them to pass on their genes to the next generation. Selection procedures commonly used are
(Goldberg & Deb, 1991):

Proportionate selection, also known as roulette wheel selection for being similar with a roulette
wheel in a casino. Parents are probabilistically selected according to their fitness. The better
the chromosomes are, the more chances to be selected they have. Imagining a roulette wheel
where all chromosomes in the population are placed, every chromosome has its place with size
proportional to its fitness function. Then a random selection is made similar to how the roulette
wheel is rotated. The main drawback of this selection method is that some chromosomes may
have few chances of being selected.

Ranking selection, a method that ranks the population and then every chromosome receives fitness
from this ranking. The worst will have fitness 1, second worst 2, etc., and the best will have
fitness np (number of chromosomes in population). Consequently, all the chromosomes have
a chance to be selected. The main disadvantage is that the best chromosomes do not differ so
much from other ones, which can lead to slower convergence.

Tournament selection, as the name says, the method involves running several “tournaments” among
a few individuals randomly chosen from the population. The winner of each tournament (the
one with the best fitness) is selected for crossover. The tournament size can be adjusted. If the
size is larger, weak individuals have a smaller chance to be selected.

§Each generation corresponds to one iteration of the algorithm.
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The recombination operator, usually called crossover, takes two selected individuals (parents) and
cuts their chromosome at a random point (or points). The new individuals (offspring) are obtained by
recombining portions of the parents chromosomes (see crossover example in Figure 8.2).

The introduction of random modifications in the chromosomes is performed by the mutation
operator, which replaces one or more specific genes in the new individuals (see mutation example in
Figure 8.2).

Figure 8.2: Examples of operations that can occur between chromosomes in a Genetic Algorithm.
In the 2-points crossover operation, each parent is crossed over in 2 points. The parts recombined
to generate the offspring are signed by the dashed lines. In the mutation operation, only one gene is
replaced by a new one in order to generate a distinct chromosome. For demonstration, a distinct type
of variables codification is presented for each example (characters and binary strings).

The last two operations do not occur to all the individuals in the population. A probability of
occurrence is initially pre-defined. While the considered crossover probability, or rate of crossover,
rc, is typically high, in the range of 0.7−1.0 (70 to 100 % of probability), the mutation probability,
rm, is usually small, in the range of 0.001− 0.05. This is because high probability of mutation may
cause too large “jumps” in the search space even if the optimal solution is getting closed (Yang, 2010).

The pseudo-code for the implementation of a typical GA is provided in Algorithm 2.

8.2.4 Differential Evolution - DE

Differential Evolution (DE) is also an evolutionary algorithm and was initially introduced by Storn
and Price (1995). As the GA, DE is also based on the natural evolution of species. However, in
this algorithm, the operations used for the population perturbation consist in computing differences
between vectors.

In DE algorithm, the individuals (candidate solutions) are moved around in the search-space by
using simple mathematical formulae to combine the positions of the existing individuals in the pop-
ulation. If the new position of an individual is an improvement (i.e. the value of objective function
is reduced, for a minimisation problem) it is accepted and forms part of the population, otherwise the
new position is simply discarded.

For an optimisation problem with n decision variables, each individual (parameter vector) of a
DE population takes the form:

xG
i = [xG

i,1,x
G
i,2, ...,x

G
i,ν ] with i = 1,2, ...,nP, (8.24)

where G is the generation number and nP is the population size. Thus, the nP individuals of the initial
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Algorithm 2 Pseudo-code for Genetic Algorithm
1: Define population size (nP), number of generations (nG), rate of crossover (rc) and rate of muta-

tion (rm);
2: Initialise population with nP individuals;
3: Evaluate population according to fitness criteria;
4: while stopping criteria (typically nG iterations) is not verified do
5: Create new solutions:
6: for Each two of nP individuals (solutions) do
7: Select two parent solutions from the current population;
8: if rand[0,1]< rc then
9: Create two offspring solutions using crossover;

10: else
11: Set parents as new solutions;
12: end if
13: if rand[0,1]< rm then
14: Mutate the new solutions;
15: end if
16: Evaluate the new solutions and rank them by fitness. The best are kept.
17: end for
18: end while
19: return Best solution.

population (G = 0) can be randomly generated in the ν-dimensional search-space by:

x0
i, j = rand[0,1](xmax

j − xmin
j )+ xmin

j , with j = 1,2, ...,ν , (8.25)

considering the variables boundaries:

xmin
j ≤ x j ≤ xmax

j , (8.26)

where xmin
j and xmax

j are, respectively, the lower and upper bounds for the j variable, and rand[0,1]
is a randomly generated number between 0 and 1. Consecutively, the DE algorithm performs the
mutation operation in which, for each target vector xG

i , a disturbed vector xG+1
i is generated by adding

a weighted difference to a third vector, according to the equation (Storn & Price, 1995):

xG+1
i = xG

r1
+F(xG

r2
−xG

r3
), (8.27)

where F is a weight coefficient, usually called mutation factor, and can take positive real numbers
in the range of [0,2]. This coefficient controls the amplification of the differential variation. r2 and
r3 are random integers from 1,2, ...,nP, but different from i. Depending on the mutation strategy, r1

can either be a random integer or the best member of the population. Figure 8.3 demonstrates how a
mutated vector is generated in a two-dimensional function.

After applying the mutation operator, the crossover operation is performed, allowing the incorpo-
ration of successful solutions from the previous generation. A trial vector uG+1

i is generated from the
elements of the target vector xG

i and the elements of the disturbed (mutated) vector xG+1
i . A fraction

of elements j of the disturbed vector are copied to this trial vector with a crossover probability CR,
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Figure 8.3: Example showing the process in DE algorithm for generating a mutated vector for the
minimisation of a two-dimensional function.

according to:

uG+1
i, j =

{
xG

i, j if randi, j[0,1]≤ CR or j = Irand ∈ {1, ...,ν}
xG+1

i, j if randi, j[0,1]> CR and j 6= Irand ∈ {1, ...,ν},
(8.28)

where Irand is a random integer picked from 1, ...,ν , which ensures that xG
i, j 6= xG+1

i, j . The crossover
probability, can take values in the range of [0,1]. This crossover process is similar to the GA crossover.

Finally, the trial vector uG+1
i is compared with the target xG

i for the following selection process:

xG+1
i =

{
uG+1

i if f (uG+1
i )≤ f (xG

i )

xG
i otherwise,

with i = 1, ...,nP. (8.29)

If uG+1
i has a better fitness, it replaces xG

i in the G+1 generation. Otherwise xG
i is maintained. These

processes, including mutation, crossover and selection, is repeated until a stopping criteria is satisfied.
Algorithm 3 provides a pseudo-code for the implementation of a simple variant of DE.

8.2.5 Particle Swarm Optimisation - PSO

Particle swarm optimisation (PSO) is a population-based meta-heuristic optimisation technique de-
veloped by Kennedy and Eberhart (1995) and inspired in social behaviour, simulating the movement
of organisms such as a colony of bees, a flock of birds or a shoal of fish.

PSO shares similarities with evolutionary computation techniques such as GA and DE. The PSO
algorithm is initialised with a population of (random) solutions and searches for the optimum by their
updating in each iteration. However, unlike GA and DE (evolution-based algorithms), PSO has no
evolution operators such as crossover or mutation. In PSO, the potential solutions, called particles,
fly through the search-space by following the current best particles and cooperation.

A basic variant of the PSO algorithm works by having a population (called swarm) of candidate
solutions (called particles). The particles of the swarm are moved around in the search-space accord-
ing to a few simple formulae. The movements of the particles are guided by their tracked information
about themselves and the neighbourhood. When improved positions are discovered between the iter-
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Algorithm 3 Pseudo-code for Differential Evolution

1: Define population size (nP), number of generations (nG), crossover probability (CR) and mutation
factor (F);

2: Initialise all nP individuals with random positions in the search-space. G = 0.
3: while stopping criteria is not verified do
4: for Each individual xG

i (with i = 1, ...,nP) from the population do
5: Randomly pick three candidate solutions xG

r1
, xG

r2
, and xG

r3
from the population. They must

be distinct from each other as well as from xG
i ;

6: Pick a random integer Irand ∈ {1, . . . ,ν};
7: Disturb the target vector xG

i using mutation operation: xG+1
i = xG

r1
+F(xG

r2
−xG

r3
);

8: Obtain a trial vector (offspring), uG+1
i , using crossover operation according to the proba-

bility CR:
9: for each element j do

10: if randi, j[0,1]≤ CR or j = Irand ∈ {1, ...,ν} then
11: uG+1

i, j = xG
i, j

12: else
13: uG+1

i, j = xG+1
i, j

14: end if
15: end for
16: Evaluate the fitness, f , and perform the selection operation:
17: if f (uG+1

i )≤ f (xG
i ) then

18: replace the target individual, xG
i , by the improved candidate solution, uG+1

i .
19: end if
20: end for
21: G = G+1;
22: end while
23: return Best solution.

ative cycles, such information is used to guide the movements of the swarm in the next iteration. The
process is repeated and, by doing so, it is hoped, but not guaranteed, that a satisfactory solution will
eventually be discovered.

In this algorithm, the initial particles are randomly set in the search-space. A vector position, xi,
and a vector velocity, vi, are associated to each particle i. In each iteration t = 1, ...,niter, the velocity
of each particle, vt

i , is updated according to (Rao, 2009):

vt
i = vt−1

i + c1rand[0,1]
[
Pbest

i −xt−1
i

]
+ c2rand[0,1]

[
Gbest−xt−1

i

]
, (8.30)

where c1 and c2 are, respectively, the cognitive (individual) and the social (group) learning rates that
provide the relative importance that each particle gives to its own information and to its neighbours
information when performing the next step. Pbest

i and Gbest are, respectively, the particle best position
and the global best position found by the swarm up to the current iteration.

After computing the velocity vectors, the position of each particle can be updated taking into
account such velocities by (Rao, 2009):

xt
i = xt−1

i +vt
i, (8.31)

where xt−1
i represents the particle position in the previous iteration t−1.
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The new position computed for each particle is then compared with the particle’s own best and
with the global best of the swarm.

A pseudo-code describing the implementation of a basic variant of PSO is provided in Algorithm
4.

Algorithm 4 Pseudo-code for Particle Swarm Optimisation
1: Define the swarm size (nS), the number of iterations (niter), the cognitive learning rate (c1) and

the social learning rate (c2);
2: Initialise all i = 1, ...,nS particles with random initial positions, xi, and a initial velocity, vi, in the

search-space (typically all initial velocities are assumed to be zero);
3: Evaluate all particles and track the current global best position of the swarm, Gbest;
4: Initialise the particle’s current best known position: Pbest

i ← xi;
5: while stopping criteria is not verified do
6: for each particle i in the iteration t do
7: Find current particle velocity by:
8: vt

i = vt−1
i + c1rand[0,1]

[
Pbest

i −xt−1
i

]
+ c2rand[0,1]

[
Gbest−xt−1

i

]
;

9: Find current particle position by :
10: xt

i = xt−1
i +vt

i
11: Update particle historical best:
12: if f (xt

i)< f (Pbest
i ) then

13: Pbest
i ← xt

i
14: end if
15: Update current global best of the swarm:
16: if f (Pbest

i )< f (Gbest) then
17: Gbest← Pbest

i ;
18: end if
19: end for
20: t = t +1;
21: end while
22: return best particle.

8.2.6 Simulated Annealing - SA

The Simulated Annealing (SA) method is based on the cooling process of molten metals by annealing.
This method was developed by Kirkpatrick, Gelatt, and Vecchi (1983).

Since the fast cooling may introduce defects in the material, the temperature of the molten metal
during the cooling process should be controlled and slowly reduced. This controlled process called
annealing ensures the proper solidification of the material with an high order of crystalline state that
corresponds to the minimum energy states of the particles. In order to simulate this kind of process,
the SA algorithm applies a temperature parameter, Tc, that is controlled according to the Boltzmann
probability distribution (Rao, 2009):

Ptrans(Elevel) = exp−Elevel/kBTc , (8.32)

where Ptrans(Elevel) represents the probability of achieving the energy level E (also called transition
probability) and kB is the Boltzmann constant (typically, kB = 1 is used).
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The optimisation process with SA starts then with an initial guess solution (initial state) at a high
temperature and gradually cools down the system until the state of minimum energy (best solution).
The moves from one state of energy to other are performed (or not) according to some probability.
The system should be cooled slowly enough in order to reach the global minimum (Yang, 2010).

Considering the current initial state (solution) xt , the energy Elevel,t at such state is given by the
value of the objective function:

Elevel,t = f (xt). (8.33)

Then, the probability of the next state, xt+1, is given by the energy difference between the two con-
secutive states:

∆Elevel = Elevel,t+1−Elevel,t = f (xt+1)− f (xt). (8.34)

Thus, using the Boltzmann probability distribution, the new state (solution) can be found:

Ptrans(Elevel,t+1) = min{1,exp−∆Elevel/kBTc}. (8.35)

For t = 1, ...,niter iterations, the previous process is repeated. After that, the cooling temperature,
Tc, is replaced by fcTc, where 0 < fc < 1 is a cooling factor. This is called a geometric cooling
schedule.

This trajectory-based search method is, in fact, a special case of a Markov chain by random walk
(see Yang (2010) for more detail on this). Thus, global convergence is expected (and almost guaran-
teed) due to the stationary property of Markov chains. In turn, the main drawback of a trajectory-based
algorithm is related with the expected slow convergence for complex optimisation problems (Yang,
2010).

A pseudo-code for the implementation of a simple variant of Simulated Annealing is provided in
Algorithm 5.

Algorithm 5 Pseudo-code for Simulated Annealing
1: Define an initial state (solution) xt , a high initial temperature Tc and the number of iterations at a

given temperature niter;
2: while stopping criteria is not verified do
3: for each t = 1, ...,niter iteration do
4: Pick a random new state in the neighbourhood xt+1;
5: Compute the energy difference between the two states ∆Elevel = f (xt+1)− f (xt)
6: if ∆Elevel < 0 then
7: move to the new state;
8: else
9: if Ptrans(Elevel,t+1)> rand[0,1] then

10: move to the new state;
11: end if
12: end if
13: end for
14: Reduce the temperature: Tc← fcTc;
15: end while
16: return final (minimum) state of energy.
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8.3 Constraint-handling methods

All the previously presented optimisation methods can be applied to unconstrained optimisation prob-
lems. However, several problems, including the operational control of water networks, are commonly
subject to a number of constraints. To handle such constraints, two main approaches can be followed
(Andrade-Campos et al., 2015; Rao, 2009; Yang, 2010): (i) adapting the unconstrained optimisation
algorithm for constrained optimisation problems, in such a way the constraints are handled in a ex-
plicit manner (direct methods) or, alternatively, (ii) transforming the optimisation problem into an
unconstrained problem (or sequential set of unconstrained problems) by using, for instance, penalty
methods, Lagrange multipliers or techniques of variables transformation (indirect methods). While
the first approach requires specific adaptations to each distinct optimisation algorithm, the second one
allows an easier implementation of several distinct algorithms.

Only penalty methods are covered in this work since they are easy to implement and frequently
used in non-linear constrained optimisation (Rao, 2009; Smith & Coit, 1997).

8.3.1 Penalty methods

There are two main types of penalty methods (Smith & Coit, 1997): (i) exterior penalty methods,
which penalise infeasible solutions, and (ii) interior penalty methods, which penalise feasible solu-
tions near the active constraint boundary. In both cases, the penalties can also be defined as static,
dynamic or adaptive.

In the penalty methods, the constraints are represented by the addition of terms (also called penalty
functions) to the objective function, each one providing the degree of violation of the corresponding
constraint.

Considering the formulation of an optimisation problem, as the represented in Equation 8.2, and
using a penalty method to solve such problem, it becomes:

minimise
x

fp(x,rh,k,rg, j),

subject to: xmin
i ≤ xi ≤ xmax

i , i = 1, ...,nvar,
(8.36)

where the objective function f (x) is replaced by the penalised (transformed) function fp(x,rh,k,rg, j).
rh,k and rg, j are, respectively, the penalty coefficients for the equality and inequality constraints.

The penalised objective function, fp, can be generally defined by (Rao, 2009):

fp(x,rh,k,rg, j) = f (x)+
K

∑
k=1

FH
k (hk(x),rh,k)+

J

∑
j=1

FG
j
(
g j(x),rg, j

)
, (8.37)

where FG
j is a function of the inequality constraint g j and the penalty coefficient for such constraint

rg, j. FH
k is a function of the equality constraint hk(x) and the corresponding penalty coefficients rh,k.

Figure 8.4 shows an example of the application of exterior and interior penalty methods to find
the optimum of a function subject to a constraint whose boundary is represented in the figure (feasible
and infeasible regions are represented by the gray areas).

For interior penalty methods, FG
j should tend to the infinity as the constraint boundary is ap-

proached and FH
k should also tend to the infinity and the other part of the corresponding term must
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(a) (b)

Figure 8.4: Demonstration of (a) exterior and (b) interior penalty methods considering distinct penalty
coefficients r1, r2 and r3 (with r1 > r2 > r3).

tend to zero. The most common forms used for FG
j are (Rao, 2009):

FG
j =−

rg, j

g j(x)
, (8.38)

similarly with the represented in Figure 8.4b, and

FG
j = rg, j log[−g j(x)]. (8.39)

An example of a possible form for FH
k is (Rao, 2009):

FH
k =

[hk(x)]2√rh,k
. (8.40)

For exterior penalty methods, it is common to consider

FG
j (g j(x),rg, j) = rg, j [max{0;g j(x)}]θg (8.41)

and
FH

k (hk(x),rh,k) = rh,k [hk(x)]2 , (8.42)

where

max{0;g j(x)}=

{
g j(x), if g j(x)> 0 (constraint is violated),
0, if g j(x)≤ 0 (constraint is satisfied).

(8.43)

The exponent θg is a non-negative constant (typically, a value of θg = 2 is used) and ensures that,
for θg > 1 , the amount of penalty will increase at a faster rate than will the amount of violation of a
constraint (i.e. the distance of the solution from feasibility, also called distance to feasibility (Smith
& Coit, 1997)).

For static penalties, the penalty coefficients, rh,k and rg, j, are considered as constant values and
the penalty terms of the penalised function fp are proportional to the value of the constraints violation
(g(x) and/or h(x)). A simpler variation of the static penalty method occurs for θg = 0, where the
penalty terms become proportional to the number of violated constraints. Despite being simpler, this
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last method presents the disadvantage of dealing with a discontinuous function, which difficult the
optimisation problem (Rao, 2009).

The penalty coefficients may be difficult to determine, which can represent a drawback in the
use of static penalties. The use of dynamic penalties allows to overcome such drawback, similarly
to the sequential unconstrained minimisation technique (SUMT) used in gradient-based algorithms
(Andrade-Campos et al., 2015). The idea of the dynamic penalty methods is to increase the penalty
coefficient in each iteration (or generation, for instance) according to its proximity to the feasible
solution. However, this method may lead to infeasible solutions if the penalty increasing rate is too
slow or lead to non-optimal feasible solutions for a too fast increasing rates (Smith & Coit, 1997).

An approach to avoid the need of problem-specific tuning required in the two previous approaches
is the use of adaptive penalties (Smith & Coit, 1997). One example of an adaptive penalty method
is the use of a penalty function multiplier that is updated in generations intervals based on whether or
not the best solution found was feasible during that interval (see more about adaptive approaches in
Smith and Coit (1997)).

From the proposed optimisation problem previously described in Equation 8.12 and considering,
for instance, an exterior penalty method with fixed penalty coefficients rh and rg, the augmented
(penalised) objective function Cp

total can be obtained by:

Cp
total(X,rh,rg) =Ctotal(X)+ rh [nwarn(X)]2 + rg

ntanks

∑
j=0

[
max

{
0;L j,final(X)−L j,initial(X)

}]2
+rg

ntanks

∑
j=0

[
max

{
0;L j(X)−L j,max

}]2
+ rg

ntanks

∑
j=0

[
max

{
0;L j,min−L j(X)

}]2
+rg

ncnodes

∑
k=0

[max{0;Pk,min−Pk(X)}]2

(8.44)

8.4 Comparing optimisation methods performance

An optimisation algorithm can be evaluated in terms of distinct (and sometimes contradictory) criteria,
such as (Nocedal & Wright, 2006):

• Robustness, which presupposes the algorithm to perform well in a wide variety of problems,
considering distinct initial solutions;
• Efficiency, related with the processing computer time or the storage requirements of the algo-

rithms;
• Accuracy, which expects the algorithm to find a solution with precision and lower sensitivity to

errors and/or approximations on data.

In order to be considered adequate for a certain problem, a specific algorithm should fulfil certain
properties. For distinct optimisation problems, the importance of the previously defined criteria is
variable. An analysis on the problem to be solved should be performed in order to understand which
of the criteria is more relevant. This is important because, in some situations, those criteria may
compete (e.g. an algorithm may be fast but loose in accuracy, which may not be desired for certain
problems).



112 8. Control optimisation

For the problems addressed in this work, it is important to use efficient and robust optimisation
algorithms in order to obtain fast results (particularly in the case of real-time processes) and robust
enough to perform well in a wide variety of networks configurations. Thus, in the results obtained for
distinct problems, the computational time is compared and the feasibility of the obtained solutions is
analysed.



9. Demand forecasting

The main forecasting techniques for time series data are described, including the traditional
techniques based on regression analysis, exponential smoothing and time series analysis, as
well as the innovative techniques based on artificial neural networks. Procedures to develop

and evaluate a forecasting model are also presented.

In order to obtain feasible control optimisation results, it is of the most importance to use accurate
data for predicting the behaviour of water distribution networks as close as possible to the reality.
For an efficient operational control and management, the highly variable water demands need to be
predicted in advance. For real-time operations, for instance, the process of predicting the near-future
demands is critical, since the model of the network also need a real-time update.

Given the importance of this topic, the current chapter is devoted to the methodologies applied in
this work for short-term water demand forecasting.

9.1 Forecasting techniques

Most forecasting problems involve the use of time series data (Montgomery, Jennings, & Kulahci,
2008), which corresponds to time-oriented observations on a specific variable (water demand, in this
case).

Time series data are commonly described according to three main components: trend, season and
cycle. The trend component is related to the long-term increase or decrease of data, while the seasonal
component is related to patterns identified in the data that are affected by factors like the time of the
year or the hour of the day (see examples of time series with and without trend and seasonality in
Figure 9.1). Finally, the cycle is related to fluctuations in data without fixed periods. While seasonal
patterns have a fixed and known length, cyclic patterns have variable and unknown length - seasonality
with changing variation (Hyndman & Athanasopoulos, 2013).

While qualitative forecasting techniques are used in situations where there is little or no historical
data (such as the example of forecasting the sales of a new product), quantitative forecasting tech-
niques uses the information of historical data, predicting the future based on observed patterns and
relationships in the data (Montgomery et al., 2008).

Concerning the quantitative techniques, Montgomery et al. (2008) enumerate and describe three
main types of traditional forecasting techniques: (i) regression models, (ii) smoothing models and
(iii) time series models. More innovative techniques based on artificial intelligence have been largely

113
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Figure 9.1: Examples of time series demonstrating seasonal and trend effects over the time.

applied in forecasting problems and compared to the traditional ones. It is the case of Artificial Neural
Networks (ANN), Support Vector Regression (SVR), Fuzzy Logic (FL) and also hybrid methods
combining distinct forecasting methods and/or incorporating optimisation algorithms.

9.1.1 Regression Analysis

Regression models are based in the relationship between the variable of interest (forecast variable,
y) and other input variables (predictor variables, z). This type of techniques may be simple and easy
to implement but may also be limited in certain situations such as with nonlinear data and, specially,
with very noisy data (Adamowski & Karapataki, 2010; Montgomery et al., 2008).

For time series data, a Multiple Linear Regression (MLR) model can be written as (Hyndman
& Athanasopoulos, 2013; Montgomery et al., 2008):

yt = β0 +β1z1,t +β2z2,t + ...+βkzk,t + εt , (9.1)

where k is the number of predictor variables, εt is the error between the O observed data points at time
period t and the predicted ones defined by the regression line specified by the model. β0,β1, ...,βk are
the unknown regression parameters (or model parameters) usually estimated using the Least Squares
method (in linear models) by finding the values that minimise the Sum of Squared Errors (Hyndman
& Athanasopoulos, 2013):

O

∑
t=1

ε
2
t =

O

∑
t=1

(yt −β0−β1z1,t − ...−βkzk,t)
2. (9.2)

Predictions of y can be calculated by ignoring the error in the regression equation (eq. 9.1)
(Hyndman & Athanasopoulos, 2013):

ŷt = β̂0 + β̂1z1,t + β̂2z2,t + ...+ β̂kzk,t , (9.3)

where β̂0, β̂1, ..., β̂k are the already estimated regression coefficients according to equation 9.2.
When these predictions are made using the same predictor data that were used to estimate the

model, ŷt correspond to fitted data. If different predictor data are used (validation data set), then ŷt is
considered a real forecast.
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The residuals of these predictions (or forecasting errors) are given by the difference between the
observed and the predicted data (εt = yt − ŷt).

It is important to notice that equation 9.1 expresses only the relationship between a single value
for the predictor and forecast variables. In order to represent all the values, the model should be
written in a matrix form, and the MLR model would become (Montgomery et al., 2008):

y = βββZ+ εεε, (9.4)

where y is a (O×1) vector of the observations, Z is a (O×k) matrix of the predictor variables, βββ is a
(k×1) vector of the regression coefficients and εεε is a (O×1) vector of random errors. Therefore, in
the matrix notation, the forecasts can be determined by:

ŷ = β̂ββZ, (9.5)

where β̂ββ = (ZTX)−1ZTy can be estimated by least-square techniques (Montgomery et al., 2008).
For simplification, the index notation will be used in this work instead of the matrix notation.
In the Simple Linear Regression model, only one predictor variable z is considered and the

model can be simply written as (Hyndman & Athanasopoulos, 2013):

yt = β0 +β1zt + εt , (9.6)

where β0 and β1 represent, respectively, the interception and the slope coefficients of the regression
line that defines the linear relationship between data.

In some situations, the use of linear relationships may not be adequate. In these cases, the predic-
tor variables and/or the forecast variables can be replaced by a transformation of such variables. A
Multiple Non-Linear Regression (MNLR) model can then be represented by:

f NL(yt) = β0 +β1 f NL
1 (z1,t)+β2 f NL

2 (z2,t)+ ...+βk f NL
k (zk,t)+ εt , (9.7)

where both f NL(y) and f NL
1 (z1), ..., f NL

k (zk) are possibly non-linear functions (example: f NL(z) =
logz).

9.1.2 Exponential Smoothing Methods

Smoothing models use a function obtained from previous observations to predict future ones (Mont-
gomery et al., 2008). This technique of obtaining a smooth function (exponential smoother) from the
data can be attractive to deal with noisy data.

The simplest method is called Simple Exponential Smoothing (SES, or first-order exponential
smoothing) and is suitable for forecasting data with no trend and no seasonality. With this method,
forecasts are calculated using weighted averages where the weights decrease exponentially as obser-
vations move away from the present, i.e. smaller weights are associated to the oldest observations
(Hyndman & Athanasopoulos, 2013). To modelling the series with SES, the first-order exponential
smoother is used and the model can be written as (Montgomery et al., 2008):

yt = Ls
t + εt = α

syt +(1−α
s)Ls

t−1 + εt (9.8)
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where Ls
t , also known as level component (Hyndman & Athanasopoulos, 2013), represents the smoothed

value of the observation at current time t, 0≤ αs ≤ 1 is the discount factor (or smoothing parameter)
and (1−αs) represents the weight of the smoothed value of the previous observations.

In equation 9.8, the initial smoothed value Ls
0 and the value of αs need to be estimated. According

to Hyndman and Athanasopoulos (2013), the two commonly used estimates for Ls
0 are (i) the first

value of the observed series, Ls
0 = y1 (when early and fast changes are expected to occur in the

process), or (ii) the average of the observed data, Ls
0 = ȳ (when the process is locally constant at least

at the beginning). The value of αs is commonly determined by finding the value that minimises the
Sum of the Squared Errors (SSE) of the fitted model:

O

∑
t=1

ε
2
t =

O

∑
t=1

(yt −Ls
t )

2. (9.9)

When αs = 1, the model is not smoothed and equal to the observed series, i.e. Ls
t = yt . Smaller values

of αs leads to more smoothed functions.

Using the SES model, the forecast at time t +h (h-step ahead) is equal to the current value of the
exponential smoother (Montgomery et al., 2008):

ŷt+h = Ls
t = α

syt +(1−α
s)Ls

t−1. (9.10)

For higher order exponential smoothing methods the procedure is similar. An σ -order expo-
nential smoother can be written as (Montgomery et al., 2008):

Ls
t
(σ) = α

sLs
t
(σ−1)+(1−α

s)Ls
t−1

(σ), (9.11)

where the initial value Ls
0
(σ) = Ls

1
(σ−1).

The problem with these simple forecasting methods is that they are not suitable for data that
exhibit cyclical or seasonal patterns. However, Holt (in 1957) and Winters (in 1960) proposed two
distinct approaches based on adjustments to these methods in order to deal with seasonal data, namely,
an additive seasonal model and a multiplicative seasonal model (Hyndman & Athanasopoulos, 2013;
Montgomery et al., 2008).

The Holt-Winters Seasonal models use three smoother functions that represents three components
of a time series: (i) the level component, Ls

t , (ii) the trend component, T s
t , and (iii) the seasonal

component, Ss
t . The difference between the two proposed models is related with the nature of the

seasonal component. While the additive seasonal model is preferred when seasonal variations are
roughly constant through the series, the multiplicative seasonal model works better when the seasonal
variations change proportionally to the level of the series (Hyndman & Athanasopoulos, 2013).

The equation for modelling the series using the Holt-Winters Additive Seasonal model is:

yt = Ls
t +T s

t +Ss
t + εt . (9.12)

The level, trend and seasonal smoothers can be respectively written as (Hyndman & Athana-
sopoulos, 2013):

Ls
t = α

s
1(yt −Ls

t−m)+(1−α
s
1)(L

s
t−1 +T s

t−1), (9.13)
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T s
t = α

s
2(L

s
t −Ls

t−1)+(1−α
s
2)T

s
t−1 and (9.14)

Ss
t = α

s
3(yt −Ls

t−1)+(1−α
s
3)S

s
t−m, (9.15)

where m represents the period of seasonality and αs
1, αs

2 and αs
3 are smoother parameters with ranges

between 0 and 1. The estimation of these parameters can also be done by finding the values that
minimise the SSE of the fitted model:

O

∑
t=1

ε
2
t =

O

∑
t=1

(yt −Ls
t −T s

t −Ss
t )

2. (9.16)

The initial values for each smoother, Ls
0, T s

0 and Ss
0, can be estimated by (Hyndman & Athanasopoulos,

2013):

Ls
0 =

1
m
(y1 + ...+ ym), (9.17)

T s
0 =

1
m

[
ym+1− y1

m
+ ...+

ym+m− ym

m

]
and (9.18)

Ss
0 = ym−Ls

o, Ss
−1 = ym−1−Ls

0, ..., Ss
−m+1 = y1−Ls

0. (9.19)

The forecast equation to predict an h-step ahead using the Holt-Winters Additive Seasonal model
is (Hyndman & Athanasopoulos, 2013):

ŷt+h = Ls
t +hT s

t +Ss
t−m+h (9.20)

and the forecast error in each step is calculated by:

εt = yt − ŷt = yt −Ls
t−1−T s

t−1−Ss
t−m. (9.21)

Concerning the Holt-Winters Multiplicative Seasonal model, the equation for modelling the
series is:

yt = (Ls
t +T s

t )S
s
t + εt . (9.22)

In this case, the level, trend and seasonal smoothers are respectively written as (Hyndman &
Athanasopoulos, 2013):

Ls
t = α

s
1

(
yt

Ss
t−m

)
+(1−α

s
1)(L

s
t−1 +T s

t−1), (9.23)

T s
t = α

s
2(L

s
t −Ls

t−1)+(1−α
s
2)T

s
t−1 and (9.24)

Ss
t = α

s
3

(
yt

Ls
t−1

)
+(1−α

s
3)S

s
t−m, (9.25)

and the initial values for each smoother, Ls
0, T s

0 and Ss
0, are estimated by (Hyndman & Athanasopoulos,



118 9. Demand forecasting

2013):

Ls
0 =

1
m
(y1 + ...+ ym), (9.26)

T s
0 =

1
m

[
ym+1− y1

m
+ ...+

ym+m− ym

m

]
and (9.27)

Ss
0 =

ym

lo
, Ss

−1 =
ym−1

Ls
0

, ..., Ss
−m+1 =

y1

Ls
0
. (9.28)

The forecast equation to predict an h-step ahead using the Holt-Winters Multiplicative Seasonal
model is (Hyndman & Athanasopoulos, 2013):

ŷt+h = (Ls
t +hT s

t )S
s
t−m+h (9.29)

and the forecast error in each step is calculated by:

εt = yt − ŷt = yt − (Ls
t−1−T s

t−1)S
s
t−m. (9.30)

9.1.3 Time Series Analysis

Forecasting models based on time series analysis consist in the analysis of statistical properties of
stationary (constant mean and variance) and stochastic processes/models using the historical data.

As mentioned by Montgomery et al. (2008), the methods based on exponential smoothing may
be inefficient and sometimes inappropriate for not taking advantage of the serial dependence in the
observations by the most effective way. The Auto-Regressive Integrated Moving Average (ARIMA)
models provide another approach to time series forecasting. While exponential smoothing models are
based on the description of trend and seasonality of data, ARIMA models are based on the description
of autocorrelation in data (Hyndman & Athanasopoulos, 2013).

Autoregressive (AR) methods can be compared to the previously explained multiple linear re-
gression (MLR). While in MLR the forecast is based on a linear relationship between the variable of
interest and the predictor variables, AR methods consider a relationship with the past values (lags) of
the variable of interest instead of the predictor variables (Hyndman & Athanasopoulos, 2013).

An autoregressive model of order φ , AR(φ ), where φ represents the number of lags, can be written
as (Hyndman & Athanasopoulos, 2013; Montgomery et al., 2008):

yt = µ0 +µ1yt−1 +µ2yt−2 + ...+µφ yt−φ + εt , (9.31)

where ν0 is a constant that represents the series level (similar to the intercept parameter of a regression
line), µ1,µ2, ...,µφ are regression parameters and εt is an error term (usually called white noise).

Moving Average (MA) methods also follow a similar approach to the multiple regression but
uses past forecast errors instead of predictor variables. A model based on this type of method with
order ψ (ψ lags) can be written as (Hyndman & Athanasopoulos, 2013; Montgomery et al., 2008):

yt = θ0 +θ1εt−1 +θ2εt−2 + ...+θψεt−ψ + εt , (9.32)

where θ0 represents a constant (level) and θ1,θ2, ...,θψ represent regression parameters.
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The general model of a combined Autoregressive Moving Average (ARMA), usually referred as
ARMA(φ , ψ), where φ is the order of the autoregressive part and ψ the order of the moving average
part, is given as (Montgomery et al., 2008):

yt = δ0 +µ1yt−1 +µ2yt−2 + ...+µφ yt−φ + εt +θ1εt−1 +θ2εt−2 + ...+θψεt−ψ

= δ +
φ

∑
i=1

µiyt−i + εt +
ψ

∑
i=1

θiεt−i.
(9.33)

Before applying any of the previously mentioned models (AR, MA or ARMA), three steps must
be performed: (i) the original time series yt must be transformed to become stationary around its
mean and variance (time series with trends or seasonality are not stationary since these components
affect the value of the series at different times), (ii) the appropriate order of both φ and ψ must be
specified and (iii) the value of the regression parameters µ1, ...,µφ and θ1, ...,θψ must be estimated
(Makridakis & Hibon, 1997).

Generally, the differencing method is used to achieve stationarity in the time series mean (Hynd-
man & Athanasopoulos, 2013; Makridakis & Hibon, 1997; Montgomery et al., 2008). This method
consists in the computation of the differences between consecutive observations, allowing the stabil-
isation of the sample mean. A first order differencing is computed by:

y′t = yt − yt−1, (9.34)

while the second order differencing will be dependent on the first order differences:

y′′t = y′t − y′t−1,

= (yt − yt−1)− (yt−1− yt−2).
(9.35)

The same approach is followed for consecutive differencing calculations.

When dealing with seasonal data, it is preferable to compute seasonal differencing, which is given
by the difference between an observation and the corresponding observation from the previous season
(Hyndman & Athanasopoulos, 2013):

y′t = yt − yt−m, (9.36)

where m represents the number of periods of the season.

In order to stabilise the variance of the time series, the use of variables transformations is common
(mostly logarithmic and power transformations). According to Montgomery et al. (2008), a popular
type of data transformation is the power family, given by:

y(λP) =


yλP−1

λPẏλP−1 , λP 6= 0

Ky lny, λP = 0
, (9.37)

where Ky = exp
[
( 1

O)∑
O
t=1 lnyt

]
is the geometric mean of the observations. This equation allows

distinct transformations of data according to the defined power parameter λP. When no transformation
is intended, λP should be set to 1. The typical transformations are: square root (λP = 0.5), logarithmic
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(λP = 0), reciprocal square root (λP =−0.5) and inverse (λP =−1).
The autoregressive and moving average orders (φ and ψ , respectively) can be specified by plotting

the autocorrelation and partial autocorrelation functions (ACF and PACF) of the series. Autocorrela-
tion is a linear dependence of a variable with itself at two points in time. Thus, the autocorrelation
of series gives the correlation between yt and yt−h, where h represents the lag. For a time series
y1,y2, ...,yO, the autocorrelation coefficient at lag h is given by (MathWorks: Autocorrelation and
Partial Autocorrelation, 2015; Montgomery et al., 2008):

ρh =
Cov(yt ,yt−h)

Var(yt)
=

1
O ∑

O
t=h+1(yt − ȳ)(yt−h− ȳ)

1
O ∑

O
t=1(yt − ȳ)2

, (9.38)

where Cov(yt ,yt−h) is the auto-covariance at lag h and Var(yt) is the sample variance. The collection
of values of ρh, with h = 0,1,2, ...,O−1 is the autocorrelation function (ACF).

The correlation between two variables can result from a mutual linear dependence on other vari-
ables. However, the partial autocorrelation provides the correlation between two variables after re-
moving any linear dependence on other variables.

For a time series, the partial autocorrelation between yt and yt−h (or the partial lag-h autocorrela-
tion) is defined as the conditional correlation between yt and yt−h, conditional on yt−h+1, ...,yt−1, the
set of observations that come between the time points t and t−h (Montgomery et al., 2008; STAT 510
– Applied Time Series Analysis, 2015):

ϕh =
Cov(yt ,yt−h|yt−h+1, ...,yt−1)

Var(yt |yt−h+1, ...,yt−1)
. (9.39)

The PACF is the sequence ϕh, with h = 0,1,2, ...,O−1.
Both denominators of equations 9.38 and 9.39 are approximations, considering that the series are

stationary.
The ACF is commonly used to identify the ψ order of a MA process since it is expected to "cut

off" after lag ψ , which means that the ACF should be zero for h > ψ . In turn, the PACF is employed
in AR processes since it is expected to "cut off" after lag φ (Montgomery et al., 2008).

Finally, the regression parameters are usually determined using the optimisation procedure that
minimises the sum of square errors or other appropriate error function.

Autoregressive Integrated Moving Average (ARIMA) models, also known as Box-Jenkins
models, represent a combination of differencing, moving average and auto-regression. The term
"Integrated" is related to the reverse of differencing. An ARIMA(φ ,υ ,ψ) model can be represented
as (Hyndman & Athanasopoulos, 2013):

y′t = δ +µ1y′t−1 +µ2y′t−2 + ...+µφ y′t−φ + εt +θ1εt−1 +θ2εt−2 + ...+θψεt−ψ , (9.40)

where y′t represents the differenced series, which may have been differenced more than once depend-
ing on the differencing order υ .

To develop an ARIMA model, the main steps should be: (i) stabilise the variance using data
transformation, (ii) apply differencing until the series appear stationary, (iii) plot the ACF and PACF
in order to determine the model orders (φ and ψ) and, finally, (iv) determine the model coefficients
(regression parameters).
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In order to forecast using an ARIMA model, equation 9.40 should be expanded and re-written
in order to obtain yt in the left side and the other terms in the right. Thus, an ARIMA h-step ahead
forecast can be written as (Hyndman & Athanasopoulos, 2013; Montgomery et al., 2008):

ŷt+h = δ +
φ+υ

∑
i=1

µiyt+h−i + εt+h +
ψ

∑
i=1

θiεt+h−i. (9.41)

ARIMA models can also be used for seasonal data by including seasonal terms in the previously
mentioned model. This is commonly called Seasonal Autoregressive Integrated Moving Average
and it is usually represented as ARIMA (φ ,υ ,ψ)(Φ,ϒ,Ψ)m, where (Φ,ϒ,Ψ)m represents the seasonal
part of the model and m is the number of periods per season.

Using the back-shift notation (also called lag operator notation), where Bi
syt = yt−i, an ARMA(φ ,ψ)

general model (equation 9.33) can be written in the following form (Hyndman & Athanasopoulos,
2013; MathWorks: arima class, 2015):

β (Bs)yt = δ +θ(Bs)εt , (9.42)

where
β (Bs) = 1−µ1L−µ

2
2 L2− ...−µ

φ

φ
Lφ , (9.43)

and
θ(Bs) = 1+θ1L+θ

2
2 L2 + ...+θ

ψ

ψ Lψ . (9.44)

Following the same notation, a general ARIMA (φ ,υ ,ψ) can be written as (Hyndman & Athana-
sopoulos, 2013):

β (Bs)(1−Bs)
υyt = δ +θ(Bs)εt , (9.45)

where (1−Bs)
υ is the υ th-order difference.

Finally, a Seasonal ARIMA (φ ,υ ,ψ)(Φ,ϒ,Ψ)m, including differencing, multiplicative seasonal-
ity and seasonal differencing, can be obtained by multiplying the seasonal terms (MathWorks: arima
class, 2015; Montgomery et al., 2008):

µ
∗(Bm

s )(1−Bm
s )

ϒ
µ(Bs)(1−Bs)

υyt = δ +θ
∗(Bm

s )θ(Bs)εt , (9.46)

where
µ
∗(Bm

s ) = 1−µ
∗
1 Lm−µ

∗
2

2L2m− ...−µ
∗
Φ

ΦLΦm, (9.47)

and
θ
∗(Bm

s ) = 1+θ
∗
1 Lm +θ

∗
2

2L2m + ...+θ
∗
Ψ

ΨLΨm. (9.48)

9.1.4 Artificial Intelligence

Traditional statistical methods can be limited with non-linear relationships and very noisy data. For
this reason, models based on artificial intelligence, capable of identifying complex and non-linear
phenomena/behaviours, have been largely applied.

In artificial intelligence, the study of pattern recognition and computational learning theory is
called machine learning (or computational intelligence). The most used machine learning approaches
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for time series forecast are typically the Artificial Neural Networks (ANN). However, the use of
Support Vector Machines (SVM) and Fuzzy Logic approaches or even hybrid approaches has recently
become popular. Applied to time series forecasting, these types of techniques basically operates by
processing historical data (or other type of input data) and building a data-driven model capable of
solve prediction problems. Such data-driven models are trained on a set of input and target output
describing the phenomena in question (Solomatine & Siek, 2006).

Artificial Neural Networks (ANN) are based on mathematical models inspired in the way the
human brain process information. As described by Robert Hecht-Nielsen, a pioneer in artificial intel-
ligence and neural networks, a neural network is (Caudill (1987) apud A Basic Introduction To Neural
Networks (2015)):

“...a computing system made up of a number of simple, highly interconnected processing elements,
which process information by their dynamic state response to external inputs.”

With around 10 billion neurons (or elements) in the cortex and 60 trillion connections between
them, the human brain presents a very complex, non-linear and parallel structure which makes it very
efficient for information processing, learning and reasoning (Montgomery et al., 2008).

An ANN model consists of two or more layers: (i) an input layer, (ii) an output layer and, option-
ally, (iii) one or more intermediary layers called hidden layers. Each layer consists of multiple nodes
(also called neurons or elements) that represents the variables of the model (see Figure 9.2).

Figure 9.2: Scheme representing an example of a 2-layer feed-forward artificial neural network for
time series forecasting. The input layer may contain the lags of the variable to predict (yt ,yt−1, ...) as
well as other predictors (zt ,zt−1, ...) and the output can have a single or multiple neurons according to
the defined time horizon (1 to h steps ahead).

Each node of the network receives information from the previous layer∗ (the input layer or an
hidden layer) as a linear combination of each node output, according to the connection weights uc

∗This is the called feed-forward network. Feed-back connections can also be used. Feed-back neural networks, also
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and wc (parameters that must be estimated) defined in each connection, and then returns an output
that is represented by a transformation of such combined information through an activation function
(also called transfer function). This output can be used for the next layers (and the feed-forward
process is repeated) or be the expected model output.

Each node output ŷk of a 2-layer ANN model (2 layers of connections) with nin input nodes,
nhidden hidden nodes and nout output nodes can be represented as:

ŷk = f A
1

(
nhidden

∑
j=1

uc
j,k f A

2

(
nin

∑
i=1

wc
i, jzi +θ

b
j

)
+θ

b
k

)
, (9.49)

where i = 1, ...,nin, j = 1, ...,nhidden and k = 1, ...,nout. zi and ŷk represents, respectively, the ith model
input and the kth model output, θ b is a parameter that represents an intercept in linear regression
(usually called the bias node) and f A

1 and f A
2 are activation functions. The activation functions are

usually sigmoidal (S shaped) or linear (Montgomery et al., 2008). Considering, for example, f A
1 as

a log-sigmoid function, f A
1 (z) = 1

1+e−z , and f A
2 as a linear function, f A

2 (z) = z, then equation 9.49
would take the following form:

ŷk =
nhidden

∑
j=1

uc
j,k

1

1+ exp
(

∑
nin
i=1 wc

i, jxi +θ b
j

)
+θ

b
k , (9.50)

The use of non-linear activation functions (such as sigmoid or hyperbolic tangent functions) in
the hidden layers is commonly preferable since they tend to reduce the effect of extreme input values,
thus making the network somewhat robust to outliers (Hyndman & Athanasopoulos, 2013). Recently,
Radial Basis functions (RBF), where f A(z) = e−z2

, have also been used.
Note that the simplest ANN model, a single-layer neural network, with no hidden layers, is equiv-

alent to a linear regression model (Hyndman & Athanasopoulos, 2013), where the predictor variables
(in the input layer) are combined through weights (like the regression parameters) to compute the
output (forecast).

In order to estimate the model parameters (weights and bias) that fit the data, a set of inputs
and target outputs should be initially provided to the model (supervised learning†). Thus, the train-
ing/learning process (parameter estimation) begins typically by minimising the overall residual sum
of squares (or the mean squared errors) taken over all responses (target outputs) and observations (in-
puts), which is a non-linear Least Squares problem (Hyndman & Athanasopoulos, 2013; Montgomery
et al., 2008).

A popular learning method is the called Back-Propagation algorithm, which looks for the min-
imum of the error function in weight space using gradient-based optimisation methods. The name
Back-Propagation is related to the backward propagation of errors through the layers of the network
(Atiya, 1991; Rojas, 1996). Although the steepest descent algorithm is typically associated to the
Back-propagation method, other derivative-based optimisation algorithms, such as the Levenberg-
Marquardt (LM) or the Conjugate Gradient (CG), can also be employed to find the minimum of the

called recurrent neural networks, allow the information to be sent from one layer to the previous ones - connections in
opposite directions.
†Note that it is possible to train a neural network using unsupervised learning methods, i.e. with unknown target

outputs. However, such methods will not be covered in this work (see more about this methods in Rojas, 1996).
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error function.
The initial values for the model parameters are commonly defined randomly and then are up-

dated/adjusted through the iterative learning process using the observed data. In ANNs, each iteration
of weights update is usually called epoch. It is common to set a maximum number of epochs to stop
the training process in case of non-convergence.

For the choice of the most adequate network architecture (number of layers, number of nodes and
activation functions form), trial and error procedures or optimisation methods can be used.

9.2 Developing a forecasting model

The development of a forecasting model involves several steps that goes from the knowledge of the
problem to the implementation of the developed model. The main stages of the process are briefly
described.

1. Problem definition

It is important to understand the problem, to know who requires the forecasts, how the fore-
casted data will be used and, finally, define some parameters such as the forecast horizon,
forecast interval and level of accuracy required since all these will influence the model selec-
tion.

2. Data collection and selection

Two types of information are useful and should be collected: (i) historical statistical data and
(ii) information obtained from the expertise of who collect the data, which can provide essential
explanations for some atypical historical data, helping in the data analysis. Not all historical
data is useful for a specific problem. Data should be selected according to the problem and the
method to be followed.

3. Data analysis and pre-processing

This is a crucial step for the decision of the forecasting model. At a first stage, it is important
to plot the time series for the recognition of missing data, potential outliers, trends and/or
seasonal patterns. After that, measures to deal with missing data, outliers and other data-related
problems should be applied. Meanwhile, it may be useful to obtain numerical summaries of
the data such as the sample mean, standard deviation, percentiles, correlations, etc.

In order to identify potential predictor variables (such as weather or anthropic variables), scatter
plots can be very valuable.

4. Model selection, fitting/training and validation

According to the available data and the previous mentioned analysis and pre-processing of such
data, one or more forecasting models should be selected. After that, the data is commonly split
into two or three sets: (i) fitting/training set and validation set or, alternatively (and recom-
mended), (ii) fitting/training set, cross-validation set and validation set. The cross-validation
data set can be used to monitor the model performance during the fitting process. When us-
ing, for instance, forecasting methods based on ANN, the cross-validation plays a crucial role.
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Since during training weights are being activated and adjusted in order to minimise the error, at
a certain point, the network activates more weights than necessary and starts to fit the noise of
the training data. Monitoring this data with a distinct data set allows to identify the best period
to stop training the networks (see Figure 9.3) and to avoid over-fitting.

Figure 9.3: Scheme demonstrating the evolution of the training error and the error during monitoring
using a distinct data set (cross-validation) [Adapted from (Luk et al., 2000)].

5. Model deployment and evaluation

After the model selection and parameters estimation, it can finally be used to make forecasts.
However, after implementation, a monitoring procedure should be performed since the models
performance tends to deteriorate over time. For that, after the data for the forecast period
become available, the forecast errors should be computed. Montgomery et al. (2008) propose
the use of control charts of the forecast errors.

9.3 Evaluating forecasting models performance

The performance of a forecasting model can be defined (i) according to how well the model fits the
sample data (in training/fitting process) or (ii) according to the capability of the forecasting technique
to predict future observations (in test or validation processes)(Montgomery et al., 2008). In both
cases, lower residuals and lower errors correspond to higher model performance (better fit and higher
accuracy). Forecast accuracy is evaluated not only to validate the model but also to compare distinct
models for selection (Montgomery et al., 2008).

According to Hyndman and Athanasopoulos (2013), good forecasting methods should present
uncorrelated and zero mean residuals (difference between the observed/measured and the fitted data).
If the residuals have a mean other than zero (biased forecasts) and/or the residuals are correlated,
this suggests that it may contain information that is not being used and the method can be improved.
However, this does not mean that a method that already fulfils these conditions cannot be improved.

The performance measure mostly used for the models fit evaluation is the Coefficient of Determi-
nation, more known as the Nash-Sutcliffe Model Efficiency (NSE), which is given by (Bennett et al.,
2013):

NSE = 1− ∑
O
t=1 (yt − ŷt)

2

∑
O
t=1 (yt − ȳ)2

, (9.51)
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where yt is the t th measured (or observed) value of the time series, ŷt is the forecasted/fitted value
for time t, ȳ = 1

O ∑
O
t=1 yt is the arithmetic mean of the measured values and O is the number of

observations. (yt − ŷt) is the forecast error and (yt − ȳ) is the standard deviation of the observed
values. This metric compares the model performance to a model that only uses the mean of the
observed data. The range is (−∞,1) with 1 indicating the best performance. Negative values suggest
that the model is worse than the one based on the mean.

The NSE metric may be confused with the Coefficient of Determination‡ (R2) that is given by the
square of the Pearson Product Moment Correlation (PPMC) (Bennett et al., 2013):

R2 = (PPMC)2 =

(
∑

O
t=1(yt − ȳ)(ŷt − ȳ)√

∑
O
t=1(yt − ȳ)2

√
∑

O
t=1(ŷt − ȳ)2

)2

. (9.52)

These two metrics measure the correlation of the measured and the fitted values, where the value
1 corresponds to a perfect correlation. PPMC ranges from −1 to 1. For being based on correlations
between variables, these metrics are not indicated for the performance evaluation of forecasting mod-
els. As can be seen in figure 9.4, a good correlation does not mean that the model is good. In this case,
the forecasted and the measured values are perfectly correlated (R2 = 1) but the forecasted values are
always inferior to the measured ones at the same time. In turn, the efficiency performance measure
NSE demonstrates the poor performance of the forecasting model (NSE =−2.8).

Figure 9.4: Demonstration of a forecasting model that presents a perfect correlation with measured
variables (R2 = 1) but does not represents a good forecasting model (NSE = −2.8) [Adapted from
(Armstrong, 2001)].

Hyndman and Athanasopoulos (2013) describe others forecasting accuracy measures, grouping
them into three main types based on: (i) scale-dependent errors, (ii) percentage errors and (iii) scaled
errors. Due to its simplicity, the scale-dependent errors are good for comparing distinct forecast
methods on a single data set. When comparing between distinct data sets, the percentage errors are
preferable, however, this errors can not be computed if the data set contain zeros. In such cases, the
alternative is the use of scaled errors.

The two most used scale-dependent measures are the Mean Absolute Error:

MAE =
1
O

O

∑
t=1
|yt − ŷt |, (9.53)

‡In fact, in regression analysis, NSE can be approximated to R2 assuming that the sample covariance between ŷi and
yi− ŷi is zero.
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and the Root Mean Square Error:

RMSE =

√
∑

O
t=1 (yt − ŷt)2

O
. (9.54)

Both metrics are in the same units of the sample data, which facilitates the interpretation. Al-
though not mentioned by Hyndman and Athanasopoulos (2013), another measure within this group
that may be helpful for the model evaluation is the Absolute Maximum Error (Bennett et al., 2013):

AME = max |yt − ŷt |. (9.55)

The performance measure based on normalised errors most commonly used is the Mean Absolute
Percent Error (also known as Mean Absolute Relative Error, MARE) (Hyndman & Athanasopoulos,
2013):

MAPE =
1
O

O

∑
t=1

∣∣∣yt − ŷt

yt

∣∣∣×100 %. (9.56)

Concerning the performance measures based on scaled error, Hyndman and Athanasopoulos
(2013) propose the use of the Mean Absolute Scaled Error:

MASE =
1
O

O

∑
t=1

∣∣∣∣∣ yt − ŷt
1

Ot−m ∑
Ot
i=m+1 |yi− yi−m|

∣∣∣∣∣×100 %. (9.57)

This metric is the relative MAE scaled with the MAE obtained during training for a naïve fore-
cast§, with Ot representing the number of observations used for training. For non-seasonal data,
m = 1, while for seasonal data, m represents the period in which the season occurs and, in this case,
the error of the seasonal naïve forecast is used instead.

As mentioned by Hyndman and Athanasopoulos (2013), the main drawback of MAPE and MASE
metrics is the fact of being infinite or undefined if yi = 0 and having extreme values when any yi is
close to zero.

§Naïve forecast models are models in which the future value to predict is equal to the last observed value (or value
observed at the same time in the previous period, in case of seasonal data). Any developed forecasting model should
present a better or at least an equal performance compared to the naïve model.
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The main necessary conditions for the installation of small-scale hydropower schemes are
presented. Methods to select the most appropriate location for the installation of hydropower
schemes in water supply networks are addressed, as well as methods for the selection of the

most adequate turbine for a specific site, including a preliminary financial analysis.

Among several renewable energy alternatives in water supply systems (WSS), the installation of micro
hydroelectric plants has standing out. In hydropower systems it is usual the use of turbines or pumps
operating as turbines (PATs) for the recovery of the excess of energy that is generally lost in the WSS
due to the use of pressure reduction valves (PRVs). Such turbo machines extract the potential energy
from the fluid (water) and convert it into useful work. However, the selection of the most adequate and
profitable site in a network for the installation of a certain type of turbine is generally not a simple
task due to the complexity of the pipe system and the variability of the conditions for hydropower
generation.

10.1 Conditions for hydropower generation

According to the principle of conservation of energy already presented in Chapter 7.1 (Equation 7.3),
the energy balance of a steady flow from A to B will obey to the following relationship (Ramos et al.,
2000):

ZA +
pA

γ
+

v2
A

2g
= ZB +

pB

γ
+

v2
B

2g
+∆HAB, (10.1)

where ∆HAB corresponds to the headloss between A and B and is equal to the difference between
the total heads at A, HA, and at B , HB. This available head difference between A and B (HA−HB),
also called gross head, Hgross, can be converted into mechanical and electrical energy using a turbine
or PAT. The final useful head or net head Hnet is smaller than the gross head and depends on the
turbo-machinery efficiency, accordingly:

Hnet = ηturbηtransfηgenηgearHgross = ηtHgross, (10.2)

where ηturb, ηtransf, ηgen and ηgear are the turbine, transformer, generator and gearbox efficiency,
respectively. The turbine and generator are the primary mechanical and electrical components of a
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small-scale hydropower plant (Natural Resources Canada, 2005).
Not only adequate head but also adequate flow are necessary requirements for hydropower gener-

ation (Ramos et al., 2000). Once a flow rate and head has been estimated, the following equation can
be used to estimate the capacity of a hydropower plant:

Pd = γQdHdηt (10.3)

where Pd represents the power to be installed in kW, γ = ρg (kN/m3) where ρ is the density of the
water and g is the gravitational acceleration, Qd is the turbine design flow, Hd is the turbine design
head, or gross head (m), and ηt is the efficiency of the set turbine, generator, transformer and gearbox,
if applicable. Efficiency is evaluated after the plant configuration is finalised and the turbine selected
(Colorado Energy Office, 2015).

Internationally, small-scale hydropower schemes are frequently classified according to their in-
stalled power capacity: micro (under 100 kW), mini (100 kW to 1 MW) or small (1 MW to 50 MW)
(Natural Resources Canada, 2005). Due to a non-universally accepted definition in EU member states
to the definition of small hydropower, the European Small Hydropower Association (2004a) adopted
10 MW as the upper limit for installed capacity of small-scale hydropower plants. According to the
head, the European Small Hydropower Association (2004a) classify the hydropower schemes in three
categories: low head (2 to 30 m), medium head (30 to 100 m) and high head (equal or above 100 m).

There are also different type of schemes for hydropower generation (European Small Hydropower
Association, 2004a): (i) run-of-river schemes, (ii) schemes with the powerhouse located at the base
of a dam and (iii) schemes integrated on a canal or in a water supply pipe, which is the approach
addressed in this thesis.

Small hydropower plants are less complex than the large ones due to the possibility of integrating
the hydraulic conveyance circuit in other components for multiple purposes (such as water supply
pipes) (Ramos et al., 2000). Figure 10.1 provides an example demonstrating the integration of a
hydropower scheme in a water supply system by replacing an existent pressure reducing valve (PRV).
In this type of scheme, a bypass valve system should always be installed to ensure the supply of the
water in case of turbine failure (European Small Hydropower Association, 2004a).

10.2 Sites location methods

Potential sites for energy recovery in water supply networks correspond to the sites presenting the
highest values of potential recoverable power without compromising the pressure requirements in the
supply zones. Since the power is dependent on the available flow and head ranges, the determination
of such ranges in each pipe of the network should be the first step for the identification of a potential
site for energy recovery.

Typically, in the traditional run-of-river schemes, a single value for the gross head associated to
differences in elevation is used as the design head. However, in water networks, the value of head drop
(gross head) in each location can be highly variable due to the variation of water levels in reservoirs.
An average value of head can be considered as the design head for a preliminary assessment of a
potential site. However, it should be taken into account that the determination of an average head
may require some understanding on the effects of variation in head on the annual energy production
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Figure 10.1: Example of a possible application of a micro-turbine in a water network by replacing a
pressure reducing valve (Ramos et al., 2000).

(Natural Resources Canada, 2005).

For the estimation of the flow conditions in potential sites in order to determine the design flow,
the representation of flow-duration curves (FDC) is a common practice (European Small Hydropower
Association, 2004a; Natural Resources Canada, 2005). A FDC is a representation of the historical
mean daily flow data series recorded for a number of years (10 years are typically recommended) that
facilitates the selection of adequate turbines (Colorado Energy Office, 2015). This type of represen-
tation provides, for each recorded value of mean daily flow, the percentage of time such value was
equalled or exceeded, i.e. provides the number of days that presented the same value of mean flow
during the period of recorded data. Examples of FDCs are provided in Figure 10.2.

(a) (b)

Figure 10.2: (a) Example of a flow-duration curve (FDC) with representation of a possible range
of turbine operation and (b) another example showing parallel turbines combination for achieving a
desired design flow (adapted from Colorado Energy Office, 2015).
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For each recorded value of flow, the corresponding exceedance probability (%) can be calculated
by (CDFW, 2013):

χexceed = [R/(ndays +1)]×100, (10.4)

where χexceed is the probability that a given flow will be equalled or exceeded, R is the assigned
rank number (the flow data is usually sorted from the highest to the lowest value and then a rank is
assigned) and ndays is the total number of days in the period of record.

The FDC enables the assessment of flow variability at a particular site and the determination of an
initial design flow for the hydropower scheme. The Colorado Energy Office (2015) recommends an
initial estimation of the design flow for a small hydro system equal to a flow presenting an exceedance
probability between 30 and 60 %. The design flow is the maximum flow rate that the hydropower
scheme should operate and corresponds to the best efficiency operating point of the turbine (Colorado
Energy Office, 2015). In Figure 10.2a, a possible range of operation for a turbine under the presented
flow conditions is represented by the grey area. Figure 10.2b provides a different example of utilisa-
tion of a FDC for a multiple turbines scheme selection. Multiple turbines can be combined to achieve
a desired design flow, providing a certain flexibility. This type of scheme can also be adopted in
case a standard turbine size, such as a pump-as-turbine (PAT), cannot accommodate the design flow
(Colorado Energy Office, 2015).

After determining the design flow, Qd, and design head, Hd, for a specific site, an approximation
of the potentially recoverable power can then be computed by:

Pgross = γQdHd. (10.5)

The net recoverable power will be inferior to the available gross power since it depends on the selected
turbine and the associated efficiency of the set turbine-generator (and other equipment, if applicable),
ηt , accordingly:

Pnet = Pgrossηt. (10.6)

The identification of the most adequate site for the development of a hydropower scheme in a
water network is commonly treated as an optimisation problem whose main objective is the max-
imisation of energy production (power generation) and/or the minimisation of the pressures in the
network in order to reduce water leakages (Corcoran, McNabola, & Coughlan, 2015; Fecarotta, Ar-
icò, Carravetta, Martino, & Ramos, 2015; Fontana et al., 2011; Giugni, Fontana, & Ranucci, 2013).
In fact, both objectives are interconnected since the pressure reduction can be directly related with the
energy recovered by a turbine. In any case, a pressure constraint related with limitations of pressure
often imposed by the regulator, for security and comfort reasons (Samora, Franca, Schleiss, & Ramos,
2015), should always be taken into account.

10.2.1 Optimal site location approach

Modelling a pressure reducing valve (PRV) in specific locations of the network and obtaining the flow
rate and the head drop through the valve during a simulation period allows to compute the energy that
is dissipated in such equipment, and so, the potentially recoverable energy. In EPANET, the head drop
through a PRV is computed by the equation of the minor headlosses through the link, as presented in
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equation 7.5, which can be re-written in terms of the flow rate, Q, and the valve/link diameter, D:

hm = Km
2

πg

(
Q
D

)2

, (10.7)

where the minor loss coefficient, Km, is the parameter that can be adjusted by the user in order to
maximise the head drop, and thus, maximise the potentially recoverable power.

Similarly with the approach proposed by Giugni et al. (2013), in this work, the determination
of optimal locations for a turbine installation is performed using an optimisation approach to find
the best locations of PRVs (and the associated loss coefficient) in order to maximise the potentially
recoverable energy. Such optimisation problem can be mathematically described as:

maximise
Km

Erecov = γ ∑
t

Qthm,t(Km)tstep, t = 1, ...,nsteps

subject to Pi,t −Pmin ≥ 0, i = 1, ...,ndnodes,

(10.8)

where tstep is the duration of the time-step, ndnodes is the number of demand nodes, Pmin (m) is the
minimum pressure required in the demand nodes and Pi,t is the pressure at node i in the time-step t.
In this optimisation problem, the decision variable is the minor loss coefficient, Km, which can take
values, for instance, as the ones presented in Figure 10.3 according to the valve opening (from 0 -
fully closed - to 1 - fully opened).

Figure 10.3: Variation of the headloss coefficient of a needle valve with the percent of valve opening
(Fontana et al., 2011).

The idea is to test distinct scenarios in a network modelled with EPANET by automatically in-
stalling a PRV in each existent pipe at a time (one different scenario for each tested pipe) and deter-
mine the valve’s minor loss coefficient that maximizes the potentially recoverable energy, Erecov.

A simple line search strategy can be used to solve the presented optimisation problem. In this
method, the search starts at an arbitrary point K0

m and then, a certain step size, φ
j

s determines how far
this initial solution should move along a certain direction, d j until find the optimum (maximum, in
this case). Using a line search strategy, any new solution, K j+1

m , can be found according to:

K j+1
m = K j

m +φ
j

s d j. (10.9)
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Instead of using the well-known steepest descent method to determine, in each jth iteration, the search
direction, d j, the fixed value of d j = 1 can be used. The initial solution considered is K0

m = 0, which
correspond to a fully opened valve. The solution is set to move along the search space in fixed steps
of size φ

j
s = 500. In each iteration, the objective function, Erecov, is evaluated and the iterative process

stops when its value is maintained or decreases.

10.3 Turbine selection/design methods

The development of a cost-effective and efficient small-scale hydropower project implies the optimal
selection/design of the hydroturbine(s) (Sangal, Arpit, & Dinesh, 2013). In small-scale hydraulic ap-
plications, the turbines used are scaled-down versions of the conventional large hydroturbines (Natu-
ral Resources Canada, 2005). The main types of existing hydroturbines are represented in Figure 10.4.
Generally, a turbine can be classified according to the basis of principle of operation as: (i) impulse
turbines (Pelton, Cross-flow and Turgo turbines) or (ii) reaction turbines (Francis, Kaplan/propeller
and pumps-as-turbines).

Reaction turbines operate with pressurised flow (Ramos et al., 2000). In this type of turbine, part
of the water pressure changes as it moves through the turbine since the pressure energy is transformed
into mechanical rotational energy of the runner.

In impulse turbines, the water acts in the runner as a free jet at atmospheric pressure. The kinetic
energy available in the water that comes from the nozzle(s) is transformed into rotational mechanical
energy when the water jet hits the blades of the runner (Ramos et al., 2000).

The optimal selection/design of a turbine should take into account both technical parameters,
such as the specific speed, diameter and efficiency of the turbine, and financial parameters, such as
the costs of equipment and costs of installation, costs for civil works, etc. Not only the technical
but also the financial viability of each potential small-scale hydropower project are very site specific
(Natural Resources Canada, 2005).

In this work, the methods presented to select/design turbines and evaluate the corresponding tech-
nical and financial feasibility are essentially based on the approaches followed by the RETScreen R©

software for micro hydropower plants. RETScreen R© is a clean energy project analysis software tool
that allows to determine the technical and financial viability of potential renewable energy, energy
efficiency and co-generation projects (Natural Resources Canada, 2005). This tool contains an Inter-
national Small Hydro Project Model that can be used world-wide to evaluate the energy production,
life-cycle costs and greenhouse gas emissions reduction for small-scale hydropower schemes, ranging
in size from multi-turbine small and mini hydro installations to single-turbine micro hydro systems
(Natural Resources Canada, 2005).

10.3.1 Technical feasibility

In technical terms, the selection of an appropriate type of turbine should be based on its suitabil-
ity to the available head and flow in the site for the proposed hydropower plant(Natural Resources
Canada, 2005). Figure 10.5 shows the operating ranges of the main existent turbines. As stated by
the Colorado Energy Office (2015), a preliminary use of this type of chart enables the identification
of potential turbine types that are suitable for a given design head and flow.
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(a) (b)

(c) (d)

(e)

Figure 10.4: Representation of the main types of hydroturbines: (a) Pelton-type turbine, (b) difference
in the interaction of a water jet coming from the nozzle and hitting the blades of the runner of a Pelton-
and Turgo-type turbine, (c) Francis-type turbine, (d) Cross-flow turbine and (e) Kaplan-type turbine
(adapted from Colorado Energy Office, 2015).
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Figure 10.5: Operating ranges of the main existent turbines for small hydropower generation (adapted
from Colorado Energy Office, 2015).

The head range should be the first criterion to take into account in the turbine’s selection (Euro-
pean Small Hydropower Association, 2004b). Table 10.1 shows the operation head ranges for each
main type of turbine, as specified by the European Small Hydropower Association (2004b). As can
be observed, more than one type of turbine can be used for some head ranges.

Table 10.1: Operation range for the main existent hydroturbines in terms of head (European Small
Hydropower Association, 2004b).

Operation range Turbine type

50<H<1300 Pelton impulse
50<H<250 Turgo impulse
10<H<350 Francis reaction
3<H<250 Cross-flow impulse
2<H<40 Kaplan/propeller reaction

In the process of selection of a turbine, the associated efficiency of the turbo-machine also presents
an important role since the net recovered energy will be dependent of such parameter. Any turbine
has an associated efficiency curve as a function of the flow. Turbines that present high efficiencies
under broad ranges of flow are adequate for schemes developed in water networks due to the high
variability of flow in such systems. However, turbines capable of covering a large operating range are
also typically more expensive (Colorado Energy Office, 2015). Figure 10.6 depicts the variation on
the efficiency of the main types of turbine under the operation at flow rates distinct from the design
flow.

The turbine’s efficiency curves take into account a number of factors including the rated head,
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Figure 10.6: Relative efficiencies regarding the discharges as proportion of design flow rate for Pelton
(1 and 2 nozzles), Kaplan, propeller with fixed guide vanes and blades and Francis turbines and
reverse pump (or pump-as-turbine) (adapted from Aline et al., 2012; European Small Hydropower
Association, 2004b).

the runner diameter and the turbine specific speed (Natural Resources Canada, 2005). In this work,
the determination of each turbine efficiency, based on its specific speed (if applicable) and runner
diameter, which are also designed parameters, is performed using the equations proposed by the
Natural Resources Canada (2005). Such equations were derived from a large number of manufacture
efficiency curves for different turbine types and head and flow conditions.

For reaction turbines (Francis, Kaplan and propeller), the runner diameter, Dt, can be determined
by (Natural Resources Canada, 2005):

Dt = k1Q0.473
d , (10.10)

where Qd is the design flow rate (m3/s) and k1 = 0.46. The dimensionless specific speed based on
flow, NQ, is obtained by:

NQ = k2H−0.5
t , (10.11)

where Ht (m) is the rated head on turbine and the constant k2 takes the value 600 for Francis turbines
and 800 for Kaplan or propeller turbines.

After calculating the diameter and speed, the efficiency for each distinct type of reaction turbine
can be computed according to the formulae presented as following.

In the case of Francis turbines, the peak efficiency can be determined by (Natural Resources
Canada, 2005):

ηF, peak =

[
0.919−

(
NQ−56

256

)2

+

(
0.81+

(
NQ−56

256

)2
)(

1− 0.789
D0.2

t

)]
−0.0305+0.005Rm,

(10.12)

where Rm is the turbine manufacture/design coefficient that can take values from 2.8 to 6.1 (the default
value considered in this work is 4.5). In case of flows, Qt, below the peak efficiency flow, Qpeak, the
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turbine efficiency should be calculated by:

ηF,below =

[
1−

(
1.25

(
Qpeak−Qt

Qpeak

)3.94−0.0195NQ
)]

ηF, peak. (10.13)

By other side, for flows above peak efficiency flow, the efficiency equation is:

ηF,above = ηF, peak−

[(
Qt−Qpeak

Qd−Qpeak

)2 (
ηF, peak− (1−0.0072N0.4

Q )ηF, peak
)]

. (10.14)

The efficiency of Kaplan turbines is given by (Natural Resources Canada, 2005):

ηK =

[
1−3.5

(
Qpeak−Qt

Qpeak

)6
]

ηK,peak, (10.15)

where Qpeak = 0.75Qd and

ηK,peak = 0.905−
(

NQ−170
700

)2

+

(
0.095+

(
NQ−170

700

)2
)(

1− 0.789
D0.2

t

)
−0.0305+0.005Rm.

(10.16)

For propeller turbines, the efficiency computation is performed by (Natural Resources Canada,
2005):

ηprop =

[
1−1.25

(
Qpeak−Qt

Qpeak

)1.13
]

ηprop,peak, (10.17)

where Qpeak = Qd and ηprop,peak = ηK,peak, which can be obtained from Equation 10.16.

For impulse turbines (Pelton, Turgo and cross-flow), the specific speed is not determined. The
equation that gives the efficiency of Pelton turbines is (Natural Resources Canada, 2005):

ηP =

[
1− (1.31+0.025njet)

∣∣∣∣Qpeak−Qt

Qpeak

∣∣∣∣(5.6+0.4njet)
]

ηP,peak, (10.18)

where njet is the number of jets (value from 1 to 6), Qpeak = (0.662+0.001njet)Qd and ηP,peak can be
calculated by:

ηP,peak = 0.864D0.04
out , (10.19)

where the outside runner diameter, Dout, is given by:

Dout =
49.4H0.5

t n0.02
jet

31
[
Ht(Qd/njet)

]0.5 , (10.20)

where Ht (m) is the head available in the turbine.

The efficiency of Turgo turbines can be considered as 30 % of the efficiency of Pelton turbines
(Natural Resources Canada, 2005):

ηT = 0.3ηP. (10.21)
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Finally, the determination of the efficiency of cross-flow turbines is performed by (Natural Re-
sources Canada, 2005):

ηCF = 0.79−0.15
(

Qd−Qt

Qpeak

)
−1.37

(
Qd−Qt

Qpeak

)14

, (10.22)

where Qpeak = Qd.
Since the flow rate in water supply and distribution systems is usually highly variable, the turbine’s

efficiency, and hence the recoverable power, will be also largely variable.

10.3.2 Financial feasibility

The idea of a financial feasibility analysis is to determine whether the balance of costs and savings of
a certain project is attractive (Natural Resources Canada, 2005).

The financial analysis model proposed by the Natural Resources Canada (2005) uses formulae
based on standard financial terminology that can be found in most financial textbooks. The model
considers year 0 as the initial investment year and that the timing of cash flows occurs at the end of
the year.

For a complete financial feasibility study, a large number of contributors for the initial costs of
a small-scale hydropower project, such as (i) development, (ii) engineering, (iii) energy equipment
and installation, (iv) access road, (v) transmission line, (vi) transformer and installation, (vii) civil
works, (viii) penstock and installation, (ix) canal and (x) others (miscellaneous), is included in the
model proposed by the Natural Resources Canada (2005). However, in the proposed preliminary
financial analysis, only the energy equipment, its installation and civil works are considered in the
costs computation for the comparison among different scenarios. The total investment is then obtained
by summing such costs.

Following the methodology of the Natural Resources Canada (2005), the turbines costs can be
estimated by:

Ct,F = 0.17n0.96
turb JtKtD1.47

a
[
(13+0.01Hd)

0.3 +3
]

106, for Francis turbines, (10.23a)

Ct,K = 0.27n0.96
turb JtKtD1.47

a
(
1.17H0.12

d +2
)

106, for Kaplan turbines, (10.23b)

Ct,prop = 0.125n0.96
turb JtKtD1.47

a
(
1.17H0.12

d +4
)

106, for propeller turbines, (10.23c)

Ct,P/T =


3.47n0.96

turb

(
Pu

H0.5
d

)0.44
106, if Pu

H0.5
d

> 0.4

5.34n0.96
turb

(
Pu

H0.5
d

)0.91
106, if Pu

H0.5
d
≤ 0.4

, for Pelton/Turgo turbines, (10.23d)

and

Ct,CF = 0.5Ct,P/T, for cross-flow turbines. (10.23e)

In Equations 10.23a to 10.23e, nturb represents the number of turbines, which is always 1 for micro
hydroplants, Da = 0.482Q0.45

d is the approximated turbine runner diameter (m), Jt is an higher cost
vertical axis turbine factor to account for cost increase with vertical axis at heads above 25 m (Jt = 1.1
if Hd > 25 m, otherwise Jt = 1), Kt is a lower cost small horizontal axis turbine factor to account
for cost decrease with small horizontal axis units (Kt = 0.9 if Da < 1.8 m, otherwise Kt = 1), and
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Pu = 7.53QdHd/1000 is the unit capacity (MW).
For all types of turbine, the cost of installation is considered to be equal to 15 % of the turbine

cost (Natural Resources Canada, 2005):

Cinstal = 0.15Ct (10.24)

Costs of civil works (in US$), for micro hydropower projects, are computed by (Natural Resources
Canada, 2005):

Ccivil = 106 1.97
n0.04

turb
fcivil

(
Pu

H0.3
d

)0.82

, (10.25)

where fcivil is a civil cost factor (0.44 for an existing dam or 1.0 if no dam exists).
After calculating the total investment cost for the project development, the annual revenue should

be estimated by means of the expected annual recovered energy and the sell price of energy. It should
be noticed that the sell price of energy as well as the existence of possible incentives are variable
factors from country to country and can be determinant in the final decision on the financial feasibility
of the project.

To determine the return on investment, i.e. the number of years it takes to equal the total in-
vestment, a simple cash-flow analysis can be performed. A cash-flow tracks, on an annual basis, all
expenses (outflows) and incomes (inflows) generated by the hydropower project. In the expenses,
the initial investments and annual operation and maintenance costs should be included. The incomes
may include not only the produced energy but also acquired incentives and grants (Natural Resources
Canada, 2005).
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11. Integrated computational tool

A general overview of the developed numerical tool is provided, describing
the main process performed in each module that constitutes the

developed tool as well as all connections between them.

In order to obtain an automatic process for the efficiency improvement of water supply systems (WSS)
in any kind of network configuration, an integrated numerical tool was developed in C/C++ program-
ming language. The hydraulic simulator EPANET 2.0 was integrated in the developed tool in order
to perform the hydraulic simulation of the networks’ operation. The incorporation of EPANET in the
developed application was performed using the EPANET programming toolkit, which consists in a
dynamic link library (DLL) of functions that allow developers to customise EPANET to their own
needs (EPA U.S., 2015). It is particularly used in iterative processes (such as design optimisation,
operational optimisation, calibration).

A flowchart representing the main processes that take place in the developed tool is presented in
Figure 11.1. The numerical tool is composed of four main modules: (i) simulation, (ii) optimisa-
tion, (iii) energy recovery and (iv) forecasting, from which only the three first modules were already
fully automatically integrated. The forecasting module is an independent tool that provides updated
information for the other modules, particularly for the simulation module.

The numerical tool has an initial stage of data collection concerning the user’s choices and the
model of the network to be optimised. After this initial stage, depending on the user’s decision, three
distinct processes may be performed:

• Optimisation of the network operation in order to minimise the pumping energy consumption;

• Network analysis through the simulation considering, for instance, distinct methods for com-
putation of the variable-speed pumps efficiency and saving the simulation results in specific
formats;

• Search for possible locations for turbines installation in order to recover dissipated energy (from
zones with excessive pressures) and selection of the most adequate turbine.

Before start using the presented tool, the EPANET model of a certain network (or section of
a network) needs to be configured by the user. The idea is to use such model to obtain an input
file, named <network>.inp (see Figure 11.1), where <network> is the network’s name chosen by the
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Figure 11.1: Flowchart of the numerical tool developed in this work.

user. In such file, all the characteristics of the network as well as the time parameters for the desired
simulation, i.e. the simulation duration and size of the time-steps (e.g. a simulation of one day
performed in hourly time-steps, which gives 24 steps), are included. An EPANET model of a network
can be configured by two distinct ways: (i) manually designing the network using the EPANET
graphical user interface (GUI) or (ii) converting a CAD∗ file or a file from a GIS† using file converters
such as, for instance, DXF2EPA, EPACAD and epa2gis (see Salomons (2015a, 2015b) and Zonum
Solutions (2009)) and importing it to EPANET. The first model configuration option is the most simple
and more useful especially for small networks. The option of converting CAD or GIS files into files
compatible with EPANET (an ASCII file with extension inp) may be advantageous especially for
very large networks (e.g. a network of an entire city) but, in turn, requires particular precautions since
only pipes and nodes are usually possible to convert. This means that other elements (such as valves
and pumps) may need to be configured using the EPANET GUI. Anyway, after importing the files to
EPANET, the network layout must always be carefully checked.

Besides the file containing the network EPANET model, another input file is needed to run the
presented tool. Such file, named DEF_general.txt (see Figure 11.1), contains several options to define
specific characteristics of the processes that may occur. Such options, initially defined by the user,

∗CAD is an image file format that allows 2D and 3D designs. CAD files hold information for these images, as well as
drafting information. CAD stands for Computer Aided Design.
†GIS stands for Geographical Information System.
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include:

File name: the name of the network model, without including the file extension, i.e. the previously
mentioned <network>.

Switch decisions: include decisions related with (i) the optimisation variables preparation, (ii) the
desired water levels in tanks in the end of the defined simulation period, (iii) the method(s)
for computing the objective function, i.e. the energy costs associated to the network operation,
and (iv) the method for the variable-speed pumps efficiency computation. The possible options
concerning the first decision are related with the optimisation procedure and, consequently, are
described with detail in Section 11.2. The options for the other three decisions are described in
the chapter devoted to the networks simulation module (Section 11.1).

Penalty coefficients: the value of the coefficient for each considered penalty. The implementation of
penalty methods, related with the optimisation procedure, is described in Section 11.2.

Operation boundaries: the minimum and maximum values to be considered during the optimisation
process for (i) the pumps speed, (ii) the levels of water in tanks and (iii) the nodal pressures.
For the pumps speed, used as decision variables, the limit values to be introduced by the user
correspond to relative speeds (a speed with relation to the nominal speed). For the tanks, the
boundary levels are introduced in percentage, i.e. the considered minimum and maximum levels
correspond, respectively, to a percentage below and above the levels defined for each tank in
the model of the network (<network>.inp). Concerning the pressure, only a minimum value
is introduced by the user, which avoids unacceptable low pressure in all junctions. Both the
tanks water levels and the nodal pressures are controlled through constraint functions during
the optimisation procedure. A minimum value of pressure is also used for the energy recovery
module.

Optimisation technique: the sequence (and size of such cascade) of the optimisation algorithms to
be used. The allowed optimisation techniques are described in Section 11.2.

Elements to optimise: the pumps and valves existent in the network that the user intends to optimise.
Only the selected elements will be considered in the optimisation procedure, which means that
the control solution for the other elements will remain the same defined in the network model.
For both pumps and valves, the user must introduce the numbers 1 or 0 (optimise or not),
according to the order they appear in the <network>.inp file.

Optimisation parameters: the parameters that need to be defined for each optimisation algorithm,
such as the maximum number of iterations and/or the population size (i.e. number of individuals
or particles).

In case some of the previous options inserted by the user contain invalid values, an error message
with instructions is provided.

This tool was developed in a way to allow an easy evolution to a software with a graphical user
interface. The file containing the user options can be simply replaced by boxes to be filled by the
users and by buttons, so the users can choose between the distinct available options.

In the beginning of the implemented numerical tool (the starting point in Figure 11.1), an ini-
tialisation/preparation process is performed, i.e. the programme saves memory for all the processes
and initialises distinct structures for each type of element/component that constitute a network (junc-
tions, reservoirs, tanks, pipes, valves and pumps) as well as for the simulation data. The informa-
tion contained in the file of the network model is read using the functions of the EPANET toolkit



150 11. Integrated computational tool

(López-Ibáñez, 2015). Although the toolkit has several functions for retrieving and setting parame-
ters (ENget() and ENset() functions) that define both the design and the operation of the network,
such functions do not allow to retrieve all the information contained in the network model. Thus, new
functions (subroutines/methods) were developed in order to read the missing information directly
from the file. It was the case of (i) the ID labels for the pumps speed patterns and energy patterns and
for the pumps head curves and efficiency curves, (ii) the minimum and maximum operating or alarm
levels of each tank and (iii) the value of the demand charge for the computation of additional costs
due to maximum power usage by pumps.

At this stage, with the incorporation of a forecasting module in the developed tool, the demand
patterns associated to each consumption nodes of the network could be optionally updated according
to the predicted values for a near future (24 hours, for instance). This procedure allows obtaining, in
advance, the optimal network control decisions for the same period of predicted water demand.

Considering the current development stage of the presented numerical tool, the user has available
two possible operations for improving the efficiency of the modelled network: (i) the optimisation of
the network operation for the energy costs minimisation or (ii) the search for possible locations of the
network presenting excessive pressures and potential for producing energy using hydroturbines. It is
also possible to use uniquely the simulation module of the presented tool, which provides additional
features to the ones provided by the simulator EPANET 2.0, allowing to perform specific analysis of
the networks.

The optimisation module is in fact coupled with the simulation module. The latter is used in the
optimisation procedure as a kind of black-box that provides the value of the objective function (OF),
as well as the value of the constraint functions, given a certain solution (decision variables) provided
by the optimiser, such as demonstrated in Figure 11.1. The computation of the OF is the result of an
hydraulic simulation of the network under the new operational conditions provided by the optimiser
and computing the associated energy costs.

11.1 Network simulation module

As mentioned before, the simulation module can be used both (i) as a complement of the optimisation
procedure or (ii) as a tool for specific analysis of water supply systems.

Some features were implemented in this module, in addition to the ones provided by EPANET,
in order to improve the results obtained from the hydraulic simulation of the networks and the use of
such results. The main incorporated features include:
• Option for the energy costs computation;
• Distinct methods for the computation of speed-adjusted pump efficiency;
• Save different simulation results in distinct formats in order to assist in the results’ analyses;
All the additional features were implemented externally to the EPANET toolkit, i.e. no changes

were performed in the toolkit and the implementation of new developed functions/subroutines was
performed through the direct interaction with the files generated during the simulation process. For
this reason, depending on the user’s options, the EPANET toolkit may need to be open and closed
more than once during the simulation procedure. This implementation strategy requires some addi-
tional process time (CPU time) due to the initialisation of the toolkit several times. However, besides
being the most simple strategy, it is advantageous in case of (i) using new versions and releases of
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the EPANET toolkit are released and (ii) some other researchers, using or not other programming
language, want to implement specific features relevant for their works by following the description of
the functions/subroutines implemented in this work.

When used within the optimisation module, the simulation procedure corresponds to the eval-
uation of the objective function. The developed function to implement such procedure is called
evaluateOF and the main implemented steps are provided in Algorithm 6.

Algorithm 6 Main steps for the objective function evaluation.

1: function EVALUATEOF()
2: Open toolkit: ENopen(<network>.inp);
3: switch aggregDecision do
4: case true
5: Disaggregate variables obtained from the optimiser: disaggregateXopt();
6: case false
7: Save decision variables (obtained from the optimiser): saveXopt();
8: for All variable-speed pumps to be optimised do
9: Speed variables update in patterns: ENset pattern();

10: end for
11: for All pumps and valves to be optimised do
12: Speed/status and time variables update in control statements: ENsetcontrol();
13: end for
14: Save updated model: ENsaveinp f ile(OptimNet.inp);
15: Close toolkit: ENclose();
16: for All fixed-speed pumps and valves to optimise do
17: Correction of saved controls status: correctControls();
18: end for
19: Open toolkit: ENopen(OptimNet.inp);
20: switch OFdecision do
21: case OFdecision = epanet
22: Ojective function value (OF) obtained by EPANET: OFepanet();
23: case OFdecision = compute
24: Objective function computed: OFcompute();
25: case OFdecision = both
26: Objective function computed and compared with the obtained by EPANET;
27: Close toolkit: ENclose();
28: return OF result.
29: end function

To evaluate the objective function, the toolkit has to be open/closed at least twice (steps 2/15 and
19/27 in Algorithm 6). First, the decision variables that are provided by the optimisation module
(optimiser) need to be introduced (updated) in the initial model of the network (<network>.inp). To
keep the initial network unchanged, a network model with the updated variables is saved to a new
file (OptimNet.inp). Small corrections need to be performed to this new file, since the toolkit does
not save the file exactly in the same format as the initial file. In this particular case, the status in
the controls of valves and fixed-speed pumps, that were update with OPEN/CLOSED statements, are
saved by the toolkit as 1.0/0.0. Thus, the developed function correctControls() (step 17) performs the
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“correction” of such statements by (i) opening the file (OptimNet.inp), (ii) replacing the correspond-
ing values and (iii) closing the file. After that, the toolkit is open again with the updated model of the
network (OptimNet.inp) in order to proceed with the evaluation of the objective function (using the
method initially defined by the user).

The switch aggregDecision (explained in Section 11.2) provides an option of reducing the num-
ber of decision variables (by aggregation) before initialising the optimisation procedure, in order to
speed-up the process. In case this option is selected (aggregDecision = true), the inverse process
(disaggregation) need to be performed before the simulation process for the solution evaluation.

The switch OFdecision allows the user to choose between the energy costs computation by
EPANET (OFdecision=epanet) or, alternatively, compute the costs externally to EPANET (OFdeci−
sion = compute), using information previously retrieved from the hydraulic simulation and saved in
memory. The former option was initially implemented to overcome a limitation in the use of the
toolkit that was limiting the number of iterations (maximum of 65535 iterations, to be more precise‡)
due to the generation of a temporary file containing the hydraulic results obtained at every time step
(a binary hydraulics file with extension *.hyd). Such limitation was then overcome by running the
EPANET hydraulic simulation without saving the hydraulic results to files and using the required in-
formation saved in memory for the costs computation (OFcompute() function). This option provides
the advantages of (i) speeding-up the process (for avoiding operations with files) and (ii) allowing
the introduction of new features. Meanwhile, another alternative approach to overcome this limita-
tion of the toolkit was also found. By defining a fixed name for the hydraulics file, the generation
of temporary files is avoided and the information is always saved in the same file, which allows an
unlimited number of iterations. A name for the hydraulics file can be defined in the initial input file of
the network model (<network>.inp) by inserting a new line in the section [OPTIONS]: “Hydraulics
SAVE <hydfilename>”.

In the two procedures presented in Algorithm 7 for the energy costs computation, it can be ob-
served that the main differences are related with the functions that execute the hydraulic simulation of
the network (SimulNoSaveHyd() or SimulSaveHyd()) and the functions to compute or obtain the
computed costs (ComputeMaxDemandCharge() and ComputePumpCost() or ReadRptCostand−
Warnings(), respectively). The last steps presented in both procedures implement the tanks and pres-
sure penalty functions evaluation using exactly the same methods (tankConstraints() and pressure−
Constraints()).

Finally, the objective function is computed by adding the penalty functions to the pumping energy
costs associated to the operation of the network during the simulated period (computed or obtained
from EPANET). In fact, this value of the objective function already corresponds to the penalised
objective function as discussed in the previous part of this thesis (Part III).

In each performed hydraulic simulation, a report file is generated by EPANET§. In some situa-
tions, warning and error messages generated during the simulation are written to such report. When
running an EPANET hydraulic analysis, warning messages can occur by several reasons, such as
(Rossman, 2000): (i) the system cannot converge to a stable/balanced hydraulic solution in the al-
lowed number of trials/iterations (defined by the user in the input file), (ii) pumps and/or valves may

‡In Microsoft Windows R© environment, it is only possible to create 65535 temporary files in a single directory. The
.NET Framework mentions this limit related with the GetTempFileName method (Microsoft: developer network, 2015)

§Note that in the input file, <network>.inp, in section [REPORT], the option for energy computation should be added
before running the optimisation by inserting the line “Energy yes”.
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Algorithm 7 Main steps for computing the pumping energy costs and/or for obtaining the value
computed by EPANET.

1: function OFcompute()
2: Execute a simulation without saving hydraulic results: SimulNoSaveHyd();
3: Compute costs associated to pumps operation at the peak power demand charge:

ComputeMaxDemandCharge();
4: Compute pumping energy costs considering the power consumed and the operating time

(Equation 8.3): ComputePumpCost();
5: Search for warning messages and define the warning-related constraint function (Equation

8.11): ReadRptWarnings();
6: Evaluate the water levels in tanks and define the tanks-related constraint functions (Equations

8.7 to 8.9): TankConstraints();
7: Evaluate the nodal pressures and define the pressure-related constraint function (Equation

8.10): PressureConstraint();
8: Compute the penalised objective function: OF =Ctotal +FH

warn +FG
tanks +FG

press;
9: return OF .

10: end function

11: function OFEPANET()
12: Execute a simulation saving the hydraulic results: SimulSaveHyd();
13: Read report file to obtain EPANET computed costs and search for warnings

ReadRptCostAndWarnings();
14: Evaluate the water levels in tanks and define the tanks-related constraint functions (Equations

8.7 to 8.9): TankConstraints();
15: Evaluate the nodal pressures and define the pressure-related constraint function (Equation

8.10): PressureConstraint();
16: Compute the objective function: OF =Ctotal +FH

warn +FG
tanks +FG

press;
17: return OF .
18: end function
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not be able to deliver enough flow if operating outside their limits, (iii) solution may leads to negative
pressures in nodes, etc. Any kind of solution that produces warning messages is considered an infea-
sible solution and should not be accepted. To discard such solutions, the occurrence of warnings is
treated as an equality constraint penalty function (FH

warn) that is computed by adding a warning penalty
to the function value each time a warning message is identified (as shown in Algorithm 8, step 5):

FH
warn = rh,warn×nwarn, (11.1)

where nwarn is the number of warnings that occurred in the hydraulic analysis and rh,warn is the warning
penalty coefficient pre-defined by the user (in file DEF_general.txt).

Algorithm 8 Procedure to account for the costs computed by EPANET and warning messages.

1: function READRPTCOSTANDWARNINGS()
2: Open OptimNet.rpt file;
3: Read total cost and demand charge cost computed by EPANET;
4: Obtain EPANET computed pumping energy costs: Cpumping =Ctotal−CdemandCharge;
5: while Searching for warning messages do
6: if warning found then
7: nwarn = nwarn +1;
8: FH

warn = rh,warnnwarn;
9: end if

10: end while
11: Close OptimNet.rpt file;
12: return FH

warn and Cpumping.
13: end function

As mentioned before, the main difference in the hydraulic simulation execution for computing the
costs or obtaining the value computed by EPANET is related with the decision of saving the hydraulic
results in the report file. The procedure to compute the pumping energy costs includes a simulation
without saving the hydraulic results (SimulNoSaveHyd()) and uses the results saved during the sim-
ulation for the external computation of the pumping costs (ComputePumpCost()) and the additional
costs related to the pumps operation at maximum power (ComputeMaxDemandCharge()). On the
other side, the procedure to obtain the pumping costs computed by EPANET includes a simulation
considering the hydraulic results (SimulSaveHyd()) and reads the computed values of pumping costs
and additional costs from the report file (ReadRptCostandWarnings()). Algorithm 9 shows the steps
implemented to perform the simulation with the option of saving the hydraulic results. The main dif-
ference occurs in step 3, where the f lag = 01 or 00 defines if the initialised hydraulic analysis will be
performed saving or not the results to a file. When the option of saving results is used, two additional
functions are used to generate the results file: ENsaveH() and ENreport(), for saving and writing
the hydraulic results in a report file (steps 30 and 31 of Algorithm 9). During the hydraulic analysis,
the procedures are similar. For each clockTime, the power consumed by each pump as well as the
delivered flow rate (already adjusted by the corresponding speed) are obtained by using the toolkit
function ENgetlinkvalue(). The clockTime represents any hour with associated occurrences, such
as a pipe or valve status change, which may not be coincident with the pre-defined hydraulic steps.
Such hours with occurrences are also saved. For each pre-defined hydraulic step, the values of tanks
water levels and nodal pressures are saved, respectively, for all tanks and junctions using the toolkit
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function ENgetnodevalue().

Algorithm 9 Network simulation and result saving.

1: procedure SIMULSAVEHYD()
2: Open hydraulic solver: ENopenH();
3: Define f lag = 01 (save results to file);
4: Initialise hydraulic analysis: ENinitH( f lag);
5: while time period > 0 do
6: Run hydraulic analysis: ENrunH(clockTime);
7: for each clockTime do
8: Save clockTime;
9: for all pumps do

10: Save the obtained pump power (PEPA): ENgetlinkvalue();
11: Save the obtained pump flow rate (Q2,EPA): ENgetlinkvalue();
12: end for
13: if clockTime equal to pre-defined step then
14: for all junctions do
15: Save the obtained nodal pressure: ENgetnodevalue();
16: end for
17: for all tanks do
18: Save the obtained current water level (pressure): ENgetnodevalue();
19: end for
20: end if
21: end for
22: Calculate the length of the next time period: ENnextH(time period);
23: end while
24: switch e f f iciencyDecision do
25: case e f f iciencyDecision =EPA
26: Maintain the same values saved for the pumps power;
27: case e f f iciencyDecision =AL or SB or CAC
28: Compute the values of power considering the selected efficiency formula:

changeE f f iciency();
29: Close hydraulic solver: ENcloseH();
30: Save hydraulic results: ENsaveH();
31: Write results in the report file: ENreport();
32: Close toolkit: ENclose();
33: end procedure

After performing the hydraulic analysis and obtaining the values of power consumed by each
pump in each step, a correction of such values taking into account the formulation for the pumps
efficiency computation may be executed according to the e f f iciencyDecision. In case the user intends
to compute the values of pump power consumption considering a specific method for the pumps
efficiency computation with speed variation (see Section 7.2), the switch e f f iciencyDecision should
be set to (i) AL, for considering the Affinity Laws, (ii) SB for considering the Sarbu and Borza method
or (iii) CAC for considering the new method proposed in this work. To keep the same values of power
consumption computed by EPANET, the switch should be set to EPA. The procedure implemented
for the pump power correction is presented in Algorithm 10.
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Algorithm 10 Steps for the pumps power correction.

1: procedure CHANGEEFFICIENCY()
2: for all variable-speed pumps do
3: Obtain the EPANET pump efficiency (η2,EPA) for all periods of time from interpolation in

the efficiency curve using the saved pump flow values (Q2,EPA);
4: Determine the values of pump flow rate at nominal speed: Q1 = Q2,EPA/(N2/N1)
5: Obtain the efficiency values (η1) for each corresponding flow rate, Q1, by interpolation in

the pump efficiency curve;
6: end for
7: if e f f iciencyDecision =AL then
8: Set η2,AL = η1;
9: Compute the corrected power values according to the Affinity Laws:

PAL = PEPA

(
η2,EPA
η2,AL

)
;

10: else if e f f iciencyDecision =SB then
11: Compute the speed-adjusted efficiency values according to the Sarbu and Borza (SB)

formula: η2,SB = 1− (1−η1)
(

N1
N2

)0.1
;

12: Compute the corrected power values according to the SB method: PSB = PEPA

(
η2,EPA
η2,SB

)
;

13: else if e f f iciencyDecision =CAC then
14: Compute the speed-adjusted efficiency values according to the formula proposed in this

work (CAC): η2,CAC = η1

[(
N2
N1
−1
)3

+1
]

;

15: Compute the corrected power values according to the proposed method:
PCAC = PEPA

(
η2,EPA
η2,CAC

)
;

16: end if
17: end procedure



11.1. Network simulation module 157

The first steps consist in determine the efficiency value computed by EPANET for each variable-
speed pump in all periods of time (considering the clockTime values). From the efficiency curve used
by EPANET for each specific pump and using the delivered flow rate in each interval, the EPANET
pump efficiency, η2,EPA, can be obtained by interpolation of the flow values in the corresponding
efficiency curve. After that, the pump flow rate at nominal speed, Q1, is computed using the affinity
law for flow (step 4 of Algorithm 10). Using the same efficiency curve always used by EPANET,
the values of pump efficiency at nominal speed, η1, can also be obtained by interpolation (see Figure
11.2).

Since the pump power computed by EPANET is given by:

PEPA =
γQ2H2

η2,EPA
, (11.2)

then, the method implemented to correct the values of pump power multiplies the obtained values
by the EPANET computed efficiency, η2,EPA, and divides it by the new speed-adjusted computed
efficiency, η2,corrected (i.e. η2,AL, η2,SB or η2,CAC):

Pcorrected = PEPA
η2,EPA

η2,corrected
. (11.3)

Figure 11.2: Scheme to demonstrate the calculation of the pump efficiency based on the Affinity Laws
from the efficiency computed by EPANET.

In the particular case of the efficiency computation considering the affinity laws, since it is only
expected a deviation of the nominal efficiency curve with the speed change, this means that the value
of pump efficiency is maintained even considering the speed-adjusted flow rate (see demonstration
in Figure 11.2). Thus, the correction of the speed-adjusted efficiency computed by EPANET to the
efficiency computed by the AL (η2,AL) can be performed by considering that η2,AL is equal to the
pump efficiency at nominal speed (η1).

For the other two possible methods for the efficiency computation, the corresponding formulae
should be applied, according to step 11 or step 14 of Algorithm 10 and replaced in Equation 11.3.

After executing the hydraulic simulation of the network operation to obtain the power consump-
tion, the pumping energy can finally be obtained. Considering the process of obtaining the costs
computed by EPANET (function OFepanet() in Algorithm 7), only the function ReadRptCostand−
Warnings() is called. This function, whose implementation steps are presented in Algorithm 8, opens
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the report file generated after the hydraulic simulation¶ and reads the contained information of the
operational costs, namely the total costs and the demand charge. Although these additional costs
are not typically considered in studies involving the evaluation of operating costs, it is included in
the total costs computed by EPANET. Thus, the pumping energy costs were computed by subtract-
ing the CdemandCharge to the Ctotal (step 4 in Algorithm 8). Considering the process for computing
the pumping costs (function OFcompute() in Algorithm 7), in order to obtain the same results as
the computed by EPANET, two functions were implemented to compute the pumping energy costs
(ComputePumpCost()) and the additional demand charge costs (ComputeMaxDemandCharge()).
The main steps implemented in each function are, respectively, listed in Algorithms 11 and 12.

Algorithm 11 Computation of pumping energy costs.

1: function COMPUTEPUMPCOST()
2: for All pumps do
3: Compute the cost of energy consumed in each time period of operation:

Cpumping,p,s = Pp,stop,p,sTp,s, where P corresponds to the values of power saved and Tp,s

is the value of the tariff associated to each pump p in the time period s;
4: end for
5: Sum the costs computed for all pumps in all time periods: Cpumping = ∑p ∑sCpumpingp,s;
6: return Cpumping.
7: end function

The pumping energy costs are computed using the power consumed in each time interval and the
corresponding price of energy in such interval of time. The total pumping energy costs associated
to the operation of the network is the sum of the energy costs associated to each pump in each time
interval.

Algorithm 12 Computation of the additional cost associated to pumps operations at peak demand.

1: function COMPUTEMAXDEMANDCHARGE()
2: Find peak power, Pmax from all the values of power saved (PEPA);
3: Sum all values of power equal to the peak (Equation 8.4) αp = PmaxnPmax ;
4: Compute the additional costs due to pumps operation at maximum power (Equation 8.3):

CdemandCharge = ∑
npumps
p=1 DCpαp, where DC is the demand charge pre-defined by the user in the

<network>.inp file;
5: return CdemandCharge.
6: end function

The function for the computation of the additional costs uses the same values of power consump-
tion, determines the peak/maximum power of such set of values and sums all values of power that
equals the peak, i.e., multiplies the peak power by the number of times each pump is operating at the
same maximum power (step 3 in Algorithm 12). Finally, the result is multiplied by the demand charge
(DC) pre-defined by the user in order to obtain the same CdemandCharge as the computed by EPANET.

To obtain the value of the augmented objective function, the penalty functions should be computed
and added to the value of pumping energy costs (such as previously shown in steps 8 and 16 of
Algorithm 7). The steps implemented for computing the penalty functions in case of violation of both

¶Remember that the generated files can only be used for read/write after closing the toolkit, explaining why the
ENclose() function is used in the end of the simulation procedure.
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tanks-related and pressure-related constraints are provided in Algorithms 13 and 14, respectively.

As shown in Algorithm 13, the first constraints checked are the related with the minimum and
maximum alarm levels of each tank of the network. Instead of comparing the water level in tanks
in each hour with the limit operating levels (minimum and maximum allowed levels of operation)
defined in the input file for each tank, the measured water levels in each hour of the simulation are
compared with the alarm levels, which correspond to more restrict limits above the maximum and be-
low the minimum. This was implemented because in some water utilities there are in fact two distinct
types of limits considered for the tanks operation: the operating limit and the alarm limit. The last one
cannot, in any situation, be overcome. Thus, the user has the option of providing the values that want
to consider for both minimum and maximum levels. The difference between the operating and alarm
levels for both the minimum and maximum levels of the tanks can be pre-defined by the user in terms
of percentage. In case the user only wants to consider the minimum and maximum levels defined in
the model of the network, the percentage for both the minimum level difference (L%minSecurity) and the
maximum level difference (L%maxSecurity) should be set to zero. Otherwise, the user should introduce
the tanks alarm levels in the input file of the network model (<network>.inp) and insert the desired
percentage for the difference between the alarm level and the operating level. It should be noticed
that the use of operating levels for the constraints evaluation ensures that the resulting solutions from
the optimiser will never overcome the alarm levels. According to the implemented steps 3 to 32 pre-
sented in Algorithm 13, the maximum level penalty function (FG

maxLevel) ensures that the water levels
never exceed the maximum operating levels. At the same time, the minimum level penalty function
(FG

minLevel) ensures the water levels never drop below the minimum operating levels.

The other type of constraint related with the tanks depends on a user pre-defined option and
concerns the water levels in the end of the simulation period. The user has four available options:
(i) consider continuity, i.e. the water level in the end of the simulation should be equal to the water
level in the beginning, (ii) do not consider continuity, meaning that no constraint will be considered,
(iii) final level superior or equal to the initial (inequality constraint), allowing to accept more solutions
then considering the continuity constraint, or (iv) consider a pre-defined final water level, which limits
the optimisation process similarly with the continuity constraint. An appropriate penalty method is
implemented according to the type of constraint (equality or inequality) such as the discussed in the
previous part of the thesis.

Finally, the tanks-related penalty function is obtained by summing the three distinct computed
penalties, i.e.

FG
tanks = FG

maxLevel +FG
minLevel +FG

finalLevel. (11.4)

Similar with the minimum level penalty function, the pressure-related penalty function also ap-
plies a penalty in case the values of pressure in each junction drop below the minimum value of
pressure pre-defined by the user.

The dimension of each implemented penalty function is dependent on the penalty coefficients
defined by the user for each case. To ignore a certain constraint, the corresponding penalty coefficient
should always be set to zero. This is valid for all the coefficients: rg,maxLevel, rg,minLevel, rg,finalLevel,
rg,minPress and rh,warn.

It should be noticed that the discussed implemented methodologies concerning the simulation
options, as mentioned before, can be used separately from the optimisation module in case the user
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Algorithm 13 Computation of the tanks-related penalty functions.

1: function TANKSCONSTRAINTS()
2: Initialise variables for the constraint functions values: h1,i = 0, g1,i = 0, g2,i = 0, g3,i = 0;
3: for Each tank i do
4: Define the maximum operating level: Li,max = Li,maxAlarm− (L%maxSecurity×Li,maxAlarm);
5: Define the minimum operating level: Li,min = Li,minAlarm− (L%minSecurity×Li,minAlarm);
6: for Each time step do
7: if Li > Li,max then
8: g2,i = Li−Li,max;
9: FG

maxLevel = FG
maxLevel + rg,maxLevel [max{0,g2,i}]2;

10: end if
11: if Li < Li,min then
12: g3,i = Li,min−Li;
13: FG

minLevel = FG
minLevel + rg,minLevel [max{0,g3,i}]2;

14: end if
15: end for
16: switch f inalLevelDecision do
17: case f inalLevelDecision = continuity
18: if Li,final 6= Li,inital then
19: h1,i = Li,final−Li,inital;
20: FH/G

finalLevel = FH/G
finalLevel + rh,finalLevel [h1,i]

2;
21: end if
22: case f inalLevelDecision = noContinuity
23: FH/G

finalLevel = 0;

24: case f inalLevelDecision = superiorORequal
25: if Li,final < Li,inital then
26: g1,i = |Li,final−Li,inital|;
27: FH/G

finalLevel = FH/G
finalLevel + rg,finalLevel [max{0,g1,i}]2;

28: end if
29: case f inalLevelDecision = definedLevel
30: if Li,final 6= Li,defined then
31: h1,i = Li,final−Li,defined;
32: FH/G

finalLevel = FH/G
finalLevel + rh,finalLevel [h1,i]

2;
33: end if
34: end for
35: Compute the tanks-related penalty function: FH/G

tanks = FG
minLevel +FG

maxLevel +FH/G
finalLevel;

36: return FH/G
tanks.

37: end function
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Algorithm 14 Computation of the pressure-related penalty function.

1: function PRESSURECONSTRAINT()
2: Initialise the variable for the penalty value: g4,i = 0;
3: for Each junction i do
4: if Pi < Pi,min then
5: g4,i = |Pi−Pi,min|;
6: FG

minPress = FG
minPress + rg,minPress× [max{0,g4,i}]2;

7: end if
8: end for

return FG
minPress.

9: end function

only wants to perform hydraulic analysis to the modelled network. In this case, the same procedures
described in Algorithm 6 for the evaluation of the objective function, which in fact corresponds to
the simulation of the network operation, are performed excluding the steps concerning the variables
update.

11.2 Control optimisation module

The optimisation approach followed in this thesis considers the control of both pumps and valves of
the water supply and distribution networks. Two types of decision variables are then considered to
improve the network control with the aim of reducing the operating costs: (i) time rates, top, i.e. the
time of pumps operation in each time-step and the opening time of valves in the same step, and (ii)
relative speeds of the variable-speed pumps in each operating interval (time-step), M. The method
implemented to control the variables set, X, in an EPANET model was based in the use of both pump
speed patterns and time controls. A speed pattern containing the pump speed setting (relative speed)
of each time-step of the simulation is associated to each variable-speed pump. Concerning the time
controls, each element/component (pump and/or valve), whose operational control is intended to be
found in order to minimise costs, must have associated one control statement for each time-step of
the simulation indicating the status (or speed setting). This means that a pump operating during a day
divided into 24 time-steps must have associated 24 time controls. Table 11.1 provides examples of
controls associated to the three possible elements to control: a variable-speed pump, a fixed-speed
pump and a valve. The variable-speed pump is operating at 70 % of its nominal speed (0.7) in the
first step and then, when operating, is always at nominal speed (1.0). Both the fixed-speed pump and
the valve are open during all day except in the last two hours of simulation (from 22h to 24h).

When the user sets the option to optimise the network operation, the optimisation process is
automatically initialised according to the procedures presented in Algorithm 15. The first procedure
performs the initialisation of the objective function (initialiseOF()), which mainly involves the prepa-
ration of the decision variables. Using the information of the network initially saved in memory, a
vector containing the values of the decision variables (speed and time rates) is defined. Depending
on the user pre-defined option for the switch aggregDecision, the values for all time-steps can be
directly introduced in the vector of decision variables through the developed function de f ineX(),
or, alternatively, a search for possible aggregations of time-steps in blocks can be performed (if
aggregDecision = true) using the developed function aggregateX() (see Section 11.2.1). The ini-
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Table 11.1: Examples of time control statements implemented in the network model for the optimi-
sation of a variable-speed pump (pump1), a fixed-speed pump (pump2) and a Valve.

Variable-speed pump Fixed-speed pump Valve
LINK Pump1 0.7000 AT TIME 0.0000 LINK Pump2 OPEN AT TIME 0.0000 LINK Valve OPEN AT TIME 0.0000
LINK Pump1 1.0000 AT TIME 1.0000 LINK Pump2 OPEN AT TIME 1.0000 LINK Valve OPEN AT TIME 1.0000
LINK Pump1 0.0000 AT TIME 2.0000 LINK Pump2 OPEN AT TIME 2.0000 LINK Valve OPEN AT TIME 2.0000
LINK Pump1 1.0000 AT TIME 3.0000 LINK Pump2 OPEN AT TIME 3.0000 LINK Valve OPEN AT TIME 3.0000
LINK Pump1 1.0000 AT TIME 4.0000 LINK Pump2 OPEN AT TIME 4.0000 LINK Valve OPEN AT TIME 4.0000
LINK Pump1 1.0000 AT TIME 5.0000 LINK Pump2 OPEN AT TIME 5.0000 LINK Valve OPEN AT TIME 5.0000
LINK Pump1 1.0000 AT TIME 6.0000 LINK Pump2 OPEN AT TIME 6.0000 LINK Valve OPEN AT TIME 6.0000
LINK Pump1 1.0000 AT TIME 7.0000 LINK Pump2 OPEN AT TIME 7.0000 LINK Valve OPEN AT TIME 7.0000
LINK Pump1 1.0000 AT TIME 8.0000 LINK Pump2 OPEN AT TIME 8.0000 LINK Valve OPEN AT TIME 8.0000
LINK Pump1 1.0000 AT TIME 9.0000 LINK Pump2 OPEN AT TIME 9.0000 LINK Valve OPEN AT TIME 9.0000
LINK Pump1 1.0000 AT TIME 10.0000 LINK Pump2 OPEN AT TIME 10.0000 LINK Valve OPEN AT TIME 10.0000
LINK Pump1 1.0000 AT TIME 11.0000 LINK Pump2 OPEN AT TIME 11.0000 LINK Valve OPEN AT TIME 11.0000
LINK Pump1 1.0000 AT TIME 12.0000 LINK Pump2 OPEN AT TIME 12.0000 LINK Valve OPEN AT TIME 12.0000
LINK Pump1 1.0000 AT TIME 13.0000 LINK Pump2 OPEN AT TIME 13.0000 LINK Valve OPEN AT TIME 13.0000
LINK Pump1 1.0000 AT TIME 14.0000 LINK Pump2 OPEN AT TIME 14.0000 LINK Valve OPEN AT TIME 14.0000
LINK Pump1 1.0000 AT TIME 15.0000 LINK Pump2 OPEN AT TIME 15.0000 LINK Valve OPEN AT TIME 15.0000
LINK Pump1 1.0000 AT TIME 16.0000 LINK Pump2 OPEN AT TIME 16.0000 LINK Valve OPEN AT TIME 16.0000
LINK Pump1 1.0000 AT TIME 17.0000 LINK Pump2 OPEN AT TIME 17.0000 LINK Valve OPEN AT TIME 17.0000
LINK Pump1 1.0000 AT TIME 18.0000 LINK Pump2 OPEN AT TIME 18.0000 LINK Valve OPEN AT TIME 18.0000
LINK Pump1 1.0000 AT TIME 19.0000 LINK Pump2 OPEN AT TIME 19.0000 LINK Valve OPEN AT TIME 19.0000
LINK Pump1 1.0000 AT TIME 20.0000 LINK Pump2 OPEN AT TIME 20.0000 LINK Valve OPEN AT TIME 20.0000
LINK Pump1 1.0000 AT TIME 21.0000 LINK Pump2 OPEN AT TIME 21.0000 LINK Valve OPEN AT TIME 21.0000
LINK Pump1 0.0000 AT TIME 22.0000 LINK Pump2 CLOSED AT TIME 22.0000 LINK Valve CLOSED AT TIME 22.0000
LINK Pump1 0.0000 AT TIME 23.0000 LINK Pump2 CLOSED AT TIME 23.0000 LINK Valve OPEN AT TIME 23.0000

tial vector generated will be used as an initial solution of the first optimisation algorithm called.
After the preparation of the decision variables, the optimisation process is started (startOptimisation())

using a sequential list of algorithms pre-defined by the user in the input file of the general definitions.
The following five algorithms were implemented and can be selected by the user:

1. Nelder-Mead Simplex (NMSimplex) - the source code of the Nelder-Mead simplex method for
unconstrained optimisation, developed by Michael F. Hutt (Hutt, 2007), was implemented and
adapted for a N-dimensional space.

2. Genetic Algorithms (GA) - the source code of a simple real coded genetic algorithm, developed
by Takahama (Takahama, 2005c), was implemented and adapted for a N-dimensional space.

3. Differential Evolution (DE) - the source code of the simplest variant of DE algorithm, devel-
oped by Takahama (Takahama, 2005a), was implemented and adapted.

4. Particle Swarm Optimisation (PSO) - the source code of a simple PSO algorithm, developed by
Takahama (Takahama, 2005b), was also implemented and adapted.

5. Adaptive Simulated Annealing (ASA) - a variant of simulated annealing (SA), developed by
Lester Ingber in C-language code (Ingber, 2015), was implemented. In this variant of SA,
the algorithm parameters are automatically adjusted (adapted) according to the optimisation
progress.

All the implemented optimisation algorithms handle constraints through static exterior penalty
methods, as previously described in section 11.1. The user only needs to introduce the desired penalty
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Algorithm 15 General optimisation procedure.

1: procedure INITIALISEOF()
2: switch aggregDecision do
3: case true
4: Define reduced matrix of decision variables X: aggregateX();
5: case false
6: Define matrix of decision variables X: de f ineX();
7: end procedure
8: procedure STARTOPTIMISATION()
9: for Each S in sequence list do

10: if algorithm in position S = NMSimplex then
11: Run the NMSimplex algorithm to find the optimal solution:

Xopt = NMSimplexSolution();
12: Replace the vector of decision variables by the new best found: X = Xopt;
13: end if
14: if algorithm in position S = GA then
15: Run the GA algorithm to find the optimal solution: Xopt = GASolution();
16: Replace the vector of decision variables by the new best found: X = Xopt;
17: end if
18: if algorithm in position S = DE then
19: Run the DE algorithm to find the optimal solution: Xopt = DESolution();
20: Replace the vector of decision variables by the new best found: X = Xopt;
21: end if
22: if algorithm in position S = PSO then
23: Run the PSO algorithm to find the optimal solution: Xopt = PSOSolution();
24: Replace the vector of decision variables by the new best found: X = Xopt;
25: end if
26: if algorithm in position S = ASA then
27: Run the ASA algorithm to find the optimal solution: Xopt = ASASolution();
28: Replace the vector of decision variables by the new best found: X = Xopt;
29: end if
30: end for
31: end procedure
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coefficients for each distinct type of constraint. However, in case of not considering a particular
constraint, its coefficient should be set to zero.

There are two possible types of optimisation techniques: (i) optimisation with a single algorithm
or (ii) sequential optimisation with two or more algorithms.

As can be observed in the procedure represented in Algorithm 15, for each sequence list, the
search by the optimal solution Xopt is performed by using the selected algorithm for that position in the
sequence, i.e. by calling the adapted functions of each optimisation algorithm (NMSimpleSolution(),
GASolution(), DESolution(), PSOSolution() and ASASolution()). The first optimisation algorithm
considers the initial solution obtained from the network input file and the following algorithms use
the best solution obtained with the previous one. However, population-based algorithms also use
random sets as initial solutions.

11.2.1 Definition of the decision variables matrix and the aggregation technique

In the process of defining the matrix of the decision variables, a technique for grouping/aggregating
the variables into larger time-steps is available. This aggregation technique may allow reducing the
number of variables as well as the number of pumps shut-off with a minimum loss in the universe of
solutions.

The pseudo-codes of the steps implemented to define the matrix of decision variables without and
with blocks aggregation are described in Algorithms 16 (de f ineX() procedure) and 17 (aggregateX()

procedure), respectively.

Algorithm 16 Definition of the matrix of decision variables.
1: procedure DEFINEX()
2: Compute the number of decision variables: nvar = nsteps

(
2nVSP,opt +nFSP,opt +nValves,opt

)
;

3: Define the matrix of decision variables X = (xi, j) ∈ Rncomp×nsteps ;
4: Initialise i and j;
5: for All pumps to optimise (nVSP,opt +nFSP,opt) do
6: for Each j time-step do
7: Normalise the operating time as pumpTimeRate and save in the matrix of decision

variables (Equation 11.5): xi, j = top/tstep;
8: end for
9: if pump is variable-speed type then

10: for Each j time-step do
11: Normalise the pump speed and save in the matrix of decision variables (Equation

11.6): xi, j =
M−Mmin

Mmax−Mmin
, where Mmin and Mmax are the user defined speed limits;

12: end for
13: end if
14: end for
15: for All nValves,opt valves to optimise do
16: for Each j time-step do
17: Normalise the valve opening time as valveTimeRate and save in the matrix of decision

variables (Equation 11.5): xi, j = top/tstep;
18: end for
19: end for
20: end procedure
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Algorithm 17 Definition of the reduced matrix of decision variables using the aggregation tech-
nique.

1: procedure AGGREGATEX()
2: Compute the initial number of decision variables:

nvar = nsteps
(
2nVSP,opt +nFSP,opt +nValves,opt

)
;

3: Search for aggregated blocks and definition of the matrix of aggregated steps:
buildAggregStep();

4: Build the correspondence matrix between the number of decision variables, nvar, and naggreg:
buildCorrespVector();

5: Define current number of decision variables according to the obtained AggregStep matrix:
computeNaggreg();

6: Define the matrix of initial decision variables: X = (xi, j) with xi, j ∈ [0,1];
7: Define i and j in the matrix of the initial decision variables xi, j;
8: Define the position k in the correspondence matrix correspVectork;
9: for All pumps to optimise (nVSP,opt +nFSP,opt) do

10: for Each j time-step do
11: if correspVectork > 0 then
12: Normalise the operating time as pumpTimeRate and save in the matrix of decision

variables (Equation 11.5): xi, j = top/tstep;
13: end if
14: Go to next k;
15: end for
16: if pump is variable-speed type then
17: for Each j time-step do
18: if correspVectork > 0 then
19: Normalise the pump speed and save in the matrix of decision variables (Equa-

tion 11.6): xi, j =
M−Mmin

Mmax−Mmin
, where Mmin and Mmax are the user defined speed

limits;
20: end if
21: Go to next k;
22: end for
23: end if
24: end for
25: for All valves to optimise nValves,opt do
26: for All steps do
27: if correspVectork > 0 then
28: Normalise the valve opening time as valveTimeRate and save in the matrix of

decision variables (Equation 11.5): xi, j = top/tstep;
29: end if
30: Go to next k;
31: end for
32: end for
33: end procedure
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When the aggregDecision switch is set to false, the procedure starts by determining the number
of decision variables. This depends on the user decision concerning the elements that are intended
to optimise: number variable-speed pumps (nVSP,opt), number of fixed-speed pumps (nFSP,opt) and
number of valves (nValves,opt). Thus, for each one of these elements, the corresponding values of time
rate (and speed, for variable-speed pumps) for all time-steps of the simulation are scaled/normalised
between 0 and 1 (according to equation 8.1) and saved into the matrix of decision variables by the
order each element appears in the network input file (<network>.inp), first for the pumps and then
for the valves. The value of the variables that correspond to the normalised pump/valve time rate are
obtained by dividing its operating/opening time by the dimension of the time-step (step 7 in Algorithm
16):

xi, j = pump/valveTimeRate =
operating/opening time

step size
=

top

tstep
(11.5)

where i and j are, respectively, the ith component (pump operating time or valve opening time) and
the jth time-step in the matrix of the decision variables.

For a pump operating at variable-speed, its speed values for all steps are also normalised and
saved after the values of time rate. This normalisation takes into account the pre-defined values for
the minimum and maximum speeds allowed for the pumps (Mmin and Mmax) and is computed by (see
step 11 in Algorithm 16):

xi, j =
M−Mmin

Mmax−Mmin
, (11.6)

where N is the speed of the pump in the current j time-step.
The main difference of the aggregateX() procedure to the de f ineX() procedure is the additional

steps for verification of possible aggregation of time-steps and the definition of the (reduced) number
of decision variables taking into account the number of aggregated blocks‖. The search for possible
aggregated blocks (step 3 in Algorithm 17) is performed by calling the function builAggregStep(),
whose implemented steps are described in Algorithm 18. The buildAggregStep() function returns a
vector containing the information about the aggregated blocks that replace the several variables of
the successive time-steps by the variables representative of a single step. Figure 11.3 provides an
example for a better explanation of this implemented aggregation process.

The process of searching for possible aggregation of variables starts by an analysis to all water
demand patterns associated to the consumption nodes and all energy price patterns (tariffs) associated
to the pumps. The idea is to find consecutive periods of time (time-steps) whose values (of demand
and price) remain the same. Taking the example presented in Figure 11.3, observing the demand
pattern it is possible to identify a block in the three first steps with the same value of demand, meaning
that these three steps can be aggregated. In the case of the tariff, two blocks are identified, the first
corresponding to the aggregation of 8 steps and the second of 16 steps. Notice that, if there was no
demand pattern in this example, the initial 24 decision variables would be grouped into two blocks
(the blocks identified in the energy price pattern), reducing the number of decision variables to 2 (or
4, in case of a variable-speed pump). However, in this case, the only blocks that should be considered
are the ones that present constant consecutive values in the same steps for both the demand and the
tariff. See, for instance, the first two blocks considered for each pattern. Besides the tariff presents

‖An aggregated block is a set of successive time-steps in which the network demands and the tariff remain constant.
This set of time-steps is replaced by a single time-step whose size corresponds to the sum of the size of the replaced
time-steps.
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Algorithm 18 Analysis of aggregation blocks.

1: function BUILDAGGREDSTEP()
2: Define matrix to save aggregation information, AggregStep;
3: Analysis of water demands for steps aggregation:
4: Define vector of demand aggregated steps, aggregDemand, of size nsteps;
5: for All s steps do
6: Define vector to count steps, stepCount;
7: for All nodes with water demand (or water inlet) do
8: Define and initialise boolValue = true and aggregcount = 0;
9: Obtain demand pattern associated to current node;

10: while boolValue = true do
11: if current demand differs from demand in step (s+1+aggregCount) then
12: Save value of aggregCount in stepCount;
13: Set boolValue = f alse;
14: elseaggregCount = aggregCount +1;
15: end if
16: end while
17: end for
18: Found minimum value of stepCount and save in aggregDemand;
19: end for
20: Analysis of energy price patterns for steps aggregation:
21: Define vector of tariff aggregated steps, aggregTariff;
22: for All s steps do
23: Define vector to count steps, stepCount;
24: for All pumps do
25: Define and initialise boolValue = true and aggregcount = 0;;
26: Obtain energy price (tariff) pattern associated to current pump;
27: while boolValue = true do
28: if current tariff differs from tariff in step (s+1+aggregCount) then
29: Save value of aggregCount in stepCount;
30: Set boolValue = f alse;
31: else aggregCount = aggregCount +1;
32: end if
33: end while
34: end for
35: Found minimum value of stepCount and save in aggregTariff;
36: end for
37: Definition of a vector containing the possible steps aggregation information:
38: for All s steps do
39: Save number of common aggregated steps:

AggregSteps = min{aggregDemands,aggregTari f fs}+1;
40: if min{aggregDemands,aggregTari f fs}> 0 then
41: Jump the following similar steps: s = s+AggregSteps−1;
42: end if
43: end for
44: return AggregStep;
45: end function
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Figure 11.3: Demonstration of the builAggregStep() function using an example with one demand
pattern and one energy price pattern (tariff).

a block with 8 steps, the demand only presents the first 3 steps constant, which means that the first
possible aggregation block has a size of 3 steps. The second block of the demand pattern can be also
considered an aggregation block since the corresponding steps for the tariff also remains constant.
The same procedure is performed for the remaining steps. Thereby, the resulting number of possible
blocks to aggregate is 5, meaning that the number of decision variables can be reduced from 24 to 16
(a reduction of 33 %).

The buildAggregStep() function essentially defines a vector (aggregDemand) that saves the in-
formation concerning the consecutive constant steps that are found in common between all the de-
mand patterns (steps 3 to 19 in Algorithm 18). Another similar vector (aggregTariff) is also defined
to keep the information related with the common blocks common for all the tariffs (steps 20 to 36
in Algorithm 18). After that, the two vectors are compared and a vector containing the sizes of the
possible blocks to aggregate (AggregStep) can then be defined, such as the previously demonstrated
through Figure 11.3.

Returning to the procedure aggregateX() (Algorithm 17), after obtaining the vector of the aggre-
gated steps (AggregStep), a correspondence between the total number of variables (for all pumps and
valves) and the aggregated ones should be defined and saved to a vector for a later use (to perform
the disaggregation process after each optimisation iteration). The buildCorrespVector() function was
implemented to perform such operation. The corresponding matrix is generated with the size of the
initial number of variables where the values of the AggregStep are saved over the elements being
optimised.

After obtaining the correspondence matrix (correspMatrix), the updated number of decision
variables, considering the aggregated blocks is computed through the function computeNaggreg().
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Finally, the process of defining the vector of decision variables in the aggregateX() procedure
(Algorithm 17) is similar to the explained for the defineX() procedure considering only the steps
where the mathb f correspMatrix values are non-zero.

After preparing the decision variables to send the initial solution to the optimiser, a procedure to
send the optimal/new decision variables to the simulation module need to be implemented (see the
flowchart of Figure 11.1). In fact, this corresponds to the inverse procedures mentioned above, which
were called saveXopt() and disaggregateXopt(). The first procedure is called after each optimisa-
tion iteration if the aggregDecision switch is set to f alse. The procedure receives the vector of the
decision variables from the optimiser (Xopt) and replaces the new values of time rates and speeds in
the corresponding positions of the TIME controls (see Table 11.1 for both pumps and valves and of
the speed patterns for all variable-speed pumps being optimised. Since the values in the vector of
decision variables are normalised, they are converted for the real values.

In case of aggregation of variables, the procedure disaggregateXopt() is called instead. This pro-
cedure has similarities with the saveXopt() procedure since the objective is also to save the variables
that came from the optimiser in the model of the network (replacing the patterns and controls) in order
to execute an hydraulic simulation. However, in this case, the variables are aggregated, meaning that
the steps need to be restored to their original form. Thus, the value of a variable that corresponds
to an aggregated block should be placed in each step associated to the corresponding block. This is
performed using the correspondence vector (correspMatrix) such as the demonstrated in Algorithm
19.

Thereafter all the procedures implemented, the optimisation module is capable of performing
multiple iterations until reach the stopping criteria, which were defined in this work as a maximum
number of iterations/generations.

After disaggregation of the blocks, the value of a pump operating time is introduced in the cor-
responding pattern in a way to start operating in the beginning of each time-step that constitutes the
aggregated block. The problem is that, when the value of the operating time is inferior to the size of
the time-step, the pump will be forced to shut-off every single step, as in the example of Figure 11.4a.
This causes a large number of pump switches which is not recommendable due to the additional
maintenance costs usually associated to excessive switches.

(a) (b)

Figure 11.4: Example demonstrating the procedure of moving the disaggregated steps in order to
reduce the number of pump switches.

A new procedure was then implemented in the end of the optimisation process with the aim
of reducing the number of pump switches. Algorithm 20 provides the implemented steps for such
procedure. At a first stage, the optimal operational solution provided by the optimisation module is
saved for a posterior use. After that, a procedure to move the disaggregated steps with values inferior
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Algorithm 19 Disaggregation of Xopt to the control variables.

1: procedure DISAGGREGATEXOPT()
2: Initialise k and j;
3: for All p pumps to optimise do
4: Define and initialise variable to memorise previous value: memPrevValue = 0;
5: Define a temporary vector, temp, of size nsteps;
6: for All s steps do
7: if correspMatrixk = 0 then Set temps = memPrevValue;
8: else if correspMatrixk > 0 then
9: Obtain the pump operating time: temps = xopt, j× tstep;

10: Memorise operating time: memPrevValue = temps;
11: Go to next position of the decision variables matrix: j = j+1 (from the (p, j)th to

the (p, j+1)th element of the matrix);
12: end if
13: Go to next position of the corresponding matrix: k = k+1 ((p,k+1)th element of the

matrix);
14: end for
15: Save pump p operating times: top,p = temps;
16: if Pump p is variable-speed type then
17: for All s steps do
18: if correspMatrixk = 0 then Set temps = memPrevValue;
19: else if correspMatrixk > 0 then
20: Obtain the pump speed: temps = xopt, j× (Mmax−Mmin)+Mmin;
21: memPrevValue = temps;
22: Go to next position of the decision variables matrix: j = j+1 ((p, j+1)th

element of the matrix);
23: end if
24: Go to next position of the corresponding matrix: k = k+1 ((p,k+1)th element of

the matrix);
25: end for
26: Save pump p speed pattern: Mp = temps;
27: end if
28: end for
29: for All v valves to optimise do
30: Define and initialise variable to memorise previous value: memPrevValue = 0;
31: Define a temporary vector, temp, of size nsteps;
32: for All s steps do
33: if correspMatrixk = 0 then Set temps = memPrevValue;
34: else if correspMatrixk > 0 then
35: Obtain the valve opening time: temps = xopt, j× tstep;
36: Memorise opening time: memPrevValue = temps;
37: Go to next position of the decision variables matrix: j = j+1 ((p, j+1)th element

of the matrix);
38: end if
39: Go to next position of the corresponding matrix: k = k+1 ((p,k+1)th element of the

matrix);
40: end for
41: Save valve v opening time: top,v = temps;
42: end for
43: end procedure
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to the size of the time-step (moveAggregSteps()) is performed in order to group the pump operating
steps and hence, reduce the number of pump switches, as demonstrated in Figure 11.4b. A drawback
of this procedure is that moving the period of operation of the pumps will also cause influence in
the water levels variation in tanks, which, eventually, may lead to the violation of the tanks levels
constraints. For this reason, an analysis on the tanks water levels variations with the changes in the
pumps operations is performed in the moveAggregSteps() procedure. Furthermore, after moving the
pumps periods of operation, the new solution is always evaluated by calling the function updateOF()

that returns the updated value of the cost function (objective function).

Algorithm 20 Reduction of pump switches after the optimisation process.

1: procedure REDUCENPUMPSWITCHES()
2: if aggregDecision = true then
3: for All pumps and valves to optimise do
4: Save the solution (speed/status and time rate) obtained by the optimiser;
5: end for
6: Search for other positions for the steps that resulted from the aggregation in order to

reduce the number of pumps switches: moveAggregSteps();
7: Compute the cost function with the updated solution (grouped operating times - reduced

number of switches): updateOF();
8: if Updated solution maintains or reduces the OF then
9: Replace the solution by the updated one (grouped operating times);

10: else
11: Maintain the initially saved solution;
12: end if
13: end if
14: end procedure

The updateOF() function follows exactly the same steps of Algorithm 6, excluding steps 2 to
6, which correspond to the preparation of variables obtained from the optimiser. In this case, the
speed/status variables only need to be updated and evaluated to verify if the new steps positions
provide feasible solutions. In case the value of the cost function is maintained (or reduced), this
means that the constraints were satisfied and the new solution is accepted. Otherwise, such solution
is replaced by the initially saved solution that was obtained from the optimisation module.

The function that performs the changes in the disaggregated steps positions, moveAggregSteps(),
starts by searching the periods where blocks aggregations were performed (AggregSteps > 1) and
obtains the number of steps aggregated (step 11 in Algorithm 21). The values of water levels in each
hour for all tanks that were saved during the simulation of the network are then used in this stage.
The differences between the levels in consecutive hours are computed (step 15) and then, it is verified
if the water levels boundaries are overcome. The solution of grouping blocks in the left is considered
feasible for that tank if the tank level constraint is not violated. The process is repeated for all blocks
of all pumps and valves.
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Algorithm 21 Reduction and movement of aggregated steps.

1: procedure MOVEAGGREGSTEPS()
2: for All pumps to optimise do
3: Obtain top of pump;
4: Define a vector for updated time rates, tnew

op ;
5: for All s steps of the AggregStep matrix do
6: Define a temporary variable (temp);
7: if AggregSteps = 1 then
8: Set temp = top,s;
9: Set tnew

op,s = temp;
10: else if AggregSteps > 1 then
11: Obtain the number of aggregated steps: naggregSteps = AggregSteps;
12: Initialise a variable to count feasible solutions for each tank: tankOK = 0;
13: for Each t tank do
14: Obtain vector of tank levels, tankLevels, of size nsteps +1 (previously saved

during the hydraulic simulation for all hours);
15: Compute levels difference between consecutive hours and save to vector

levelsDiff (of size nsteps);
16: if Lmin <

[
tankLevelss +(levelsDi f fs×naggregSteps)

]
< Lmax then

17: Set tankOK = tankOK +1;
18: end if
19: end for
20: if tankOK = ntanks then
21: Set temp = top,s×naggregSteps;
22: if temp < tstep then
23: Set temp = tnew

op,s and fill the following naggregSteps−1 positions of tnew
op with

zeros;
24: else if temp > tstep then
25: for All naggregSteps do
26: while temp > tstep do
27: Set tnew

op,s = tstep;
28: Set temp = temp− tstep;
29: Go to next naggregSteps;
30: end while
31: if temp > 0 then Set tnew

op,s = temp;
32: else Set tnew

op,s = 0;
33: end if
34: end for
35: end if
36: end if
37: Set s = s+naggregSteps−1;
38: end if
39: end for
40: end for
41: for All valves to optimise do
42: Obtain top of valve;
43: Repeat steps 4 to 39;
44: end for
45: end procedure



11.3. Energy recovery module 173

11.3 Energy recovery module

The module devoted to the search for locations in a water network with meaningful potential for
energy recovery consists essentially in three main steps:

A. Find locations with significant available hydraulic power;
B. Select/design adequate types of turbines for such locations;
C. Perform a preliminary feasibility analysis.

The implemented procedures to perform step A are described in Algorithms 22 and 23. In the proce-
dure listed in the algorithm, an hydraulic simulation of the network under analysis is performed. The
obtained values of flow rate and head drop in each link for all time periods of the simulation are used
to compute the variation and total hydraulic power available in each potential site.

Algorithm 22 Search for potential locations for energy recovery in a network.

1: procedure SITESLOCATION1()
2: Open toolkit: ENopen(<network>.inp);
3: Open hydraulic solver: ENopenH();
4: Initialise hydraulic analysis: ENinitH(00);
5: while time period > 0 do
6: Run hydraulic analysis: ENrunH(clockTime);
7: for each clockTime do
8: for All k links do
9: Get the value of flow rate, Q, obtained: ENgetlinkvalue();

10: if Link k is a pipe then
11: Identify the input and output nodes of the pipe, nodeIN and nodeOUT :

ENgetlinknodes();
12: Compute the site head drop, H = HnodeIN−HnodeOUT ;
13: else
14: Get the value of valve headloss, which corresponds to the link head drop, H,

through the link: ENgetlinkvalue();
15: end if
16: Compute the available hydraulic power P = γQH;
17: end for
18: end for
19: Calculate the length of the next timePeriod: ENnextH(timePeriod);
20: end while
21: Close hydraulic solver: ENcloseH();
22: Close toolkit: ENclose();
23: for All k links do
24: Compute the minimum and the mean values of flow, Qmin and Qmean, and head, Hmin and

Hmean;
25: Sum the values of hydraulic power obtained in each time period;
26: end for
27: Save all information of flow, head and power to a file sorting from the highest to the lowest

power.
28: end procedure



174 11. Integrated computational tool

Algorithm 23 Implementation of virtual pressure reducing valves (PRV) and calculation of the
potentially recoverable energy.

1: procedure SITESLOCATION2()
2: Define and initialise the number of scenarios: nscen = 1;
3: for All p pipes do
4: Open <network>.inp file;
5: Add a pressure reducing valve (PRV) in the output node of pipe p;
6: Set Km = 0;
7: Save the file with the name: <network>Snscen.inp;
8: Find the coefficient, Km, that maximises the energy production: optimalValveCoe f f ();
9: Save the value of potentially recoverable energy, Erecov, of the current scenario to a vector;

10: Go to next scenario: nscen = nscen +1;
11: end for
12: Save the sorted values of recoverable energy (from the highest to the lowest), as well as the

corresponding values of flow and head (including the minimum and mean) for all scenarios to
file;

13: end procedure

The procedure listed in Algorithm 23 consists in the analysis of each potential site by installing a
virtual pressure reducing valve (PRV) in the end of each pipe. The minor headloss coefficient initially
attributed to the PRV is Km = 0. For each scenario (1 scenario per site/pipe), a search for the optimal
value of Km is performed by calling the optimalValveCoe f f () function. This function, described in
Algorithm 24, (i) replaces, in each iteration, the loss coefficient Km by a new value, (ii) performs an
hydraulic simulation of the network to compute the energy dissipated by the valve and (iii) obtain
the new values of pressure at the demand nodes. If the nodal pressures do not violate the imposed
constraint (see the optimisation problem formulation in Equation 10.8 and the computed value of
dissipated energy is maintained or increased, then the changes performed in the network model are
saved and a new value of Km is tested. Otherwise, the previous value of Km is maintained, returning
the corresponding dissipated energy (the potentially recovered energy).

The second main step executed in the energy recovery module, described in Algorithm 25, con-
sists in the selection of the types of turbines that are adequate to each different scenario. The proce-
dure selects the turbines according to the head ranges specified by the European Small Hydropower
Association (2004), as presented in Table 10.1. A vector containing the information concerning the
selected turbines is saved for each scenario/site.

The last main step of the energy recovery module consists in two procedures: (i) assess the tech-
nical feasibility and (ii) evaluate the financial feasibility of the selected turbines, whose pseudo-code
description is presented in Algorithms 26 and 27, respectively. The first procedure is essentially de-
voted to the design of each type of turbine selected for each different scenario. The turbines’ diameter
is computed, as well as the specific speed for reaction turbines. Afterwards, the efficiency of each
turbine is computed according to the defined efficiency equations for each type of turbine (Equations
10.10 to 10.22), as well as the resulting net recovered power, Pnet.

The procedure of financial feasibility provides, for each scenario, (i) the annual revenue predicted
using each different type of turbine associated to each scenario, (ii) the total investment, including
the cost of the turbine and its installation and the cost of the civil works, and, finally, (iii) the payback
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Algorithm 24 Search for the minor loss coefficient of a pressure reducing valve (PRV) that max-
imises the dissipated energy.

1: function OPTIMALVALVECOEFF()
2: Define E initial

recov = 0;
3: Open toolkit: ENopen(<network>Snscen.inp);
4: Open hydraulic solver: ENopenH();
5: while time period > 0 do
6: Run hydraulic analysis: ENrunH(clockTime);
7: for each clockTime do
8: for the link corresponding to the added PRV do
9: Save the value of flow rate, Q, and headloss, hm, obtained: ENgetlinkvalue();

10: Compute the dissipated energy that can be recovered, Erecov;
11: Set variable E initial

recov = E initial
recov +Erecov;

12: end for
13: end for
14: Calculate the length of the next time period: ENnextH(timePeriod);
15: end while
16: Close hydraulic solver: ENcloseH();
17: Close toolkit: ENclose();
18: Define variables φd = 500 and Enew

recov = 0;
19: while Km ≤ 2×105 do
20: Set Km = Km +φd;
21: Open toolkit: ENopen(<network>Snscen.inp);
22: Open hydraulic solver: ENopenH();
23: Set the new value of loss coefficient Km in the PRV: ENsetlinkvalue();
24: while timePeriod > 0 do
25: Run hydraulic analysis: ENrunH(clockTime);
26: for each clockTime do
27: for the link corresponding to the added PRV do
28: Get the value of flow rate, Q, and headloss, hm, obtained: ENgetlinkvalue();
29: Compute the dissipated energy that can be recovered, Erecov;
30: Set variable Enew

recov = Enew
recov +Erecov;

31: end for
32: for Each demand node do
33: Get the value of pressure: ENgetnodevalue();
34: end for
35: end for
36: Calculate the length of the next time period: ENnextH(timePeriod);
37: end while
38: if Pressure at demand nodes ≥ 25 m and Enew

recov ≥ E initial
recov then

39: Set E initial
recov = Enew

recov;
40: Save updated model of the network: ENsaveinp f ile(<network>Snscen.inp);
41: Close hydraulic solver: ENcloseH();
42: Close toolkit: ENclose();
43: else
44: Close hydraulic solver: ENcloseH();
45: Close toolkit: ENclose();
46: Break the while-cycle and go to next step;
47: end if
48: end while
49: return Erecov = E initial

recov .
50: end function
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Algorithm 25 Selection of the adequate turbine type for each site.

1: procedure TURBINESELECTION()
2: Open file with site information;
3: for each scenario nscen do
4: Read the values of Hmin and Hmean;
5: Define a vector to save the selected types of turbine: selectedTurb;
6: Go to the end of the file;
7: if Hmean > 50 then
8: Write in file “Scenario Snscen: Pelton, Turgo, Francis, cross-flow or PAT”;
9: Save to a vector the selected turbines: selectedTurb=[1 2 3 4] (where 1=Pelton,

2=Turgo, 3=Francis, 4=cross-flow, 5=Kaplan and 6=propeller);
10: Go to next scenario;
11: else if Hmin > 10 and Hmean > 40 then
12: Write in file “Scenario Snscen: Francis, cross-flow or PAT”;
13: Save to a vector the selected turbines: selectedTurb=[3 4];
14: Go to next scenario;
15: else if Hmin > 10 then
16: Write in file “Scenario Snscen: Francis, cross-flow, Kaplan/propeller or PAT”;
17: Save to a vector the selected turbines: selectedTurb=[3 4 5 6];
18: Go to next scenario;
19: else if Hmin > 3 then
20: Write in file “Scenario Snscen: cross-flow, Kaplan/propeller or PAT”;
21: Save to a vector the selected turbines: selectedTurb=[4 5 6];
22: Go to next scenario;
23: else if Hmin > 2 and Hmean < 40 then
24: Write in file “Scenario Snscen: Kaplan/propeller or PAT”;
25: Save to a vector the selected turbines: selectedTurb=[5 6];
26: Go to next scenario;
27: else
28: Write in file “Scenario Snscen: site not adequate for energy recovery”;
29: Save the value 0 to the vector of selected types of turbine: selectedTurb=[0];
30: Go to next scenario;
31: end if
32: end for
33: Close file.
34: end procedure
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Algorithm 26 Assess the technical feasibility of the selected turbines.

1: procedure TECHNICALFEASIBILITY()
2: for each scenario nscen do
3: Compute the gross power, Pgross, according to Equation 10.5;
4: for all i positions of the vector selectedTurb do
5: if selectedTurbi = 0 then
6: Break the cycle and go to next scenario;
7: else if selectedTurbi =3 or 5 (reaction turbines) then
8: Compute the runner diameter, Dt, according to Equation 10.10, where Qd is the

Qmean;
9: if selectedTurbi =3 (Francis) then

10: Compute the specific speed, NQ, and the turbine efficiency according to Equa-
tions 10.11 and 10.12;

11: else if selectedTurbi =5 (Kaplan) then
12: Compute the specific speed, NQ, and the turbine efficiency according to Equa-

tions 10.11 and 10.15;
13: else if selectedTurbi =6 (propeller) then
14: Compute the specific speed, NQ, and the turbine efficiency according to Equa-

tions 10.11 and 10.17;
15: end if
16: else if selectedTurbi = 1 (Pelton) then
17: Compute the turbine efficiency according to Equation 10.18;
18: else if selectedTurbi = 2 (Turgo) then
19: Compute the turbine efficiency according to Equation 10.21;
20: else if selectedTurbi = 4 (cross-flow) then
21: Compute the turbine efficiency according to Equation 10.22;
22: end if
23: Compute the net power, Pnet, according to Equation 10.6;
24: end for
25: end for
26: end procedure
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time for each type of turbine.

Algorithm 27 Assess the financial feasibility of the selected turbines.

1: procedure FINANCIALFEASIBILITY()
2: for each scenario nscen do
3: Compute the annual recovered energy: Eannual = Enet×365;
4: Compute the annual revenue: revenue = Eannual× energySellPrice;
5: for all i positions of the vector selectedTurb do
6: if selectedTurbi =1 (Pelton) or 2 (Turgo) then
7: Compute the turbine cost according to Equation 10.23d;
8: else if selectedTurbVect(i)=3 (Francis) then
9: Compute the turbine cost according to Equation 10.23a;

10: else if selectedTurbVect(i)=4 (cross-flow) then
11: Compute the turbine cost according to Equation 10.23e;
12: else if selectedTurbVect(i)=5 (Kaplan) then
13: Compute the turbine cost according to Equation 10.23b;
14: else if selectedTurbVect(i)=6 (propeller) then
15: Compute the turbine cost according to Equation 10.23c;
16: end if
17: Compute the turbine installation cost and the cost of civil works according to Equa-

tions 10.24 and 10.25, respectively;
18: Define a variable year = 0;
19: Set cashFlow =Ct +Cinstal +Ccivil;
20: while cashFlow≤ 0 do
21: cashFlow = cashFlow− revenue;
22: year = year+1;
23: end while
24: PaybackTime = year;
25: end for
26: end for
27: end procedure



References

EPA U.S. (2015). Water research: EPANET. Retrieved from http://www2.epa.gov/water

-research/epanet

European Small Hydropower Association. (2004). Guide on How to Develop a Small Hydropower
Plant (Part 2).. Retrieved 2015, from https://energypedia.info/images/4/4a/Part_2

_guide_on_how_to_develop_a_small_hydropower_plant-_final-21.pdf

Hutt, M. F. (2007). Michael Hutt’s Home Page - Nelder-Mead Simplex Method. Retrieved 2015,
from http://www.mikehutt.com/crosen.c

Ingber, L. (2015). Lester Ingber’s Archive - ASA. Retrieved 2015, from http://www.ingber.com/

#ASA

López-Ibáñez, M. (2015). EPANET Programmer’s Toolkit (help manual). Retrieved from http://

lopez-ibanez.eu/doc/toolkit_help.pdf

Microsoft: developer network. (2015). Path.gettempfilename method (). Retrieved from https://

msdn.microsoft.com/en-au/library/system.io.path.gettempfilename.aspx

Rossman, L. A. (2000). Epanet 2: users manual. US Environmental Protection Agency. Office of
Research and Development. National Risk Management Research Laboratory.

Salomons, E. (2015a). Water simulation: DXF2EPA. Retrieved from http://www.water

-simulation.com/wsp/2005/06/03/dxf2epa-autocad-dxf-file-conversion

-utility-for-epanet/

Salomons, E. (2015b). Water simulation: EPACAD. Retrieved from http://www.water

-simulation.com/wsp/2010/08/25/epacad/

Takahama, T. (2005a). Sample program of Differential Evolution. Retrieved 2015, from http://

www.ints.info.hiroshima-cu.ac.jp/~takahama/download/DE.html

Takahama, T. (2005b). Sample program of Particle Swarm Optimisation. Retrieved 2015, from
http://www.ints.info.hiroshima-cu.ac.jp/~takahama/download/PSO.html

Takahama, T. (2005c). Sample program of Real Coded Genetic Algorithm. Retrieved 2015, from
http://www.ints.info.hiroshima-cu.ac.jp/~takahama/download/GA.html

Zonum Solutions. (2009). Zonum Solutions: epa2GIS. Retrieved from http://www.zonums.com/

epa2gis.html

179

http://www2.epa.gov/water-research/epanet
http://www2.epa.gov/water-research/epanet
https://energypedia.info/images/4/4a/Part_2_guide_on_how_to_develop_a_small_hydropower_plant-_final-21.pdf
https://energypedia.info/images/4/4a/Part_2_guide_on_how_to_develop_a_small_hydropower_plant-_final-21.pdf
http://www.mikehutt.com/crosen.c
http://www.ingber.com/#ASA
http://www.ingber.com/#ASA
http://lopez-ibanez.eu/doc/toolkit_help.pdf
http://lopez-ibanez.eu/doc/toolkit_help.pdf
https://msdn.microsoft.com/en-au/library/system.io.path.gettempfilename.aspx
https://msdn.microsoft.com/en-au/library/system.io.path.gettempfilename.aspx
http://www.water-simulation.com/wsp/2005/06/03/dxf2epa-autocad-dxf-file-conversion-utility-for-epanet/
http://www.water-simulation.com/wsp/2005/06/03/dxf2epa-autocad-dxf-file-conversion-utility-for-epanet/
http://www.water-simulation.com/wsp/2005/06/03/dxf2epa-autocad-dxf-file-conversion-utility-for-epanet/
http://www.water-simulation.com/wsp/2010/08/25/epacad/
http://www.water-simulation.com/wsp/2010/08/25/epacad/
http://www.ints.info.hiroshima-cu.ac.jp/~takahama/download/DE.html
http://www.ints.info.hiroshima-cu.ac.jp/~takahama/download/DE.html
http://www.ints.info.hiroshima-cu.ac.jp/~takahama/download/PSO.html
http://www.ints.info.hiroshima-cu.ac.jp/~takahama/download/GA.html
http://www.zonums.com/epa2gis.html
http://www.zonums.com/epa2gis.html




Part V

Validation, results and discussion

181





12. Modelling networks under distinct
operational and design conditions

The use of variable-speed pumps in water supply systems is analysed. Modelling results of a
single-pump network considering distinct pump efficiencies, distinct pump speeds and

operating times are presented. The same network is also changed in terms of geometric head
and pipes roughness and the modelling results are compared. The proposed formula for

computing the efficiency of variable-speed pumps is also tested.

There is a lack of studies quantifying the effects of using variable frequency drives (VFD) in the
efficiency improvement of water pumps operation. At the same time, several users of simulation
computer programmes may not have information on the approximations considered in each distinct
programme concerning the pumps efficiency curves modification for distinct speeds of operation.
This means that, when performing, for instance, a cost analysis for the installation of variable fre-
quency drives (VFD), the results will also be affected by those approximations.

It is also known that the convenience of using variable-speed pumps can be different depending
on the network dimensions and configurations. Therefore, it is important to quantify the implied
differences. In this chapter, systems presenting distinct characteristic head loss curves, and hence
distinct behaviours, are tested with a variable-speed pump. The economic and energetic benefits of a
variable-speed pump when compared with the use of a fixed-speed pump are quantified.

Several water utilities∗ have already decided to install variable-speed drives, trying to improve the
efficiency of their systems. However, the variable-speed pumps are always set to operate at the best
efficiency point (BEP). No advantages are taken from the possibility of operating at distinct speeds.
This is mostly happening due to the so difficult task of selecting the adequate speeds of operation
capable of improving the network efficiency and, at the same time, maintaining the minimum re-
quirements for the consumers. This chapter also intends to demonstrate the potential of varying the
speed of pumps in certain periods of operation instead of considering a fixed speed value.

A list of the modelling conditions presented in this chapter with the aim of analysing the energetic
and economic savings from different uses of variable-speed pumps is provided:
• Pumps efficiency - pump with constant efficiency or with an associated efficiency curve are

analysed and compared;

∗This statement is based on contacts made directly with professionals in the field, i.e. working for or in water utilities.
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• Pumps speed - the advantages of using a pump with variable speed instead of constant speed
are analysed;
• Pumps operating times - distinct operating times for the pump operation instead of the common

fixed 1-hour steps are used when modelling the network operation, both at variable- and fixed-
speed;
• Multiple system head loss curves - testing the effect of using variable-speed pumps in systems

with distinct head loss curves;
• Pumps efficiency computation - distinct formulae for the pump efficiency prediction are anal-

ysed.
To perform all the analyses, the single-pump network was modelled and simulated using Mi-

crosoft Excel. The developed Excel-based tool, available in the GRIDS research group website
(GRIDS: Water GRIDS, 2015), follows the same methodology of EPANET 2.0. Such tool allowed to
easier perform changes in the network operational and design parameters and to automatically obtain
the results in the required graphical format. At the same time, it allowed a detailed analysis on the
EPANET methodologies and a comparison of results (Coelho & Andrade-Campos, 2016b).

12.1 Description of the single-pump network

The simple network analysed in this chapter (see figure 12.1a) is composed of a water source, a
storage reservoir (or tank) that supplies the point of consumption represented by node N2 (with an
associated consumption pattern) and one pump responsible for pumping the water from the source to
the storage tank.

(a) (b)

Figure 12.1: (a) EPANET representation of the single-pump network used in this work and corre-
sponding (b) system head loss curve and pump characteristic curves (at nominal speed, N, and at
lower and higher relative speeds, 0.8N and 1.2N, respectively).

The elevations of the node N1, the tank and node N2 are, respectively, 10, 100 and 90 m and
the total head of the water source is 10 m. The tank has a diameter of 5 m and their minimum and
maximum levels of operation are 2 and 20 m, respectively. The pump characteristic head curve as
well as the corresponding curves for the pump at a lower and a higher relative speeds (80 % and 120 %
of the nominal speed) and the curve of the network pipes head loss are provided in figure 12.1b. The
base demand of node N2 is 10 m3/h and the associated demand pattern is provided in figure 12.2
which also includes the pattern for the energy price variation during a representative day.

The pipe that links node N1 to the tank (pipe P1) is characterised by a length of 2000 m, a
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Figure 12.2: Water demand pattern associated to node N2 of the case-study network and the pattern
of energy price (tariff) considered for the operational energy costs computation.

diameter of 200 mm and a roughness coefficient of 50. The pipe that links the tank to node N2 (pipe
P2) presents exactly the same dimensions and also a roughness coefficient of 50 is considered for the
Hazen-Williams head loss calculation. In order to ignore minor head losses in both pipes, the minor
head loss coefficient was set to zero.

12.2 Initial modelling conditions

The previously described single-pump network is modelled for a simulation period of 1 day divided
into time periods of 1 hour (hourly time-steps).

Initially, for the first hydraulic simulation of the network operation, the time periods are consid-
ered fixed, meaning that the pump is only allowed to operate during the entire time-step (i.e. never
less than 1 hour). At the same time, only the nominal speed of the pump is considered. Figure 12.3
shows the pattern of the pump operation considered in the initial model of the network, as well as the
results of the water level in tank during all period of operation.

As observed in figure 12.3, the variation of the energy price during the day is taken into account
and the pump is mainly operating during the lower electricity cost periods. Such operational condi-
tions represents already an intuitive attempt to model the most efficient operation of the case-study
network (a trial and error optimisation procedure was used) considering a pump with no variable
speed.

Although results of figure 12.3 correspond to the ones obtained using the Excel-based tool, the
same values for the tank water level variation were obtained using EPANET 2.0, as well as flow and
pressure results at each step, validating the developed Excel-based tool.

In section 12.3, the previously described pump operational conditions are changed in order to
verify the influence of particular changes in the final operating costs when compared with this initial
model. Both changes are also tested considering a constant value for the pump efficiency and consid-
ering the use of an efficiency curve. Figure 12.4 provides the representation of the efficiency curve
considered for the pump and also the pump operating points for each time period of the simulation
considering the controls represented by the pump pattern of figure 12.3.

Despite the pump is always operating at the same speed, it is possible to observe that the results
for the operating points (also similar to the obtained with EPANET) are slightly deviated. This is
caused by the variations of the water level in tank. When the water level is higher, the pump will need
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more energy to overcome the elevations difference and then, the corresponding operating point will
be deviated to superior values of pumping head.

It should be noted that the tank water level in the end of the simulation period (at 24 hours) is
never allowed to be inferior to the initial level, i.e. is never lower than the water level in the beginning
of the simulation (at 0 hours, in this case).

Figure 12.3: Initial pattern considered for the operation of the pump of the case-study network and
evolution of the water level in tank during the simulation period considering such pump controls.
Comparison with patterns of both water demand and energy price (tariff).

Figure 12.4: Representation of (i) the efficiency curve and (ii) the pump operating points correspon-
dent to the controls considered in the initial model of the case-study network.

12.2.1 Model considering constant efficiency

The first model for the simulation of the case-study network operation considers a pump with a con-
stant efficiency of 75 %.

The daily cost computed by the Excel-based tool has the value of 21.79 e. EPANET presented
a total cost of 21.78 e. These first results demonstrate a satisfactory approximation of the developed
tool with EPANET, presenting a relative error of 0.063 %.

12.2.2 Model considering an efficiency curve

The second model for the simulation of the case-study network initial operation considers a variation
of the pump efficiency with the discharge (pump flow) instead of a constant efficiency. The consid-
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ered pump efficiency curve is represented in figure 12.4. In EPANET, the same efficiency curve is
associated to the pump.

Considering the same initial conditions for the network operation during the simulation period of
one day, the average efficiency of the pump is 77.8 %. The daily cost associated to the pump operation
is 21.01 e, computed with the Excel-based tool and 20.99 e computed with EPANET. In this case,
the discrepancy between the results obtained with the developed tool and with EPANET resulted in a
relative error of 0.088 %.

As expected, since the average pump efficiency is superior to the constant efficiency considered
in the previous model, the computed daily cost is consequently inferior.

Besides the difference between the computed costs when compared with the model using constant
efficiency, the behaviour of the network, respecting the tank water levels and the pump operating
points, follows the same pattern since the controls used for the pump (speed and operating time) are
exactly the same.

12.3 Assessing distinct operational conditions

12.3.1 Changing the pump speed

At this stage, the influence of using, for instance, a variable frequency drive (VFD) for changing the
pump speed in order to reduce the operational costs is tested. Therefore, a different pattern for the
pump operation, considering distinct speeds, is considered. The pump speed pattern considered for
the model of this section is represented in figure 12.5. The pump relative speed was reduced to 0.9
from 5 a.m. to 7 a.m. and from 9 p.m. to 10 p.m.. From 7 p.m. to 9 p.m., the speed was reduced to
80 % of the nominal (0.8).

Figure 12.5: Main characteristics of the case-study network model, during the 24 hours simulation
period, considering distinct speeds for pump.

Although figure 12.5 shows a similar pattern of the tank water level evolution when compared
with the initial model, improvements in the operational costs were obtained by using distinct pump
speeds.

Considering the described conditions and a constant pump efficiency of 75 %, the daily opera-
tional cost of the case-study network obtained with the Excel-based tool is 19.12 e. For the same
model, using EPANET, the obtained cost is 19.10 e, meaning that the relative error of the developed
tool is 0.085 %.
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When considering the pump efficiency curve, the operational cost of the case-study network has
the value of 19.47 e in the developed tool and of 19.45 e in EPANET (a relative error of 0.089 %).
The average pump efficiency, in this case, is 73.2 %.

Figure 12.6 shows the pump operating points at each distinct speed considered. Despite the
pump is operating at certain time periods in efficiency conditions superior to 75 %, in other periods,
the pump operates at lower-efficiency points, resulting in an average efficiency inferior to 75 %.
It is also observed that the pump is not operating at the most efficient point (the point where the
pump head curve intersects the system characteristic head loss curve) at 90 % of the nominal speed.
On the other hand, the use of the pump at lower speeds enable the pump to adapt to the demand
variability and operate at smaller flow and head values which, in turn, results in a reduction of the
power consumption.

Figure 12.6: Results of the pump operating points for the model considering distinct pump speeds.

The results obtained in this modelling case demonstrate that even without reducing the time of
pump operation (in fact, the time of operation has been increased in one hour - from 6 to 7 a.m. -
in comparison with the previous case) and without moving the pump operation to cheaper periods of
the day, reductions in the operational costs can be obtained by adapting the pump operation to the
demand flow variation by changing the rotational speed.

12.3.2 Changing the pump operating times

In this section, distinct operating times are considered for the pump operation instead of considering
the fixed 1-hour operating times. The main idea is to reduce the case-study network operational cost
by reducing the time of operation required by the pump considered, in this case, of fixed-speed.

The pump pattern, including the distinct operating times used in this case-study, are presented in
Figure 12.7. The pump is turned-off at 4 hours, turned-on between 5 and 5.9 hours (54 minutes of
operation), it is also turned-on between 6 and 6.7 hours (42 minutes of operation) and only turned-on
52 minutes at 20 hours in order to avoid the tank to reach the minimum level. During the other periods
of the pump operation, the operating time was maintained in 1 hour.

Figure 12.7 also provides the results for the tank water levels evolution considering the pump
operation using the controls considered in this model. The figure shows a slightly different pattern in
the variation of the tank water level caused by the distinct pattern of the pump operation. However, in
this case, reductions were also obtained in the operational costs when comparing to the initial model,
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Figure 12.7: Main characteristics of the case-study network model during the 24 hours simulation
period considering distinct operating times instead of the fixed 1-hour.

due to minor reduction in the pump operating time.

Considering the pump constant efficiency of 75 %, the values obtained for the network operational
cost were 19.82 e in EPANET and 19.83 e in the Excel-based tool (a relative error of 0.067 %).

When considering the pump efficiency curve, with a verified average efficiency of 77.8 %, the
values of the operational cost for the case-study network were 19.10 e in EPANET and 19.11 e in
the developed tool (a relative error of 0.076 %).

In figure 12.8a is possible to verify the pump operating points resulted from this model consider-
ing always the pump nominal speed and distinct operating times, which shows the pump operating at
higher efficiency points.

(a) (b)

Figure 12.8: Results of pump operating points for models under distinct operating conditions: (a)
considering distinct operating times instead of the fixed and (b) considering a variable-speed pump
with distinct operating times instead of the fixed 1-hour steps.

Since the initial solution considered for the periods of pump operation already take advantage of
the variation of the energy price, it is not possible to quantify the savings obtained by just moving the
pump operation to lower cost periods of the day. However, although not evidenced in the presented
results, analysing each time-step individually, the savings in operational costs demonstrated, as ex-
pected, to be superior when the reduction of the pump operating time is made for periods of higher
energy cost.
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12.3.3 Changing simultaneously the pump speed and operating times

A model considering simultaneously non-constants pump relative speeds and different operating
times is tested in this section. Figure 12.9 shows a possible set of controls for the pump of the
case-study network considering distinct pump relative speeds and distinct operating times. In this
case, the values for the relative speed varies from 0.8 to 1 while the operating time is only reduced in
the 7−8 p.m. time interval, otherwise the limits of the tank levels would not be respected.

Figure 12.9: Main characteristics of the case-study network model during the 24 hours simulation
period considering both distinct pump operating times instead of the fixed 1-hour steps and also
distinct pump speeds.

Modelling the pump operation with a constant efficiency of 75 %, the results for the daily oper-
ational cost were 18.78e with EPANET and 18.79 e with the Excel-based tool (a relative error of
0.076 %). On the other side, associating an efficiency curve to the pump, the results demonstrated
an average efficiency of 71.8 %, meaning that the power consumption is superior in this case, which
increases the costs. The final daily cost obtained is 19.52 e with EPANET and 19.54 e with the
developed tool, which presents a relative error of 0.101 %.

Observing also the pump operating points with the system and pump characteristic curves pro-
vided in figure 12.8b, it is possible to verify that the pump is operating very near the best efficiency
points when operating at full speed, N, or at 80 % of full speed (0.8N). However, when the relative
speed is 0.9, the pump is operating at slightly lower efficiency points, which decreases the average
efficiency.

12.3.4 Discussing the distinct operational conditions

In a simple network such as the one presented in this case-study, any experienced operator trying to
reduce the operational costs will intuitively opt by a kind of network control following the patterns
that were already observed in figures 12.3, 12.5, 12.7 and 12.9. In other words, a pump will be
operating essentially during the lower energy cost periods, meaning that the tank will be always
emptying during the higher cost period until reach the minimum level.

Despite such kind of intuitive controls seems to provide the most efficient operation of the net-
work, this is not necessarily always true. The tests provided in the previous sections demonstrate that,
even a network already optimised by a trial and error methodology, with some simple changes in the
operational conditions at certain time periods can improve its economical and energetic efficiency.
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Tables 12.1 and 12.2 present a resume of the main economical and energetic results obtained
with the case-study network considering distinct models based on particular changes in the pump
operational conditions and using, respectively, the pump constant efficiency and the efficiency curve.

Table 12.1: Results obtained by changing the operational conditions of the case-study network, con-
sidering a constant efficiency pump.

Model Initial Speed Time Speed and time
changes changes changes

Avg efficiency (%) 75.00
Max Power (kW) 27.89 27.84 27.92 27.65
Daily cost (e) 21.79 19.12 19.83 18.79
Daily energy (kWh) 276.13 252.92 261.54 248.90
Avg energy (kWh/m3) 0.44 0.42 0.45 0.42
Pumped water (m3) 627.7 590.0 590.5 590.5
% Cost reduction - 12.29 9.00 13.76
% Energy reduction - 8.41 5.29 9.86
% Avg energy reduction - 3.64 -1.34 4.96
% Water reduction - 6.00 5.93 5.93

Table 12.2: Results obtained by changing the operational conditions of the case-study network, con-
sidering a pump efficiency curve.

Model Initial Speed Time Speed and time
changes changes changes

Avg efficiency (%) 77.82 73.25 77.83 71.78
Max Power (kW) 26.82 26.79 26.88 26.65
Daily cost (e) 21.01 19.47 19.11 19.54
Daily energy (kWh) 266.14 255.34 252.02 257.07
Avg energy (kWh/m3) 0.42 0.44 0.43 0.44
Pumped water (m3) 627.7 590.0 590.5 590.5
% Cost reduction - 7.34 9.02 6.99
% Energy reduction - 4.06 5.30 3.41
% Avg energy reduction - -2.66 -0.83 -3.30
% Water reduction - 6.00 5.93 5.93

The first main conclusion that can be taken from the results of both tables is that all the operational
changes tested in the previously presented models deserve attention since, in all cases, significant
economical and energetic improvements can be obtained. In other words, reductions between 6 and
13 % for the daily costs and between 3 and 9 % for the daily energy consumption can be achieved.
Such values, considering an entire year operating a network, can represent substantial savings.

Another conclusion that can be taken is related to the pump efficiency considerations when mod-
elling the operation of a pipe network. Considering a pump efficiency curve, which is a better ap-
proximation of a real pump, the percentage of cost and energy reduction is inferior when comparing
with the same models using a constant efficiency.

Observing the models considering changes in the pump relative speed, when the efficiency curve
in used (table 12.2), the values of the average efficiency are lower in these cases, implying more power
consumption and, consequently, more costs. The lower average efficiencies when reducing the pump
relative speeds are also the reason for the inferior percentage of reduction in energy consumption



192 12. Modelling networks under distinct operational and design conditions

and costs. At the same time, in the tests when only the pump operating times are changed, the
same percentage of costs and energy reduction are obtained when comparing the cases with constant
efficiency and with the efficiency curve. This observation is due to the non-existence of changes in
the pump efficiency between the initial case and the case with time changes.

Still discussing the models where small reductions in the time of pump operation resulted in
a significant decrease of both energy consumption and costs, it is important to mention here the
potential role of using automatic control systems. Since a measly amount of time - let’s say, for
instance, 15 minutes - of pump operation can result in significant additional energy costs and since
this kind of situation can easily occur in systems manually controlled by an operator due to, for
example, a larger response time of the operator or even a delay in the control decisions receiving,
then, in this situations, a type of automatic control (receiving the control decisions and immediately
processing such decisions) can avoid unnecessary operational costs and even possibly save an amount
of energy.

The simultaneous application of pump relative speed and operating times changes does not neces-
sarily provides the lowest value of operational cost. Although considering a constant pump efficiency,
the minimum cost were obtained for the model with speed and time changes (table 12.1), the same
is not observed when considering an efficiency curve for the same pump operational controls since,
in this case, the average efficiency presented the lowest value (table 12.2). However, it should be no-
ticed that the controls options being analysed and assessed may not be the most adequate - examples
of intuitive solutions were chosen, which cannot represent optimal solutions since no optimisation
techniques were applied.

Other important observations are related to the volume of water pumped. Both table 12.1 and table
12.2 show that the changes in the initial operation of the network induced a reduction of approximately
6 % of the total water pumped. It should be noted that a decrease in the operating costs can only be
obtained by reducing the volume of water to be pumped or/and by moving the pump operation to more
favourable periods of the day according to the energy tariff. On the other hand, an higher volume of
water pumped does not necessarily means more energy costs. In table 12.2, comparing the model with
speed changes with the model with time changes, it is observed that in the model with time changes,
a larger volume of water is pumped (590.5 m3), however, since the average efficiency is higher, the
associated energy consumption and cost is lower. If, on the other side, the efficiency is kept the same
(table 12.1), an increase in the volume of water pumped will always imply larger operational costs.

As can be seen from table 12.2, which provides negative values for the percentage of average
energy reduction per cubic meter (meaning an increase), the reduction of the daily energy consump-
tion may not imply lower energy consumption per cubic meter of water pumped. This only occurs in
the two cases of table 12.1 when the pump speed is reduced, since there is no influence in the pump
efficiency.

Both analysed results demonstrate that the approximation of the pump efficiency to a constant
efficiency can provide a false perception of the real savings from the use of a variable-speed pump
instead of a fixed-speed type. When contrasting with the results obtained by considering a pump
efficiency variable with the pumped flow, it is observed that savings in energy and operational costs
are smaller but still meaningful.
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12.4 Assessing the effect of distinct design conditions

The modelling tests performed in the previous sections were also useful to verify the influence of
approximating the pump efficiency to a constant efficiency. Nevertheless, the pump efficiency is not
the only factor that influences the possible savings obtained from the use of VFD. Several authors
have mentioned and discussed other factors such as the geometry (or shape) of the pump impeller and
the pump specific speed which affect the characteristic curve of the pump (Quintela, 1981), or even
factors related to the piping system such as the system static head Marchi, Simpson, and Ertugrul
(2012); Morton (1975); Quintela (1981) or the system friction losses (Morton, 1975), which, in turn,
affect the system head curve.

It is known that the existence of a static head in the system curve limits the minimum speed rate
allowed for the pump since the pump shut-off head can never be inferior to the system static head. At
the same time, the shape of the system head curve, which is also influenced by the friction head losses,
can cause the pump curve intersection with the system curve in regions of low efficiency. Friction
head losses (considered as a major loss) are dependent on the pipes surface material, which increases
the viscous effects, and hence the energy loss, with the increase of the surface roughness. The friction
losses also include losses due to obstructions in pipes (usually called minor losses). The losses related
to the roughness of the pipe surface tend to increase with the age of the pipe. Nevertheless, the
influence of changing some parameters in a system head curve is not often quantified in scientific
works.

In this section, the influence of using a variable-speed pump and also of allowing distinct pump
operating time-steps is tested under two distinct changes in the pipe systems: (i) the static head loss
and (ii) the friction head losses by changing the pipes roughness. Both tests are performed using the
developed Excel-based tool in order to compare results of both energy consumption and costs.

12.4.1 Changing the geometric head

In order to verify the differences in savings resulted from the use of variable pump speeds and oper-
ating times in similar systems but presenting distinct geometric heads (static heads), the initial case-
study network, with a static head of 90 m, is used as reference. The same system is tested considering
an inferior static head of 30 m and a superior static head of 120 m.

The pump controls and the tank water levels variation resulted from such controls for the initially
considered network were already provided in figures 12.3 and 12.9. Respecting the systems with
distinct geometric heads, the 24-hour pump controls were adjusted to each network characteristics
in order to not violating the system constraints such as the maximum/minimum tank water levels
allowed as well as keeping the same tank water level in the begin and in the end of the represented
day and even constraints related to the nodal pressures (which cannot present negative values). The
pump controls considered for the systems with a smaller and a higher geometric head, are represented
in figures 12.11 and 12.12, respectively. Figure 12.10 also provides the resulting pump operating
points for the two type of controls considered. It is possible to verify that, in the system with the
larger geometric head, the speed is never reduced to 80 % of the nominal, since the head provided by
the pump (see the the pump characteristic curve at 0.8N) is very close to the minimum head required
by the system (120 m).

As can be observed in figures 12.11a and 12.12a, the use of fixed 1-hour time-steps for the pump
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(a) (b)

Figure 12.10: Results of the pump operating points, considering (a) a fixed-speed pump and (b) a
variable-speed pump, for three system head loss curves with distinct static heads: (i) system A, with
a static head of 30 m, (ii) system B, with a static head of 90 m and (iii) system C, with a static head
of 120 m.

operation does not allow reaching a final water level equal to the initial. Instead, the final water level
in tank is always superior, meaning that more water than the needed is being pumped. Making small
adjustments in the pump operating time makes possible to pump only the water needed to satisfy the
imposed constraints and, at the same time, allows to reduce the volume of water pumped, implying a
reduction in the total energy consumption and cost. The quantified reductions are provided in table
12.3.

Table 12.3: Results obtained from varying the pump speed and operating time in the system of the
case-study considering distinct values for the static head: (i) 90 m, corresponding to the initial system,
(ii) an inferior value of 30 m, and (iii) a higher value of 120 m.

Type of Static Avg Eff. Daily Avg energy Pumped Daily energy
control head (m) (%) cost (e) (kWh/m3) water (m3) (kWh)

fixed 30 74.07 13.18 0.21 638.13 170.57
speed 90 77.82 21.01 0.42 627.69 266.14

and time 120 75.35 25.44 0.53 619.58 328.26

variables 30 75.06 11.33 0.18 590.92 151.81
speed 90 71.78 19.54 0.44 590.48 257.07

and time 120 74.29 24.02 0.53 590.43 314.03

Savings from pump speed and operating time variation (%)
Static head Cost Avg energy Water Energy

30 14.09 5.52 7.40 11.00
90 6.99 -3.30 5.93 3.41

120 5.60 -0.81 4.71 4.34

Observing the results for the percentage of savings resulted from varying the pump speed and
operating times (table 12.3), it is possible to conclude that the pipe networks characterised by smaller
geometric heads present greater chances of reducing the operational costs and associated energy con-
sumption. This can be explained by the fact of such systems have more possibilities of taking advan-
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(a)

(b)

Figure 12.11: Results for the simulation of 24 hours of operation of the case-study network with a
geometric head of 30 m considering: (a) a fixed-speed pump with fixed 1-hour operating time-steps
and (b) a variable-speed pump with variable operating times.

(a)

(b)

Figure 12.12: Results for the simulation of 24 hours of operation of the case-study network with a
geometric head of 120 m considering: (a) a fixed-speed pump with fixed 1-hour operating time-steps
and (b) a variable-speed pump with variable operating times.
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tage of the pumps speed variation, which allows an adaptation of the pumps to a large set of flow and
head combinations.

In the system with a static head of 30 m (figure 12.11), a simple change in the pump operation in
the time-step between the 20 and 21 hours (both speed and operating time reduction) allowed 14.09 %
of cost reduction with a decrease of 11 % in the daily energy consumption. Such improvements are
due to a reduction in both the volume of water pumped (reduction of 7.4 %) and the average energy
consumed per unit of water pumped (reduction of 5.52 %).

Concerning the system with the largest static head (120 m), since the pump needs to overcome
a greater difference in elevation, more energy is required for pumping the water to the tank. Indeed,
this system presents the largest values for the daily energy consumption and cost. At the same time, it
demonstrates to be the system with lower chances to improve its operation in terms of cost and energy
since, due to the system curve, the pump is not allowed to reduce so much its rotational speed. Since
the curve is more close to the initial system (90 m of static head), the savings obtained from reducing
both the speed and operating time of the pump are closer to the ones obtained for the initial system.
The initial system presented 3.41 % and 6.99 % of reduction in energy and cost, respectively, while
the system with 120 m of static head reduced 4.34 % and 5.60 % its daily energy consumption and
cost, respectively.

Results presented in table 12.3 also shows that, although presenting the larger energy savings, the
system with the smaller static head also presents the lower value for the average efficiency when the
pump is operating at fixed-speed. As can be observed in figure 12.10a, the system curve does not cross
the pump curve at the best efficiency point, leading to an operation at a reduced efficiency. On the
other side, the variation of the pump speed allows to move the pump operation to more efficient points,
leading to the highest value of average efficiency (75.06 %) when compared to the other systems.
This example demonstrates the benefit that the recourse to VFD can represent in real systems where
frequently the pumps are dimensioned considering future requirements of the network, leading to the
installation of oversized pumps considering the actual needs.

12.4.2 Changing the pipes roughness

Similarly to the analysis presented in section 12.4.1, in this section the case-study network provided
initially is used as reference to analyse the influence of the pipe roughness coefficients, namely C =

30 and C = 140 (where C = 50 is the value considered initially). Lower values of the roughness
coefficient are the equivalent to older pipes and usually the higher values correspond to the new ones.
The head loss curves that characterise the analysed systems are provided in figure 12.13.

Figure 12.13 shows that lower values of roughness coefficients provide the steepest curves, which
are related to the increase of the pipes head losses. It can be also observed that, although the lower
coefficient (C = 30) is substantially closest to the initial value (C = 50) when compared to the largest
coefficient (C = 140), such difference is not notorious in the graphical representation of the resulting
head losses in the systems. This is explained by a fast decrease of the resistance coefficient with the
increase of the Hazen-Williams roughness coefficient.

In this case, the pump operation had also to be adjusted to the distinct characteristics of the sys-
tems in order to satisfy water levels and pressure constraints. The pump controls initially considered
for the systems with lower and higher pipe roughness coefficients are provided in figures 12.14a and
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(a) (b)

Figure 12.13: Pump operating points, considering (a) a fixed-speed pump and (b) a variable-speed
pump, for three system head loss curves with distinct pipe roughness: (i) system A, with a roughness
coefficient of 30, (ii) system B, the initial system, with a roughness coefficient of 50 and (iii) system
C, with a roughness coefficient of 140.

12.15a, respectively. Table 12.4 provides the results of energy, costs, efficiency and water pumped
for each distinct system comparing the initial operation at fixed speed and also fixed 1-hour operating
times with the improved operation considering variable operating times and speeds for the pump.

Table 12.4: Resume of the results obtained from varying the pump speed and operating time in
the case-study network considering distinct values for the roughness coefficient: (i) the initial value
considered, 50, (ii) a lower coefficient of 30, and (iii) a higher coefficient of 140.

Type of Rough. Avg Eff. Daily cost Avg energy Pumped Daily energy
control coeff. (%) (e) (kWh/m3) water (m3) (kWh)

fixed 30 76.04 27.08 0.51 641.64 328.30
speed 50 77.82 21.01 0.42 627.69 266.14

and time 140 77.38 17.43 0.37 624.37 227.78

variable 30 73.16 25.54 0.52 590.99 306.28
speed 50 71.78 19.54 0.44 590.48 257.07

and time 140 77.37 16.19 0.36 591.81 215.25

Savings from pump speed and op. time variation (%)
Rough. coeff. Cost Avg energy Water Energy

30 5.69 -1.87 7.89 6.71
50 6.99 -3.30 5.93 3.41

140 7.12 0.67 5.22 5.50

Before starting to analyse the results provided in table 12.4, it is important to provide some obser-
vations respecting the operation initially considered for the system with a roughness coefficient of 30
(figure 12.14a). Intuitively, an operator tends to shut the pump off during the high cost period but, in
this situation, it is necessary to keep the pump on from 4 p.m. to 9 p.m.. Due to the larger pipe head
losses in this system, the water level in tank cannot reach lower values than the represented. Oth-
erwise, when the water demand increases between the 20 and 21 hours, the pressure in the demand
node that is supplied by the tank reaches negative values, i.e., the system is not able to supply the con-
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(a)

(b)

Figure 12.14: Results for the simulation of 24 hours of operation of the case-study network with
a pipe roughness coefficient of 30 considering: (a) a fixed-speed pump with fixed 1-hour operating
time-steps, and (b) a variable-speed pump with also variable operating times.

(a)

(b)

Figure 12.15: Results for the simulation of 24 hours of operation of the case-study network with a
pipe roughness coefficient of 140 considering: (a) a fixed-speed pump with fixed 1-hour operating
time-steps, and (b) a variable-speed pump with also variable operating times.
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sumers while satisfying the pressure constraints. Even with this limitations in the system operation,
some speed and operating time reductions allowed savings in the daily energy consumption and cost
of 6.71 % and 5.69 %, respectively.

Results presented in table 12.4 demonstrate that the pipe roughness can be a factor with influence
in the possible savings obtained from the use of VFD. Systems characterised by lower roughness
coefficients (and hence, higher pipe roughness) resulted in less savings in the operational costs. On
the other hand, the system with the lowest roughness coefficient (C = 30) presented the highest water
and daily energy savings. This can be related to the higher initial values of water pumped and energy
consumption due to the operational limitations resultant from the pressure constraints. Also due to
these same pressure constraints, the pump operation was maintained during the high cost period which
resulted in less cost savings.

Table 12.4 also shows that the system with C = 50 presented the lowest average efficiency when
controlled with variable pump speed and variable operating times. This is a result of the pump oper-
ating at 80 % of its nominal speed, and hence at lower efficiency points, which does not occur in the
other two systems (see the operating points at distinct speeds for the three systems in figure 12.13b).

It should be mentioned that, although the roughness coefficient of 50 has been chosen for the
system initially considered in this work, values between C = 100 and C = 140 are usually stated for
pipes in water distribution systems. For this reason, systems with roughness coefficients of 100 and
120 were also tested. However, no difference in savings from the use of variable speed were observed
when compared to the system with C = 140.

12.5 Assessing the use of distinct formulae for the pumps efficiency
computation

After the topic discussed in Chapter 12 on how to predict the pump efficiency with speed reduction,
it comes the question of "which of the discussed methods is the most adequate?" or even "what is the
influence on the energy consumption and cost prediction of using distinct formulae for the efficiency
computation?". At the same time, as already stated by Marchi and Simpson (2013), EPANET does not
use correctly the affinity laws for the efficiency prediction with the reduction of the pump speed. In-
stead of considering the speed-adjusted curve for the efficiency prediction in case of speed reduction,
EPANET only searches for the efficiency correspondent to the speed-adjusted flow by interpolation
in the efficiency curve for the nominal speed.

Following the previously mentioned issues, the following section intends to provide a compara-
tive study between distinct methods for the efficiency prediction, and hence, for power and energy
computation.

12.5.1 Effect of using distinct formulae in energy savings computations

At a first stage, the theoretical speed-adjusted curves for both pump efficiency and power were rep-
resented considering four distinct methodologies: (i) the affinity laws (AL), (ii) the formula of Sárbu
and Borza (1998) (SB), (iii) the method followed by EPANET (EPA), and (iv) the graph-based for-
mula proposed in this work. Figure 12.16 provides such theoretical curves, considering the nominal
speed, N, and also 60 %, 80 % and 120 % of the nominal speed (0.6N, 0.8N and 1.2N, respectively)
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for a pump with the characteristics of the pump represented in the simple network discussed in this
chapter.

After the theoretical curves representation, it seemed relevant to quantify the savings possible
to obtain from the use of variable speed drives when considering, for such savings computation,
the distinct methods of efficiency prediction. Thus, the energetic and economic performance of the
single-pump network, initially described in section 12.1, is tested again for a type of pump control
at both fixed- (figure 12.3) and variable-speed (figure 12.5), considering the distinct methods for the
pump efficiency computation. Both tests were also performed using the Excel-based tool specifically
adapted for each distinct efficiency computation method. Results are provided in table 12.5.

Table 12.5: Results obtained by using four distinct methods to predict the pump efficiency with speed
variation: (i) the Affinity Laws (AL), (ii) the formula proposed by Sárbu and Borza (1998) (SB), the
method used by EPANET 2.0 (EPA) and the formula proposed in this work.

Type of Eff. Avg Avg Daily Avg Pumped Daily
control method eff. power cost energy water energy

(%) (kW) (e) (kWh/m3) (m3) (kWh)

fixed speed All 77.82 26.61 21.01 0.424 627.69 266.14

AL 75.86 22.56 18.82 0.419 590.01 248.14
variable SB 77.55 22.21 18.48 0.410 590.01 244.34
speed EPA 73.25 23.21 19.47 0.436 590.01 255.34

Proposed 77.57 22.20 18.47 0.410 590.01 244.25

Savings from pump speed variation (%)
Method Avg power Cost Avg energy Water Energy

AL 15.24 10.40 1.23 6.00 6.76
SB 16.54 12.04 3.33 6.00 8.19

EPA 12.78 7.34 -2.66 6.00 4.06
Proposed 16.57 12.07 3.37 6.00 8.22

Respecting the efficiency prediction using the affinity laws, for each non-nominal pump speed,
an adjusted efficiency curve was constructed. Then, using the value of the speed-adjusted flow, the
speed-adjusted efficiency was obtained by interpolation in the corresponding curve.

The results for the method followed by EPANET correspond to the ones already provided in
section 12.3.1. The efficiency for each new speed is also obtained by interpolating the speed-adjusted
flow in the efficiency curve but, in this case, the same initial curve (correspondent to the nominal
speed) is used (see figure 12.16).

For the methods applying the Sárbu and Borza equation as well as the equation proposed in this
work, the efficiency at each time-step was determined according to the following equations previously
presented in the first chapter of the Methodology and mathematical modelling Part (Chapter 7):

η2 = 1− (1−η1)

(
N1

N2

)0.1

, (12.1)

for the method proposed by Sárbu and Borza (1998), and

η2

η1
=

(
N2

N1
−1
)3

+1, (12.2)
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Figure 12.16: Pump performance curves at nominal and 60 %, 80 % and 120 % of the nominal speed
for distinct efficiency prediction methods: (i) the affinity laws (AL), (ii) the formula proposed by
Sárbu and Borza (1998) (SB), (iii) the EPANET method (EPA), and (iv) the formula proposed in this
work.
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for the method proposed in this work.

Observing the curves provided in figure 12.16, significant differences in the curves predicted for
the distinct pump rotational speeds are presented. On the other hand, the power curves predicted by all
the methods except EPANET, appear to be similar. The power curves predicted by EPANET, when
compared to the other three methods, demonstrate an overestimation of the power consumption in
certain flow regions and an underestimation in others, which, in turn, can lead to incorrect evaluations
of possible savings, following what was stated by Marchi and Simpson (2013).

Results of table 12.5 confirm the previous statement respecting the EPANET pump efficiency
prediction. Comparing with the other methods, EPANET clearly underestimates the savings obtained
from the use of a variable-speed pump. This is explained by the lower average efficiency (73.25 %)
when compared to the SB method (77.55 %), leading to higher power and energy consumptions and,
consequently, to more costs and then, less savings. While EPANET predicted a percentage of savings
in energy consumption and costs of 4.06 and 7.34, respectively, the other methods predicted savings
in the range 6.76−8.22 % for the energy consumption and 10.40−12.07 % for the associated costs.

It must be remembered that, for a distinct case (with, for instance, a distinct pump or even a
distinct system head curve), the results obtained by EPANET may overestimate the real savings.

The method based on the equation proposed in this work provided very similar results to the ones
obtained by the Sárbu and Borza (1998) method. However, it should be noticed that the operational
conditions meet the region where this method approximates the later, i.e. the pump speed is never
below 80 % of the nominal speed and the original pump efficiency (η1) is superior to 0.7.

As can be observed by the results obtained for the method following the affinity laws, if EPANET
applied correctly the affinity laws in its efficiency prediction, the computed savings would be closer to
the ones obtained by the SB method. On the other hand, it should be also noted that this is a conclusion
for this specific case-study, since the affinity laws fail in the prediction of the pumps behaviour under
certain conditions (such as lower pump speeds and dimensions).

The studies provided in this section do not allow to answer the first question made in the beginning
of the section (“which of the discussed methods is the most adequate?”). Only additional experimental
tests can provide a general answer to such question. However, under the conditions of the tested
simple network, the proposed formula can be set at a similar level of accuracy of the SB formula.
Both formulas demonstrate to be significantly more accurate than the so commonly used EPANET.

There is a clear necessity of real data, provided by the pumps manufactures, for instance, in
order to obtain more conclusive results concerning the best possible alternatives for the replacement
of the less-accurate methods commonly used in hydraulic simulators. This lack of information has
also been mentioned by researchers dealing with efficiency studies concerning the use of pumps as
turbines (PAT) for energy recovery in WSS (Carravetta, Fecarotta, Martino, & Antipodi, 2014).

Respecting the second question, the effects of using distinct efficiency prediction methods demon-
strate to be considerable since results provided appreciable differences in the possible savings from
the use of variable-speed drives.

12.5.2 Formulations comparison with existing experimental data

Simpson and Marchi (2013) provided experimental data for the best efficiency point (BEP) of pumps
with distinct dimensions (small to large) operating at distinct speeds. Such data was compared with
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the values predicted by the affinity laws and by the approach of Sárbu and Borza (1998). As expected,
for the large pump, the experimental values of the efficiency change were not significant and both
theoretical approaches provided satisfactory predictions. However, for smaller pumps, the BEP was
significantly reduced with the speed decrease. While the affinity laws (AL) predict that the BEP is
maintained the same, the SB equation was able to estimate speed-adjusted efficiency values near the
experimental data.

T. Walski, Zimmerman, Dudinyak, and Dileepkumar (2003) also performed an experiment to
determine how well the affinity laws apply to a variable-speed pump. The experimental data agreed
with the pump head curves generated with the affinity laws. However, concerning the pump efficiency
curves, the shape of the experimental results agreed with the curves predicted by the affinity laws but
the measured values were considerably inferior to the predicted ones. Moreover, it was observed
an increase in these deviations with the speed decrease. T. Walski et al. (2003) also pointed out the
decrease of the VFD efficiency with the speed reduction as the main factor for the overall efficiency
bellow the expected.

Nevertheless, it should be noticed that the experiment presented by T. Walski et al. (2003) was
performed with a very small pump (0.37 kW of power, nominal flow of 0.63 l/s and nominal head of
0.6 m), which leads to expect greater reductions in the efficiency with the speed decrease and does not
allow to make general conclusions on the influence of variable-speed in the pumps efficiency curves.

Following the same approach generally applied in this field, and in order to provide more conclu-
sive results concerning the formulation proposed in this work, experimental data found in the litera-
ture was used to evaluate the performance of the proposed equation for the speed-adjusted efficiency
curves (Coelho & Andrade-Campos, 2016a).

Table 12.6 lists experimental data for the best efficiency point (BEP) of two distinct pumps: one
of large dimension (556 kW) and one of small dimension (5.5 kW). Such data were obtained from the
works of Ulanicki, Kahler, and Coulbeck (2008) and Simpson and Marchi (2013) and were already
used by the last ones to compare the performance of the affinity laws with the formulation proposed
by Sárbu and Borza (1998). Results of the BEP with speed reduction using the distinct approaches
discussed in this work (including the Sarbu and Borza formulation - SB -, the Affinity Laws - AL -,
the EPANET approach - EPA -, and the proposed formulation - Prop) are also provided.

Table 12.6: Experimental and predicted values for the best efficiency point (BEP) of two real pumps.
Prediction results obtained using distinct methods: (i) the Affinity Laws (AL), (ii) the formula pro-
posed by Sárbu and Borza (1998) (SB), the method used by EPANET 2.0 (EPA) and the formula
proposed in this work (Prop).

Experimental Prediction Difference (%)
Pump Power BEP BEP BEP BEP BEP BEP

type (kW) at N1 at N2 AL SB EPA Prop AL SB EPA Prop
(η1) (η2) (η2) (η2) (η2) (η2)

Large(1) 556 83.60 83.50 83.60 83.18 83.60 82.65 0.12 -0.39 0.12 -1.02
Small(2) 5.5 56.00 52.00 56.00 53.34 56.00 51.08 7.69 2.57 7.69 -1.76

(1) Sulzer pump HPL 54-30-20; data reported by Ulanicki et al. (2008). N1 = 1525 rpm, N2 = 1182 rpm;
(2) Pump 50-32-160 HT, from TKL catalogue (1989); data reported by Simpson and Marchi (2013). N1 = 3600 rpm, N2 =

2000 rpm.

For the large pump, when the speed is reduced from 1525 to 1182 rpm, the most reliable results
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seems to be obtained using the Sárbu and Borza (1998) methodology. However, for the small pump,
where the efficiency changes are usually more significant and difficult to predict, when the speed is
reduced from 3600 to 2000 rpm, the formula proposed in this work can predict the efficiency with a
lower error than the other methods.

Nevertheless, Table 12.6 only compares the BEP values, considering that pumps are always op-
erating in the same point. However, this type of comparison between methods is not sufficient for
pumps expected to operate at different speeds and flow rates, where more efficiency points should be
evaluated.

A comparison between the distinct formulations considering multiple points of an experimental
efficiency curve is depicted in Figure 12.17. Such curve is representative of the large Sulzer pump
(HPL 54-30-20), where the proposed formula present the largest absolute difference in the BEP. As
can be observed, the predicted efficiency curve fit quite well the experimental curve retrieved from
Ulanicki et al. (2008). The average fitting error for the proposed formulation is 1.2 %. However, the
efficiency curve predicted by the EPANET methodology (labelled as η1), whose difference in BEP
was only 0.12 %, cannot accurately predict the experimental values for η2. The Sárbu and Borza
(1998) formulation can also fit well the experimental results, however with an average error of 2.1 %.

Figure 12.17: Comparison between an experimental efficiency curve (data retrieved from Ulanicki
et al., 2008) and the predicted curves using distinct methods. The method used in the EPANET is
defined as η1.

Figure 12.17 demonstrates that the proposed formula can accurately predict pump efficiency
curves. However, further comparisons with the curves of other types of pumps and of different sizes
should be performed, for testing (a) the proposed equation and (b) all the previously discussed ap-
proaches.



13. Optimising the operations of water
supply networks

The operational control optimisation tool developed in this thesis is used to minimise the
daily energy costs in five different models of water supply systems, including two simplified

models of real networks. Distinct optimisation techniques are tested in selected networks
and, additionally, a sensitivity analysis to the numerical parameters of some algorithms is

also performed.

13.1 Networks description and initial conditions

Five water supply networks were selected to test the developed tool in problems consisting not only
in different number of pumps and valves, and hence, different type and number of decision variables,
but also presenting different number of storage tanks, pipes, sources and different demands, which
provide different levels of complexity to the networks, and therefore, to the optimisation algorithms.
Table 13.1 summarises the main characteristics of the five tested networks.

Table 13.1: Overview of the main characteristics of the networks used for optimisation.

Tested VS FS Valves Decision Storage Pipes demand Water
network pumps pumps variables tanks nodes sources

Single-pump 1 _ _ 48 1 2 1 1
Van Zyl (a) 2 1 _ 120 2 15 2 1
Van Zyl (b) 3 _ _ 144 2 15 2 1
Walski 2 _ 2 96 1 20 8 (1 fire flow) 2
Richmond 7 _ _ 336 6 44 11 (1 negative) 2
Portuguese 4 _ 1 216 4 42 11 (1 negative) _

The simulation period considered for the five networks was the traditional one day divided into
hourly time-steps. This is the period typically used by other researchers in this type of problem, and
hence, is the most adequate choice for comparative analysis. Additional costs due to peak power
demand are not considered since this type of cost is commonly computed over a billing period (e.g.
monthly). The method selected for computing the friction head losses in pipes was the Hazzen-
Williams since this is the most common method in research works in the field.
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13.1.1 Single-pump network

The simplest problem tested (Figure 13.1) corresponds to a network with the same configuration of
the network used in Chapter 12, a single-pump network, with one reservoir and one tank responsible
for supplying one point with variable demand. The input file of the network with the considered initial
conditions is available in Appendix D.

(a) (b)

Figure 13.1: (a) EPANET model of the single-pump network and (b) the corresponding curves of the
represented pump.

This problem represents the most simple case of a pumped water supply network, consisting in
48 decision variables (considering variable speed).

The initial operational conditions (initial solution) considered for this problem are provided in
Figure 13.2. The pump is operating at nominal speed from 1h00 to 6h00 and from 19h00 (7 p.m.)
to 24h00, remaining off during the rest of the day. Considering such conditions and the defined
energy tariff, the associated daily pumping energy cost is 22.73 e, corresponding to a consumption
of 26.44 kW (Table 13.2).

Figure 13.2: Main initial operational conditions of the single-pump network for a 24-hours period.

13.1.2 Van Zyl network

The van Zyl network is a test network that was originally proposed by van Zyl, Savic, and Walters
(2004). Since then, the network was used by several authors for testing the control optimisation of
fixed-speed pumps (López-Ibáñez, Prasad, & Paechter, 2011) and, more recently, considering also
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Table 13.2: Results of the 24-hour simulation of the single-pump network considering the initial
conditions.

Pump utilisation Avg Eff. Energy Avg power Max power Daily cost
(%) (%) (kWh/m3) (kW) (kW) (e)

45.83 77.72 0.41 26.44 26.60 22.73

Total daily cost, Ctotal(X0) 22.73

variable-speed pumps (Coelho & Andrade-Campos, 2014a, 2014b; Hashemi, Tabesh, & Ataeekia,
2014).

The van Zyl network, represented in Figure 13.3, is composed of two storage tanks, A and B, with
a zone of water consumption between them represented by two junction nodes. A pumping station
composed of two pumps (1A and 2B) is responsible for pumping the water from the source to the
tanks, with the support of a booster station containing one pump (3B).

(a) (b)

Figure 13.3: (a) EPANET model of the test network proposed by van Zyl et al. (2004) and (b) the
corresponding curves of the represented pumps at nominal speed.

Two different optimisation possibilities are considered for this problem: (a) two variable-speed
pumps (1A and 2B) and one fixed-speed pump (3B), which corresponds to 120 decision variables,
and (b) three variable-speed pumps, corresponding to 144 decision variables (Table 13.1). The pumps
characteristic cuves (H-Q) and the efficiency curve considered for the 1A and 2B pumps are repre-
sented in Figure 13.3b. For pump 3B, a constant efficiency of 85 % is considered.

Initial operational conditions

The main initial operational conditions as well as the energy tariff are represented in Figure 13.4. This
initial solution is based on one of the optimal operational solutions proposed by van Zyl et al. (2004),
with a daily energy cost of £ 345.24∗. The simulation results in terms of energy and pumps utilisation
considering such initial conditions are presented in Table 13.3. The corresponding EPANET input
file that provides such results can be found in Appendix D. It should be noticed that, to consider the

∗In this case, the same units considered by van Zyl et al. (2004) are used in order to facilitate the comparison of results.
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pump 3B as a fixed-speed pump in the developed tool, a speed pattern cannot be associated to the
pump and the time control statements should be changed to OPEN/CLOSED status.

Figure 13.4: Main initial operational conditions of the van Zyl network for a 24-hours simulation
period.

Table 13.3: Results of the 24-hour simulation of the van Zyl network considering the initial condi-
tions.

Pump Utilisation Avg Eff. Energy Avg power Max power Daily cost
(%) (%) (kWh/m3) (kW) (kW) (£)

1A 25.00 75.48 0.32 143.09 147.03 20.95
2B 79.17 69.72 0.32 172.78 202.87 291.38
3B 54.17 85.00 0.07 35.58 47.28 32.91

Total daily cost, Ctotal(X0) 345.24

An important characteristic of the van Zyl network is concerned to the hours of the day in which
the simulation occurs. The time presented in Figure 13.4 corresponds to the simulation time. How-
ever, it should be noticed that the clock-time for this specific problem is not coincident with the
simulation time but, instead, starts at 7 a.m., meaning that the represented hour 0 corresponds to
7 a.m., the hour 1 corresponds to 8 a.m., and so on.

Impact of distinct efficiency formulae on savings computation

The discussion on the effect of using distinct formulae for the computation of the pumps efficiency
with speed variation presented in Section 12.5 led to the conclusion that, for the single-pump net-
work, the savings, both in terms of energy and costs, computed by EPANET underestimates the
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savings computed with the use of other formulae for predicting the pump efficiency at distinct speeds.
This same analysis on the savings computation was performed for the van Zyl network (Coelho &
Andrade-Campos, 2016a). The daily costs for the network at two distinct operational conditions, i.e.
with pumps running at fixed and at variable speed†, considering the four methods previously stated
for the speed-adjusted efficiency computation, are listed in Table 13.4.

Table 13.4: Savings results for the van Zyl network considering distinct pump efficiency prediction
methods: (i) the Affinity Laws (AL), (ii) the approach proposed by Sárbu and Borza (1998) (SB), (iii)
the method used by EPANET 2.0 (EPA) and (iv) the method proposed in this work.

Network Type of control Eff. curves Daily cost (£) Savings (%)

Van Zyl Fixed-speed Nominal 345.24 −
AL 222.69 35.50

Variable SB 222.23 35.63
speed EPA 231.16 33.04

Proposed 221.27 35.91

In the van Zyl network, the daily energy cost computed by EPANET 2.0 also overestimates the
values obtained with different speed-adjusted efficiency curves, leading to an underestimation of the
savings computation (33 % of savings compared to the 36 % obtained with the use of other methods).

13.1.3 Richmond network

The Richmond network, represented in Figure 13.5, corresponds to a simplified model of the real
Richmond network, part of the Yorkshire water supply area in the United Kingdom. This network is
a benchmark of the Centre for Water Systems Resources of the University of Exeter, whose hydraulic
model (EPANET input file) is available in the University website (University of Exeter, 2008). In
such available EPANET model, the daily operational cost corresponds to £12316.79‡. In order to
start the optimisation process with an initial solution that do not violate the constraints, the operation
of the Richmond network is adjusted to prevent the water levels in the end of the simulation of being
inferior to the levels in the beginning. Therefore, the operating costs were changed, leading to an
initial solution of £15632.83 instead of £12316.79. Similarly with the van Zyl network, despite the
shown simulation results begins at time zero, the clock-time of this network starts at 7 a.m..

The Richmond network is characterised by seven pumps (1A to 7F) and eleven demand nodes
(J1 to J11). The efficiency and characteristic curves of all pumps are represented in Figure 13.6. The
tariff associated to each pump as well as the demand pattern related to the demand junction nodes are
presented in Figure 13.7. Node J3 has a negative demand associated, meaning that this is a zone of
water inlet in the network.

†The solution for the pumps operating at variable-speed was obtained with the developed optimisation tool. One
solution was randomly selected and, for such controls, the daily costs were computed according to each distinct method of
efficiency computation.
‡In this problem, the provided units were also maintained.
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Figure 13.5: EPANET model of the Richmond network (University of Exeter, 2008).

(a) Pump 1A (b) Pump 2A (c) Pump 3A (d) Pump 4B

(e) Pump 5C (f) Pump 6D (g) Pump 7F

Figure 13.6: Efficiency and characteristic curves of the pumps represented in the Richmond EPANET
model.

(a) (b)

Figure 13.7: (a) Tariffs associated to each pump of the Richmond model and (b) water demand pattern
associated to the demand junction nodes.
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Initial operational conditions

The results in terms of pumps usage and efficiency for the 24-hours simulation of the network under
the considered initial conditions are presented in Table 13.5. The results of such initial conditions are
also translated in terms of water levels variation in each tank of the network in Figure 13.8. As can be
observed, the water levels never reach the minimum levels of the tanks (0.0 m for all tanks) neither
reach levels inferior to the initial ones in the end of the simulation.

Table 13.5: Results for the 24-hour simulation of the Richmond network considering the initial con-
ditions.

Pump Utilisation Avg. Efficiency Energy Avg. Power Peak power Daily cost
(%) (%) (kWh/m3) (kW) (kW) (£)

1A 4.17 71.57 0.46 50.6 50.6 121.9
2A 100 65.32 1.34 57.74 60.61 7603.65
3A 100 51.05 1.54 18.23 22.05 2536.51
4B 50 63.42 0.16 18.2 18.5 1977.21
5C 29.17 54.4 8.02 19.53 112.82 1348.89
6D 95.83 46.93 0.66 10.67 11.86 2021.46
7F 8.33 27.92 0.36 1.61 1.61 23.22

Total daily cost, Ctotal(X0) 15632.83

(a) Tank A (b) Tank B (c) Tank C (d) Tank D (e) Tank E (f) Tank F

Figure 13.8: Variation of the water levels (m) in the tanks of the Richmond network during the
24-hours of simulation considering the initial operational conditions. The minimum and maximum
levels of each tank are represented by the minimum and maximum values of the vertical axis of the
corresponding chart.

Further details concerning the Richmond network initial operating conditions can be seen in the
input model provided in Appendix D.

Impact of distinct efficiency formulae on savings computation

The same assessment of the impact of using distinct formulae for the speed-adjusted efficiency pre-
diction on the computation of the energy savings in the Richmond network was performed (Coelho &
Andrade-Campos, 2016a). The daily costs for this network at two distinct operational conditions, i.e.
with pumps running at fixed and at variable speed§, considering the four methods previously stated
for the speed-adjusted efficiency computation, are listed in Table 13.6.

In the Richmond network, the differences between the savings computation considering distinct
formulae are not so notorious. This can be mainly explained by the fact that the solution obtained for

§Similarly with the presented for the van Zyl network, a randomly selected optimisation solution for the Richmond
network operating at variable-speed was used.
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Table 13.6: Savings results for the Richmond network considering distinct pump efficiency prediction
methods: (i) the Affinity Laws (AL), (ii) the approach proposed by Sárbu and Borza (1998) (SB), (iii)
the method used by EPANET 2.0 (EPA) and (iv) the method proposed in this work.

Network Type of control Eff. curves Daily cost (£) Savings (%)

Richmond Fixed-speed Nominal 15632.72 −
AL 12308.10 21.27

Variable SB 12310.10 21.25
speed EPA 12403.06 20.66

Proposed 12320.30 21.19

the network considering variable-speed pumps does not contain speed settings significantly different
from the nominal speed, and hence, the resulting efficiency values are near the efficiency at nominal
speed. However, the daily energy cost computed by EPANET 2.0 also overestimated the values
obtained with the other methods for the efficiency prediction, leading to a slightly underestimation of
the savings computation (less than 1 %).

13.1.4 Walski network

The Walski network, represented in Figure 13.9, was retrieved from the book of T. M. Walski et
al. (2003), Chapter 10 - Operations (exercises section). This operations test network contains two
water sources, multiple loops, valves and considers a fire occurrence in a certain period of the day,
which represent significant differences from the previously presented water networks. The developed
EPANET model according to the data available in T. M. Walski et al. (2003) is provided in Appendix
D. The British units were converted to S.I. units. The same tariff and pump efficiency curve used in
the van Zyl network were associated to the two pumps of this network since such information was not
available in the original problem.

The Walski network has eight demand nodes (J3 to J6 and J8 to J11, in Figure 13.9), where J5
is the juntion node with the associated demand pattern that simulates a 3-hour fire occurrence from
11h00 to 14h00 (an additional demand of 42.75 l/s in each hour is considered).

The pumps operation, the tank water level variation and the considered demand pattern without
fire flow for the 24 hours of simulation are presented in Figure 13.10. The simulation results in terms
of pumps usage and efficiency are summarised in Table 13.7. Considering the presented operational
conditions, this initial solution for the Walski network corresponds to a daily pumping energy cost of
324.36 e.

Table 13.7: Results for the 24-hour simulation of the Walski network considering the initial opera-
tional conditions.

Pump Utilisation Avg. Efficiency Energy Avg. Power Peak power Daily cost
(%) (%) (kWh/m3) (kW) (kW) (e)

PMP-1 58.33 76.29 0.54 187.78 415.17 237.22
PMP-2 25.00 75.76 0.33 121.64 284.60 87.14

Total daily cost, Ctotal(X0) 324.36
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Figure 13.9: EPANET model of the Walski network. Data obtained from T. M. Walski et al. (2003).

Figure 13.10: Main initial operational conditions of the Walski network for a 24-hour simulation
period.
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From Table 13.7, it can be observed that, contrarily to the observed for the previous networks,
there is a significant difference between the average power consumed by the pumps during the 24
hours and the maximum power (peak power) consumed in that period, which is caused by the occur-
rence of a fire event.

13.1.5 Portuguese network

The Portuguese case-study addressed in this thesis corresponds to a part of a subsystem of a Por-
tuguese multimunicipal water supply system, currently part of Águas do Norte Group. The entire
system is responsible for the supply of more than 240 Mm3 of water per day. The development of
the network hydraulic model and its calibration were performed within a 1-year collaboration project
(in 2013) with a Portuguese SME¶. CAD files containing the network main characteristics as well as
measured real data used to perform the calibration were provided by the water utility. The simplified
EPANET model of the Portuguese network is represented in Figure 13.11. The network consists in (i)
four storage tanks (A to D), (ii) eleven demand nodes (D1 to D11), from which D1 has a negative base
demand, representing the water inlet in the network (a source), (iii) two pumping stations (PMP-AB
and PMP-CD) with two similar pumps each, and (iv) multiple valves (however, only one valve, G, is
considered for control optimisation). This optimisation problem is then composed by 216 decision
variables (4 variable-speed pumps and 1 valve).

Figure 13.11: Simplified EPANET model of the Portuguese case-study used in this thesis.

The network calibration was performed taking into account all data collected for a specific day of
operation (a Saturday in a winter month) with the aim of simulating a real 24-hour period of operation.
Through an iterative process, the simulation results were compared with the available measured data
(mostly the water levels variation in tanks and the pumping stations energy consumption) and the
model was adapted in order to achieve the best possible approximation. Since the calibration of
hydraulic models is not part of the aims of this thesis, this topic is not further explored here‖.

The efficiency and characteristic curves of the two different types of pumps represented in the
model (PMP-AB and PMP-CD) are presented in Figure 13.12. The distinct demand patterns associ-
ated to each of the eleven demand nodes and the tariff considered for the simulated day are represented
¶Due to confidentiality reasons, the involved entities and specific details concerning the system analysed are not

revealed.
‖However, further information can be seen in Soares (2015).
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in Figure 13.13. In comparison with the demand patterns related with the Richmond network, this
network present significantly more variable demands. However, contrarily to the Richmond network,
only one tariff is considered for all pumps.

(a) PMP-AB (b) PMP-CD

Figure 13.12: Efficiency and characteristic curves for the two types of pumps represented in the
Portuguese network.

(a)

(b)

Figure 13.13: (a) Demand patterns and (b) tariff considered for the simulation of the Portuguese
network.

The results of the network simulation for the selected day in terms of pumps usage and energy
consumption are presented in Table 13.8. The variation of the water levels in each storage tank is
represented in Figure 13.14.

From Table 13.8, it can be observed that only one pump per pumping station is operating. This
fact is due to the simulated day being a winter day with low demand requirements. The network
daily operating costs are 786.95 e, which corresponds to the value of the initial solution considered
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Table 13.8: Results of the 24-hour simulation of the Portuguese network.

Pump Utilisation Avg. Efficiency Energy Avg. Power Peak power Daily cost
(%) (%) (kWh/m3) (kW) (kW) (e)

PMP-AB1 79.17 74.75 2.47 326.36 349.99 561.24
PMP-AB2 0.00 0.00 0.00 0.00 0.00 0.00
PMP-CD1 70.83 79.24 0.40 147.24 147.32 225.71
PMP-CD2 0.00 0.00 0.00 0.00 0.00 0.00

Total daily cost, Ctotal(X0) 786.95

(a) Tank A (b) Tank B (c) Tank C (d) Tank D

Figure 13.14: Variation of the water levels (m) in the tanks of the Portuguese network during the
24-hours of simulation considering the initial operational conditions. The minimum and maximum
levels of each tank correspond to the minimum and maximum values presented in the vertical axis of
each chart.

for optimisation. For more details on the initial conditions considered for this network, the EPANET
input file is available in Appendix D.

13.2 Optimisation results

The presented optimisation results were obtained for simulation periods of one day divided into 24
time-steps. The starting points for the optimisation algorithms are the initial conditions previously
described for each network. For the computation of the penalty functions, the following approach was
followed for each distinct network: (i) in the case of the warning-related penalties, a value with one
order of magnitude superior to the value of the daily operational cost was used as penalty coefficient;
(ii) for the other penalties, a value with two orders of magnitude superior to the value of the daily
cost was used for each penalty coefficient. Preliminary tests have shown effectiveness of the selected
values.

From the five implemented optimisation algorithms, only results obtained with the NMSimplex,
the DE, the PSO and the GA algorithms were presented. Since the tests performed with the ASA
algorithm did not present any improvements, such results are not presented. The authors believe
that such algorithm may be capable of provide satisfactory results since it has already demonstrated
to performed well when applied to distinct optimisation problems (Ingber, 1996). However, due to
the complexity of the algorithm, a more effective tuning should be performed in order to adjust the
algorithm parameters to the type of optimisation problems that are addressed in this work∗∗.

∗∗ASA has over 100 options to provide robust tuning over many classes of nonlinear stochastic problems (Ingber,
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13.2.1 Methodology validation and application of cascade optimisation techniques

In this section, both the van Zyl and the Richmond networks are used in order (i) to evaluate the
performance of the proposed optimisation methodology and (ii) to test the sequential use of multiple
algorithms (cascade optimisation techniques). The Particle Swarm Optimisation (PSO), the Differen-
tial Evolution (DE) and the Nelder-Mead Simplex (NMSimplex) are the algorithms used. The criteria
used to change between algorithms in the cascade techniques is based on the pre-defined maximum
number of iterations for each algorithm.

The Nelder-Mead Simplex, as a pattern-search algorithm, can be used as an attempt to improve
the local search of the population-based algorithms (in this case, the sequence PSO+NMSimplex was
tested). The sequential use of PSO and DE (both PSO+DE and DE+PSO) may be useful to overcome
the limitations that each algorithm may present in comparison to the other. As already stated by
Kachitvichyanukul (2012), these algorithms may be similar in terms of the exploration ability of the
population, since the mechanism to generate new solutions are similar. However, the diversification
in DE is higher than in PSO, since the best solution has no influence on the other solutions. At
the same time, PSO has an higher tendency for premature convergence due to a fast clustering and
consequent stagnation of the swarm. On the other side, in PSO, the best solution has more influence
on population.

Results for the van Zyl network

In the case of the van Zyl network, besides van Zyl et al. (2004) that proposed and tested this net-
work, other authors also tested distinct optimisation techniques for the control of this test network, as
demonstrated in Table 13.9.

Using an optimisation method based on the control of the water levels in the tanks, van Zyl et
al. (2004) applied an hybrid Genetic Algorithm (GA) combined with a hill-climber strategy which
allowed to obtain a similar result compared with a simple GA but with a significant reduction in
the number of function evaluations (i.e. 6 000 evaluations instead of the 100 000 required by GA).
Considering random starting points, the optimal solutions obtained presented an average (from 7 runs)
objective function value of 350.36 £/day with the pure GA and 348.58 £/day with the hybrid GA.

Later, López-Ibáñez et al. (2011) used an Evolutionary Algorithm (EA) to compare three different
methods for the variables representation: (i) a traditional binary on/off (explicit formulation), (ii)
a formulation based on the tanks levels control (implicit formulation) and (iii) another formulation
based on pumps time controls (explicit formulation) distinguishing between absolute and relative time
triggers. Results demonstrated that the explicit methods based on binary and relative time triggers
representations were able to achieve the lowest values of the objective function. López-Ibáñez et al.
(2011) also considered random initial solutions.

More recently, Hashemi et al. (2014) applied an Ant Colony Optimisation (ACO) algorithm to the
same problem considering an explicit formulation for the pumps control optimisation and compared
the use of fixed-speed pumps (only on/off variables) with the use of variable-speed (considering a
speed range from 0 to 1). With a starting objective function value of 389 £/day (larger value than the
ones obtained by van Zyl et al. (2004) and López-Ibáñez et al. (2011)), the methodology proposed by

2012).
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Table 13.9: Comparison of the results obtained in the optimisation of the Van Zyl network, including
the use of cascade techniques, with the results obtained by other authors (Coelho & Andrade-Campos,
2014b).

Authors Optimisation Method Optimal cost Reduction Evaluations Constraints
technique (£/day) [CPU timea] (approach)

Van Zyl GA Tank level 350.36 (avg) _ 100 000 Tank levels and
et al., 2004 controls 344.19 (best) pump switches

Hybrid GA 348.58 (avg) _ 6 000 (cost penalties)
with Hill-climber 344.43 (best)
(Hooke & Jeeves)

López-Ibáñez EA Binary 333.0 (avg) _ 6 000 Tank levels,
et al., 2011 324.7 (best) pump switches

Level controls 346.9 (avg) _ and pressure
337.2 (best) (rank-based)

Time controls 334.1 (avg) _
(relative triggers) 315.9 (best)

Hashemi ACO Pump on/off 388.04 0.25 % 400 000 Tank levels and
et al., 2014 pump switches

Pump speed 349.43 10.17 % 300 000 Tank levels

this PSO Pump speed 236.50 (avg) 33.19 % 200 000 Tank levels
work (nP=200) and 230.64 (best) [∼ 3 h] (cost penalties)
(Coelho & DE time controls 289.23 (avg) 16.50 % 300 000
Andrade- (nP=200) 288.25 (best) [∼ 17 h]
-Campos, NMSimplex 342.84 0.70 % 9 412
2014b) [∼ 10 min]

PSO+NMSimplex 239.91 (avg) 31.17 % 126 919
237.63 (best) [∼ 2.2 h]

PSO+DE 238.04 (avg) 31.72 % 275 000
235.73 (best) [∼ 10 h]

DE+PSO 249.59 (avg) 30.56 % 275 000
239.73 (best) [∼ 13 h]

aIntel R© CoreTMi7 processor, 3.40 GHz

Hashemi et al. (2014) was able to decrease the pumping energy costs to 388.04 £/day with fixed-speed
pumps and to 349.43 £/day (a reduction of 10.17 %) with variable-speed pumps.

The methodology proposed in this thesis, based on the pumps operating times and speeds, was
able to compute the most cost-effective solutions for the van Zyl network using the PSO and DE algo-
rithms (Coelho & Andrade-Campos, 2014b). The results presented in Table 13.9 were obtained with
an initial population of 200 individuals, from which one corresponds to the initial solution presented
in Section 13.1.2 with a daily cost of £ 345.24 and the others were randomly chosen. The average
cost reduction were superior to 33 % with the pure PSO and superior to 16 % with the pure DE. On
the other side, the NMSimplex algorithm was only able to reduce the daily cost to £ 342.84 (0.7 %).

The algorithm with the higher performance (PSO) was tested sequentially with the NMSimplex
(PSO+NMSimplex) in an attempt to improve the local search of PSO. However, no improvement
was observed. From Figure 13.15, the performance of each single algorithm as well as each applied
cascade technique can be analysed. A clear observation is that DE demonstrates a lower convergence
compared to the PSO. While the PSO (both single and combined) was able to converge to an optimal
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solution in less than 25000 function evaluations, the DE algorithm only starts to converge after 100000
function evaluations. The sequence DE+PSO was the only one improving the performance of the
single algorithm (DE in this case).

Figure 13.15: Performance of each individual optimisation algorithm compared to the cascade tech-
niques applied to the operation of the van Zyl network. The moment of change between algorithms
in the sequential optimisation is represented by a vertical bar that separates the corresponding line of
evolution.

The best control solution for the daily operation of the van Zyl network obtained with the proposed
methodology using the PSO (230.64 £/day) is represented in Figure 13.16, showing the controls (time
and relative speed) obtained for each pump and the resulting water levels variation in the tanks.

Between the simulation hours 3 and 15, the pump 2B is operating at lower speeds and the pump
3B boosts its operation from 11 to 14 h. During the following 2 hours, only pump 3B is operating,
which means that water is being pumped from tank A to tank B (as can be observed by the level
increase in tank B). After that period, corresponding to the time of the day with lower energy prices,
all pumps are operating at higher speeds until the tanks reach the required levels, as imposed by the
constraints.

In terms of energy, considering the best operational solution, the results obtained for each pump
are presented in Table 13.10. Comparing with the results of the initial solution presented (Table 13.3)
the achievement of 33 % of cost reduction was obtained through the decrease in the percentage of
utilisation of pump 3B (from 54.17 % to 50 %) and speed variations in the three pumps. On the one
hand, the increase in the speed of pump 1A resulted in an increase of energy costs (from 20.95 to
29.69 £/day), on the other hand, the combination of higher and lower speeds in both pumps 2B and
3B resulted in decrease of energy costs (from 291.38 to 178.14 £/day and from 32.91 to 22.81 £/day,
respectively).

The previous discussed solution was in fact the best solution obtained with the developed tool.
However, it should be noticed that (i) van Zyl et al. (2004) and López-Ibáñez et al. (2011) restricted
the number of function evaluations to 6000 while the best solution proposed was obtained for 200000
evaluations (or, at least, for 50000 evaluations, since the PSO algorithm stagnated at that stage, as
shown in Figure 13.15), and (ii) Hashemi et al. (2014) limited the range of pumps speed to [0,1],
meaning that no speeds above the nominal speed were allowed in their work. In the results obtained
with the developed tool, the pumps speed range was set to [0,2]. In fact, considering a maximum rel-
ative speed of 2 may not be the most adequate value, since several variable-speed pumps are typically
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Figure 13.16: Operational conditions considering the best optimisation solution obtained for the van
Zyl network.

Table 13.10: Energy results of the best solution obtained for the van Zyl network optimisation with
PSO over 200 000 evaluations.

Utilisation Avg Eff. Energy Avg power Max power Daily cost
Pump (%) (%) (kWh/m3) (kW) (kW) (£)

1A 25.00 71.14 0.41 202.78 249.44 29.69
2B 79.17 73.42 0.32 190.39 740.56 178.14
3B 50.00 85.00 0.11 57.61 155.75 22.81

Total daily cost, Ctotal(X∗) 230.64
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allowed to operate until 150 % of nominal speed.
In order to obtain results capable of allowing a fair comparison with previous works, the van Zyl

network was optimised considering distinct optimisation conditions. The number of function evalu-
ations was restricted to 6 000 by reducing the swarm size (population size) to 50 and the maximum
number of iterations to 120. The same calculations were performed for 3 distinct speed ranges, in-
cluding (i) the range used in the previous results presented (0 to 2), (ii) the range used by Hashemi et
al. (2014) (0 to 1) and (iii) a range more adequate to real pumps, but still, slightly close to the used
by Hashemi et al. (2014) (0 to 1.2). The obtained results are presented in Table 13.11.

Table 13.11: Results for the optimisation of the van Zyl network considering only 6000 function
evaluations and allowing different speed ranges for the pumps.

Algorithm Evaluations Speed range OF (£/day) CPU timea (min) Reduction

PSO 6 000 [0.0;2.0] avg 264.49 12.09 23.39 %
(nP=50) best 251.54 9.92 27.14 %

[0.0;1.0] avg 343.66 5.96 0.46 %
best 342.56 5.85 0.78 %

[0.0;1.2] avg 277.71 8.70 19.56 %
best 263.42 7.27 23.70 %

aIntel R© CoreTMi7 processor, 3.40 GHz

An important conclusion obtained from the presented results is that the variation of the pumps
speed for both lower and higher values can allow larger cost reductions than by uniquely reducing
the speed. This happens because, when operating at higher velocities, even with some efficiency loss,
the pumps are operating at larger values of flow discharge, which means that some water demands
may be supplied in less time, taking advantage of the periods where the energy price is lower. The
results obtained with the proposed methodology for the speed range [0;1] did not show improvements
in comparison with the best results obtained by López-Ibáñez et al. (2011). However, by allowing the
pumps to operate at speeds until 120 % of the nominal speed, such results are significantly improved,
leading to energy cost reductions superior to 20 %.

In 6 000 function evaluations, the results obtained with the methodology proposed in this thesis
were able to improve the ones obtained by Hashemi et al. (2014) (Table 13.9). Using the same
number of evaluations (300000) could even improve such results. At the same time, the obtained
results demonstrated that Hashemi et al. (2014) could possibly improve their results by considering a
distinct speed range.

In average, the results obtained with the PSO algorithm in 6000 function evaluations considering
the same speed range (0 to 2) presented a lower performance compared with the results obtained over
200 000 evaluations but, still, presented considerable improvements in comparison with the presented
in previous works. The operational conditions as well as the energy results for the best solution
obtained over 6 000 function evaluations are presented in Figure 13.17 and Table 13.12, respectively.

As shown by the percentage of pumps utilisation, in this operational solution (Table 13.17), the
booster pump 3B is operating during a longer period when compared to the previous analysed solution
(Table 13.10). However, the associated daily costs reveal to be inferior. This occurred due to the
reduction in the energy consumed per cubic meter of pumped water (from 0.11 to 0.08 kWh/m3).
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Table 13.12: Energy results of the best solution obtained for the van Zyl network optimisation with
the PSO algorithm after 6000 evaluations.

Utilisation Avg Eff. Energy Avg power Max power Daily cost
(%) (%) (kWh/m3) (kW) (kW) (£)

1A 25.00 66.35 0.45 298.14 478.72 43.65
2B 79.17 74.75 0.33 187.35 1005.06 186.54
3B 54.17 85.00 0.08 40.95 175.34 21.35

Total daily cost, Ctotal(X∗) 251.53

Figure 13.17: Operational conditions considering the best PSO solution obtained for the van Zyl
network in 6 000 evaluations.
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Pump 1A, besides presenting the same percentage of utilisation as the previous solution, has, in
fact, higher associated operating costs. This is justified by the operation at higher speeds that, in this
case, lead to a significant reduction in the average efficiency (from 71.14 to 66.35 %), explaining the
higher energy costs (43.75 £/day compared to the previous solution of 29.69 £/day).

Figure 13.18 provides a representation of the operating points obtained for the pump 3B in the
optimisation with the PSO over 6 000 evaluations. The corresponding characteristic curves modified
by the speed are also represented. From such figure it becomes clear that, in some periods, the
pump is in fact operating at both excessively low and excessively high values of speed, which, by
the characteristic curves, do not seem realistic results. However, this is possible to be performed by
the hydraulic simulator if the conditions are favourable in terms of head differences, as demonstrated
in Figure 13.19, which represents the hour of the day where pump 3B is operating at 20 % of the
nominal speed. At 2 p.m., the difference in elevations between the node N3 and the tank B is only
1.86 m. These results demonstrate the importance of the option included in the developed tool for
changing the range of operation of the pumps. Both the minimum and the maximum speed allowed
for the pumps (usually provided by the manufacturers) should be provided in this kind of optimisation
problem in order to obtain valid results for the operation of real pumps.

Figure 13.18: Pump 3B operating points from the best solution achieved by PSO over 6000 function
evaluations in the optimisation of the van Zyl network.

None of the optimisation solutions presented for the van Zyl network provided evidences of ad-
vantages from considering operating time decision variables, top. In fact, both the presented solutions
were possible to obtain uniquely by changing the relative speed of the pumps.

Results for the Richmond network

A similar procedure to compare the use of a single algorithm with the use of cascade techniques was
also performed in the optimisation of the Richmond network (Coelho & Andrade-Campos, 2014b).
The results are summarised in Table 13.13.

In the operational optimisation of the Richmond network, even with the high number of opti-
misation variables, both PSO and DE were able to achieve significant cost reductions. The lowest
operational cost was obtained with the PSO (more than 21 % of reduction). However, the computa-
tional effort revealed to be superior when compared with the DE over the same number of function
evaluations (300 000). On the other side, the DE only achieved 14.77 % of cost reduction.
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Figure 13.19: Operation of the van Zyl network at 2 p.m. demonstrating that pump 3B is operating at
a low speed due to the low head difference that needs to overcome.

The sequential application of the PSO followed by the DE (PSO+DE) demonstrated to be advan-
tageous uniquely in terms of computational time when compared with the PSO alone. However, the
cascade technique DE+PSO reduced the costs in almost 22% in less time than the single PSO. As
can be observed in Figure 13.20, the PSO was capable of achieving a lower value of the objective
function by starting with the solution obtained by DE. PSO has in fact demonstrated to have a fast
convergence but also to reach the stagnation very soon. For this reason, the sequential use of this al-
gorithm multiple times (with less iterations) with DE (e.g. DE+PSO+DE+PSO) could provide some
advantage.

Table 13.13: Optimisation results for the Richmond network comparing the use of single algorithms
with the use of cascade techniques (Coelho & Andrade-Campos, 2014b).

Algorithm Initial cost Optimal cost Reduction Evaluations CPU
(£/day) (£/day) (%) number timea

PSO (nP=50) 15633 12333 21.1 300 000 19 hours
DE (nP=50) 13324 14.77 300 000 13 hours
NMSimplex 15620 0.08 3721 37 min
PSO + DE 12840 17.9 300 000 16 hours
DE + PSO 12212 21.9 300 000 16 hours

aIntel R© CoreTMi7 processor, 3.40 GHz

Table 13.14 summarises the energy results obtained with the best solution achieved by PSO, the
algorithm that presented the fastest convergence to the optimum according to Figure 13.20. Compar-
ing with the initial solution (Table 13.5), it is noteworthy that no changes occurred in terms of pumps
percentage of utilisation. In fact, for this network, the savings were obtained uniquely through an
increase in the average efficiency of pumps operation due to the operation at distinct speeds (except
for pumps 6D and 7F that slightly decreased their average efficiency).

Analysing Table 13.14 along with Figure 13.21, while for pump 1A there is no significant change
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Figure 13.20: Evolution of the objective function for a representative solution obtained in the opera-
tional optimisation of the Richmond network considering cascade techniques and single algorithms.

Table 13.14: Energy results of the solution obtained for the Richmond network with the PSO algo-
rithm.

Pump Utilisation Avg. Efficiency Energy Avg. Power Peak power Daily cost
(%) (%) (kWh/m3) (kW) (kW) (£)

1A 4.17 69.94 0.48 50.33 50.33 121.26
2A 100.00 71.46 0.41 51.10 86.11 6297.86
3A 100.00 48.42 0.13 15.49 34.87 1991.19
4B 50.00 54.74 1.86 18.79 58.54 1847.82
5C 29.17 63.98 0.40 4.87 6.98 336.31
6D 95.83 48.16 0.73 9.71 20.58 1715.47
7F 8.33 27.21 0.56 1.73 1.93 23.09

Total daily optimal cost, Ctotal(X∗) 12333.00
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in the daily cost, for pumps 2A and 3A the cost was reduced from 7603.65 to 6297.86 £/day and
from 2536.51 to 1991.19 £/day, respectively. This occurred due to the large decrease in the energy
consumption per unit of pumped water, revealing operations at lower values of flow, which are related
with reduced speeds. Such type of operation led to a decrease in the water level in tank A (Figure
13.21) that was not observed in the initial solution (Figure 13.8). The relative speed values obtained
for pump 2A varied between 0.8 and 1.1, while for pump 3A the range was [0.4;1.2]. The speed range
obtained for the other pumps was [0.8;1.3].

(a) Tank A (b) Tank B (c) Tank C (d) Tank D (e) Tank E (f) Tank F

Figure 13.21: Variation of the water levels (m) in the tanks of the Richmond network during the
24-hours of simulation considering the optimal solution obtained with the PSO algorithm.

Although pump 4B also presented a reduction in the operating costs, the average energy con-
sumption per unit of pumped water increased due to the operation at points with higher head values.
At the same time, the control options obtained for this specific pump are not desirable due to the ele-
vated number of pump switches observed (8 switches). For the other pumps, this number was never
superior to 2 switches. From the water levels variation in tanks C and F, for instance, it is very simple
to identify the 3 periods of operation of pump 5C and the 2 periods of operation of pump 7F, which
correspond exactly to the periods of the tanks filling.

Similarly with the previously observed for the van Zyl network, this solution obtained with the
PSO algorithm for the operation of the Richmond network do not demonstrate to take any advantage
of the possibility of using time-steps inferior to 1 hour. The operation improvement was uniquely
obtained by means of changing the relative speeds in certain periods of the day. However, analysing
other solutions, it was verified that, for instance, the best solution obtained with the DE algorithm
(also depicted in Table 13.13) took advantage of the variable time, top. Such solution reduced the
daily energy costs by changing both the relative speed and the operating times of the pumps.

Table 13.15 and Figure 13.22 show the simulation results of the best solution obtained with the
DE algorithm. In terms of the pumps percentage of utilisation, comparing with the solution obtained
with the PSO (Table 13.14), a decrease in the time of operation is observed for all pumps except
for pump 7F that increases the percentage of utilisation from 8.33 % to 13.14 %. Concerning the
tanks water levels variation (Figure 13.22), the main differences are observed in tanks C, D and F.
The control solution obtained for the pumps responsible for supplying such tanks (pump 5C, 6D and
7F, respectively) present changes both in terms of speed and time of operation. The three pumps
present certain periods of operation inferior to the hourly time-step (in some cases the pumps operate
less than half an hour) and the values of relative speed vary in the ranges [0.8;1.0] for the pump 5C,
[0.9;1.3] for the pump 6D and [1.0;1.4] for pump 7F. The main drawback identified in this optimal
solution obtained with the DE algorithm is related with the number of pump switches for some pumps,
especially for pumps 3A (which also presented variable speeds and operating times) and 6D. The
operational control of the remaining pumps was improved by taking advantage of only one type of
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variable, (i) the relative speed, for pump 2A, and (ii) the operating time, for pumps 1A and 4B.

Table 13.15: Energy results of the solution obtained for the Richmond network with the DE algorithm.

Pump Utilisation Avg. Efficiency Energy Avg. Power Peak power Daily cost
(%) (%) (kWh/m3) (kW) (kW) (£)

1A 2.89 68.68 0.49 49.09 50.51 81.90
2A 100.00 68.57 0.89 55.39 61.10 7256.86
3A 79.79 52.53 0.49 17.92 33.98 1916.86
4B 47.33 63.77 0.15 18.29 20.33 1874.63
5C 22.86 70.29 0.39 6.14 6.71 332.13
6D 71.39 56.45 0.32 12.57 27.57 1822.43
7F 13.14 16.97 3.16 2.30 6.84 32.55

Total daily optimal cost, Ctotal(X∗) 13317.35

(a) Tank A (b) Tank B (c) Tank C (d) Tank D (e) Tank E (f) Tank F

Figure 13.22: Variation of the water levels (m) in the tanks of the Richmond network during the
24-hours of simulation considering the optimal solution obtained with the DE algorithm.

13.2.2 Testing the approach for decision variables aggregation

The approach used in the developed numerical tool for the aggregation of the decision variables was
tested in the van Zyl network in order to verify the influence in the feasibility of the obtained solutions
and also in the computational time (Coelho & Andrade-Campos, 2014a). In the case of the Richmond
network, no results of optimisation with aggregation are presented since the network does not allow
any type of blocks aggregation.

The van Zyl network was optimised with PSO and DE algorithms with and without considering
the aggregation of variables. Results for the best solutions of three runs are presented in Table 13.16.
The evolution of the objective function average values are presented in Figure 13.23.

Table 13.16: Optimisation results obtained for the van Zyl network, including aggregation techniques.

Method Optimisation Optimal Reduction OF CPU timea Avg. Cost
algorithm (£ /day) (%) evaluations (h) (£ /day)

Pump speed & PSO (np = 100) 227.77 35.7 100 000 2.64 234.38
time controls DE (np = 100) 292.75 17.3 2.38 299.53

Aggregated PSO (np = 100) 232.14 34.4 100 000 6.23 233.70
pump speed & DE (np = 100) 304.78 13.9 4.45 312.31
time controls

aIntel R© CoreTMi7 processor, 3.40 GHz
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Figure 13.23: Evolution of the objective function considering the optimisation with DE and PSO with
and without aggregation of the decision variables for the van Zyl network.

As can be observed in Figure 13.23, the starting point for both tested methods is not coincident
with the initial solution previously stated in Section 13.1.2, with an initial daily cost of £ 345.24 . In
fact, with the application of the variables aggregation approach, it is not possible to start from such
previously defined initial solution. This is demonstrated in Figure 13.24, where, for the period of
time between the 10 a.m. and the 12 a.m., the aggregation of two blocks of time is possible (same
demand and same tariff in the two consecutive steps) but the control defined for pump 3B is different
for each step. Since the variables aggregation is performed before the optimisation procedure, the
pump control indicated in the first step is taken as the value for the aggregated block, which means
that the resulting solution after disaggregation is the equivalent to the pump off from the 10 a.m. to
the 12 a.m. instead of only from the 10 a.m. to the 11 a.m.. Such solution implies (a) a change in the
pump operating time, and hence, in the energy costs and also (b) the violation of the tanks constraints,
since the water level in tank B at the end of the simulation is inferior to the level in the beginning.
For this reason, a different initial solution possible to be maintained even applying the aggregation
approach was considered. The pump 3B was considered on between the 10 a.m. an the 12 a.m.,
leading to an initial daily cost of £ 354.09.

Figure 13.24: Demonstration of the periods of the day where the decision variables could be aggre-
gated considering the initial solution presented in Section 13.1.2, which would result in two blocks of
two aggregated steps each (the two consecutive periods with constant demand and tariff).

Comparing the results obtained with variables aggregation with the ones without aggregation, it
can be concluded that the aggregation approach was not capable of improving the optimisation pro-
cess. Furthermore, for this tested problem, the computational effort required with the use of such
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proposed approach demonstrated to be superior to the required without aggregation, even with a re-
duction of the search space and the number of decision variables (less four variables). Analysing
the report files generated by EPANET of the best solutions obtained with the PSO algorithm, it was
verified that the optimal control solution found by the PSO using the approach for the variables ag-
gregation required that EPANET performed 738 trials/iterations until converge to a stable hydraulic
solution. In turn, the optimal control solution obtained without considering the aggregation approach
required only 223 trials/iterations to converge, which corresponds to more than three times less com-
putational effort. This means that the universe of solutions for the van Zyl problem with variables
aggregation may be constituted of more complex (and hence, difficult to converge) than the universe
of solutions for the problem without aggregation, which is hindering to take advantages from the
aggregation module.

A brief discussion on the aggregation approach

As mentioned before, no possibilities of aggregation were possible in the Richmond problem. From
the demand pattern considered for this network (Figure 13.7b), it is possible to observe that the values
of demand differ in all steps. This means that the small differences between results are uniquely
related with the probabilistic nature of the algorithms.

As it is currently implemented, the technique for variables aggregation may not be capable of
detecting periods for aggregation since the demand values typically used in hydraulic models do
not demonstrate fixed values over consecutive steps. This approach could possibly present some
improvement by considering consecutive values of demand that do not differ from a small value close
to zero, instead of values that are exactly the same (i.e. the difference between values are zero). In
the case of the Richmond network, considering an absolute difference in demand up to 0.03, would
allow 5 aggregation blocks, as demonstrated in Figure 13.25.

Figure 13.25: Demonstration of the possible blocks to aggregate the optimisation variables consider-
ing an absolute difference up to 0.03 between the demand values in consecutive steps.
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13.2.3 Optimal operation of the Portuguese network

The daily operation of the Portuguese network was optimised with three different algorithms: PSO,
DE and NMSimplex. The initial operational solution described in Section 13.1.5 was used as a
starting point for the algorithms. The best and average results obtained in four runs of each algorithm
are summarised in Table 13.17. The average performance of the algorithms is presented in Figure
13.26.

Table 13.17: Results of the optimisation of the Portuguese network with three different algorithms.

Initial Optimisation OF Optimal % cost CPU timea Average
cost algorithm evaluations cost reduction (min) cost

786.95 PSO (nP = 50) 50 000 729.23 7.33 161.50 [2.7 h] 736.88
DE (nP = 50) 50 000 709.47 9.85 284.87 [4.7 h] 725.60

NMSimplex 2470 785.97 0.13 10.28 785.97

aIntel R© CoreTMi7 processor, 3.40 GHz

(a) (b)

Figure 13.26: Evolution of the objective function (OF) as a function of (a) the number of iterations
and (b) the number of evaluations in the optimisation of the Portuguese network with three different
algorithms.

It should be noticed that the initial solution used for the Portuguese network corresponds to a
typical day of operation that those in charge of the network’s operations consider to be an already
efficient solution since they have been improving the system control operation for several years. This
particular network is an example of a network with variable-speed drives installed in the existent
pumps that are only operating at fixed-values of speed (the points of maximum efficiency, also called
the best efficiency points, BEP). According to that, the improvement of such operational conditions
may reveal a challenge. Nevertheless, the developed numerical tool was able to provide significant
reductions in the daily operating costs. Despite the NMSimplex algorithm have reduced the costs by
0.13 % in 10 minutes, which is not a notable result, the DE and the PSO algorithms were capable
to obtain reductions of 9.85 % and 7.33 %, respectively, in 50000 function evaluations. These two
algorithms demonstrated a similar performance. However, in average, the DE was able to converge
to better solutions than PSO after 30000 evaluations of the objective function, as can be observed in
Figure 13.26b.

The energy results, the optimal pump controls as well as the water levels variation in tanks ob-
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tained from the best solution found (with DE) are provided in Table 13.18, in Figure 13.27 and in
Figure 13.28, respectively.

Table 13.18: Energy results for the best solution obtained with DE in the optimisation of the Por-
tuguese network.

Pump Utilisation Avg. Efficiency Energy Avg. Power Peak power Daily cost
(%) (%) (kWh/m3) (kW) (kW) (e)

PMP-AB1 80.91 63.70 5.30 277.53 351.06 489.49
PMP-AB2 0.00 0.00 0.00 0.00 0.00 0.00
PMP-CD1 69.07 79.27 0.40 146.97 147.19 220.07
PMP-CD2 0.00 0.00 0.00 0.00 0.00 0.00

Total daily optimal cost, Ctotal(X∗) 709.56

(a)

(b)

Figure 13.27: Optimal (a) pumps controls and (b) valve controls (1/0 correspond to open/closed
status) obtained with DE in the optimisation of the Portuguese network.

The DE algorithm was capable of providing a solution in which the pumps that were initially off
(PMP-AB2 and PMP-CD2) remained also off during the entire period of simulation.

Comparing the energy results of the optimised solution with the initial solution (Table 13.8), on
the one hand, the percentage of utilisation of pump PMP-AB1 increased from 79.17 to 80.91 % and
the efficiency decreased from 74.75 to 63.60 % due to the operation at lower relative speeds. However,
even with the drop in efficiency, the operating costs were reduced from 561.24 to 489.49 e/day. On
the other hand, the percentage of utilisation of pump PMP-CD1 decreased from 70.83 to 69.07 % and
the average efficiency was kept nearly the same (79.27 % instead of the initial 79.24 %). Due to this
decrease in the pump operating time, the average power consumption was reduced from 147.24 to
146.97 kW, leading to a daily cost reduction from 225.71 to 220.07 e.

The pumps operational solution that leads to the tank levels variation as represented in Figure
13.28 revealed to be a feasible solution since no constraints were violated. However, in terms of
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(a) Tank A (b) Tank B (c) Tank C (d) Tank D

Figure 13.28: Variation of the water levels (m) in the tanks of the Portuguese network during the
24-hours of simulation considering the optimal solution obtained with DE algorithm.

number of switches, the obtained solution is not satisfactory for pump PMP-AB1 neither for valve G.

After analysing the best solutions obtained with the other two algorithms, it was verified that the
PSO algorithm found a feasible solution both in terms of constraints violation and number of pump
switches. The solution found by the PSO algorithm presents only three switches for pump PMP-
AB1 and two switches for pump PMP-CD1, which were obtained uniquely by means of the variable
relative speed, since the operating times were maintained in periods of one hour (the size of the time-
step). The valve controls present four switches for the simulated day, which corresponds exactly to
the number of switches of the initial solution.

13.2.4 A sensitivity analysis study

Sensitivity analyses to the parameters of three of the algorithms implemented in the developed tool
(namely, the Particle Swarm Optimisation - PSO, the Differential Evolution - DE and the Nelder-
Mead Simplex - NMSimplex) were performed in order to measure the influence of using distinct
parameters in the type of problems addressed in this thesis (water networks control optimisation).
Such analyses were performed in the single-pump network (one variable-speed pump) and in the Van
Zyl network considering two variable speed-pumps and one fixed-speed pump, which means that the
algorithms are tested in optimisation problems with dimensions 48 and 120, respectively.

For the presented study, an approach similar with the proposed by Marchi, Dandy, Wilkins, and
Rohrlach (2012) was followed. Thus, different population sizes were considered, namely, 25, 50 and
100 for the single-pump network and 50, 150 and 300 for the van Zyl network. The choice of such
values were based in the work of Chen, Montgomery, and Bolufé-Röhler (2015) concerning the effect
of dimensionality (number of decision variables) in PSO and DE algorithms. In PSO and DE algo-
rithms, when dealing with low-dimensions problems (usually referred as n < 50), the recommended
population size (nP) is typically a value superior to the problem dimension (nP > n). The experi-
ments performed by Chen et al. (2015) demonstrated that nP < n is often required in high dimensions
(n > 50). Since in evolutionary algorithms the use of a population size at least equal or superior to
the problem dimension is common among researchers, in this study, three different values are tested:
(i) a value near half the problem dimension, nP ≈ n/2, (ii) a value close to the problem dimension, nP

≈ n, and (iii) a value near twice the problem dimension, nP ≈ 2n.
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PSO parameters

The PSO parameters selected for perturbation were the cognitive and social acceleration parameters
(c1 and c2, respectively), also called local and global learning factors. Fixing an initial combination
for those parameters based on the commonly used values (c1=2.0 and c2=2.0), then the possible
combinations considering an higher and a lower value (2.5 and 1.5, respectively) were tested for
the three population sizes considered for each problem. Results in terms of the average algorithm
performance for 2 runs are presented in Figure 13.29 for the single-pump network and in Figure
13.30 for the van Zyl network. The Results in terms of computation effort and cost reduction for the
two tested networks are summarised in Table 13.19.

(a) nP=25 (b) nP=50 (c) nP=100

Figure 13.29: Evolution of the mean objective function obtained from the optimisation of the single-
pump network with the Particle Swarm Optimisation (PSO) algorithm considering three different
population sizes (25, 50 and 100) and different combinations for the cognitive and social acceleration
parameters, c1 and c2, respectively.

(a) nP=50 (b) nP=150 (c) nP=300

Figure 13.30: Evolution of the mean objective function obtained from the optimisation of the Van
Zyl network with the Particle Swarm Optimisation (PSO) algorithm considering three different pop-
ulation sizes (50, 150 and 300) and different combinations for the cognitive and social acceleration
parameters, c1 and c2, respectively.

As expected, for both tested networks, the computational effort (CPU time) required by the PSO
demonstrated to increase linearly with the increase of the population size. However, in terms of ob-
jective function improvements, there were no significant differences in the optimisation with different
population sizes, neither in the single-pump network nor in the van Zyl network.

Globally, the parameters combination that revealed the best performance was c1=1.5 and c2=1.5,
demonstrating a larger influence in the problem with high dimension (the van Zyl network), especially
in terms of speed of convergence to the optimum. The obtained results may indicate that the previous
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Table 13.19: Best results obtained with the PSO algorithm for each distinct population size considered
in each tested network.

Tested Variables Population Iterations Initial Best % Cost Mean CPU
network number size number cost cost reduction time (min)

Single-pump 48 25 1000 22.73 17.68 22.21 10
(1VSP) 50 17.68 22.21 19

100 17.58 22.68 41

Van Zyl 120 50 3000 345.24 250.01 27.58 295 [∼5h]
(2VSP 150 249.23 27.81 869 [∼14h]
+ 1FSP) 300 246.90 28.48 1799 [∼29h]

optimisation results obtained for the van Zyl and the Richmond network, which were computed using
the typical combination for the PSO parameters c1=2 and c2=2, could be improved by using other
values for the parameters.

DE parameters

For the DE algorithm, the effect caused by the perturbation of the two following parameters was
analysed: (i) the differential weight, F, and (ii) the crossover probability, CR. The reference set of
parameters was selected due to the values proposed by Pedersen (2010) for various optimisation
scenarios, i.e. F=0.6 and CR=0.95. Then, each one of the parameters was individually changed by
a superior and an inferior value maintaining the other parameter. Figures 13.31 and 13.32 provide
the evolution of the 2-runs average objective function for the single-pump network and the van Zyl
network, respectively. An overview on the best results and the associated computational effort is
provided in Table 13.20.

Table 13.20: Best results obtained with the DE algorithm for each distinct population size considered
in each tested network.

Tested Variables Iterations Population Initial Best % Cost Mean CPU
network number number size cost cost reduction timea (min)

Single-pump 48 1000 25 22.73 18.09 20.43 14
(1VSP) 50 17.94 21.08 30

100 17.85 21.49 66

Van Zyl 120 3000 50 345.24 294.55 14.68 198 [∼3h]
(2VSP 150 271.57 21.34 541 [∼9h]
+ 1FSP) 300 251.98 27.01 1142 [∼19h]

aUsing a processor Intel R© CoreTMi5 CPU M460 @ 2.53GHz

Similarly with PSO, the DE algorithm also revealed a linear increase of the computational time
with the increase of the population size. While in the case of the single-pump network the use of
different population sizes did not cause influence in the optimum cost, in the van Zyl network, results
demonstrated to be significantly improved with the increase of the population size.

Concerning the DE parameters, the value initially set for the differential weight (F=0.6) revealed
to be, in fact, the most adequate for the single-pump. However, the performance of the DE in the van
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(a) nP=25 (b) nP=25

(c) nP=50 (d) nP=50

(e) nP=100 (f) nP=100

Figure 13.31: Evolution of the mean objective function obtained from the optimisation of the single-
pump network with the Differential Evolution (DE) algorithm considering three different population
sizes (25, 50 and 100) and different values for the differential weight, F, and the crossover probability,
CR.



236 13. Optimising the operations of water supply networks

(a) (b) nP=50

(c) nP=150 (d) nP=150

(e) nP=300 (f) nP=300

Figure 13.32: Evolution of the mean objective function obtained from the optimisation of the Van Zyl
network with the Differential Evolution (DE) algorithm considering three different population sizes
(50, 150 and 300) and different values for the differential weight, F, and the crossover probability,
CR.
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Zyl network was inferior when compared with the performance of the algorithm using other values
of F. For a population size of 50 and 150, the best results were achieved with F=1.5, while for a
population of 300, F=0.3 allowed to achieve the lowest value of the objective function. The value
initially set for the crossover probability (CR=0.95) also demonstrates to be adequate when applied
to the single-pump network. In the van Zyl network, such value of crossover probability provided
the fastest convergence of DE to the optimum when compared with other parameters. However, for
the three population sizes, the lowest average values of the objective function were obtained by using
CR=0.75.

NMSimplex parameters

The effect of the parameters in the performance of the NMSimplex algorithm was tested by opti-
mising the two networks considering distinct combinations of the following three parameters: (i) the
reflection coefficient, αr, (ii) the contraction coefficient, βc, and (iii) the expansion coefficient, γe.
Each parameter combination is represented by (αr,βc,γe). The set of parameters used as reference
was based in the values typically used, i.e. (1.0, 0.5, 2.0). Each parameter was perturbed inferiorly
and superiorly maintaining the other two parameters. Results of the parameters combinations are
provided in Figure 13.33 and the best results achieved for each network are summarised in Table
13.21.

(a) Single-pump network (b) van Zyl network

Figure 13.33: Evolution of the objective function in the optimisation of two networks using the
Nelder-Mead Simplex algorithm with distinct combinations for the reflection (αr), contraction (βc)
and expansion (γe) coefficients represented, respectively, by (αr βc γe).

Table 13.21: Best results obtained by the optimisation of the single-pump and the van Zyl networks
with the nelder-Mead Simplex algorithm.

Tested Variables Iterations Initial Best % cost Best coefficients CPU time
network number number cost cost reduction (αr βc γe) (min)

single-pump 48 1067 22.73 18.03 20.67 (1.0 0.25 2.0) 1.0
van Zyl 120 3001 345.24 335.14 2.93 (2.0 0.5 2.0) 6.8

The best results achieved by the NMSimplex algorithm in terms of cost reduction correspond to
less than 3 % in the case of the van Zyl network but more than 20 % for the single-pump network.
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NMSimplex is the algorithm that achieves the optimum in the most short period of time. However,
this is also the algorithm that results in the lowest values of cost reduction.

The larger optimisation problem (the van Zyl network) demonstrated to be the most sensitive to
the parameters perturbation. The two parameter combinations that provided the best results for the
van Zyl were the (2.0, 0.5, 2.0) followed by the (1.5, 0.5, 2.0), i.e., the combinations that maintained
the initial values of βc and γe and increased the value of αr up to 2.0. Note that αr = 3.0 was also
tested but the algorithm demonstrated an inferior performance.

In the case of the single-pump network, all the tested parameter combinations, except for (0.5, 0.5,
2.0), allowed the DE algorithm to converge to satisfactory results. However, the higher cost reduction
was obtained by considering the combination (1.0, 0.25, 2.0), which was followed by (1.0, 0.75, 2.0),
both combination corresponding to perturbations in the contraction coefficient, from the initial value
βc = 0.5.

13.2.5 Optimising a network under fire flow conditions

The Walski network, described in Section 13.1.4, was optimised with four of the implemented algo-
rithms, namely the PSO, the DE, the NMSimplex, and the GA. The first three algorithms were tested
considering the most adequate parameters according to the sensitivity analysis study previously pre-
sented. In the case of the PSO algorithm, c1=c2=1.5 and nP=50; for the DE, F=1.5, CR=0.95 and the
same population size (for a fair comparison of results); and, finally, for the NMSimplex the parameter
combination (2.0, 0.5, 2.0) was used. The obtained results and the performance of the algorithms are
presented in Table 13.22 and in Figure 13.34, respectively. For the GA, the values of crossover and
mutation probability used were 0.9 and 0.01, respectively. The results for PSO, DE and GA were
obtained over a total of 4 runs performed for each algorithm.

Table 13.22: Optimisation results for the Walski network with four different algorithms: Particle
Swarm Optimisation (PSO), Differential Evolution (DE), Nelder-Mead Simplex and Genetic Algo-
rithms (GA).

Initial Algorithm OF evaluations Best optimum % cost Mean optimum Mean CPU
cost cost reduction cost time (min)

324.36 PSO (nP=50) 50 000 204.77 36.87 211.20 48.43
DE (nP=50) 50 000 212.99 34.34 242.48 62.22
NMSimplex 11 296 287.90 11.24 287.90 10.57
GA (nP=50) 50 000 200.49 38.19 273.49 60.39

The solution with the lowest associated cost of operation was obtained with the GA (a reduction
of more than 38 % comparing with the initial solution). In average, this algorithm took 60 minutes
to converge to the optimum. In turn, the NMSimplex algorithm, besides having presented an inferior
performance in terms of the value of the objective function, was able to converge to an optimum that
resulted in more than 11 % of cost reduction in just 10 minutes. At the same time, considering only
the first 10000 evaluations of the objective function, the NMSimplex algorithm demonstrated a faster
convergence and better performance than both the GA and the PSO algorithms. The DE was the
algorithm that performed better for the first 10000 evaluations.

Considering the average results (for the 4 runs), the PSO demonstrated the best performance by
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Figure 13.34: Evolution of the mean value of the objective function obtained in the optimisation of
the Walski network with four different algorithms.

reaching optimum solutions with an average associated cost of 211.2 e/day. At the same time, the
PSO converges to the optimum in a lower CPU time in comparison with both GA and DE. In average
terms, the performance of GA decreases considerably.

The energy results for the simulation of the best operational solution obtained with the PSO (the
algorithm that presented the best results in average) are presented in Table 13.23. The simulated
operational conditions, including the pumps controls and the variation of the water level in the tank,
are presented in Figure 13.35.

Table 13.23: Energy results for the best solution obtained in the optimisation of the Walski network
with the PSO.

Pump Utilisation Avg. Efficiency Energy Avg. Power Peak power Daily cost
(%) (%) (kWh/m3) (kW) (kW) (e)

PMP-1 58.33 75.18 0.57 210.31 582.49 146.46
PMP-2 25.00 75.98 0.24 69.76 164.23 58.3

Total daily optimal cost, Ctotal(X∗) 204.77

Figure 13.35: Operational conditions of the Walski network considering the best solution obtained
with the PSO algorithm.

Even with a reduction in the average efficiency and an increase in the energy consumption per
unit of pumped water, the daily operational costs were reduced from 237.22 to 146.46 e by reducing
the pump speed in periods of time where the tariff is superior and increasing the speed in the cheaper
periods.
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For pump PMP-2, both the energy consumed per unit of pumped water and the average and
maximum power were reduced (also due to the speed variation), leading to a reduction in the daily
costs from 87.14 to 58.3 e.

From Figure 13.35, it is possible to see that, by the time of the fire occurrence (from 11 to 14h),
the water level in tank drops until the minimum limit allowed (75 m) and remains near the minimum
level until the period with lower energy cost, where the speed of the pump PMP-1 is increased and
the pump continues in operation until the tank reaches the required level to finish the day with the
same water level as in the beginning.

Similarly with the previous optimisation problems, the solutions obtained with the PSO algorithm
demonstrate a tendency to result uniquely in variations of the speed variables. Analysing the solu-
tions obtained with the other algorithms tested in this problem, both the GA and the DE algorithms
demonstrated variations in terms of speed and time of operation of both pumps, as well as variations
in the valves opening times. As previously pointed, the main drawback of such obtained solutions
is still related with the high number of pumps switches. The solution obtained with the NMSimplex
algorithm demonstrate to be similar with the solutions obtained with the PSO algorithm by changing
only the relative speeds of the pumps.



14. Predicting water demands in a
Portuguese case-study

Four water demand data sets are used to develop short-term forecasting models including
naïve models, exponential smoothing and artificial neural networks (ANN). The influence of

accounting anthropic and meteorological variables to ANN-based models is also analysed.

14.1 Case-study description

In this work, the idea of forecasting water demands emerged from the possibility of preparing and
adjusting the operation of a WSS in a more efficient way, avoiding unnecessary operating costs.

Figure 14.1 provides a specific scheme of the Portuguese network, previously presented in Chap-
ter 13, for a demonstration of the data measurement zones.

Figure 14.1: Simplified representation of the Portuguese water network of this study.

Data, from August 2012 to July 2013, measured in delivery points from which the consumers are
supplied by gravity (V6 to V15) as well as tanks inlet (V1, V3 and V17) and outlet (V2, V4, V5 and
V16, where only V5 is not a delivery point) were provided by the water utility responsible for the
management and operation of the system∗. Data from tank D is not available since it is managed by

∗Due to confidentiality reasons, the water utility and the details concerning the system analysed are not revealed.
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a distinct water utility.

The collected data were provided in the format of accumulated volumes of water, in cubic metres
(m3), measured in time intervals of 10 minutes.

The type of water consumers of this case-study represents a mix of domestic, agriculture and
industrial consumers.

Besides the historical data of delivered water, some meteorological data, such as temperature,
relative humidity and rainfall occurrence, was obtained from the nearest meteorological station in the
area†. All this data was collected in hourly time intervals, during the same period (Aug 2012 to Jul
2013).

No information from experts, such as explanations for failures or unexpected occurrences, is avail-
able. This means that all the analysis of water demands is based on interpretations on the available
historical data and meteorological effects.

The objective of this work is to evaluate the performance of distinct forecasting models for distinct
delivery points of the described case-study considering the influence of distinct sets of input data
(including historical demands, anthropic and meteorological variables). The forecasting models time-
scale is hourly (same time period commonly used when dealing with operational control problems)
and it is intended to evaluate the performance of each model when forecasting the next 24 hours of
water demand.

14.2 Data selection

For this case study (Figure 14.1), there are enough available data to develop a model in order to
predict future supply needs for both tank A and tank B (historical data measured in points V2, V4 and
V5). Although it could be preferable to use data from each delivery point from V6 to V15 and V16,
data from tank D outlet is still missing, which means that part of the demand needs for this network
would be discarded. At the same time, from the time plots of each data point, it was observed that
data collected at point V10 presented several inconsistencies and a lot of missing data that were
not possible to interpret (possibly caused by failures in measurement equipment or communication
system). For these reasons, it was decided to analyse in this work the data from V2, V4, V5 and
V16. It is expected more difficulties in demand forecasting for point V5 since it does not represent a
delivery point but, instead, the sum of the delivery points V6 to V15, V16 and the outlet water of tank
D. Moreover, such data may be influenced by the operation of the pumping station that pumps water
from tank C to tank D, which may be hiding possible demand patterns.

14.3 Data analysis and pre-processing

After plotting the time series of the raw data as provided by the water utility (see examples of some
data sets in Figure 14.2) it became clear that in most of the cases, several failures occurred over the
year, i.e. the observations of accumulated water volume where not always increasing over time as
expected.

†Data provider: http://freemeteo.co.uk/; data source: http://www.noaa.gov/.

http://freemeteo.co.uk/
http://www.noaa.gov/
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Figure 14.2: Examples of the time series plots of the raw data of the accumulated water volumes (in
m3) measured in 10-min time intervals at distinct points from August 2012 to July 2013.

Unlike the first two time series plots, a and b, that apparently presented data without outliers, all
other examples needed to be cleaned. In plots c, f to h and j to l, several occurrences with the obser-
vations set to zero are identified as extreme outliers. This may probably be related to interruptions in
data collection.

In order to clean the data, the first step was the detection and removal of outliers. The method used
was based in the interquartile range of each data set (see, for example, outliers detection in Natrella
(2010)), rejecting values inferior to the lower quartile (lower outlier boundary) and superior to the
upper quartile (upper outlier boundary).

Once the outliers were removed, it was possible to identify other type of data failures resulting
from the counting re-initialisation of the measurement device. Figure 14.3 provides a representation
of this type of occurrence. All data sets presenting this type of occurrence were corrected by adding
the value of the last measure (device limit) to the initialised values.

Figure 14.3: Representation of a possible occurrence in collected data. After reaching the limit of the
measurement device, the counting starts again from zero.

An analysis to the amount of missing data was also performed. For all data sets, it was verified
that in the first two months of data (August and September of 2012), more than 40 % of data were
missing. For this reason, it was only considered the data from 21/09/2012 to 31/07/2013. All the
other missing data identified represented only 0.4 % for V2 data set, 0.5 % for V4 and V16 data sets
and 0.8 % for V5.

After correcting the mentioned particularities observed in data, since the measurements were
performed in 10-minutes intervals, the corresponding values for fixed steps in hourly intervals were
computed using data linear interpolation.

Finally, in order to obtain the hourly water demands (WD, in m3/h), the differences between each
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measured hour were computed. This allowed transforming the initial time series (V2, V4, V5 and
V16) that presented a linear trend (water volume increasing linearly with time) into stationary series
(WD2, WD4, WD5 and WD16).

A statistical overview of the water demand time series, including mean, standard deviation, max-
imum and minimum values, is presented in table 14.1.

Table 14.1: Statistical information concerning each water demand time series data set (from
21/09/2012 to 31/07/2013).

Data set WD2 WD4 WD5 WD16

Total Observations 7536 7536 7536 7536
Mean, ȳ (m3/h) 11.62 37.73 441.31 2.67
Standard deviation, σ (m3/h) 5.30 16.80 157.24 1.82
Maximum, ymax (m3/h) 34.67 97.71 949.32 14.42
Minimum, ymin (m3/h) 0.00 0.00 0.00 0.00

With the water demand series ready to be used for the development of forecasting models, it
is important to analyse other available data in order to decide the predictor variables that may be
included in the models.

After analysing the patterns revealed by the time series plots, it was verified that for different
months, different patterns were presented, as well as in different days of the week. Thus, an analysis
to the influence of anthropic variables (month, day of the week and hour of the day) was performed.

For the variable Hour (H), numbers from 0 to 23 were used to represent the 24 hours of a day.
Concerning the variable Day of the week (D), numbers from 1 to 7 were used to represent Monday
to Sunday and the same was done for the variable Month (M) using the numbers 1 to 12 (January to
December).

In a first step, the Pearson correlation coefficients between the water demand data sets and the
anthropic variables under consideration were computed. Results of such coefficients are provided in
Table 14.2.

Table 14.2: Pearson correlation coefficients measured between the distinct water demand sets (WD)
and the considered anthropic variables Day of the week (D), Month (M) and Hour of the day (H).

D M H WD2 WD4 WD5 WD16
D 1.000
M 0.005 1.000
H 0.000 0.000 1.000
WD2 0.000 0.120 0.605 1.000
WD4 0.047 0.116 0.650 0.915 1.000
WD5 0.094 -0.057 0.130 0.107 0.120 1.000
WD16 0.075 -0.008 0.650 0.836 0.894 0.069 1.000

Observing the gray area represented in Table 14.2, it is clear that the variable that presents higher
correlation with the water demand series is the variable Hour, especially with WD2, WD4 and WD16.
However, it was also expected some relationship with the other variables, which was not observed
with these results.
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Although the Pearson correlation (a quantitative sensitivity parameter) is often used by researchers
for the choice of the variables to include in their forecasting models, such measure provides only
information about the linear relationship between variables (Hamby, 1994). This means that, other
type of relationship may be undetected with this approach. For this reason, it was decided to analyse
the scatter plots (a qualitative sensitivity parameter) for all variables in order to reveal other possible
relationships. Such plots are represented in Figure 14.4.

Figure 14.4: Scatter plots showing the relationship between the water demand time series (in m3/h)
and the anthropic variables Hour (H), Day of the week (D) and Month (M). Adjusted 6th-order poly-
nomial trend lines and the squared correlation coefficients are also represented.

In fact, according to Figure 14.4, the relationships between the water demands and the anthropic
variables are not linear. The variable Day of week presents the weakest relationships with water
demand. However, analysing, for instance, the relationship of this variable with WD5, it is possible
to observe that higher water demands occur during the weekends.

Analysing the variable Month, it is also notorious the higher water demands for specific months
(such as expected in the summer months, from June to September‡).

‡It should be noticed that data from August to mid-September is missing in the data sets, which may hide the
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By adjusting, for example, a polynomial trend line instead of a linear one, the correlation coef-
ficients between the variable Hour and the water demand significantly increases. All the correlation
coefficients obtained from these scatter plots are presented in figure 14.5 for a faster analysis. The
anthropic variables with higher correlations are marked in the figure with dashed lines and were the
ones selected to be tested in the forecasting models of this work.

Figure 14.5: Correlation coefficients (from a polynomial trend) between the water demand in each
data set and the anthropic variables. The variables signed with the dashed lines were the ones selected
for the forecasting models development in this work.

From the results presented in Table 14.2, it is also worth to mention the strong relation between
the water demand series and the water demand in the neighbouring points, i.e. WD2 has a strong cor-
relation with both WD4 and WD16 and even WD4 present a high correlation with WD16. The scatter
plot matrix provided in Figure 14.6 clearly shows these linear relationships. Such observations might
mean that the inclusion of these variables (past water demands observed in neighbouring areas) in the
forecasting models can be beneficial. Although not found in the literature the use of such variables
for water demand forecasting, in this work, the forecasting models will also be tested including them.

Concerning the weather variables (temperature, relative humidity and rainfall occurrence), it is
also important to perform an analysis to the time series to deal with possible outliers and missing
data.

Although no outliers were identified, a large amount of the available data was missing. In the
period considered for the water demand data (21/09/2012 to 31/07/2013), around 30 % of data were
missing. After plotting the time series, it was observed that almost all data for the months of October
and November were missing. Considering only the data from 3/12/2012 to 31/07/2013 (last 5761 ob-
servations) the amount of missing data is around 10 % for the variables Temperature (T) and Relative
Humidity (RH) and around 11 % for the Rainfall Occurrence (RO) variable.

For the T and RH data sets, the 10 % of missing data was approximated using the called Kriging
interpolation method§, a Gaussian process regression governed by prior covariances.

Since the Rainfall Occurrence is a binary variable (i.e. takes values of 1 or 0, for the occurrence
or not of rainfall, respectively), the missing data in the RO data set cannot be obtained by the same
interpolation method previously mentioned. Thus, the nearest-neighbour interpolation method (also
known as proximal interpolation) was used instead. This method simply locate the nearest data value

relationship between the water demand and the summer months.
§In several cases, missing data is replaced by average values, however, interpolation methods can provide better

approximations.
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Figure 14.6: Scatter plot matrix showing the relationships between the water demand data sets that
represent the water demand in neighbouring delivery points.

and assign the same value.
Both interpolation methods were implemented using the XonGrid interpolation Add-in¶ for Ex-

cel.
Some statistical information such as minimum, maximum, average and standard deviation values

for the three meteorological data sets is provided in Table 14.3.

Table 14.3: Statistical information about the meteorological data sets, including Temperature (T),
Rainfall Occurrence (RO) and Relative Humidity (RH) (from 3/12/2012 to 31/07/2013).

T (◦ C) RO RH

Total observations 5761 5761 5761
Minimum -1.00 0.00 0.22
Maximum 35.00 1.00 1.05
Average 13.63 0.09 0.80
Standard deviation 4.88 0.29 0.16

In order to perform a first analysis to the influence of the weather variables in the water demand,
the Pearson correlation coefficients between all variables were computed and graphically represented
in Figure 14.7. The first impression is that the relationship between such variables is weak, since the
coefficients obtained were so low. At the same time, from the three distinct variables, Temperature
and Relative Humidity appear to have the strongest correlation with water demand.

¶http://xongrid.sourceforge.net/

http://xongrid.sourceforge.net/
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Figure 14.7: Pearson correlation coefficients between the water demand in each data set and the
weather variables.

From the scatter plots provided in Figure 14.8, through the represented trend lines it is possible to
observe the similar relationship (but in a symmetric way) of both Temperature and Relative Humidity
with the water demands. The highest demands occur typically for higher temperatures and lower
relative humidity. However, this is not so notorious for the WD5 data set.

The variable Rainfall Occurrence, that presented the lowest Pearson correlation coefficients, in a
certain way demonstrates to cause some kind of influence in the water demands. In the scatter plots
of 14.8, the highest demands occur typically in hours without rain occurrence (although again, this
is not so notorious for WD5). For this reason, forecasting models including this variable will also be
tested.

Besides the analysis to anthropic and weather variables, an analysis to the water demand time
series lags was also performed. The idea is to verify which demands in previous hours present higher
correlation with the current demands. Thus, the correlation coefficients between the current time
series and the time series for lags 1 to 168 (previous one hour to one week) were computed. Results
of these autocorrelation functions for each data set showing the more significant lags are provided in
Figure 14.9.

For all data sets, the hours that demonstrate higher correlation with the current hour are the pre-
vious 1, 24 and 168 hours. However, while the highest correlation for the datasets WD2 and WD4
was obtained for the 168-hours lag, for the data sets WD5 and WD16, the 1-hour lag has an higher
correlation. Thus, it was decided to test the three lags in the forecasting models.

14.4 Hourly forecasting models development

In order to identify the variables with more influence in the Portuguese network water demands and
develop the most adequate model to predict the future demands in a hourly basis, four distinct water
demand data sets were used and several forecasting models with distinct inputs were developed.

Firstly, the simplest forecasting models using only the current water demand series were de-
veloped, including naïve models, the classic Exponential Smoothing and ANN-based models. The
intention of developing naïve models is essentially to be a reference. To be considered adequate, any
other developed forecasting model is intended to present, at least, equal or superior accuracy to those
ones.
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Figure 14.8: Scatter plots showing the relationship between the water demand (in m3/h) and the
weather variables Temperature (T), Rainfall Occurrence (RO) and Relative Humidity (RH). Adjusted
6th-order polynomial trend lines and the corresponding squared correlation coefficients are also rep-
resented.
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Figure 14.9: Autocorrelation Functions (ACF) for the distinct water demand time series considered
in this work. The black dashed lines mark the lag that presents the highest correlation in each case.
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For its simplicity of implementation, both the Naïve models and the Exponential Smoothing mod-
els were developed using Microsoft Excel.

Seasonal naïve models with a seasonality of one week (168 hours) were developed. Since the data
sets demonstrated also high correlations with the 1-hour lagged series (especially the data sets WD5
and WD16), simple naïve models were also developed.

Concerning the Exponential Smoothing methods, both the Additive Seasonal Holt-Winters and
the Multiplicative Seasonal Holt-Winters were developed for each data set. After that, distinct ANN-
based models with additional input variables were developed. The idea is to test the influence of
distinct variables in the models separately and then verify if the simultaneous use of the variables
with more influence allow obtaining better forecasting models.

All ANN-based models were developed using Matlab R2012a, more specifically using the called
narnet and narxnet models, for single and multiple predictors, respectively. Narnet, or non-linear
autoregressive neural network, is used to predict a time series from that series past values (MathWorks:
narnet, 2015). Narnet is a recurrent network (has feedback connections), where the feedback only
depends on past outputs. It can be represented as narnet(FD,HN), where FD corresponds to the feed-
back delay and HN is a vector of the number of neurons in the hidden layer(s).

Narxnet, or non-linear autoregressive neural network with external input, is used to predict one
time series given past values of the same time series (the feedback input) and another time series,
called the external or exogenous time series (MathWorks: narxnet, 2015). Similarly with the narnet,
a narxnet can be represented as narxnet(ID,FD,HN), where ID is the input delay of the external time
series.

Table 14.4 provides a list of all ANN models developed to test the influence of distinct input
variables.

Table 14.4: Input variables selected for each distinct ANN-based model developed in this work.

Data ANN Input Data ANN Input
set model variables set model variables

WD2_hist WD2(t) WD16_hist WD16(t)
WD2_1lag WD2(t, t-168) WD16_1lag WD16(t, t-1)
WD2_3lags WD2(t, t-1, t-24, t-168) WD16_3lags WD16(t, t-1, t-24, t-168)

WD2 WD2_anthrop WD2(t), Hour, Month WD16 WD16_anthrop WD16(t), Hour
WD2_neighb WD2(t), WD4(t), WD16(t) WD16_neighb WD16(t), WD2(t), WD4(t)
WD2_meteo WD2(t), T(t), RH(t) WD16_meteo WD16(t), T(t), RH(t)
WD2_rain WD2(t), RO(t) WD16_rain WD16(t), RO(t)
WD2_selection selected variables WD16_selection selected variables
WD2_all all variables WD16_all all variables
WD4_hist WD4(t) WD5_hist WD5(t)
WD4_1lag WD4(t, t-168) WD5_1lag WD5(t, t-1)
WD4_3lags WD4(t, t-1, t-24, t-168) WD5_3lags WD5(t, t-1, t-24, t-168)

WD4 WD4_anthrop WD4(t), Hour, Month WD5 WD5_anthrop WD5(t), Hour, Month
WD4_neighb WD4(t), WD2(t), WD16(t) WD5_meteo WD5(t), T(t)
WD4_meteo WD4(t), T(t), RH(t) WD5_rain WD5(t), RO(t)
WD4_rain WD4(t), RO(t) WD5_selection selected variables
WD4_selection selected variables WD5_all all variables
WD4_all all variables

The first developed models (using narnet) receive as only input the historical data, considering
the current data series, WD(t). After that, in each of the other models, different types of variables
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(external inputs) are additionally included (using narxnet). The WD_1lag models consider as addi-
tional input the lagged series that presented the highest correlation coefficient (according to Figure
14.9). The WD_3lags models consider the addition of the three lagged series that presented the high-
est correlation coefficients (1, 24 and 168 hours for all data sets). The WD_anthrop models include
the selected anthropic variables for each data set (according to Figure 14.5).

For all data sets except WD5, models considering as additional input the water demand series of
the neighbouring areas were developed.

The meteorological variables that presented the higher correlation coefficients with each data set
were included in the WD_meteo models. However, since it was verified that the variable Rainfall
Occurrence could present some influence in the water demand (see Figure 14.8), a separate model to
test the influence of including such variable was also developed for each data set (WD_rain).

Finally, for each data set, a model using as input the variables of the two models that presented the
best forecast accuracies was develop (WD_selection) and compared with another model considering
all variables as input (WD_all).

Forecasting results with the distinct methods for each data set are compared using scale-dependent
accuracy measures. Scaled/normalised accuracy measures are also computed to allow the comparison
between the distinct data sets.

Data sets division
For the development of the traditional forecasting models (naïve and exponential smoothing),

each water demand data set was divided into two subsets: fitting and validation. The first 80 % of
data (6036 observations) was used for fitting the model while the 20 % remainder data (the 1500 most
recent observations) was left to validate the developed model.

Concerning the ANN-based forecasting models, the same amount of data (the 1500 most recent
observations) was left for the final validation of each model. The remaining data (6036 observations)
was used to develop the neural network: 70 % for training, 15 % for cross-validation and another
15 % for testing.

Since the meteorological data sets contain less 1775 observations than the water demand set (as
already shown in Tables 14.1 and 14.3), the first 1775 observations of the water demand data sets
were discarded, giving a total number of observations equal to 5761 for each data set, instead of 6036
(2867 data points for training, 613 for cross-validation and 613 for testing).

Neural networks architecture
A simple tool to select the most appropriate architecture for each ANN-based model was devel-

oped using Matlab. A single hidden layer network was considered for all cases, varying only the
number of nodes. The developed tool automatically performs (i) the networks architecture selection,
(ii) the networks development and (iii) forecast with new data (final validation). The main followed
steps are:

1. Water Demand series autocorrelation function (ACF) and partialautocorrelation function (PACF)
computation.

2. Definition of the number of input delays and feed-back delays: ID = max(ACF) and FD =

max(PACF).
3. For 1 to 10 hidden nodes (HN), considering always the same random variables for the weights
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initialisation:

(a) narnet(FD,HN) or narxnet(ID,FD,HN) generation;

(b) network training and test with target WD series feedback (open-loop network);

(c) open-loop network performance computation (Mean Squared Error).

4. Selection of the number of hidden nodes according to the best open-loop network performance
obtained.

5. Close the network loop for forecasts without target feedback (only output feedback).
6. For 1 to 10 runs, considering always distinct random variables initialisation:

(a) Predict missing values using the closed-loop trained network;

(b) Compute the forecast accuracy (network performance) using the corresponding data for
validation;

7. Save the network with best performance.

14.5 Forecasting results for the traditional methods

Following the data division previously mentioned, each traditional forecasting model was developed
using the first data set (fitting subset). After that, hourly forecasts were obtained using the fitted
models for the same period of the validation data set. The forecasting accuracy was computed for (i)
the first hour predicted, (ii) the first 24 hours predicted and (iii) all the validation data set period (last
1500 observations - almost 9 weeks) predicted.

Tables 14.5 to 14.8 provide the forecasting accuracy measures of all traditional methods developed
for each water demand data set.

Table 14.5: Fitting forecasting accuracy measures obtained for each data set with the Naïve, Seasonal
Naïve, Additive Seasonal Holt-Winters and Multiplicative Seasonal Holt-Winters models.

Data Forecasting R2 NSE MAE RMSE MAPE maxAE
set method (-) (-) (m3/h) (m3/h) (%) (m3/h)

WD2 Naïve 0.73 0.71 1.90 2.74 1.67E+12 21.61
Seas. Naïve 0.79 0.78 1.54 2.38 8.85E+12 20.35
Add H-W 0.01 1.00 0.01 0.01 1.67E+10 0.01
Mult H-W 0.01 1.00 0.01 0.01 9.43E+09 0.01

WD4 Naïve 0.78 0.77 5.54 7.46 1.19E+12 61.08
Seas. Naïve 0.88 0.87 3.57 5.55 3.31E+12 42.83
Add H-W 0.01 1.00 0.00 0.01 2.19E+09 0.03
Mult H-W 0.01 1.00 0.01 0.02 7.49E+09 0.09

WD5 Naïve 0.33 0.15 106.29 139.87 5.61E+10 934.13
Seas. Naïve 0.26 0.03 113.45 149.97 4.07E+12 709.43
Add H-W 0.01 1.00 0.09 0.09 5.10E+08 0.16
Mult H-W 0.01 1.00 0.09 0.09 4.99E+08 0.19

WD16 Naïve 0.71 0.68 0.69 0.98 6.21E+10 11.50
Seas. Naïve 0.74 0.72 0.57 0.93 3.40E+11 12.05
Add H-W 0.00 1.00 0.00 0.00 1.25E+08 0.00
Mult H-W 0.00 1.00 0.00 0.00 4.71E+07 0.00
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Table 14.6: First hour validation forecasting accuracy measures obtained for each data set with the
Naïve, Seasonal Naïve, Additive Seasonal Holt-Winters and Multiplicative Seasonal Holt-Winters
models.

Data Forecasting R2 NSE MAE RMSE MAPE maxAE
set method (-) (-) (m3/h) (m3/h) (%) (m3/h)

WD2 Naïve _ _ 4.18 4.18 35.86 4.18
Seas. Naïve _ _ 1.86 1.86 15.95 1.86
Add H-W _ _ 5.09 5.09 43.64 5.09
Mult H-W _ _ 5.23 5.23 44.85 5.23

WD4 Naïve _ _ 3.99 3.99 9.21 3.99
Seas. Naïve _ _ 12.07 12.07 27.84 12.07
Add H-W _ _ 0.86 0.86 1.98 0.86
Mult H-W _ _ 1.09 1.09 2.51 1.09

WD5 Naïve _ _ 97.15 97.15 43.73 97.15
Seas. Naïve _ _ 111.92 111.92 50.38 111.92
Add H-W _ _ 169.36 169.36 76.23 169.36
Mult H-W _ _ 218.90 218.90 98.53 218.90

WD16 Naïve _ _ 0.45 0.45 18.84 0.45
Seas. Naïve _ _ 2.65 2.65 110.23 2.65
Add H-W _ _ 0.35 0.35 14.62 0.35
Mult H-W _ _ 0.35 0.35 14.63 0.35

Table 14.7: First 24 hours validation forecasting accuracy measures obtained for each data set with
the Naïve, Seasonal Naïve, Additive Seasonal Holt-Winters and Multiplicative Seasonal Holt-Winters
models.

Data Forecasting R2 NSE MAE RMSE MAPE maxAE
set method (-) (-) (m3/h) (m3/h) (%) (m3/h)

WD2 Naïve 0.00 -1.07 5.02 6.66 94.01 12.41
Seas. Naïve 0.86 0.81 1.33 2.01 10.35 5.12
Add H-W 0.33 0.34 5.15 5.45 64.52 9.57
Mult H-W 0.26 0.31 5.19 5.58 60.22 9.27

WD4 Naïve 0.00 -0.07 13.11 16.14 73.95 30.36
Seas. Naïve 0.80 0.70 6.08 8.62 16.49 27.15
Add H-W 0.00 -0.41 6.46 7.98 22.10 20.56
Mult H-W 0.01 -0.34 6.50 7.76 24.69 19.75

WD5 Naïve 0.01 -0.89 110.35 129.40 28.80 292.61
Seas. Naïve 0.33 -0.32 96.86 108.10 26.47 201.05
Add H-W 0.54 -1195.96 206.95 232.19 60.18 361.13
Mult H-W 0.62 -4119.31 395.20 430.80 108.25 643.13

WD16 Naïve 0.00 -0.04 1.40 1.68 418.31 2.75
Seas. Naïve 0.79 0.70 0.59 0.90 37.88 2.65
Add H-W 0.03 0.98 0.82 1.03 48.73 2.38
Mult H-W 0.03 0.98 0.82 1.03 48.49 2.38
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Table 14.8: All data validation forecasting accuracy measures obtained for each data set with the
Naïve, Seasonal Naïve, Additive Seasonal Holt-Winters and Multiplicative Seasonal Holt-Winters
models.

Data Forecasting R2 NSE MAE RMSE MAPE maxAE
set method (-) (-) (m3/h) (m3/h) (%) (m3/h)

WD2 Naïve 0.09 -0.10 5.03 6.41 69.09 17.85
Seas. Naïve 0.73 0.73 2.21 3.16 16.25 17.67
Add H-W 0.00 1.00 3.36 4.23 31.99 18.46
Mult H-W 0.00 1.00 3.40 4.29 31.83 18.43

WD4 Naïve 0.10 0.07 16.75 20.24 54.41 58.35
Seas. Naïve 0.68 0.68 9.33 11.92 21.52 41.54
Add H-W 0.03 1.00 9.40 12.78 21.18 46.89
Mult H-W 0.00 1.00 8.66 11.87 20.23 44.89

WD5 Naïve 0.31 -1.08 224.65 256.55 41.02 630.02
Seas. Naïve 0.26 0.21 124.55 157.84 26.03 517.76
Add H-W 0.39 0.80 159.38 194.80 38.82 598.67
Mult H-W 0.48 0.24 324.53 376.91 72.09 996.23

WD16 Naïve 0.02 0.02 1.66 2.07 361.07 11.56
Seas. Naïve 0.55 0.46 0.86 1.53 35.18 13.66
Add H-W 0.04 1.00 1.05 1.51 47.07 12.71
Mult H-W 0.00 1.00 1.04 1.47 51.30 12.39

Observing table 14.5, it is possible to see that the Exponential Smoothing methods are better in
fitting the data than both the Naïve models for all data series. However, analysing the validation
forecast accuracy for the first 24 hours (table 14.7), the exponential smoothing methods only perform
better for the data series WD4 and WD16. For the WD2 data set, the Seasonal Naïve model revealed
to be better than any of the other traditional methods. On the other hand, the Simple Naïve provided
the best results for the WD5 data set, which presented higher correlation with the 1-lagged series than
the 168-lagged series.

Results demonstrated that, for exponential smoothing methods, perfect fitting does not imply a
good forecast accuracy. At the same time, comparing tables 14.6 and 14.7, it can be concluded that
the method that best predict the first hour, may not be the best method to predict the first 24 hours.

The Seasonal Naïve model presented good performance when predicting 24-hours or even the
(almost) 9 weeks ahead.

Given the analysed results, both the Seasonal Holt-Winters methods may not be the most appropri-
ate to predict the water demands. This is probably because the serial dependence in the observations
may not be appropriately captured by these approaches. For this reason, it is important to compare
the results with distinct approaches capable of including other properties, such as the ANN-based
methods.

14.6 Forecasting results for the ANN-based methods

Similarly with the procedure followed for the traditional forecasting methods, the validation accuracy
measures for each ANN-based model were computed for (i) the first predicted hour, (ii) the first 24
hours predicted and (iii) the entire validation set dimension prediction. Detailed results for all tested
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models can be found in appendix E. Table 14.9 provides the best ANN-based models results as well
as the corresponding automatically selected architecture for the water demand forecast 24 hours in
advance. Such results are compared with the ones obtained with the Seasonal Naïve. In Figure 14.10,
the graphical representation of such results is also provided for a more complete interpretation.

Table 14.9: Results of the first 24 hours forecast accuracy measures for the best ANN-based models
obtained in each data set compared to the Seasonal Naïve method.

Best Network R2 NSE MAE RMSE MAPE maxAE
models architecture (-) (-) (m3/h) (m3/h) (%) (m3/h)

WD2_1lag narxnet(1:168,1:1,6) 0.77 0.77 1.72 2.16 16.16 4.67
WD2_anthrop narxnet(1:168,1:1,3) 0.74 0.73 1.59 2.33 12.96 6.24
WD2 Seas. Naïve _ 0.86 0.81 1.33 2.01 10.35 5.12
WD4_1lag narxnet(1:168,1:1,8) 0.88 0.87 3.91 5.49 11.33 12.96
WD4_neighb narxnet(1:168,1:1,2) 0.94 0.93 3.09 3.88 10.81 8.84
WD4 Seas. Naïve _ 0.80 0.70 6.08 8.62 16.49 27.15
WD5_3lags narxnet(1:1,1:1,8) 0.25 0.01 79.79 95.58 25.47 209.81
WD5_rain narxnet(1:1,1:1,7) 0.08 0.00 68.78 95.96 23.36 282.76
WD5 Seas. Naïve _ 0.33 -0.32 96.86 108.10 26.47 201.05
WD16_3lags narxnet(1:1,1:1,6) 0.40 0.39 1.00 1.23 275.25 2.70
WD16_anthrop narxnet(1:1,1:1,5) 0.87 0.87 0.45 0.57 38.81 1.11
WD16_selection narxnet(1:1,1:1,10) 0.92 0.91 0.38 0.47 24.12 0.87
WD16 Seas. Naïve _ 0.79 0.70 0.59 0.90 37.88 2.65

An interesting first observation from Table 14.9 is related with the distinct input variables that
provided the best forecast results for each data set. Although the four tested data sets correspond
to water demand from regions close to each other, the influence that distinct variables cause in the
models performance is notorious.

Starting from the WD2 and WD4 time series, that presented the highest autocorrelation with the
168h-lagged series, both demonstrated better results when including such lagged series as model
input. However, while the anthropic variables allowed to achieve one of the best results with ANN-
based models for the WD2 series, in the case of the WD4 series this does not occur. In turn, for
this last time series data set, the inclusion of historical water demands of neighbour sites (WD2(t)
and WD16(t)) significantly improved the forecasting models performance. As represented in Fig-
ure 14.10, while the model for predicting the WD4 series including the 168-hour lag (WD4_1lag)
presented predicted values quite below to the targets, the model considering the neighbourhood past
demands (WD4_neighb) was able to provide a better fitting with the targets.

Observing the best ANN-based models obtained for WD5 and WD16, in both cases the inclu-
sion of the 3 most correlated lagged series allow to improve the forecasting results (see Table 14.9).
However, the other variables that also improved the series prediction are not coincident. Models
to predict WD5 perform better when including the variable Rainfall Occurrence, while models to
predict WD16 perform significantly better with the simultaneous use of the three more significant
lagged series (WD16(t-1), WD16(t-168) and WD16(t-1)) and the anthropic variable Hour ( i.e. the
WD16_selection model). From Figure 14.10 it is observed that the model WD5_1lag is capable
of detecting variations in demand while the model WD5_rain, despite resulting in slightly better
accuracies, presents predicted values almost constant during the day (similar to the average of the
observations). Concerning the graphs of the WD16 time series results, the WD16_anthrop and the
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Figure 14.10: Graphical representation of the first 24 hours predictions of water demands with the
models that provided the best results for each distinct dataset (same models presented in table 14.9)
compared with the expected values (target).
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WD16_selection models are clearly the ones presenting the best fitting with the targets.
The ANN-based models did not provided significantly good performances when compared with

the seasonal naïve for predicting the WD2 and WD5 series. However, for the WD4 and WD16 series,
the ANN-based models outperformed the traditional naïve.

It is important to mention that the use of all variables that apparently demonstrated to have in-
fluence on the water demands (from the preliminary correlation and scatter plots analysis) as model
input, does not necessarily improve the forecasts performance. In fact, from the results presented in
appendix E, it is possible to observe that, in almost all cases, the use of all variables as input decreased
the forecast model performance when compared with the simple ANN-model using only the historical
demands. This is possibly occurring due to the increase of the neural networks complexity.



15. Locating potential sites for energy
recovery in an Italian case-study

An Italian network is used to test and validate the developed tool for energy recovery. A
preliminary financial analysis to the hydraulic turbines design is provided. The results are

compared with other authors.

15.1 Case-study description

The network analysed in this chapter, the Napoli Est water distribution system, was introduced by
Fontana et al. (2011)∗, who tested the use of pressure reduction valves (PRVs) and pumps-as-turbines
(PATs) for losses reduction and energy recovery. The Napoli Est network serves around 8 % of the
Naples municipality (see the served area represented in Figure 15.1b), which corresponds to a number
of inhabitants around 65000-70000. The elevation in the area ranges between 11-78 m above sea
level (see the elevation contour plot in Figure 15.1a) (Fontana et al., 2011). The distribution network
is composed of 349 pipes with diameters ranging from 40 to 1000 mm and 251 nodes, from which
151 are demand nodes, as represented in figure 15.2a. The network is supplied by the San Sebastiano
reservoir whose pattern of water level variation for the period of simulation considered in this work
(72 hours) is represented in the top graph of Figure 15.2b. Using the EPANET 2.0 for the simulation
of the network, the maximum pressure obtained is observed in junction node J187 at 6 a.m. of each
simulated day. The minimum pressure values are observed in junction nodes J182 and J183. As can
be observed in the bottom graph of Figure 15.2b, the average value of pressure in the entire network
is superior to 70 m, meaning that, considering the 25 m of minimum pressure required, the network
presents excess of pressure.

This case study is used to present the potentialities of the developed tool. In order to validate the
methodology and the implemented numerical tool, the results are compared with the ones presented
by Fontana et al. (2011).

In their methodology, Fontana et al. (2011) defined 25 m as the minimum pressure for the demand
nodes. However, they mention that pressures above 20 m can be accepted. The main objective of their

∗The EPANET model of this network was gently provided by Professor Nicola Fontana from the Faculty of
Engineering of the University of Sannio, Italy.
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(a) (b)

Figure 15.1: Representation of the Italian case-study: (a) EPANET model of the Napoli Est net-
work showing the differences in elevation and (b) location of the network in the Naples municipality
(Fontana et al., 2011).

(a) (b)

Figure 15.2: Results of the Napoli Est network simulation: (a) values of base demand in the junction
nodes and (b) pattern defined for the water level variation in the San Sebastiano reservoir (top graph)
and pressure variation in the nodes with the maximum and minimum values identified, as well as the
average pressure variation in all demand nodes of the network (bottom graph).
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work was to find optimal locations for installing PRVs in order to minimise the water losses in the
network while maintaining the required minimum pressure at the demand nodes. In the second stage,
the objective was to find a possible replacement of such valves by PATs in order to recover the energy
that is dissipated by the valves. However, the main objective of the methodology proposed in this
work is to locate potential sites for energy recovery and suggest adequate hydraulic turbines for the
maximum energy production, not constrained to PATs.

15.2 Testing the developed tool for energy recovery with hydroturbines

15.2.1 Locating and assessing potential sites for energy recovery

Following the method proposed in Chapter 10, at an initial stage, the hydraulic power available in each
pipe of the network was computed. The best scenarios obtained, S1 to S8, are depicted in Table 15.1.
The presented flow ranges correspond to the values obtained from the flow-duration curve drawn for
each pipe and considering the values between the minimum and the mean flow rate. The available
hydraulic power in each pipe was computed for all time steps of the 3-day simulation. The obtained
results are also compared with the ones analysed by Fontana et al. (2011), represented by scenarios
A, B and D.

Table 15.1: Results for the pipes of the Napoli Est network that presented the highest hydraulic power,
S1 to S8, and for the pipes considered in the scenarios presented by Fontana et al. (2011), A, B and
D.

Scenarios Pipe Flow range Head drop Hydraulic Daily hydraulic
ID (l/s) range (m) power (kW) power (kW/day)

S1 P325 28-124 5.433-13.637 88.40 29.47
S2 P262 6-44 3.651-12.773 31.40 10.47
S3 P354 239-339 0.062-0.120 30.49 10.16
S4 P29 9-13 1.091-2.267 22.99 7.66
S5 P266 8-13 7.892-19.666 19.93 6.64
S6 P358 9-26 0.077-0.144 18.37 6.12
S7 P261 8-16 3.594-12.572 16.65 5.55
S8 1 240-339 0.031-0.059 15.13 5.04

A 1 240-339 0.031-0.059 15.13 5.04

B P151 143-204 0.044-0.086 13.27 4.42
P200 62-86 0.009-0.018 1.15 0.38

D P111 67-89 0.014-0.025 1.65 0.55
P134 62-87 0.071-0.136 8.87 2.96
P354 239-339 0.062-0.120 30.49 10.16
P358 9-26 0.077-0.144 18.37 6.12

As can be observed, from the 8 best obtained results, three of the pipes correspond to the same
pipes identified by Fontana et al. (2011) as locations with higher potential for water losses reduction
and energy production. However, when taking only into account the energy production, other pipes
reveal substantially higher potential, such as the scenarios S1 and S2. The locations of the pipes
that correspond to the 8 best identified scenarios are represented in Figure 15.3 that also provides
information about the pipes diameters.
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Figure 15.3: Location and diameters of the sites that represent the largest potential for energy recovery
and also of the sites discussed in the work of Fontana et al. (2011).

The second stage of this analysis consists in the installation of virtual PRVs in the identified po-
tential locations in order to obtain an approximation of the amount of potentially recoverable energy.
During such procedure, the selection of the most profitable head loss coefficient for each valve was
performed considering a minimum pressure limit of 25 m in the demand nodes. Table 15.2 shows the
results for the selected scenarios obtained for each installed valve.

As can be observed, the implemented methodology to obtain an adequate head loss coefficient for
the valves by maximising the energy production while maintaining the minimum required pressures
in the network (10.8) provided results that differ from the ones presented by Fontana et al. (2011).
In fact, for the common locations (i.e. in pipes P354, P358 and 1), the potentially recovered energy
demonstrated to be superior to the expected by Fontana et al. (2011). However, it should not be forget
that their main objective were the water losses reduction and not the energy production, contrarily to
this work.

Results also demonstrated that the pipes that present higher combinations of flow rate and head
drop do not necessarily present the highest potential for energy recovery. This is explained by the
distinct effects on the network pressure drop caused by the installation of devices such as valves
or turbines, demonstrating the importance of performing the simulation of the network operation
accounting with such devices.

The sites that presented the largest values for the potentially recoverable power were pipes 1, P354
and P29. While the valves located in pipes 1 and P354 present high values of flow rate, the valve in
pipe P29 presents potential essentially due to the values of head. The flow-duration curves (FDC) for
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Table 15.2: Results for the energy dissipated (potentially recoverable energy) in the pressure reduction
valves (PRVs) installed in the locations of the selected scenarios. The results of the reproduced
scenarios proposed by Fontana et al. (2011) are also presented.

Scenarios Pipe PRV minor loss Flow range, Head loss, Potentially recoverable
ID coeff., K (-) min-mean (l/s) min-mean (m) power (kW/day)

S1 P325 1500 4.03-6.11 20.09-47.95 74.56
S2 P262 1000 0.56-1.01 10.16-35.26 9.47
S3 P354 3000 219.6-299.4 11.94-22.73 1694.28
S4 P29 3000 7.10-9.82 24.69-48.31 118.26
S5 P266 1000 0.44-0.69 6.36-16.20 2.89
S6 P358 1000 53.70-73.69 0.48-0.92 16.90
S7 P261 500 0.48-0.89 3.76-13.56 3.21
S8 1 3000 219.8-299.5 11.97-22.75 1696.50

A 1 1000 232.8-324.2 0.30-0.41 723.35 723.35

B P151 94000 89.19-123.49 6.41-12.62 389.47 530.38
P200 4000 29.91-41.37 6.95-13.63 140.91

D P111 222000 3.18-4.01 1.43-2.30 2.26 817.76
P134 114000 10.24-13.72 7.62-13.96 47.48
P354 1000 222.2-305.3 4.08-7.89 600.94
P358 73000 35.71-47.83 7.69-14.08 167.07

these three sites†, presented in Figure 15.4, illustrate the usable flow range for energy generation. For
the three cases, it can be observed that during more than 60 % of the time (from the 73 hours) the
hourly flow is equal to the mean (the value to be used as design flow for the turbine).

(a) Scenario S3 (b) Scenario S4 (c) Scenario S8

Figure 15.4: Flow-duration curves (FDC) for the three sites that presented the largest potential for
energy recovery without compromising the pressure requirements: (a) S3, (b) S4 and (c) S8.

15.2.2 Selecting the most adequate turbines and testing possible choices

The first step in the selection of turbines for a specific site consists in the selection of the types of
turbines that operate in the range of available head. According to that, the results obtained for the
possible type of turbine to install in the eight selected scenarios are presented in Table 15.3.

As can be observed, scenario S6 (located in pipe P358) presents a very limited and low head range

†It should be noticed that the presented flow-duration curves were adapted to the amount of existing data. Thus,
instead of a typical (and recommended) daily FDC obtained with years of recorded data, an hourly FDC obtained with the
available 73 hours (3 days) of data is presented.
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Table 15.3: Results for the types of turbine that can be installed in the sites of the selected scenarios
according to the available head ranges.

Scenarios Location (pipe ID) Head range (m) Selected types of turbine

S1 P325 20.09-47.95 Francis, Cross-flow, Kaplan/Propeller, PAT
S2 P262 10.16-35.26 Francis, Cross-flow, Kaplan/Propeller, PAT
S3 P354 11.94-22.73 Francis, Cross-flow, Kaplan/Propeller, PAT
S4 P29 24.69-48.31 Francis, Cross-flow, Kaplan/Propeller, PAT
S5 P266 6.36-16.20 Cross-flow, Kaplan/Propeller, PAT
S6 P358 0.48-0.92 PAT
S7 P261 3.76-13.56 Cross-flow, Kaplan/Propeller, PAT
S8 1 11.97-22.75 Francis, Cross-flow, Kaplan/Propeller, PAT

where the turbines typically do not operate. For this reason, only a specific type of pump-as-turbine
could eventually be used in such site. In fact, Aline, Vincent, and Petras (2012) mention that PATS
are the most adequate for values of installed power inferior to 30 kW, which means that, according to
the available hydraulic power (also listed in Table 15.2), a PAT would be the most adequate type of
turbine for scenarios S2 (9.47 kW), S5 (2.89 kW), S6 (16.90 kW) and S7 (3.21 kW).

Pelton and Turgo-type turbines were automatically excluded from the presented scenarios due to
the typical higher head range of operation of these types of turbines.

Following the implemented method of computation, the results concerning the adequate specific
speed, NQ (metric units), the approximated runner diameter, Da, and efficiency for each type of tur-
bine, ηturb, according to the design flow, Qd, and head, Hd, are provided in Table 15.4. The daily net
energy potentially recoverable, Enet, considering the obtained values of efficiency for each distinct
type of turbine are also presented.

Table 15.4: Characteristics obtained for each type of turbine according to the design flow and head
specified for each scenario (excluding the scenarios adequate for PATs) and the resulting daily net
energy that can be recovered.

Scen. Location Qd Hd Egross Turbine NQ d ηturb Enet
(pipe ID) (m3/s) (m) (kWh/day) type (-) (m) (-) (kWh/day)

S1 P325 0.006 47.95 74.56 Francis 86.6 0.041 0.813 60.62
Kaplan/Propeller 115.5 0.041 0.841 62.70
Cross-flow _ _ 0.790 58.90

S3 P354 0.3 22.73 1694.28 Francis 125.8 0.260 0.790 1338.57
Kaplan/Propeller 167.8 0.260 0.894 1514.48
Cross-flow _ _ 0.790 1338.48

S4 P29 0.009 48.31 118.26 Francis 86.3 0.050 0.819 96.81
Kaplan/Propeller 115.1 0.050 0.846 100.10
Cross-flow _ _ 0.790 93.43

S8 1 0.3 22.75 1696.50 Francis 125.8 0.260 0.790 1340.54
Kaplan/Propeller 167.7 0.260 0.894 1516.47
Cross-flow _ _ 0.790 1340.24

Comparing the results in terms of the turbines efficiency, and hence, the potentially net recov-
ered energy, the Kaplan/Propeller-type turbines demonstrated to be slightly more profitable in all the
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scenarios due to the higher efficiency values. However, when selecting a turbine, the range of flows
operation should also be taken into account since distinct turbine types present distinct variations in
the efficiency when operating at flow rates inferior to the design flow, as demonstrated in Figure 10.6
in the III Part. An adjustable Kaplan, for instance, demonstrates a more satisfactory operation (higher
efficiencies) over a wide range of flow variations when compared with a propeller with fixed guide
vanes and blades. This means that an adjustable Kaplan turbine would be more adequate for energy
recovery in water supply and distribution networks.

Since the values of possible recoverable energy are obtained from results of the network sim-
ulation considering the behaviour of a PRV, which correspond in fact to approximated values, it is
important to understand the differences when modelling a turbine using real curves. For this reason,
an analysis was performed in the three best obtained scenarios, S3, S4 and S8, using data of turbines
existent in the market.

The hydraulic curves of turbines (head vs flow) are usually not easy to find in the literature, not
even in the manufacturers websites or catalogues. However, examples of real curves from Cornell
and Mavel, for pumps-as-turbines, and a Kaplan-type turbine, respectively, were used. The selected
reverse pumps were the Cornell 10TR1 and the Cornell 1 1/4TR1 (Cornell pump, 2015) and the
Kaplan-type was the Mavel TM3_18′′ (Mavel: TM Micro Turbines, 2015).

Figure 15.5 provides the headloss curves of each mentioned type of turbine. The turbines op-
erations were simulated in EPANET by replacing, in each scenario, the existent PRVs by a general
purpose valve (GPV) with an associated headloss curve in accordance with the turbine hydraulic
curve that provides the recovered head for a certain flow rate.

(a) (b) (c)

Figure 15.5: Headloss curves for the simulation of different types of turbines: (a) Mavel’s Kaplan-
type microturbines and (b) Cornell’s pumps-as-turbines for lower and (c) for higher flow ranges.

Additionally, the curves presented by Fontana et al. (2011) for two reverse pumps (NC100-200
and NC150-200, whose hydraulic curves are represented in Figure 15.6), were also used and the
results were compared with the ones obtained with the Cornell and Mavel’s turbines.

From the existent data, different turbines were selected for each scenario, according to the flow
and head characteristics of the sites. Table 15.5 presents the turbines tested in each selected scenario
and the corresponding results in terms of energy recovered. The results for the scenarios proposed by
Fontana et al. (2011) were also reproduced and are presented for a comparative analysis.

The rotational speed is 1550 rpm for the NC100-200 and NC150-200 PATs and 1200 rpm for
the Cornell’s PATs. The power output is 5 to 20 kW for the Mavel’s TM3 micro turbines (Mavel:
TM Micro Turbines, 2015) and 1 to 100 kW for the Cornell’s PATs (Cornell pump, 2015). For the
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(a) (b)

Figure 15.6: Representation of (a) the hydraulic curves of the two reverse pumps used by Fontana et
al. (2011) and (b) the corresponding headloss curves used for the PATs simulation in EPANET.

turbines efficiencies, a value of 70 % was used for the PATs, while, for the Kaplan turbine, the value
of efficiency obtained with the developed tool for this type of turbine in each scenario was used (Table
15.4).

Table 15.5: Results obtained from the simulation of the network operation considering the installation
of different turbines available in the market. Results obtained from the reproduction of Fontana et al.
(2011) scenarios are also presented.

Scen. Location Simulated Egross ηturb Enet Pressures
(pipe ID) turbines (kWh/day) (%) (kWh/day) <25 m?

S3 P354 Cornell 10TR1 1896.480 70.00 1327.54 Yes
Mavel TM3_18′′ 679.047 89.40 607.07 No
3 parallel NC150-200 1098.257 70.00 768.78 No

S4 P29 Cornell 1 1/4TR1 106.272 70.00 74.39 Yes
NC100-200 27.755 70.00 19.43 No

S8 1 Cornell 10TR1 1898.344 70.00 1328.84 Yes
Mavel TM3_18′′ 680.498 89.40 608.37 No

A 1 3 parallel NC150-200 991.12 70.30 773.31 773.31 No

B P151 NC150-200 428.54 64.70 277.27 380.40 No
P200 NC100-200 148.61 69.40 103.14

D P111 _ _ _ _ 666.58 No
P134 _ _ _ _
P354 3 parallel NC150-200 952.728 67.30 641.19
P358 NC100-200 49.220 51.60 25.40

As can be observed, in the three scenarios where Cornell’s PATs are tested, the daily energy
recovered is larger. This is because, for the same range of flows, the head recovered by these turbines
is superior when compared with the other turbines. However, the operation of the Napoli Est network
with these specific PATs does not allow maintaining the required minimum pressures in the demand
nodes. In fact, in some nodes, pressures inferior to 20 m were identified.

For scenario S3, the use of only one Kaplan-type turbine (Mavel TM3_18′′) allowed to recover
almost the same amount of daily energy when compared with the use of three parallel PATs (NC150-
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200), while maintaining the required pressures in the network. It can also be observed that, for the
same location (pipe P354), different scenarios produce different results. In the scenario proposed
by Fontana et al. (2011) (scenario D), the same three parallel turbines installed in the same location
were not capable of recovering the same amount of energy because the network was under distinct
operational conditions: an additional PAT operating in other location of the network (pipe P358) and
also two PRVs (at pipes P111 and P134).

Results demonstrate that, even performing a preliminary analysis on the potentially recovered
energy in the networks, the real energy recovered will be highly dependent on the turbines selection
from the range available in the market. Only a final simulation of the network operation with the in-
formation of a specific turbine can provide more precise results. However, the applied methodologies
demonstrate quite good results for a preliminary analysis and serves as a good support for the the
turbines selection.

15.2.3 Preliminary financial analysis

An important factor in the decision of the best turbine-type option for a specific scheme is the cost of
the turbine and the corresponding cost of implementation. In the previous section, Kaplan turbines
and PATs demonstrate to be adequate choices concerning their characteristics and suitability to the
selected sites. In this section, a preliminary financial analysis focused in the turbines and respective
installation costs is presented.

Results obtained from the developed tool for the distinct types of turbines are presented in Table
15.6. Despite the PATs costs computation are not included in the developed tool, the price ranges
provided by Fecarotta, Aricò, Carravetta, Martino, and Ramos (2015) are used as a reference for
comparison. For the installation costs, 15 % of the PATs cost was also considered. The energy tariff
considered was the Italian tariff that is defined as 0.220 e/kWh (Fontana et al., 2011). It should be
noticed that the presented simplified financial analysis, as a preliminary analysis, does not include,
for instance, the annual maintenance costs, the cost of operations, nor the turbines life span. While
the maintenance and operations costs may be similar for each analysed case, the turbines life span
may cause influence in the decisions.

In a general overview, it becomes clear that a cross-flow turbines, besides presenting lower effi-
ciencies when compared to other type of turbines, presents the lowest values of investment and the
fastest return on investment (2 to 3 years in all scenarios). Only a PAT can be comparable to this type
of turbine in economic terms. On the other hand, for the scenarios with the highest annual energy
production, such as S3 and S8, the payback time does not differ significantly between the different
types of turbines, except for PATs, which present a return on investment in one year instead of two.
However, the life span of this type of turbine is usually lower when compared to the others.

A cash-flow analysis during the first 15 years for each scenario is presented in Figure 15.7. As
already mentioned by Fecarotta et al. (2015), it should be remembered that the results obtained from
this analysis depend on the considered tariff. For other countries, under distinct conditions of elec-
tricity selling price and possible incentives, the results can be different.

Although for scenarios S3 and S8, the Kaplan and fixed-propeller turbines present higher costs of
investment, they also provide the highest long-term profits (more than 1500 ke in 15 years).
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Table 15.6: Results of the preliminary cost analysis for the selected scenarios.

Scen. Turbine Energy Energy Revenue Turbine Installation Civil Payback
type (kWh/day) (MWh/year) (e/year) cost (e) cost (e) works (e) (years)

S1 Francis 60.62 22.13 4868 7249 1087 4535 3
Kaplan 62.70 22.88 5034 8579 1287 4535 3
Propeller 62.70 22.88 5034 6029 904 4535 3
Cross-flow 58.90 21.50 4730 1576 236 4535 2
PAT 52.19a 19.05 4191 1200-6800 180-1020 4535 2 to 3

S3 Francis 1338.57 488.58 107487 99804 14971 73054 2
Kaplan 1514.48 552.79 121613 113507 17026 73054 2
Propeller 1514.48 552.79 121613 80939 12141 73054 2
Cross-flow 1338.48 488.54 107480 39456 5918 73054 2
PAT 1185.99 432.89 95235 1200-6800 180-1020 73054 1

S4 Francis 96.81 35.34 7774 9610 1441 6351 3
Kaplan 100.10 36.54 8038 11378 1707 6351 3
Propeller 100.10 36.54 8038 7994 1199 6351 2
Cross-flow 93.43 34.10 7502 2287 343 6351 2
PAT 82.78 30.22 6648 1200-6800 180-1020 6351 2 to 3

S8 Francis 1340.54 489.30 107645 99804 14971 73091 2
Kaplan 1516.47 553.51 121772 113513 17027 73091 2
Propeller 1516.47 553.51 121772 80941 12141 73091 2
Cross-flow 1340.24 489.19 107621 39471 5921 73091 2
PAT 1187.55 433.46 95360 1200-6800 180-1020 73091 1

aConsidering an efficiency of 70 % for all PATs.

(a) (b)

(c) (d)

Figure 15.7: Cash-flow analysis for each selected scenario over a period of 15 years: (a) S1, (b) S3,
(c) S4 and (d) S8.
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16. General conclusions

The conclusions and final remarks related with each main topic addressed in this thesis are
presented, as well as the general conclusions retrieved from the resulting product.

Water supply systems (WSS) are the target market addressed in this thesis and so, the main object of
study. In such systems several challenges are identified such as (i) the need to reduce water losses and
mostly, (ii) the need to reduce the energy consumption and improve the systems operational efficiency,
which corresponds to 40 % of the water utilities concerns. The improvement of such systems is seen as
a challenge due to the usually large dimensions of the networks and to the complexity of the operations
that can be related with the high variability in the water demands and, sometimes, with the limited
storage capacity. Such complexity of the operations can be also related with the large number and
the diversity of components of the network that need to be controlled, such as several types of valves,
pumps, storage tanks and sources. At the same time, any operational control modification results in
changes in terms of pressure in the networks, which should always be supervised in order to maintain
the minimum requirements for the consumers. Such complex tasks are not possible to be performed
in the most efficient way by an operator. This will only be possible by transforming the conventional
reactive control and monitoring into more pro-active control and monitoring. According to that, the
WSS can present a huge opportunity for the implementation of emerging smart technologies.

According to the main objective proposed in this work, a numerical tool for the automatic ef-
ficiency improvement of any type of water supply and distribution network was developed. Such
efficiency improvement may be performed by the tool using two complementary tasks: (i) the first
one consists in the determination of the best controls of pumps and valves of the network in order to
minimise the associated energy costs, which can be combined with a water demand prediction model
for obtaining the near future best controls and (ii) the second one intends to improve the systems
efficiency by reducing the energy needs through the implementation of hydroturbines for recovering
excessive energy that is commonly dissipated in the networks. As shown in the results (Part V), this
tool is capable of satisfactorily performing such tasks and demonstrated its capacity to be used in a
large variety of water networks operating under distinct conditions.

Overall, this thesis presents particular research efforts in: (i) modelling and simulation of WSS,
(ii) operational control optimisation of WSS, (iii) short-term water demand prediction and (iv) sites
location and selection/design of hydroturbines for hydropower generation in WSS. Besides the de-
tailed investigations performed for each addressed research topic, additional efforts were made for
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the development of a product with utility and interest for the water industry.

16.1 Modelling and simulation of water supply systems

The hydraulic simulation module incorporated in the developed tool is essential for the reproduction
of the WSS behaviour in order to test and assess the implementation of a certain efficiency measure.
This module, based on the hydraulic simulator EPANET 2.0, performs some approximations that are
analysed in this work.

Since the pumps play the most important role in terms of efficient control of the water networks,
the methods used for modelling and simulating such elements are investigated. The new formulation
proposed for the determination of the efficiency of pumps operating at variable speed demonstrates
advantages in comparison with other formulations/methods such as (i) the Affinity Laws, (ii) the for-
mulation proposed by Sárbu and Borza (1998) and (iii) the method used by EPANET that incorrectly
applies the Affinity Laws. After analysing the use of such formulations/methods in the computation
of savings from the application of efficiency measures in WSS, it is possible to conclude that the pro-
posed formulation provides similar results with the Sárbu and Borza (1998) formulation. Concerning
the accuracy in the prediction of the pumps best efficiency points, the proposed formulation presented
the highest accuracy for a small pump. At the same time, in the prediction of an entire efficiency
curve of a real pump, the proposed curve demonstrated also a superior accuracy.

The main drawback from using an hydraulic simulator in a tool as the one presented in this work is
related with the computational time required for the simulation/evaluation of the networks behaviour,
which may difficult a real-time implementation if the optimisation is required to be used in each time
interval (1 hour, for instance). However, the developed tool is already capable of predicting optimal
controls for each half a day to a day or more, if necessary. At the same time, the detailed simulation
of a network is the only way to ensure a proper operation without violating the imposed requirements.
The use of simplified models to predict the networks behaviour may significantly reduce the time of
computation but, in turn, implies the implementation a new model and formulation for each different
network, making this an impossible solution for the development of an automatic computational tool
as the proposed in this thesis.

An additional advantage from the fact that the developed tool is incorporating the networks mod-
els is that several water utilities have already developed models of their networks. Some of them
have in fact EPANET models and others may have different types of models that could eventually be
imported to EPANET and thus, be capable of using the tool developed in this work.

16.2 Operational optimisation of water supply systems

The optimisation module, implemented for the optimal operational control of the water networks,
incorporates a number of proposed techniques and innovative approaches.

The proposed problem formulation based on an explicit control, where the decision variables
include (i) the pumps relative speeds and operating times and (ii) the valves opening times, demon-
strated to be capable of obtaining superior results when compared with other works that tested the
same benchmark network (van Zyl network). Such approach provided also proofs of its good per-
formance in several distinct networks characterised by distinct operational conditions and distinct



16.3. Demand prediction in water supply systems 277

designs and dimensions.
Overall, the PSO and DE algorithms demonstrated the best performance in the tested problems.

However, the solutions found by the PSO algorithm are usually preferred to the ones obtained with
the DE algorithm due to the significantly reduced number of switches. On the one hand, in the
solutions obtained with the PSO algorithm, a tendency to results presenting only changes related
with the pumps relative speeds was observed. On the other hand, the solutions obtained with the DE
algorithm demonstrated both changes in terms of speed and operating/opening time. The consequence
of many changes in the operating times using a probabilistic algorithm is the increase in the number of
pumps and valves switches, leading to solutions that are not accepted by the water utilities. Besides
the added difficulty in performing such type of daily control (since the pumps and valves have no
automated control), the resulting excessive wearing of the equipment (both pumps and valves) would
reduce significantly their life span and increase the need for maintenance, leading to a non-desirable
increase in the long-term costs.

Compared to the nature-inspired metaheuristic algorithms, the Nelder-Mead Simplex algorithm
presented the lowest performance, with less than 1 % of energy costs reduction in almost all tested
benchmarks. However, it should be noticed that this algorithm is significantly faster than the nature-
inspired and, in this work, the algorithm had the disadvantage of starting with a single solution while
all the other algorithms (population-based) had a set of solutions instead.

The proposed approach for the aggregation of the decision variables, attempting to simplify the
optimisation problem, revealed that, for some networks, the reduction of the universe of solutions
caused by such aggregation technique may restrict the search to more complicated solutions that
significantly increase the computational time required for the convergence of the hydraulic model.
Thus, it was concluded that, even with a reduction in the number of variables and a reduction in the
universe of solutions, the computational time for the entire process may significantly increase for
some problems instead of decrease, as it was expected. This demonstrates the strong effect produced
by the hydraulic simulation in the optimisation process.

For the tested problems, the sequential application of the algorithms did not demonstrate any
advantage compared to the single algorithms.

16.3 Demand prediction in water supply systems

From the extensive literature review performed on the water demand forecasting topic, it is possible to
conclude that the data analysis and pre-processing represents a very important role in the forecasting
process with influence in the models’ accuracy. This part of the process represents also the most
time-consuming since a large amount of data is usually needed. At the same time, the collected
data from the networks presents very often a large number of occurrences and/or missing data that,
if not treated properly, can significantly influence the real data trends, reducing the accuracy of the
models and, consequently, influencing any posterior attempt to optimise the operational control of the
network.

It is also possible to conclude that, to develop an automatic forecasting model for operation in
real-time, two main characteristics should be presented by the model: (i) scalability, to provide good
performances for distinct model scales, and (ii) adaptability, to easily adapt to possible changes in the
WSS conditions (self-learning capability) and avoid unnecessary model maintenance and calibration
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(and thus, avoiding the associated costs).
In terms of the developed work related with water demand forecasting, although the implementa-

tion of forecasting models have already been performed, the scalability of the implemented method-
ologies, both for data processing and forecasting, was not tested since only data from one particular
water supply system was used.

The traditional forecasting models (naïve and exponential smoothing) demonstrate variable per-
formances for different data sets when predicting only one hour ahead. However, in the prediction of
24 hours ahead, the seasonal naïve forecasting models are more adequate for presenting lower perfor-
mance errors. The models based on artificial neural networks are capable of improve such results if
external input variables are introduced in the models. However, the influence that each variable (both
anthropic and meteorological) is different for each data set and, most important, the wrong choice
of the input variables may lead to a decrease in the forecasting model accuracy. It should then be
concluded that a preliminary analysis of the input variables to include in a forecasting model is of the
most importance.

16.4 Energy recovery in water supply systems

The process of determining if the installation of a hydropower scheme for energy recovery in a water
supply system is viable (or even possible) is not easy since requires several efforts in terms of time
and complexity of the feasibility studies, which may deviate the attention of the water utilities to this
particularly interesting solution for the efficiency improvement of the water supply systems. For this
reason, the inclusion of an option that, from the model of a network, automatically determines all the
possibilities for the implementation of this type of solution while providing preliminary feasibility
analysis could boost the adoption of this type of efficiency measures.

The developed module devoted to this particular task (energy recovery) makes use of the hy-
draulic model of the network to search by (and assess) locations for the installation of distinct types
of turbines with the main objective of maximise the energy recovery. At the same time, technical
and financial feasibility analyses results are provided, which includes the selection and preliminary
design of appropriate turbines and the corresponding payback time of the project. The search for site
locations is performed in all links of the network, which including the options of (i) install a turbine
in the end of a certain pipe or (ii) replace a valve by a turbine.

The implemented methodology demonstrates to be effective through the comparison of results
with other authors obtained for the model of a real network. Moreover, it was possible to conclude
that, considering the maximisation of energy production (instead of maximisation of energy produc-
tion and minimisation of water losses) as single objective, other sites in the network with higher
potential can be located.

An additional conclusion from the obtained results is that the financial feasibility analysis can be
decisive in the choice of a certain type of turbine for each particular location. A turbine of lower
cost does not necessarily represent the fastest return of investment neither the highest revenues in a
long-term period. In fact, such parameters are largely dependent on the site characteristics.



17. Contributions and recommendations

The main contributions of this work, both at scientific and industrial levels, are enumerated.
Some recommendations and directions for future works are exposed.

The present thesis can be seen as a starting point for the development of a high potential software for
the water sector. As it is, the developed tool may yet present some limitations, as already stated in
Chapter 16. However, several significant contributions, both in scientific and industrial terms, were
provided and, at the same time, the possibilities of extension of such tool are numerous.

17.1 The contribution of this thesis

This work is a contribution to Engineering that presents a combination of distinct disciplines such
as fluid mechanics, hydraulic modelling, mathematical optimisation, control engineering, energy sys-
tems, data driven modelling, software development and engineering management.

In terms of scientific contributions, the main achievements of this thesis include: (i) an exten-
sive literature review; (ii) a new formulation for the prediction of efficiency curves of variable-speed
pumps; (iii) a new approach for the optimal operational control of water supply systems; (iv) a demon-
stration of the performance of different optimisation algorithms in several water supply and distribu-
tion networks; (v) a detailed analysis of the influence of several input variables in the accuracy of
models for water demand forecasting; and (vi) a methodology for an automatic location of potential
sites in the networks for energy recovery and preliminary selection/design of the most suitable turbine
to be installed.

Concerning the industrial contributions, a factor of the most importance in engineering, the main
achievements of the present work include: (i) a market assessment, demonstrating the adequacy of
the developed work to the current and near future industry needs, (ii) a computer programme for the
efficiency improvement in water supply systems; (iii) a computer programme that may present some
common characteristics with the few ones existent in the world but applies state-of-the art techniques.

Moreover, the present thesis focuses on the connections between areas with high relevance for
the efficiency improvement of water supply systems instead of dealing with each particular area as
a separate research topic. Such connections provide the key to transform an academic work into a
technology with potential to reach the industry.
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As a result of the work developed for this thesis, the following papers were already published/accepted
for publication in peer reviewed journals:

1. B. Coelho and A. Andrade-Campos (2016), A new approach for the prediction of speed-
adjusted pump efficiency curves. Journal of Hydraulic Research (accepted for publication);

2. B. Coelho and A. Andrade-Campos (2016), Numerical tool for hydraulic modelling - An edu-
cational approach. International Journal of Mechanical Engineering Education (accepted for
publication);

3. B. Coelho and A. Andrade-Campos (2014), Efficiency achievement in water supply systems -
A review. Renewable and Sustainable Energy Reviews, 30, 59-84.

Part of the work was also presented in conferences and/or published in conference proceedings:

1. B. Coelho and A. Andrade-Campos (2014), On the comparison of numerical methodologies
for control optimisation of variable-speed pumps. IWA World Water Congress and Exhibition,
September 21-26th, 2014, Lisbon, Portugal (poster presentation);

2. B. Coelho and A. Andrade-Campos (2014). The operational costs minimisation in water sup-
ply systems using cascade optimisation techniques. IFORS 2014 - 20th Conference of the
International Federation of Operational Research Societies, July, 2014, Barcelona, Spain (oral
presentation);

3. B. Coelho and A. Andrade-Campos (2013), Improving water supply systems efficiency - A
methodology for optimal control of variable-speed pumps, Proceedings of 2013 IAHR Congress,
Tsinghua University Press, Beijing.

17.2 Recommendations and outlook

Starting with the topic that most influence any module of the tool developed in this work, the hydraulic
modelling and simulation, a particular attention should be given to the performance of the hydraulic
simulator used in the developed tool, the EPANET. Although EPANET is being used worldwide
both by academics and professionals, there is a lack of studies comparing the performance of this
simulator with others existent in the market. It would be interesting to test some of the most popular
hydraulic simulators in order to find which one provides the most approximate representation of the
real behaviour of the water supply systems. Such studies could also be useful, for instance, to improve
possible limitations that can be revealed by EPANET.

The proper reproduction of the behaviour of variable-speed pumps becomes increasingly impor-
tant with the increase of the use of such equipment, mostly due to the high impact this may reveal
in the efficiency of the water supply systems. The main difficulty at this level is to find real data of
the pumps (especially of the efficiency curves for distinct speeds of operation). Such data is usually
not provided by the manufacturers neither by the water utilities. It would be interesting to observe a
broader availability and sharing of such type of data.

Concerning the optimisation, a tendency of several researchers for applying Genetic Algorithms
(GA) can be explained by the great performance of this algorithm (generally not the simple GA but an
improvement of such algorithm) in several complex engineering problems. However, the investigation
of other efficient and robust techniques remains open for future works.
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The interest in the multi-objective optimisation applied to the control and design of water supply
systems as also increased. However, this type of approach can be, in fact, approximated to the type
of optimisation addressed in this work if the penalties added to the objective function are considered
as additional objective functions. The main difference in a multi-objective approach is that a set
of solutions (called pareto curve) is obtained, instead of a single-solution. However, this type of
approach can also significantly increase the computational time. For some water utilities it may, in
fact, be preferable to obtain different solutions (for example, (i) one that results in the minimum
cost but very low pressures close to the limit and (ii) other that presents slightly higher costs but
more desirable values of pressure, not so close to the limit). This can be obtained with a simple
modification of the single-objective approach presented in this thesis by transforming the objective
function into a weighted function with multiple objectives. Running multiple times such weighted
function and changing the weights every time corresponds exactly to a multi-objective approach. In
this case, to reduce the number of computations required, the use of three or four different weights
may be enough.

An approach not tested in this work but that could be the best option to reduce the number of
pump switches is to treat them as constraints. An additional constraint increases the complexity of
the optimisation problem but, as already observed in the results presented in this work, such type of
approach demonstrates to be effective even with the use of a simple penalty method. Additionally,
the constraint handling techniques may be improved by using, for instance, dynamic penalties.

Despite the forecasting models developed in this work handled the different types of days as
different input variables of the model, an interesting alternative approach could be the development
of a different model for each type of day. Similarly with the work presented by Candelieri and Archetti
(2014), each day can be associated to a different pre-defined type of day (week, weekend, holiday, ...)
using, for instance, a clustering technique and then, the prediction of such day is performed according
to the forecasting model trained for those type of days.

An additional feature that could be interesting to add to the energy recovery module of the devel-
oped tool is the inclusion of examples of real curves of turbines provided by manufactures and the
automatic simulation of such types of turbines virtually placed in the selected sites in order to provide
the feasibility analysis of viable solutions already existent in the market. Furthermore, the adaptation
of the developed tool in order to efficiently control the entire network taking into account the energy
produced by the turbines could also be a very interesting option.

For further steps at an industrial level, it would be important to improve the developed tool espe-
cially in the data processing and forecasting module, not forgetting to perform test with a large variety
of data collected in different systems and with different measurement and communication equipment
in order to prepare the tool for the largest possible range of eventualities. The implementation of an
automatic calibration module connected to the hydraulic simulation module with scheduled updates
of the network model is also a crucial step for the success of this type of tool. If the network behaviour
is not modelled with an high level of accuracy, all the next steps for the real-time optimisation of the
network may become useless and provide only advantages for the analysis of scenarios (which is still
important but does not take full advantage of this type of tool).

It should not be forgotten that the adaptation of a data base (several water utilities already have
one) to the numerical tool must be performed for each network, which, in turn, allows to respond to
particular requirements of the water utilities.



282 17. Contributions and recommendations

Some pilot tests in real network(s) should be performed before the full implementation of this type
of computer programme, considering only a selected section of the network capable of providing a
larger flexibility for operational control changes while maintaining the required levels of security.
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A Design and operational optimisation methods overview

Figure A.1: Operational optimisation (Part 1 of 2).
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Figure A.2: Operational optimisation (Part 2 of 2).
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Figure A.3: Resume of the distinct methods, available in the literature, applied for the design optimi-
sation of the New York City Tunnels network.
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Figure A.4: Hanoi water network

Figure A.5: Two reservoir water network

Figure A.6: Anytown water networks
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Figure A.7: Two loop water network
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B Short-term water demand forecasting methods overview

Figure B.1: Comparison of the performances of short-term water demand forecasting methods applied
to distinct case-studies (Part 1 of 2).
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MLR - Multiple Linear Regression MNLR - Multiple Non-Linear Regression AR - Autoregression
ANN - Artificial Neural Networks FF - Feed Forward BP - Back Propagation
HL - Hidden Layer SVM - Support Vector Machine RBF - Radial Basis Function
CG - Conjugate Gradient LM - Levenberg-Marquardt SVR - Support Vector Regression
WBANN - Wavelet Bootstrap ANN ARIMA - Autoregressive Integrated Moving Average

∗ in order to convert for l/s units, it was considered that the authors used the same units of water consumption.
∗∗ number of consumers supplied obtained from Complexo Metropolitano - sabesp (2015) website.

Figure B.2: Comparison of the performances of short-term water demand forecasting methods applied
to distinct case-studies (Part 2 of 2).
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Figure B.3: Comparison of the influence of several variables as input for distinct short-term water
demand forecasting models
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C Roughness coefficients for the computation of headlosses in pipes

Table C.1: Hazzen-Williams C-factors (or roughness coefficients) for various pipe materials (adapted
from Walski et al., 2001). Note that a 2.5−122 cm diameter range is covered in the presented values
(values are larger for large pipe diameters).

Pipe material C-factor [-]
Uncoated cast iron - smooth and new 121 - 134
Coated cast iron - smooth and new 129 - 141
Coated cast iron - 30 years old 41 - 120
Coated cast iron - 60 years old 30 - 112
Coated cast iron - 100 years old 21 - 104
Miscellaneous - newly scraped/brushed 97 - 127
Galvanised iron - smooth and new 120 - 133
Wrought iron - smooth and new 129 - 142

Figure C.1: Moody Diagram showing the Darcy-Weisback friction factor for different Reynolds num-
bers, Re, and different relative D-W pipe roughness, ε

d (White, 2011).
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D EPANET input files

D.1 Single-pump network - EPANET input file
[TITLE]

Single-pump network | bcoelho | 2015

[TITLE]

[JUNCTIONS]

;ID Elev Demand Pattern

node 10 0 ;

1 90 10 2 ;

[RESERVOIRS]

;ID Head Pattern

source 10 ;

[TANKS]

;ID Elevation InitLevel MinLevel MaxLevel Diameter MinVol VolCurve

tank 100 4 1 10 7 0 ;

[PIPES]

;ID Node1 Node2 Length Diameter Roughness MinorLoss Status

pipe node tank 2000 200 50 0 Open ;

1 tank 1 2000 200 50 0 Open ;

[PUMPS]

;ID Node1 Node2 Parameters

pump source node HEAD 1 PATTERN 1 ;

[VALVES]

;ID Node1 Node2 Diameter Type Setting MinorLoss

[TAGS]

[DEMANDS]

;Junction Demand Pattern Category

[STATUS]

;ID Status/Setting

[PATTERNS]

;ID Multipliers

;pump pattern

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

;demand pattern

2 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000

2 4.0000 4.0000 2.0000 2.0000 2.0000 2.0000

2 3.0000 3.0000 2.0000 2.0000 2.0000 2.0000

2 3.0000 3.0000 3.0000 4.0000 2.0000 2.0000

;Energy Tariff

3 0.0700 0.0700 0.0700 0.0700 0.0700 0.0700

3 0.0700 0.1000 0.1000 0.1000 0.1000 0.1000

3 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

3 0.1000 0.1000 0.1000 0.1000 0.0700 0.0700

[CURVES]

;ID X-Value Y-Value

;PUMP: PUMP: PUMP: PUMP: PUMP: Pump curve

1 0 200

1 50 150

1 100 0

;EFFICIENCY: pump efficiency curve

2 0 0

2 35 60

2 50 75

2 60 78

2 75 77

2 80 74

2 85 70

2 90 65

2 95 60

2 150 0

[CONTROLS]

LINK pump 0.000 AT TIME 0.0000

LINK pump 1.000 AT TIME 1.0000
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LINK pump 1.000 AT TIME 2.0000

LINK pump 1.000 AT TIME 3.0000

LINK pump 1.000 AT TIME 4.0000

LINK pump 1.000 AT TIME 5.0000

LINK pump 1.000 AT TIME 6.0000

LINK pump 0.000 AT TIME 7.0000

LINK pump 0.000 AT TIME 8.0000

LINK pump 0.000 AT TIME 9.0000

LINK pump 0.000 AT TIME 10.0000

LINK pump 0.000 AT TIME 11.0000

LINK pump 0.000 AT TIME 12.0000

LINK pump 0.000 AT TIME 13.0000

LINK pump 0.000 AT TIME 14.0000

LINK pump 0.000 AT TIME 15.0000

LINK pump 0.000 AT TIME 16.0000

LINK pump 0.000 AT TIME 17.0000

LINK pump 0.000 AT TIME 18.0000

LINK pump 1.000 AT TIME 19.0000

LINK pump 1.000 AT TIME 20.0000

LINK pump 1.000 AT TIME 21.0000

LINK pump 1.000 AT TIME 22.0000

LINK pump 1.000 AT TIME 23.0000

[RULES]

[ENERGY]

Global Efficiency 75

Global Price 1

Global Pattern 3

Demand Charge 0

Pump pump Efficiency 2

Pump pump Price 1

Pump pump Pattern 3

[EMITTERS]

;Junction Coefficient

[QUALITY]

;Node InitQual

[SOURCES]

;Node Type Quality Pattern

[REACTIONS]

;Type Pipe/Tank Coefficient

[REACTIONS]

Order Bulk 1

Order Tank 1

Order Wall 1

Global Bulk 0

Global Wall 0

Limiting Potential 0

Roughness Correlation 0

[MIXING]

;Tank Model

[TIMES]

Duration 24:00

Hydraulic Timestep 1:00

Quality Timestep 0:05

Pattern Timestep 1:00

Pattern Start 0:00

Report Timestep 1:00

Report Start 0:00

Start ClockTime 0 am

Statistic NONE

[REPORT]

Status Full

Summary No

Page 0

Energy Yes

[OPTIONS]

Units CMH

Headloss H-W

Specific Gravity 1

Viscosity 1

Trials 100

Accuracy 0.0001

CHECKFREQ 2
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MAXCHECK 10

DAMPLIMIT 0

Unbalanced Continue

Pattern 1

Demand Multiplier 1.0

Emitter Exponent 0.5

Quality None mg/L

Diffusivity 1

Tolerance 0.01

Hydraulics SAVE singlePumpNet_hyd

[COORDINATES]

;Node X-Coord Y-Coord

node 2707.76 4944.60

1 7442.13 7106.48

source 258.32 4948.34

tank 4979.22 7534.63

[VERTICES]

;Link X-Coord Y-Coord

pipe 5020.78 7548.48

[LABELS]

;X-Coord Y-Coord Label & Anchor Node

4720.34 8067.80 "Tank"

-42.37 5508.47 "Source"

1245.76 5491.53 "Pump"

7347.46 6932.20 "n2"

2618.64 4745.76 "n1"

6127.12 7661.02 "p2"

3500.00 6457.63 "p1"

[BACKDROP]

DIMENSIONS 0.00 0.00 10000.00 10000.00

UNITS Meters

FILE

OFFSET 0.00 0.00

[END]
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D.2 Van Zyl test network - EPANET input file
[TITLE]

Van Zyl test network | adapted by bcoelho | 2015

[JUNCTIONS]

;ID Elev Demand Pattern

N1 10 0 ;

N2 10 0 ;

N3 75 0 ;

N361 100 0 ;

N5 30 50 pattern24 ;

N6 30 100 pattern24 ;

N362 100 0 ;

N364 100 0 ;

N365 100 0 ;

N12 100 0 ;

N13 100 0 ;

N10 100 0 ;

N11 100 0 ;

[RESERVOIRS]

;ID Head Pattern

R1 20 ;

[TANKS]

;ID Elevation InitLevel MinLevel MaxLevel Diameter MinVol VolCurve

T5 80 4.5 0 5 25 0 ;

T6 85 9.5 0 10 20 0 ;

[PIPES]

;ID Node1 Node2 Length Diameter Roughness MinorLoss Status

p1 R1 N1 1 1000 100 0 Open ;

p12 N1 N12 1 1000 100 0 Open ;

p10 N1 N10 1 1000 100 0 Open ;

p11 N11 N2 1 1000 100 0 Open ;

p13 N13 N2 1 1000 100 0 Open ;

p2 N2 N3 2600 450 100 0 Open ;

p3 N3 T5 1000 350 100 0 Open ;

p18 N3 N361 1 1000 100 0 Open ;

p5 T5 N5 500 300 100 0 Open ;

p361 N361 N362 1 1000 100 0 Open ;

p4 N365 T6 2000 350 100 0 Open ;

p19 N361 N365 1 1000 100 0 CV ;

p7 N6 N5 1 200 100 0 Open ;

p6 T6 N6 1100 300 100 0 Open ;

1 N364 N365 1 1000 100 0 Open ;

[PUMPS]

;ID Node1 Node2 Parameters

Pump2B N12 N13 HEAD Head1 PATTERN 2B ;

Pump1A N10 N11 HEAD Head1 PATTERN 1A ;

Pump3B N362 N364 HEAD Head6 ;

[VALVES]

;ID Node1 Node2 Diameter Type Setting MinorLoss

[TAGS]

[DEMANDS]

;Junction Demand Pattern Category

[STATUS]

;ID Status/Setting

[PATTERNS]

;ID Multipliers

;water demand pattern

pattern24 1.71 1.48 1.02 0.73 0.55 0.49

pattern24 0.55 0.73 1.02 1.36 1.53 1.53

pattern24 1.36 1.1 0.91 0.76 0.67 0.62

pattern24 0.62 0.67 0.76 0.91 1.1 1.48

;Energy price pattern

pumptariff 0.1194 0.1194 0.1194 0.1194 0.1194 0.1194

pumptariff 0.1194 0.1194 0.1194 0.1194 0.1194 0.1194

pumptariff 0.1194 0.1194 0.1194 0.1194 0.1194 0.0244

pumptariff 0.0244 0.0244 0.0244 0.0244 0.0244 0.0244

;Van Zyl pump pattern (run5)

1A 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1A 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1A 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

1A 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000

;Van Zyl pattern (run5)
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2B 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000

2B 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2B 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000

2B 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

;Van Zyl pattern (run5)

3B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3B 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

3B 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3B 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

[CURVES]

;ID X-Value Y-Value

;PUMP: EFFICIENCY: pump efficiency curve

leff 50 78

leff 107 80

leff 151 68

leff 200 60

;PUMP: PUMP: Pump characteristic curve

Head1 0 100

Head1 120 90

Head1 150 83

;PUMP: PUMP: pump characteristic curve

Head6 0 120

Head6 90 75

Head6 150 0

[CONTROLS]

LINK Pump1A 0.0000 AT TIME 0.0000

LINK Pump1A 0.0000 AT TIME 1.0000

LINK Pump1A 0.0000 AT TIME 2.0000

LINK Pump1A 0.0000 AT TIME 3.0000

LINK Pump1A 0.0000 AT TIME 4.0000

LINK Pump1A 0.0000 AT TIME 5.0000

LINK Pump1A 0.0000 AT TIME 6.0000

LINK Pump1A 0.0000 AT TIME 7.0000

LINK Pump1A 0.0000 AT TIME 8.0000

LINK Pump1A 0.0000 AT TIME 9.0000

LINK Pump1A 0.0000 AT TIME 10.0000

LINK Pump1A 0.0000 AT TIME 11.0000

LINK Pump1A 0.0000 AT TIME 12.0000

LINK Pump1A 0.0000 AT TIME 13.0000

LINK Pump1A 0.0000 AT TIME 14.0000

LINK Pump1A 0.0000 AT TIME 15.0000

LINK Pump1A 0.0000 AT TIME 16.0000

LINK Pump1A 1.0000 AT TIME 17.0000

LINK Pump1A 1.0000 AT TIME 18.0000

LINK Pump1A 1.0000 AT TIME 19.0000

LINK Pump1A 1.0000 AT TIME 20.0000

LINK Pump1A 1.0000 AT TIME 21.0000

LINK Pump1A 1.0000 AT TIME 22.0000

LINK Pump1A 0.0000 AT TIME 23.0000

LINK Pump2B 0.0000 AT TIME 0.0000

LINK Pump2B 0.0000 AT TIME 1.0000

LINK Pump2B 0.0000 AT TIME 2.0000

LINK Pump2B 1.0000 AT TIME 3.0000

LINK Pump2B 1.0000 AT TIME 4.0000

LINK Pump2B 1.0000 AT TIME 5.0000

LINK Pump2B 1.0000 AT TIME 6.0000

LINK Pump2B 1.0000 AT TIME 7.0000

LINK Pump2B 1.0000 AT TIME 8.0000

LINK Pump2B 1.0000 AT TIME 9.0000

LINK Pump2B 1.0000 AT TIME 10.0000

LINK Pump2B 1.0000 AT TIME 11.0000

LINK Pump2B 1.0000 AT TIME 12.0000

LINK Pump2B 1.0000 AT TIME 13.0000

LINK Pump2B 1.0000 AT TIME 14.0000

LINK Pump2B 0.0000 AT TIME 15.0000

LINK Pump2B 0.0000 AT TIME 16.0000

LINK Pump2B 1.0000 AT TIME 17.0000

LINK Pump2B 1.0000 AT TIME 18.0000

LINK Pump2B 1.0000 AT TIME 19.0000

LINK Pump2B 1.0000 AT TIME 20.0000

LINK Pump2B 1.0000 AT TIME 21.0000

LINK Pump2B 1.0000 AT TIME 22.0000

LINK Pump2B 1.0000 AT TIME 23.0000

LINK Pump3B 0.0000 AT TIME 0.0000

LINK Pump3B 0.0000 AT TIME 1.0000

LINK Pump3B 0.0000 AT TIME 2.0000

LINK Pump3B 0.0000 AT TIME 3.0000

LINK Pump3B 0.0000 AT TIME 4.0000

LINK Pump3B 0.0000 AT TIME 5.0000
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LINK Pump3B 0.0000 AT TIME 6.0000

LINK Pump3B 0.0000 AT TIME 7.0000

LINK Pump3B 0.0000 AT TIME 8.0000

LINK Pump3B 0.0000 AT TIME 9.0000

LINK Pump3B 0.0000 AT TIME 10.0000

LINK Pump3B 1.0000 AT TIME 11.0000

LINK Pump3B 1.0000 AT TIME 12.0000

LINK Pump3B 1.0000 AT TIME 13.0000

LINK Pump3B 1.0000 AT TIME 14.0000

LINK Pump3B 1.0000 AT TIME 15.0000

LINK Pump3B 1.0000 AT TIME 16.0000

LINK Pump3B 1.0000 AT TIME 17.0000

LINK Pump3B 1.0000 AT TIME 18.0000

LINK Pump3B 1.0000 AT TIME 19.0000

LINK Pump3B 1.0000 AT TIME 20.0000

LINK Pump3B 1.0000 AT TIME 21.0000

LINK Pump3B 1.0000 AT TIME 22.0000

LINK Pump3B 1.0000 AT TIME 23.0000

[RULES]

[ENERGY]

Global Efficiency 85

Global Price 1

Global Pattern pumptariff

Demand Charge 0

Pump Pump2B Efficiency leff

Pump Pump2B Price 1

Pump Pump2B Pattern pumptariff

Pump Pump1A Efficiency leff

Pump Pump1A Price 1

Pump Pump1A Pattern pumptariff

Pump Pump3B Price 1

Pump Pump3B Pattern pumptariff

[EMITTERS]

;Junction Coefficient

[QUALITY]

;Node InitQual

[SOURCES]

;Node Type Quality Pattern

[REACTIONS]

;Type Pipe/Tank Coefficient

[REACTIONS]

Order Bulk 1

Order Tank 1

Order Wall 1

Global Bulk 0

Global Wall 0

Limiting Potential 0

Roughness Correlation 0

[MIXING]

;Tank Model

[TIMES]

Duration 24:00

Hydraulic Timestep 1:00

Quality Timestep 0:05

Pattern Timestep 1:00

Pattern Start 0:00

Report Timestep 1:00

Report Start 0:00

Start ClockTime 0:00

Statistic NONE

[REPORT]

Energy Yes

Status Full

Summary No

[OPTIONS]

Units LPS

Headloss H-W

Specific Gravity 1.000000

Viscosity 1.000000

Trials 100

Accuracy 0.0001

CHECKFREQ 2
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MAXCHECK 10

DAMPLIMIT 0

Unbalanced Continue

Pattern SSP2B

Demand Multiplier 1.0000

Emitter Exponent 0.5000

Quality None mg/L

Diffusivity 1

Tolerance 0.01

Hydraulics SAVE VanZyl_bcoelho_hyd

[COORDINATES]

;Node X-Coord Y-Coord

N1 200.69 4587.16

N2 1829.13 4552.75

N3 2930.05 5791.28

N361 3319.95 6238.53

N5 5407.11 6548.17

N6 5407.11 6892.20

N362 2964.45 6513.76

N364 3423.17 7064.22

N365 3778.67 6788.99

N12 602.06 5022.94

N13 1370.41 5022.94

N10 636.47 4151.38

N11 1404.82 4151.38

R1 -521.79 4587.16

T5 4684.63 6009.17

T6 4489.68 7672.02

[VERTICES]

;Link X-Coord Y-Coord

[LABELS]

;X-Coord Y-Coord Label & Anchor Node

17.20 4483.94 "N1"

189.22 5172.02 "N12"

1496.56 5194.95 "N13"

235.09 4151.38 "N10"

1519.50 4128.44 "N11"

2586.01 5905.96 "N3"

3388.76 6227.06 "N361"

2528.67 6559.63 "N362"

3388.76 7339.45 "N364"

3870.41 6834.86 "N365"

4053.90 8084.86 "Tank B"

4260.32 6387.61 "Tank A"

-590.60 4919.72 "R1"

5418.58 6444.95 "N5"

5441.51 7155.96 "N6"

2035.55 4633.03 "N2"

693.81 4025.23 "Pump 1A"

670.87 5389.91 "Pump 2B"

2391.06 7075.69 "Pump 3B"

344.04 7505.73 "Richmond"

504.59 7253.44 "WDN"

[BACKDROP]

DIMENSIONS 0.00 0.00 10000.00 10000.00

UNITS None

FILE

OFFSET 0.00 0.00

[END]
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D.3 Richmond network - EPANET input file
[TITLE]

Richmond Skelton Water Supply System

For more information on this network, see the file Richmond_readme.text distributed

with this network, or email Kobus van Zyl at jevz@ing.rau.ac.za or kobusvanzyl@mail.com

Adapted by bcoelho | 2015

[JUNCTIONS]

;ID Elev Demand Pattern

4 183 0 ;

9 68.85 0 ;

10 166.42 5.68 domestic ;

42 60 3.68 domestic ;

104 184 0 ;

164 65 0 ;

175 65 0 ;

186 112.18 0 ;

197 115 0 ;

206 134.99 0 ;

249 101 11.3 domestic ;

264 184 0 ;

284 186 0 ;

312 242 2.13 domestic ;

320 242 0 ;

321 242 0 ;

325 242 3.71 domestic ;

353 185.78 0 ;

364 217 0 ;

632 69 0 ;

633 69 0 ;

634 139.02 0 ;

635 139.82 0 ;

636 139.82 0 ;

637 140 1 domestic ;

701 198.33 .11 domestic ;

729 202.15 0 ;

745 177 1.42 domestic ;

753 177 .1 domestic ;

766 69.7 0 ;

768 69.59 0 ;

770 69.39 0 ;

771 69 0 ;

1125 184 0 ;

1302 216.65 16.25 domestic ;

1963 70 0 ;

2009 70 0 ;

1250 186 0 ;

774 188 0 ;

2010 69 0 ;

777 100 -9.16 ;

[RESERVOIRS]

;ID Head Pattern

O 1 40 ;

[TANKS]

;ID Elevation InitLevel MinLevel MaxLevel Diameter MinVol VolCurve

C 258.9 1.84 0 2 6.6 0 ;

A 184.13 3.12 0.00 3.37 23.5 0 ;

D 241.18 1.94 0.00 2.11 11.8 0 ;

B 216 3.37 0.00 3.65 15.4 0 ;

E 203.01 2.47 0.00 2.69 8 0 ;

F 235.71 1.96 0.00 2.19 3.6 0 ;

[PIPES]

;ID Node1 Node2 Length Diameter Roughness MinorLoss Status

788 A 4 18 150 120 0 Open ;

790 4 10 401 150 120 0 Open ;

793 4 104 18 150 120 0 Open ;

794 9 42 1087 300 140 0 Open ;

841 42 164 3002 250 140 0 Open ;

911 104 206 846 152 110 0 Open ;

912 104 264 44 100 100 0 Open ;

993 164 175 18 250 130 0 Open ;

1020 186 197 5 250 140 0 Open ;

1033 164 197 16 250 137.5 0 CV ;

1036 197 284 2003 250 130 0 Open ;

1085 206 249 30 76 80 0 Open ;

1107 249 634 6 100 70 0 Open ;

1153 284 1250 13 200 130 0 Open ;

1154 1125 312 1261 150 100 0 CV ;
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1178 284 774 18 229 75 0 Open ;

1196 312 D 15 100 30 0 CV ;

1208 320 321 7 80 90 0 Open ;

1209 320 325 3 150 100 0 Open ;

1210 321 312 23 150 100 0 CV ;

1278 353 364 472 200 130 0 Open ;

1301 B 1302 10 152 70 0 Open ;

1304 B 364 7 152 70 0 Open ;

1638 632 633 5 300 120 0 Open ;

1645 634 635 2 100 130 0 Open ;

1653 636 637 1 100 120 0 CV ;

1677 2010 770 5 300 120 0 CV ;

1740 637 C 4028 100 130 0 Open ;

1752 321 701 365 150 140 0 Open ;

1753 701 729 5612 152 110 0 Open ;

1783 729 E 1591 76 70 0 CV ;

1793 E 745 444 102 70 0 CV ;

1832 753 F 1216 76 87.5 0 Open ;

1842 766 768 5 300 150 0 Open ;

1844 768 770 4 300 150 0 Open ;

1848 770 771 5 300 150 0 Open ;

1849 771 9 26 150 100 0 Open ;

1879 774 A 1 150 100 0 Open ;

1913 O 632 8 300 120 0 Open ;

1964 633 1963 4 150 100 0 Open ;

1978 D 320 17 150 100 0 Open ;

2010 632 2009 4 150 100 0 Open ;

p1 633 2010 1 300 120 0 Open ;

p2 777 A 20 200 100 0 Open ;

[PUMPS]

;ID Node1 Node2 Parameters

7F 745 753 HEAD 1883 PATTERN pat7F ;

2A 1963 768 HEAD 2015 PATTERN pat2A ;

5C 635 636 HEAD 1884 PATTERN pat5C ;

6D 264 1125 HEAD 1123 PATTERN pat6D ;

3A 175 186 HEAD 1006 PATTERN pat3A ;

4B 1250 353 HEAD 1881 PATTERN pat4B ;

1A 2009 766 HEAD 2007 PATTERN pat1A ;

[VALVES]

;ID Node1 Node2 Diameter Type Setting MinorLoss

[TAGS]

[DEMANDS]

;Junction Demand Pattern Category

[STATUS]

;ID Status/Setting

7F Closed

2A Closed

5C Closed

6D Closed

3A Closed

4B Closed

1A Closed

[PATTERNS]

;ID Multipliers

;

Fac_11 1 1 1 1 1 1

Fac_11 1 1 1 1 1 1

Fac_11 1 1 1 1 1 1

Fac_11 1 1 1 1 1 1

;

CBTariff 2.40925 2.40925 2.40925 2.40925 2.40925 2.40925

CBTariff 2.40925 6.7945 6.7945 6.7945 6.7945 6.7945

CBTariff 6.7945 6.7945 6.7945 6.7945 6.7945 6.7945

CBTariff 6.7945 6.7945 6.7945 6.7945 6.7945 6.7945

;

HHTariff 2.46 2.46 2.46 2.46 2.46 2.46

HHTariff 2.46 9.866 9.866 9.866 9.866 9.866

HHTariff 9.866 9.866 9.866 9.866 9.866 9.866

HHTariff 9.866 9.866 9.866 9.866 9.866 9.866

;

LZGTariff 2.460 2.460 2.460 2.460 2.460 2.460

LZGTariff 2.460 11.195 11.195 11.195 11.195 11.195

LZGTariff 11.195 11.195 11.195 11.195 11.195 11.195

LZGTariff 11.195 11.195 11.195 11.195 11.195 11.195

;

LZHZTariff 2.456666667 2.456666667 2.456666667 2.456666667 2.456666667 2.456666667

LZHZTariff 2.456666667 12.34 12.34 12.34 12.34 12.34



xxiv Appendices

LZHZTariff 12.34 12.34 12.34 12.34 12.34 12.34

LZHZTariff 12.34 12.34 12.34 12.34 12.34 12.34

;

STariff 2.44 2.44 2.44 2.44 2.44 2.44

STariff 2.44 11.94 11.94 11.94 11.94 11.94

STariff 11.94 11.94 11.94 11.94 11.94 11.94

STariff 11.94 11.94 11.94 11.94 11.94 11.94

;

STTariff 2.41 2.41 2.41 2.41 2.41 2.41

STTariff 2.41 7.535 7.535 7.535 7.535 7.535

STTariff 7.535 7.535 7.535 7.535 7.535 7.535

STTariff 7.535 7.535 7.535 7.535 7.535 7.535

;

40 70.33 69.55 69.42 69.42 70.33 70.33

40 70.33 70.33 70.33 70.33 70.29 70.29

40 70.33 70.42 70.42 70.37 69.64 69.68

40 69.68 70.42 70.37 70.33 70.33 70.33

;

domestic 1.10 1.61 1.53 1.4 1.15 1.06

domestic 1.04 1 .92 .95 1.16 1.34

domestic 1.45 1.32 1.33 1.11 1.07 .71

domestic .48 .46 .4 .39 .41 .52

;speed pattern for pump 1A

pat1A 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

pat1A 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pat1A 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pat1A 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

;speed pattern for pump 2A

pat2A 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

pat2A 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

pat2A 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

pat2A 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

;speed pattern for pump 3A

pat3A 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

pat3A 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

pat3A 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

pat3A 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

;speed pattern for pump 4B

pat4B 0 1 1 1 0 0

pat4B 1 0 1 0 1 0

pat4B 1 1 0 1 0 1

pat4B 0 0 1 0 0 1

;speed pattern for pump 5C

pat5C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pat5C 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000

pat5C 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000

pat5C 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000

;speed pattern for pump 6D

pat6D 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

pat6D 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

pat6D 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

pat6D 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000

;speed pattern for pump 7F

pat7F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pat7F 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pat7F 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

pat7F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

[CURVES]

;ID X-Value Y-Value

;PUMP: PUMP:

1006 0 38.00

1006 10 37.00

1006 20 36.00

1006 30 34.00

1006 40 31.00

1006 50 29.00

1006 60 27.00

1006 70 25.00

;PUMP: PUMP:

1123 0 88.000

1123 2.78 87.000

1123 5.56 84.000

1123 8.53 76.000

1123 11.11 63.000

1123 13.89 47.000

;PUMP: PUMP:

1641 0 146.000

1641 10 145.000

1641 15 144.000

1641 20 143.000

1641 25 141.000

1641 30 138.000
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1641 35 133.000

1641 40 127.000

1641 45 120.000

1641 50 108.000

;PUMP: PUMP:

1659 0 122.000

1659 2.22 120.000

1659 2.78 118.000

1659 3.33 115.000

1659 3.89 110.000

1659 4.44 105.000

1659 5 96.000

1659 5.55 85.000

1659 6.11 72.000

;PUMP: PUMP:

1691 0 129

1691 10 128

1691 15 127

1691 20 126

1691 25 124

1691 30 121

1691 35 116

1691 40 110

1691 45 103

1691 50 91

;PUMP: PUMP:

1881 0 40.00

1881 6.94 38.50

1881 13.88 38.00

1881 20.83 37.50

1881 27.77 36.00

1881 34.72 35.00

1881 41.66 32.50

1881 48.61 30.00

1881 55.55 27.50

1881 111.5 7.50

;PUMP: PUMP:

1883 0 37.000

1883 1 36.999

1883 2 36.998

1883 3 36.997

1883 4 36.996

1883 5 36.995

1883 6 36.994

;PUMP: PUMP:

1884 0 122.000

1884 2.22 120.000

1884 2.78 118.000

1884 3.33 115.000

1884 3.89 110.000

1884 4.44 105.000

1884 5 96.000

1884 5.55 85.000

1884 6.11 72.000

;PUMP: PUMP:

1948 0 20.00

1948 0.4 19.00

1948 0.8 16.00

1948 1.2 13.00

1948 1.6 11.00

1948 2 7.00

;PUMP: PUMP:

2007 0 129

2007 10 128

2007 15 127

2007 20 126

2007 25 124

2007 30 121

2007 35 116

2007 40 110

2007 45 103

2007 50 91

;PUMP: PUMP:

2015 0 129

2015 10 128

2015 15 127

2015 20 126

2015 25 124

2015 30 121

2015 35 116

2015 40 110

2015 45 103

2015 50 91
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;PUMP: EFFICIENCY:

HHEfficiency 0 0

HHEfficiency 1.1 0

HHEfficiency 1.5 48

HHEfficiency 2 57

HHEfficiency 2.5 62

HHEfficiency 3 67

HHEfficiency 3.5 71

HHEfficiency 4.5 71

HHEfficiency 5 69

HHEfficiency 5.5 67

HHEfficiency 6 62

;PUMP: EFFICIENCY:

CBNEfficiency 0 0

CBNEfficiency 20 57

CBNEfficiency 25 65

CBNEfficiency 30 71

CBNEfficiency 35 75

CBNEfficiency 40 75

CBNEfficiency 45 75

CBNEfficiency 50 73

;PUMP: EFFICIENCY:

CBOEfficiency 0 0

CBOEfficiency 20 57

CBOEfficiency 25 65

CBOEfficiency 30 71

CBOEfficiency 35 75

CBOEfficiency 40 75

CBOEfficiency 45 72

CBOEfficiency 50 70

;PUMP: EFFICIENCY:

LZGEfficiency 0 0

LZGEfficiency 2.7 32

LZGEfficiency 5.5 50

LZGEfficiency 8.3 55

LZGEfficiency 11.11 58

LZGEfficiency 13.8 47

;PUMP: EFFICIENCY:

LZHZEfficiency 0 0

LZHZEfficiency 10 40

LZHZEfficiency 20 50

LZHZEfficiency 30 61

LZHZEfficiency 40 68

LZHZEfficiency 50 71

LZHZEfficiency 60 72

LZHZEfficiency 70 72

LZHZEfficiency 80 71

LZHZEfficiency 90 68

LZHZEfficiency 100 61

LZHZEfficiency 110 50

LZHZEfficiency 120 40

;PUMP: EFFICIENCY:

SEfficiency 0 0

SEfficiency 1.38 31

SEfficiency 2.7 48

SEfficiency 4.6 54

SEfficiency 5.5 54

SEfficiency 6.94 43

;PUMP: EFFICIENCY:

STEfficiency 0 0

STEfficiency 20 34

STEfficiency 40 58

STEfficiency 60 72

STEfficiency 80 77

[CONTROLS]

LINK 1A 0.0000 AT TIME 0.0000

LINK 1A 1.0000 AT TIME 1.0000

LINK 1A 0.0000 AT TIME 2.0000

LINK 1A 0.0000 AT TIME 3.0000

LINK 1A 0.0000 AT TIME 4.0000

LINK 1A 0.0000 AT TIME 5.0000

LINK 1A 0.0000 AT TIME 6.0000

LINK 1A 0.0000 AT TIME 7.0000

LINK 1A 0.0000 AT TIME 8.0000

LINK 1A 0.0000 AT TIME 9.0000

LINK 1A 0.0000 AT TIME 10.0000

LINK 1A 0.0000 AT TIME 11.0000

LINK 1A 0.0000 AT TIME 12.0000

LINK 1A 0.0000 AT TIME 13.0000

LINK 1A 0.0000 AT TIME 14.0000

LINK 1A 0.0000 AT TIME 15.0000

LINK 1A 0.0000 AT TIME 16.0000
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LINK 1A 0.0000 AT TIME 17.0000

LINK 1A 0.0000 AT TIME 18.0000

LINK 1A 0.0000 AT TIME 19.0000

LINK 1A 0.0000 AT TIME 20.0000

LINK 1A 0.0000 AT TIME 21.0000

LINK 1A 0.0000 AT TIME 22.0000

LINK 1A 0.0000 AT TIME 23.0000

LINK 2A 1.0000 AT TIME 0.0000

LINK 2A 1.0000 AT TIME 1.0000

LINK 2A 1.0000 AT TIME 2.0000

LINK 2A 1.0000 AT TIME 3.0000

LINK 2A 1.0000 AT TIME 4.0000

LINK 2A 1.0000 AT TIME 5.0000

LINK 2A 1.0000 AT TIME 6.0000

LINK 2A 1.0000 AT TIME 7.0000

LINK 2A 1.0000 AT TIME 8.0000

LINK 2A 1.0000 AT TIME 9.0000

LINK 2A 1.0000 AT TIME 10.0000

LINK 2A 1.0000 AT TIME 11.0000

LINK 2A 1.0000 AT TIME 12.0000

LINK 2A 1.0000 AT TIME 13.0000

LINK 2A 1.0000 AT TIME 14.0000

LINK 2A 1.0000 AT TIME 15.0000

LINK 2A 1.0000 AT TIME 16.0000

LINK 2A 1.0000 AT TIME 17.0000

LINK 2A 1.0000 AT TIME 18.0000

LINK 2A 1.0000 AT TIME 19.0000

LINK 2A 1.0000 AT TIME 20.0000

LINK 2A 1.0000 AT TIME 21.0000

LINK 2A 1.0000 AT TIME 22.0000

LINK 2A 1.0000 AT TIME 23.0000

LINK 3A 1.0000 AT TIME 0.0000

LINK 3A 1.0000 AT TIME 1.0000

LINK 3A 1.0000 AT TIME 2.0000

LINK 3A 1.0000 AT TIME 3.0000

LINK 3A 1.0000 AT TIME 4.0000

LINK 3A 1.0000 AT TIME 5.0000

LINK 3A 1.0000 AT TIME 6.0000

LINK 3A 1.0000 AT TIME 7.0000

LINK 3A 1.0000 AT TIME 8.0000

LINK 3A 1.0000 AT TIME 9.0000

LINK 3A 1.0000 AT TIME 10.0000

LINK 3A 1.0000 AT TIME 11.0000

LINK 3A 1.0000 AT TIME 12.0000

LINK 3A 1.0000 AT TIME 13.0000

LINK 3A 1.0000 AT TIME 14.0000

LINK 3A 1.0000 AT TIME 15.0000

LINK 3A 1.0000 AT TIME 16.0000

LINK 3A 1.0000 AT TIME 17.0000

LINK 3A 1.0000 AT TIME 18.0000

LINK 3A 1.0000 AT TIME 19.0000

LINK 3A 1.0000 AT TIME 20.0000

LINK 3A 1.0000 AT TIME 21.0000

LINK 3A 1.0000 AT TIME 22.0000

LINK 3A 1.0000 AT TIME 23.0000

LINK 4B 0.0000 AT TIME 0.0000

LINK 4B 1.0000 AT TIME 1.0000

LINK 4B 1.0000 AT TIME 2.0000

LINK 4B 1.0000 AT TIME 3.0000

LINK 4B 0.0000 AT TIME 4.0000

LINK 4B 0.0000 AT TIME 5.0000

LINK 4B 1.0000 AT TIME 6.0000

LINK 4B 0.0000 AT TIME 7.0000

LINK 4B 1.0000 AT TIME 8.0000

LINK 4B 0.0000 AT TIME 9.0000

LINK 4B 1.0000 AT TIME 10.0000

LINK 4B 0.0000 AT TIME 11.0000

LINK 4B 1.0000 AT TIME 12.0000

LINK 4B 1.0000 AT TIME 13.0000

LINK 4B 0.0000 AT TIME 14.0000

LINK 4B 1.0000 AT TIME 15.0000

LINK 4B 0.0000 AT TIME 16.0000

LINK 4B 1.0000 AT TIME 17.0000

LINK 4B 0.0000 AT TIME 18.0000

LINK 4B 0.0000 AT TIME 19.0000

LINK 4B 1.0000 AT TIME 20.0000

LINK 4B 0.0000 AT TIME 21.0000

LINK 4B 0.0000 AT TIME 22.0000

LINK 4B 1.0000 AT TIME 23.0000
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LINK 5C 0.0000 AT TIME 0.0000

LINK 5C 0.0000 AT TIME 1.0000

LINK 5C 0.0000 AT TIME 2.0000

LINK 5C 0.0000 AT TIME 3.0000

LINK 5C 0.0000 AT TIME 4.0000

LINK 5C 0.0000 AT TIME 5.0000

LINK 5C 0.0000 AT TIME 6.0000

LINK 5C 1.0000 AT TIME 7.0000

LINK 5C 1.0000 AT TIME 8.0000

LINK 5C 1.0000 AT TIME 9.0000

LINK 5C 0.0000 AT TIME 10.0000

LINK 5C 0.0000 AT TIME 11.0000

LINK 5C 0.0000 AT TIME 12.0000

LINK 5C 0.0000 AT TIME 13.0000

LINK 5C 0.0000 AT TIME 14.0000

LINK 5C 0.0000 AT TIME 15.0000

LINK 5C 1.0000 AT TIME 16.0000

LINK 5C 1.0000 AT TIME 17.0000

LINK 5C 1.0000 AT TIME 18.0000

LINK 5C 0.0000 AT TIME 19.0000

LINK 5C 0.0000 AT TIME 20.0000

LINK 5C 0.0000 AT TIME 21.0000

LINK 5C 0.0000 AT TIME 22.0000

LINK 5C 1.0000 AT TIME 23.0000

LINK 6D 1.0000 AT TIME 0.0000

LINK 6D 1.0000 AT TIME 1.0000

LINK 6D 1.0000 AT TIME 2.0000

LINK 6D 1.0000 AT TIME 3.0000

LINK 6D 1.0000 AT TIME 4.0000

LINK 6D 1.0000 AT TIME 5.0000

LINK 6D 1.0000 AT TIME 6.0000

LINK 6D 1.0000 AT TIME 7.0000

LINK 6D 1.0000 AT TIME 8.0000

LINK 6D 1.0000 AT TIME 9.0000

LINK 6D 1.0000 AT TIME 10.0000

LINK 6D 1.0000 AT TIME 11.0000

LINK 6D 1.0000 AT TIME 12.0000

LINK 6D 1.0000 AT TIME 13.0000

LINK 6D 1.0000 AT TIME 14.0000

LINK 6D 1.0000 AT TIME 15.0000

LINK 6D 1.0000 AT TIME 16.0000

LINK 6D 1.0000 AT TIME 17.0000

LINK 6D 1.0000 AT TIME 18.0000

LINK 6D 0.0000 AT TIME 19.0000

LINK 6D 1.0000 AT TIME 20.0000

LINK 6D 1.0000 AT TIME 21.0000

LINK 6D 1.0000 AT TIME 22.0000

LINK 6D 1.0000 AT TIME 23.0000

LINK 7F 0.0000 AT TIME 0.0000

LINK 7F 0.0000 AT TIME 1.0000

LINK 7F 0.0000 AT TIME 2.0000

LINK 7F 0.0000 AT TIME 3.0000

LINK 7F 0.0000 AT TIME 4.0000

LINK 7F 0.0000 AT TIME 5.0000

LINK 7F 1.0000 AT TIME 6.0000

LINK 7F 0.0000 AT TIME 7.0000

LINK 7F 0.0000 AT TIME 8.0000

LINK 7F 0.0000 AT TIME 9.0000

LINK 7F 0.0000 AT TIME 10.0000

LINK 7F 0.0000 AT TIME 11.0000

LINK 7F 0.0000 AT TIME 12.0000

LINK 7F 0.0000 AT TIME 13.0000

LINK 7F 0.0000 AT TIME 14.0000

LINK 7F 0.0000 AT TIME 15.0000

LINK 7F 0.0000 AT TIME 16.0000

LINK 7F 1.0000 AT TIME 17.0000

LINK 7F 0.0000 AT TIME 18.0000

LINK 7F 0.0000 AT TIME 19.0000

LINK 7F 0.0000 AT TIME 20.0000

LINK 7F 0.0000 AT TIME 21.0000

LINK 7F 0.0000 AT TIME 22.0000

LINK 7F 0.0000 AT TIME 23.0000

[RULES]

[ENERGY]

Global Efficiency 75

Global Price 0

Demand Charge 0
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Pump 7F Efficiency SEfficiency

Pump 7F Price 1

Pump 7F Pattern STariff

Pump 2A Efficiency CBNEfficiency

Pump 2A Price 1

Pump 2A Pattern CBTariff

Pump 5C Efficiency HHEfficiency

Pump 5C Price 1

Pump 5C Pattern HHTariff

Pump 6D Efficiency LZGEfficiency

Pump 6D Price 1

Pump 6D Pattern LZGTariff

Pump 3A Efficiency STEfficiency

Pump 3A Price 1

Pump 3A Pattern STTariff

Pump 4B Efficiency LZHZEfficiency

Pump 4B Price 1

Pump 4B Pattern LZHZTariff

Pump 1A Efficiency CBOEfficiency

Pump 1A Price 1

Pump 1A Pattern CBTariff

[EMITTERS]

;Junction Coefficient

[QUALITY]

;Node InitQual

[SOURCES]

;Node Type Quality Pattern

[REACTIONS]

;Type Pipe/Tank Coefficient

[REACTIONS]

Order Bulk 1

Order Tank 1

Order Wall 1

Global Bulk 0

Global Wall 0

Limiting Potential 0

Roughness Correlation 0

[MIXING]

;Tank Model

[TIMES]

Duration 24:00

Hydraulic Timestep 1:00

Quality Timestep 0:05

Pattern Timestep 1:00

Pattern Start 0:00

Report Timestep 1:00

Report Start 0:00

Start ClockTime 0 am

Statistic None

[REPORT]

Status Full

Summary No

Page 0

Energy Yes

Nodes All

Links All

[OPTIONS]

Units LPS

Headloss H-W

Specific Gravity 1

Viscosity 1

Trials 40

Accuracy 0.001

CHECKFREQ 2

MAXCHECK 10

DAMPLIMIT 0

Unbalanced Stop

Pattern Fac_11

Demand Multiplier 1.0

Emitter Exponent 0.5

Quality None mg/L

Diffusivity 1

Tolerance 0.01
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Hydraulics SAVE Richmond_bcoelho_hydfile

[COORDINATES]

;Node X-Coord Y-Coord

4 417432864.00 501468288.00

9 420073728.00 500427808.00

10 417780512.00 500933632.00

42 419679296.00 500512320.00

104 417213856.00 501042112.00

164 419059488.00 500709536.00

175 419172160.00 501132128.00

186 418524192.00 501357504.00

197 418411488.00 500934912.00

206 416484544.00 500334944.00

249 416481344.00 500337760.00

264 416903936.00 501352000.00

284 417977728.00 502032384.00

312 416653568.00 503581920.00

320 416202816.00 504173568.00

321 416202816.00 503581920.00

325 415385760.00 504089056.00

353 417977728.00 503215680.00

364 417977728.00 503891840.00

632 421818368.00 500927904.00

633 421781120.00 500701184.00

634 415495264.00 499999680.00

635 415244906.43 499968684.80

636 414794132.41 499855991.29

637 414554658.70 499799644.54

701 416202816.00 501553440.00

729 415470304.00 501440736.00

745 414315200.00 501412576.00

753 413695360.00 501412576.00

766 421085888.00 501294144.00

768 421057696.00 500787040.00

770 421001344.00 500308064.00

771 420062560.00 500447648.00

1125 416751840.00 501745312.00

1302 419048320.00 504060864.00

1963 421668448.00 500701184.00

2009 421818368.00 501237792.00

1250 417977728.00 502539520.00

774 417696000.00 502060544.00

2010 421752960.00 500229280.00

777 417139840.00 502283968.00

O 422555897.68 500687105.90

C 413382272.00 499661600.00

A 417442432.00 502060544.00

D 416625408.00 504201728.00

B 417921376.00 504370784.00

E 414935008.00 501412576.00

F 412991040.00 501384384.00

[VERTICES]

;Link X-Coord Y-Coord

[LABELS]

;X-Coord Y-Coord Label & Anchor Node

[BACKDROP]

DIMENSIONS 408638249.60 499335350.40 423020758.40 502165641.60

UNITS None

FILE

OFFSET 0.00 0.00

[END]
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D.4 Walski network - EPANET input file
[TITLE]

Walski network from (Walski et al., 2001) operations chapter exercices | by bcoelho | 2015

[JUNCTIONS]

;ID Elev Demand Pattern

J10 369 2 DemandPat ;

J9 369 2 DemandPat ;

J8 372 8 DemandPat ;

J11 372 3 DemandPat ;

J3 376 9 DemandPat ;

J2 389 0 ;

J1 375 0 ;

J4 381 3 DemandPat ;

J7 384 0 ;

J5 396 4 DemandFire ;

J6 381 25 DemandPat ;

J-PRV-2b 360 0 ;

J-PRV-2a 360 0 ;

J-PRV-1b 360 0 ;

J-PRV-1a 360 0 ;

J-PMP-1b 319 0 ;

J-PMP-1a 319 0 ;

J-PMP-2a 373 0 ;

J-PMP-2b 373 0 ;

[RESERVOIRS]

;ID Head Pattern

NewtownRes 320 ;

HighFieldRes. 375 ;

[TANKS]

;ID Elevation InitLevel MinLevel MaxLevel Diameter MinVol VolCurve

CentralTank 384 81 75 87 14 0 ;

[PIPES]

;ID Node1 Node2 Length Diameter Roughness MinorLoss Status

P6a J3 J-PRV-2a 190 305 110 0 Open ;

P6b J-PRV-2b J4 191 305 110 0 Open ;

P5 J3 J-PRV-1b 168 254 110 0 Open ;

P4 J-PRV-1a J2 183 254 110 0 Open ;

P17 J10 J11 229 152 95 0 Open ;

P16 J10 J9 375 152 95 0 Open ;

P15 J9 J8 396 152 95 0 Open ;

P18 J11 J3 373 203 95 0 Open ;

P19 J9 J3 221 152 100 0 Open ;

P14 J8 J2 244 203 100 0 Closed ;

P13 J2 J7 255 203 110 0 Open ;

P7 J4 J5 259 305 110 0 Open ;

P12 J7 J5 503 254 115 0 Open ;

P3 J1 J2 701 305 120 0 Open ;

P20 J7 CentralTank 47 102 75 0 Open ;

P9 J1 J6 640 305 120 0 Open ;

P8 J6 J5 1295 305 110 0 Open ;

P1 NewtownRes J-PMP-1a 37 610 120 0 Open ;

P2 J-PMP-1b J1 133 406 120 0 Open ;

P10 HighFieldRes. J-PMP-2a 15 610 105 0 Open ;

P11 J-PMP-2b J5 76 406 105 0 Open ;

[PUMPS]

;ID Node1 Node2 Parameters

PMP-1 J-PMP-1a J-PMP-1b HEAD Head-PMP-1 PATTERN PMP-1-pattern ;

PMP-2 J-PMP-2a J-PMP-2b HEAD Head-PMP-2 PATTERN PMP-2-pattern ;

[VALVES]

;ID Node1 Node2 Diameter Type Setting MinorLoss

PRV-1 J-PRV-1b J-PRV-1a 12 PRV 52 0 ;

PRV-2 J-PRV-2b J-PRV-2a 12 PRV 52 0 ;

[TAGS]

[DEMANDS]

;Junction Demand Pattern Category

[STATUS]

;ID Status/Setting

PMP-2 Closed

[PATTERNS]

;ID Multipliers

;Demand pattern for all junction nodes

DemandPat 0.6 0.6 0.6 0.75 0.75 0.75
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DemandPat 1.2 1.2 1.2 1.1 1.1 1.1

DemandPat 1.15 1.15 1.15 1.2 1.2 1.2

DemandPat 1.33 1.33 1.33 0.8 0.8 0.8

;Speed pattern for pump PMP-1

PMP-1-pattern 1 1 1 1 1 1

PMP-1-pattern 1 1 1 1 1 1

PMP-1-pattern 1 1 1 1 1 1

PMP-1-pattern 1 1 1 1 1 1

;Speed pattern for pump PMP-2

PMP-2-pattern 1 1 1 1 1 1

PMP-2-pattern 1 1 1 1 1 1

PMP-2-pattern 1 1 1 1 1 1

PMP-2-pattern 1 1 1 1 1 1

;demand pattern considering a fire occurrence at 11 (during 3 hours)

DemandFire 0.6 0.6 0.6 0.75 0.75 0.75

DemandFire 1.2 1.2 1.2 1.1 1.1 43.85

DemandFire 43.9 43.9 1.15 1.2 1.2 1.2

DemandFire 1.33 1.33 1.33 0.8 0.8 0.8

[CURVES]

;ID X-Value Y-Value

;PUMP: Pump PMP-1 characteristic curve H-Q

Head-PMP-1 0 168

Head-PMP-1 57 160

Head-PMP-1 125 146

;PUMP: Pump PMP-2 characteristic curve

Head-PMP-2 0 98

Head-PMP-2 95 93

Head-PMP-2 198 84

[CONTROLS]

LINK PMP-1 1.0000 AT TIME 0.00

LINK PMP-1 1.0000 AT TIME 1.00

LINK PMP-1 1.0000 AT TIME 2.00

LINK PMP-1 1.0000 AT TIME 3.00

LINK PMP-1 1.0000 AT TIME 4.00

LINK PMP-1 0.0000 AT TIME 5.00

LINK PMP-1 0.0000 AT TIME 6.00

LINK PMP-1 0.0000 AT TIME 7.00

LINK PMP-1 0.0000 AT TIME 8.00

LINK PMP-1 0.0000 AT TIME 9.00

LINK PMP-1 0.0000 AT TIME 10.00

LINK PMP-1 1.0000 AT TIME 11.00

LINK PMP-1 1.0000 AT TIME 12.00

LINK PMP-1 1.0000 AT TIME 13.00

LINK PMP-1 1.0000 AT TIME 14.00

LINK PMP-1 1.0000 AT TIME 15.00

LINK PMP-1 1.0000 AT TIME 16.00

LINK PMP-1 1.0000 AT TIME 17.00

LINK PMP-1 1.0000 AT TIME 18.00

LINK PMP-1 1.0000 AT TIME 19.00

LINK PMP-1 1.0000 AT TIME 20.00

LINK PMP-1 0.0000 AT TIME 21.00

LINK PMP-1 0.0000 AT TIME 22.00

LINK PMP-1 0.0000 AT TIME 23.00

LINK PMP-1 0.0000 AT TIME 24.00

LINK PMP-2 0.0000 AT TIME 0.00

LINK PMP-2 0.0000 AT TIME 1.00

LINK PMP-2 0.0000 AT TIME 2.00

LINK PMP-2 0.0000 AT TIME 3.00

LINK PMP-2 0.0000 AT TIME 4.00

LINK PMP-2 0.0000 AT TIME 5.00

LINK PMP-2 1.0000 AT TIME 6.00

LINK PMP-2 1.0000 AT TIME 7.00

LINK PMP-2 1.0000 AT TIME 8.00

LINK PMP-2 1.0000 AT TIME 9.00

LINK PMP-2 1.0000 AT TIME 10.00

LINK PMP-2 1.0000 AT TIME 11.00

LINK PMP-2 0.0000 AT TIME 12.00

LINK PMP-2 0.0000 AT TIME 13.00

LINK PMP-2 0.0000 AT TIME 14.00

LINK PMP-2 0.0000 AT TIME 15.00

LINK PMP-2 0.0000 AT TIME 16.00

LINK PMP-2 0.0000 AT TIME 17.00

LINK PMP-2 0.0000 AT TIME 18.00

LINK PMP-2 0.0000 AT TIME 19.00

LINK PMP-2 0.0000 AT TIME 20.00

LINK PMP-2 0.0000 AT TIME 21.00

LINK PMP-2 0.0000 AT TIME 22.00

LINK PMP-2 0.0000 AT TIME 23.00

LINK PMP-2 0.0000 AT TIME 24.00
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LINK PRV-1 OPEN AT TIME 0.00

LINK PRV-1 OPEN AT TIME 1.00

LINK PRV-1 OPEN AT TIME 2.00

LINK PRV-1 OPEN AT TIME 3.00

LINK PRV-1 OPEN AT TIME 4.00

LINK PRV-1 OPEN AT TIME 5.00

LINK PRV-1 OPEN AT TIME 6.00

LINK PRV-1 OPEN AT TIME 7.00

LINK PRV-1 OPEN AT TIME 8.00

LINK PRV-1 OPEN AT TIME 9.00

LINK PRV-1 OPEN AT TIME 10.00

LINK PRV-1 OPEN AT TIME 11.00

LINK PRV-1 OPEN AT TIME 12.00

LINK PRV-1 OPEN AT TIME 13.00

LINK PRV-1 OPEN AT TIME 14.00

LINK PRV-1 OPEN AT TIME 15.00

LINK PRV-1 OPEN AT TIME 16.00

LINK PRV-1 OPEN AT TIME 17.00

LINK PRV-1 OPEN AT TIME 18.00

LINK PRV-1 OPEN AT TIME 19.00

LINK PRV-1 OPEN AT TIME 20.00

LINK PRV-1 OPEN AT TIME 21.00

LINK PRV-1 OPEN AT TIME 22.00

LINK PRV-1 OPEN AT TIME 23.00

LINK PRV-2 OPEN AT TIME 0.00

LINK PRV-2 OPEN AT TIME 1.00

LINK PRV-2 OPEN AT TIME 2.00

LINK PRV-2 OPEN AT TIME 3.00

LINK PRV-2 OPEN AT TIME 4.00

LINK PRV-2 OPEN AT TIME 5.00

LINK PRV-2 OPEN AT TIME 6.00

LINK PRV-2 OPEN AT TIME 7.00

LINK PRV-2 OPEN AT TIME 8.00

LINK PRV-2 OPEN AT TIME 9.00

LINK PRV-2 OPEN AT TIME 10.00

LINK PRV-2 OPEN AT TIME 11.00

LINK PRV-2 OPEN AT TIME 12.00

LINK PRV-2 OPEN AT TIME 13.00

LINK PRV-2 OPEN AT TIME 14.00

LINK PRV-2 OPEN AT TIME 15.00

LINK PRV-2 OPEN AT TIME 16.00

LINK PRV-2 OPEN AT TIME 17.00

LINK PRV-2 OPEN AT TIME 18.00

LINK PRV-2 OPEN AT TIME 19.00

LINK PRV-2 OPEN AT TIME 20.00

LINK PRV-2 OPEN AT TIME 21.00

LINK PRV-2 OPEN AT TIME 22.00

LINK PRV-2 OPEN AT TIME 23.00

[RULES]

[ENERGY]

Global Efficiency 75

Global Price 0

Demand Charge 0

[EMITTERS]

;Junction Coefficient

[QUALITY]

;Node InitQual

[SOURCES]

;Node Type Quality Pattern

[REACTIONS]

;Type Pipe/Tank Coefficient

[REACTIONS]

Order Bulk 1

Order Tank 1

Order Wall 1

Global Bulk 0

Global Wall 0

Limiting Potential 0

Roughness Correlation 0

[MIXING]

;Tank Model

[TIMES]
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Duration 24

Hydraulic Timestep 1:00

Quality Timestep 0:05

Pattern Timestep 1:00

Pattern Start 0:00

Report Timestep 1:00

Report Start 0:00

Start ClockTime 12 am

Statistic None

[REPORT]

Status Full

Summary No

Page 0

Energy Yes

Links All

Nodes All

[OPTIONS]

Units LPS

Headloss H-W

Specific Gravity 1

Viscosity 1

Trials 40

Accuracy 0.001

CHECKFREQ 2

MAXCHECK 10

DAMPLIMIT 0

Unbalanced Continue

Pattern DemandPat

Demand Multiplier 1.0

Emitter Exponent 0.5

Quality None mg/L

Diffusivity 1

Tolerance 0.01

Hydraulics SAVE walski_hydfile

[COORDINATES]

;Node X-Coord Y-Coord

J10 -1296.61 8525.42

J9 635.59 8525.42

J8 3025.42 8525.42

J11 -1296.61 6881.36

J3 635.59 6881.36

J2 3025.42 6881.36

J1 5381.36 6881.36

J4 635.59 5169.49

J7 3025.42 5220.34

J5 635.59 3355.93

J6 5381.36 3355.93

J-PRV-2b 635.59 5779.66

J-PRV-2a 635.59 6338.98

J-PRV-1b 1516.95 6881.36

J-PRV-1a 2279.66 6881.36

J-PMP-1b 5855.93 7338.98

J-PMP-1a 6449.15 7847.46

J-PMP-2a -635.59 2355.93

J-PMP-2b -25.42 2847.46

NewtownRes 7008.47 8338.98

HighFieldRes. -1245.76 1881.36

CentralTank 2533.90 5847.46

[VERTICES]

;Link X-Coord Y-Coord

P20 2533.90 5423.73

[LABELS]

;X-Coord Y-Coord Label & Anchor Node

-1703.39 8881.36 "J10"

533.90 9016.95 "J9"

3110.17 8864.41 "J8"

-1771.19 6881.36 "J11"

296.61 7237.29 "J3"

3127.12 7254.24 "J2"

5483.05 6847.46 "J1"

5500.00 3271.19 "J6"

618.64 3254.24 "J5"

211.86 5237.29 "J4"

6262.71 8288.14 "P1"

5398.31 7491.53 "P2"

4025.42 7203.39 "P3"

2483.05 7220.34 "P4"

923.73 7220.34 "P5"
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93.22 6677.97 "P6a"

127.12 5610.17 "P6b"

262.71 4288.14 "P7"

2923.73 3694.92 "P8"

5516.95 5305.08 "P9"

-720.34 2203.39 "P10"

144.07 2932.20 "P11"

1957.63 4288.14 "P12"

3110.17 6152.54 "P13"

3093.22 7847.46 "P14"

1703.39 8864.41 "P15"

-635.59 8881.36 "P16"

-1211.86 7813.56 "P17"

-652.54 7237.29 "P18"

-1991.53 1644.07 "High Field Res."

-1127.12 3033.90 "PMP-2"

6228.81 7474.58 "PMP-1"

6567.80 8898.31 "Newtown Res."

1076.27 5966.10 "Central Tank"

4110.17 2644.07 "High pressure zone"

-313.56 9474.58 "Low pressure zone"

703.39 7813.56 "P19"

2127.12 5389.83 "P20"

3177.97 5237.29 "J7"

1567.80 7406.78 "PRV-1"

-364.41 6169.49 "PRV-2"

[BACKDROP]

DIMENSIONS 0.00 0.00 10000.00 10000.00

UNITS None

FILE

OFFSET 0.00 0.00

[END]
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D.5 Portuguese network - EPANET input file
[TITLE]

Simplified model of a Portuguese network | by B. Coelho | 2013

Contact info: A. Andrade-Campos (gilac@ua.pt) or B. Coelho (bcoelho@ua.pt)

[JUNCTIONS]

;ID Elev Demand Pattern

D1 200 -1 DemandPat1 ;

J12 315.6 0 ;

J4 215 0 ;

J5 215 0 ;

J7 215 0 ;

J6 215 0 ;

J8 215 0 ;

J9 215 0 ;

J15 277.88 0 ;

J17 283.88 0 ;

J19 274.11 0 ;

D5 265.83 1 DemandPat5 ;

D6 295.39 1 DemandPat6 ;

J24 241.81 0 ;

J20 266.92 0 ;

D7 264 1 DemandPat7 ;

J22 240.11 0 ;

J21 227.53 0 ;

J29 280 0 ;

J30 280 0 ;

J32 280 0 ;

J31 280 0 ;

J33 280 0 ;

J34 280 0 ;

D8 225 1 DemandPat8 ;

D9 230 1 DemandPat9 ;

D11 380 1 DemandPat11 ;

J37 395.6 0 ;

D10 270 1 DemandPat10 ;

D4 250 1 DemandPat4 ;

D3 300 1 DemandPat3 ;

J18 281.25 0 ;

J27 283.7 0 ;

J1 218.8 0 ;

J3 215 0 ;

J11 315.6 0 ;

J13 311 0 ;

J26 283.7 0 ;

J28 280 0 ;

J36 395.6 0 ;

J38 390 0 ;

J16 268.55 0 ;

J2 218.8 0 ;

D2 200 1 DemandPat2 ;

J25 241.81 0 ;

J14 311 0 ;

J10 215 0 ;

J23 240.11 0 ;

J35 0 0 ;

J39 390 0 ;

[RESERVOIRS]

;ID Head Pattern

[TANKS]

;ID Elevation InitLevel MinLevel MaxLevel Diameter MinVol VolCurve

TankA 215 1.13 0.9 4 36.769553 0 ;

TankB 311 3.32 1.5 4.6 22.627417 0 ;

TankC 280 3.02 1 3.7 33.941125 0 ;

TankD 390 3.94 1.8 5.6 18 0 ;

[PIPES]

;ID Node1 Node2 Length Diameter Roughness MinorLoss Status

P9 J12 TankB 0.1 1000 130 0 Open ;

P4 J4 J5 2 600 130 0 Open ;

P5 J4 J7 1 600 130 0 Open ;

P29 J29 J30 1 450 130 0 Open ;

P30 J29 J32 1 450 130 0 Open ;

P31 J31 J34 1 450 140 0 Open ;

P32 J33 J34 1 450 140 0 Open ;

P34 J37 TankD 0.1 1000 140 0 Open ;

P12 J15 D4 100 700 130 0 Open ;

CV-A2 TankA J4 1 600 130 0 CV ;

CV-C2 TankC J29 1 450 130 0 CV ;

P16 J17 J18 146.7 500 130 0 Open ;
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P17 J18 J19 158.3 500 130 0 Open ;

P19 J19 J20 116 500 130 0 Open ;

P18 J19 D6 100 500 130 0 Open ;

P20 J20 D7 100 500 130 0 Open ;

P27 J27 TankC 0.1 1000 130 0 Open ;

P0 D1 J1 100 600 130 0 Open ;

CV-A1 TankA J3 1 600 130 0 CV ;

CV-B1 TankB J13 1 700 130 0 CV ;

P10 J13 D3 100 700 130 0 Open ;

CV-C1 TankC J28 1 450 130 0 CV ;

CV-D TankD J38 1 450 140 0 CV ;

P13 J15 J16 2896.7 700 130 0 Open ;

P21 J20 J21 1918 500 130 0 Open ;

P1 J2 TankA 1 600 140 0 Open ;

P14 J16 D5 90 400 130 0 Open ;

P15 J16 J17 273.7 700 130 0 Open ;

P23 J21 J22 566.6 500 130 0 Open ;

P22 J21 D8 100 500 130 0 Open ;

P24 J22 D9 100 500 130 0 Open ;

P3 J3 D2 100 600 130 0 Open ;

P26 J25 J26 2096.3 400 130 0 Open ;

CV-B2 TankB J14 1 700 130 0 CV ;

P11 J14 J15 2347.26 700 130 0 Open ;

P6 J6 J9 2 600 130 0 Open ;

P7 J8 J9 1 600 130 0 Open ;

P8 J10 J11 2096.98 600 130 0 Open ;

P25 J23 J24 186.7 500 130 0 Open ;

P33 J35 J36 3100.7 450 140 0 Open ;

P35 J39 D11 100 450 140 0 Open ;

P28 J28 D10 100 450 130 0 Open ;

[PUMPS]

;ID Node1 Node2 Parameters

PMP-AB1 J5 J6 HEAD CB_PMP-AB PATTERN Pat_PMP-AB1 ;

PMP-AB2 J7 J8 HEAD CB_PMP-AB PATTERN Pat_PMP-AB2 ;

PMP-CD1 J30 J31 HEAD CB_PMP-CD PATTERN Pat_PMP-CD1 ;

PMP-CD2 J32 J33 HEAD CB_PMP-CD PATTERN Pat_PMP-CD2 ;

[VALVES]

;ID Node1 Node2 Diameter Type Setting MinorLoss

PSV_B J11 J12 600 PSV 0 0 ;

PSV_C J26 J27 600 PSV 0 0 ;

PSV_D J36 J37 450 PSV 0 0 ;

PSV_A J1 J2 600 PSV 0 0 ;

ValveG J24 J25 400 TCV 0 0 ;

9 J9 J10 600 TCV 450 0 ;

11 J22 J23 500 TCV 1050 0 ;

13 J35 J34 450 TCV 100 0 ;

VB-D J38 J39 450 TCV 200 0 ;

[TAGS]

[DEMANDS]

;Junction Demand Pattern Category

[STATUS]

;ID Status/Setting

PMP-AB2 Closed

PMP-CD2 Closed

[PATTERNS]

;ID Multipliers

;PMP-AB1 speed pattern

Pat_PMP-AB1 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000

Pat_PMP-AB1 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000

Pat_PMP-AB1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pat_PMP-AB1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

;PMP-AB2 speed pattern

Pat_PMP-AB2 0 0 0 0 0 0

Pat_PMP-AB2 0 0 0 0 0 0

Pat_PMP-AB2 0 0 0 0 0 0

Pat_PMP-AB2 0 0 0 0 0 0

;PMP-CD1 speed pattern

Pat_PMP-CD1 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

Pat_PMP-CD1 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000

Pat_PMP-CD1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Pat_PMP-CD1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

;PMP-CD2 speed pattern

Pat_PMP-CD2 0 0 0 0 0 0

Pat_PMP-CD2 0 0 0 0 0 0

Pat_PMP-CD2 0 0 0 0 0 0

Pat_PMP-CD2 0 0 0 0 0 0

;Winter tariff monday to friday



xxxviii Appendices

tarifaInverno1 0.0843875 0.0843875 0.0831875 0.0831875 0.0831875 0.0831875

tarifaInverno1 0.0843875 0.1042875 0.1042875 0.1102875 0.1102875 0.1102875

tarifaInverno1 0.1042875 0.1042875 0.1042875 0.1042875 0.1042875 0.1042875

tarifaInverno1 0.1102875 0.1102875 0.1102875 0.1042875 0.1042875 0.1042875

;Summer tariff monday to friday

tarifaVerao1 0.0844875 0.0844875 0.0835875 0.0835875 0.0835875 0.0835875

tarifaVerao1 0.0844875 0.1043875 0.1043875 0.1100875 0.1100875 0.1100875

tarifaVerao1 0.1043875 0.1043875 0.1043875 0.1043875 0.1043875 0.1043875

tarifaVerao1 0.1043875 0.1043875 0.1043875 0.1043875 0.1043875 0.1043875

;Padrao Consumo

DemandPat1 815.3200 934.3200 937.6800 946.3200 966.3200 659.2400

DemandPat1 277.1200 493.9200 769.3200 166.4400 0.0000 0.0000

DemandPat1 477.0800 467.9200 399.8400 745.3200 906.8400 914.3200

DemandPat1 922.0000 927.1600 924.8400 909.6800 906.3200 808.6800

;Padrao Consumo

DemandPat2 9.1844 7.5252 6.7404 5.9652 5.8742 6.2360

DemandPat2 6.7596 9.8456 13.8248 20.4350 19.8844 20.2606

DemandPat2 20.7446 19.5054 17.5596 17.0756 15.7848 15.7344

DemandPat2 16.6354 16.5546 16.3952 13.9252 12.1344 11.2854

;Padrao Consumo

DemandPat3 26.4250 21.7100 18.6050 17.1050 17.5000 17.3950

DemandPat3 19.0400 27.2250 42.9250 56.8700 59.6450 64.2500

DemandPat3 64.2500 63.7750 57.2500 50.5650 55.4750 54.7500

DemandPat3 58.8950 55.0900 47.7500 42.3800 35.5650 32.3100

;Padrao Consumo

DemandPat4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

DemandPat4 0.0000 0.0000 0.0000 0.0000 0.6450 43.1050

DemandPat4 77.0400 75.0500 5.1600 0.0000 0.0000 0.0000

DemandPat4 0.0000 13.3650 76.8200 79.6000 3.4650 0.0000

;Padrao Consumo

DemandPat5 23.4254 21.3000 20.3080 20.0138 19.8468 19.9264

DemandPat5 20.7566 24.0086 28.1218 32.2632 74.6040 96.1566

DemandPat5 91.5206 86.8514 86.1018 91.7196 88.5278 87.7978

DemandPat5 56.6702 31.6842 31.1940 29.8852 26.9676 25.3086

;Padrao Consumo

DemandPat6 17.2504 12.1196 9.1954 8.3342 7.3254 7.6450

DemandPat6 9.4100 17.2500 30.9500 43.9796 46.0504 45.7204

DemandPat6 46.5296 44.6804 40.2350 38.6450 39.1892 37.2900

DemandPat6 36.8950 36.7708 36.4496 29.0500 24.1746 20.8604

;Padrao Consumo

DemandPat7 174.2400 166.0000 169.0000 174.1600 177.0000 175.4200

DemandPat7 174.0000 168.4200 172.5800 168.0000 168.4200 171.4800

DemandPat7 212.5800 211.0000 203.4200 204.0000 208.0000 204.0000

DemandPat7 206.5800 205.4200 203.0000 206.5800 284.2800 315.4200

;Padrao Consumo

DemandPat8 0.0100 0.0100 0.0000 0.0100 0.0000 0.0100

DemandPat8 0.0100 0.0058 0.0042 0.0100 0.0158 0.0142

DemandPat8 0.0000 0.0100 0.0100 0.0158 0.0042 0.0100

DemandPat8 0.0000 0.0100 0.0100 0.0000 0.0100 0.0100

;Padrao Consumo

DemandPat9 10.4450 10.6416 10.5884 10.5338 18.5012 17.8550

DemandPat9 11.6858 10.4326 10.4200 10.4316 14.2362 20.7496

DemandPat9 17.6386 13.3238 19.6154 22.9866 16.8256 15.0304

DemandPat9 12.3912 17.2268 20.2056 15.4842 13.0910 11.2800

;Padrao Consumo

DemandPat10 1.5558 0.3332 0.2468 0.1558 0.1358 0.1858

DemandPat10 0.6022 1.2512 2.7432 5.0854 5.3230 5.1264

DemandPat10 5.7834 5.5392 4.7950 4.0338 5.6696 3.9378

DemandPat10 5.0670 4.6318 3.8806 3.4608 2.0726 2.1338

;Padrao Consumo

DemandPat11 318.5448 320.3054 320.3800 176.7698 0.0000 11.4550

DemandPat11 311.8804 326.2294 286.2900 98.8952 0.0000 0.0000

DemandPat11 199.3702 326.4046 326.2500 326.4106 326.6248 326.4342

DemandPat11 326.3152 326.6848 326.5406 326.7746 326.6848 327.8856

;Summer tariff saturday

tarifaVerao2 0.0844875 0.0844875 0.0835875 0.0835875 0.0835875 0.0835875

tarifaVerao2 0.0844875 0.0844875 0.0844875 0.1043875 0.1043875 0.1043875

tarifaVerao2 0.1043875 0.1043875 0.0844875 0.0844875 0.0844875 0.0844875

tarifaVerao2 0.0844875 0.0844875 0.1043875 0.1043875 0.0844875 0.0844875

;Summer tariff sunday and national holidays

tarifaVerao3 0.0844875 0.0844875 0.0835875 0.0835875 0.0835875 0.0835875

tarifaVerao3 0.0844875 0.0844875 0.0844875 0.0844875 0.0844875 0.0844875

tarifaVerao3 0.0844875 0.0844875 0.0844875 0.0844875 0.0844875 0.0844875

tarifaVerao3 0.0844875 0.0844875 0.0844875 0.0844875 0.0844875 0.0844875

;Winter tariff saturday

tarifaInverno2 0.0843875 0.0843875 0.0831875 0.0831875 0.0831875 0.0831875

tarifaInverno2 0.0843875 0.0843875 0.0843875 0.1042875 0.1042875 0.1042875

tarifaInverno2 0.1042875 0.0843875 0.0843875 0.0843875 0.0843875 0.0843875

tarifaInverno2 0.1042875 0.1042875 0.1042875 0.1042875 0.0843875 0.0843875

;Winter tariff sunday and national holidays

tarifaInverno3 0.0843875 0.084387 0.0831875 0.0831875 0.0831875 0.0831875

tarifaInverno3 0.084387 0.084387 0.084387 0.084387 0.084387 0.084387

tarifaInverno3 0.084387 0.084387 0.084387 0.084387 0.084387 0.084387
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tarifaInverno3 0.084387 0.084387 0.084387 0.084387 0.084387 0.084387

[CURVES]

;ID X-Value Y-Value

;PUMP: PUMP: PUMP: PUMP: PUMP: PUMP: PUMP: PMP-AB characteristic curve

CB_PMP-AB 0 130

CB_PMP-AB 943.2 114.5

CB_PMP-AB 2340 0

;PUMP: PUMP: PUMP: PUMP: PUMP: PUMP: PUMP: PMP-AB efficiency curve

CE_PMP-AB 0 0

CE_PMP-AB 180 33

CE_PMP-AB 306 50

CE_PMP-AB 576 70

CE_PMP-AB 943.2 82.1

CE_PMP-AB 1188 84

CE_PMP-AB 1512 80

CE_PMP-AB 1656 76

;PUMP: PUMP: PUMP: PUMP: PUMP: PUMP: PUMP: PMP-CD characteristic curve

CB_PMP-CD 0 156

CB_PMP-CD 324 127

CB_PMP-CD 648 0

;PUMP: PUMP: PUMP: PUMP: PUMP: PUMP: PUMP: PMP-CD efficiency curve

CE_PMP-CD 0 0

CE_PMP-CD 45 30

CE_PMP-CD 90 50

CE_PMP-CD 144 64

CE_PMP-CD 180 70

CE_PMP-CD 216 75

CE_PMP-CD 288 79

CE_PMP-CD 324 79.6

CE_PMP-CD 396 79

CE_PMP-CD 450 75

[CONTROLS]

LINK PMP-AB1 1.0000 AT TIME 0.0000

LINK PMP-AB1 1.0000 AT TIME 1.0000

LINK PMP-AB1 1.0000 AT TIME 2.0000

LINK PMP-AB1 0.0000 AT TIME 3.0000

LINK PMP-AB1 0.0000 AT TIME 4.0000

LINK PMP-AB1 1.0000 AT TIME 5.0000

LINK PMP-AB1 0.0000 AT TIME 6.0000

LINK PMP-AB1 1.0000 AT TIME 7.0000

LINK PMP-AB1 1.0000 AT TIME 8.0000

LINK PMP-AB1 1.0000 AT TIME 9.0000

LINK PMP-AB1 0.0000 AT TIME 10.0000

LINK PMP-AB1 0.0000 AT TIME 11.0000

LINK PMP-AB1 1.0000 AT TIME 12.0000

LINK PMP-AB1 1.0000 AT TIME 13.0000

LINK PMP-AB1 1.0000 AT TIME 14.0000

LINK PMP-AB1 1.0000 AT TIME 15.0000

LINK PMP-AB1 1.0000 AT TIME 16.0000

LINK PMP-AB1 1.0000 AT TIME 17.0000

LINK PMP-AB1 1.0000 AT TIME 18.0000

LINK PMP-AB1 1.0000 AT TIME 19.0000

LINK PMP-AB1 1.0000 AT TIME 20.0000

LINK PMP-AB1 1.0000 AT TIME 21.0000

LINK PMP-AB1 1.0000 AT TIME 22.0000

LINK PMP-AB1 1.0000 AT TIME 24.0000

LINK PMP-AB2 0.0000 AT TIME 0.0000

LINK PMP-AB2 0.0000 AT TIME 1.0000

LINK PMP-AB2 0.0000 AT TIME 2.0000

LINK PMP-AB2 0.0000 AT TIME 3.0000

LINK PMP-AB2 0.0000 AT TIME 4.0000

LINK PMP-AB2 0.0000 AT TIME 5.0000

LINK PMP-AB2 0.0000 AT TIME 6.0000

LINK PMP-AB2 0.0000 AT TIME 7.0000

LINK PMP-AB2 0.0000 AT TIME 8.0000

LINK PMP-AB2 0.0000 AT TIME 9.0000

LINK PMP-AB2 0.0000 AT TIME 10.0000

LINK PMP-AB2 0.0000 AT TIME 11.0000

LINK PMP-AB2 0.0000 AT TIME 12.0000

LINK PMP-AB2 0.0000 AT TIME 13.0000

LINK PMP-AB2 0.0000 AT TIME 14.0000

LINK PMP-AB2 0.0000 AT TIME 15.0000

LINK PMP-AB2 0.0000 AT TIME 16.0000

LINK PMP-AB2 0.0000 AT TIME 17.0000

LINK PMP-AB2 0.0000 AT TIME 18.0000

LINK PMP-AB2 0.0000 AT TIME 19.0000

LINK PMP-AB2 0.0000 AT TIME 20.0000

LINK PMP-AB2 0.0000 AT TIME 21.0000

LINK PMP-AB2 0.0000 AT TIME 22.0000

LINK PMP-AB2 0.0000 AT TIME 23.0000
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LINK PMP-CD1 1.0000 AT TIME 0.0000

LINK PMP-CD1 1.0000 AT TIME 1.0000

LINK PMP-CD1 1.0000 AT TIME 2.0000

LINK PMP-CD1 0.0000 AT TIME 3.0000

LINK PMP-CD1 0.0000 AT TIME 4.0000

LINK PMP-CD1 0.0000 AT TIME 5.0000

LINK PMP-CD1 0.0000 AT TIME 6.0000

LINK PMP-CD1 1.0000 AT TIME 7.0000

LINK PMP-CD1 1.0000 AT TIME 8.0000

LINK PMP-CD1 0.0000 AT TIME 9.0000

LINK PMP-CD1 0.0000 AT TIME 10.0000

LINK PMP-CD1 0.0000 AT TIME 11.0000

LINK PMP-CD1 1.0000 AT TIME 12.0000

LINK PMP-CD1 1.0000 AT TIME 13.0000

LINK PMP-CD1 1.0000 AT TIME 14.0000

LINK PMP-CD1 1.0000 AT TIME 15.0000

LINK PMP-CD1 1.0000 AT TIME 16.0000

LINK PMP-CD1 1.0000 AT TIME 17.0000

LINK PMP-CD1 1.0000 AT TIME 18.0000

LINK PMP-CD1 1.0000 AT TIME 19.0000

LINK PMP-CD1 1.0000 AT TIME 20.0000

LINK PMP-CD1 1.0000 AT TIME 21.0000

LINK PMP-CD1 1.0000 AT TIME 22.0000

LINK PMP-CD1 1.0000 AT TIME 23.0000

LINK PMP-CD2 0.0000 AT TIME 0.0000

LINK PMP-CD2 0.0000 AT TIME 1.0000

LINK PMP-CD2 0.0000 AT TIME 2.0000

LINK PMP-CD2 0.0000 AT TIME 3.0000

LINK PMP-CD2 0.0000 AT TIME 4.0000

LINK PMP-CD2 0.0000 AT TIME 5.0000

LINK PMP-CD2 0.0000 AT TIME 6.0000

LINK PMP-CD2 0.0000 AT TIME 7.0000

LINK PMP-CD2 0.0000 AT TIME 8.0000

LINK PMP-CD2 0.0000 AT TIME 9.0000

LINK PMP-CD2 0.0000 AT TIME 10.0000

LINK PMP-CD2 0.0000 AT TIME 11.0000

LINK PMP-CD2 0.0000 AT TIME 12.0000

LINK PMP-CD2 0.0000 AT TIME 13.0000

LINK PMP-CD2 0.0000 AT TIME 14.0000

LINK PMP-CD2 0.0000 AT TIME 15.0000

LINK PMP-CD2 0.0000 AT TIME 16.0000

LINK PMP-CD2 0.0000 AT TIME 17.0000

LINK PMP-CD2 0.0000 AT TIME 18.0000

LINK PMP-CD2 0.0000 AT TIME 19.0000

LINK PMP-CD2 0.0000 AT TIME 20.0000

LINK PMP-CD2 0.0000 AT TIME 21.0000

LINK PMP-CD2 0.0000 AT TIME 22.0000

LINK PMP-CD2 0.0000 AT TIME 23.0000

LINK ValveG OPEN AT TIME 0.0000

LINK ValveG CLOSED AT TIME 1.8000

LINK ValveG OPEN AT TIME 2.0000

LINK ValveG CLOSED AT TIME 3.5000

LINK ValveG CLOSED AT TIME 4.5000

LINK ValveG CLOSED AT TIME 5.0000

LINK ValveG CLOSED AT TIME 6.0000

LINK ValveG OPEN AT TIME 7.0000

LINK ValveG OPEN AT TIME 8.0000

LINK ValveG OPEN AT TIME 9.0000

LINK ValveG CLOSED AT TIME 10.0000

LINK ValveG OPEN AT TIME 11.0000

LINK ValveG OPEN AT TIME 12.0000

LINK ValveG OPEN AT TIME 13.0000

LINK ValveG OPEN AT TIME 14.0000

LINK ValveG OPEN AT TIME 15.0000

LINK ValveG OPEN AT TIME 16.0000

LINK ValveG OPEN AT TIME 17.0000

LINK ValveG OPEN AT TIME 18.0000

LINK ValveG OPEN AT TIME 19.0000

LINK ValveG OPEN AT TIME 20.0000

LINK ValveG OPEN AT TIME 21.0000

LINK ValveG OPEN AT TIME 22.0000

LINK ValveG OPEN AT TIME 23.0000

[RULES]

[ENERGY]

Global Efficiency 75

Global Price 0

Demand Charge 0

Pump PMP-AB1 Efficiency CE_PMP-AB
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Pump PMP-AB1 Price 1

Pump PMP-AB1 Pattern tarifaInverno2

Pump PMP-AB2 Efficiency CE_PMP-AB

Pump PMP-AB2 Price 1

Pump PMP-AB2 Pattern tarifaInverno2

Pump PMP-CD1 Efficiency CE_PMP-CD

Pump PMP-CD1 Price 1

Pump PMP-CD1 Pattern tarifaInverno2

Pump PMP-CD2 Efficiency CE_PMP-CD

Pump PMP-CD2 Price 1

Pump PMP-CD2 Pattern tarifaInverno2

[EMITTERS]

;Junction Coefficient

[QUALITY]

;Node InitQual

[SOURCES]

;Node Type Quality Pattern

[REACTIONS]

;Type Pipe/Tank Coefficient

[REACTIONS]

Order Bulk 1

Order Tank 1

Order Wall 1

Global Bulk 0

Global Wall 0

Limiting Potential 0

Roughness Correlation 0

[MIXING]

;Tank Model

[TIMES]

Duration 24:00

Hydraulic Timestep 1:00

Quality Timestep 1:00

Pattern Timestep 1:00

Pattern Start 0:00

Report Timestep 1:00

Report Start 0:00

Start ClockTime 0 am

Statistic NONE

[REPORT]

Status Full

Summary Yes

Page 0

Energy Yes

[OPTIONS]

Units CMH

Headloss H-W

Specific Gravity 1

Viscosity 1

Trials 50

Accuracy 0.0001

CHECKFREQ 2

MAXCHECK 10

DAMPLIMIT 0

Unbalanced Continue 10

Pattern Pat_PMP

Demand Multiplier 1.0

Emitter Exponent 0.5

Quality None mg/L

Diffusivity 1

Tolerance 0.01

Hydraulics SAVE portugueseNet_hyd

[COORDINATES]

;Node X-Coord Y-Coord

D1 4347.46 -2677.97

J12 8962.16 -1043.58

J4 6209.86 -3887.61

J5 6565.37 -3302.75

J7 6550.85 -4491.53

J6 7333.72 -3291.28

J8 7347.46 -4491.53

J9 7723.62 -3887.61
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J15 10228.81 -2169.49

J17 11279.66 -2050.85

J19 12144.07 -2423.73

D5 10805.08 -3474.58

D6 12144.07 -1355.93

J24 15177.97 -3423.73

J20 12635.59 -2898.31

D7 12635.59 -4830.51

J22 13923.73 -3661.02

J21 13279.66 -3966.10

J29 17500.00 -2644.07

J30 17754.24 -2118.64

J32 17771.19 -3118.64

J31 18432.20 -2118.64

J33 18500.00 -3118.64

J34 18720.34 -2627.12

D8 13279.66 -5372.88

D9 13923.73 -5016.95

D11 20110.17 -3915.25

J37 19855.93 -762.71

D10 16923.73 -5067.80

D4 10228.81 -4237.29

D3 9228.81 -3101.69

J18 11652.54 -2610.17

J27 16567.80 -2220.34

J1 4340.60 -3704.13

J3 5452.98 -4862.39

J11 8415.25 -1050.85

J13 9228.81 -2033.90

J26 16042.37 -2220.34

J28 16923.73 -3372.88

J36 19381.36 -762.71

J38 20110.17 -1847.46

J16 10805.08 -2661.02

J2 5120.41 -3692.66

D2 5452.98 -5802.75

J25 15754.24 -3423.73

J14 9974.58 -1288.14

J10 8161.02 -3881.36

J23 14584.75 -3661.02

J35 19194.92 -2627.12

J39 20110.17 -2491.53

TankA 5470.18 -3864.68

TankB 9225.92 -1295.87

TankC 16923.73 -2644.07

TankD 20127.12 -1067.80

[VERTICES]

;Link X-Coord Y-Coord

[LABELS]

;X-Coord Y-Coord Label & Anchor Node

4262.71 -2237.29 "D1"

5177.97 -3118.64 "TankA"

8957.63 -593.22 "TankB"

5330.51 -5983.05 "D2"

12025.42 -966.10 "D6"

16635.59 -1423.73 "TankC"

12516.95 -5000.00 "D7"

13161.02 -5525.42 "D8"

13788.14 -5169.49 "D9"

19822.03 -338.98 "TankD"

16754.24 -5254.24 "D10"

10652.54 -3627.12 "D5"

10076.27 -4406.78 "D4"

9110.17 -3271.19 "D3"

28974.36 -7741.62 "DemandPat11"

15364.41 -2898.31 "G"

19940.68 -4084.75 "D11"

6466.10 -2864.41 "PMP-AB1"

6449.15 -4627.12 "PMP-AB2"

17601.69 -1677.97 "PMP-CD1"

17669.49 -3254.24 "PMP-CD2"

20279.66 -2033.90 "VB-D"

[BACKDROP]

DIMENSIONS 0.00 0.00 10000.00 10000.00

UNITS None

FILE

OFFSET 0.00 0.00

[END]
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E ANN-based models forecasting results

Table E.1: Training forecast accuracy measures obtained for each data set with the distinct ANN-
based models developed.

ANN R2 NSE MAE RMSE MAPE maxAE
model (-) (-) (m3/h) (m3/h) (%) (m3/h)

WD2_hist 0.76 0.76 1.72 2.24 1.97E+13 14.59
WD2_1lag 0.94 0.94 0.85 1.16 1.26E+13 9.06
WD2_3lags 0.96 0.96 0.71 0.96 1.32E+13 8.87
WD2_antrhop 0.93 0.93 0.84 1.24 1.56E+13 13.22
WD2_neighb 0.96 0.96 0.69 0.96 9.41E+12 10.32
WD2_meteo 0.87 0.87 1.24 1.68 1.48E+13 12.65
WD2_rain 0.80 0.80 1.60 2.07 1.86E+13 12.95
WD2_all 0.97 0.97 0.56 0.76 1.64E+13 7.52
WD2_selection 0.93 0.93 0.83 1.20 1.06E+13 11.77
WD4_hist 0.51 0.41 6.96 11.52 5.23E+12 67.35
WD4_1lag 0.97 0.97 1.87 2.61 4.77E+12 23.79
WD4_3lags 0.98 0.98 1.73 2.36 5.42E+12 16.33
WD4_antrhop 0.95 0.95 2.43 3.51 7.77E+12 25.33
WD4_neighb 0.97 0.97 1.87 2.53 6.20E+12 20.55
WD4_meteo 0.92 0.92 3.20 4.21 9.07E+12 24.69
WD4_rain 0.85 0.84 4.71 5.93 1.02E+13 23.37
WD4_all 0.98 0.98 1.47 1.97 4.99E+12 14.71
WD4_selection 0.97 0.97 1.95 2.67 5.73E+12 22.17
WD5_hist 0.32 0.32 103.07 132.96 _ 546.94
WD5_1lag 0.39 0.39 96.66 125.74 _ 664.24
WD5_3lags 0.43 0.43 94.49 122.35 _ 605.94
WD5_antrhop 0.42 0.42 94.77 122.51 _ 720.06
WD5_meteo 0.33 0.33 102.87 132.40 _ 750.52
WD5_rain 0.32 0.32 103.25 132.98 _ 619.57
WD5_all 0.45 0.98 92.18 119.28 _ 581.18
WD5_selection 0.43 0.98 93.83 121.57 _ 605.81
WD16_hist 0.74 0.74 0.66 0.87 5.61E+10 6.87
WD16_1lag 0.84 0.84 0.50 0.69 3.63E+10 7.09
WD16_3lags 0.85 0.85 0.49 0.67 2.46E+11 7.04
WD16_antrhop 0.89 0.89 0.40 0.57 1.06E+12 7.24
WD16_neighb 0.76 0.76 0.63 0.84 2.79E+12 6.88
WD16_meteo 0.75 0.75 0.64 0.85 2.48E+10 6.88
WD16_rain 0.74 0.74 0.66 0.87 2.13E+11 6.92
WD16_all 0.00 1.00 0.58 1.12 1.28E+12 7.03
WD16_selection 0.00 1.00 0.56 1.09 2.92E+12 6.83
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Table E.2: Test forecast accuracy measures obtained for each data set with the distinct ANN-based
models developed.

ANN R2 NSE MAE RMSE MAPE maxAE
model (-) (-) (m3/h) (m3/h) (%) (m3/h)

WD2_hist 0.68 0.68 2.06 2.94 20.34 19.84
WD2_1lag 0.86 0.86 1.28 1.97 12.06 20.92
WD2_3lags 0.85 0.85 1.31 1.99 12.65 21.24
WD2_antrhop 0.85 0.85 1.22 2.01 10.09 21.58
WD2_neighb 0.82 0.82 1.57 2.22 15.41 20.76
WD2_meteo 0.73 0.73 1.91 2.72 17.34 19.61
WD2_rain 0.65 0.65 2.24 3.07 24.05 19.78
WD2_all 0.82 0.81 1.57 2.26 14.70 21.35
WD2_selection 0.86 0.86 1.25 1.96 10.90 20.41
WD4_hist 0.58 0.53 6.71 10.63 3.73E+12 67.35
WD4_1lag 0.91 0.91 3.56 4.88 10.62 23.61
WD4_3lags 0.94 0.94 3.10 4.15 10.26 17.22
WD4_antrhop 0.93 0.93 3.26 4.46 9.40 24.44
WD4_neighb 0.93 0.93 3.20 4.30 10.42 21.00
WD4_meteo 0.80 0.80 5.49 7.38 16.64 28.10
WD4_rain 0.70 0.70 7.00 9.01 25.53 37.94
WD4_all 0.89 0.89 4.19 5.55 13.13 19.61
WD4_selection 0.92 0.92 3.45 4.55 11.21 19.52
WD5_hist 0.31 0.31 80.42 100.77 21.94 294.32
WD5_1lag 0.36 0.36 76.58 96.94 20.33 299.18
WD5_3lags 0.38 0.37 75.85 95.89 20.12 291.03
WD5_antrhop 0.42 0.42 71.22 92.47 18.35 310.57
WD5_meteo 0.31 0.31 79.01 100.72 22.48 351.63
WD5_rain 0.30 0.30 81.56 101.34 22.13 300.37
WD5_all 0.42 0.39 73.32 94.63 19.02 341.51
WD5_selection 0.39 0.38 74.66 95.20 19.78 311.99
WD16_hist 0.64 0.64 0.80 1.13 78.64 8.35
WD16_1lag 0.74 0.74 0.66 0.97 56.40 7.34
WD16_3lags 0.74 0.73 0.67 0.98 66.85 7.67
WD16_antrhop 0.79 0.79 0.55 0.87 41.66 7.01
WD16_neighb 0.65 0.65 0.82 1.12 79.67 8.02
WD16_meteo 0.64 0.64 0.82 1.14 77.94 7.58
WD16_rain 0.65 0.65 0.80 1.11 78.82 7.79
WD16_all 3.04 0.52 0.73 1.35 205.57 5.37
WD16_selection 3.21 0.55 0.70 1.30 188.88 4.93
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Table E.3: First hour validation forecast accuracy measures obtained for each data set with the distinct
ANN-based models developed.

ANN R2 NSE MAE RMSE MAPE maxAE
model (-) (-) (m3/h) (m3/h) (%) (m3/h)

WD2_hist _ _ 3.33 3.33 28.55 3.33
WD2_1lag _ _ 3.07 3.07 26.35 3.07
WD2_3lags _ _ 2.20 2.20 18.86 2.20
WD2_antrhop _ _ 3.81 3.81 32.69 3.81
WD2_neighb _ _ 5.20 5.20 44.55 5.20
WD2_meteo _ _ 4.23 4.23 36.22 4.23
WD2_rain _ _ 4.13 4.13 35.38 4.13
WD2_all _ _ 3.29 3.29 28.21 3.29
WD2_selection _ _ 2.48 2.48 21.28 2.48
WD4_hist _ _ 4.03 4.03 9.29 4.03
WD4_1lag _ _ 2.81 2.81 6.47 2.81
WD4_3lags _ _ 3.31 3.31 7.63 3.31
WD4_antrhop _ _ 1.32 1.32 3.05 1.32
WD4_neighb _ _ 2.08 2.08 4.80 2.08
WD4_meteo _ _ 5.99 5.99 13.81 5.99
WD4_rain _ _ 3.41 3.41 7.86 3.41
WD4_all _ _ 5.86 5.86 13.51 5.86
WD4_selection _ _ 4.89 4.89 11.28 4.89
WD5_hist _ _ 124.52 124.52 56.05 124.52
WD5_1lag _ _ 153.37 153.37 69.03 153.37
WD5_3lags _ _ 104.24 104.24 46.92 104.24
WD5_antrhop _ _ 181.36 181.36 81.63 181.36
WD5_meteo _ _ 165.69 165.69 74.58 165.69
WD5_rain _ _ 128.47 128.47 57.83 128.47
WD5_all _ _ 71.37 71.37 32.13 71.37
WD5_selection _ _ 107.03 107.03 48.18 107.03
WD16_hist _ _ 0.50 0.50 20.80 0.50
WD16_1lag _ _ 0.58 0.58 24.28 0.58
WD16_3lags _ _ 0.25 0.25 10.58 0.25
WD16_antrhop _ _ 0.86 0.86 35.68 0.86
WD16_neighb _ _ 0.75 0.75 31.19 0.75
WD16_meteo _ _ 0.39 0.39 16.41 0.39
WD16_rain _ _ 0.44 0.44 18.48 0.44
WD16_all _ _ 0.65 0.65 26.98 0.65
WD16_selection _ _ 0.59 0.59 24.36 0.59
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Table E.4: First 24 hours validation forecast accuracy measures obtained for each data set with the
distinct ANN-based models developed.

ANN R2 NSE MAE RMSE MAPE maxAE
model (-) (-) (m3/h) (m3/h) (%) (m3/h)

WD2_hist 0.02 -0.24 4.03 4.98 70.10 9.26
WD2_1lag 0.77 0.77 1.72 2.16 16.16 4.67
WD2_3lags 0.76 0.75 1.75 2.23 16.49 5.65
WD2_antrhop 0.74 0.73 1.59 2.33 12.96 6.24
WD2_neighb 0.75 0.72 1.87 2.38 17.65 5.43
WD2_meteo 0.57 0.43 2.78 3.36 26.95 6.88
WD2_rain 0.06 -0.74 4.56 5.89 83.49 11.52
WD2_all 0.68 0.59 2.31 2.87 22.65 6.92
WD2_selection 0.68 0.66 1.62 2.58 15.04 9.48
WD4_hist 0.02 -0.14 13.11 16.11 73.72 30.24
WD4_1lag 0.88 0.87 3.91 5.49 11.33 12.96
WD4_3lags 0.60 0.58 8.81 9.81 36.22 18.65
WD4_antrhop 0.78 0.78 5.32 7.15 14.50 16.93
WD4_neighb 0.94 0.93 3.09 3.88 10.81 8.84
WD4_meteo 0.46 0.28 10.52 12.79 32.24 24.95
WD4_rain 0.01 -0.07 13.03 15.63 67.15 30.11
WD4_all 0.58 0.30 9.88 12.61 29.63 25.85
WD4_selection 0.76 0.72 6.46 7.94 19.59 16.44
WD5_hist 0.00 -0.18 77.21 104.24 24.85 288.38
WD5_1lag 0.16 -0.11 85.56 101.29 24.09 230.65
WD5_3lags 0.25 0.01 79.79 95.58 25.47 209.81
WD5_antrhop 0.25 -0.25 75.04 107.18 20.83 284.63
WD5_meteo 0.06 -0.29 76.48 109.03 26.43 309.06
WD5_rain 0.08 0.00 68.78 95.96 23.36 282.76
WD5_all 0.29 -0.49 93.82 117.34 23.03 286.21
WD5_selection 0.20 -0.05 82.56 98.20 25.94 203.43
WD16_hist 0.01 -0.24 1.41 1.77 469.12 3.10
WD16_1lag 0.01 -0.43 1.57 1.90 495.50 3.44
WD16_3lags 0.40 0.39 1.00 1.23 275.25 2.70
WD16_antrhop 0.87 0.87 0.45 0.57 38.81 1.11
WD16_neighb 0.04 0.00 1.30 1.58 401.66 2.80
WD16_meteo 0.00 -0.04 1.40 1.62 355.65 2.91
WD16_rain 0.01 -0.10 1.41 1.66 401.16 2.80
WD16_all 0.76 0.76 0.62 0.78 49.93 2.10
WD16_selection 0.92 0.91 0.38 0.47 24.12 0.87
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Table E.5: All validation data forecast accuracy measures obtained for each data set with the distinct
ANN-based models developed.

ANN R2 NSE MAE RMSE MAPE maxAE
model (-) (-) (m3/h) (m3/h) (%) (m3/h)

WD2_hist 4.31E-05 -0.01 4.82 5.89 54.37 21.02
WD2_1lag 0.69 0.69 2.36 3.28 18.81 17.63
WD2_3lags 0.68 0.68 2.45 3.29 20.41 14.83
WD2_antrhop 0.47 0.45 3.19 4.33 22.69 19.90
WD2_neighb 0.51 0.48 3.14 4.21 24.26 19.37
WD2_meteo 0.20 0.02 3.97 5.80 29.15 25.33
WD2_rain 0.00 -0.04 4.82 5.96 57.72 19.70
WD2_all 0.74 0.73 2.20 3.02 17.30 14.91
WD2_selection 0.57 0.57 2.60 3.86 17.87 23.96
WD4_hist 0.02 -0.07 16.78 20.27 54.32 58.48
WD4_1lag 0.57 0.57 9.58 12.91 21.96 45.79
WD4_3lags 0.72 0.72 7.53 10.30 20.18 40.32
WD4_antrhop 0.58 0.58 9.24 12.74 19.45 42.69
WD4_neighb 0.78 0.78 7.01 9.14 17.54 32.88
WD4_meteo 0.22 -0.26 17.12 22.04 42.43 77.52
WD4_rain 0.04 -1.09 22.78 28.32 56.84 76.30
WD4_all 0.68 0.65 9.04 11.56 22.30 43.47
WD4_selection 0.59 0.57 9.75 12.81 23.27 44.41
WD5_hist 0.00 -0.02 1.68 2.08 406.48 11.21
WD5_1lag 0.00 -0.37 1.89 2.41 403.23 12.57
WD5_3lags 0.00 -2.59 2.57 3.91 611.48 16.27
WD5_antrhop 0.64 0.63 0.86 1.25 45.63 11.39
WD5_meteo 0.05 0.02 1.67 2.04 401.38 10.78
WD5_rain 0.03 0.03 1.63 2.03 374.33 11.56
WD5_all 0.00 -0.02 1.67 2.08 336.83 11.75
WD5_selection 0.46 0.46 1.06 1.52 137.11 11.92
WD16_hist 0.42 0.38 1.01 1.62 44.14 11.81
WD16_1lag 0.03 -0.42 146.10 177.14 30.39 516.93
WD16_3lags 0.06 -3.66 273.37 321.31 49.28 772.41
WD16_antrhop 0.06 -2.07 201.96 260.76 37.73 792.60
WD16_neighb 0.02 -0.41 144.21 177.00 27.12 547.55
WD16_meteo 0.01 -0.01 121.25 149.95 28.63 449.74
WD16_rain 0.03 -0.47 149.04 180.19 30.60 522.56
WD16_all 0.13 -0.23 127.94 164.93 26.45 594.61
WD16_selection 0.04 -2.38 226.28 273.80 41.79 751.25
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