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resumo 

 

 

O gengibre é uma planta que tem atraído um interesse crescente tanto no 

sector alimentar como farmacêutico devido às suas propriedades medicinais. 

Como planta medicinal, é uma das mais antigas e populares do mundo. As 

suas propriedades terapêuticas advêm dos compostos bioativos presentes na 

sua composição, entre os mais importantes destacam-se os compostos 

fenólicos, nomeadamente o 6-shogaol e o 6-gingerol. Estes compostos 

despertam um grande interesse na comunidade científica devido ao seu 

poder antioxidante e anti-tumoral. Os processos convencionais de extração 

destes compostos requerem o uso de solventes orgânicos, no entanto, nos 

últimos anos tem-se intensificado a procura por solventes alternativos com 

maior capacidade de solvatação, eficientes e economicamente viáveis. Os 

solventes eutécticos profundos (DES) são uma classe de solventes novos, de 

baixo custo e de origem natural, baseados em percursores renováveis que 

apresentam baixa toxicidade, podendo ser catalogados como solventes 

amigos do ambiente. Neste contexto, o objetivo principal deste trabalho 

foca-se na obtenção de um extrato rico em compostos bioativos 

(nomeadamente 6-gingerol) a partir do gengibre utilizando DES como 

solventes de extração com possibilidade de recuperação do extrato e 

reciclagem dos DES, criando assim um processo sustentável. Para atingir 

este objetivo, foram estudadas as solubilidades de dois compostos fenólicos 

modelo, nomeadamente os ácidos siríngico e ferúlico em DES (puros e em 

solução aquosa), por forma a avaliar os DES mais promissores na 

solubilização dos compostos bioativos, assim como, as condições de 

extração. Entre as várias combinações entre doadores (ácidos orgânicos, 

polióis, açúcares e ureia) e aceitadores (ureia, cloreto de colina, betaína e 

prolina) de pontes de hidrogénio, o DES ácido propiónico:ureia foi o que 

apresentou melhores resultados. Com base nestes resultados e recorrendo a 

metodologias de superfície de resposta, foram avaliados e otimizados 

diversos parâmetros de extração do 6-gingerol usando soluções aquosas de 

DES. Simultaneamente, efetuaram-se extrações convencionais como 

controlo, seguido da identificação e quantificação do 6-gingerol presente nos

extratos usando a cromatografia líquida de alta resolução (HPLC). A 

metodologia de extração do 6-gingerol a partir do gengibre usando os DES 

como solventes alternativos demonstrou ser mais seletiva, capaz de extrair 

mais 60 % de 6-gingerol quando comparado com os métodos de extração 

convencionais. Além disso, foi possível recuperar um extrato sólido rico a 

partir da solução de DES utilizando uma extração em fase sólida (SPE). Por 

fim, a caracterização dos extratos foi complementada com a análise da 

atividade antioxidante, usando o radical 2,2-difenil-1-picrilhidrazilo 

(DPPH). Os resultados indicam que os extratos obtidos a partir da 

metodologia proposta neste trabalho apresenta maior atividade antioxidante 

que os extratos obtidos com métodos de extração convencionais.  
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abstract 

 

Ginger is a plant that has attracted the attention from both the food and 

pharmaceutical sectors due to its medicinal properties. As a medicinal 

plant, it is one of the oldest and most popular in the world. Its therapeutic 

properties arise from the bioactive compounds it contains, among which 

stand the phenolic compounds, and in particular 6-shogaol and 6-

gingerol. These compounds aroused great interest in the scientific 

community due to its antioxidant and antitumoral properties. The 

conventional extraction methods of these compounds require the use of 

organic solvents, however, in recent years, there has been an intensified 

search for alternative solvents with higher solvation capacity, efficient 

and cheap. Deep-eutectic solvents (DES) are a new class of solvents, of 

low cost and natural origin, based on renewable precursors that have a 

low toxicity and can be categorized as environmentally friendly solvents. 

The goal of this work focuses on obtaining an extract rich in bioactive 

compounds (namely 6-gingerol) from ginger using DES as extraction 

solvents, and to evaluate the possibility of recycling of DES, thus creating 

a sustainable process. For that purpose the solubility of two phenolic 

model compounds, namely syringic and ferulic acids, were studied in 

DES (neat and in aqueous solution) in order to identify the most 

promising DES for the bioactive compound solubilisation, as well as the 

best extraction conditions. Between the several combinations amongst 

hydrogen bond donors (organic acids, polyols, sugars and urea) and 

hydrogen bond acceptors (urea, choline chloride, betaine and proline), 

propionic acid:urea revealed to have the best results. Based on these 

results and using the surface response methodology, several extraction 

parameters of ginger extraction using aqueous solutions of DES were 

optimized. Simultaneously, conventional extraction assays were carried

for comparison, followed by the identification and quantification of 6-

gingerol present in extracts by high pressure liquid chromatography 

(HPLC). Once optimized the different parameters of extraction it was 

possible to achieve an efficient methodology capable to enhance the 6-

gingerol extraction in 60% when compared with the conventional 

extraction methodology. Besides, an extract was successfully recovered 

from the DES extract solution using solid-phase extraction (SPE). The

extract characterization was complemented with the analysis of the 

antioxidant activity using 2,2-diphenyl-1-picrylhydrazil (DPPH). Results 

show that the extracts obtained with the methodology proposed in this 

work present a higher antioxidant activity than those obtained with 

conventional extraction techniques. 
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1.1. Scope and Objectives 
 

 The main objective of the present work is to develop an efficient and sustainable 

method to extract ginger bioactive compounds that have already demonstrated several 

beneficial properties for human health. Nowadays, industry gives an important relevance 

to more sustainable and environmentally friendly processes. In this context, deep eutectic 

solvents (DES) emerge as a novel type of solvents with interesting properties that can be 

an alternative to conventional organic solvents.  

 In a first part of this work, ethanol was applied to the extraction of dried ginger 

by the conventional methodologies. These results are used as control to evaluate the 

performance of the novel DESs solvents here studied. Then, solubility tests were 

performed in model phenolic compounds such as ferulic and syringic acids in order to 

identify the best DES to extract the target compound, 6-gingerol. The selected DES will 

then be used in a Response Surface Methodology (RSM) to optimize the extraction 

conditions and allow a comparison between the conventional and the novel solvents 

evaluated. In the optimized conditions, and in order to achieve a separation of the 

extracted compounds from the DES aqueous solution, a solid-phase extraction (SPE) 

procedure was applied. Finally, the antioxidant activity of the extracts is tested to evaluate 

their potential health effects. 
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1.2. Literature Review 
 

1.2.1. Origin, chemical composition and properties of ginger  
 

 Ginger (Zingiber officinale Roscoe) is a perennial plant (Figure 1) that can grow 

up to one meter tall. Although the plant is indigenous to China, from where it spread to 

other parts of Asia and West Africa (1), India is the largest world producer with 683,000 

tonnes produced in 2013. In the same year, the total world ginger production accounted 

to 2 100,000 tonnes (2). 

 

Figure 1. Ginger plant (i.) and its rhizome, ginger root (ii.)(3) 

 

Ginger root, with its spicy taste, is widely used in gastronomy and it may vary in 

taste, smell or pungency depending on the country of origin or the variety of the plant 

used (4). Nowadays, ginger is commonly found in supermarkets but throughout history it 

was also highly valued as a traditional medicine. Indians and Chinese used it as a folk 

medicine and a tonic root for over 5000 years, the Roman Empire imported it from India, 

mainly due to its medicinal properties. Even after the fall of Rome, ginger continued to 

be an important article of trade in Europe, and in the thirteenth century the value of a 

pound of ginger was the same as the cost of a sheep (5). Ginger extract has many uses in 

foods, condiments, candies, beverages, cosmetics and perfumes. Each use determines the 

time when ginger should be harvested. For the purpose of oil extraction, ginger should be 

harvested after 9 months as the concentration of essential oils increases with age (5). 

At least 115 constituents have been identified, in oil extracts from fresh and dried 

ginger root by Jolad and co-workers (6) using gas chromatography coupled with mass 

spectrometry (GC-MS), mostly being phenolic compounds and terpenes (Figure 2). 

i. ii. 
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Zingirebene is the major component present in the essential oils of ginger, reaching up to 

29.6% of the total oil content (4). α-Curcumene, farnesene, sesquiphellandrene, 

camphene and citral are some of the other compounds found in substantial quantities (5-

12%) in ginger oil (4,7). Several other constituents, such as paradols, gingerdiols and 

gingerdiones, are present in concentrations below 5% (4,6). In spite of gingerols and 

shogaols contributing only to 2-3% of the total ginger oil content, they are the responsible 

for the pungent taste of ginger (4).  

 

 

Figure 2. Examples of ginger root oleoresin compounds. 

 

Besides gingerols and shogaols, ginger beneficial properties are also due to other 

important bioactive components, such as α-curcumene and gingerdiols (8). Gingerols and 

shogaols content in ginger is highly dependable on its freshness, dryness or level of post-

processing, along with the region where it was cultivated (4), being 6-gingerol the main 

constituent in both fresh and dry ginger (Figure 3). However, in dry ginger its content is 

reduced due to dehydration, leading to the formation of several different molecules 

including shogaols (the major gingerol dehydration products) (6).  

zingirebene 

6-shogaol 6-gingerol 

α-curcumene 
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Figure 3. Contents of gingerols and shogaols for a particular variety of dry ginger (9). 

 

 The stability of both 6-gingerol and 6-shogaol in aqueous solutions were studied 

by Bhattarai and co-workers (10). The authors (10) demonstrated that 6-gingerol, the most 

abundant constituent in the gingerol series, was quite stable in a pH from 1 to 7 at 310.15 

K, while exhibiting the highest stability at pH 4. At temperatures of 333.15 K or greater 

and in solutions with pH of 1 or 7, the compound starts to show some degradation in order 

to form 6-shogaol. This degradation has shown to be more favorable at higher 

temperatures and acidic conditions. The authors (10) proposed that in an acidic 

environment, the ß-hydroxy group of 6-gingerol undergoes catalytic dehydration to form 

6-shogaol, while 6-shogaol suffers rehydration to form 6-gingerol. The research group 

(10) confirmed this by a test carried out at 353.15 K and pH of 1, which resulted in an 

almost even distribution of 6-shogaol (46%) and 6-gingerol (40%) at equilibrium. 

 

1.2.2. Health benefits of ginger and its main constituents 

 

 Ginger has been cultivated for medicinal purposes for a long time. As ginger oil 

extract is mainly composed of phenolic compounds and terpenes, it shares many of their 

beneficial properties (6). In recent years, several clinical trials have shown that ginger can 

be successfully used in the treatment of various diseases(11–14). 

 A simple explanation of the actions and health benefits of ginger is associated with 

its antioxidant properties, considering that oxidative stress is commonly related to 
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numerous diseases (13). Ginger root contains a very high concentration of antioxidants 

(3.85 mmol/100g), being surpassed only by few other fruits as pomegranate and some 

berries (14). Orange, for example, although it has a high concentration of ascorbic acid 

shows a lower concentration of total antioxidants (1.14 mmol/100g) than ginger. Topic 

and co-workers (12) reported in 2002 that ginger can decrease age-related oxidative stress 

markers, such as the amount of oxidized proteins and lipid peroxidation. In ginger treated 

animals, these two indicators were significantly reduced. Ginger was also proposed to 

protect against ethanol-induced hepatotoxicity by suppressing its oxidative consequences 

in rats treated with ethanol (11). 6-Gingerol was reported to inhibit nitric oxide production 

by reducing inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-

stimulated mouse macrophages (15). Reactive nitrogen species, such as nitric oxide, 

influence signal transduction and cause deoxyribonucleic acid (DNA) damage, which 

contributes to the disease processes. 6-Shogaol and 1-dehydro-10-gingerdione were both 

reported to effectively reduce iNOS expression and to decrease LPS-induced NO 

production (16). In order to evaluate the relative antioxidant activity of some of the 

primary ginger constituents, amongst them 6-shogaol and 6-,8-, and 10-gingerol, 

Dugasani and co-workers (17) investigated stable free-radicals (DPPH), superoxide (O2
-

•) and hydroxyl radical (OH•) scavenging actions where 6-shogaol exhibited the most 

potent antioxidant activity with an IC50 value of 8.05±1.02 µM, while 6-gingerol 

exhibited the weakest antioxidant activity with an IC50 value of 26.3±1.42 µM. This 

potent antioxidant activity of 6-shogaol can be attributed to the presence of a α,ß-

unsaturated ketone moiety (17). Overall, several works support the hypothesis that some 

of ginger components are effective antioxidants (18–21). Nevertheless, whether or how 

the physiological activity occurs in humans is still not clear and should be further 

investigated. 

Alizadeh-Navaei and co-workers (22) demonstrated that ginger powder 

consumption significantly lowered the lipid levels in volunteer patients, in a controlled 

clinical trial study, supporting a protective role of ginger constituents in cardiovascular 

functions. Triglycerides and cholesterol were substantially decreased, as well as the low 

density lipoprotein (LDL) levels, when compared to a placebo group. Notably, the high 

density lipoprotein (HDL) level of the ginger consuming group was higher than that of 

the placebo group (22). A test involving a cholesterol enriched diet and the effect of 

ginger consumption hints that ginger intake might boost lipid metabolism (23). Recently, 

ginger has gained popularity for its potential to treat various aspects of cardiovascular 
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diseases, with its several properties such as anti-inflammatory, antioxidant, antiplatelet, 

hypotensive, and hypolipidemic effects (24). 

The most common and well-established use of ginger throughout history is its 

utilization in alleviating symptoms of nausea and vomiting. The effectiveness of ginger 

as an antiemetic has been attributed to its carminative effect, which helps to break up and 

expel intestinal gas. Furthermore, ginger root is commonly recommended to prevent 

seasickness (25). At the same time, ginger continues to be recommended for alleviating 

nausea and vomiting during pregnancy and chemotherapy (26,27). 

One of the other health claims credited to ginger is its capability to decrease 

inflammation, swelling, and pain and the ability to fight osteoarthritis and rheumatism 

(28). 6-Gingerol (29), dried ginger extract, and gingerol-enriched extract (30) were 

reported to exhibit analgesic and potent anti-inflammatory effects. Most scientific 

evidence suggests that ginger and its various components have anti-inflammatory effects. 

However, the data supporting ginger as an effective anti-inflammatory agent in humans 

in vivo are still contradictory and incomplete (31,32). For example, in humans, one study 

showed no difference between placebo and ginger treatment in patients with osteoarthritis 

of the hip or knee (31); and in another study, consumption of 2 g of ginger before 30 

minutes of cycling, at moderate pace, had no effect on quadriceps muscle pain, rating of 

perceived exertion, work rate, heart rate or oxygen uptake (32). 

A great deal of interest is now being focused on the cancer-preventive and 

potential cancer therapeutic applications of ginger and its various components (33). 

Studies focused on the anticancer activities of various forms of ginger, from a crude or 

partially purified extract, to gingerols (especially 6-gingerol), shogaols, (especially 6-

shogaol) and zerumbone, a sesquiterpene compound derived from ginger, and a number 

of minor components and metabolites (34–37). The effectiveness of ginger in preventing 

or suppressing cancer cell growth has been examined in a variety of cancer types, 

including lymphoma, hepatoma, colorectal, breast, skin, liver, and bladder cancers 

(33,38–42). Kim and co-workers (43) demonstrated that 6-shogaol exhibited the greatest 

cytotoxicity against human tumor cells when compared to 4-, 6-, 8-, and 10-gingerols. 

This compound also inhibited proliferation of several transgenic mouse ovarian cancer 

cell lines (43). This characteristic was attributed to the fact that 6-shogaol presented the 

most potent antioxidant activity from all the ginger bioactive constituents (17). 
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Ginger has also been proposed to be helpful to a number of other disease 

conditions, such as diabetes (44). In a streptozotocin-induced diabetic rat model, rats that 

were fed ginger, displayed better glucose tolerance and higher serum insulin levels than 

untreated rats, suggesting that it can help control blood sugar levels (44). Dried ginger 

may have also beneficial effects in treating dementia, including Alzheimer’s disease (45). 

Components of ginger root were reported to contain potent compounds with the ability to 

suppress allergic reactions and might be suitable for the treatment and prevention of 

allergic diseases (46). Asthma is a chronic disease characterized by inflammation and 

hypersensitivity of airway muscle cells to diverse substances that induce spasms. Ginger 

has been used for centuries in treating respiratory illnesses (46). In a mouse model of 

Th2-mediated pulmonary inflammation, an injection of ginger extract rich in gingerols 

decreased the recruitment of eosinophils to the lungs in ovalbumin-sensitized mice and 

also suppressed the Th2 cell-driven response to allergen (47).  

 Taking into account ginger’s medicinal properties, investigation of the available 

extraction methodologies for its bioactive compounds is important. Therefore, in the next 

section, conventional extraction methodologies of these compounds are presented, as well 

as alternative methodologies that make these processes more sustainable from an 

economical and environmental point of view. 

 

1.2.3. Extraction of bioactive compounds from Ginger 

 

Conventional extraction methods. Several methods of extraction of bioactive compounds 

from ginger have been reported in literature during the last 20 years as detailed in Table 

1. Soxhlet extraction is the main technique used for the extraction of these compounds. 

In this extraction process (48), the solvent is heated to reflux in the distillation flask, the 

vapors are then condensed in the condenser and drop into the chamber containing the 

material to be extracted. The chamber slowly fills with the heated solvent and some of 

the compounds are dissolved in this solvent. When the chamber is almost full it is 

automatically emptied by a siphon side arm, with the solvent running back to the 

distillation flask. This cycle can be repeated several times in order to further enrich the 

solvent with extracted material (48). However, this technique presents several drawbacks 

such as long extraction times, high extraction temperatures, the use of large volumes and 

volatile, sometimes toxic, organic solvents (49). Furthermore, the possibility of some 
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vestiges of these solvents to remain in the final extract is a key issue when the product is 

intended to be used in the food, cosmetics and medical industries (49). Although Soxhlet 

extraction is the most widely used technique in literature, it should be taken into account 

that the high temperatures may cause degradation of the target compound, 6-gingerol. 

Due to this effect plus the fact that maceration is the technique most commonly applied 

when it comes to phenolic compounds, makes maceration a more appropriate technique 

for the extraction of 6-gingerol from ginger (10,50–52).  

Alternative extraction methods. Several alternative techniques have been studied in order 

to find a more efficient methodology for the extraction of bioactive compounds from 

ginger or to improve the selective extraction process. The accelerated water extraction, 

heat reflux extraction using ethanol, pressurized liquid extraction, steam distillation, 

enzyme-assisted extraction, microwave-assisted process and supercritical extraction, 

were some of the alternative techniques reported in literature (Table 1). Some of them 

even double the extraction yields when compared with conventional extraction techniques 

(53). Even though these techniques offer an alternative approach using low organic 

solvents volumes, high energy powers are required for some extreme operation conditions 

(temperatures and pressures) used (54,55). Moreover, these conditions may cause the 

target compounds degradation, due to the thermal instability of bioactive compounds 

presents in ginger extract, as previously discussed (10). This should be taken into account 

when selecting an extraction methodology to extract a specific target compound as for 

example, in ginger, high temperatures cause 6-gingerol degradation favoring 6-shogaol 

formation, as previously discussed. 

 The type of substrate used has also a great influence on the efficiency extraction 

process, as in this case, dried root and powder ginger are the conventional substrates used 

in ginger extraction (Table 1) that generally produce better extraction yields. For example, 

Liu and co-workers (56) extracted 6-gingerol from fresh and dry ginger using 95% 

ethanol which resulted, respectively, in 2.08±0.54 wt% and 4.05±0.36 wt% content of 6-

gingerol. This can be explained by the fact that in dried ginger the parenchyma cell wall 

is ruptured and exposed, facilitating the extraction of ginger bioactive compounds (57). 

There is a wide range of target compounds that have been extracted from ginger. Although 

6-shogaol and 6-gingerol were the most reported in literature, several others such as 8-

gingerol, 10-gingerol, terpenes, polyphenols or even ginger oils in general have also been 

examined, as described before (4).  
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Analytical techniques. After the extraction process, the characterization of the resulting 

extract is a key step since it allows an insight into the compounds extracted and the 

richness of the extract. Regarding the separation and analysis of target compounds from 

ginger extract two main analytical techniques were highlighted in the several works 

reported in literature: GC-MS and high pressure liquid chromatography coupled with UV 

detection (HPLC-UV) or high pressure liquid chromatography coupled with MS detection 

(HPLC-MS) as summarized in Table 1(49,58,59). GC-MS technique has been often used 

to separate and quantify bioactive compounds from ginger extract but gingerol-related 

compounds may have long side chains (Figure 2) and may be difficult to detect by this 

method, due to their low volatility. Besides, due to the thermal instability of ginger 

constituents most of them might be products of thermal degradation as a consequence of 

high temperatures used in GC techniques (60). The HPLC-UV technique is the most used 

approach for quantitative analysis of these extracts as it is based on a simple but effective 

process. The HPLC technique separates the sample into its constituent parts based on 

differences in the relative affinities of the different molecules for the mobile and 

stationary phases used in the separation (61).  
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Table 1. Summary of some examples regarding the extraction of bioactive compounds from ginger, concerning to ginger substrate, target components, 
extraction methodology and analysis/separation technique. 

Substrate Target Component Extraction method Solvent 
Quantification 

method 
Reference 

Conventional Methods 

Dried ginger 

root 
6-Shogaol Reflux extraction Ethanol HPLC-UV (62) 

Dried ginger 

root 

6-,8-,10-Gingerol,6-

Shogaol 
Soxhlet Ethanol HPLC-UV (63) 

Dried ginger 

root 
6-Gingerol, 6-Shogaol Soxhlet Ethanol UPLC-UV (58) 

Dried ginger 

root 
Ginger oils Soxhlet 

Ethanol/Hexane/Dichloromethane/Petroleum 

Ether 
GC-MS (59) 

Dried ginger 

root/Fresh 

ginger 

6-,8-,10-Gingerol,6-

Shogaol 
Blender/low pressure/high 
pressure-high temperature 

95% Ethanol/Ethanol  HPLC-UV (56) 

Ginger 

powder 
6-,8-,10-Gingerol Soxhlet Bioethanol HPLC-MS (49) 

Ginger 

powder 
Polyphenols Soxhlet Ethanol Folin-Ciocalteu (64) 

Ginger 

powder 
Oleoresin, Gingerol Soxhlet Acetone/Ethanol HPLC-UV (53) 

Ginger 

powder 

Oleoresin, 6-Gingerol, 6-

Shogaol 
Maceration Ethanol HPLC-UV (50) 
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Alternative Methods 

Dried ginger 

root 

6-,8-,10-Gingerol;6-

Shogaol 

Accelerated water 

extraction 
Water HPLC-UV (63) 

Dried ginger 

root 
6-Gingerol, 6-Shogaol Hot-compressed Water Water HPLC-UV (65) 

Dried ginger 

root 
Ginger oils 

Microwave-assisted 

process 
Ethanol/hexane GC-MS (59) 

Dried ginger 

root 
Ginger oils Supercritical Extraction CO2 (Ethanol as entrainer) 

GC-Flame 

ionization detector 

(GC-FID) 

(66) 

Dried ginger 

root/Fresh 

ginger 

6-,8-,10-Gingerol,6-

Shogaol 

Blender/low pressure/high 

pressure-high temperature 
Water HPLC-UV (56) 

Freeze-dried 

ginger root 
Gingerols 

Supercritical extraction 

with ultrasonic 

enhancement 

CO2 HPLC-MS (54) 

Fresh ginger Ginger Oils Steam distillation Water GC-MS (55) 

Ginger 

powder 
Oleoresin, Gingerol 

Enzyme-assisted 

extraction 
Acetone/Ethanol HPLC-UV (53) 

Ginger 

powder 
6-,8-,10-Gingerol Heat reflux extraction Bioethanol HPLC-MS (49) 

Ginger 

powder 
6-,8-,10-Gingerol 

Pressurized liquid 

extraction 
Bioethanol HPLC-MS (49) 

Peeled fresh 

ginger root 
Terpenes (Terpinene-4-ol) 

Pressurized liquid 

extraction 
Ethanol/Methanol GC-FID (67) 

Peeled fresh 

ginger root 
Terpenes (Terpinene-4-ol) 

Superheated water 

extraction 
Water GC-FID (67) 
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1.2.4. Deep eutectic solvents: properties and applications 

 

 In 2003, Abbott and co-workers (68) presented a new type of solvents, the DESs, 

prepared by mixing urea and choline chloride ([Ch]Cl), two solid materials with high melting 

points that form a liquid at room temperature. Accordingly, DESs can be described as the 

result of a combination of solid starting materials that produce eutectic mixtures by 

formation of a hydrogen bond donor-acceptor complex, with a wide liquid range and unusual 

solvent properties. (Figure 4) 

 

 

Figure 4. Example of a DES and its hydrogen bond donor-acceptor complex: [Ch]Cl and urea with 
a molar proportion of 1:2 (69). 

 

 The charge delocalization occurring through hydrogen bonding between a hydrogen 

bond-donor (HBD) and a hydrogen bond-acceptor (HBA) is responsible for the large 

decrease in the melting point of the mixture relative to its individual components (70) as 

shown in figure 5. The number of publications on DESs is still scarce when compared, for 

instance, with other neoteric solvents such as ionic liquids (IL). However, over the past few 

years it has been increasing exponentially mainly due to its interesting properties and 

potential applications.  
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Figure 5. Schematic representation of a eutectic point on a two-component phase diagram (71). 

 

 DESs can be described by the general formula Cat+X-zY, where Cat+  can be, in 

principle, any ammonium, phosphonium or sulfonium cation and X is a Lewis base, 

normally a halide anion, as the likes of Cl-, F- or Br-. Complex anionic species are formed 

between X and either a Lewis or Brønsted acid, Y while z refers to the number of Y 

molecules that interact with X. Based on this general formula, three main types of DESs can 

be classified (70): 

• Type I: Y=MClx, where M=Zn, Sn, Fe, Al, Ga or In; 

• Type II: Y=MClx·yH2O, where M=Cr, Co, Cu, Ni or Fe; 

• Type III: Y=RZ, where Z= CONH2, COOH or OH. 

 A fourth type of DESs can be formed mixing metal chlorides with different HBDs 

such as urea, ethylene glycol, acetamide or 1,6- hexanediol. It could be expected that these 

metal salts would not normally ionize in non-aqueous media but, ZnCl2 has been shown to 

form eutectics with the different HBDs previously mentioned (72). The number of non-

hydrated metal halides which have a suitably low melting point to form type I DESs is 

restricted, nevertheless, the prospect of forming DESs can be increased by using hydrated 

metal halides (type II). Type III DESs have been the most studied class in literature. This 

class of DESs is quite simple and cheap to prepare and particularly versatile, with a large 

range of possible applications including bioactive compound extraction from plants,(73,74). 
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 DESs are now widely acknowledged as a novel class of solvents, sharing some 

properties with ILs such as a wide liquid temperature range, low vapor pressure and non-

flammability. Furthermore, DESs overcome some of the ILs limitations. These new solvents 

are easy to prepare in a pure state through the mixing of the starting materials at moderate 

temperatures (70). Moreover, the starting materials are usually cheaper and may often be 

obtained from renewable sources (75). As in the case of ILs, innumerable combinations can 

be made (Figure 6) and DESs may also be classified as “designer solvents”. Compared to 

ILs this characteristic is even more flexible due to the fact that DESs have no limitations in 

terms of stoichiometry. As no reaction takes place during their preparation, the 

intermolecular interactions lead to formation of a liquid within a range of relative molar 

compositions. This feature allows their physical properties and phase behavior to be tuned 

by varying the ratio of their components, and thus adding one more degree of freedom to the 

design of the solvent (75,76). For all these reasons DESs are potential alternative solvents to 

extraction processes.  

 Even though DESs may offer a “greener” alternative to many traditional ILs and 

organic solvents, they are not by definition “green”. While its individual components tend 

to be individually well toxicologically characterized, there is very little information about 

the toxicological properties of the eutectic mixture. This is reinforced by the fact that DESs 

have special properties that their individual components do not present. Hayyan and co-

workers (77,78) studied the toxicity and cytotoxicity of choline chloride with several HBDs, 

such as glycerine, ethylene glycol and urea. This research group found that DESs 

cytotoxicity was much higher than their individual components and it varied depending on 

the structure of the components. Radosevic and co-workers (79) tested three [Ch]Cl-based 

DES, classifying them as “readily biodegradable” and as having a potential green profile. 

Morais and co-workers (80) also tested several [Ch]Cl-based DESs for their toxicity, 

classifying these DESs as “moderately toxic” and showing that the studied DESs were more 

toxic than the congener ILs. Juneidi and co-workers (81) also tested several DESs and 

concluded that Type III DES were the least toxic whereas type I were the most toxic. This 

could be expected as types I, II and IV all contain metal salts with their innate toxicity. 

Besides that, they proved that some DESs as [Ch]Cl-Ethylene Glycol or [Ch]Cl-Urea were 

practically harmless and that all the studied DESs in aqueous solution were ‘readily 
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biodegradable’. However, it is clear that more investigation is needed in this field before 

DESs can be truly claimed as green, nontoxic and biodegradable solvents. 

 

 

Figure 6. Molecular structures of HBDs and HBAs that can be combined to form a DES (82). 

 

Properties. Density and viscosity are two of the most important physical properties of a 

solvent. Most DESs exhibit higher densities than water, for example at 298.15 K, [Ch]Cl-

urea with an 1:2 molar proportion has a density of 1.25 g.cm-3 (83) and [Ch]Cl-ethylene 

glycol with the same molar proportion has a density of 1.10 g.cm-3 (84), at the same 

temperature water has a density of 0.997 g. cm-3. This may be attributed to the composition 

of DESs, presenting some heavy atoms such halogenates. Most DESs exhibit high viscosities 

(>100 cP) at room temperature (85). This characteristic is explained by the extensive 

hydrogen bond network between each counterpart of the DES, which results in a lower 

mobility of free species within the DES. Also the large ion size, very small void volume of 

DESs and the possibility of other forces such as electrostatic or Van der Waals interactions 
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may contribute to the high viscosity of DESs. The viscosities of eutectic mixtures are 

affected by the chemical nature of its components, temperature and water content (85). Like 

ILs, DESs viscosity-temperature profile also follows an Arrhenius-like behavior. Owing to 

its potential applications as green media, and for the industrial applications, the development 

of DESs with low viscosity is of high importance (85). 

 DESs present great solvation properties (86). This is mainly due to their capacity of 

donating or accepting electrons or protons to form hydrogen bonds. For example, in a DES 

involving [Ch]Cl and urea in a 1:2 molar proportion at 323.15 K, a large number of 

compounds can be dissolved, including salts that are sparingly soluble in water (e.g. AgCl 

solubility of 0.66 mol dm-3), aromatic acids (e.g.benzoic acid solubility of 0.82 mol dm-3) 

and amino acids (e.g. D-alanine solubility of 0.38 mol dm-3) (68). Interestingly, DESs are 

capable of dissolving a wide range of molecules, including various metal oxides, becoming 

of great interest for surface cleaning, metallurgy or even in a “green” strategy for the 

separation and recycling of metals (85–87). 

 

Applications. DESs show the potential for several applications such as catalysis, where the 

choice of solvent is crucial (85), in organic synthesis and in the preparation of inorganic 

materials, and can contribute to the design of eco-efficient processes. They offer many 

advantages such as the potential to selectively and conveniently extract reaction products 

and the possibility of the DES to be recycled (85). Also in the field of [Ch]Cl-derived DESs 

there has been progress in the catalytic conversion of valuable renewable raw materials such 

as starch, lignin and cellulose (75,88).  

 

Applications as solvent in the extraction of bioactive compounds. More importantly for this 

work, there has been a growing interest in the application of DESs to the extraction of 

bioactive compounds from natural sources, such as plants or other forms of biomass. Table 

2 lists several studies using DESs. Flavonoids, terpenoids and phenolic compounds are three 

of the main families of compounds extracted from natural sources using DESs (74,89–93). 

Type III DESs are the principal DESs used in these extractions. The resulting extracts are 

generally analyzed through HPLC, as DESs have very low vapor pressure, creating 

difficulties to analyze by GC technique (94). Extraction methods vary from simple stirring 

and heating to more complex methods using microwave-assisted extraction or ultrasonic-
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assisted extraction (89,95). Several of these works proved that extraction using DESs was at 

least, as efficient as conventional organic solvents (96). For example, Zhang and co-workers 

(96) extracted catechin, epicatechin gallate and epigallocatechin gallate from green tea using 

aqueous solutions of DESs and several organic solvents such as methanol, ethanol, hexane 

and acetonitrile. Only methanol proved to extract more catechin (4.106±0.001 mg g-1) than 

the aqueous solution of DES (2.302±0.002 mg g-1). Still, the aqueous solution of DES 

obtained more epicatechin gallate (81.470±0.004 mg g-1) and epigallocatechin gallate 

(25.150±0.003 mg g-1) than methanol (66.81±0.001 mg g-1) and 20.49±0.001 mg g-1, 

respectively) or any other organic solvent used. Nam and co-workers (73) extracted 

flavonoids from Flos Sophorae, the dry flower from Sophora japonica, using DESs. Their 

study shows again the potential of aqueous solutions of DESs for the extraction of bioactive 

compounds, as the ultrasound assisted extraction with DESs allowed a higher extraction 

efficiency than ultrasound assisted and heat reflux extraction with conventional solvent 

(methanol). Another study involving the extraction of flavonoids from Chamaecyparis 

obtuse using DESs as solvent, proved that the extraction process was at least as efficient as 

using conventional solvents (89). An investigation using aqueous solutions of natural DESs 

to extract phenolic metabolites in Carthamus tinctorius, led to a “simple, low-cost, green, 

and efficient method that can be applied to the extraction and isolation of natural products” 

from biomass (74). Rajan and co-workers (97) investigated the extraction of 6-gingerol and 

6-shogaol from ginger using DESs. The quantification of ginger bioactive components was 

missed in Rajan and co-workers (97) study where only the antioxidant activity was 

measured. Thus, this work was performed on a qualitative basis, having no quantitative 

evaluation whereby it is not possible to truly assess the efficiency and selectivity of this 

process or to compare to conventional methodology. The works presented on Table 2 shows 

the potential that DESs may have in the field of extraction of bioactive compounds. 
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Table 2. Extraction of bioactive compounds using DESs with details on substrate, target component, extraction methodology and characterization technique. 

Substrate Target Component Extraction method Solvent Quantification method Reference 

Chamaecyparis obtusa Flavonoids 
Extraction with DES using 

stirring, heating and 
ultrasonic irradiation 

Alcohol-based DESs HPLC-UV (89) 

Carthamus tinctorius Phenolic metabolites 
Extraction with DES using 

stirring and heating 
Sugar-based DESs HPLC-UV (74) 

Model Oil Phenolic compounds 
Ultrasonic wave-assisted 

liquid phase 
microextraction 

[Ch]Cl-Ethylene Glycol HPLC-UV (98) 

Flos Sophorae Flavonoids 
Extraction with DES using 

stirring, heating and 
ultrasonic irradiation 

Sugar-based DESs LC-UV (73) 

Herba Artemisiae 

Scopariae 
Phenolic acids 

Extraction with DES using 
stirring, heating and 
ultrasonic irradiation 

Tetramethyl ammonium 
chloride-Urea; Alcohol-

based DESs 
HPLC-UV (99) 

Agave sisalana; 

Ziziphus joazeiro 
Saponins;polyphenols 

Extraction with DES using 
stirring and heating 

Organic acid-based and 
Alcohol-based DESs; 

[Ch]Cl-Urea 

Vanillin-sulfuric acid 
method and Folin Denis 

method using 
spectrophotometry 

(100) 

Cajanus cajan Phenolic compounds 
Microwave-assisted 

extraction 

Organic acid-based, 
Alcohol-based DESs and 

sugar-based DESs 
UPLC-UV (95) 

Pyrola incarnata Phenolic compounds 

Microwave assisted 
extraction; Ultrasonic 
assisted extraction and 
Heat-stirring extraction 

Polyol-based DESs HPLC-UV (101) 

Shrimp byproducts Astaxanthin (carotenoid) 
Ultrasound-Assisted 

Method 
Alcohol-based DESs HPLC-UV (102) 
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Green tea Catechin compounds 
Extraction with DES using 

stirring, heating and 
ultrasonic irradiation 

Alcohol-based DESs HPLC-UV (96) 

Chamaecyparis obtusa Terpenoids 
Headspace-solvent 

microextraction 
[Ch]Cl-Ethylene Glycol GC-FID (90) 

Ginger root 
Gingerol and shogaol 
(phenolic compounds) 

Extraction using stirring; 
Heat reflux and ultra-

sonication method 

Sucrose-citric acid; L-
proline-oxalic acid; L-
proline-lactic acid and 

trehalose-citric acid 

DPPH test  (97) 

Virgin olive oil Phenolic compounds 
Extraction with DES using 

stirring and heating 
[Ch]Cl-based DESs HPLC-UV (91) 

Mangosteen pericarp α-Mangostin 
Extraction with DES using 

agitation 
[Ch]Cl-based DESs HPLC-UV (103) 

Chinese herbal 
medicines 

Alkaloids, flavonoids, 
saponins, anthraquinones and 

phenolic acids 

Ultrasound-Assisted 
Method 

[Ch]Cl-, betaine- and L-
proline-based DESs 

HPLC-UV (104) 

Grape skin Phenolic compounds 

Microwave assisted 
extraction; Ultrasonic 
assisted extraction and 
Heat-stirring extraction 

[Ch]Cl-based DESs HPLC-UV (92) 

Korean ginseng Ginsenosides 

Microwave assisted 
extraction; Ultrasonic 
assisted extraction and 
Heat-stirring extraction 

[Ch]Cl-, citric acid and 
glycerol based DESs 

HPLC-UV (93) 
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Recovery of target compounds and recyclability of DES. The low volatility that makes 

DESs “greener” creates also a challenge for product separation and recovery. There is still 

scarce evidence to what can be done in order to achieve this in the case of DESs, but some 

techniques already applied to ILs, that are analogue to DESs, may be used. There is already 

some work published in extractions with ILs for the recovery and separation of the product. 

Supercritical extraction with CO2, the use of anti-solvents, recrystallization, back extraction 

and chromatographic techniques have been successfully used for this purpose with ILs (105–

108). Despite this fact, few studies have been working on the recoverability of the products 

from DESs solutions using chromatographic techniques such as solid-phase extraction (SPE) 

and the use of anti-solvents (73,74,93). Nam and co-workers(73), after using DES to extract 

flavonoids from Flos sophorae, actually managed to recover 75% of rutin (major flavonoid 

extracted) using water as anti-solvent and 92% with a single application of a C18 SPE. Jeong 

and co-workers (93) successfully used DESs to extract ginseng saponins from white ginseng. 

In this work they also managed to easily recover the extracted saponins through application 

of SPE. Plus, they were able to recycle the DES by freeze-drying the washed solutions from 

the SPE, making for a “greener” process when it comes to extraction with DESs. 

 

 Based on the extended compilation of data so far reported comprising the use of DES 

as solvent in the extraction of bioactive compounds from biomass, this work aims to evaluate 

the efficiency and selectivity of the proposed extraction approach using DES, in order to 

obtain a rich extract in 6-gingerol from ginger biomass. This extraction method will be 

optimized based on RSM followed by the evaluation of its potential by direct comparison 

with conventional extraction technologies. Furthermore, these comparisons will allow a 

discussion about the viability of the studied method. Finally, the antioxidant potential of 

these extracts will be evaluated in order to perceive their beneficial health effects. 

  

 

 

 

  



22 

 

  



23 

 

2. Experimental section 
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In this section, methodologies regarding conventional bioactive compounds extraction from 

ginger, as well as the development and optimization of an alternative and more efficient 

methodology using DES are described. Lastly, techniques used to the identification and 

quantification of 6-gingerol in ginger extract and the respective evaluation of its antioxidant 

power are also described. 

 Materials 
 

2.1.1. Raw Materials 
 

 Fresh ginger (Zingiber officinale) samples, both harvested in China, were bought 

from two different supermarkets, Jumbo and Pingo Doce, in Aveiro, Portugal. Every ginger 

sample was thoroughly washed, sliced and then dried in a freeze dryer. It was then powdered 

in a coffee grinder to a granulometry lower than 2 mm prior to extraction. Finally, moisture 

content of each ginger sample was determined in triplicate by the oven-dry weight method. 

Moisture content was 5.60±0.07 and 6.99±0.05 wt% for Pingo Doce’s and Jumbo’s 

grounded ginger samples respectively.   

 

 

 

 

 

 

 

 

 

 

 



25 

 

2.1.2. Chemicals  

 The chemicals used in this work towards the optimization of the proposed 

methodology are presented in table 3 along with the purity, supplier and structure data. 

Table 3. Chemicals used in this work: Name, purity, supplier and structure. 

Name 
Purity 
(wt%) 

Supplier Structure 

DES Components   

Acetic Acid >99.5 JMGS 
 

Formic Acid >91.0 Panreac 
 

Propionic Acid >99.0 Merck  

Glycolic Acid >99.0 Sigma-Aldrich 
 

Lactic Acid 

 
88 - 92 

 
 

Riedel-de-Haen 
 

Malic Acid >99.5 

 
Panreac 

 
 

 

p-Toluenesulfonic Acid >98.5 

 
 

Sigma-Aldrich 
 
 

 

Glycerol >99.5 Sigma-Aldrich 
 

Ethylene Glycol >99.5 Sigma-Aldrich  

Fructose >98.0 

 
 

Panreac 
 
 

 

Xylose >99.0 

 
 

Sigma-Aldrich 
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Name 
Purity 
(wt%) 

Supplier Structure 

DES Components    

Betaine >99.0 Sigma-Aldrich 
 

Proline 99 

 
Acros Organics 

 
 

 

Urea >99.6 Panreac 
 

Choline Chloride >98.0 Sigma-Aldrich 
 

Solubility Model Compounds  

Syringic Acid >98.0 

 
 
 

Acros Organics 
 
 

 

Ferulic Acid 

 
 
 

>99.0 
 
 
 

Acros Organics 

 
 
 
 
 
 
 

Target Compound    

6 – Gingerol >98.0 

 
 
 

Sigma-Aldrich 
 
 
 

 

Antioxidant Activity    

Ascorbic Acid >99.7 Analar 

 

DPPH  Sigma-Aldrich 
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2.2. Experimental procedure 
 

2.2.1. DES Preparation  
 

 For the preparation of the DESs, both the hydrogen bond donor and acceptor 

counterparts were added, gravimetrically within ± 10-4 g, to a closed glass vial and 

homogeneously mixed and heated in an oil bath (Figure 7) until the formation of a clear, 

colourless, liquid. After the formation of a clear liquid, the mixture remained at the final 

temperature for one hour and then was cooled down. 

 

Figure 7. (i) Setup used for the preparation of the DES; (ii) three of the DES mixtures involving 

lactic acid and [Ch]Cl, prepared in this work. Molar ratios from left to right: 1:2, 1:1 and 2:1 

(nacid:n[Ch]Cl). 

2.2.2. pH and Water Content Measurements 
 

 The pH of the DES aqueous solutions were measured at 25 ± 1 ºC using a Mettler 

Toledo S47 SevenMultiTM dual meter pH/conductivity equipment. Chemical’s water content 

were measured using a Metrohm 831 Karl Fischer coulometer, in order to guarantee the 

correct molar proportion in the preparation of the DESs. 

2.2.3. Solubility Test 
 

 Solubility tests were performed with syringic and ferulic acids in different aqueous 

solutions of DES at temperatures ranging from 30±1 ºC to 50±1 ºC. The concentration of the 

DES solutions ranged from 0 wt% (pure water) to 100 wt% (pure DES). These tests were 

i. 
 

ii. 
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carried out in closed vials with 2.0±0.1 g of DES aqueous solution continuously stirred with 

the help of a magnetic stirrer. The compound to be tested was constantly added, 2.0±0.5 mg 

at a time, until the detection of a cloudy mixture. Once saturation was achieved, all samples 

were filtrated to separate the macroscopic solid and liquid phases and the liquid phases were 

put into an air oven at the same temperature used in equilibrium assays during 2h. Then, the 

liquid phases were carefully collected and diluted in ultra-pure water, and the amount of 

syringic and ferulic acids were quantified by UV-Vis spectroscopy using a Shimadzu 

UV1700, Pharma-Spec Spectrometer at a wavelength of 265 and 314 nm, respectively, using 

calibration curves previously stablished (Appendix A- figure A1 and A2).  

 

2.2.4. Ginger Conventional Extraction 
 

2.2.4.1. Soxhlet Extraction 

 About 2 g of each dried ginger sample were submitted to Soxhlet extraction for 6 h 

with 150 mL of absolute ethanol in order to extract ginger bioactive components. The 

extraction temperature was constant, at the normal boiling point of ethanol. The resulting 

solution was then concentrated to an oleoresin using a rotary evaporator at 323 K. The 

experiments were conducted in quadruplicate, the oleoresin yield was calculated as 

percentage weight per weight and the respective standard deviations were calculated. 

2.2.4.2. Maceration 

 Maceration was performed at room temperature and with the help of magnetic 

stirring for 16 h. About 2 g of each dried ginger sample were weighed into a 500 mL 

extraction flask and 200 mL of ethanol absolute was added. The flask was covered in order 

to prevent evaporation of the solvent. The resulting solution was filtered and then 

concentrated to an oleoresin in a tared round-bottom 50 mL flask using a rotary evaporator 

at 323 K. The experiments were conducted in quadruplicate. Due to positive results in the 

solubility tests another two experiments were conducted with Pingo Doce’s ginger samples 

using propionic acid instead of ethanol absolute as extraction solvent.  

2.2.5. Ginger Alternative Extraction with DES 
 

 Initially, ginger extraction using DES was performed similarly to the conventional 

maceration extraction, with the exception that an oil bath was used for temperature control. 
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0.5 g of dried ginger were mixed with 15 mL of DES aqueous solution for each extraction 

with the aid of a magnetic stirrer. Based on the results obtained from the solubility tests of 

models compounds, an appropriate DES and concentration in aqueous solution was chosen 

for this extraction. The experimental conditions were further optimized through SRM. After 

each extraction, the resulting mixture of DES, extract and ginger was centrifuged for 5 

minutes at 3500 rpm to ensure the separation of solid extracted ginger from the liquid 

fraction (DES and dissolved extract). This solution was then filtered, and diluted at a 1:1 

(v/v) ratio in methanol for further analysis of 6-gingerol concentration by HPLC. 

2.2.6. Surface Response Methodology 
 

 In order to optimize the extraction conditions a surface response was performed. The 

SRM is a collection of statistical and mathematical techniques used to explore the 

relationship between several variables, using a sequence of designed experiments to obtain 

an optimal response. Its objective is to simultaneously optimize the levels of these variables 

to attain the best system performance, generating a large amount of information from a small 

number of experiments, thus reducing avoidable costs (109). A central composite design, 

first introduced by Box and Wilson was used (110). The number of runs of each experiment 

is given by the following equation: 

� = 2� + 2� + ��, (Equation 3) 

where k is the factor number (number of independent variables), being 2k the number of 

factorial runs, 2k the number of axial runs and Cp is the replicate number of the central point. 

Several runs for the central point are important in order to know the residual plot and, 

consequently, the standard deviation and the repeatability quality of the experiment. On the 

other hand, the axial points are added to adjust the experiment. The axial points are 

calculated according to α-values. The α-values depend on the number of variables and can 

be calculated by: 


 =  2
� 
 �

�  (Equation 4) 

 For two, three, and four variables, α-values are respectively, 1.41, 1.68, and 2.00. 

Figure 8 illustrates a full central composite design for the optimization of three variables. 
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Figure 8. Central composite designs for the optimization of three variables (α= 1.68). (●) Points of 
factorial design, (○) axial points and (□) central point.(109) 

 For the 6-gingerol extraction from ginger using DES optimization study, three 

independent variables were selected: extraction time, extraction temperature and the 

concentration of DES in the aqueous solution. Looking back to equation 3, and thus 

considering k=3, a total of 20 extractions were planned, with 8 extractions for the factorial 

points, 6 for axial points, and 6 repetitions of the central point, with an α-value of 1.68. 

 In Table 4 the central point and the calculated factorial and axial points are identified.   

Table 4. Identification of central (0), factorial (± 1), and axial (± 1.68) points of a surface response 
with three independent variables. 

 Axial Point Factorial Point Central Point Factorial Point Axial Point 

 -1.68 -1 0 1 1.68 

Temperature (K) 296 303 313 323 330 

Time (min) 59 90 135 180 211 

DES 
concentration (% 

wDES) 
41.5 50.0 62.5 75.0 83.5 

 

 Once defined all points to be tested, and considering the design matrix (Table 5) 

result of an established mathematical model (109), the applied conditions of extraction were 

found for all three variables in the 20 extractions performed (Table 5). 
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Table 5. Design Matrix and decoded conditions for the surface response design for a 23 experiment.  

Run 

Design Matrix Decoded Conditions 

Temperature 

(ºC) 

Time 

(min) 

DES 
concentration 

(% wDES) 

Temperature 

(K) 

Time 

(min) 

DES 
concentration 

(% wDES) 

1 -1 -1 -1 303 90 50 

2 1 -1 -1 323 90 50 

3 -1 1 -1 303 180 50 

4 1 1 -1 323 180 50 

5 -1 -1 1 303 90 75 

6 1 -1 1 323 90 75 

7 -1 1 1 303 180 75 

8 1 1 1 323 180 75 

9 -1.68 0 0 296 135 62.5 

10 1.68 0 0 330 135 62.5 

11 0 -1.68 0 313 59 62.5 

12 0 1.68 0 313 211 62.5 

13 0 0 -1.68 313 135 41.5 

14 0 0 1.68 313 135 83.5 

15 0 0 0 313 135 62.5 

16 0 0 0 313 135 62.5 

17 0 0 0 313 135 62.5 

18 0 0 0 313 135 62.5 

19 0 0 0 313 135 62.5 

20 0 0 0 313 135 62.5 

 

 The analysis of the surface response results was made using the software 

STATISTICA 8.0 of Statsoft©.   

 

2.2.7. SPE 
 

 In extractions using DESs as alternative solvent, the recovery of extracted bioactive 

compounds from the ginger extracts is fairly challenging due to the DES negligible vapor 

pressure. SPE is a procedure that makes this recovery simple. Recovery of ginger extract 

from liquid fraction was performed using reversed phase StrataTM-X 33 μm Polymeric 

sorbent cartridges (200 mg, 3 mL) provided by Technocroma (Caldas da Rainha, Portugal). 

First of all, the cartridge was activated with methanol (5 x 1 mL) and pre-conditioned with 

deionized water (5 x 1 mL), afterwards 3 mL of liquid fraction (mixture of DES aqueous 
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solution and ginger extract) was loaded onto the cartridge. DES components were removed 

with deionized water (5 x 1 mL) and the retained ginger extract, that included the target 6-

gingerol, was eluted in ethanol (5ⅹ1 mL). The resulting ethanolic solution was then 

concentrated to an oleoresin at 323 K using a rotary evaporator, completing the recovery of 

the extracted compound. Finally, 6-gingerol concentration was quantified in each oleoresin 

by HPLC technique. 

2.2.8. HPLC 
 

 For the determination of 6-gingerol concentration, HPLC analysis was performed on 

a Shimadzu HPLC (model PROMINENCE) unit equipped with a Maisch Reprosil 5 µm C18 

column (250 x 4.60 mm). Methanol/H2O 50:50 was used as mobile phase at a flow of 0.7 

mL min-1 and the detection was done at 201 nm. The column oven and autosampler 

temperatures were kept at 303.15 K. The injection volume was 10 µL. A calibration curve 

was established for 6-gingerol by plotting the nominal concentrations of standard solutions 

versus peak areas (Appendix A- figure A3). Typical chromatograms of standard 6-gingerol 

and maceration, Soxhlet and DES extraction are presented in Appendix B – Figures B1-B4. 

All oleoresin samples were solubilized in methanol. Both oleoresin and DES extract 

solutions were filtered over a 0.45 µm syringe filter before HPLC analysis.  

2.2.9. Antioxidant Activity 
 

 The antioxidant activity of the extracts was determined by the DPPH• radical 

scavenging methodology (111). The method is based on the color decrease of the DPPH free 

radical solution as it is reduced by antioxidant compounds. The radical has a strong 

absorption band at 515-528 nm, which gives him a deep violet color. As the reaction 

progresses the compound will end up with a pale yellow color. This means that this reaction 

can be easily monitored by a spectrophotometer. The final results are expressed as IC50 

values, which correspond to the compound or extract concentrations needed to reduce in 50 

% the initial DPPH• concentration. 

 In test tubes, 1 ml of 0.1 mM DPPH• solution in ethanol was added to accurately 

weighed aliquots of the extracts dissolved in 3 ml of ethanol, corresponding to concentration 

ranges of extract between 5 and 63 µg mL-1 for DES extract, between 10 and 68 µg mL-1 for 

maceration extract, and between 10 and 120 µg mL-1 for Soxhlet extract. After mixing, the 
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samples were maintained in the dark, at room temperature for 30 minutes. The absorbance 

at 517 nm was measured using a UV-Vis microplate reader (Synergy HT microplate reader 

– BioTek) and compared with a control without extract. A blank was prepared for each 

sample using ethanol instead of the DPPH• solution. Ascorbic acid was used as a positive 

reference, being one the most known commercial antioxidants. 

 The antioxidant activity is expressed as a percent inhibition of DPPH radical, and 

calculated by:  

 ����������� �������� (%) =
�� �!

��
∗ 100  (Equation 5) 

Where A0 is the absorbance from the control and A1 the absorbance from the sample. IC50 

values were determined from the plotted graphs of antioxidant activity against the 

concentration of the extracts. All experiments were conducted in triplicate. 
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3. Results and Discussion 
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The main goal of this work is the development of an alternative and more efficient extraction 

process to obtain a 6-gingerol rich extract from ginger using DESs. In this context, the first 

step of the work was to identify the DES that would have the greatest affinity with 6-gingerol 

in order to ensure the best extraction conditions. The most promising DES and extraction 

conditions were further optimized in the second step in order to study the efficiency of this 

alternative extraction process, comparing with conventional methods. The antioxidant 

capacity of the 6-gingerol rich extract was further analysed. 

3.1. Solubility tests 

 Aiming at investigating the potential of DESs to selectively extract 6-gingerol from 

ginger, the solubility of two model phenolic compounds, syringic and ferulic acids, were 

determined in several DES evaluating diverse parameters such as DES concentration, DES 

components molar proportions and temperature. The use of these model phenolic 

compounds can be explained by the high cost of 6-gingerol (44€/mg) (112) that makes this 

type of study very expensive. The solubility of syringic and ferulic acids at 303.15 K in pure 

water, measured in this work, was 1.28±0.01 and 0.83±0.03 mg g-1, respectively. The 

chemical structures of the studied model compounds and 6-gingerol is depicted in figure 9. 

The DES properties depend on the HBD and HBA chemical structures and their molar 

proportions. In this work several HBD/HBA pairs of DESs were tested using as HBD several 

organic acids such as formic acid (FA), propionic acid (PA), acetic acid (AcOH), p-

toluenesulfonic acid (TSA), lactic acid (LA), glycolic acid (GA) and malic acid (MA), 

polyols as ethylene glycol (ETG) and glycerol (Gly), sugars such as xylose (Xyl), fructose 

(Fru) and glucose (Glc) and urea (U). As HBA four different molecules were used: betaine 

(Bet), proline (Pro), [Ch]Cl and U. All the detailed data along with the respective standard 

deviations are presented in Appendix C. 

 

Figure 9. Chemical structures of the model compounds: syringic and ferulic acids, and 6-gingerol. 

Syringic Acid 6-Gingerol Ferulic Acid 
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3.1.1. HBD Effect 
 

 In a first approach, the effect of different HBDs, namely, organic acids, polyols, 

sugars and U, was tested. Based on the well-known DES U:[Ch]Cl, the favourable properties 

of [Ch]Cl, its biocompatibility, low price and green character overall, this compound was 

adopted as the HBA for this study(68). The syringic acid solubility in aqueous solutions of 

different DESs was studied at a concentration of 25 wDES% at 303.15 K. The influence of 

the HBD in the solubility of syringic acid is depicted in figure 10. Each DES is represented 

in the generic form of “HBD:HBA” followed by their respective molar proportion. S and S0 

represent the solubility (mg g-1) of each phenolic compound in the aqueous solutions of DES 

and in pure water, respectively; therefore, S/S0 represents the solubility enhancement. 

 

 

 

Figure 10. Influence of different HBD of DESs in the solubility of syringic acid in 25 wDES aqueous 

solutions at 303.15 K. pH of each DES aqueous solution is represented in black dots. 

 Observing these data it is possible to perceive that the solubility of syringic acid 

depends on the type of HBD in DES. Sugar and polyols-based DESs exhibited low capacity 

to solubilize syringic acid, with solubility enhancements of 2-fold. However, the solubility 

enhancement of carboxylic acids-based DESs were significantly higher than that of other 

DESs, with solubility enhancements that may reach 5.5-fold. Among the carboxylic acids-
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based DESs, the HBDs namely, PA, TSA and AcOH provided the best results (5.5, 4.9 and 

3.7-fold, respectively). Furthermore, it is noticeable that a tendency can be seen for the alkyl 

side chain length of the acid. Comparing the HBDs FA, AcOH and PA it can be observed 

that an increasing alkyl side chain length results in increased solubility of the solute, 

probably due to the higher hydrophobicity of the DES. Besides, it seems that hydroxyl 

groups in the acid alkylic chain have a negative impact in the solubilisation of syringic acid 

as LA and GA showed lower results than AcOH. Similarly, PA demonstrated to have a 

higher solubility enhancement than MA. The presence of another carboxyl group can also 

be the cause of the lower solubilisation performance of MA. Nevertheless, it was also 

observed that HBDs with a more polar nature such as polyols, sugars and acids such as LA 

or MA promoted a lower solubility enhancement of the solute. These results suggest that the 

dispersive interactions between the organic acid alkylic chain and the syringic acid structure 

are the main responsible for the good performance of PA, instead of hydrogen bond 

interactions. Furthermore, the pH of DES aqueous solutions seem to have no effect in the 

syringic acid solubility. Overall PA:[Ch]Cl with a molar proportion of 2:1 presented the best 

solubility enhancement. 

 

3.1.2. HBA Effect 
 

 Considering the advantageous performance of the carboxylic acids-based DES, four 

different carboxylic acids were combined with four HBAs in order to design the best DES 

to enhance syringic acid solubility in aqueous solution. Besides the already studied [Ch]Cl, 

Pro, Bet and U were also used as HBA. Syringic acid solubility in aqueous solutions of 

different DESs were studied in a concentration of 25 wDES% DES in water at 303.15 K. The 

influence of different HBAs in the solubility of syringic acid is depicted in figure 11. 
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Figure 11. Influence of different HBAs in the solubility of syringic acid in 25 wDES% aqueous 

solutions at 303.15 K. AcOH-based DESs represented in blue, PA-based DESs in green, LA-based 

DESs in orange and TSA-based DESs in red. pH of each DES aqueous solution is represented in 

black dots. 

 The DES composed by TSA:Bet and TSA:U could not be prepared and therefore 

were not used on this study. Notwithstanding this fact, the study of the different HBAs was 

carried on for AcOH, PA and LA. A general trend can be observed in Figure 11, namely the 

effect of HBAs on the syringic acid solubility enhancement: U>Bet>Pro>[Ch]Cl. This trend 

suggests that, independently of the carboxylic acids used, the HBAs also have a significant 

effect on the solubility of syringic acid. However, this trend is not observed when LA is the 

HBD of the DES. In this case, Bet showed a larger syringic acid solubility enhancement than 

U as HBA. Despite that fact, in general the DES prepared with PA as HBD demonstrated 

the best solubility results, being PA:U the best DES in terms of solubility enhancement 

(about 9.6-fold). Furthermore, the replacement of [Ch]Cl by U lead to an increase of 4-fold 

on the solubility of syringic acid, explained by the increase of dispersive interactions 

associated with U.  

3.1.3. HBD:HBA Molar Proportion Effect 
 

 The molar composition of DES plays an important role on its physicochemical 

properties. By changing the molar composition it is possible to obtain a solid, a liquid or a 
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combination of both at room temperature. From the extraction process point of view, only 

the stable liquid DES at room temperature can be considered. At this point, there was a need 

to study a phenolic standard compound more similar to our target-compound, 6-gingerol, in 

order to understand if the trends and results obtained in this study were comparable. 

Therefore ferulic acid was considered from hereupon. In that sense, syringic and ferulic acids 

solubility in aqueous solutions of different molar proportions of the most promising DES, 

PA:U and its counterparts were studied in a concentration of 25 wDES% DES in water at 

303.15 K. These results are depicted in figure 12.   

 

Figure 12. Influence of different molar proportions of the PA:U and its counterparts in the solubility 

of syringic acid and ferulic acid in 25 wDES% aqueous solutions at 303.15 K. Syringic acid solubility 

is represented in blue, while ferulic acid solubility is represented in orange. pH of each molar 

proportion is represented in black dots. 

 Based on these results, it is possible to apprehend that the molar composition have a 

significant effect in the solubility enhancement of both solutes (syringic and ferulic acids). 

Indeed, the solubility enhancement of the solutes increases with the increase of the HBD 

molar proportion, in other words, the increase of the dispersive interactions between HBD 

and model compounds promotes the good performance of DES aqueous solutions. Although, 

the best results were obtained using PA in aqueous solution, this strong acidic environment 

is not viable for the extraction of bioactive compounds from biomass, as it will be 

demonstrated further on. Considering the similar solubility enhancement obtained for both 
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solute using 25 wDES% of PA:U 4:1 and 2:1 aqueous solution at 303.15 K (10.8 and 9.6-fold, 

respectively), the PA:U 2:1 was the DES selected to study the impact of the temperature and 

DES concentration upon its ability to enhance the solubility of the phenolic acids 

investigated. 

3.1.4. Temperature and DES Concentration Effects 
 

 Syringic and ferulic acids solubilities in aqueous solutions of PA:U 2:1 were studied 

in the entire concentration range, from pure water to pure DES at three different temperatures 

303.15 , 313.15  and 323.15 K. In Figure 13 is represented the syringic acid solubility 

enhancement results and Figure 14 depicts the results for ferulic acid. 

 

Figure 13. Syringic acid solubility enhancement test results for PA:U 2:1 DES system, at different 

temperatures and concentration of DES in aqueous solution. Solubility at 303.15 K is represented in 

blue, at 313.15 K in orange and at 323.15 K in green. 

 In general, as expected, the solubility of syringic and ferulic acids in both water and 

DES aqueous solutions increases with the increase of temperature (113). This trend may not 

be detected in Figure 13 and Figure 14 due to the fact that the graphic is represented in S/S0 

for each temperature but it can be confirmed in the detailed data presented in appendix C – 

tables C5 and C6. Regarding the DES concentration, 50 wDES % and 75 wDES% seem to allow 

the best solubility enhancement of syringic acid. In fact, at a temperature of 323.15 K and a 

concentration of 75 wDES % potentiate the syringic acid solubility by at least 47-fold.  
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Figure 14. Ferulic acid solubility enhancement test results for PA:U 2:1 DES system, at different 

temperatures and concentration of DES in aqueous solution. Solubility at 303.15 K is represented in 

blue, at 313.15 K in orange and at 323.15 K in green. 

 Similar to syringic acid, the increase of temperature increases ferulic acid solubility. 

Nevertheless, it also seems to be a tendency for a certain temperature related to solubility 

enhancement. The temperature of 313.15 K presents in every concentration of the DES the 

best solubility enhancement of ferulic acid. Also analogous to syringic acid, the best DES 

concentrations to potentiate ferulic acid solubility seems to be 50 wDES% and 75 wDES%. For 

ferulic acid, a concentration of 50 wDES% and a temperature of 313.15 K are the conditions 

that most potentiate ferulic acid solubility. These conditions enhance ferulic acid solubility 

at least 51 times when compared to water. 

 

3.2. Conventional Extraction of 6-gingerol From Ginger 
 

 Conventional methodologies were used as benchmark to evaluate the performance 

of the alternative extraction using DESs. Despite the fact that Soxhlet extraction is the most 

common in the literature when it comes to 6-gingerol extraction from ginger as it can be 

seen in Table 6, maceration is the traditional extraction technique used to extract phenolic 

compounds(51,52). Soxhlet extraction requires extraction temperatures at the boiling point 

of the used solvent, which in this case are not compatible with the compound aimed for 

extraction. It has already been pointed out that 6-gingerol is thermo-labile (10). As ethanol 
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has a boiling point of 351 K and 6-gingerol starts to show decomposition at temperatures 

above 333 K, Soxhlet extraction may not ensure optimal results. Therefore, two different 

techniques were studied in this work. Soxhlet extraction conditions were based in Azian and 

co-workers optimization works(63), while a 16h period of extraction was chosen for 

maceration in order to safeguard maximum extraction results. 

 Table 6 presents the oleoresin yield and the 6-gingerol content in the extracts for both 

methodologies of extraction using ethanol as solvent and ginger from Pingo Doce and 

Jumbo. It also presents the results when a maceration was performed with PA as solvent of 

extraction. This test was implemented due to the promising results of PA in the solubility 

tests as can be seen in Figure 12.  

Table 6. Extraction yields and 6-gingerol content of ginger extracts from Pingo Doce and Jumbo 
with the use of two extraction methodologies. 

Solvent Methodology Origin 
Oleoresin 

yield (wt%) 

6-gingerol 
content in 

oleoresin (wt%) 

6-gingerol content 
extracted from ginger 

(wt%) 

Ethanol 

Soxhlet 

Pingo 
Doce 

21.41 ± 1.83 3.02 ± 0.2 0.54 ± 0.08 

Jumbo 22.76 ± 3.46 2.11 ± 0.27 0.37 ± 0.05 

Maceration 

Pingo 
Doce 

13.75 ± 2.72 5.07 ± 0.43 0.71 ± 0.15 

Jumbo 14.07 ± 1.57 3.79 ± 0.34 0.48 ± 0.03 

PA Maceration 
Pingo 
Doce 

33.88 ± 2.46 - - 

  

 Interestingly the oleoresin yield is similar for both samples when comparing within 

the same methodology. In terms of oleoresin yield, the Soxhlet extraction outperformed 

maceration achieving a greater extraction power. However, when the 6-gingerol content of 

these oleoresins were analysed, maceration extraction produced oleoresins richer in 6-

gingerol than Soxhlet extraction. Not only, but when the 6-gingerol levels extracted from 

ginger is compared, a similar tendency is shown as maceration extracts more 6-gingerol than 

Soxhlet extraction.  As mentioned before, the 6-gingerol’s thermolability could explain these 

results, as the maceration is performed at room temperature. Solid-liquid extraction using 

PA as solvent demonstrates a promising performance when it comes to oleoresin extraction, 

on the other hand it was not detected any 6-gingerol content in this oleoresin meaning that it 

is not a process meant for 6-gingerol extraction. 
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3.3. Alternative Extraction of 6-gingerol from Ginger 

 
 According to the results previously discussed in the solubility tests, PA:U with a 

molar proportion of 2 to 1 should be one of the most suitable DESs for 6-gingerol extraction 

from ginger. Looking towards the optimization of the rest of operational conditions, a RSM 

was applied using this DES. This methodology allows the investigation of different 

conditions at the same time and the determination of the relationship between the 6-gingerol 

concentration extracted from ginger (response variable) and the operational conditions of 

interest for the DES extraction process (independent variables). For the RSM, a 23 factorial 

planning study (3 factors and 2 levels) was executed (Appendix D: Table D1). Temperature, 

extraction time and DES concentration were the conditions optimized, being the 

experimental points used, the model equations, the 6-gingerol’s concentration 

experimentally and theoretically defined using the correlation coefficients obtained in the 

statistical treatment, as well as all the statistical analyses. Previously, a study of the proper 

solid-liquid ratio for the extraction of ginger using DES was performed. It was found that a 

minimum of a solid-liquid ratio of 1:30 (g:mL) was needed in order to obtain a proper 

extraction of ginger, as a greater solid-liquid ratio led to a soggy mix that could not be 

properly agitated. Ginger powder’s low density was apparently the cause to this. The 

solubility tests were also determinant to choose the range of the studied conditions. 

Temperature was studied between factorial points of 303 and 323 K. As previously 

mentioned, higher temperatures could be harmful for the purpose of this work due to 6-

gingerol’s thermolability (10). The range of DES concentration in the aqueous solution was 

chosen based also on the solubility test results. As seen in Figure 13 and Figure 14, the 

optimum concentration range should be between 50 to 75 wDES%. A previous RSM study 

with similar studied ranges of concentration of DES and temperature, but testing lower times 

of extraction ranging from 10 to 110 min indicated the need for longer times (response 

surface plots and countor plots of the previous RSM studied are presented in Appendix E). 

The studied ranges from the three studied components are presented in Table 4. Figure 15 

depicts the effect of the three variables studied in the concentration of 6-gingerol extracted 

from ginger in percentage. 
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Figure 15. Response surface plots (left) and contour plots (right) on the 6-Gingerol content 

extracted from ginger (wt%) with the combined effects of (A and B) time (min) and 

concentration of DES in the aqueous solution (wDES %) (C and D) time (min) and 

temperature (K); and (E and F) temperature (K) and concentration of DES in the aqueous 

solutions (wDES %). 

A 

F E 

C D 

B 



46 

 

 The accuracy and the precision of the model equations can be validated by comparing 

the experimental and the predicted values of extraction yield under the chosen conditions 

(Appendix D). The results presented in figure 15 C-F seem to confirm the suspicion that high 

temperatures do not favor high 6-gingerol levels, once that these temperatures may degrade 

the target compound during the extraction. The graphics indicate that optimum temperature 

of extraction should be between 310 and 315 K. The analysis of the concentration of DES in 

water indicates that it has a theoretical maximum near 65.7 wDES % in agreement with the 

results presented in the solubility tests. Regarding the extraction time, it seems that this is 

the most significant condition studied. Extractions below 80 minutes are not sufficient for a 

significant 6-gingerol extraction, while longer times of extraction, higher than 200 minutes 

seem to cause a somewhat negative impact in 6-gingerol extraction. This could be explained 

by the fact that extraction may have reached its maximum and then the exposure of the 6-

gingerol to the low pH of the acidic DES at high temperatures may cause degradation of the 

target compound (10). These results are also patent on the Pareto’s Diagram, represented in 

Figure 16. 

 

Figure 16. Pareto chart of standardized effects using a factorial design of 23, being 6-gingerol content 

in ginger (wt%) variable. 
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3.4. Experimental validation of the optimum extraction time value 
 

 The surface response design previously analyzed has drawn the attention for the 

importance of the extraction time optimization. Accordingly, a study of the time effect on 

the 6-gingerol extraction, and its confrontation with the theoretical maximum given by the 

surface response design and the method validation is depicted in Figure 17.    

 

  
Figure 17. Effect of the extraction time in the 6-gingerol extraction: tested time values (blue), 

theoretical maximum by the SRM (orange) and experimental validation of theoretical data (grey). 

 
 

 The blue points present in this figure are tested time values at the optimum conditions 

of temperature and concentration of DES in the aqueous solution representing an extended 

tendency. Apparently 6-gingerol content levels reach its maximum for times between 120 

and 160 minutes of extraction. As previously said, lower extraction times seem to be 

insufficient and longer extraction times seem deleterious to the target compound.  

 Coming back to the analysis of the surface response, the optimum conditions 

correspond to an extraction time of 148 minutes, a temperature of 311.1 K and a 

concentration of DES of 65.7 wDES % leading to a theoretical maximum extraction of 1.13 

wt% of 6-gingerol content in ginger (point in orange in Figure 17). To claim the validity of 

the method for the optimal extraction point given by SRM, the theoretical maximum was 

performed in triplicate (point in grey in Figure 17). The experimental validation of the 

theoretical data resulted in an extraction of 1.14±0.02 wt% which is very close to the 

theoretical maximum, ensuring the success of the assay. 

0.83

0.88

0.93

0.98

1.03

1.08

1.13

1.18

50 70 90 110 130 150 170 190 210

6
-G

in
g

e
ro

l C
o

n
te

n
t 

(w
t%

)

Time (min)



48 

 

3.5. Evaluation of optimized conditions 
 

 After the optimization of several parameters of the proposed alternative extraction 

for Pingo Doce’s ginger, it was made a triplicate experiment in optimal conditions for 

Jumbo’s ginger. This allowed to make the final comparison between conventional and 

alternative methodologies and for both gingers. Figure 18 depicts that comparison. For a 

better assessment, conventional methodologies extraction yield were calculated in content 

of 6-gingerol per ginger in percentage.  

 

  

Figure 18. Comparison of the 6-gingerol content (wt%) extracted from both ginger samples and for 

the three methodologies tested. Soxhlet in blue, maceration in orange and PA:U DES extraction in 

grey. 

 The experimental data in Figure 18 shows the better performance of DES to extract 

6-gingerol from ginger, increasing the extraction by at least 60% when compared to the best 

conditions of the conventional extraction, proving the success of the methodology.  

 

3.6. Antioxidant activity 
 

 In order to determine the antioxidant activity, a SPE procedure was applied to a DES 

extract solution obtained from Pingo Doce’s ginger. Although there was a successful 

separation of extract from the aqueous DES extract solution, there is still a need for an 
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optimization of this step of the procedure as a low level of recovery (≈40 wt%) of 6-gingerol 

was obtained. 6-gingerol level of recovery was calculated through the following equation: 

6 − '��'()�* )(���()� (+�%) =
�1 (,' ' !) � , (')

�0(,' ,- !)� 3 ,-
 , 

 (Equation 6) 

Where, C1 represents the concentration of 6-gingerol in extract, m the final mass of the 

extract obtained by SPE and C0 represents the original concentration of 6-gingerol in the 

aqueous DES solution. 3 mL corresponds to the volume used in the SPE column. 

One reason for such a low result might be the low capacity of the SPE column used. This 

could be enhanced through the use of a bigger column or by applying less quantity of DES 

solution. Nevertheless this technique allowed to obtain an extract with a concentration of 6-

gingerol of 6.88 wt%, higher than those presented by extracts obtained from conventional 

methodologies (table 6). 

 Table 7 presents the antioxidant activity of the studied extracts obtained from Pingo 

Doce’s ginger, expressed in terms of the amount of extract required to reduce into 50% the 

DPPH concentration (IC50). The IC50 values for ascorbic acid were also obtained for 

comparative purposes. Detailed data is presented in Appendix F. 

 

Table 7. Antioxidant activity of the extracts of ginger by DPPH radical scavenging, expressed as 

IC50 values, in µg of extract per mL. 

 IC50 (µg mL-1) 
Ascorbic acid 11.93 ± 0.08 

DES extract 37.69 ± 1.69 

Maceration extract 55.08 ± 2.34 

Soxhlet extract 90.4 ± 0.87 
 

 In general, the obtained IC50 values demonstrated that all extracts presented lower 

antioxidant activity than ascorbic acid. Despite that fact, it seems that 6-gingerol content can 

be correlated with the antioxidant activity of each extract as it follows the same trend present 

in Figure 18. DES extract demonstrated to have a higher antioxidant potential when 

compared with extracts prevenient from conventional methodologies such as maceration and 

Soxhlet. All in all, DES extraction methodology proved to be a successful technique.  
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4. Conclusions 
 

 In this work, an alternative method for the extraction of 6-gingerol from ginger using 

a DES was developed. Initially, solubility tests using syringic and ferulic acids as model 

compounds were carried in order to learn what type of DES and what conditions could work 

best. The PA:U 2:1 was the DES that most enhanced the model compounds solubility. This 

DES offered the best solubility enhancement at a concentration between 50 and 75 wDES % 

and at temperatures of 313 and 323 K for syringic and ferulic acids, respectively. Then, using 

PA:U, a surface response methodology was performed using a 23 factorial design aiming at 

the simultaneous study the effect of the temperature, time, and the DES concentration used 

in the extraction. Results of surface response methodology showed that the optimum 

conditions for the extraction of 6-gingerol correspond to an extraction time of 148 minutes, 

a temperature of 311.1 K and a concentration of 65.7 wDES % matching a theoretical 

maximum extraction of 1.13 wt% of 6-gingerol content in ginger. Conventional 

methodologies, Soxhlet and maceration, were also performed as benchmark. Final results 

demonstrated that the alternative extraction using PA:U could be up to at least 60% more 

efficient that conventional extraction.  

 Finally, a SPE procedure was applied to obtain a recovery of the compound of 

interest from the DES solution, however it demonstrated to still have low efficiency as only 

40% of the 6-gingerol was recovered. This procedure should be aim of optimization. With 

the extract prevenient from SPE and conventional methodologies, a DPPH assay was made 

in order to perceive the beneficial effects of the extracts. Among the 3 extract types, the DES 

extract proved to have the most antioxidant activity.  
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5. Future Work 
 Considering the results obtained in the solubility tests regarding acid alkylic chain 

effect it would be interesting to study DESs composed by acids of larger chains. In order to 

achieve a maximum extraction yield it would be interesting to study the effect of the solid-

liquid ratio as this was the only parameter in this work that was not optimized. It would also 

be important to carry out several extraction cycles, reusing either the biomass or the aqueous 

solutions of DES in order to enhance the sustainability of the process. 

 Given the preliminary results of the SPE 6-gingerol recovery it would be of great 

importance to optimize this or other methodology in order to obtain an efficient 6-gingerol 

recovery from the DES solutions.  

 Taking into account that the DES extract presented the best antioxidant activity 

amongst the ones tested, cytotoxicity assays should be performed in order to evaluate if there 

is worth in recovering the extract from the DES aqueous solutions. 

 Finally, and due to the growing search for a sustainable and improved process and 

scarce work regarding DES recyclability, a DES recycling methodology should also be 

explored. Although Jeong and co-workers(93) successfully recycled the DES from the 

aqueous fraction by freeze-drying, this method should not work for the DES PA:U as PA is 

quite volatile. However, a process of fractional distillation may work for this DES and is 

worthy of study.   
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Appendix A: Calibration Curves 
 

 
Figure A1. Calibration curve for syringic acid quantification in aqueous solution at 265 nm. 

 
 

 
Figure A2. Calibration curve for ferulic acid quantification in aqueous solution at 314 nm. 
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Figure A3. Calibration curve for 6-gingerol quantification in methanolic solution at 201 nm using a 

HPLC. 

Appendix B: Chromatograms 
 

 
Figure B1. HPLC profile of 6-gingerol standard methanolic solution. 

 
Figure B2. HPLC profile of maceration extract methanolic solution. 
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Figure B3. HPLC profile of Soxhlet extract methanolic solution. 

 

 
Figure B4. HPLC profile of DES extract methanolic solution. 

 

Appendix C: Solubility Tests Data 
 

Table C1. Solubility data to the HBD effect in syringic acid solubility in 25 wt% aqueous solutions 

at 303.15 K. 

 DES S (mg g-1) S/S0 

PA:[Ch]Cl 2:1 7.07 ± 0.14 5.51 ± 0.11 

AcOH:[Ch]Cl 2:1 4.77 ± 0.03 3.72 ± 0.02 

FA:[Ch]Cl 2:1 2.97 ± 0.08 2.31 ± 0.06 

LA:[Ch]Cl 2:1 3.21 ± 0.07 2.51 ± 0.06 

GA:[Ch]Cl 3:1 3.05 ± 0.04 2.38 ± 0.03 

MA:[Ch]Cl 1:1 2.73 ± 0.04 2.13 ± 0.03 

TSA:[Ch]Cl 1:1 6.28 ± 0.14 4.9 ± 0.11 

U:[Ch]Cl 2:1 4.14 ± 0.01 3.23 ± 0.01 

ETG:[Ch]Cl 2:1 2.68 ± 0.13 2.09 ± 0.1 

Gly:[Ch]Cl 2:1 2.17 ± 0.06 1.7 ± 0.05 

Fru:[Ch]Cl 1:1 2.79 ± 0.01 2.18 ± 0.01 

Glc:[Ch]Cl 1:1 2.21 ± 0.15 1.72 ± 0.12 

Xyl:[Ch]Cl 2:1 2.16 ± 0.15 1.69 ± 0.12 

Water 1.28 ± 0.01 - 
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Table C2. Solubility data to the HBA effect in syringic acid solubility in 25 wt% aqueous solutions 

at 303.15 K. 

  S (mg g-1) S/S0 

AcOH:U 4:1 8.69 ± 0.28 6.78 ± 0.22 

AcOH:Bet  2:1 7.02 ± 0.06 5.48 ± 0.04 

AcOH:Pro 2:1 5.76 ± 0.02 4.49 ± 0.01 

AcOH:[Ch]Cl 2:1 4.77 ± 0.03 3.72 ± 0.02 

PA:U 2:1 12.33 ± 0.25 9.62 ± 0.2 

PA:Bet 2:1 9.71 ± 0.26 7.57 ± 0.21 

PA:Pro 2:1 9.03 ± 0.21 7.04 ± 0.17 

PA:[Ch]Cl 2:1 7.07 ± 0.14 5.51 ± 0.11 

LA:Bet 2:1 5.23 ± 0.01 4.08 ± 0.01 

LA:U 2:1 4.41 ± 0.21 3.44 ± 0.17 

LA:Pro 2:1 4.09 ± 0.01 3.19 ± 0.01 

LA:[Ch]Cl 2:1 3.21 ± 0.07 2.51 ± 0.06 

TSA:Pro 1:1 8.87 ± 0.08 6.92 ± 0.06 

TSA:[Ch]Cl 1:1 6.28 ± 0.14 4.9 ± 0.11 

Water 1.28 ± 0.01 - 

 

Table C3. Solubility data to the molar proportion effect in syringic acid solubility in 25 wt% aqueous 

solutions at 303.15 K. 

  S (mg g-1) S/S0 

PA 15.05 ± 0.27 11.74 ± 0.21 

PA:[Ch]Cl 4:1 8.67 ± 0.2 6.76 ± 0.16 

PA:[Ch]Cl 3:1 8.2 ± 0.38 6.4 ± 0.29 

PA:[Ch]Cl 2:1 7.07 ± 0.14 5.51 ± 0.11 

PA:[Ch]Cl 1:1 4.65 ± 0.07 3.63 ± 0.05 

PA:[Ch]Cl 1:2 4.01 ± 0.1 3.13 ± 0.08 

PA:[Ch]Cl 1:3 3.72 ± 0.17 2.9 ± 0.13 

PA:[Ch]Cl 1:4 3.36 ± 0.18 2.62 ± 0.14 

[Ch]Cl 3.07 ± 0.45 2.4 ± 0.35 

PA:U 4:1 13.82 ± 1.07 10.78 ± 0.84 

PA:U 2:1 12.33 ± 0.25 9.62 ± 0.2 

PA:U 1:1 10.72 ± 0.25 8.36 ± 0.2 

PA:U 1:2 8.89 ± 0.06 6.94 ± 0.05 

PA:U 1:4 4.77 ± 0.16 3.72 ± 0.13 

U 3.47 ± 0.03 2.7 ± 0.03 

Water 1.28 ± 0.01 - 
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Table C4. Solubility data to the molar proportion effect in ferulic acid solubility in 25 wt% aqueous 

solutions at 303.15 K. 

  S (mg g-1) S/S0 

PA 18.91 ± 0.33 22.92 ± 0.4 

PA:U 4:1 8.2 ± 0.13 9.94 ± 0.16 

PA:U 2:1 6.96 ± 0.04 8.44 ± 0.05 

PA:U 1:1 3.39 ± 0.23 4.11 ± 0.28 

PA:U 1:2 1.36 ± 0.36 1.65 ± 0.44 

PA:U 1:4 0.75 ± 0.01 0.91 ± 0.01 

U 0.64 ± 0.02 0.78 ± 0.03 

Water 0.83 ± 0.03 - 

 
Table C5. Syringic acid solubility enhancement test data for PA:U 2:1 DES system, at different 

temperatures and concentration of DES in aqueous solution. 

 

  S (mg g-1) S/S0 

Temperature 303 K 

Water 1.28 ± 0.01 - 

25 % wDES 12.33 ± 0.25 9.62 ± 0.2 

50 % wDES 38.3 ± 0.82 29.88 ± 0.64 

75 % wDES 33.11 ± 1.38 25.82 ± 1.07 

95 % wDES 8.81 ± 1.32 6.88 ± 1.03 

100 % wDES 5.19 ± 1.75 4.05 ± 1.36 

Temperature 313 K 

Water 1.6 ± 0.03 - 

25 % wDES 16.17 ± 0.74 10.12 ± 0.47 

50 % wDES 43.04 ± 2.07 26.92 ± 1.3 

75 % wDES 49.71 ± 4.24 31.09 ± 2.65 

95 % wDES 15.89 ± 0.32 9.94 ± 0.2 

100 % wDES 6.07 ± 0.2 3.8 ± 0.13 

Temperature 323 K 

Water 1.87 ± 0.08 - 

25 % wDES 16.94 ± 1.66 9.08 ± 0.89 

50 % wDES 58.02 ± 1.83 31.11 ± 0.98 

75 % wDES 88.37 ± 3.55 47.38 ± 1.9 

95 % wDES 15.89 ± 0.32 8.52 ± 0.17 

100 % wDES 11.27 ± 3.11 6.04 ± 1.67 
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Table C6. Ferulic acid solubility enhancement test data for PA:U 2:1 DES system, at different 

temperatures and concentration of DES in aqueous solution. 

  S (mg g-1) S/S0 

Temperature 303 K 

Water 0.83 ± 0.03 - 

25 % wDES 6.96 ± 0.04 8.44 ± 0.05 

50 % wDES 21.09 ± 0.41 25.57 ± 0.49 

75 % wDES 13.85 ± 1.4 16.79 ± 1.69 

95 % wDES 6.85 ± 0.12 8.31 ± 0.14 

100 % wDES 4.13 ± 0.1 5 ± 0.13 

Temperature 313 K 

Water 0.82 ± 0.03 - 

25 % wDES 21.09 ± 0.63 25.58 ± 0.76 

50 % wDES 42.1 ± 0.89 51.06 ± 1.08 

75 % wDES 27.1 ± 2.79 32.87 ± 3.39 

95 % wDES 8.89 ± 0 10.78 ± 0 

100 % wDES 5.69 ± 0.14 6.9 ± 0.17 

Temperature 323 K 

Water 1.53 ± 0.05 - 

25 % wDES 17.6 ± 1.2 11.48 ± 0.79 

50 % wDES 68.99 ± 0.35 45.02 ± 0.23 

75 % wDES 43.5 ± 1.35 28.38 ± 0.88 

95 % wDES 13.69 ± 0.93 8.93 ± 0.61 

100 % wDES 8.18 ± 0 5.34 ± 0 
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Appendix D: SRM Extra Data 
 

 
Figure D1. Predicted versus observed values for the factorial design of 23. 

 

Table D1. Data attributed to the independent variables (Temperature, time and wt% of DES in the 

aqueous solution) to define the 23 factorial planning for the system under study and respective results 

of concentration of 6-gingerol extracted experimentally, the theoretical results found for the 

mathematical model developed and the respective relative deviation. 

 

Run 
Temperature 

(K) 
Time 
(min) 

wDES (%) 

6-Gingerol Content (%) 

Residues 

Experimental Values 
Theoretic 

Values 

1 303 195 50 0.89 0.88 0.003 

2 323 180 50 0.92 0.94 -0.013 

3 303 180 75 1.00 1.07 -0.063 

4 323 180 75 0.91 0.98 -0.074 

5 296 135 62.5 1.04 1.01 0.026 

6 330 135 62.5 1.05 0.99 0.058 

7 313 210 62.5 0.99 0.94 0.056 

8 313 135 41.5 0.92 0.95 -0.031 

9 313 135 83.5 1.12 1.00 0.118 
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10 313 135 62.5 1.12 1.12 0.001 

11 313 135 62.5 1.00 1.12 -0.119 

12 313 135 62.5 1.03 1.12 -0.095 

13 313 135 62.5 1.15 1.12 0.026 

14 313 135 62.5 1.22 1.12 0.098 

15 313 135 62.5 1.20 1.12 0.077 

16 303 90 50 0.88 0.87 0.012 

17 323 90 50 0.94 0.94 0.002 

18 303 90 75 0.85 0.90 -0.046 

19 323 90 75 0.82 0.88 -0.065 

20 313 60 62.5 0.83 0.80 0.028 

 

Table D2. Regression coefficient of the predicted second-order polynomial model for the 6-gingerol 

extraction obtained from the RSM design using PA:U 2:1 as solvent. 

  
Regression 
Coeffient 

Standard 
Deviation  

t-student 
(10)  

p-value  

Interception -47.0242 23.2813 -2.0198 0.0710 

Temperature 0.2791 0.1445 1.9313 0.0823 

Temperature2 -0.0004 0.0002 -1.8375 0.0960 

Time 0.0226 0.0215 1.0521 0.3175 

Time2 0.0000 0.0000 -3.9144 0.0029 

wDES 0.0931 0.0822 1.1325 0.2839 

wDES
2 -0.0003 0.0002 -2.2189 0.0508 

Temperature x Time 0.0000 0.0001 -0.6022 0.5605 

Temperature x wDES -0.0002 0.0003 -0.7014 0.4991 

Time x wDES  0.0000 0.0001 0.8117 0.4358 

 

 
 
 
Table D3. ANOVA data for the extraction of 6-gingerol obtained from the factorial design of 23 

planning.   

 

  
Sum of 
Squares    

 Degrees of 
Freedom 

Mean of 
Squares 

Fcalc p-value  

Regression 0.225 9 0.025 
3.194 0.034 

Error 0.078 10 0.008 

Total 0.282 19 R2=0.7224 
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Appendix E: First RSM Study Data 

 
 

Figure E1. Response surface plots (left) and contour plots (right) on the 6-Gingerol content extracted from 
ginger (wt%) with the combined effects of (A and B) time (min) and concentration of DES in the aqueous 
solution (wDES%) (C and D) time (min) and temperature (K). 
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Appendix F: Antioxidant Activity Extra Data 
 

 
Figure F1. Correlation between Soxhlet extract concentration and their antioxidant activity in DPPH 

assay performed in triplicate. 
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Figure F2. Correlation between maceration extract concentration and their antioxidant activity in 

DPPH assay performed in triplicate. 
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Figure F3. Correlation between DES extract concentration and their antioxidant activity in DPPH assay 
performed in triplicate. 



78 

 

 
 

Figure F4. Correlation between ascorbic acid concentration and their antioxidant activity in DPPH 

assay performed in triplicate. 


