
 

Universidade de Aveiro 

Ano    2016  

Departamento de Engenharia Mecânica 

CARLOS 

HENRIQUE 

LAURO 

 

ESTUDO DO MICRO-CORTE NO ACABAMENTO DE 

UM BIOMATERIAL DE DIFÍCIL USINABILIDADE 

 

STUDY OF MICRO-CUTTING IN THE FINISHING OF 

A DIFFICULT-TO-CUT BIOMATERIAL 
 

 

 

   

 



 

 

 

 



 

Universidade de Aveiro 

Ano     2016 

Departamento de Engenharia Mecânica 

CARLOS 

HENRIQUE 

LAURO 

 

ESTUDO DO MICRO-CORTE NO ACABAMENTO DE 

UM BIOMATERIAL DE DIFÍCIL USINABILIDADE 

 

MICRO-CUTTING STUDY IN THE FINISHING OF A 

DIFFICULT-TO-CUT BIOMATERIAL 
 

 Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários 

à obtenção do grau de Doutor em Engenharia Mecânica, realizada sob a orientação 

científica do Doutor João Paulo Davim Tavares da Silva, Professor Associado com 

Agregação do Departamento de Engenharia Mecânica da Universidade de Aveiro e 

coorientação científica do Doutor Lincoln Cardoso Brandão, Professor Associado II do 

Departamento de Engenharia Mecânica da Universidade Federal de São João del Rei 

 

  

 

Apoio financeiro da Coordenação de 

Aperfeiçoamento de Pessoas do Ensino 

Superior (CAPES) - Brasil. 

 

 

 
 

 



 

 

 

 



 

  

  
 

 

 

Dedico este trabalho ao meu pai, Luiz Antônio. 

 

 

 
 

 

 

 



 

 

 



 

  

 

 

 

 

 
 

o júri  

 

presidente Prof. Doutor Vasile Staicu 
Professor Catedrático do Departamento de Matemática da Universidade de Aveiro 

  

 

 Prof. Doutor António Paulo Monteiro Baptista 
Professor Associado com Agregação Aposentado da Faculdade de Engenharia da Universidade do Porto 

  

 

 Prof. Doutor João Paulo Davim Tavares da Silva 
Professor Associado com Agregação do Departamento de Engenharia Mecânica da Universidade de Aveiro 

(orientador) 

  

 

 Prof. Doutor Pedro Alexandre Rodrigues Carvalho Rosa 

Professor Associado do Instituto Superior Técnico da Universidade de Lisboa  

  

 

 Prof. Doutor Ricardo José Alves de Sousa 
Professor Auxiliar do Departamento de Engenharia Mecânica da Universidade de Aveiro 

  

 

 Prof. Doutor Francisco José Gomes da Silva 
Professsor Adjunto do Instituto Superior de Engenharia do Porto 

  

  

 

 

 

 



 

 

 



 

  

  
 

agradecimentos 

 

Pela acolhida, à Universidade de Aveiro e seu Departamento de Engenharia Mecânica e 

o Centro de Tecnologia Mecânica e Automação (TEMA) 

 

Pela ajuda as atividades acadêmicas e de adaptação, sempre com grande afeto, aos 

bolsistas, docentes e técnicos da Universidade de Aveiro, Departamento de Engenharia 

Mecânica, Departamento de Engenharia de Materiais e Cerâmica e Departamento de 

Línguas e Culturas. Sem nomes, para não esquecer de citar alguém.  

 

Por toda a ajuda e compartilhamento de todo o conhecimento aos orientadores Dr. João 

Paulo Davim e Dr. Lincoln Cardoso Brandão.  

 

Por toda a dedicação aos ensaios e pelos risos, ao Eng. Antônio Festas. 

 

Por autorizar e ajudar nos ensaios eletroquímicos, ao Prof. Dr. Alysson Bueno e o 

acadêmico Eng. Sérgio Ribeiro Filho. Pelas revisões linguísticas dos artigos e capítulos 

de livros, ao Dr. Diego Carou. 

 

Por todo o incentivo, aos Profs. Juan Rubio (UFMG), Alessandro Roger (EESC-USP) e 

Márcio Bacci (UFU) pela ajuda a iniciar esta caminhada. Igualmente aos amigos e 

professores da UFSJ e IFET Juiz de Fora. 

 

Pela amizade e momentos de descontração, aos amigos que passaram pelo MACTRIB, 

Ulisses, Telles, Luís Pinho, Celestino, Manuel, Pedro Gaspar, Pedro Cunha, Carlos, 

Renato, José, Bruno, Rui, Marco, e como os bolsistas brasileiros Paulo e Daniel e suas 

esposas Fabiane e Juliana. 

 

Por toda generosidade prestada através do auxílio técnico prestado, as Drª Maria Cláudia 

Brito e Drª Fernanda Albuquerque.  

 

Pela doação da liga de titânio, à empresa TiFast S.R.L. da Itália, em pessoa do Eng. Dr. 

Marco Costanzi.  

 

Pelo auxílio técnico e financeiro a aquisição das ferramentas, à Sandvik Portugal, em 

especial a Engª. Dulce Neves. 

 

Pelo fornecimento do termopar, à PCE Instruments da Espanha, em pessoa do Sr. Sergio 

Lopéz. 

 

Pela concretização do sonho, à Coordenação de Aperfeiçoamento de Pessoa de Ensino 

Superior (CAPES) do Ministério da Educação do Brasil pelo fornecimento da bolsa de 

doutorado em âmbito do Programa Ciência sem Fronteiras, especialmente ao Sr. Silvio 

dos Santos Salles, Sr. Lucas Guimarães de Medeiros Srª Denise Regina Maria Dias pela 

assessoria. 

 

Por fim, por ter segurado tamanha saudade no coração, a minha mãe, irmãs, sobrinho, 

tios e primos.  

 

 



 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

  

palavras-chave 

 

Micro-corte, acabamento, biomaterial, difícil usinabilidade, alta velocidade de corte, 

sustentabilidade, corrosão. 

 

resumo 

 

 

A microusinagem está se tornando um processo de usinagem amplamente usado em 

indústrias ou pesquisas acadêmicas, pois este processo é uma opção para a miniaturização 

que apresenta bons resultados. Embora o processo de microusinagem apresente grandes 

vantagens, existem ainda lacunas há serem preenchidas ou o desenvolvimento de novas 

aplicações, principalmente para área médica. Este estudo investigou o uso do micro-corte 

com altas velocidades de corte no acabamento da liga de titânio Ti-6Al-7Nb, para fins de 

aplicações dentárias. A eficiência desse processo foi analisada através da análise da 

corrosão dos componentes em in vitro testes. Os resultados indicaram que essa técnica 

pode beneficiar a eficiência dos componentes dentários.  
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abstract 

 

The micromachining is becoming a machining process widely used in the industries or 

academic researchers, because this process is an option to miniaturization that presents 

good results. In spite of micromachining process presents great advantages, there are still 

gaps to be filled or discovery of new applications, mainly for the medical applications. 

This study investigated the use of the micro-cutting with high speed machining in the 

finishing of the Ti-6Al-7Nb titanium alloy, for purposes of dental applications. The 

efficiency of this process was analyses through the corrosion analysis of the components 

in in vitro test. The results of experiments indicated that this technique can benefit for 

the dental components. 
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CHAPTER 1 – INTRODUCTION 

The competitive market requires that industries offer services and products with high quality, 

low price, and as quickly as possible, which makes every day arise new necessities. To attend 

these necessities, in some time, is need develop new materials and several formats that 

require of the manufacturer industry develops production techniques that are reliable and 

economic. As another processes, the machining goes by great evolution, both machines 

(displacements, precision…) or tools (materials, coatings, geometries…) and operations 

(milling, turning, grinding…), but to evolution requires many studies to determine the 

optimal conditions to avoid losses in the production process. 

Nowadays, a niche market very explored is the miniaturization of devices and components. 

The miniaturization has become an important technique for several industrial sectors such 

as micro-electromechanical systems, micro-sensor systems, micro-electronics, smart 

communication systems, and biomedical devices (Penchev et al., 2016). The evaluation of 

this technique, oldest restrict in the wristwatches parts (Masuzawa, 2000), allowed the 

improvement of many devices, to name a few, likes pressure transducers (Starr et al., 2015). 

The importance of miniaturization for industry can be understood observing the evolution of 

the precision in machining. Thus, the standard precision in machining has been evolving 

increased notably since 1930’s (10 µm), lower than 1 µm in the 1980’s (Taniguchi, 1983), 

to the present in 1 nm (Zhang et al., 2014). 

The micromachining is a miniaturization technique that arouses certain interest that is the 

reason why increased the number of paper published in the last years, according to Câmara 

et al. (2012). However, the micromachining requires great attention, such as wear control, 

referencing tool, size effect, ploughing effect, and others. Saedon et al. (2012) cited the 

disinterest of some investigators in the application of micro-milling due to difficulty in 

measurement and facilities available. The comparison between the micromachining and the 

conventional machining processes is not recommended. The reason is because the uncut chip 
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thickness is on the same order as the material grain size, so the workpiece material cannot 

be assumed as homogeneous and isotropic (Klocke, Gerschwiler and Abouridouane, 2009). 

Ng et al. (2006) also affirmed that in micro and nano scale cutting, the edge radius influences 

the specific cutting energy, being the tool edge geometry the major cause of the size-effect. 

The relationship between edge radius, feed rate and spindle speed can result in the "cutting" 

with chip or without chip (ploughing), which the boundary is known as a minimum chip 

thickness (Afazov et al., 2013). According to Yun et al. (2011), it occurs when the uncut 

chip thickness is greater than the minimum chip thickness avoiding the ploughing effect. 

The determination of the minimum chip thickness ratio to the cutting edge radius is essential 

in micromachining in order to avoid or minimize the ploughing effect and achieve a desired 

material removal (Aramcharoen and Mativenga, 2009). 

However, the micro-machined surface presents great results of the surface integrity. Palani, 

Natarajan and Chellamalai (2013) have worked with micro-turning in tungsten electrode 

with 0.3 mm diameter and Polycrystalline Diamond (PCD) single point tool as the cutting 

tool, the surface roughness, Ra, obtained were between 0.029 and 0.58 µm and used speed 

spindle of 1,000, 1,100 and 1,200. In the micro-milling of AISI H13 steel, Lauro et al. (2014) 

observed a great quality in the micro-machined surface, values of Rz surface roughness 

between 0.489 and 2.267. Furthermore, the burr in the micro-milling of AISI H13 steel had 

a shot length (Lauro et al., 2016).  

Observing the great quality of the machined surface, the usage of the micro-cutting can 

provide great advanced in the manufacturing of components that require high accuracy and 

control of the surface machined, regardless of size. An example of these components are the 

used in the bioapplications, which require great control in the manufacturing, such as lower 

surface roughness and burr. This control is important especially in biocomponents that are 

manufactured in titanium and its alloys.  

Jaffery and Mativenga (2009) cited the titanium alloys have high strength, corrosion 

resistance, fatigue endurance, and biocompatibility. The authors comment that machining is 

highly expensive because they have poor machinability. Thus, the optimization of the 

parameters of influence is greater significance for the industry. In their paper, they developed 
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a wear map for turning the Ti-6Al-4V titanium alloy. The hardness turning require more 

specific cutting forces than in conventional turning.  

According to Trent and Wright (2000), the machinability is a quality or propriety of material 

that can often be measured in terms of the numbers of components produced per hour. The 

costs of machining the component or the quality of the finish are critical on a surface quality. 

However, a material may have good machinability by one criterion, but poor machinability 

by another, because a different type of operation is being carried out - turning versus milling 

- or when the tool material is changed. The machinability may be assessed by one or more 

of the criteria, such as, tool life, limiting rate of metal removal, cutting forces, surface finish 

and chip shape. 

1.1. Objective 

The micromachining is a process that has many gaps, mainly in the micro-turning. However, 

the micromachining provides a great surface quality that is required in biocomponents. Thus, 

the authors decided to study the advantage and the disadvantage of the usage of the micro-

cutting in the finishing operation of biocomponents in titanium alloy, mainly in the dental 

applications. The reason is to prolong the life, reducing the pain, discomfort, trouble, and 

avoiding future chirurgic to change the implant, as well as, reduce the cost that become more 

accessible without causing danger to patients.  

In this regard, the Ti-6Al-7Nb titanium alloy was used due to advantage in health issues. As 

it is a titanium alloy with few studies, the first step was the analysis the mechanical behaviour 

of this biomaterial in the orthogonal micro-cutting. Furthermore, the usage of the machining 

sustainable techniques was studied in the micro-cutting of the Ti-6Al-7Nb titanium alloy to 

obtain the great quality of the micro-machined surface. 

In the next steep, the cutting forces, vibration and surface roughness were monitored to 

understand the behaviour of the micro-cutting as the finishing operation in the 

biocomponents in different size scales. To evaluate the efficient of the micro-cutting as 

finishing operation, the manufacturing intelligent technique were employed to define the 

optimum and worse condition that were used to manufacture workpiece base on dental 
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application. These workpieces were used in vitro tests to analyse the influence of the micro-

cutting in the biocorrosion.  

1.2. Justification 

Nowadays, the health issues have been debated widely to improve the quality of live for the 

global population that is increasingly living longer and older. The engineering and medicine 

require there is a necessity for development of alternatives to treat an increasing health 

issues, such as burden of trauma, congenital abnormalities and degenerative diseases, which 

human body needs exceed the ability to auto-regenerate due to the original tissue integrity 

be seriously damaged (Chen and Liu, 2016).  

For the bone tissue engineering, the development or improvement of new materials for 

orthopaedics' reconstruction and implants can eliminate the risk of disease and infection 

when compared with the auto/allo bone grafts technique. It is because the material and the 

applied coating are modulated to avoid such sequels and serve as a scaffolding for the growth 

of the responsive host cells (Burg, Porter and Kellam, 2000). 

The replacing the teeth can be presented as another example of significance of development 

or improvement of the material to serve the health issues. The absence of one or more teeth, 

seen the Figure 1.1, represents a harm the physical, psychological health and social 

relationships of the patient due to the imbalance of the bite and the musculature of 

neighbouring regions that causes problems chewing, speech and pain in the 

temporomandibular joint and esthetical loss (Barreiros et al., 2011). 

Generally, the correction of the dentition is realized by removal dental prosthesis, dentures. 

According to Att and Stappert (2003), this treatment was the first chosen for centuries, but 

the dissatisfaction is high, 50% of all complete denture wearers, because the dental prosthesis 

relies on the residual alveolar ridge and mucosa for support and retention, besides they 

difficult to consume certain types of food. The authors reported the dissatisfaction of a 

patient who has trouble eating, talking and embarrassment to meet friends and colleagues. 

Thus, the use of dental prosthesis requires great attention professional to be well planned 

and executed to avoid the possibility serious problems to the patient (Silva et al., 2011). 
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Figure 1.1 – Examples of damage due to absence of teeth (Misch, 2009). 

The implant dentistry, Figure 1.2, is the unique technique that able to offer normal contour, 

function, comfort, aesthetics, speech, and health for the patient, independently of the 

atrophy, disease, or injury of the stomatognathic system (Misch, 2014). However, this 

technique requires the use of the materials that presents an essential characteristic, the 

biocompatibility. Biocompatibility is the capacity of a material adapt itself to specified 

application and should not cause inflammatory reaction, allergic, immune, toxic, mutagen, 

or carcinogenic reactions (Hisbergues, Vendeville and Vendeville, 2009). 

 

Figure 1.2 – Examples of the implants dentistry (Misch, 2014). 
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1.3. Reading guide 

To investigate the behaviour of the Ti-6Al-7Nb titanium alloy, as biomaterial, in the 

finishing micro-cutting process, was developed a work programme employing reviews and 

experimental analysis, Figure 1.3. The relevance of each analysis and composition of this 

work was defined as follows:  

CHAPTER 1 – Introduction: this chapter presents a brief script about micro-cutting, the 

objectives and reason to develop this work. 

CHAPTER 2 – Characteristics of the machined and micro-machined surface: this 

chapter presents a brief review about the main characteristics of the machined surface. This 

section was developed to determine the emphasis in the improvement of quality micro-

cutting.  

CHAPTER 3 – Monitoring and signal processing in the machining and 

micromachining processes: this chapter describes the machining processes and the 

acquired data treatment used in this study. The reason is that some phenomena in the 

machining processes, micro or conventional, are identified during the cutting, which can 

facilitate the comprehension of the results obtained. 

CHAPTER 4 – Statistical and Artificial Intelligence for the understanding of the 

micro-cutting: this chapter presents a brief review about the statistical an Artificial 

Intelligence techniques employed in the modelling and optimization of the machining 

processes. This chapter was developed to understand and improve responses obtained in the 

micro-cutting operation.  

CHAPTER 5 – Material and methods: this chapter describes and justified the equipment, 

cutting tools, and analysis employed in the micro-machined surface study.  

CHAPTER 6 – Preliminary analysis of the behaviour of the biomaterial in the micro-

cutting: this chapter presents a description of preliminaries analysis in the micro-cutting. 

The results of preliminaries tests appointed the determination of the micro-cutting 

parameters and the monitoring and processing techniques to observe the phenomena. 
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Furthermore, to characterize the micro-surface, the sustainable technique of machining was 

employed and the surface integrity was analysed via FEM. 

CHAPTER 7 – The micro-cutting in the finishing operation of biomaterial: In this 

chapter presents a dynamic analysis of the finishing micro-cutting operation. The analysis 

employed the oblique micro-cutting with parameters based on results of the Chapter 6.  

CHAPTER 8 – Corrosion behaviour of micro-machined surface in the dental 

applications: In this chapter is presented the evaluation of the micro-machined surface 

employing the optimum and worse conditions. This evaluation was developed through the 

in vitro tests for the workpieces with similar geometry of dental implants.  

CHAPTER 9 – Conclusions: In this chapter is presented the conclusions about the usage 

of the micro-cutting in the finishing operation in materials of poor machinability. 
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Figure 1.3 – Work programme to investigate the micro-cutting finishing in material with poor machinability. 
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CHAPTER 2 – CHARACTERISTICS OF THE MACHINED AND 

MICRO-MACHINED SURFACE 

This chapter was developed to indicate the phenomena in machining and micro-machining 

processes and indicate the responses that should be improved. Portions of this chapter has 

similarity with: 

 LAURO, C. H. et al. Quality in the Machining Characteristics and Techniques to Obtain 

Good Results. in DAVIM, J. P. (Ed.). Manufacturing Engineering: New Research. 

Hauppauge. Nova Science Publishers, 2015. 

 LAURO, C. H. et al. Surface integrity in the micromachining: a review. Journal: Review 

on Advanced Material Science. Vol. 40, 2015, p. 227 – 234.  

 LAURO, C. H. et al. Finite Element Method in Machining Processes: A Review. in 

DAVIM, J. P. (Ed.). Modern Manufacturing Engineering Materials Forming, Machining 

and Tribology. Heidelberg. Springer International Publishing, 2015. 

2.1. Introduction 

The mechanical components quality should be controlled in all manufacture process, 

because some parameters in process such as roughness, geometric errors, white layer, and 

others are essential to ensure a great performance of mechanic components. In finishing 

process, this control is generally more attentive. Surface finish is one of indicators for the 

quality control of machining operations directly linked to cutting process conditions (cutting 

parameters, tool, workpiece material, cooling system, occurring phenomena, machine-tool, 

and others) (García-Plaza et al., 2013). 

An example is the quality of the dies and moulds that directly affect the quality of the 

produced parts. Moulds used for injection moulding lenses or dies used for precision forging 

of automotive drive train components need high quality (Altan, Blaine and Yen, 2001). 
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The goal of quality in engineering is to make products that are robust with respect to all noise 

factors and the most important stage in the design of an experiment lies in the selection of 

control factors (Asiltürk and Akkuş, 2011). The developments of new tools through 

materials, coasting and/or geometry, for example the wiper tools, or procedures, as the use 

of High Speed Machining, are several researches objects. 

Bouzakis, Aichouh and Efstathiou (2003) studied the milling with ball end tools aiming to 

understand the chip formation mechanisms, the cutting force, the tool deflections, and 

achieve low roughness values. Tang et al. (2009) studied the stability limits of high-speed 

finishing in end milling of the steel with 0.45% of Carbon, hardness of 24 HRC, and the 

spindle speed between 5,000 to 17,000 rpm. Souto-Lebel et al. (2011) investigated the defect 

size distribution induced by ball-end finishing milling in the AISI 4150 with cutting speed 

of 300 m/min. 

According to Suresh et al. (2013), the hard turning is used in semi-finishing and finishing in 

the automobile industry (transmission shafts, axles and engine components), and the aircraft 

industry (flap gears, landing struts, and aerospace engine components). It can be justified as 

hard turning when the finishing of gear components is around 60% of reduction in machining 

time than grinding process. It is the reason that has as trend to replace the grinding process 

with the turning process to directly rough and finish in the machining of hardened bearing 

components prior to superfinishing. 

2.2. Surface Integrity 

Surface Integrity (SI) is important to safety critical industries (as aerospace) or critical to the 

economics of the processes (as forging dies, plastic moulds, and press tools). The influence 

of each parameter needs to be known, together with interactions, in order to allow at least, a 

“pseudo-optimisation” of SI. The parameters, tools, and operation selection are very 

important on the machining (Axinte and Dewes, 2002). 

The constant need for improved the surface integrity and enhanced functional performance 

of manufactured components has long acted as a driving force in the development of new 

production methods and high performance manufacturing technologies. Today, new 

capabilities in machining processes and high precision engineering have enabled the 
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miniaturization of manufacture of some components. This in turn has required the use of 

advanced surface characterization methods to assess the nature of the alterations produced 

in very thin layers of the machined surface (Jawahir et al., 2011). 

Ginting and Nouari (2009) researched the surface integrity on the milling of Ti-6242S 

titanium alloy using uncoated and CVD-coated carbide tools. They found Ra values produced 

by the uncoated carbide and the CVD-coated carbide tools range from 0.39 to 0.72 μm and 

from 0.43 to 0.69 μm, respectively. 

2.2.1. Surface roughness. 

Between the many methods to quantify the surface integrity, the surface roughness is a 

method widely used and considered as the primary indicator of the quality of the surface 

finish (Ulutan and Özel, 2011). The surface roughness can be influenced for all parameters 

and phenomena that occur during the cutting. A set of parameters of influence surface 

roughness is diagrammatically displayed in the Figure 2.1 (Benardos and Vosniakos, 2003). 

 

Figure 2.1 – Fishbone diagram with the parameters that affect surface roughness (Benardos and Vosniakos, 

2003). 

The average roughness (Ra) is the most popular parameter of 2D surface roughness, and for 

3D surface, the most popular are the arithmetical mean of the surface (Sa) and surface 

roughness parameters (Sq) (Mhamdi et al., 2012). Lahiff, Gordon and Phelan (2007) cited 

that if the surface finish (Ra) was the parameter used to define tool life, the maximum nose 
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radius is 0.8 mm, because a smaller nose radius has a negative effect on the workpiece 

surface finish.  

Devillez et al. (2011) in the turning (dry and wet) of Inconel 718 (44 HRC) found the surface 

roughness (Ra) had a tendency to decrease with increase in cutting speed in dry conditions 

and the wet condition, the values decreased with higher cutting speed values only after the 

value of 60 m/min. Yazid et al. (2011) observed that experiments on the finish turning 

Inconel 718 using PVD coated TiAIN carbide tool showed that Minimum Quantity 

Lubrication (MQL) produces better surface roughness than dry condition. 

Brandão et al. (2013) studied the influence of cooling systems (dry, MQL, cold air) in the 

surface roughness (Ra) on the turning of Ti-6Al-4V titanium alloy and they observed that the 

cooling system was lesser influent than the feed rate on surface roughness, but the cooling 

systems did not show the same influence and they cited the usage of the traditional MQL 

system is a good choice to provide best surface roughness values. 

Pu et al. (2012) studied the dry machining and cryogenic machining of AZ31B magnesium 

alloys that observed the application of liquid nitrogen cooling led to about 20% decrease in 

surface roughness, the better surface finish in cryogenic machining should be due to the 

remarkably reduced temperature through effective cooling by applying liquid nitrogen. 

Beyond surface roughness and form, the surface finish consists of waviness on surface that 

is a type of surface inaccuracy of wavelength greater than surface roughness, and with 

wavelength less than form error. The surface roughness wavelength in the feed direction is 

equivalent to the feed rate in units of distance (Meyer, Veldhuis and Elbestawi, 2009). 

2.2.2. Residual stresses 

Residual stress is the stress remaining in that body when there are no external forces applied 

on the body, inhomogeneous inelastic deformation or during solidification (microscopic 

level). Residual stress is created at the grain boundary or other nearby imperfections in the 

material. In machining process, the residual stress is induced by the inhomogeneous inelastic 

deformation created by the very action of cutting and when the cutting tool is retracted and 

the workpiece is released. Thus, the stresses that remain in the workpiece, after it is cooled 

to room temperature (Ee, Dillon and Jawahir, 2005). 
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In their study about residual stresses, Maranhão and Davim (2012) affirmed that important 

aspects on machining of materials are:  

 Compressive residual stresses generally improve component performance and life; 

 The influence of the process parameters on residual stresses is as follows; feed rate, 

tool nose radius, rake angle; 

 Residual stresses are mostly influenced by feed rate and nose radius; 

 Increased feed generates significantly higher compressive stresses; 

 Residual stress mechanism is influenced by process parameters in a common way. 

Tang et al. (2009) investigated the influence of residual stresses on the milling of Al 7050-

T7451 aluminium alloy. They observed tool flank wear and depth of cut have effect on 

superficial residual stresses. The use of small depth of cut values produced a lower tensile 

or compressive stresses on the surface and the thermal load (significantly) and the 

mechanical load affects the thickness of residual stresses layer. 

Madyira et al. (2013) studied the residual stresses on the turning of Ti-6Al-4V titanium alloy 

and observed that maximum principal stress is typically aligned along the main cutting 

direction and the induced residual stresses by the cutting process are mostly in compression. 

Devillez et al. (2011) observed that residual stresses in dry and wet conditions appeared 

when the tensile stress is limited by the use of a lubricant. However, when the lubrication is 

reduced and the cutting speed also increase, an equivalent tensile stress values occur for a 

cutting speed of 80 m/min. 

2.3. High Speed Machining 

Many advantages obtained with the use of HSM were cited by researchers, such as Schulz 

and Moriwaki (1992). The authors affirm that the main advantages are increase of accuracy 

in machining, especially in machining of thin webs due to reduced chip load; better surface 

finish and reduction in the damaged layer; reduced bur formation; better chip disposal; 

possibility of higher stability in cutting due to stability lobes against chatter vibration; 
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simplified tooling, etc. The speed applied in the HSM will depend on material and process 

combination. Kitagawa, Kubo and Maekawa (1997) comments in their paper, that the high-

speed machining of Ti-6Al-6V-2Sn titanium alloy using sintered carbide tool with 628 

m/min of cutting speed is feasible to end milling and no more than 200 m/min is attainable 

for continuous turning. 

Some of first researches about HSC have sponsored in USA by Defense Advanced Research 

Project Agency (DARPA), working with a range from 0.0013 m/min to 24,500 m/min, and 

in Germany by the Ministry of Research and Technology (BMFT). Many of these researches 

were applied in machining of light alloy, mainly aluminium alloys because the use in the 

aircraft industry (Schulz and Moriwaki, 1992). The start developed in several companies and 

laboratories in machining of hardened steel dies, showing that it is possible to obtain better 

material remove rate than with electrical discharge machining  (Tlusty, 1993). The HSM has 

been applied to a range of applications in the aerospace industry, originally for the machining 

of aluminium alloys and more recently in titanium alloys and nickel-based super alloys 

(Coldwell et al., 2003) . 

Krajnik and Kopač (2004) cited market exigencies from manufacturing companies to 

produce high-quality products at acceptable prices with shortest interval of time possible. 

Thus, manufacturers of mould and die modernize their equipment, processes, and 

organization, knowing all advantages and disadvantages of rather expensive investments in 

new technologies, or they can go to bankrupt. They show an evolution of machining time of 

mould and die manufacturing between 1985’s and 2000’s, where the manufacturing time 

improved 43% with HSM in comparison to conventional process. Coldwell et al. (2003) 

affirmed that benefits with HSM approach include significant cost/lead time, reduction 

through the elimination of multiple processes including hand finishing and a product 

manufactured using the traditional route can take over 20 weeks. 

In the their research using the HSM on the turning of Inconel 718, Pawade et al. (2007) 

observed the surface roughness is lower when the cutting speed increases, and it represents 

a higher MRR. Gaitonde et al. (2010) studied the machinability of tungsten-copper (WCu25) 

machining with cemented carbide and observed the formation of continuous coiled chips 

during the machining of tungsten-copper composite and with usage of HSM, the formation 

of longer and smoother tubular structured chips. 
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Silva et al. (2013) investigated the wear mechanisms of PCD tools when turning Ti-6Al-4V 

titanium alloy at high speed (175, 200, 230 and 250 m/min) conditions using high pressure 

coolant supplies. They observed the substantial improvement in tool life and it presented 

dominant the flank and nose wear and the adhesion and attrition are dominant wear 

mechanisms. 

Small cut depths with intermediate and high cutting speeds may imply a fully tensile surface 

influence zone and an increase in cutting speed implies a reduction in longitudinal residual 

stress until tool breakdown starts to occur (Madyira et al., 2013). Arrazola, Arriola and 

Davies (2009) cited the importance of tool geometry on temperature and tool wear in their 

research about HSM of hardness steel using tools with uncoated/coated and with or without 

chip breaker. 

Yap, El-Tayeb and Brevern (2013) researched the turning Ti-5Al-4V-0.6Mo-0.4Fe (Ti54) 

titanium alloy using the HSM (100 m/s). They found surface roughness values 0.236 µm 

(Ra), 0.305 µm (Rq) and 1.85 µm (Rmax) in dry condition. When they applied cryogenic liquid 

nitrogen, the values decreased to 0.208 µm (Ra), 0.272 µm (Rq) and 1.69 µm (Rmax). 

2.4. Micro-cutting 

The micro-mechanical machining has strong interest in mechanical cutting processes, 

because it is a method for creating miniature devices and components with features that 

range from tens of micrometres to a few millimetres in size (Chae, Park and Freiheit, 2006). 

This process offers good results, it is reason many researchers are investigated the 

performance of micromachining and their derivations in several conditions with. 

According to Masuzawa (2000) a miniaturization of mechanics devices began with oldest 

wristwatches parts, the only using in this date. Micro in micromachining indicates 

“micrometre” and represents the range of 1 µm to 999 µm; despite this definition, the micro 

conception can vary with time, person, material, process. 

There are several definitions for micromachining and micro-cutting. Ng et al. (2006) referred 

to micro/nano scale cutting would be a material removal in smaller undeformed chip 

thickness values. According to Zhu, Wong and Hong (2009), micromachining is a 
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precision/ultra-precision machining technology where the tolerances, cutting depths, and 

even part sizes are in micro-scale. 

2.4.1. Size Effect and Ploughing Effect 

A difference is the forming chip comprises several grains in conventional machining and in 

micromachining the chip forms within few or a single grain at a time. When the whole shear 

deformation occurs within a single grain, the stresses applied to the tool are dependent on 

individual grain orientation, causing high frequency fluctuations of cutting forces (Bissacco, 

Hansen and Chiffre, De, 2005). 

Another interesting aspect is the chip formation in micromachining. The concept of 

minimum chip thickness is that the depth of cut or feed must be over a certain critical chip 

thickness before a chip will form, see as follow: (Chae, Park and Freiheit, 2006) 

 If the uncut chip thickness, h, is less than a critical minimum chip thickness, hm, 

elastic deformation occurs and the cutter does not remove any work piece material, 

Figure 2.2a. 

 As the uncut chip thickness approaches the minimum chip thickness, chips are 

formed by shearing of the work piece, with some elastic deformation still occurring, 

Figure 2.2b. 

 If the uncut chip thickness is higher than the minimum chip thickness, the elastic 

deformation phenomena decreases significantly and the entire depth of cut is 

removed as a chip, Figure 2.2c. 

 

Figure 2.2 – Schematic of the effect of the minimum chip thickness (Chae, Park and Freiheit, 2006). 
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In micromachining processes although similar to conventional processes, it is cannot be 

offhand down scaled into the micro range due to size effect, because when the uncut chip 

thickness is on the same order as the material grain size, the workpiece material cannot any 

more be assumed as homogeneous and isotropic (Klocke, Gerschwiler and Abouridouane, 

2009). 

In turning of AISI 1045, occurred continuous chips, Figure 2.3a and Figure 2.3b, when the 

uncut chip thickness was greater than or equal to the average size of the smallest grain type, 

in this case ferrite. When the uncut chip thickness is less than the smallest average grain size, 

the chip is comprised of alternating layers of hard pearlite (grey) and softer ferrite (white), 

this is interest because it implies that the transition from a continuous to a quasi-shear-

extrusion chip could be a function of material microstructure, Figure 2.3c and Figure 2.3d. 

This result, the chip formation mechanisms and stress state during microscale cutting are 

more complex than during macroscale cutting, what is presented by the basic models 

employed for continuous chip formation, because the extensive plastic deformation will 

occur at the tool tip, which in the case of microscale cutting is entire tool (Simoneau, Ng and 

Elbestawi, 2006). 

  
a) t = 100 µm b) t = 10 µm 

  
c) t = 4 µm d) t = 2 µm 

Figure 2.3 – Behaviour of chips (Simoneau, Ng and Elbestawi, 2006). 
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Analysing the specific cutting energy and coefficient of friction, Ng et al. (2006) justified 

that size effect occurred as an undeformed chip thickness is comparable to the cutting edge 

radius (60 to 100 nm), in both, the values increases nonlinearly with a decrease in the 

undeformed chip thickness, Figure 2.4.  

In 1984, Kopalinsky and Oxley explained that size effect occur when the increase in specific 

cutting pressure with decrease in the undeformed chip thickness was attributed mainly to the 

accompanying decrease in shear angle and consequently less than a proportional decrease in 

cutting force with decrease in undeformed chip thickness (Arsecularatne, 1997). 

According to Aramcharoen and Mativenga (2009), specific cutting force is characteristic to 

determine the size effect. They researched the specific cutting force with the ratio of 

undeformed chip thickness to cutting edge radius for a feed direction and found that higher 

specific cutting force is revealed at the lower end of the ratio of undeformed chip thickness 

to cutting edge radius, when the feed per tooth decrease especially when the feed per tooth 

is less than the cutting edge radius that supports the size effect phenomenon. Ng et al. (2006) 

also affirmed that in micro and nano scale cutting, the edge radius does influence the specific 

cutting energy, which considered the tool edge geometry as the major cause of the size-

effect.  

 

Figure 2.4 – Effect of undeformed chip thickness and cutting speed on the specific cutting energy (Ng et al., 

2006). 
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When a blunt tool edge passes and material is elastically or plastically deformed without the 

formation of the chip occurs an effect called Ploughing. This effect is related to results in 

poor surface finish, deteriorated dynamic stability and shortened tool life. According to Yun 

et al. (2011), it occurs when the uncut chip thickness is greater than the minimum chip 

thickness and to avoid ploughing. The feed per tooth must be higher than the minimum chip 

thickness. In the micro-milling of copper study, they observed that the surface roughness 

value is increased when ploughing occurs. 

According to Aramcharoen and Mativenga (2009), determine the ratio of minimum chip 

thickness to the cutting edge radius is essential in micromachining in order to avoid or 

minimize the ploughing effect and achieve desired material removal, which depends on work 

and tool material can vary between 0.1 to 0.3. 

2.4.2. Applied Techniques in micromachining 

Robinson, Jackson and Whitfield (2007) highlighted the interest in micromachining 

applying high Speed, mainly when speed spindle exceeds of 500 krpm. Cristofaro et al 

(2012) have used the High Speed Machining (HSM), 91 m/min, and Ultra-high Speed 

Machining (UHSM), 141 m/min, to research influences of seven kinds of coatings on the 

micro-milling. Many researchers applied High Speed or Ultra-High Speed in their paper, 

mainly in micro-milling, Table 2.1.  

Ding et al. (2010) have studied the effect two dimensional vibration-assisted micro-end-

milling at hardened tool steel, which observed that it can improve the machinability of 

hardened tool steel in terms of machined surface improvement and tool wear reduction. Li 

and Chou (2010) investigated the performance of MQL in micro-milling of SKD 61 steels 

that resulted in the reducing the flank wear (60%), improvement in the surface roughness 

and attenuation of burr formation. Lekkala et al. (2011) studied the burr in micro-milling 

and developed a theoretical model predicts the burr height within 0.65 to 25% accuracy. 

Surmann and Krebs (2012) investigated the tool inclination angles in the five-axis micro-

milling. Singh and Melkote (2007) have used the laser-assisted mechanical machining in 

micro-milling to overcome the limitations of low tool stiffness and bending strength in pure 

mechanical micro-cutting. 
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Table 2.1 – High Speed machining (HSM) and Ultra-High Speed Machining (UHSM) in micro-milling. 

Researchers Classification Material Tool (mm) Speed (krpm) 

Jahanmir (2011) UHSM 
Al 6061-T6 

Aluminium alloy 
0.05 to 0.3 150, 250, 300, 350 

Nishikawa, Yoshimoto and 

Somaya (2012) 
UHSM 

Al 2024 

Aluminium alloy 
0.4 300, 400 

Shin et al. (2008) UHSM Brass (6:4) 0.2 150 

Park and Rahnama (2010) HSM 
Al 7075 

Aluminium alloy 
 10 to 55 

Cristofaro et al. (2012) 
HSM AISI O2 steel 

(62 HRC) 
1.0 

29 

UHSM 45 

Baldo et al (2015)1 HSM 
Ti-6Al-4V 

Titanium alloy 
0.5 20 and 45 

Lauro et al. (2015) HSM 
AISI H13 steel 

(45 HRC) 
0.5 21 and 49 

HSM → High Speed Machining UHSM → Ultra High Speed Machining 

 

2.4.3. Surface integrity for the micro-machining process 

The micro-milling has more highlight between all micromachining processes, because it has 

great accuracy, low surface roughness and a high material removal rate, there is directly 

relation mould and dies manufacturing (Malekian, Park and Jun, 2009). Wang, Kweon and 

Yang (2005) have studied the surface roughness on the micro-milling of brass and they 

observed that the surface roughness increased linearly with the increase of tool diameter and 

spindle speed, but the spindle speed caused a high frequency vibration caused high surface 

roughness. 

According to Filiz et al. (2008), only the main effect of the spindle speed was statistically 

significant, that indicates the possibility of increasing the material removal rate without 

compromising on surface roughness. Some results of surface roughness, often lower values, 

can be seeing in the Table 2.2. 

According to Liu and Melkote (2006), it been observed that the surface roughness in micro-

turning decreases with feed, reaches a minimum, and then increases with further reduction 

in feed. They developed a kinematic roughness model where the percentage error was less 

than 15%, to micro-turning of Al 5083-H116 aluminium alloy. It was considered the aspects 

as account the effect of plastic side flow, tool geometry, and process parameters. They 

                                                           
1 Self-citation.   
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observed also that the plastic side flow can cause a discrepancy between the theoretical and 

measured surface roughness and increases and increase due to the strain gradient-induced 

strengthening of the material directly ahead of the tool. 

Table 2.2 – Roughness in micromachining processes. 

Researchers Material Process Roughness (µm) 

Palani, Natarajan and Chellamalai (2013) Tungsten electrode Turning Ra = 0.029 to 0.58 

Liu and Melkote (2006) Al 5083-H116 alloy Turning Rt = 2.82 to 4.63 

Li and Chou (2010) SKD 61 steels (38 HRC) Milling Ra = 0.1 to 1.2 

Wang, Kweon and Yang (2005) Brass Milling Ra = 0.013 to 0.073 

Aramcharoen and Mativenga (2009) AISI H13 steel (45 HRC) Milling Ra = 0.14 to 0.26 

Lauro et al. (2014) AISI H13 steel (45 HRC) Milling Ra = 0.088 to 0. 223 

Min et al. (2008) Austenitic stainless steel 304 Milling Ra = 0.190 to 0.300 

 

Bodziak et al. (2014) studied the surface integrity of moulds, AISI P20 (29 HRC) and AISI 

H13 (45 HRC), for micro-components manufactured obtained on the micro-milling and EMD 

process. They observed that EDM presented white layer with irregular thickness with a 

hardness was about three times higher than the bulk material and in the milled surface alone 

some plastic deformations with thickness thinner than 5 μm were detected; the milled surface 

presented compressive residual stress and EDM surface tensile stress and the EDM showed 

highest surface roughness (Ra), about six times, most aggressive marks and an irregular 

topography that may increase the polishing time, Figure 2.5. 

 

a) micro-milled surface. 
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b) EDM surface. 

Figure 2.5 – Compared of Top surface obtained between micro-milling and EDM (Bodziak et al., 2014). 

The understood of tool wear is important in the micro-cutting, mainly in the hardness 

materials. Although, the usage of high cutting velocities results in the better surface quality 

in hardness material, the burrs occur most frequently because of the faster tool wear, see 

Figure 2.6. It can be reduced by identifying the correct process parameter-material state 

combination (Weule, Huntrup and Tritschler, 2001). 

  

a) SAE 1045 (25 HRC). b) SAE 1045 (51 HRC). 

 

c) SAE 1045 (62 HRC). 

Figure 2.6 – Occurrence of burrs in different material states (Weule, Huntrup and Tritschler, 2001). 

Zhang et al. (2013) developed an accurate prediction model of surface roughness for micro-

turning of AISI 1045 based on considering the effect of pile-up formation process, tool 

geometry and cutting parameters. They observed that the best surface roughness can be 

obtained when the ratio of feed to cutting edge radius reaches 0.1. 
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2.5. FEM in the Surface Integrity 

Some time, many investigators using the Finites Elements Method (FEM) to study the 

residual stress behaviour on the machining processes. The use of FEM in cutting processes 

are emerging as useful techniques for predicting tool temperatures and stresses and for 

extending tool life (Fallböhmer et al., 2000). According to Arrazola and Özel (2010), it is 

very costly and difficult to measure stresses and temperatures in high-speed machining using 

experimental tests. Umbrello et al. (2007) cited that the good agreement obtained between 

the experimental and numerical results indicate that the proposed FEM model appears to be 

suitable for studying the influence of cutting parameters on residual stress. 

Manikandan et al. (2012) used orthogonal cutting to analyse plane strain-coupled thermo-

mechanical. Buchkremer et al. (2013) highlight that the cutting force is the integral 

representations of the calculated flow stresses in the primary shear zone, showed excellent 

results for a broad range of cutting conditions. 

Weinert and Schneider (2000) affirmed that FEM has proven to be advantageous for 

describing the thermal and thermo-mechanical stress and can establish a direct link between 

the thermal stress and the application properties of the tool during grinding.  

According to Rizzuti et al. (2010), besides the 2D model, the few milliseconds of cutting 

time are one of the main problem in temperature modelling because there are several 

problems related to heat generation and diffusion into the tool. In fact, no steady-state 

conditions are reached during the numerical simulation. 

Duan et al. (2013) used the FEM simulation to study the thickness of white layer based on 

phase transformation mechanism. They analysed the effects of mechanical factors on 

transition temperature were taken into account explicitly. Attanasio et al. (2012) used 

numeric (2D and 3D) and experimental tests to study the formation of layers on the 

orthogonal hard turning of AISI 52100. They found that the thickness of white and dark 

layers increases with increasing of tool flank wear and higher cutting speed generates thicker 

white layers and thinner dark layers. 

Ramesh and Melkote (2008) used the FEM to study the white layer formation in orthogonal 

machining of AISI 52100 (62 HRC) using the cBN tool. They used a model explicitly 
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incorporates the effects of stress and strain on the transformation temperature, volume 

expansion and transformation plasticity that showed predicted values and trends of white 

layer thickness. These effects are in good agreement with the measured values and trends 

when compared to experimental validation. 

Sometime, many investigators using the FEM to study the residual stress behaviour on the 

machining processes. Thus, for example, Ee, Dillon and Jawahir (2005) used a 2D model to 

study the residual stresses induced by orthogonal machining. Valiorgue et al. (2012) used a 

3D model to study the residual stresses in finish turning of AISI 304L stainless steel with a 

TiN coated carbide tool. They proposed a model that does not simulate the chip formation 

and the material separation around the cutting edge, but only onto the thermo-mechanical 

loadings applied onto the machined surface. 

Rizzuti et al. (2010) affirmed that the residual stresses are generated by the material 

deformation and by the thermal cycle and both phenomena occur during the cutting process. 

The components of the residual stresses can be the axial and the circumferential. They 

measured the circumferential stress using the numerical procedure of orthogonal cutting of 

AISI 1045, which observed agreement was obtained between the numerical predicted 

residual stresses and those experimentally measured. 

Özel and Zeren (2007) used the FEM to study machining with round edge cutting tools in 

the HSM of AISI 4340 and they compared with experimentally measured residual stresses 

obtained from the literature, which indicated an influence the stress and temperature fields 

greatly. These predictions combined with the temperature field predictions are highly 

essential to further predict surface integrity and thermos-mechanical deformation related 

property alteration on the microstructure of the machined surfaces. 

2.6. Synthesis 

Although the “micro” conception can remind the components of smallest dimensions, the 

micromachining can be to manufacture components in macro-scale. Through the previous 

arguments, the use of micromachining can be recommended in the finishing of surfaces that 

need of high accuracy. A great example is found in the study of Byrne, Dornfeld and 
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Denkena (2003), which showed the evolution of the ABS system weight, a reduction of 71% 

between 1989 and 2001. 

This technique offers lower surface integrity values that can provide high efficiency and 

durability. In addition, the surface can show lower error, as form or dimensions. Thus, if 

there is a demand of high surface quality machining, the usage of micromachining is a great 

option to obtain these surfaces. However, this technique requires high control and specials 

or adapted machines. 

 

 

 



 

 

 



Study of micro-cutting in the finishing of a difficult-to-cut biomaterial 

27 

 

CHAPTER 3 – MONITORING AND SIGNAL PROCESSING IN THE 

MACHINING AND MICROMACHINING PROCESSES 

This chapter was developed to defined the technique to observe the phenomena during the 

micro-cutting. A large portion of this chapter has similarity with: 

 LAURO, C. H. et al. Monitoring and processing signal applied in machining processes – 

A review. Measurement, v.58, 2014, p. 73 – 86. 

3.1. Introduction 

The monitoring of machining process can represent economy and practicality due to it help 

to identify tool wear, surface roughness and anomalies during the cutting metal that can 

cause waste, damage and other impairing facts in this process. According to Teti et al. 

(2010), the measuring techniques for the monitoring of machining operations have 

traditionally been categorised into two approaches: 

 Direct measurement the actual quantity of the variable is measured and highlight a 

high degree of accuracy and has been employed extensively in research laboratories 

(due to the practical limitations caused by access problems during machining, 

illumination and the use of cutting fluid) to support the investigations of fundamental 

measurable phenomena during machining processes.  

 Indirect measurement actual quantity is subsequently deduced via empirically 

determined correlations and it is less accurate than direct ones but is also less 

complex and more suitable for practical applications. 

The indirect measurement applied in the tool condition uses an estimate from the measurable 

signal feature that extracted through signal processing steps, as can be seen in Figure 3.1. It 

is used for sensitive and robust representation of its corresponding state. Example of this 
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measurement is the cutting forces, vibrations, acoustic emission, and motor/feed current 

(Zhu, Wong and Hong, 2009). 

 

Figure 3.1 – The framework of TCM, adapted from Zhu, Wong and Hong (2009). 

According to Dimla (2002), the tool wear monitoring involves the complex and diverse 

nature, which should provide an indication as to when the cutting tool should be changed, 

without compromising the workpiece surface finish, the machine integrity, and the 

manufactured component tolerances. 

In their paper, Lee, Lee and Teo (1992) mentioned that the on-line monitoring to tool wear 

and predict its failure is reliable and able to respond quickly to tool failure. Although the 

personal computer used (10 MHz 80286) did not offer a good response time. The on-line 

real-time monitoring (based on cutting forces, sound and vibration, laser scanners, vision 

systems and computer tomography), even though can supply a surface quality feedback to 

CNC for on-line adjusting cutting parameters, it has some drawbacks such as some signals 

may be redundant; measurement errors are not easy to be avoided, resulting in inaccurate 

prediction; measurement cost is relatively high (Lu, 2008). 

3.2. Cutting Forces 

The analysis and prediction of cutting forces are very important in research of metal cutting 

processes and design of cutting tools, which develop in crucial role thermal analysis, tool 

wear estimation, chatter prediction, chip form categorization, surface roughness prediction, 

tool condition monitoring and others. Furthermore, large cutting force means more energy 

consumption that is the aim of studies in reducing of cutting force through appropriate choice 

of parameters and tools (Deng et al., 2013). According to Kim and Kim (1997), the cutting 

force is composited by: 

 Static force: it is a mean value and have concentrated most of the measurement of 

cutting force; 
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 Dynamic force: it is the superposed fluctuation and can satisfy the needs of higher 

machining accuracy, because it has very useful information on cutting mechanism. 

Gok, Gologlu and Demirci (2013) investigated optimum cutting parameter values in the 

cutting force in the milling of AISI H13 (50-54 HRC) on convex and concave inclined 

surfaces using a ball nose tool. They observed that, an absolute difference in percentile of 

measured and calculated values were lower than 3.57 in both inclined surface types. 

According to Childs et al. (2000), the cutting forces can be measured in:  

 Direct measurements are used when the forces need to be known accurately both in 

magnitude and direction that involve mounting a tool or the tool or workpiece on a 

dynamometer, which responds to the forces by creating electrical signals in 

proportion to them. 

 Indirect measurements are less accurate than direct methods, but can be sufficient for 

monitoring purposes that involve deductions from the machine tool behaviour. 

Is common the measurement the motor current as indirect methods, because the phase 

current waveform varies in the case of feeding while cutting and the phase current signal is 

a perfect sine wave in the case of feeding without cutting. (Kim and Chu, 1999).  

The usage of dynamometer is most popular method to cutting forces measurement, which 

can be constructed by piezoelectric or stain gauges. The piezoelectric effect is a separation 

of charge in certain materials that are subjected to mechanical force. Each force component 

is detected by a separate crystal oriented relative to the force in its piezoelectric sensitive 

direction. The quartz is usually chosen as the piezoelectric material because of its good 

dynamic mechanical properties, low loss and piezoelectric constant is approximately 2x10-

12 C/N. A charge amplifier is therefore necessary to create a useful output that must itself 

have high input impedance. Commercial machining dynamometers are available with natural 

frequencies from 2 to 5 kHz, depending on size (Childs et al., 2000). 

In the study of combined-type tool dynamometer to measure the static and the dynamic 

cutting force in an ultra-precision lathe, Kim and Kim (1997) used a high-pass filter to 

eliminate the 60 Hz electrical noise in the dynamic component measurement in the strain 

gauge dynamometer. 
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3.3. Vibration 

Vibration is a common phenomenon in the finishing machining of the flexible workpiece 

due to its low rigidity (Zeng et al., 2012). The great industrial interest is avoid the vibrations 

that produce bad surface finish and may cause some damages on the machine components 

(Devillez and Dudzinski, 2007). 

According to Dimla (2002), the vibration signatures satisfy a robustness, reliability, and 

applicability conditions and require fewer peripheral instruments than Acoustic Emission. 

In addition, their signals have the quick response time needed to indicate changes for on-line 

monitoring. They used an analytical on-line system for TCM based on vibration signature 

features in the three principal axes to correlate to the tool wear and observed that is possible 

to identify the trend of the sensor signals, which were affected by the different wear modes. 

Furthermore, they affirmed the time domain features were deemed to be more sensitive to 

cutting condition than tool wear, whereas frequency based features correlated well with the 

tool wear. 

Accelerometers are the more used to measure the vibrations. However, Devillez and 

Dudzinski (2007) mentioned that despite they are very easy to use, accelerometers present a 

major drawback the acceleration signal that can be used to analyse only the vibration 

frequency and amplitude. They proposed a method the usage of non-contact displacement 

measuring system based on eddy current principle with a sensitivity of 30 V/mm, because 

their interest was to measure directly the tool movement in real time to correlate with the 

obtained surface finish. This method presented an efficiency to determine the dynamic 

parameters of the tool system and to obtain the cutting tool displacement signals. 

In the monitoring of the vibration in ultra-precision face turning of Al 6061 aluminium alloy 

with accelerometers fixed on the spindle and tool holders, Meyer et al. (2009) observed that 

waviness errors caused by relative tool/workpiece vibration are a significant source of 

inaccuracy and the surface finish lobes provide a systematic framework to describe how 

broadband relative tool/workpiece vibrations manifest themselves on the workpiece surface. 

According to Zeng et al. (2012), some studies focus on the vibration control of flexible 

workpiece, but the fixture has importance on the machining, since it has the ability to 
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suppress the excessive machining vibration of the workpiece and balance the cutting forces. 

It presents the following advantages:  

 It can target the nature of the problem of machining vibration suppression on flexible 

workpiece because of its clear physical meanings; 

 One can easily achieve vibration reduction of flexible workpiece with appropriate 

fixture layout and the capability of disturbance rejection of the workpiece–fixture–

cutter system can be improved using this method;  

 The location, the applied forces and the number of fixture elements can be 

simultaneously optimized. 

3.4. Temperature 

The power consumed in the cutting is converted into heat near the cutting edge of the tool 

and many of the economic and technical problems are caused directly or indirectly by this 

heating action (Trent and Wright, 2000). The two goals of temperature measurement in 

machining are, mainly, the quantitatively to measure the temperature distribution throughout 

the cutting region (commonly over 700° C) and to measure the average temperature at the 

chip/tool contact (Childs et al., 2000). 

According to Byrne (1987), the temperature is fundamental to the process of chip removal 

and perhaps it is the single most important factor influencing the efficiency of the process. 

The temperature influences following characteristic factors: 

 The degree of plastic deformation; 

 The extent of tool wear; 

 The degree of diffusion and corrosion; 

 The fatigue properties; 

 Compositional changes in the workpiece material. 

According to Sivasakthivel and Sudhakaran (2012), to measure the cutting temperatures is 

difficult because the temperature is a scalar field which varies throughout the system and 

cannot be uniquely described by values at a point. Thermocouple is the most widely used 

method. It can be embedded in the tool or work piece to measure the temperature accurately 
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with less effort, besides being conductive, operate over a wide temperature range, rugged 

and inexpensive. 

To an improve understanding of work done by a cutting tool in removing metal, O’Sullivan 

and Cotterell (2001) monitored the temperature in the turning of Al 6082-T6 aluminium 

alloy tube. They used two thermocouples on the inside of the tube and an infrared thermal 

camera placed 0.5 m from the workpiece on the opposite side to the cutting tool. 

Several experimental methods, as such thermocouple and radiation techniques, can be 

employed to measure the temperature and the prediction of heat distribution due to extreme 

difficulty that occur due to a narrow shear band, chip obstacles, and the nature of the contact 

phenomena where the two bodies, tool and chip, are in continuous contact and moving with 

respect to each other that became this measurement (Davoodi and Hosseinzadeh, 2012). The 

Table 3.1 shows some researches that used these methods. 

Table 3.1 – Types of temperature measurements. 

 Researcher Material Method Target 

D
ri

ll
in

g
 

Bagci and Ozcelik (2005) Al 7075-T651 alloy Thermocouple Tool 

Li and Shih (2007) Ti-6Al-4V alloy Thermocouple Tool 

Brandão, Coelho and Lauro (2011) AISI H13 steel Thermocouple Workpiece 

G
ri

n
d

in
g
 Ueda et al. (1993) 

AISI 1055 Annealed 

and Hardness 

Infrared Radiation 

Pyrometer 
Tool 

Wei et al. (2010) 
Steel with WC-Co 

coating 
Thermocouple Workpiece 

Mohamed, Warkentin and Bauer 

(2012) 
AISI 4140 steel 

Infrared Thermal 

Camera 
Workpiece 

M
il

li
n

g
 

Davoodi and Hosseinzadeh (2012) Cu–Zn40–Al12 Infrared Sensor Workpiece 

Sivasakthivel and Sudhakaran 

(2012) 
Al 6063 alloy Thermocouple Workpiece 

Lauro, Brandão and Ribeiro Filho 

(2013) 
Al 7050 alloy 

Infrared Thermal 

Camera 
Workpiece 

T
ap

p
in

g
 Brandão and Coelho (2009) AISI H13 steel Thermocouple Workpiece 

Fromentin et al. (2010) AISI 1070 steel Thermocouple Workpiece 

Bhowmick, Lukitsch and Alpas 

(2010) 
Al 319 alloy 

Infrared 

Thermometer 
Workpiece 

T
u

rn
in

g
 O’Sullivan and Cotterell (2001) Al 6082-T6 alloy 

Thermocouples 

Workpiece Infrared Thermal 

Camera 

Aneiro, Coelho and Brandão 

(Aneiro, Coelho e Brandão, 2008) 
AISI 4340 steel Thermocouple Tool 

Hadad and Sadeghi (2013) AISI 4140 steel Thermocouples Tool 
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Davoodi and Hosseinzadeh (2012) used an infrared sensor to monitor the temperature in the 

high speed machining that is suitable for dry conditions due to its high response rate. It has 

ability to provide temperature based on the distance from the cutting zone and is not 

necessary making hole in the tool or work piece to install the instruments. Moreover, it can 

be used for all types of materials, but the sensor should be installed as close as possible to 

the desired surface, because the distance between target surface and sensor is very important 

and can affect the results. Finally, it is not possible to used liquid cooling and the chip may 

come between surface and sensor and causes to error. 

3.5. Signal Acquisition 

To obtain success in the processes monitoring, the choice of devices is very important. The 

user should check if the measurement resolution and range will attend the process 

requirements. According to National Instruments (2012), the resolution refers to the number 

of binary levels an ADC can use to represent a signal; the smallest detectable change in this 

signal determines the resolution that is required of device, Figure 3.2. The bits per sample 

will be kept constant and with best quality because this is period of test and already is not 

possible know if the acquisition in audible sound, between 20 Hz and 20 kHz. 

 

Figure 3.2 – Influence of bits per sample (National Instruments 2012). 

Furthermore, the sample frequency is another important aspect. This factor, generally, is 

related to revolution of operation. The sample frequency should be great definite, because 

an incorrect value can mask important values that will influence the signal behaviour. Shaw 

(2004) suggests a sample frequency should be four times more than revolution, a minimum. 
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Other researchers applied the Nyquist Theorem, should sample at least 10 times the 

maximum frequency, Figure 3.3 (National Instruments 2012). 

 

Figure 3.3 – Example of sample rate (National Instruments 2012). 

3.5.1. Domain Analysis 

The time domain is based on estimating the signal period and subsequent equidistant 

sampling of one signal period, an integer number of signal periods, or on using measurement 

time covering many signal periods that are needed to decrease sufficiently the uncertainty of 

measurement caused by the energy leakage due to non-coherent sampling (Novotny and 

Sedlacek, 2009). 

The time domain signal when processed by the application of the Fourier Transform, see 

forward, transforms the signal data into the frequency domain, which refers to the display or 

analysis of data based on frequency. In vibration analysis, the principal advantage is the 

repetitive nature of the signal and are clearly displaced as peaks in the frequency spectrum 

at the frequency where the repetition takes place (Bhende, Awari and Untawale, 2011). The 

use of frequency analysis can verify the monitoring of the tool rotational speed or can detect 

if the tool is cutting with one or multiple blades (Morska, Matuszak and Waszczuk, 2012). 

Analysing the accelerator signal, Bisu et al. (2011) realized that the convolution in the time 

domain is equal to the product in the frequency domain, so the fault signal becomes a 

modulated signal. They also affirmed that the fault signal can be enlarged more than ten 

times at the resonant frequency. However, the fault signal is relatively diminished in the 
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other frequency range due to the character of the wide frequency range of impulsive signal 

that the average noise signal always contains in the low-frequency range and this situation 

also applies to the sensor. 

Analysing the microphone and accelerometer power spectrum of signals for sharp and worn 

tools, Lu and Kannatey-Asibu (2002) observed that the energy distribution for sharp and 

worn tools are easily discernible from the sound and vibration signals. In this regard, 

ignoring the sound signals below 0.5 kHz, similar peaks were observed in both the sound 

and vibration signals in the feed and cutting directions. 

According to Lamraoui et al. (2014), the frequency domain has a drawback due to not 

providing information in the time domain. A time-frequency analysis is better as it 

characterises the signal in both the time and frequency domains. In vibration analysis, it 

manifests in either the frequency or the time domain and thereby gives a compromise 

between the frequency resolution and the temporal resolution. They acquired the data using 

the angular-domain because it is more convenient to sample the signal with respect to an 

angular variable θ, so that the cycle stationary characteristic is preserved. 

Zhang and Chen (2007) developed a study of TCM in an CNC end-milling machine based 

on the vibration signal collected through a microcontroller-based data acquisition system. 

They observed that displaying vibration signals of the X, Y and Z directions in the time 

domain is helpful in understanding the cutting condition. The vibration amplitudes in the 

time domain and the frequency peaks at harmonic frequency bands of the X and Y directions 

can be used as the key featured signals for monitoring the tool condition. 

Sometimes the vibration and sound analysis can be analysed using frequency spectra. More 

advanced signal-processing techniques needed for system, source, and path identification 

problems require the computation of frequency spectra. Furthermore, if the data are random 

in character, a frequency analysis in terms of power quantities per hertz greatly facilitates 

the desired evaluations of the data signals. For deterministic signals that are periodic, a 

frequency decomposition or spectrum is directly obtained by computing the Fourier series 

coefficients of the signal over at least one period of the signal using a Fast Fourier Transform 

(FFT) algorithm. Line Spectrum or Discrete-frequency Spectrum is represented by the 

Fourier component magnitudes versus frequency. However, the phase information is 
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generally retained only in those applications where there may be a need to reconstruct the 

signal time history or determine peak values. The Power Spectral Density function or Auto 

Spectral Density function provides a convenient and consistent measure of the frequency 

composition of random data signals. The power spectrum is most easily visualized as the 

mean-square value of the signal passed through a narrow-band pass filter divided by the filter 

bandwidth (Vér and Beranek, 2006). 

It is interesting to highlight however, that although the time and frequency domain are more 

utilized, other domain analysis can also be applied in machining monitoring. In their paper, 

Ritou et al. (2014) studied the radial eccentricity of a new end mill. To study the contribution 

of each tooth to the cutting force, they applied an angular approach. They acquired the force 

signals in the time domain associated with the tool angular position. They observed that for 

every tool revolution, a force peak is extracted for each tooth that passes and hence the cutter 

eccentricity is estimated. 

Lamraoui et al. (2014) developed a chatter indicator method to diagnose chatter in high 

speed milling of Al 7075-T6 aluminium alloy using an angular-frequency domain. They 

affirmed that analysis in the angular domain is useful for observing the behaviour of cutting 

forces during each revolution and provides information about the system stability. They 

acquired the AC motor integrated rotational encoder data using a system with an angular 

sampling device. 

3.6.  Signals processing 

Sometimes, the acquired signal can have influence by frequency range that is not interest in 

the analysis and it causes the monitoring be totally impractical. An alternative is to use a 

non-periodic excitation and statistical signal processing techniques that requires a number 

of operator decisions: the frequency range, the number of test averages, and choice of 

windowing procedure (Cheng, 2009). 

Kuljanic, Totis and Sortino (2009) mentioned some analysis techniques to the signal 

processing: 

 Time domain analysis (once per revolution sampling, Poincarè sections); 

 Frequency domain analysis (Fast Fourier Transform, power spectral density); 
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 Time–frequency domain analysis (Wavelet Transform); 

 Other (entropy, coarse-grained entropy rate, normalized coarse-grained information 

rate). 

Kalvoda and Hwang (2010) affirmed that right data processing technique is one of the most 

important items for a cutting process that is assumed that to be nonlinear and non-stationary. 

3.6.1. Fourier Transform 

The Fourier Transform (FT) is commonly applied in the signal processing. The principle of 

Fourier Transform is to extract the fundamental frequency component of the fringe pattern 

in the 1D or 2D frequency domain and its inverse transform of the filtered frequency domain 

signal then provides the modulo 2π phase of the fringe pattern (Huang et al., 2010). 

To study the high-precision machining, Kono et al. (2008) applied the Fourier series in the 

frequency domain to analyse geometric errors from other errors using an artefact and a laser 

displacement sensor. In their study about the analysis using a multi-sensor in high speed 

machining, Kang, Kim and Kim (2001) monitored the spindle vibration and analysed the 

rotation frequency and tooth frequency of the acceleration signal transformed by a Fourier 

transform. 

In the literature is possible find the several variations of Fourier Transform applied in 

machining signal processing. The Discrete Fourier Transform (DFT) and Discrete Cosine 

Transform (DCT) are efficient forms of the Fourier transform often used in various 

applications including tool condition monitoring (Liao et al., 2007). 

Gabor Transform, also called short-time Fourier Transform (STFT), is a time-frequency 

technique used to deal with non-stationary signals that has a short data window centered on 

time and its implementation for AE signal processing is efficient when it is used to locate 

and characterise events with much defined frequency patterns, not overlapping and long 

relatively to the window function (Rubio, Teti and Baciu, 2006). 

According to Zhu, Wong and Hong (2009), although the Fast Fourier transform (FFT) is the 

standard method for observing signals in the frequency domain and has been widely studied, 

it has certain serious theoretical drawbacks in processing machining signals. Liu et al. (2005) 
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used FFT to filter the undesired frequency components in the interpolation points, which 

guaranteed the exact trajectory generation and shock free motion simultaneously, it to avoid 

excessive vibrations in machining. 

3.6.2. Hilbert-Huang Transform 

An option to process the signals is the Hilbert-Huang Transform (HHT) method that, 

according to Cao, Lei and He (2013), consists in the step following:  

 Empirical Mode Decomposition, which a complicated signal is decomposed into a 

series of simple oscillatory modes, designated as intrinsic mode function (IMF), and 

a residue; 

 Hilbert transform is then invoked for each intrinsic mode function (IMF) to obtain 

the instantaneous frequencies and the instantaneous magnitudes, which comprise the 

Hilbert-Huang spectrum of the signal. 

The Table 3.2 shows some researchers that used this method. Cao, Lei and He (2013) 

monitored the vibration signals on the milling aluminium 7050 with a carbide end mill cutter 

(two flutes) using the spindle speed of 8,500 rpm (1,500 mm/min) and a sampling frequency 

of 6,400 Hz. They used the Hilbert-Huang Transform (HHT) to analyse the reconstructed 

signals and obtain the Hilbert-Huang spectrum, which their mean value and standard 

deviation were used to calculate the chatter indices.  

Table 3.2 – Some machining researches using HHT. 

 Researcher Monitored Signal Material Spindle Speed (rpm) 
Sampling 

Frequency 

M
il

li
n

g
 

Kalvoda and Hwang (2010) Vibration SAE 1045 
773, 1345, 

2004 
2 kHz 

Bassiuny and Li (2007) Current SAE 1045 
300, 450, 600, 900, 

1200 
1 kHz 

G
ri

n
d

in
g
 

Yang et al. (2014) 

Acoustic emission 

AISI 1045 24 

2 MHz 

Vibration 2 MHz 

Voltage, Current 10 kHz 

 

Kalvoda and Hwang (2010) used the Hilbert-Huang Transform (HHT) to analyse the cutting 

forces and vibration on the milling of aluminium alloy using end-mill type in high-speed 
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steel (HSS-Co), a diameter of 12 mm and four flutes. They used a sampling frequency of 9 

kHz to both acquisition signals to a cutting speed of 5,404 rpm. They used the Hilbert-Huang 

Transform (HHT) to correlate the tool wear/breakage by change in the frequency peak with 

the change in cutting geometry of the cutter tool that considered the shift of the main 

frequency peak into lower frequency is a cutter tool wear indicator together with higher 

frequency fluctuations.  

3.6.3. Wavelet Transform  

Wavelet transform decomposes a single signal series in the time domain into a two-

dimensional function, where each of the decomposed signals is a mixture of source signals. 

It can be considered as a series of band pass filters, whose results could be regarded as 

different mixtures of independent source signals (Shao, Shi and Li, 2011).  

According to Zhu, Wong and Hong (2009), the wavelet transform was developed in the late 

1980’s to meet the needs for adaptive time-frequency analysis in applied mathematics, 

physics, and engineering, which has been used for machinery fault diagnostics and TCM. Its 

great potential in detecting abrupt changes of tool conditions can be explained by:  

 Sparse representation of signal, the wavelet expansion coefficients cj,k and dj,k decay 

rapidly with increase in j and k, and only a few large coefficients exist while the 

others are small.  

 Setting a suitable threshold, the undesired noise is filtered that is the essence of 

wavelet denoising, and compression. 

 The localization of the time and frequency description of the signal that reveals the 

signal behaviour in certain time and its corresponding frequency property. 

Liao et al. (2007) highlighted the properties because the wavelet transforms are more 

powerful and versatile than the Fourier transform: 

 Some wavelet transforms have compact support, thus are able to capture local time-

dependent properties of data, whereas Fourier transforms can only capture global 

properties. 

 Wavelet transforms are more efficient even when compared with the FFT. 
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 The wavelet transform is hierarchical and allows much fine tuning for a variety of 

applications. 

 Unlike the Fourier transform, wavelet transforms have an infinite set of possible basis 

functions. 

The different wavelet features are used in the tools condition monitoring. Continuous 

Wavelet Transforms (CWT) are recognized as effective tools for both stationary and non-

stationary signals, but they involve much redundant information and is computationally very 

slow. Discrete Wavelet Transform (DWT) has fast algorithm based on the Conjugate 

Quadratic Filters (CQF) (Zhu, Wong and Hong, 2009). 

Wang and Liang (2009) developed a non-dimensional chatter index based on the Wavelet 

Transform Modulus Maxima (WTMM) and statistical analysis which included as advantages 

the random and statistical nature of the metal cutting process. The sensibility to chatters that 

is well known to be effective in detecting singularities; less susceptibility to process changes; 

it varies between 0 and 1 independents of cutting processes and hence can be used in different 

machining processes. The Table 3.3 shows some researches that used Wavelet Transform to 

process monitoring signal. 

Table 3.3 – Some machining researches using Wavelet. 

 Researcher Monitored Signal Material 
Spindle Speed 

(rpm) 

Sampling 

Frequency 

D
ri

ll
in

g
 Tarng and Lee (1999) Electric Current S45C steel 1,000, 1200 1 kHz 

Mori et al. (1999) Cutting Force 
Stainless steel 

316 
2,000 1 kHz 

Velayudham, Krishnamurthy 

and Soundarapandian (2005) 
Acoustic Emission 

Laminated 

composite 
1762.95  

G
ri

n
d

in
g
 

Liao et al. (2007) 

Cutting Force 

Ceramic 4500 

4906 Hz 

Vibration,  4906 Hz 

Spindle Power 4906 Hz 

Acoustic Emission 1 MHz 

Yang and Yu (2011) Acoustic Emission 1045 steel  1 MHz 

M
il

li
n

g
 

Choi, Narayanaswami and 

Chandra (2004) 
Cutting Force AISI 1018 steel 1,000, 2,000 500 Hz 

Li, Ouyang and Liang (2008) Electric Current AISI 1045 steel 
300, 450, 600, 

900, 1200 
1 kHz 

Zhong, Zhao and Wang (2010) Vibration 
Al 7050-T7451 

alloy 
3,000 - 18000 2 MHz 

T
u

rn
in

g
 Abu-Zahra and Lange (2002) 

Vibration 
AISI 4140 steel 200 - 1600 

100 MHz 

Ultrasound waves 10 MHz 

Morala-Argüello, Barreiro and 

Alegre (2011) 
Image AISI 6150 steel   

Bhaskaran et al. (2012) Acoustic Emission AISI D3 steel 171, 245, 318 8333 Hz 



Study of micro-cutting in the finishing of a difficult-to-cut biomaterial 

41 

 

3.7. Monitoring in the micromachining 

The micromachining process requires monitoring techniques with great accuracy. According 

to Taniguchi (1983), the accuracy machining can be classified into Normal, Precision, and 

Ultra-precision machining. However, this classification depends on its tolerances and its 

time, the standard precision has been evolving increased notably since 1930 (10 µm), lower 

than 1 µm in the 1980 (Taniguchi, 1983), to the present in 1 nm (Zhang et al., 2014). A 

technique suitable at the conventional measuring is the cutting and thrust forces at ranges 

from several to hundreds of Newtons. At the ultra-precision scale, the Acoustic Emission 

(AE) is highly desirable due to its ability to detect microscale deformation mechanisms 

within a relatively “noisy” machining environment, Figure 3.4 (Lee et al., 2006). 

 

Figure 3.4 – Sensor application vs. level of precision and control parameters (Lee et al., 2006). 

Hong, Ha and Cho (2012) used a cutting force monitoring system composed of a micro tool 

dynamometer, an acceleration sensor and a current hall sensor that affirmed that using 

current hall sensor and an acceleration sensor can determine the optimum cutting condition. 

New tasks of TCM used in micro-machining can also cutting edge offset and material 

structure (Teti et al., 2010). 

According to Ren et al. (2014) an uncertainty estimation in high precision machining has 

great meaning for the required continuous improvement in product quality, reliability and 

manufacturing efficiency in the machining industry. But they found a limitation about the 
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type-2 fuzzy TCM system based on AE can be the tool life determination is carried out 

solely. 

In their paper Rahman et al. (2005) used a microscopic (magnification 10,000 times) to 

estimate visually surface roughness (less than 0.1 μm) due to their work piece be a micro-

pin very small and complex in shape. In the Table 3.4 is exhibited some micromachining 

researches that used monitoring signals.  

Table 3.4 – Monitoring in the micromachining researches. 

 Researcher Monitored Signal Material 

Spindle 

Speed 

(krpm) 

Sampling 

Frequency 

(kHz) 

M
ic

ro
-d

ri
ll

in
g
 

Nor et al. (1993) Cutting force 
Stainless steel 

440F 
3  

Kondo and Shimana 

(2012) 

Acoustic emission, 

Cutting force, Current 

electric 

AISI 304 steel 10  

Beruvides et al. (2013) 
Cutting force, 

vibration 

Tungsten-copper 

alloy 
20, 40, 48 50 

Wang et al. (2013) Cutting force 
Laminate 

Composite 
6  

M
ic

ro
-m

il
li

n
g
 

Ren et al. (2014) 
Acoustic emission, 

Cutting force 

AISI D2 (50 HRC) 

steel 
36.21 50 

Lauro et al. (2015) Cutting force 
AISI H13 (45 

HRC) 
22 and 49 5.6 

Mustapha and Zhong 

(2013) 
Vibration Al 6061-T6 Alloy 20, 22, 25  

Zhu, Wong and Hong 

(2009) 
Cutting force Copper and Steel 18, 20 6 

Kang et al. (2008) Acoustic emission Al 6061 Alloy 66 400,000 

M
ic

ro
-t

u
rn

in
g
 

Palani, Natarajan and 

Chellamalai (2013) 
Image 

Tungsten 

electrode 

1.1, 1.2, 

1.3 
 

Zhang et al. (2013) Cutting force AISI 1045 steel 0.7  

Mandal, Kumar and 

Nagahanumaiah (2013) 
Cutting force  2.5, 4.5  

Silva et al. (2008) Cutting force Laminate 

composite 
~0.45  

 

Shin et al. (2010) monitored micro-milling of AISI 1045 with a diameter micro-tool of 500 

µm using acceleration and current hall sensors with 10 kHz low pass filters to remove high-

frequency noise. They used also a micro tool dynamometer to obtain the reference cutting 

force components in comparison with these signals and FFT to analyse the signal in the 

Frequency Domain. They calculated the correlations linearity of 98.0% and 94.5% precision 

with the use of an acceleration sensor and current hall sensors, respectively. 
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Wang et al. (2006) used the wavelet to process the force signal to estimate the tool wear in 

the micro-milling of POCO-EDM-C3 electrode and aluminium using a carbide tool with 

diameter of 1/16”. They proposed a Wavelet Transform – Pre-processor – Artificial Neural 

Network (Adaptive Resonance Theory 2 type) combination automatically adjusts the 

influence of the approximation coefficients one by one by using GA. 

To studying the ploughing effect, Yun et al. (2011) monitored the cutting force in the micro-

milling of copper with a diameter micro-tool of 500 µm. They used a sampling frequency of 

cutting force of 30 kHz at 45,000 rpm and applied an undecimated wavelet transform. In this 

study, multi-resolution analysis was used to measure peaks of the cutting force signal that 

considered a variance of peaks of feed force and normal force is increased under ploughing 

conditions.  

To predict the surface roughness (Ra), tool wear ratio (TWR) and metal removal rate (MRR) 

on micro-turning of Tungsten electrode, Palani, Natarajan and Chellamalai (2013) developed 

a prototype system based ANFIS model. They used a surface characterization approach 

through Machine Vision System applying Image Processing Techniques such as image 

reduction, histogram equalization, and filtering and analysis algorithms. To attempt to 

explain surface roughness increases at small feeds, Zhang et al. (2013) used a digital camera 

to measure the material peak-to-valley height and dynamometer to measure the cutting 

forces. 

3.8. Synthesis 

Monitoring applied to machining processes can improve the process through an increase in 

tool life and surface quality with a simultaneous decrease of electric energy and waste 

material. However, the choice of the monitoring method requires great care due to 

implementation cost and requirements, besides the objectives to be analysed, i.e., in certain 

cases, the tool wear monitoring using a dynamometer can be as efficient as the 

accelerometer, which is more inexpensive. Furthermore, signal interpretation is 

fundamental. The user should match the best method of analysis to the objective, i.e., if the 

process uses variable revolution, the vibration or sound monitoring in the frequency domain 

can be unsuitable if the user does not revise the revolution/frequency ratio. Although 
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machining monitoring requires great care, its usage brings excellent results for both 

industrial and academic research. 

 

 



CHAPTER 4 – STATISTICAL AND ARTIFICIAL INTELLIGENCE 

FOR THE UNDERSTANDING OF THE MICRO-CUTTING 

This chapter was developed to analyse the events, know the phenomena and define the 

importance of the parameters and the optimum condition in the micro-cutting operation. A 

large portion of this chapter has similarity with: 

 LAURO, C. H. et al. Design of Experiments - Statistical and Artificial Intelligence 

analysis for the improvement of machining processes: A review. in DAVIM, J. P. (Ed.). 

Design of Experiments in Production Engineering. Heidelberg. Springer International 

Publishing, 2016. 

4.1. Introduction 

Nowadays is common to find many investigations that used the statistical and/or Artificial 

Intelligence analysis in their papers. These methods help to understand the importance of 

parameter appointed or to define the ideal condition. To obtain a controlled cutting process 

through the parameter optimisation, a manufacturer should find points in the process that 

offer the balance of cost and quality (Mukherjee and Ray, 2006). Asiltürk and Akkuş (2011) 

highlighted that a high number of the cutting variables require a high numbers of 

experiments, besides, the variables should be studied under controlled conditions. 

The usage of these techniques in investigating machinability had the goal of estimating the 

effects of feed rate, cutting velocity and depth of cut on power consumption and surface 

finish (Bhattacharya et al., 2008). According to Makadia and Nanavati (2013), in most 

publications were studied the effect of cutting parameters on surface roughness applying few 

number of tests. However, they suggested also analyse effect of cutting geometry on surface 

roughness. 
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To predict the surface quality, the Artificial Intelligence (AI) methods (artificial neural 

network, genetic algorithm, and others) has been employed. Its main advantages are models 

that present most realistic and accurate, a highest level of integration with computers, and 

an approach that can be used with conventional methods (Lu, 2008). 

Paiva et al. (2012) used the Multivariate Robust Parameter Design (MRPD) approach to 

optimise the turning of AISI 52100 using wiper tools due to the moderate to high degree of 

correlation obtained by multiple responses. The authors observed that MRPD approach 

showed better results that the individual optimisation routines and minimal variance for each 

surface roughness profile. Subramanian et al. (2013) applied a second-order quadratic model 

to optimise the milling of Al 7075-T6 aluminium alloy with high-speed steel end mill cutting 

tool that the deviation is well within the limit of 95% confidence level.  

Generally, modelling and monitoring whit statistical methods employ regression-based and 

time domain techniques (Dey and Stori, 2005). To understand the machinability of tungsten-

copper (WCu25) alloy with cemented carbide tool, Gaitonde et al. (2010) planned their 

experiments as per Full Factorial Design (FFD). The adequacy of the quadratic models was 

verified using the Analysis of Variance (ANOVA) and the analyses used the Response 

Surface Methodology (RSM). 

The trade-offs between energy, production rate and quality were weighed up in a multi-

objective optimisation problem by Yan and Li (2013) using grey relational analysis and RSM 

based method. This approach allowed a reducing of the cutting energy consumption by 

18.1% when compared with traditional objective optimisation, satisfying the requirement for 

sustainable machining. Wang et al. (2013) used multi-objective (energy, cost, and machining 

quality) to optimise the turning of AISI 1045 steel applying Non-dominated Sorting Genetic 

Algorithm II (NSGA-II). 

The present work presents a review of the state of the art on statistical, mathematical and 

computational techniques applied to machining process planning and analyse. First, 

statistical methods for design and analyse of experiments are addressed. Subsequently, AI 

approaches are referenced with focus on machining parameters optimisation. Several papers 

were covered providing a wide view of methodologies applied to achieve the best results on 

machining processes.  
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4.2. Correlations 

The correlation between X and Y can be defined as the degree to which the points cluster 

around the regression line that varies between -1 and 1. The sign of the correlation coefficient 

has no meaning other than to denote the direction of the relationship, i.e., correlations of 

0.75 and -0.75 signify exactly the same degree of relationship (Howell, 2010). 

The Spearman’s ρ is appropriate to analyse the correlation between some parameters because 

it identifies monotonic relationships, is resistant to the effect of outliers, and does not assume 

a specific parametric model or specific distributions for the data (Carou et al., 2014)2.  

4.3. Design of Experiments - DoE 

Design of experiments (DoE) comprises a set of statistical techniques to process 

improvement and planning. Using DoE, the experimenter can adjust the optimum parameter 

levels to achieve the best output levels and a robust process, that is, a process which has 

minimum variability.  

The DoE strategies can be separated into classical DoE, Response Surface Methodology 

(RSM) and Taguchi approaches. These methods are commonly jointly applied or with 

another mathematical and/or computational techniques. There are several statistical 

packages to apply DoE in machining analysis and planning, facilitating the process 

improvement.  

According to Montgomery (2008) the first statistical concepts to design experiments were 

based on factorial design and Analysis of Variance (ANOVA). These techniques summarize 

the classical DoE. Mandal et al. (2013) affirmed that the RSM embraces mathematical and 

statistical techniques to model and analyse the problems in which the objective is to optimise 

a response that is influenced by the variables.  

The Taguchi method is a design of experiments technique, which is useful to reduce the 

number of experiments and to minimize effects of the not controlled factors, the time of 

experiments, and costs, besides to present the significant factors in a shorter time. This 

                                                           
2 Self-citation 
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technique is focused on determining the parameter settings which produces the best levels 

of a quality characteristic with minimum variation (Asiltürk and Akkuş, 2011). 

Abellan-Nebot and Subirón (2010) affirmed that performing a correct DoE can provide an 

adjustment of the regression model relatively fine for the machining parameters. In their 

investigation on turning of AISI 304 stainless steel, Mahdavinejad and Saeedy (2011) used 

the DoE with full factorial method to analyse the effects of all levels of the parameters.  

Krimpenis et al. (2004) mentioned that DoE is applied in the manufacturing field to identify 

the significant parameters that affect the process or product and determine the near-optimum 

parameter values that increase productivity and machine efficiency. It defines the significant 

parameters and the ideal values based on the quality characteristics. These authors suggested 

a series of steps to improve knowledge of the obtained results: 

 Choice of parameter levels: each significant parameter has a value out of an extensive 

field that should be well studied to define the value that are expressive; 

 Orthogonal array (OA) issues: is represented by Latin L and number of the array’s 

lines that can be two-level, three-level and mixed-level factors. In this step is chosen 

the number of parameters and interactions, their levels, and desired experiment 

resolution between 1 (lowest) and 4 (highest); 

 Experiment conduction according to an OA and analysis of results: In this step is 

applied the statistical analysis. ANOVA is used to define the high influence 

parameters and draw generic conclusions. 

 

Soshi et al. (2012) applied DoE in their investigation to find the best combination of 

parameters to achieve a smooth surface since there are several important parameters to be 

considered to produce a high-quality surface in milling operations. In the dry turning of Al 

7075-O aluminium alloy study, Agustina et al. (2013) used the DoE (24 with 2 replications) 

to analyse the influence of the cutting parameters on cutting forces in dry turning of an 

aluminium alloy. 
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In the investigation of turning of SS202 stainless steel applying cryogenic cooling, Kumar 

and Choudhury (2008) used the central rotatable composite design of experiments to plan 

their experiments. This design type allows generating second order models.  

Studying the turning of AISI 1045, Hwang and Lee (2010) employed a fractional factorial 

design with resolution V, widely used in the industry, to analyse the significant effect and 

two-factor interactions. In this method, generally the significant effects are disconcerted with 

four factor interactions, and two factor interactions are disconcerted with three-factor 

interactions, ignoring interactions higher than three factor. 

In the electrical discharge machining of AISI D2, Prabhu et al. (2013) applied a Full 

Factorial Design (FFD) using three parameters (pulse current, pulse duration, and pulse 

voltage) with three levels, amounting to 27 experiments that helped them to found a designed 

model with 99.7% accuracy. 

To find the high influence parameters of the characteristic values in the beginning of the 

experiment, Park, Kim and Lee (2012), used four factors defined by the FFD and, 

posteriorly, used the central composite circumscribed design and RSM to optimise the 

process. They observed that the spindle speed, feed rate, depth of cut, and interval of 

lubricating oil application presented strong influences in the machinability in ultra-high-

speed machining. 

4.3.1. Classical DoE (ANOVA) 

The influence of some machining parameter can be determined by Analysis of Variance 

(ANOVA) from a series of results of experiments by the design of experiment approach. 

ANOVA is the predominant statistical method used to interpret the data (Gopalsamy, 

Mondal and Ghosh, 2009). 

In the 1930’s, the Sir Ronald Fisher developed the ANOVA method to understand the results 

of experiments in the agricultural. He used the sum of the squared deviations from the total 

mean signal-to-noise ratio, separating its total variability into contributions by each of the 

design parameters and the error. This method shows the significance of all important factors 

and their interactions by comparing the mean square against an estimate of the experimental 

errors at specific confidence levels (Bagci and Ozcelik, 2005). 
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According to Muthukrishnan and Davim (2009), ANOVA is a technique of portioning 

variability into identifiable sources of variation and the associated degree of freedom in an 

experiment. The quality characteristics from the significant effects of the parameters is 

analysed by Fisher test (F-test). The influence on the result was indicated by the “percent” 

contribution (P) of each factor. 

For some machining processes, especially when the experimenters do not know the factors 

(controllable or not) affect the outputs, it is necessary to draw a set of screening experiments 

using fractional factorial designs. Born and Goodman (2001), affirmed that the objective of 

screening experiments is to diminish a high number of potentially parameters to those that 

are strong significant since it is not economically practical to perform every possible 

combination of machining parameters. They studied the tool wear, which observed that the 

track length, chip size, tool rake angle, and cutting speed had significantly affect in the tested 

ranges.  

In many studies, researchers commonly consider admissible a confidence of 95%, i.e., they 

use a significance level (α) of 0.05. In Table 4.1 is exhibited some studies that used ANOVA 

method and the significance level chosen. In the mathematical models developed in turning 

of AISI 1040, Neşeli, Yaldız and Türkeş. (2011) applied ANOVA and the prediction of 

surface roughness offered a 96% confident interval. 

In the turning AISI 4340 steel with Zirconia Toughened Alumina (ZTA) insert, Mandal, 

Doloi and Mondal. (2013) used the ANOVA to develop mathematical model that was 

verified with excellent results. Yu et al. (2011) applied ANOVA to find the ideal values of 

cutting parameters and obtain the better machinability (accuracy and efficiency). 

In the Pareto ANOVA the sum of squares of differences (S) for each controlled parameter is 

calculated as the percentage of sum of squares of differences for each parameter to the total 

sum of the squares of differences and a Pareto diagram is plotted using the contribution ratio 

and the cumulative contribution (Sayuti et al., 2011). Hamdan, Sarhan and Hamdi (2012) 

used Pareto ANOVA method, a very simple alternative to analyse the optimisation 

exhibiting the influence (percentage) each parameter. This method provided an improvement 

of cutting forces (25.5%) and surface roughness (41.3%). 
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Table 4.1 – Significance values used in machining researches. 

Researcher Process Material Factors Significance (%) 

Muthukrishnan and Davim (2009) Turning Composite 
Cutting speed, Feed 

rate, Depth of cut 
5 

Gopalsamy et al. (2009) Milling 
Tool Steel 

(55 HRC) 

Cutting speed, Feed, 

Depth of cut, Width 

of cut 

5 

Babu and Chetty (2006) Waterjet 
Al 6063 T6 

aluminium alloy 

Depth of cut, Top 

kerf width, Bottom 

kerf width, Kerf 

taper, Surface 

roughness 

10 

Bagci and Ozcelik (2005) Drilling 
Al 7075-T651 

aluminium alloy 

Spindle Speed, Feed 

Rate 
5 

Carvalho et al. (2012)3 Tapping 
AM60 magnesium 

alloy 

Forming speed, Hole 

diameter, Type of 

tool 

5 

Lin et al. (2009) EDM AISI H13 

Machining polarity, 

Peak current, 

Auxiliary current 

with high voltage, 

Pulse duration, No-

load voltage, Servo 

reference voltage 

5 

 

4.3.2. Response Surface Methodology 

The Response Surface Methodology (RSM) is method to optimise and model (empirical 

approach) a problem to define the relationship between several parameters and the responses 

with the several desired criteria. For example, this method conjugated with the factorial DoE 

can predict surface roughness using a small number of experiments (Hessainia et al., 2013). 

According to Montgomery (2001), the RSM is a collection of mathematical and statistical 

techniques that are useful for the modelling and analysis of problems, where, generally, the 

relationship between the response and the independent variables is unknown. It starts 

defining an approximation relationship between the response and the variables. The RSM 

can provide models in linear function (first order), or a polynomial of higher degree (second 

order) in function of the variables, Equation 4.1 and Equation 4.2, respectively. 

  kk xxxy 11110
     Equation 4.1 
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The RSM is used to perform an analysis of the effects of independent variables on the 

response variables, furthermore, the RSM considers an adjusted surface that were 

approximately equivalent to the analysis of the process, when adequate (Silva, Ribeiro Filho 

and Brandão, 2014). 

Mandal, Doloi and Mondal (2013) used RSM to model the surface roughness in turning of 

AISI 4340 and optimised it through desirability function. They optimised the performance 

of the cutting tool in 92.3% with a combination of cutting parameter, cutting speed (high), 

feed rate (high), and depth of cut (low). Habib (2009) applied the RSM in the EDM process 

to determine the relations between the parameters (material removal rate, electrode wear 

ratio, gap size and the surface finish) for developing mathematical models, in a manner very 

simple, powerful and flexible. 

In the study of turning on the AISI 410 steel, Makadia and Nanavati (2013) applied the RSM 

and found a quadratic model to analyse the influence of cutting parameters in Ra that 

presented an error value of 6%. They affirmed that 3D surface counter plots allow determine 

the ideal combination to optimise the surface roughness. Neşeli, Yaldız and Türkeş (2011) 

mentioned that in RSM shall have at least three levels for each factor to avoid uncertainties 

due to estimated values for the combinations of not tested factor. 

4.3.3. Multiple Comparisons 

The multiple comparisons are used to analyse the statistical significance of differences 

between means using a set of confidence intervals, a set of hypothesis tests or both. It is 

because an individual error rates are exact in all cases, and a family error rates are exact for 

equal group sizes. In general, the null hypothesis of no difference between means is rejected 

if and only if zero is not contained in the confidence interval (Minitab, 2016). The multiple 

comparison method can be essential to define an optimal combination of cutting parameter 

through the response, such as cutting conditions, chip breaker type, and others (Pereira et 

al., 2013). 
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According to Montgomery and Runger (2003), the Fisher LSD method, that is easy and very 

widely used, can be consider to be a very “liberal” procedure in that although each test is at 

significance level α, the type I error for the entire set of comparisons (called the 

experimentwise error rate) is much greater than α. The Tukey confidence intervals are a set 

of simultaneous confidence intervals that hold with probability 1- α. Tukey’s method is a 

very conservative procedure relative to Fisher’s LSD because it requires a larger observed 

difference in treatment averages to declare the pair of means different. 

4.4. Artificial Intelligence Analysis 

Artificial Intelligence (AI) is related intelligent machines, especially intelligent computer 

programs that use similar the human intelligence. It is more used in the engineering to resolve 

problems normally requiring human intelligence due to a number of powerful tools, such as 

Ant colony optimisation (ACO), Artificial Neural Network (ANN), Expert System (ES), 

Fuzzy Logic (FL), Genetic Algorithm (GA), Simulated Annealing (SA), Particle Swarm 

Optimisation (PSO) and various swarm intelligence (Mohd Adnan et al., 2015). 

Ramesh, Jyothirmai and Lavanya (2013) cited in their paper the usage of artificial 

intelligence techniques to develop a thermal error compensation module using temperature 

values at different locations of the machine. They developed a positioning accuracy 

measured and surface finish automatically controlled by adjusting the operating parameters 

using artificial intelligence based regression techniques to build the prediction model 

between vibration and surface finish. 

According to Abellan-Nebot and Subirón (2010), AI technique had been applied to 

monitoring systems due to need consistent models that can learn complex non-linear 

relationships between variables and its adequate selection is crucial to develop reliable 

machining models. Several AI techniques, mainly ANN, fuzzy logic systems and the ANFIS, 

have been widely used for monitoring machining systems and modelling (surface roughness 

and tool wear).  

4.4.1. Genetic algorithms 

Genetic algorithm (GA) can be considered an optimisation technique, indifferently of 

physical substance, used to resolver a complex problem similar to Darwinian theories of 
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evolution. Its principle is optimising an objective function in complex multi-modal space 

that occurs indifferently of the nature of the phenomenon (Vosniakos and Krimpenis, 2002). 

According to Wang et al. (2006), the GA is based in the theory of biological evolution that 

include the natural selection. The survival of the fittest uses the parameters, rules, and 

switches of the problem that are represented by binary combination. This combination is 

called chromosome that optimises an objective function through the following step:  

 Designing of the parents; 

 Designing of the hereditary chromosome; 

 Gene crossover; 

 Gene mutation; 

 Creation of the subsequent generation. 

 

In the temperature milling study of Al-6063 aluminium alloy, Sivasakthivel and Sudhakaran 

(2012) applied GA to optimise the machining parameters to obtain the minimum temperature 

rise. They found a result that optimised the helix angle, spindle speed, feed rate, axial and 

radial depth of cut. Rao et al. (2009) studied a relationship between the input parameters and 

surface roughness using GA, which was observed a significant decrease in mean square error 

when GA is used to optimise an ANN. Non-dominated Sorting Genetic Algorithm II (NSGA 

II) is a very famous multi-objective optimization algorithm and it was applied in this study 

because of its coverage and strength (Deb et al., 2002). 

The development of GA was based on the LSM (least Square Method) mathematic model. 

The LSM searches the best fit into a data group, minimizing the sum of the squared 

differences between the estimated and observed values (generally, this difference is called 

residual). The least-square method can be linear or non-linear, and the response is a linear 

function of the independent variables. Thus, the relation between “y” and the three predictor 

variables can be written as a Taylor series, seen and. 

When using a database with 3 input variables and 27 observations, Equation 4.3, the model 

can be written in matrix form, as follows. 
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    Equation 4.3 

Where xji is the value of the jth variable of the ith observation, which can therefore be written 

in the short form as in Equation 4.4 

  xy
         Equation 4.4 

The solution of LSM can be reached using the minimization of the sum of the square of the 

errors, Equation 4.5, and it should be rewritten as ε’ε. Thus, replacing ε with y-xβ, we get 

the following Equation 4.6. 




n

i

i

1

2           Equation 4.5 

)()()( '   xyxyS       Equation 4.6 

The minimization occurs when the derivation S (β) is carried out in relation to (β) and when 

it is equal to zero, instead of can be seen in Equation 4.7 

 xxyx   '2)'2( 1         Equation 4.7 

4.5. Modelling and optimisation for machining process  

In the literature, several papers employed models to understand, predict, or optimise the 

parameters or events that occur in the machining processes. Campos et al. (2013) affirmed 

that the modelling and optimisation are employed by researchers due to it has an important 

influence in the total cost of the product. It is need due to increase the number of cutting 

parameters that require high number of tests, consuming several means. These authors 

suggest the employ of the following methods to model bellow: 

 Taguchi and ANOVA: efficient techniques to control the effect on tool wear and 

surface roughness. 
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 Response surface methodology (RMS): to optimise the relationship between the 

several inputs and outputs.  

 Adaptive Neuro-Fuzzy Inference System (ANFIS): to provide or optimise the cutting 

parameter and phenomenon such as surface roughness and tool wear. 

 Artificial neural networks (ANN): to predict the phenomenon such as the surface 

roughness, tool wear. 

 Genetic algorithm (GA): to find the factors of a model and optimise the outputs. 

 

Akkuş and Asilturk (2011) affirmed that time, material and labour work may be saved by 

predicting surface roughness without experimental testing for intermediate values. They 

developed accurate models to predict the surface roughness in the turning of AISI 4140 

applying ANN, Fuzzy logic and statistically multi-regression methods for the used input 

parameters, cutting speed, feed rate and depth of cut. 

Hessainia et al. (2013) classified the surface roughness (Ra) modelling techniques into three 

groups: experimental; analytical; and AI models. They proposed a model using the RSM for 

the hard turning of AISI 4140 (56 HRC), which found a quadratic model of RMS with 

correlation coefficient of 99.9% and 96.4% for models Ra and Rt respectively. 

According to Upadhyay, Jain and Mehta (2013), to predict the surface roughness using 

machining parameters was useful only to define the parameters for finishing due to the 

vibrations/cutting forces. They developed this model using multiple regression method as a 

function of vibration in radial, axial and tangential directions. They tested the prediction 

using an ANN model that was trained with the Levenberg-Marquardt. These developed 

models can be effect to predict the surface roughness with average error of 4.11% and 

maximum error of 6.42%. 

Lopes et al. (2013) presented a model considering the multivariate uncertainty as weighting 

matrix for the principal components. In the study of turning of AISI 52100 hardened steel 

with wiper tools was implemented a Central Composite Design using three factors, cutting 

parameters, for a set of five correlated metrics, different surface roughness profile. The 

results showed that the developed technique presented an excellent predictability. 
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4.6. Synthesis 

The objective of the manufacturers is obtaining a production that be economic, ecological, 

efficient and reliable. Thus, in the machining sector, there are several developments in tools 

(example the geometry, material, and coatings) and machines (example power, spindle 

speed, and accuracy). However, the definition of the cutting parameters is more important 

to obtain a condition that results in desired objectives. The users can be several parameters 

as outputs, as the tool wear, chip removal volume, cutting forces, vibration and others. After, 

the users should analyse the outputs and define the cutting parameters to obtain the desired 

objective, as the maximum production, low time, or quality of product, and others.  

Meantime, the machining processes are composed of several operations, as turning, milling, 

drilling, broaching, and others, that have variables, as cutting speed, feed rate, depth of 

cutting, cooling system, and others. Sometimes, the users ignore or forget that some variable 

can be influence the process, as the brands, room temperature, material structure, and others. 

Thus, the users should realize randomly all tests at least twice (repeat and replications), to 

reduce the influence of the not assigned variables and the randomness of responses. 

Furthermore, the analysis will be more reliable and easily to comprehend the influence of 

the parameters. 

The analysis of the outputs using Statistical and/or Artificial Intelligence methods provides 

results about the cutting parameter and their interaction that facilitate the comprehension of 

machining phenomena. These methods employed to model the process can indicate the best 

cutting parameter combination to obtain a product with maximum quality, minimum losses 

(time, material, and others) among the tested condition. The usage of the one or both methods 

will depend of the user’s goal, i.e., if the user want an analysis simplest, the statistical 

analysis using the ANOVA can be the ideal method. However, if the research employs the 

several factors, levels, and other or the previse results, the usage of the Artificial Intelligence 

analysis, as the Artificial Neural Network (ANN), can be the ideal method. Furthermore, the 

planning of experiments is more important in the research because it can reduce the cost and 

the time need to execute the experimental. 
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CHAPTER 5 – MATERIAL AND METHODS 

In this chapter is presented the material and equipment used to investigate the behaviour of 

the biomaterial with poor machinability when employed the micro-cutting in the finishing 

operation. Furthermore, it is presented and justified the choice of the monitoring, processing, 

statistical and artificial intelligence techniques to observe and identify the events in the 

micro-cutting. Some portions of this chapter has similarity with: 

 LAURO, C. H. et al. Analysis of behaviour biocompatible titanium alloy (Ti-6Al-7Nb) 

in the micro-cutting. Measurement, v. 93, 2016, p. 529-540. 

 LAURO, C. H. et al. Analysis of the tool wear influence in the micro-cutting in the Ti-

6Al-7Nb titanium alloy. IX National Congress of Mechanical Engineering - CONEM. 

Fortaleza. 2016. 

5.1. Biomaterial and the Ti-6Al-7Nb titanium alloy 

The biomaterials are synthetic or natural substances (single or combination) to prolong or 

improve the quality of life of the individual, augmenting or replacing tissue, organ, or 

function of the body (Bergmann and Stumpf, 2013). Biomaterials have enhanced the 

osseointegration and regeneration, however, the engineering should be seeking or improving 

biomaterials continuously because the growing bone tissue is a dynamic process and 

changing requirements appear every day (Agarwal and García, 2015). Several materials 

classes can be employed as biomaterials, an example, for odontology is employed the largest 

range of materials, as polymers, surgical cements, ceramics, and others (Hisbergues et al., 

2009). 

Metal biomaterial, that should be biocompatible, non-immunogenic and good 

osseointegration, are applied where the mechanical properties are required, which should be 

bind strongly to bones to minimize the looseness and guarantee the physiological function, 

such as the femur, tibia, and others. The titanium (pure and alloys) and stainless steel are the 
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most used metal. Although the stainless steel has been used for over 100 years due to 

excellent mechanical properties and resistance to corrosion, with an emphasis on the 316 L, 

the titanium and its alloys have gained significant interest in recent years. It is because booth 

materials have a similar strength, but the titanium (pure and alloy) is much lighter than the 

stainless steel (Agarwal and García, 2015). 

Several in-vivo and in-vitro studies for the titanium and its alloy have been developed 

throughout the world for the last 50 years. It may be justified because these materials are the 

most attractive metallic biomaterials, whether in medicine or in dentistry. Its important 

biocompatibility characteristics are the low level of electronic conductivity, high corrosion 

resistance, thermodynamic state at physiological pH values, low ion-formation tendency in 

aqueous environments, and an isoelectric point of the oxide (Elias et al., 2008). 

Among the metallic biomaterials, the commercially pure titanium can be considered as the 

best biocompatible due to surface properties result in the spontaneous build-up of a stable 

and inert oxide layer (Elias et al., 2008). However, the titanium alloy has higher resistance 

to repeated stress loading that is ideal for load-bearing orthopaedic applications, besides, the 

modulus of elasticity is lower and is more conducive to minimize stress at interfaces 

(Agarwal and García, 2015). In the literature can be found several studied that analysed the 

biocompatibility between commercial pure titanium and titanium alloys (Andrade et al., 

2015; Fernandes, Elias and Valiev, 2015; Zhang and Liu, 2015). 

When compared the commercial pure titanium and Ti-6Al-4V titanium alloy, Shah et al. 

(2016) gathered on literature information about surfaces machined, osseointegration, and 

bacterial interactions. The surface machined were similar (morphology, topography, phase 

composition and chemistry). For the bacterial adhesion to surfaces, in vitro tests, some 

papers fail to disclose differences, others pointed a favouring one material over the other 

depending on the bacterial species under test and the methodological design. The 

osseointegration in rabbits was similar in both biomaterials after 8 weeks, although a 

research group observed a higher biomechanical capacity of commercial pure titanium. 

According to these authors, the choice between these materials (pure or alloy), that is 

indisputable, is based on the mechanical properties, strongly, then biology for the implant 

material. 
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The Ti-6Al-4V titanium alloy is the most employed titanium-based biomaterial used in the 

medical/dental applications that require the replacing of hard tissues, likes artificial hip joints 

and dental implants (Niinomi, 2003). A notion of this fact can be observed through the high 

number of researches of the Ti-6Al-4V titanium alloy found in the Engineering Village 

database (2016), which can correspond about 90% of publications in titanium alloy on the, 

Figure 5.1. However, new titanium alloys have been developed to replace the Ti-6Al-4V 

titanium alloy due to the presence of vanadium (V), which are called of V-free. This is 

because the vanadium be a toxic element (Gallego et al., 2012; Santos et al., 2016). Although 

vanadium is not clastogenic, it is cytotoxic and mitogenic and can modify several cell 

functions involved in mitosis and the formation of DNA–protein. Meanwhile, the degree of 

toxicity depends on several aspects, the chemical form, the oxidation state, the route of 

exposure, the period of dosing, and the dose administered (Domingo, 2002). 

 

Figure 5.1 – Number of papers about titanium-based biomaterial (Engineering Village, 2016). 

Several alloys have been studied to obtain a substitute of the Ti-6Al-4V, such as Ti-10Cu 

(Zhang and Liu, 2015), Ti-Mo-Sn-Zr (Nunome et al., 2015), Ti-Mn (Santos et al., 2016), 

and others. In addition to these alloys, the Ti-6Al-7Nb has strong emphasis in the 

bioapplications researches. Ashida et al. (2015) studied the superplasticity in the grain 

refinement of the Ti-6Al-7Nb titanium alloy using the high-pressure torsion. When using 

values from the literature to compare with Ti-6Al-4V titanium alloy, the authors observed 

an increasing in the superplastic elongation of 575% and 676%.  
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Gallego et al. (2012) investigated the microstructural of the Ti-6Al-7Nb titanium alloy after 

equal channel angular pressing (ECAP) followed by thermomechanical treatment. Chlebus 

et al. (2011) investigated the influence of laser melting in the mechanical properties and 

microstructure of the Ti-6Al-7Nb titanium alloy, which observed layered microstructure 

with thin plates of α′ martensite hardened by evenly distributed dispersive phase, 

discontinuities at low ductility indicates the initiation of fatigue cracks. The authors 

recommended a thermal treatment for increasing the resistance for the bioapplications of this 

material. 

In this study, the bars of Ti-6Al-7Nb titanium alloy provided by TiFast S.R.L., were used. 

The material was annealed, their structure composed by fine dispersion of the α and β phases 

(A4 as per ETTC 2 Ed 2), Figure 5.2. The internal microstructure of Alpha-Beta phase can 

be classified between A1 and A24, however, only the microstructure between A1 to A10 is 

considered adequate for the manufacturing of orthodontic mini-implants (Cotrim-Ferreira et 

al., 2010). The mechanical proprieties and chemical composition are showed in the Table 

5.1 and Table 5.2, according to TiFast quality certificate, seen the Annex A. The Table 5.3 

shows the physical properties of the Ti-6Al-7Nb titanium alloy. 

 

Figure 5.2 – Ti-6Al-7Nb titanium alloy microstructure (magnification 200x) (courtesy TiFast S.R.L.). 

Table 5.1 – Chemical composition of the Ti-6Al-7Nb titanium alloy. 

Element Maximum (%)  Element Maximum (%) 

Al 5.94 - 6.02  Nb 6.83 - 6.90 

C 0.013  O 0.169 - 0.178 

Fe 0.15 - 0.16  Ta 0.05 

H 0.003  Ti In balance 

N 0.005    
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Table 5.2 – Mechanical properties of Ti-6Al-7Nb titanium alloy. 

Property 
Reference standard 

(minimum) 

Measured  

(ASTM E8/E8M-09) 

Tensile Strength (MPa) 900 995 

Yield Strength 0.2% (MPA) 800 910 

Reduction of area (%) 25 49.6 

Elongation (%) 10 15.4 

Table 5.3 – Physical properties of Ti-6Al-7Nb titanium alloy (AZO Material, 2016). 

Property Unit Value 

Density kg/m3 4510 - 4530 

Latent heat of Fusion kJ/kg 360 - 370 

Melting temperature K 1800 - 1860 

Resistivity Ω.m 126 x10-8 - 158 x10-8 

Specific heat J/kg.K 540 - 560 

Thermal conductivity W/m.K 7 - 8 

Thermal expansion K-1 8 x10-6 - 9.8 x10-6 

 

5.2. Machine and equipment for the micro-machined surface investigation 

This section describes the machines (as such the lathe), the equipment (dynamometer, 

accelerometer, thermos-couple, and other), and the cutting tools that were used in the micro-

cutting tests.  

5.2.1. Lathe 

A KingsburyTM MHP 50 CNC lathe with 18 kW power and maximum spindle speed of 4,500 

rpm, was used, Figure 5.3. However, the spindle speed was limited at 3,000 rpm due avoid 

excessive vibrations during the cutting.  

 

Figure 5.3 – KingsburyTM MHP 50 CNC lathe used for the tests. 
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5.2.2. Cutting tools 

To develop the micro-cutting, were employed different cutting tools setting, which depended 

of the objective of the experimental tests. A setting was composed by TPGN 16 03 04 H13A 

cutting inserts, Figure 5.4, and CTGPL 2020 K16 (ISO) tool holder, Figure 5.5, both 

supplied by Sandvik CoromantTM. The tool holder has a rake angle of 6º, tool cutting edge 

angle of 91º, and cutting edge inclination angle of 0º. The characteristics of the cutting insert 

is shown in the Table 5.4.  

 

Figure 5.4 – TPGN 16 03 04 H13A inserts used in the micro-cutting tests. 

 

Figure 5.5 – CTGPL 2020 K16 tool holders used in the micro-cutting tests. 

Table 5.4 – Geometry data of the TPGN 16 03 04 H13A inserts used micro-cutting tests (Sandvik Coromant, 

2012). 

Material Coating 
Tool noise 

radius (mm) 

Edge radius 

(µm) * 

Clearance 

angle (º) 

Chip-

breaker 

cemented 

carbide 
No 0.3969 20 11 No 

* Edge radius was measured by the author. 

 

The other settings were employed three kind of V-inserts and two kind of tool holder provide 

by Sandvik CoromantTM, Figure 5.6 and Figure 5.7. The selected tool holders were SVJBL 
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2020K 16 and DVJNL 2020K16, both tool holder have the tool cutting edge angle is 93º. 

The Table 5.5 and Table 5.6 show the geometry data of the tool holders and inserts, 

respectively.  

 

Figure 5.6 – Inserts used in the cylindrical micro-cutting tests. 

 

 

a) Tool holder SVJBL 2020K 16. 

 

b) Tool holder DVJNL 2020K16. 

Figure 5.7 – Tool holders used in the cylindrical micro-cutting tests. 
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Table 5.5 – Geometry data of the tool holders used in the micro-cutting tests (Sandvik Coromant, 2012). 

Tool holder 
Orthogonal 

rake angle (º) 

Inclination 

angle (º) 

SVJBL 2020K 16 0 0 

DVJNL 2020K 16 -4 -13 

 

Table 5.6 – Geometry data of the inserts used micro-cutting tests (Sandvik Coromant, 2012). 

Insert Material Coating 
Tool noise 

radius (mm) 

Edge radius 

(µm) 

Clearance 

angle (º) 

Chip-

breaker 

VBMW 16 04 04 

H13A 

cemented 

carbide 
No 0.3969 15 5 No 

VBMT 16 04 04-UM 

H13A 

cemented 

carbide 
No 0.3969 15 5 Yes 

VNMG 160404-QM 

H13A 

cemented 

carbide 
No 0.3969 25 0 Yes 

* Edge radius was measured by the author. 

 

5.2.3. Minimum Quantity Lubrication System  

For the cooling/lubrication in the micro-cutting tests, was used an UnistTM Minimum 

Quantity Lubrication (MQL) system model Coolubricator JR, Figure 5.8, with the 

biodegradable oil CoolubeTM 2210. 

 

Figure 5.8 – MQL system used in the micro-cutting tests. 

5.2.4. Piezoelectric dynamometer 

In turning operation exist the three force components that generally are defined as the Cutting 

forces (force occurs along the direction of cutting speed, tangential to turned surface), Feed 
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or Thrust force (force occurs along the direction of the tool feed whereas radial force acts 

perpendicular to the turned surface) and Depth force, among these forces, the Cutting force 

and feed force plays major role in determining the machinability of any material (Thakur, 

Ramamoorthy and Vijayaraghavan, 2009). To acquire the cutting forces, a setting was 

composed by a KistlerTM piezoelectric dynamometer model 9121 (Figure 5.9a), a KistlerTM 

charge amplifier model 5019B (Figure 5.9b), and the DynowareTM software, was used.  

  

a) Piezoelectric dynamometer. b) Change amplifier. 

Figure 5.9 – Setting to acquire the cutting forces during the micro-cutting tests. 

5.2.5. Accelerometer 

The vibration during the cutting was acquired using a DytranTM shock accelerometer model 

3200B (Figure 5.10a) and a signal conditioners/vibration meters DytranTM model 4102C 

(Figure 5.10b). The signal was monitored using a National InstrumentTM connector block 

model BNC-2120 (Figure 5.11), a National InstrumentTM I/O card PC 6034, and a Virtual 

Instrument (VI) developed on the software LabviewTM, Figure 5.12.  

 

a) shock accelerometer (photo and diagram). 
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b) Signal conditioner. 

Figure 5.10 – Setting to acquire the vibration during the micro-cutting tests. 

 

Figure 5.11 – Connector block used in the monitoring of the vibration signals. 

 

Figure 5.12 – Virtual instrument used to acquire the vibration signal. 
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5.2.6. Temperature 

The temperature in the tool can be considered a most important parameters to improve the 

cutting conditions, understand the tool wear and obtain acceptable surface integrity (Coz et 

al., 2012). To observe the evaluation of the temperature in the tool, during the cutting, a 

thermos-couple K from Thermo-electraTM provided by PCE Ibérica, was used. The signal 

was monitored also using the National InstrumentTM connector block model BNC-2120 and 

the I/O card PC 6034, described in the section 5.2.5. Another VI was developed to 

monitoring the temperature signal, Figure 5.13. 

 

Figure 5.13 – Virtual instrument used to acquire the temperature signal. 

5.2.7. Surface roughness 

To measure the surface roughness, seen the section 2.2.1, in the workpieces during the 

micro-cutting tests, a portable surface tester HommelTM T 500, was used, Figure 5.14. To 

measure the surface roughness in the machined components with complex geometry, was 

used a Taylor HobsonTM profilometer model Talyrond 131c, Figure 5.15.  

 

Figure 5.14 – Portable surface tester used in the micro-cutting tests. 
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Figure 5.15 – Taylor HobsonTM profilometer model Talyrond 131c used in micro-cutting tests. 

5.2.8. Electrochemical tests 

Several studies have been developed to characterize and improve the biomaterials, such as 

the machining, mechanical properties, design. Among the analysis of mechanical 

characteristics, the corrosion is a big significance in biomaterial property. A brief search in 

the Engineering Village (2016) database indicated that when combined the “CORROSION” 

and “BIOMATERIAL”, the results corresponded to 3.2% of the result when use only 

“BIOMATERIAL”, Figure 5.16.  

 

Figure 5.16 – Type of analysis in the biomaterial (Engineering Village, 2016). 
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The corrosion, gradual degradation, of biomaterials is a complex multifactorial phenomenon 

that are related to several aspects, such as geometric, metallurgical, mechanical and solution-

chemistry. This is important due to metallic implant is placed in the hostile electrolytic 

environment provided by the human body. The degradation of metallic implants is 

undesirable because it can decrease their structural integrity and elicit an adverse biological 

reaction due to the release of degradation products. It can occurs due to electrochemical 

dissolution phenomena, wear or a synergistic combination of both (Balamurugan et al., 

2008). The tolerable corrosion rate is estimated about 2.5x10-4 mm per year, on maximum 

(Callister and Rethwisch, 2012). 

Basiaga et al. (2015) analysed the corrosive behaviour of the Ti-6Al-7Nb titanium alloy 

under simulated of blood. The workpieces were coated with a SiO2 layer and exposed for 

28 days, which was observed functional implant application and coating structure for the 

thickness adequate. Ribeiro Filho (2016, 2016b)4 investigated the influence of the machining 

processes in the corrosion behaviour of the Ti-6Al-4V using the simulated body fluid (SBF). 

For turning process, the authors observed the significant influence of the feed rate and depth 

of cut in the corrosion rate. The combination of the lowest feed rate and depth of cut 

improved the biocompatibility due to the formation of the passive layer more quickly. 

 

Figure 5.17 – Potentiostat/galvanostat used in electrochemical tests. 

                                                           
4 Self-citations. 
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A modular line potentiostat/galvanostat instruments Model PGSTAT 128N from Metrohm 

AutolabTM, was used to develop the electrochemical tests, Figure 5.17. The NOVATM 1.11 

software was used to control the tests. The reference electrode was a saturated calomel 

electrode and the counter-electrode was a platinum wire. To steady the temperature of the 

solution during the electrochemical analysis, was used a NovainstrumentTM thermostatic 

bath model NI 1235, Figure 5.18. The measure of the pH of the solution was made by a 

Hanna InstrumentsTM pH meter model HI 2221, Figure 5.19. 

 

Figure 5.18 – Thermostatic bath to steady the temperature in electrochemical tests. 

 

Figure 5.19 – The pH meter to measure the pH of the solution of electrochemical tests. 
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5.2.9. Scanning electron microscope  

A HitachiTM scanning electron microscope (SEM) model SU-70, Figure 5.20, was used to 

observe the machined surface, chip and tools used in the investigation. 

 

Figure 5.20 – Scanning electron microscope, DEMAC (2015). 

 

5.3. Preliminaries studies of micro-cutting in the biomaterial 

In the literature is found few studies of the machining in the Ti-6Al-7Nb titanium alloy, it 

was decided to develop preliminaries tests to understand the behaviour of this biomaterial in 

micro-cutting, and define the measurements techniques. Thus, were developed orthogonal 

micro-cutting tests in the Ti-6Al-7Nb titanium alloy. The orthogonal cutting, Figure 5.21, is 

a type of cutting that has been applied in many machining processes studies. Because the 

simplicity, it can help understand the basic mechanics of the machining process, many 

researchers employing this process to develop their models (Cheng, 2009). The orthogonal 

cutting is a simplified cutting operation that is employed as the first stages of investigations 

(Trent and Wright, 2000). The existence of only two cutting force components or the uncut 

chip thickness (t) can be considered equal to feed rate are some aspects that simplified the 

orthogonal cutting. 
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Figure 5.21 – Schematic of orthogonal cutting. 

The orthogonal cutting was employed to study several machining phenomena in the AISI 

1045 (Guohe, Cai and Bing, 2010) steel, Ti-6Al-7Nb titanium alloy (Ducobu, Rivière-

Lorphèvre and Filippi, 2016), or bone (Liao and Axinte, 2016). To compare with orthogonal 

cutting, macro-scale, Fromentin et al. (2016) developed a laboratory machine to study of 

fundamental of micro-cutting. The authors performed some micro-cutting tests to observe 

models of micro-cutting, such as the influence of the lubrication in the cutting forces, chip, 

and the nominal value of depth of cut in the micro-cutting of 316L stainless steel with a 

tungsten carbide (WC) insert. Liu and Melkote (2007) developed a FEM model to study the 

influence of tool edge radius on size effect in orthogonal micro-cutting process, which 

observed a nonlinear growth of the specific cutting energy when the uncut chip thickness 

and closed to the edge radius.  

Schneider et al. (2016) used the orthogonal micro-cutting to study the influence of the rake 

angle in micro-cutting of titanium commercial pure. They observed that an increase of the 

rake angle can improve the quality of the surface due to it reduce the plastic deformation in 

chip formation, independent of the uncut chip thickness. Ducobu et al. (2016) observed that 

the thrust force is larger than the cutting force, which go against the conventional cutting 

theory. 

5.3.1. Material and methods 

The workpieces of Ti-6Al-7Nb titanium alloy was machined, in wet condition, to obtain the 

“tube” shape with wall thickness of 0.8 mm and 1.1 mm, Figure 5.22. The tests were done 

using the KingsburyTM MHP 50 CNC lathe, described in the section 5.2.1, and the 
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piezoelectric dynamometer with the setup described in the section 5.2.4. The cutting tool 

setting was composted by the inserts TPGN 16 03 04 H13A and a tool holder CTGPL 2020 

K16, described in the section 5.2.2, were used. The cutting was performed without the tool 

noise radius, i.e., the depth of penetration of the tool was more than the thickness of 

workpiece, Figure 5.23. The tests were carried out randomly and repeated twice. 

 

Figure 5.22 – Workpieces for the orthogonal micro-cutting tests in the titanium alloy. 

 

Figure 5.23 – Orthogonal micro-cutting tests in the titanium alloy. 

5.3.2. Measurement techniques and analysis 

The cutting force were monitored using the setting described in the section 5.2.4. The set 

was configured as a sample frequency of 4 kHz, an acquisition time of 300 seconds and 

manually triggered. To study the phenomena that occur in machining processes, the several 

researchers have been employed the signal processing techniques (Lauro et al., 2014). One 

of these techniques is the Wavelet Transform, seen the section 3.6.3, which was employed 
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in micro (Lauro et al., 2015; 2006; Yun et al., 2011) and macro (Sevilla-Camacho et al., 

2015; Yang and Yu, 2011) scales in machining process. The Wavelet Transform was 

employed to classify the signal in all tested conditions with the same refinement level, as 

can be seen in Figure 5.24. To define the forces, a small section in the beginning and end of 

the acquired signal, the same for each component, was discarded due to the inertia. 

Furthermore, the maximum and minimum values of the cutting forces were defined by the 

average of the peaks, Figure 5.25. 

 

Figure 5.24 – Processing of the acquired force signals of micro-cutting tests. 

 

Figure 5.25 – Definition of maximum and minimum values of micro-cutting force. 

The same section used to define the cutting forces was used to calculate the friction 

coefficient (µ), specific cutting energy (uc), and the shear plane. The values of the friction 
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coefficient, specific cutting energy were calculated by the average of acquired points, 

Equation 5.1 and Equation 5.2, respectively. 
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Where,  

FT ↔ thrust force (N) 

Fc ↔ cutting force (N) 

i ↔ time increment 

γ ↔ tool rake angle (º) 

n ↔ number of increments 
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1        Equation 5.2 

Where,  

uc ↔ specific cutting energy (J/mm3) 

FT ↔ thrust force (N) 

Fc ↔ cutting force (N) 

vc ↔ cutting speed (m/s) 

Vrem ↔ removed chip volume (mm3) 

Δt ↔ interval of time equally spaced (s) 

 

To calculate the shear plane angle (φ), the experimental (Equation 5.3), Merchant (Equation 

5.4), and Lee - Shaffer (Equation 5.5) models were used. The Merchant model employs the 

derivative of the shear stress with respect to φ considering its value zero; and the Lee - 

Shaffer model assumes that the material was an ideal rigid-plastic solid and the shear plane 

approaches of the direction of maximum shear, ignoring the work of separation (Silva et al., 

2012). 
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Where,  

γ ↔ tool rake angle (º) 

µ ↔ friction coefficient (Equation 5.1) 

ζ ↔ chip compression ratio 

 

The measurement of the chip thickness (tc) was performed with a MitutoyoTM digital 

micrometre model MDC-25SB. The value of the chip thickness was the mean value of the 

values measured for ten specimens, which were cleaned and dried before the measurement. 

These measures were used to calculate the chip compression ratio (ζ), Equation 5.6, and the 

chip deformation (ε), Equation 5.7. The uncut chip thickness (t) was considered equal to feed 

rate (f) because the process was an orthogonal cutting. 

t

tc          Equation 5.6 

Where, 

tc ↔ chip thickness (mm) 

t ↔ uncut chip thickness (mm) 
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To observe the temperature in the tools, a “type K” thermocouple, described in the 5.2.6, 

was used, which was positioned at 1 mm of the cutting edge to avoid interference in the chip 

outlet. To reduce the noise, in the holders was applied insulating tape. The acquisition was 

made using a sample frequency of 4 kHz and manually started and stopped. To denoise the 

signal, the Wavelet Transform was employed, seen the section 3.6.3. To define the criterion 

for comparison of temperature, was used the mean of the maximum peak in the monitored 

temperature each condition. The Figure 5.27 exemplifies the maximum peak of temperature 

for comparison. 

 

Figure 5.26 – Acquisition of the temperature in the orthogonal micro-cutting of titanium alloy. 

 

Figure 5.27 – Example of the acquired temperature in the orthogonal micro-cutting of the titanium alloy. 
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For this analysis, were used the workpiece with wall thickness of 0.8 mm. The cutting 

parameters were determined based on the manufacture catalogue and the geometry of the 

tool. Thus, the cutting speed were defined at 60 m/min, the mean of values suggested by the 

manufacturer, 30 m/min (low speed), and 120 m/min (high speed). The feed rate were 

defined at 10, 25, and 50 µm/rev, which were based on the cutting edge radius, Figure 5.28, 

about of 20 µm. Furthermore, cutting speed with two levels of the spindle speed were used. 

The low level was defined when the spindle speed was lower than 1,500 rpm, and high level 

of spindle speed was higher than 1,500 rpm. The Table 5.7 is shown the design of 

experiments used in this study.  

 

Figure 5.28 - Cutting edge radius used in the micro-cutting of titanium alloy. 

Table 5.7 – Cutting parameters employed in the validation tests. 

Cutting speed 

(m/min) 

Feed rate 

(µm/rev) 

Spindle speed 

(rpm) 

(approach) 

Depth of cut 

(mm) 

30 10 1,500 0.800 

30 10 750 0.800 

30 50 750 0.800 

60 10 1,500 0.800 

60 10 3,000 0.800 

120 10 3,000 0.800 

120 25 3,000 0.800 

120 50 3,000 0.800 

 

5.3.3. Influence of the HSM and MQL. 

In this analysis, to understand the influence of the cooling/lubrication in the orthogonal 

micro-cutting, three two-level factors were analysed (cutting speed, feed rate and cooling 
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condition) with two levels. The cutting speed (vc) was fixed at 30 m/min (low speed) and 

120 m/min (high speed). The feed rate (f) was defined at 10 µm/rev (f/re < 1) and 50 µm/rev 

(f/re > 1). For these tests, were used the wall thickness of 1.1 mm, it is because to obtain a 

section to measure the surface roughness. The Table 5.8 shows the factors and levels used 

in this study. 

Table 5.8 – Experimental planning in the micro-cutting tests. 

Factor 
Level 

Low High 

Cutting speed (vc) (m/min) 30 120 

Feed rate (f) (µm/rev) 10 50 

Cooling condition Dry MQL 

Depth of cut (mm) 1.1 

 

The dry and cooling/lubrication cutting were employed to analyse the influence of the 

cooling/lubrication in the ploughing effect. The MQL system, described in the section 5.2.3, 

was adjusted with a flow rate fixed at 2.6 ml/min and pressure of 6 bar. In the Figure 5.29 is 

shown the experimental set-up for the micro-cutting tests. To measure the surface roughness, 

a Taylor HobsonTM profilometer, described in the section 5.2.7, was used. The surface was 

characterized through the Ra, Rz and Rt profiles using four sampling length (cut-off of 0.8 

mm), seen the section 2.2.1. In each test, three surface roughness measures with 120º angular 

separation, were taken to reduce the experimental errors, see Figure 5.30. The micro-

machined surfaces and the chips were observed using a HitachiTM SEM, described in the 

section 5.2.9.  

 

Figure 5.29 – Experimental set-up for use of the MQL in the micro-cutting. 
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Figure 5.30 – Surface roughness measures diagram of the orthogonal micro-cutting tests. 

5.3.4. Material modelling of Ti-6Al-7Nb titanium alloy to surface integrity via FEM 

To analyse the residual stresses and the microstructural alteration in the micro-cutting of the 

Ti-6Al-7Nb titanium alloy, was developed a numeric model. A 2D model was developed to 

predict the force, temperature, and stresses using the AdvantEdgeTM version 7.3014, Figure 

5.31. This software was chosen because it shows great results and reliability to simulate the 

machining processes. The adaptive meshing that is employed in the AdvantEdgeTM improves 

the quality and precision of the output results (Maranhão and Davim, 2012).  

 

Figure 5.31 – Schematic of the simulation of the orthogonal micro-cutting. 

The uncoated cemented carbide insert was designed with rake angle (γ) of 6º, relief angle (α) 

of 5º. The mesh size was fixed at 0.01 to 0.1 mm, and length and width of tool, LRefief and 
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LRake, respectively, were defined at 1 mm, Figure 5.32. The workpiece was rectified and 

considered only length of 4 mm, thickness of 1 mm, and width were equal to feed rate, 0.010, 

0.025, and 0.050 mm. The meshing size varied between 0.01 mm, cutting zone, and 0.1 mm, 

encastre region. To model the biomaterial, Ti-6Al-7Nb titanium alloy, the Johnson-Cook 

equation were employed, Equation 5.8. The values of the constants to model this material 

were defined based on study of Lee and Chen (2013), Table 5.9. 

 

Figure 5.32 – Dimensions and meshing of tool in the orthogonal micro-cutting. 

 

Figure 5.33 – Dimensions and meshing of workpiece in the orthogonal micro-cutting. 
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    Equation 5.8 

Where,  

A ↔ yield stress of the material under reference deformation conditions (MPa) 

B ↔ strain hardening constant (MPa) 

n ↔ strain hardening coefficient 

C ↔ strain rate strengthening coefficient 

m ↔ thermal softening coefficient 

T ↔ deformation temperature 

Troom ↔ room temperature 

Tmelt ↔ melting temperature of the material 

0ε  ↔ reference strain rate (1/s) 

ε  ↔ equivalent plastic strain normalized with a reference strain rate 

ε  ↔ plastic equivalent strain 

 

Table 5.9 – Johnson-Cook constants for the Ti-6Al-7Nb titanium alloy. 

Constant Value 

A 802 MPa 

B 556.2 MPa 

n 0,26 

m 15,4 

C 22,4×10-15 

ε 1,000 

Troom 20º C 

Tmelt 1660º C 

 

The initial temperature was considered of 20º C and the simulated cutting length was defined 

to 4 mm. The friction coefficient used in the numerical tests were based on the values of 

friction coefficient obtained in the experimental tests, section 6.1.3. The responses of the 

numerical tests were treated similar to experimental tests. The beginning and end of the 

results obtained due to inertia of the process and the wavelet transform was employed to fit 

the results. The average of feed and cutting forces in the section selected were used to 
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compare to average of cutting forces, maximum and minimum, obtained in the experimental 

tests, section 6.1.1. To valid the numerical tests, the deviations between results of numerical 

and experiments tests could not be higher than 45%, Equation 5.9.  

100



exp

expnum

F

FF
  Deviation       Equation 5.9 

Where, 

Fnum ↔ Force values obtained in the numerical tests 

Fexp ↔ Force values obtained in the experimental tests 

 

To analyse the efficiency of the condition employed in this study, the power and the material 

removal rate, Equation 5.10, were compared. The heat flux during the micro-cutting was 

analysed through the temperature in the radial direction and the temperature in the elements 

in the beginning of cutting were analysed, Figure 5.34. In the same direction of the radial 

heat flux, the residual stress was extracted. 

 

 

Figure 5.34 – Methodology of analysis of the temperature during the orthogonal micro-cutting. 

60
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cp
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vaf
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Where, 

MRR ↔ Material removal rate (m3/h)  

f ↔ Feed rate (µm/rev) 

ap ↔ Depth of cut (µm) 

vc ↔ Cutting speed (m/min) 

 

5.4. The micro-cutting in the finishing operation of biomaterial 

Generally, in the paper about micromachining, the cutting speed is related to spindle speed. 

In many study, the cutting speed is low, but the high number of revolutions per minute (rpm) 

allows that the processes be considered processes in high speed machining or ultra-high 

speed machining. However, these papers studied the micro-cutting developed in the milling 

or drilling processes. Thus, this section analysed the influence of spindle speed in the micro-

cutting on the turning process.  

5.4.1. Micro-cutting parameters  

The cutting parameters was based on the catalogue of the tool manufacture and the results 

of the orthogonal micro-cutting tests. The cutting speed were kept at 60 m/min, average 

value, 30 m/min (low speed), and 120 m/min (high speed). Based on preliminaries tests, seen 

the section 5.3, and Ng et al. (2006), the feed rate was defined to obtain a feed rate and edge 

radius ratio is more than 1, to avoid the ploughing effect. Thus, the feed rate was fixed at 25, 

50, and 100 μm/rev. The depth of cut was selected at 25, 50, and 100 μm. The tests were 

performed in dry conditions to obtain the better surface quality due to particle and slip of 

tools during the cutting, see the section 6.2.5.  

To performance this analysis, three range of the spindle speed, three types of geometry of 

inserts, three feed rate, and three depth of cut were employed in each diameter scale, Table 

5.10, and the cutting forces, vibration, and surface roughness were monitored. In these tests, 

was select the Ti-6Al-7Nb titanium alloy, due to it be commonly employed in components 

on different scales, and a same machined length of 25 mm.  
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Table 5.10 – Parameters and tools employed in the analysis of the spindle speed in the cylindrical micro-

cutting tests. 

Range of diameter 

(mm) 

Range of 

spindle Speed 

(rpm) 

Cutting speed 

(m/min) 

Feed 

rate 

(µm/rev) 

Depth 

of cut 

(µm) 

Insert 

> 10 

(macro-scale) 
0 - 1,000 

30, 60, and 120 

(macro-scale) 
25 25 

VBMW 16 04 04 

H13A 

5 – 8 

(transition scale) 
1,000 - 2,000 

15, 30, and 60 

(transition scale) 
50 50 

VBMT 16 04 04-

UM H13A 

2 – 4.5 

(meso-scale) 
2,000 - 3,000 

7, 15, and 30 

(meso-scale) 
100 100 

VNMG 160404-

QM H13A 

 

5.4.2. Micro-cutting monitoring  

The methodology for the acquisition and classification of the cutting forces signals was 

based on section 5.3. The cutting force setting was adjusted to a sample frequency was 

defined at 4 kHz and manually triggered and stopped. In the signal was processed employing 

the Wavelet Transform, to denoise. The value of each component was defined in function of 

the average of the peaks, maximum and minimum, discarding a small section in the 

beginning and end of the acquired signal.  

To monitoring the vibration during the cutting, was used the accelerometer described in the 

section 5.2.5. The accelerometer was assembled in the tool holder on vertical and horizontal 

to analyse the behaviour of the vibration in the cutting and feed direction, respectively, 

Figure 5.35. To reduce the noise, in the holders was applied insulating tape and avoid 

variation in the fixation, due to force of jaw chuck, the diameter to fix the workpiece was 

the same for all workpiece. To reduce the stress concentration, was made a cam for each 

range of diameter, Figure 5.36, except in the macro-scale. The Figure 5.37 shows the 

experimental setup for the micro-cutting tests. 

 

a) axial direction. 
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b) SVJBL 2020K 16. 

Figure 5.35 – Position of the accelerometer in the axial and tangential direction. 

 

a) Workpiece of titanium alloy for the transition scale in the cylindrical micro-cutting tests. 

 

b) Workpiece of titanium alloy for the meso scale turning tests. 

Figure 5.36 – Workpieces of titanium alloy in the spindle speed tests. 

 

Figure 5.37 –  Experimental setting for the finishing micro-cutting. 
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The sample frequency also was defined 4 kHz and manually triggered. Initially, the vibration 

signals were acquired and recorded without a filter, to observe the particular features that 

could occur in the micro-cutting. In the next stage, was developed a new VI applying a high-

pass type Butterworth filter to remove the signal disturbances, Figure 5.38. To observe the 

phenomena of the vibration during the micro-cutting, the vibration signal was filtered using 

a pass-low filter type Finite Impulse Response (FIR), at 0.1 kHz and 0.8 kHz, based on the 

section 3.3. 

 

Figure 5.38 – Virtual instrumentation developed to filter the vibration signal. 

For the time domain analysis, the root mean square (RMS) method was employed, which is 

calculate through the Equation 5.11. The frequency domain was used to compare the 

condition, which was developed by the Fast Fourier transform, seen the section 3.6.1, 

Equation 5.12, that was employed to find the frequency components of a signal and the 

Hilbert transform (HT), seen the section 3.6.2, Equation 5.13, that was used to develop the 

envelope technique, Equation 5.14. 
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z(t)xu(x)  ˆ         Equation 5.14 

To compare the vibration among the different micro-cutting conditions employed in this 

study, were considered only the lengths where the cutting was stable. The Figure 5.39 is 

exemplified the vibration signal acquisition. For this acquisition, the section between 0 

(cutting start) and 10 was discarded due to the instability that occurred because the diameter 

had smaller dimension.  

 

Figure 5.39 – Example of the vibration signal acquired during the micro-cutting. 

5.4.3. Geometric deviation 

In the micro-turning, Lu and Yoneyama (1999) analysed the deflection that as the diameter 

was decreasing, the stress and deflection were increasing, Figure 5.40. Thus, the minimum 

deflection was calculated to compare the micro-turning in different scales. To calculate this 

deflection, was employed the       Equation 5.15. 

 

Figure 5.40 – Deflection of workpiece, adapted from Lu and Yoneyama (1999). 
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IE

lFd         Equation 5.15 

Where;  

δ ↔ deflection (μm) 

Fd ↔ depth force (N) 

l ↔ cutting length (mm) (30 to macro; 25 to transition and meso) 

E ↔ tensile strength (MPa) 

I ↔ area moment of inertia (mm4) 

 

To characterize was used the portable surface tester, describe in the section 5.2.7. The 

profilometer was configured to a cut-off of 0.8 mm, and the profiles Ra and Rz was analysed, 

seen the section 2.2.1. The surface roughness, was considered the average of the three 

measurements, rounding it 120º around the contour, for each test. Furthermore, the 

measurements were performed neared end of cut jaw chuck due to the stability of cutting, 

Figure 5.41. 

 

Figure 5.41 – Surface roughness measures diagram of the oblique micro-cutting tests. 

5.5. Corrosion behaviour of micro-machined surface in the dental applications 

In this section was analysed the influence of the micro-cutting in the finishing operation of 

dental components. In this regard, three different workpieces were manufactured based on 

geometries and dimensions of some dental components (Misch, 2009). These geometries 

used in the electrochemical tests are shown in the Figure 5.42 and the area analysed are 

shown in the Table 5.11. The dimensions of the workpieces can be seen in the Annex C. In 



M.Sc. Carlos Henrique Lauro 

92 
 

the roughness operation, the workpieces were machined using the TPGN 16 03 04 H13A 

cutting inserts mounted in the CTGPL 2020 K16 tool holder to reduce the influence of the 

cutting geometry. The cutting parameters used were a feed rate of 0.1 mm, depth of cut of 

0.5 mm, and cutting speed was limited at 60 m/min or 3,000 rpm. The cut was performed in 

wet condition to reduce the metallurgic alterations, tool wear, and others unforeseen events 

that influenced the analysis.  

 

Figure 5.42 – Workpieces geometries developed for electrochemical tests. 

Table 5.11 – Area of workpieces used in the electrochemical tests. 

Workpiece Area (mm2) 

G1 95.99 

G2 116.23 

G3 116.25 

 

5.5.1. Definition of the micro-cutting parameters  

To analyse the performance of the micro-cutting as finishing operation, the first step was 

find the optimum and worse condition. Thus, values obtained of cutting force and surface 

roughness for micro-cutting in the meso-scale diameter in the section 5.4, were used. The V 

inserts shape were selected to obtain the lower cutting section, the VBMW 16 04 04 H13A 

and VBMT 16 04 04-UM H13A mounted in a tool holder SVJBL 2020K 16; and VNMG 16 

04 04-QM H13A mounted in a tool holder DVJNL 2020K 16. 

To design and implement an effective process control for metal cutting operation by 

parameter optimization, a manufacturer seeks to balance between quality and cost at each 

stage of operation resulting in improved delivery and reduced warranty or field failure of a 

product under consideration (Mukherjee and Ray, 2006). Sometimes, the ideal cutting 
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parameters combination can be developed to optimize just one output, but, sometimes the 

ideal cutting parameters combination should involve several outputs. Maiyar et al. (2013) 

employed a technique to predict the optimal cutting parameters during the milling of Inconel 

718 alloy, which resulted in the reducing of the surface roughness (9.5%) and the increasing 

of the material removal rate (65%), simultaneously.  

In many cases, there are a complexity due to high number of inputs and outputs, which can 

be determined through the Artificial Intelligence (AI) methods. The AI methods is more used 

in the engineering to solve difficult problems normally requiring human intelligence due to 

a number of powerful tools (Mohd Adnan et al., 2015). 

To optimize the results of this work, a Genetic Algorithm (GA) based on the Least Square 

Method (LSM), it was developed, seen the section 4.4. This choice was because the high 

number of outputs analysed, like the cutting forces, surface roughness, manufacturing time 

and other. To verify the adequacy of the LSM models, Analysis of Variance (ANOVA) was 

used, with a confidence interval of 95%. The ANOVA was carried out to verify whether the 

main and/or the interaction factors were statistically significant. 

The optimum condition was found using a Genetic Algorithm (GA) based on the Least 

Square Method (LSM) that is the best fit into a data group. Similar method was employed to 

find the worse condition, meanwhile the models were inverted. The initial population of the 

model was formed by 1,000 individuals who evolved during 1,000 interactions. The weights 

of the responses to find the optimum and worse conditions were defined at 0.5 for the cutting 

forces and 0.5 for the surface roughness profiles. To model the responses of the micro-

cutting finishing tests was employed the Response Surface Method, seen the section 4.3.2, 

based in the study of Silva et al. (2014). 

5.5.2. Electrochemical analysis 

In this analysis were used the equipment described in the section 5.2.8. After the 

manufacturing, the workpieces were cleaned and dried, to avoid influences in the 

electrochemical test, joined a wire, and mounted on polyester resin base, Figure 5.43. The 

electrochemical tests were developed using the simulated body fluid (SBF) based on studies 

of Kokubo and Takadama (2006) on thermostatic bath at temperature of 37 °C, Figure 5.43. 
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The simulated body fluid (SBF) is a reproduction of in vivo apatite formation, whose the ion 

concentrations is similar to human blood plasma, that has been employed to develop new 

biomaterials with great success (Kokubo and Takadama, 2006). The reagents and their 

weights for preparing 1,000 ml of SBF are presented in the Table 5.12. The pH of the SBF 

used in the electrochemical tests varied between 7.23 and 7.31. 

 

Figure 5.43 – Preparation of the workpieces for electrochemical tests. 

 

Figure 5.44 – Workpieces on thermostatic bath during the electrochemical tests. 

Table 5.12 – Reagents and weights for 1,000 ml of SBF to corrosion tests (Kokubo and Takadama, 2006). 

Reagents Weight (g) 

sodium chloride (NaCl) 8.035 

sodium hydrogen carbonate (NaHCO3) 0.355 

potassium chloride (KCl) 0.255 

di-potassium hydrogen phosphate trihydrate (K2HPO4.3H2O) 0.231 

magnesium chloride hexahydrate (MgCl2.6H2O) 0.311 

1m (mol/l) Hydrochloric Acid (HCl) 39 ml 

calcium chloride (CaCl2.H2O) 0.292 

sodium sulfate Na2SO4 0.072 

tris-hydroxymethyl aminomethane: ((HOCH2)3CNH2) (Tris) 0.118 

pH standard solution 7.2 – 7.4 
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The NOVA 1.11 software was used to control the tests that were adjusted at scan rate of 10 

mHz to 100 kHz (electropositive direction), disturbance of 10 mV, and acquisition rate of 

0.05 mV/s. To analyse the impedance, the bode and phase curves were obtained at OPC, 

0.75 V, 1.5 V, and 2.0 V. The reference electrode was a saturated calomel electrode and the 

counter-electrode was a platinum wire. Initially, the samples were kept in solution for 3,600 

s and then the ECORR was determined.  
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CHAPTER 6 – PRELIMINARY ANALYSIS OF THE BEHAVIOUR OF 

THE BIOMATERIAL IN THE MICRO-CUTTING 

In this chapter is analysed the measurements techniques developed to observe the behaviour 

of the Ti-6Al-7Nb titanium alloy when employed the in the micro-cutting. Furthermore, it is 

analysed the behaviour of the micro-machined surface using the High Speed Machining 

(HSM) and the Minimum Quantity Lubrication (MQL). Large portion of the section 6.1 has 

similarity with: 

 LAURO, C. H. et al. Analysis of behaviour biocompatible titanium alloy (Ti-6Al-7Nb) 

in the micro-cutting. Measurement, v. 93, 2016, p. 529-540. 

6.1. Development of measurements techniques and analysis 

6.1.1. Cutting Forces 

In this section, the thrust (FT) force, cutting (FC) force, and their variation are compared. The 

Figure 6.1 shows the maximum and minimum feed force values obtained in the micro-

cutting of the Ti-6Al-7Nb titanium alloy. The results of experiments showed that the feed 

force tends to increase with the increase of the feed rate (37.6% on average) and decrease of 

the spindle speed (27.0% on average). The increase of the cutting speed caused a reduction, 

from 30 to 60 m/min, and an increase, from 60 to 120 m/min, considering the feed force 

range. The variation between the maximum and minimum values was the same for all tested 

conditions, practically, 1.05% on average. When performed the Analysis of Variance 

(ANOVA), feed rate (linear and square), the square of the cutting speed, and the interaction 

of these parameters were significant sources of variation, Table 6.1. The Equation 6.1 shows 

the feed force model for these tested conditions. A clear understanding of the influence of 

the parameters can be observed in the contour plots, Figure 6.2. 
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   Equation 6.1 

Where, 

vc ↔ cutting speed (30 to 120 m/min) 

f ↔ feed rate (10 to 50 μm/rev) 

n ↔ spindle speed (0 to low and 1 to high) 

 

 

Figure 6.1 – Maximum and minimum values of thrust force for the micro-cutting in titanium alloy. 

 

 

Figure 6.2 – Contour plot of the FT in function of the feed rate and cutting speed. 
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Table 6.1 – ANOVA for the feed force in the micro-cutting of titanium alloy. 

Source F-Value P-Value 

Model 101.32 0.000 

Linear 102.35 0.000 

Cutting speed 0.00 0.997 

Feed rate 289.88 0.000 

Spindle speed 3.39 0.103 

Square 9.23 0.008 

Cutting speed*Cutting speed 7.75 0.024 

Feed rate*Feed rate 8.23 0.021 

2-Way Interaction 7.01 0.017 

Cutting speed*Feed rate 10.81 0.011 

Cutting speed*Spindle speed 0.83 0.389 

R2 = 98.88% R2
adj = 97.91% 

 

The results of the cutting force (Fc) in the micro-cutting of Ti-6Al-7Nb titanium alloy are 

shown in Figure 6.3. The increase of the feed rate caused an increase of the cutting force, 

79.0%, and the increase of the spindle speed resulted in a reduction of this force, 21.5% on 

average. The increase from 30 to 60 m/min in the cutting speed presented a reduction of the 

cutting force, 10.2% on average. The increase from 60 to 120 m/min caused a small increase 

of the cutting force, 1.7%. However, when compared the cutting force for the increase from 

30 to 120 m/min, the force reduced on average of 4.7%. Analysing the variation between the 

maximum and minimum values, the cutting force was more stable employing the high level 

of the inputs, Figure 6.4. 

 

Figure 6.3 – Maximum and minimum values of the cutting force for the micro-cutting in titanium alloy. 
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Figure 6.4 – Variation of the cutting force for the micro-cutting in titanium alloy. 

The Table 6.2 shown the ANOVA for the cutting force. The ANOVA showed that all inputs 

were significant in the cutting force, but their interactions were not significant. The Equation 

6.2 shows the modelling for the cutting force for the tested conditions. The Figure 6.5 shows 

the contours plot for the cutting force in the micro-cutting of Ti-6Al-7Nb titanium alloy, 

which can be the influence of parameters. 

Table 6.2 – ANOVA for the cutting force in the micro-cutting of titanium alloy. 

Source F-Value P-Value 

Model 2703.11 0.00 

Linear 4031.31 0.000 

Cutting speed 6.61 0.033 

Feed rate 12026.33 0.000 

Spindle speed 22.73 0.001 

Square 29.83 0.000 

Cutting speed*Cutting speed 33.08 0.000 

Feed rate*Feed rate 18.77 0.003 

2-Way Interaction 0.18 0.837 

Cutting speed*Feed rate 0.00 0.980 

Cutting speed*Spindle speed 0.35 0.572 

R2 = 99.96% R2
adj = 99.92% 
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   Equation 6.2 

Where, 

vc ↔ cutting speed (30 to 120 m/min) 
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f ↔ feed rate (10 to 50 μm/rev) 

n ↔ spindle speed (0 to low and 1 to high) 

 

 

Figure 6.5 – Contour plot of the Fc in function of the feed rate and cutting speed. 

6.1.2. Specific cutting energy  

The Figure 6.6 shows the values of the specific cutting energy in the micro-cutting tests. The 

specific cutting energy presented a fall when both the feed rate and spindle speed were 

increased, 36.2% and 15.3% on average, respectively. However, when the cutting speed 

increased from 30 to 60 m/min, proportional to spindle speed, the specific cutting energy 

presented a reduction of 8.2% on average. However, it can be noted an increase of 2.2% for 

the variation from 60 to 120 m/min. Moreover, when the cutting speed was varied from 30 

to 120 m/min, the specific cutting energy decreased 4.9% on average. The ANOVA showed 

that all parameters were significant, but their interaction was not significant in this process, 

Table 6.3. 

 

Figure 6.6 – Specific cutting energy in the micro-cutting in titanium alloy. 
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Table 6.3 – ANOVA for the specific cutting energy in the micro-cutting of titanium alloy. 

Source F-Value P-Value 

Model 160.63 0.000 

Linear 320.85 0.000 

Cutting speed 8.74 0.018 

Feed rate 892.68 0.000 

Spindle speed 19.06 0.002 

Square 36.93 0.000 

Cutting speed*Cutting speed 30.20 0.001 

Feed rate*Feed rate 53.12 0.000 

2-Way Interaction 0.43 0.666 

Cutting speed*Feed rate 0.53 0.489 

Cutting speed*Spindle speed 0.14 0.717 

R² = 99.29% R²adj = 98.68% 

 

6.1.3. Friction coefficient 

The results of the friction coefficient are showed in Figure 6.7. The feed rate was the unique 

input parameter that presented uniform behaviour. The increase of the feed rate reduced the 

friction coefficient in 30.1% considering mean values. Using the data of the ANOVA, in 

Table 6.4, it is possible to observe that only the square of the cutting speed was not 

significant in this process. 

 

 

Figure 6.7 – Friction coefficient in the micro-cutting in titanium alloy. 
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Table 6.4 – ANOVA for the friction coefficient in the micro-cutting of titanium alloy. 

Source F-Value P-Value 

Model 620.79 0.000 

Linear 1113.21 0.000 

Cutting speed 7.56 0.025 

Feed rate 3317.44 0.000 

Spindle speed 5.46 0.048 

Square 65.10 0.000 

Cutting speed*Cutting speed 1.46 0.262 

Feed rate*Feed rate 122.76 0.000 

2-Way Interaction 45.02 0.000 

Cutting speed*Feed rate 43.34 0.000 

Cutting speed*Spindle speed 24.72 0.001 

R² = 99.82% R²adj = 99.66% 

 

6.1.4. Temperature 

The values of the temperature in the tool obtained in the micro-cutting of Ti-6Al-7Nb 

titanium alloy are exhibited in the Figure 6.8. The temperature presented, practically, a fall 

with the increase of all the input parameters. The increase of the feed rate, spindle speed, 

and cutting speed presented a reduction of 15.5%, 12.7%, and 10.9% on average, 

respectively. From the ANOVA in Table 6.5, it can be concluded that only the feed rate was 

significant. The temperature model for tested conditions is shown in the Equation 6.3. 

 

Figure 6.8 – Temperature in the micro-cutting in titanium alloy. 
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Where,  

vc ↔ cutting speed (30 to 120 m/min) 

f ↔ feed rate (10 to 50 μm/rev) 

n ↔ spindle speed (0 to low and 1 to high) 

 

Table 6.5 – ANOVA for the temperature in the micro-cutting of titanium alloy. 

Source F-Value P-Value 

Model 13.86 0.001 

Linear 19.21 0.001 

Cutting speed 2.80 0.133 

Feed rate 19.87 0.002 

Spindle speed 0.50 0.499 

Square 3.23 0.094 

Cutting speed*Cutting speed 0.00 0.948 

Feed rate*Feed rate 6.38 0.036 

2-Way Interaction 0.29 0.754 

Cutting speed*Feed rate 0.18 0.684 

Cutting speed*Spindle speed 0.52 0.490 

R2 = 92.38% R2
adj = 85.71% 

 

6.1.5. Chip 

The values of the chip compression ratio are exhibited in Figure 6.9. The increase of the feed 

rate was the parameter that presented a significant reduction with 18.9%, followed by the 

cutting speed with a reduction of 5.5%. It is worth pointing out that the increase of the feed 

rate from 10 to 25 μm/rev presented a decrease of the chip compression ratio in 20.6%, while 

the increase of feed rate from 25 to 50 μm/rev resulted in a reduction of 5.4%. The increase 

of the spindle speed reduced the chip compression in 5.3% (735 to 1,500 rpm) and 0.4% 

(1,500 to 3,000 rpm). The ANOVA for the chip compression ratio is shown in Table 6.6. It 

is observed in the ANOVA that the feed rate (linear and square), the cutting speed (linear) 

and the interaction between both parameters were significant for the chip compression ratio. 

The chip compression ratio for the tested condition was modelled by Equation 6.4. 
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Figure 6.9 – Chip compression ratio in the micro-cutting in titanium alloy. 
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th   Equation 6.4 

Where,  

vc ↔ cutting speed (30 to 120 m/min) 

f ↔ feed rate (10 to 50 μm/rev) 

n ↔ spindle speed (0 to low and 1 to high) 

Table 6.6 – ANOVA for the chip compression ratio in the micro-cutting of titanium alloy. 

Source F-Value P-Value 

Model 80.97 0.000 

Linear 109.63 0.000 

Cutting speed 9.59 0.015 

Feed rate 281.30 0.000 

Spindle speed 0.34 0.574 

Square 12.56 0.003 

Cutting speed*Cutting speed 0.10 0.761 

Feed rate*Feed rate 24.99 0.001 

2-Way Interaction 5.15 0.036 

Cutting speed*Feed rate 9.63 0.015 

Cutting speed*Spindle speed 2.47 0.155 

R2 = 98.61% R2
adj = 97.39% 

 

The chip deformation in the micro-cutting is showed in the Figure 6.10. The analysis of the 

chip deformation presented a similar behaviour to the chip compression ratio. The increase 

of the feed rate from 10 to 25 μm/rev varied the chip deformation in -13.0%, while the 
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increase of feed rate from 25 to 50 μm/rev resulted in -2.7% in the chip deformation. The 

increase of the cutting speed reduced the chip deformation in 4.0%, on average. The spindle 

speed presented a variation of -4.0% (735 to 1,500 rpm) and -0.3% (1,500 to 3,000).  

 

Figure 6.10 – Chip deformation in the micro-cutting in titanium alloy. 

The ANOVA appointed the same influence of the parameters than that of the chip 

deformation, as can be seen in the Table 6.7. 

Table 6.7 – ANOVA for the chip deformation in the micro-cutting of titanium alloy. 

Source F-Value P-Value 

Model 69.71 0.000 

Linear 93.96 0.000 

Cutting speed 9.03 0.017 

Feed rate 239.24 0.000 

Spindle speed 0.39 0.551 

Square 10.41 0.006 

Cutting speed*Cutting speed 0.11 0.747 

Feed rate*Feed rate 20.74 0.002 

2-Way Interaction 6.52 0.021 

Cutting speed*Feed rate 12.42 0.008 

Cutting speed*Spindle speed 2.69 0.140 

R2 = 98.39% R2
adj = 96.98% 

 

6.1.6. Shear plane angle 

In Figure 6.11 is shown the values of the shear plane angle of the micro-cutting. When 

analysing the cutting speed, only in the experimental model, the increase of the cutting speed 

caused an increase of the shear plane angle value, 5.4% on average. The other models, the 
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shear plane angle increased, from 30 to 60 m/min, or decreased, from 60 to 120 m/min. For 

the variation of the feed rate, the increase of the feed rate caused an increase of the shear 

plane angle for all models, on average 22.2% in experimental, 18.4% in Merchant, and 

127.4% in Lee - Shaffer models. In the analysis of the spindle speed, the variation from 735 

to 1,500 rpm presented an increase for all models, 5.1% in experimental, 4.1% in Merchant, 

and 30.1% in Lee - Shaffer models. However, for the variation from 1,500 to 3,000 rpm, the 

influence was lower, 0.5% in experimental, -0.1% in Merchant, and -0.7% in Lee - Shaffer 

models. 

 

Figure 6.11 – Shear plane angle in the micro-cutting in titanium alloy. 

6.1.7. Discussion 

Although the low feed rate resulted in low values of the cutting forces, the feed rate used in 

these experiments caused high values of the specific cutting energy and friction coefficient. 

It can be related to the ploughing effect due to the feed rate/cutting edge radius (f/re) ratio, 

lower than 1. Ng et al. (2006) observed that the specific cutting energy and coefficient of 

friction increased nonlinearly with the decrease of the undeformed chip thickness/cutting 

edge radius ratio. In Figure 6.12, it can be seen the influence of the feed rate/cutting edge 

radius ratio in the micro-cutting of the Ti-6Al-7Nb titanium alloy. The ploughing effect can 

be also one of the causes of the high variation of the cutting force, as well as the temperature, 

when it was employed the feed rate of 10 μm/rev. 
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The ploughing effect caused an increase of the chip compression ratio. In Figure 6.13 is 

presented the chip compression ratio in the micro-cutting at 120 m/min and high level of the 

spindle speed. In this figure, it can be observed that the chip compression ratio rises sharply 

when the f/re is lower than 1. When analysing the effect of the cutting speed, the increase of 

the cutting speed reduces the difference of the chip compression ratio between the feed rates 

used, see Figure 6.14. To know this is important because it can facilitate the optimization of 

the metal cutting process (Astakhov and Shvets, 2004).  

 

Figure 6.12 – Influence of the f/re in the micro-cutting at 120 m/min and high level of spindle speed. 

 

Figure 6.13 – Influence of the ploughing effect in the chip compression ratio at 120 m/min and high level of 

spindle speed. 
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Figure 6.14 – The behaviour of the chip compression ratio in function of the cutting speed for various feed 

rate and low level of spindle speed. 

The results of the experiments for the shear plane angle can also indicate the ploughing 

effect. A small shear plane angle means that the chip moves away slowly, while a large shear 

plane angle means a thin, high-velocity chip (Trent and Wright, 2000). Furthermore, a small 

shear plane angle requires more energy for the same shear stress than an optimum condition 

(Rowe, 2009). In Table 6.8, it is presented the Spearman’s ρ correlation for the micro-cutting 

of the Ti-6Al-7Nb titanium alloy. The Merchant and Lee - Shaffer models presents the better 

monotonic correlation with both the friction coefficient and specific cutting energy. 

However, the Lee - Shaffer model presents a better comparison. The condition that indicated 

the ploughing effect for the shear plane angle according the Lee - Shaffer model was to have 

a value lower than 10º. In the Figure 6.15, it is plotted the comparison between the specific 

cutting energy and Lee - Shaffer shear plane angle model. 

Table 6.8 – Spearman’s ρ correlation for analysis of the micro-cutting in titanium alloy. 

 
Cutting 

speed 

Feed 

rate 

Spindle 

speed 

Specific 

cutting 

energy 

Friction 

coeff. 
Temp. 

Experi

mental 
Merchant 

Feed rate 0.218        

Spindle speed 0.974 0.149       

Specific 

cutting energy 
-0.266 -0.861 -0.287      

Friction coeff. -0.063 -0.861 -0.067 0.888     

Temperature -0.658 -0.676 -0.683 0.809 0.600    

Experimental 0.689 0.820 0.635 -0.791 -0.665 -0.871   

Merchant 0.063 0.861 0.067 -0.888 -1.000 -0.600 0.665  

Lee-Shaffer 0.063 0.861 0.067 -0.888 -1.000 -0.600 0.665 1.000 
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Figure 6.15 – Behaviour of the specific cutting energy and Lee - Shaffer shear plane angle model in the 

micro-cutting in titanium alloy at 120 m/min. 

Thus, the knowledge of the behaviour of biomaterial material in the micro-cutting is very 

important because it can avoid damage to component or patient. The ploughing effect is 

undesirable because it causes a machined surface of poor quality, which requires techniques 

restricted by the price or damages on the microstructures (Afazov et al., 2013; Schueler et 

al., 2010). It is worth mentioning that the biomedical components requires burr height too 

small, about 25 nm is acceptable (Fang and Liu, 2004). 

6.1.8. Conclusion of the section 

This section provides an experimental investigation on the micro-cutting of the Ti-6Al-7Nb 

titanium alloy for biomedical application. The main conclusions drawn from the study are 

the following: 

 The increase of the cutting speed, used in this study, caused a growth of the cutting 

forces, however, it was verified a reduction in the other response, which may indicate 

an improvement of the cutting and the component quality. 

 Although the lower level of feed rate provided lower values of the cutting forces. For 

this value occurred the ploughing effect, which was accounted for the increase of the 

specific energy, friction coefficient, temperature in the tool, and other. 
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 The variation of the spindle speed was significant for the cutting force, specific 

energy, and friction coefficient. Although it was not significant for the temperature 

in the tool, it was observed that a higher spindle speed caused a lower tool heating.  

 The ploughing effect caused a reduction in the shear plane angle. This event was 

more notable in the Lee - Shaffer model that were lower than 10º.  

 

6.2. Influence of the HSM and MQL in the micro-cutting 

6.2.1. Cutting forces 

In the Figure 6.16 is shown the values of the FT (feed) force in the orthogonal micro-cutting 

in dry and cooling/lubricated conditions for different cutting parameters. The increase of the 

feed rate increased the values of the FT force in both conditions, 82.8% (MQL) and 66.3% 

(dry). The increase of the cutting speed decreased the FT force in all condition practically, 

10.9% in average. The use of the MQL system varied the FT force in -18.9% and 3.3% for 

the cutting speed of the 30 and 60 m/min, respectively. The Figure 6.17 shows the effect 

Pareto chart for the FT force. The use of the cooling/lubrication reduced the magnitude of 

effect for all parameters and the “Feed rate” remained important for the FT force. 

 

Figure 6.16 – Comparison of FT forces in the dry and cooling/lubricated micro-cutting. 
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Figure 6.17 – Effect Pareto chart for the FT forces in the micro-cutting tests. 

The FC (cutting) force for the micro-cutting is shown in the Figure 6.18. The increase of the 

feed rate caused a growth of 65.4% (Dry) and 82.6% (MQL) in the FC force, in average. The 

increase of the cutting speed reduced the FC force in all conditions practically, 10.9% in 

average. The use of the MQL system decreased, for vc of 30 m/min, or increased, for vc of 

120 m/min, in the FC force. The effect Pareto chart for the FC force is shown in the Figure 

6.19. The employed of the MQL system reduced the magnitude of the “Feed rate” and the 

“Cooling” become no importance for the FC force. 

 

Figure 6.18 – Comparison of FC forces in the dry and cooling/lubricated micro-cutting. 
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Figure 6.19 – Effect Pareto chart for the FC forces in the micro-cutting tests. 

The Figure 6.20 shows the values of the FR (machining) force calculated in the dry and 

cooling/lubricated micro-cutting. The increase of feed rate rose the FR force in 160.4% (dry) 

and 194.0% (MQL), on average. The increase of the cutting speed reduced the FR force in 

13.0% (dry) and 2.0% (MQL). For the usage of the MQL system, the most reduction 

employing the MQL system, was in the condition with lower level (vc = 30 m/mim and f = 

10 μm), 22.3%. For the cutting speed of 120 m/min and feed rate of 10 μm, the reduction 

was 3.7%. In the meantime, when compared the dry cutting (vc = 120 m/mim and f = 10 μm) 

and the cooling/lubricated condition (vc = 30 m/mim and f = 10 μm), the values of FR force 

were lower, 6.1% in average. The reduction of the FR force for the feed rate were 3.4% (30 

m/min) and 1.2% (120 m/min), on average.  

 

Figure 6.20 – Comparison of the FR forces in the dry and cooling/lubricated micro-cutting. 
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The Figure 6.21 shows the effect Pareto chart for the FR force. The “Cutting speed” was no 

important and the magnitude of the “Feed rate” was reduced for the FR force when used the 

MQL system. 

 

Figure 6.21 – Effect Pareto chart for the FR forces in the micro-cutting tests. 

6.2.2. Specific cutting energy and Friction coefficient 

The comparison of the specific cutting energy for dry and cooling/lubricated cutting is shown 

in the Figure 6.22. The increase of the cutting speed and the feed rate decreased the specific 

cutting energy in, respectively, 13.0% and 47.9%, for dry cutting, and 2.0% and 41.2%, 

employing the MQL, on average. The use of the MQL system, the reduction was higher in 

the low cutting speed (22.3% and 3.4%) than high cutting speed (3.7% and 1.2%), for the 

feed rate of 10 and 50 µm respectively.  

 

Figure 6.22 – Comparison of the specific cutting energy in the dry and cooling/lubricated micro-cutting. 
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The effect Pareto chart for the specific cutting energy is shown in the Figure 6.23. For the 

specific cutting energy, the all parameters were important in the dry condition, and only the 

“Feed rate” was important in the cooling/lubricated condition. 

 

Figure 6.23– Effect Pareto chart for the specific cutting energy in the micro-cutting tests. 

The Figure 6.24 shows the values of the friction coefficient between tool and chip in the 

micro-cutting. The increase of the feed rate caused a reduction in the friction coefficient in 

in the MQL (42.9%) and dry (41.1%) conditions. Except for the condition using MQL and 

low feed rate, the increase of the cutting speed decreased the friction coefficient in all 

condition, 8.2% on average. The employed of the MQL system varied the friction coefficient 

of -8.2% (vc = 30 m/min) and 5.6% (vc = 120 m/min).  

 

Figure 6.24 – Comparison of the friction coefficient in in the dry and cooling/lubricated micro-cutting. 



M.Sc. Carlos Henrique Lauro 

116 
 

The effect Pareto chart for the friction coefficient is shown in the Figure 6.25. When 

employed the MQL system, only the “Feed rate” become important for the friction 

coefficient. 

 

Figure 6.25 – Effect Pareto chart for the friction coefficient in the micro-cutting tests. 

6.2.3. Shear plane angle 

The values of the shear plane angle calculated by the Lee - Shaffer model is shown in the 

Figure 6.26. The increase of the feed rate rose sharply the shear plane angle in 221.4% (dry) 

and 254.3% (MQL). The variation of the cutting speed, from 30 to 120 m/min, increased the 

shear plane angle for all conditions, practically, at least 4.2%. The use of the MQL system 

caused an increase (20.8% for the vc = 30 m/min) or a reduction (14.8% for the vc = 30 

m/min). 

 

Figure 6.26 – Comparison of the Lee – Shaffer shear plane angle in the dry and cooling/lubricated micro-

cutting. 
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The Figure 6.27 shows the effect Pareto chart for the shear plane angle. All parameters 

presented reduction of the magnitude of the standardized effect, however, only “Feed rate” 

was important in this response when used the MQL system. 

 

Figure 6.27 – Effect Pareto chart for the Lee – Shaffer shear plane angle in the micro-cutting tests. 

6.2.4. Chips 

The comparison between dry and cooling/lubricated condition for the chip compression ratio 

is shown in the Figure 6.28. The increase of the feed rate went down the chip compression 

ratio in 33.5% (dry) and 27.6% (MQL). Similar evolution was observed for the cutting speed, 

a reduction of 18.8% (dry) and 9.5% (MQL), on average. The usage of cooling/lubrication 

in the micro-cutting varied the values of the chip compression ratio in -3.2% (vc = 30 m/min) 

and 7.8% (vc = 120 m/min), on average.  

 

Figure 6.28 – Comparison of chip compression ratio in the dry and cooling/lubricated micro-cutting. 
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In the Figure 6.29 is shown the effect Pareto chart for the chip compression ratio. When used 

the MQL system, the importance of the “Feed rate” and “Cutting speed” presented 

reductions, however, the interaction presented the increase of the magnitude for the chip 

compression ratio. 

 

Figure 6.29 – Effect Pareto chart for the chip compression ratio in the micro-cutting tests. 

In the d) f = 50 μm/rev and vc = 120 m/min 

Figure 6.30 is shown the chip morphology of micro-cutting for the feed rate of 10 and 50 

μm/rev. For the free surface of chip, the lamellar structures were more spaced for the increase 

of the feed rate and the cutting speed. When analysing the effect of the cooling/lubricated, 

the spacing increased for the vc of 30 m/min and decreased for the vc of 120 m/min. 

 

  

Dry Cooling/lubricated 

a) f = 10 μm/rev and vc = 30 m/min 
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Dry Cooling/lubricated 

b) f = 10 μm/rev and vc = 120 m/min 

  

Dry Cooling/lubricated 

c) f = 50 μm/rev and vc = 30 m/min 

  

Dry Cooling/lubricated 

d) f = 50 μm/rev and vc = 120 m/min 

Figure 6.30 – Chip morphology in the micro-cutting tests. 
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6.2.5. Surface roughness 

The values of Ra, Rz and Rt surface roughness obtained in the micro-cutting are showed in 

the Figure 6.31a and Figure 6.31b, respectively. The values of the surface roughness for the 

feed rate of 50 μm/rev were low than the feed rate of 10 μm/rev, on average, 28.8% (dry) 

and 34.3% (MQL). It can be justified because the feed rate of 10 μm/rev suffered the 

ploughing effect, f/re < 1, that provided surface with poor quality. In general, the application 

of the cooling/lubrication in the micro-cutting increased the values of the surface roughness, 

on average, 17.1% (vc = 30 m/min) and 148.1% (vc = 120 m/min). The increase of the cutting 

speed caused an increase, when used the MQL system, or a decrease, for the dry condition, 

in the values of the surface roughness.  

 

a) Values of Ra surface roughness in the micro-cutting. 

 

b) Values of Rt and Rz surface roughness in the micro-cutting. 

Figure 6.31 – Comparison of surface roughness in the dry and cooling/lubricated micro-cutting. 
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In the conditions that were employed the cooling/lubrication, was observed a larger number 

of scratches in the micro-machined surface, Figure 6.32a, than condition without 

cooling/lubrication, Figure 6.32b. It can be justified because the use of the MQL allowed 

further adhesion of micro-chips and the slip of the tool during the cutting, seen Figure 6.33. 

 

a) Cooling/lubricated cutting 

 

b) Dry cutting 

Figure 6.32 – Surface roughness outline for the dry cutting (vc = 120 m/min and f = 10 μm/rev). 

 

Figure 6.33 – SEM of the micro-machined surface for the cooling/lubricated micro-cutting. 
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6.2.6. Burr 

In the Figure 6.34 is shown the comparison of the burr length in the dry and 

cooling/lubricated conditions. The increase of the feed rate caused an increase of burr length 

in 124.9% (dry) and 100.3% (MQL), on average. The increase of the cutting speed decreased 

the burr length in 48.5% (dry) and 65.8% (MQL). When compared the dry and 

cooling/lubricated conditions, the use of the MQL system caused a great reduction of the 

burr formation, 75.9% (f = 10 μm/rev) and 68.8% (f = 50 μm/rev), on average. The reduction 

of the burr formation when employed the MQL system, can be observed in the Figure 6.35. 

In the Figure 6.36 is shown the effect Pareto chart for the burr formation. The magnitude 

both parameters and their interaction were increased for burr formation when employed the 

cooling/lubricated condition. 

 

Figure 6.34 – Comparison of burr in the dry and cooling/lubricated micro-cutting. 

 

Figure 6.35 – SEM to observe the burr formation in micro-cutting of the titanium alloy. 
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Figure 6.36 – Effect Pareto chart for the burr formation in the micro-cutting tests. 

6.2.7. Discussion 

In this section is debated the influence of the cooling/lubrication in the micro-cutting in the 

Ti-6Al-7Nb titanium alloy. The higher influence of the feed rate in all response, practically, 

can be justified because the relation between depth of cutting and feed rate with the cutting 

area, the feed rate was the main factor because the depth of cutting was constant during the 

experiments. Thus, the feed force was affected directly by increase of cutting section due to 

the feed rate variation. Furthermore, should be considered a similar phenomenon as well as 

in macro turning where the feed rate is important to change the chip geometry, this changing 

occurs of long chips when low feed rates are used to small chips when higher feed rates are 

fixed.  

When compared the dry and the cooling/lubricated conditions, the results for the cutting 

speed of 30 m/min were improved when employed the MQL system. However, the use of 

the MQL system for the cutting speed of 120 m/min, provided the negative impact or neglect 

improvement. The exceptions were the burr formation, which was strongly reduced when 

employed the cooling/lubricated condition.  

According to Childs (2006), the use of the cutting fluids can influence differently the low 

speeds (friction) and the high speed (thermal flow at the chip–tool contact area). It can be 

the reason for the cutting speed was more significant in dry condition than MQL system, as 

observed in the Pareto charts, for the cutting forces and specific cutting energy, it was 

observed that. The temperature in the cutting is strongly influence by cutting speed and the 
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increase of temperature can reduce the cutting forces. Leppert (2011) and Hadad and Sadeghi 

(2013) observed that the MQL system was not efficient for cutting speed more than 100 

m/min. Simunovic et al. (2015) did not observe different between dry and wet conditions in 

the analysis of the surface roughness. The use of the MQL system presented prominent 

efficiency for in the burr formation. It occurs because the use of the MQL system produces 

a minimum burr due to the absence of build-up edge or a thermal chemical reaction, when 

compared to flood and dry machining (Kajaria et al., 2012). However, it should be noted 

that in the micro-milling of Inconel 718, dry and MQL conditions presented no significant 

difference for the burr formation (Ucun, Aslantas and Bedir, 2014). 

Considering the relationship between cutting edge radius and the undeformed chip thickness 

during a machining process, in this paper, the ratio h/reis was greater than 1. Based on this, 

this situation provided, according to Balogun et al. (2016), a cutting mechanism tends to be 

value adding and sustainable machining. Thus, it can be considered that the elastic 

deformation of the workpiece during machining process decreased quickly and a perfect chip 

was generated. Moreover, the shearing phenomenon can be considered perfect because not 

occurred the ploughing effect and the increase of feed rate changed of the cutting mechanism 

from the rubbing/ploughing phenomenon to the shearing phenomenon. 

According to Singaravel and Selvaraj (2016) the main cutting force components have higher 

magnitude than feed force and radial force components as occurred in these experimental 

tests. Thus, it can be considered that the main cutting force decreased at high cutting speed 

and this phenomenon occur due to high cutting speed that increases the shear angle and 

generates a minimum shear plane area. The simultaneous increase of cutting speed and feed 

rate provides an increase of the contact area between the cutting tool and workpiece. 

The Figure 6.37 shows the comparison influence of the cooling/lubrication using the 

Minimum Quantity Lubrication (MQL) system, High Speed Machining (HSM) and both 

technique, although the average of the response analysed in this study. The HSM provided 

similar or betters results than the MQL system. For the response used to identify the 

ploughing effect, like the Lee – Shaffer shear plane angle model, the employed of HSM was 

better than MQL and both techniques joints. Besides, in the chip compression ratio, the use 

of the MQL was disadvantageous. Thus, when possible, the use of the HSM, only, can be 

more advantageous than the use of the MQL system, only, for the micro-cutting orthogonal 
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in the Ti-6Al-7Nb titanium alloy for all criteria analysed in this study, except for the burr 

formation. 

 

Figure 6.37 – Summary of the influence in the response of the micro-cutting tests. 

 

6.2.8. Conclusion of the section  

Based on the results of the orthogonal micro-cutting in the Ti-6Al-7Nb titanium alloy, the 

main conclusions drawn from the study are the following: 

 For the cutting forces (thrust, cutting and machining), the use of the MQL system 

reduced the magnitude of these forces only when employed in the low cutting speed. For the 

combination of HSM and MQL system increased the magnitude of these cutting forces. 

 When analysed the specific cutting energy, the use of the MQL system was efficient 

for all conditions. However, the use of the MQL did not present good performance for the 

friction coefficient and shear angle plane for the combined use with the HSM. 
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 For the analysis of the chip, chip compression ratio and the morphology, the great 

result was obtained for the use of the HSM, while the use of the MQL system caused a 

worsening independently of the cutting speed.  

 For the quality of the micro-machined surface, the use of the MQL caused the increase 

of the surface roughness due to the high adherence of number of micro-chip and the slip of 

tool during the cutting, although the MQL was responsible for the great reduction of the burr 

formation. 

 

6.3. Material modelling of Ti-6Al-7Nb titanium alloy to surface integrity via FEM 

In the Table 6.9 is shown the comparison between the results of experimental and numerical 

tests and the material removal rate for the micro-cutting of Ti-6Al-7Nb titanium alloy. The 

numerical tests showed more deviation for the thrust force (FT), which can be justified due 

to the displacement in the feed direction is not controlled. In the Figure 6.38 are shown the 

values of power obtained in the numerical tests. Though the responses may appear similar, 

the power differed the conditions. For example, the condition with vc of 30 m/min and f of 

50 µm/rev presented the cutting forces about 3 and 4 higher than the condition with vc of 

120 m/min and f of 10 µm/rev, however, the powers were similar for both condition. 

Furthermore, the condition with low level of parameters required 20 times less than the 

condition with high level of parameters, however, the condition with high level of parameters 

presented a material remove rate 16 times higher than the condition with low level of 

parameters. 

Table 6.9 – Comparison between experimental and numeric tests for cutting forces 

Parameter 
MMR 

(m3/h) 

Thrust force (FT) Cutting force (FC) 

Cutting speed 

(m/min) 

Feed rate 

(µm/rev) 

Depth of 

cut (µm) 

Exp. 

(N) 

Num. 

(N) 
Deviation Exp. 

Num. 

(N) 

Deviation 

(N) 

30 10 800 0.02 25.96 19.77 23.8% 27.16 25.32 6.8% 

30 50 800 0.12 43.78 58.40 33.4% 82.70 107.51 30.0% 

120 10 800 0.10 25.24 19.68 22.0% 25.28 25.04 1.0% 

120 50 800 0.48 37.35 53.16 42.3% 80.69 103.52 28.3% 
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Figure 6.38 – Power in the numerical tests of orthogonal micro-cutting tests. 

 

The Figure 6.39 shows the temperature during the micro-cutting. When compared the 

relation between the temperature in the chip and the cutting zone, the combination of high 

parameters presented the greater approximation. For the relation between the temperature in 

the machined surface and the cutting zone, the combination of high parameters presented the 

greater approximation the combination of high feed rate and low cutting speed presented 

smaller approximation.  

 

Figure 6.39 – Distribution of temperature during the orthogonal micro-cutting. 
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The heat flux in the radial direction is shown in the Figure 6.40. The high cutting speed 

caused more heating in the machined surface than the low cutting speed, however, the 

temperature reached a smaller depth. It can be justified because the heat source moves 

quickly that hampers spread of the heat. The Figure 6.41 shows the temperature in the first 

elements. The high cutting speed caused higher temperature than the low cutting speed, 

however, the cooling was faster than one.  

 

Figure 6.40 – Heat flux in the radial direction for the orthogonal micro-cutting. 

 

Figure 6.41 – Temperature in the first elements in the orthogonal micro-cutting. 

For the Ti-6Al-7Nb titanium alloy, heating range between 800º C and 900º C causes a 

microstructure that is clearly fine-grained. The grains of the α phase can precipitates a new 
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phase originated due to the alloy heating directly after the plastic deformation. They can 

result from the α’ phase recrystallization or the α phase coalescence. At higher temperatures 

the growth of this phase is observed (Dąbrowski, 2012).   

Pilehva et al. (2016), the martensitic α (α′) is generated due to the quenching right after 

preheating from the single-phase β regions. The deformation temperatures and prior to the 

hot compression testing, the microstructure can be consisted by only beta grains. Moreover, 

the average grain size can increase from 163 ± 6 µm at 1050 °C to 236 ± 13 µm at 1100 °C, 

approximately. 

Meanwhile, according to Sieniawski et al. (2013), a cooling rate higher than 18 °C/s, when 

the Ti-6Al-2Mo-2Cr and Ti-6Al-4V titanium alloys are above β transus temperature, leads 

to formation of martensitic microstructure consisting of α' (α") phases. A cooling rate less 

than 3.5 °C/s, the martensitic transformation is accompanied by diffusional transformation 

β for α + β and the volume fraction of martensitic phases decreases to the benefit of stable α 

and β phases. Cooling rates below 2 °C/s lead to a diffusion controlled nucleation and growth 

of stable α and β phases in the shape of colonies of parallel α-phase lamellae in primary β-

phase grains. 

Although the cutting temperature were lower than 500 ºC in the machined surface during the 

micro-cutting, little metallurgic alterations in the material can occur because during the 

cutting, the machined surface is under pressure. In the milling of Ti-6242S titanium alloy, 

Ginting and Nouari (2009) observed that the effect of activation energy to produce cyclic 

heating/cooling for internal work hardening is gradually dissipated; therefore. Thus, the 

microstructure below the machined surface, for some micrometres, suffers a plastic 

deformation that is caused by the high pressure at the elevated cutting temperature. 

In the is shown the residual stress of the orthogonal micro-cutting. The feed rate of the 10 

µm/rev caused a tractive residual stress in the machined surface, while, the feed rate of the 

50 µm/rev caused a compressive residual stress, that according to Hua et al. (2006) is 

beneficial. The variation of the cutting speed did not cause great variation. 
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Figure 6.42 – Residual stress in the orthogonal micro-cutting. 

 

6.3.1. Conclusion of the section  

When observed the results of the numerical tests of orthogonal micro-cutting in the Ti-6Al-

7Nb titanium alloy, the following conclusions can be drawn: 

 The use of the micro-cutting can represent a great economy of cost due to the lower 

cutting forces and power, however, the process presented a very low material removal rate. 

Thus, this process can be beneficial in the finishing operation. 

 The temperature in the micro-cutting were lower than 960º C, phase transformation 

of Ti-6Al-7Nb titanium alloy. This temperature evolution can reduce the metallurgic 

alteration in the machined surface that can prolong the life of the components. 

 Although the micro-cutting presented the lower values for the cutting forces, power 

and temperatures, the use of the feed rate of 10 µm/rev caused a tractive residual stress, 

which can influence in the life of the component. 
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CHAPTER 7 – THE MICRO-CUTTING IN THE FINISHING 

OPERATION OF BIOMATERIAL 

In this chapter, the cutting forces, vibration and surface roughness in the micro-cutting were 

analysed to quality of the micro-cutting as finishing operation for different diameter scales. 

This study was performed to understand the influence of the deflection and compare the 

relationship between spindle speed and cutting speed in the micro-cutting. 

7.1. Cutting forces in the micro-cutting 

7.1.1. Fx force 

The values of Fx force using the flat inserts for the spindle speed range of 0-1,000, 1,000-

2,000, and 2,000-3,000 rpm are shown in the Figure 7.1. The increase of the feed rate and 

depth of cut caused an increase of the Fx force, on average, for the macro (14.5% and 42.2%), 

transition (15.3% and 36.9%), and meso-scale (9.6% and 30.4%), respectively. The rise in 

the spindle speed range reduced the Fx force in the transition (3.7%) and meso (3.9%) scales, 

on average. For the macro scale, the rise in the spindle speed range caused increase of the Fx 

force, 8.0%, on average. 

 

a) Spindle speed range of 0 to 1,000 rpm. 
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b) Spindle speed range of 1,000 to 2,000 rpm. 

 

c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.1 – Fx force for different the spindle speed range with flat inserts. 

 

For the chip-breaker inserts, the values of Fx force are shown in the Figure 7.2 for the spindle 

speed range of 0-1,000, 1,000-2,000, and 2,000-3,000 rpm. The increase of the feed rate and 

the depth of cut increased the Fx force, which was higher for the macro scale (14.6% and 

39.4%) than the transition (13.4% and 34.6%) and meso (16.6% and 34.8%), on average, 

respectively. The rise in the spindle speed range dropped the Fx force transition (4.6%), and 

meso (1.0%) scales, but, increased in the macro scale, 1.8%, on average. 
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a) Spindle speed range of 0 to 1,000 rpm. 

 

b) Spindle speed range of 1,000 to 2,000 rpm. 

 

c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.2 – Fx force for different the spindle speed range with chip-breaker. 

 



M.Sc. Carlos Henrique Lauro 

134 
 

Figure 7.3 shows the Fx force for the spindle speed range of 0-1,000, 1,000-2,000, and 2,000-

3,000 rpm using dual negative inserts. The increase of the feed rate and depth of cut increased 

the Fx force in the macro (18.5% and 38.0%), transition (16.4% and 37.3%), and meso 

(12.6% and 31.5%) scales, on average, respectively. The rise in the spindle speed range fell 

the Fx force in the transition (2.5%) and meso (1.9%). For macro scale, generally, the rise of 

spindle speed range increase of Fx force, 2.6%, on average. 

 

a) Spindle speed range of 0 to 1,000 rpm. 

 

b) Spindle speed range of 1,000 to 2,000 rpm. 
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b) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.3 – Fx force for different the spindle speed range with dual negative inserts. 

 

When compared the change of the diameter scale, the Fx force reduced for the reduction of 

scale for the chip-breaker (9.9%) and dual negative (8.9%) inserts. For the flat inserts, the 

Fx force decreased when compared the reduction from macro to transition scale, 7.3% on 

average, but, the Fx force increased when compared the reduction from transition to meso 

scale, 4.4% on average. The Table 7.1 is shown the ANOVA of the Fx force for all scales 

and individual scale. Excepting the spindle speed range when analysed the all scales, 

transition and meso, all factors were significant for the Fx force in the micro-cutting. The 

Figure 7.4 shows the multiple comparisons of the “scale”, Tukey and Fisher. In both 

methods, the “scale” were significantly different.  

Table 7.1 – ANOVA of the Fx force for different scales. 

Source 
All scales Macro Transition Meso 

F-Value P-Value F-Value P-Value F-Value P-Value F-Value P-Value 

Spindle speed range 1.38 0.252 5.84 0.004 2.35 0.099 1.39 0.255 

Feed rate 100.05 0.000 30.51 0.000 58.22 0.000 32.57 0.000 

Depth of cut 460.70 0.000 147.74 0.000 250.09 0.000 155.07 0.000 

Chip-breaker 1883.95 0.000 633.87 0.000 905.17 0.000 673.07 0.000 

Inclination angle 1172.06 0.000 305.64 0.000 624.84 0.000 563.68 0.000 

Scale 22.62 0.000                
 R² R²adj R² R²adj R² R²adj R² R²adj 
 89.58% 89.31% 89.41% 88.74% 91.55% 91.11% 93.29% 92.70% 
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a) Tukey test. 

 

b) Fisher test. 

Figure 7.4 – Comparison test of the Fx force for different scales. 

The Table 7.2 shows the ANOVA for the same cutting speed and same spindle speed range 

for different scales. In the comparison of the same cutting speed (30 m/min), all factors were 

significant. For the same spindle speed range, only in the range of 0 to 1,000 rpm, the factor 

“scale” was not significant for the Fx force in the micro-cutting.  

Table 7.2 – ANOVA of the Fx force for same cutting speed. 

Source 

vc 

30 m/min 

n 

0-1,000 rpm 

n 

1,000-2,000 rpm 

n 

2,000-3,000 rpm 

F-Value P-Value F-Value P-Value F-Value P-Value F-Value P-Value 

Feed rate 36.45 0.000 32.29 0.000 34.15 0.000 38.10 0.000 

Depth of cut 173.68 0.000 160.61 0.000 155.55 0.000 165.89 0.000 

Chip-breaker 715.74 0.000 814.60 0.000 518.81 0.000 638.05 0.000 

Inclination angel 483.18 0.000 479.13 0.000 405.73 0.000 357.68 0.000 

Scale 3.99 0.021 1.41 0.247 10.99 0.000 18.36 0.000          

 R² R²adj R² R²adj R² R²adj R² R²adj 
 90.95% 90.38% 91.05% 90.49% 90.13% 89.46% 90,13% 89.51% 
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In the Figure 7.5 show the Tukey and Fisher tests for same cutting speed. In these 

comparison, it was observed that the only macro and meso scales was not differ among 

themselves. The Tukey and Fisher tests for spindle speed range of 1,000-2,000 rpm are 

shown in the Figure 7.6, respectively. In the Tukey test, the Fx force in transition and meso 

scale was not differ among themselves. Figure 7.7 show the Tukey and Fisher tests for 

spindle speed range of 2,000-3,000 rpm. In both tests, the Fx force in transition and meso 

scales were not significantly different.  

 

 

a) Tukey test. 

 

 

b) Fisher test. 

Figure 7.5 – Comparison tests of the Fx force for same cutting speed in different diameter scales. 
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a) Tukey test. 

 

b) Fisher test. 

Figure 7.6 – Comparison tests of the Fx force for spindle speed range of 1,000 to 2,000 rpm. 

 

a) Tukey test. 
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b) Fisher test. 

Figure 7.7 – Comparison tests of the Fx force for spindle speed range of 2,000 to 3,000. 

7.1.2. Fy force 

The values of Fy force using flat inserts are shown in the Figure 7.8 for the spindle speed 

range of 0-1,000, 1,000-2,000, and 2,000-3,000 rpm. The increase of the feed rate increased 

of the Fy force in 1.7% for the macro and 5.4% for the transition scales, on average, however, 

for the meso scale, was observed a reduction of 8.4%, on average. The increase of the depth 

of cut increased the Fy force in 120.5%, on average, for all scales. The rise of the spindle 

speed range, generally, grown the Fy force in 6.0% for the macro, and reduced in 3.8% for 

the transition and 1.0% for meso scales, on average.  

 

a) Spindle speed range of 0 to 1,000 rpm. 
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b) Spindle speed range of 1,000 to 2,000 rpm. 

 

c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.8 – Fy force for different the spindle speed range with flat inserts. 

 

The Figure 7.9 shows for the spindle speed range of 0-1,000, 1,000-2,000, and 2,000-3,000 

rpm, the evolution of the Fy force employing the chip-breaker inserts. The increase of the 

feed rate increased the Fy force in 6.3% for the macro, 7.6% for the transition, and 6.8% for 

the meso scale, on average. For the increase of the depth of cut, an increase was observed 

for scales, 120.7%, on average. The rise of the spindle speed range caused increase for macro 

scale (3.2%) and a reduction for transition (3.7%) and meso (5.9%), on average. 
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a) Spindle speed range of 0 to 1,000 rpm. 

 

b) Spindle speed range of 1,000 to 2,000 rpm. 

 

c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.9 – Fy force for different the spindle speed range with chip-breaker inserts. 
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The values of Fy force for the dual negative are shown in the Figure 7.10, for the spindle 

speed range of 0-1,000, 1,000-2,000, and 2,000-3,000 rpm. The increase of the feed rate and 

the depth of cut caused increase in the Fy force in macro (7.0% and 121.3%), transition (7.4% 

and 116.4%) and meso (2.7% and 101.4%) scales, respectively, on average. The rise of the 

spindle speed range fell the Fy force in the macro (1.2%), transition (3.2%), and meso (2.4%) 

scales, on average.  

 

 

a) Spindle speed range of 0 to 1,000 rpm. 

 

 

b) Spindle speed range of 1,000 to 2,000 rpm. 
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c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.10 – Fy force for different the spindle speed range with dual negative insert. 

 

When compared the reduction of the scale, the dual negative inserts presented a decrease of 

the Fy force, 1.3%, on average. For the flat and chip-breaker inserts, a reduction was 

observed for the reduction from macro to transition, 8.4% and 6.9%, and an increase for the 

reduction from transition to meso, 7.4% and 25.8%, on average, respectively. Table 7.3 

shows ANOVA of the Fy force for all scales and individual scales. The factor “scale” was 

not significant for the Fy force. Furthermore, the “spindle speed” was not significant for all 

or individual scales, and feed rate was not significant for the macro and meso scales.  

Table 7.3 – ANOVA of Fy force for all and individual scales. 

Source 
All scales Macro Transition Meso 

F-Value P-Value F-Value P-Value F-Value P-Value F-Value P-Value 

Spindle speed range 0.35 0.708 1.71 0.186 0.25 0.777 0.20 0.821 

Feed rate 9.24 0.000 2.16 0.120 6.39 0.002 1.90 0.155 

Depth of cut 1013.26 0.000 289.99 0.000 429.00 0.000 404.54 0.000 

Chip-breaker 559.33 0.000 216.40 0.000 222.53 0.000 121.29 0.000 

Inclination angle 507.45 0.000 106.32 0.000 247.25 0.000 225.27 0.000 

Scale 2.58 0.077                
 R² R²adj R² R²adj R² R²adj R² R²adj 
 87.23% 86.92% 86.77% 85.93% 88.68% 88.08% 90.23% 89.56% 

 

The ANOVA for same cutting speed and spindle speed are shown in the Table 7.4. The 

factor “scale” was not significant for the cutting speed and the spindle speed range. Besides, 

in the spindle speed range of 0 to 1,000 rpm, the feed rate was not significant.  
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Table 7.4 – ANOVA of the Fy force for same cutting speed and spindle speed. 

Source 

vc 

30 m/min 

n 

0-1,000 rpm 

n 

1,000-2,000 rpm 

n 

2,000-3,000 rpm 

F-Value P-Value F-Value P-Value F-Value P-Value F-Value P-Value 

Feed rate 3.65 0.029 1.31 0.274 3.20 0.044 5.11 0.007 

Depth of cut 381.23 0.000 374.56 0.000 310.54 0.000 333.15 0.000 

Chip-breaker 206.93 0.000 217.31 0.000 157.73 0.000 185.19 0.000 

Inclination angel 201.20 0.000 207.36 0.000 159.99 0.000 147.72 0.000 

Scale 0.22 0.806 0.03 0.972 1.10 0.335 2.85 0.061          
 R² R²adj R² R²adj R² R²adj R² R²adj 
 88.63% 87.95% 88.73% 88.05% 87.28% 86.48% 87.10% 86.33% 

 

7.1.3. Fz force 

The values of Fz force for the spindle speed range of 0-1,000, 1,000-2,000, and 2,000-3,000 

rpm are shown in Figure 7.11, for the flat inserts. The increase of the feed rate and the depth 

of cut went up the Fz force, on average, 30.6% and 55.0% for the macro, 29.5% and 53.4% 

for the transition, and 49.1% and 79.9% for meso scales, respectively. The rise of the spindle 

speed range caused a reduction in macro (2.5%), transition (9.7%), and meso (11.3%) scales. 

 

 

a) Spindle speed range of 0 to 1,000 rpm. 
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b) Spindle speed range of 1,000 to 2,000 rpm. 

 

c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.11 – Fz force for different the spindle speed range with the flat inserts. 

 

Figure 7.12 shows the Fz force, for the spindle speed range of 0-1,000, 1,000-2,000, and 

2,000-3,000 rpm with chip-breaker inserts. The increase of the feed rate caused a similar 

increase of the Fz force in the macro, (43.6%), transition scale (42.8%), meso (38.6%) scales, 

on average. A similar evolution was observed for the depth of cut, the increase of 65.2% for 

macro, 62.5% for transition, and 59.0% for meso scales, for the increase of the depth of cut. 

The rise of the spindle speed range dropped the Fz force in macro (4.9%), transition (7.6%), 

and meso (9.2%).  
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a) Spindle speed range of 0 to 1,000 rpm. 

 

b) Spindle speed range of 1,000 to 2,000 rpm. 

 

c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.12 – Fz force for different the spindle speed range with chip-breaker inserts. 
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The values of Fz force for the use of the dual negative inserts for the spindle speed range of 

0-1,000, 1,000-2,000, and 2,000-3,000 rpm are shown, in the Figure 7.13. The increase of 

the feed rate and depth of cut went up the Fz force in macro (34.4% and 56.9%), transition 

(30.5% and 54.3%), and meso (25.2% and 50.4%) scales. The rise of the spindle speed range 

decreased, on average, the Fz force in the macro (5.4%), transition (11.1%), and meso 

(11.8%) scales. 

 

a) Spindle speed range of 0 to 1,000 rpm. 

 

b) Spindle speed range of 1,000 to 2,000 rpm. 



M.Sc. Carlos Henrique Lauro 

148 
 

 

c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.13 – Fz force for the dual negative inserts at spindle speed range of 2,000 to 3,000 rpm. 

 

In the comparison among scales, generally, it was observed increase on the Fz force for flat 

inserts, 2.3% on average. For the chip-breaker and dual negative inserts, the reduction of the 

scale increased the Fz force in 62.3%. The ANOVA for the Fz force is shown in the Table 

7.5. The all factors were significant for the Fz force in the micro-cutting. Only in the macro 

scale, the feed rate was not significant. The Tukey and Fisher tests are shown in the Figure 

7.14. The comparison between macro and transition scales did not presented difference.  

 

Table 7.5 – ANOVA of the Fz force for all and individual scales. 

Source 
All scales Macro Transition Meso 

F-Value P-Value F-Value P-Value F-Value P-Value F-Value P-Value 

Spindle speed range 10.76 0.000 0.38 0.682 5.48 0.005 12.38 0.000 

Feed rate 133.73 0.000 45.32 0.000 47.53 0.000 77.13 0.000 

Depth of cut 299.71 0.000 87.93 0.000 107.57 0.000 183.08 0.000 

Chip-breaker 331.08 0.000 302.58 0.000 181.42 0.000 13.29 0.000 

Inclination angle 946.09 0.000 312.73 0.000 506.48 0.000 337.31 0.000 

Scale 83.07 0.000                
 R² R²adj R² R²adj R² R²adj R² R²adj 
 85.18% 84.78% 87.48% 86.53% 86.93% 86.11% 88.47% 87.68% 
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a) Tukey test. 

 

b) Fisher test. 

Figure 7.14 – Comparison tests of the Fz force for different scales. 

 

The Table 7.6 shows the ANOVA for cutting speed of 30 m/min in all scales and the same 

spindle speed range. For all factor were significant for the Fz force in the micro-cutting with 

same cutting speed or same spindle speed range. The Tukey and Fisher tests are shown in 

the Figure 7.15, Figure 7.16, Figure 7.17, and Figure 7.18 for the cutting speed of 30 m/min, 

spindle speed range of 0-1,000, 1,000-2,000, and 2,000-3,000 rpm, respectively. In all tests, 

for the comparison between macro and transition scale were not observed significance 

difference. 
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Table 7.6 – ANOVA of the Fz force for same cutting speed and spindle speed. 

Source 

vc 

30 m/min 

n 

0-1,000 rpm 

n 

1,000-2,000 rpm 

n 

2,000-3,000 rpm 

F-Value P-Value F-Value P-Value F-Value P-Value F-Value P-Value 

Feed rate 44.64 0.000 39.21 0.000 42.91 0.000 54.14 0.000 

Depth of cut 97.36 0.000 95.33 0.000 95.52 0.000 112.21 0.000 

Chip-breaker 98.24 0.000 104.98 0.000 111.72 0.000 114.72 0.000 

Inclination angel 305.79 0.000 363.27 0.000 316.38 0.000 276.32 0.000 

Scale 11.80 0.000 36.18 0.000 32.73 0.000 19.18 0.000          
 R² R²adj R² R²adj R² R²adj R² R²adj 
 84.47% 83.40% 86.43% 85.51% 86.59% 85.60% 84.38% 83.36% 

 

 

a) Tukey test. 

 

 

b) Fisher test. 

Figure 7.15 – Comparison tests of the Fz force for same cutting speed in different diameter scale. 
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a) Tukey test. 

 

b) Fisher test. 

Figure 7.16 – Comparison tests of the Fz force for spindle speed range of 0 to 1,000 rpm. 

 

 

a) Tukey test. 
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b) Fisher test. 

Figure 7.17 – Comparison tests of the Fz force for spindle speed range of 1,000 to 2,000 rpm. 

 

 

a) Tukey test. 

 

b) Fisher test. 

Figure 7.18 – Comparison tests of the Fz force for spindle speed range of 2,000 to 3,000 rpm. 
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7.2. Surface roughness in the micro-cutting 

7.2.1. Ra surface roughness 

The Figure 7.19 shows the Ra surface roughness for flat inserts with spindle speed range of 

0-1,000, 1,000-2,000, and 2,000-3,000 rpm. The increase of the depth of cut caused an 

increase, on average, for macro (0.9%), transitions (1.5%), and meso (3.4%) scales. The 

increase of the feed rate provided a rise sharply the Ra surface roughness more in the meso 

scale, 107.1%, than the transition, 103.4%, and macro, 101.4%, scales. The rise of the 

spindle speed range caused increase of the Ra surface roughness in all scales, macro, 0.9%, 

transition, 1.5%, and meso, 3.5%, on average. 

 

 

a) Spindle speed range of 0 to 1,000 rpm. 

 

b) Spindle speed range of 1,000 to 2,000 rpm. 
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c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.19 – Ra surface roughness for the flat inserts. 

The Ra surface roughness for the chip-breaker insert in spindle speed range of 0-1,000, 

1,000-2,000, and 2,000-3,000 rpm are presented in the Figure 7.20. The increase of the depth 

of cut provided increase for macro (1.2%) and transition (3.8%) scales, on average, when 

used spindle speed range of 0-1,000 and 1,000-2,000. A reduction was observed for the 

increase of the depth of cut in macro (2.4%) and transition (1.0%) scales for the spindle 

speed range of 2,000-3,000 and for the meso scale, 1.3% on average, in all spindle speed 

range. The rise of the spindle speed range increased the Ra surface roughness in 4.7% 

(macro), 0.7% (transition), and 6.7% (meso), on average. The increase of the feed rate caused 

a similar rise steeply in all scales, which was slightly larger in transition scale, 112.0%, than 

in macro, 109.4%, and meso, 110.0%.  

 

a) Spindle speed range of 0 to 1,000 rpm. 
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b) Spindle speed range of 1,000 to 2,000 rpm. 

 

c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.20 – Ra surface roughness for the chip-breaker inserts. 

 

The results of Ra surface roughness for dual negative inserts are shown in the Figure 7.21 

for spindle speed range of 0-1,000, 1,000-2,000, and 2,000-3,000 rpm. The increase of the 

feed rate went up the Ra surface roughness in all scales, 120.4% for the macro, 119.9% for 

the transition, and 100.7% for the macro, on average. The increase of the depth of cut caused 

a reduction in the macro (1.4%) and transition (0.3%) scales, and an increase in meso scale, 

1.6%, on average. The rise of spindle speed range, in general, increased the values in macro 

(1.1%) and transition (4.6%), on average. For the meso scale, the rise of spindle speed range 

caused a reduction of 6.7% (0-1,000 to 1,000-2,000) or an increase of 5.0% (1,000-2,000 to 

2,000-3,000), on average.  
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a) Spindle speed range of 0 to 1,000 rpm. 

 

b) Spindle speed range of 1,000 to 2,000 rpm. 

 

c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.21 – Ra surface roughness for the dual negative inserts. 
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In the comparison between the scales, the reduction of the scale caused a decrease of the Ra 

surface roughness in the flat insert (1.9%) or an increase of 2.1% in the chip-breaker insert. 

For the dual negative inserts, in general, the reduction form macro to transition caused an 

increase of 4.7%, on average. For the reduction from transition to meso, in majority of case, 

in the low spindle speed range was observed increase, 10.3%, and other level of spindle 

speed range, a reduction, 4.6%, on average. Table 7.7 shows the ANOVA of the Ra surface 

roughness all scales, together and separately. The factor “scale” was not influence and the 

feed rate was the strongest influence factor for all scales.  

Table 7.7 – ANOVA of Ra force for all and individual scales. 

Source 
All scales Macro Transition Meso 

F-Value P-Value F-Value P-Value F-Value P-Value F-Value P-Value 

Spindle speed range 0.01 0.989 0.06 0.937 0.72 0.490 1.91 0.150 

Feed rate 8667.64 0.000 3661.23 0.000 2844.15 0.000 3316.37 0.000 

Depth of cut 0.17 0.840 0.17 0.843 0.16 0.856 1.03 0.359 

Chip-breaker 5.66 0.018 1.74 0.188 1.66 0.198 4.55 0.034 

Inclination angle 19.86 0.000 5.31 0.022 14.70 0.000 1.11 0.294 

Scale 1.67 0.189                
 R² R²adj R² R²adj R² R²adj R² R²adj 
 95.50% 95.45% 96.02% 95.92% 94.82% 94.68% 96.88% 96.76% 

 

The ANOVA of Ra surface roughness for same cutting speed and spindle speed range are 

shown in the Table 7.8. The factor “scale” was not significant for any spindle speed range 

or cutting speed of 30 m/min. The feed rate and inclination angle were significant for all 

spindle speed range and the cutting speed analysed.  

 

Table 7.8 – ANOVA for the Ra surface roughness for spindle speed range and cutting speed. 

Source 

vc n n n 

30 m/min 0-1,000 rpm 1,000-2,000 rpm 2,000-3,000 rpm 

F-Value P-Value F-Value P-Value F-Value P-Value F-Value P-Value 

Feed rate 3090.53 0.000 3446.76 0.000 3340.34 0.000 2852.58 0.000 

Depth of cut 0.39 0.680 0.14 0.873 0.83 0.437 2.27 0.105 

Chip-breaker 1.14 0.288 0.10 0.753 0.16 0.692 11.32 0.001 

Inclination angel 9.55 0.002 3.89 0.049 13.44 0.000 5.80 0.017 

Scale 0.83 0.437 2.48 0.086 0.75 0.475 0.37 0.689          
 R² R²adj R² R²adj R² R²adj R² R²adj 
 95.84% 95.71% 96.22% 96.10% 96.32% 96.21% 94.99% 94.85% 
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7.2.2. Rz surface roughness 

In the Figure 7.22 are exhibited the response surface for the flat inserts with spindle speed 

range of 0-1,000, 1,000-2,000, and 2,000-3,000 rpm. The rise of the spindle speed provided 

an increase in the macro scale, 1.9 on average, and, for the transition and meso scales, the 

reduction of 1.3% and 0.4% was observed, respectively. For the macro scale, the increase of 

the depth of cut caused increase of 0.6% (0-1,000 rpm) and 2.0% (1,000-2,000 rpm), or a 

decrease of 3.8% (2,000-3,000 rpm). In the transition and meso scales, the Rz surface 

roughness increased in 4.9% and 2.0%, respectively. The increase of the feed rate caused a 

similar increase in the macro (57.0%), transition (59.6%), and meso (55.8%) scales. 

 

 

a) Spindle speed range of 0 to 1,000 rpm. 

 

 

b) Spindle speed range of 1,000 to 2,000 rpm. 
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c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.22 – Rz surface roughness for the flat inserts. 

 

For the chip-breaker inserts, the Figure 7.23 shows the results of the Rz surface roughness 

for spindle speed range of 0-1,000, 1,000-2,000, and 2,000-3,000 rpm. The increase of the 

feed rate caused similar evolution in the Rz surface roughness, increase of 73.3% (macro), 

73.9% (transition), and 70.8% (meso). The increase of the depth of cut caused reduction of 

0.9% for the macro, on average. For the transition and meso, an increase of 0.7% and 1.4% 

were observed. For the rise of the spindle speed, in general, was observed an increase of 

5.1% for the macro, 3.4% for transition, and 5.4% for meso scales, on average. 

 

 

a) Spindle speed range of 0 to 1,000 rpm. 
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b) Spindle speed range of 1,000 to 2,000 rpm. 

 

c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.23 – Rz surface roughness for the chip-breaker inserts. 

 

The values of the Rz surface roughness for spindle speed range of 0-1,000, 1,000-2,000, and 

2,000-3,000 rpm are shown in the Figure 7.24, when used the dual negative inserts. The rise 

of the spindle speed range in the transition and meso scales caused a reduction of 0.8% and 

1.9 for macro and meso scales, on average, respectively, and increase of 2.3% for the 

transition scale. The increase of the depth of cut reduced the Rz surface roughness in macro 

(1.3%) and transition (2.3%), on average. For the meso scale, the increase of the depth of 

cut caused an increase of 3.2, on average. The increase of the feed rate went up the Rz surface 

roughness in 71.9% (macro), 65.7% (transition), and 55.0% (meso). 
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a) Spindle speed range of 0 to 1,000 rpm. 

 

b) Spindle speed range of 1,000 to 2,000 rpm. 

 

c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.24 – Rz surface roughness for the dual negative inserts. 
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When compared the scales, a decrease was observed for the flat inserts (0.6%) and an 

increase for dual negative inserts, 4.1%, on average. For the chip-breaker inserts, in the 

reduction from macro to transition, a decrease of 1.1%, and in the reduction from transition 

to meso, an increase of 2.9% were observed. The Table 7.9 the ANOVA for the all and 

individual scales. For the analysis in all scales, the factor “scale” did not present significance. 

The feed rate and inclination angle were significant for all scales, together and separately.  

Table 7.9 – ANOVA of Rz force for all and individual scales. 

Source 
All scales Macro Transition Meso 

F-Value P-Value F-Value P-Value F-Value P-Value F-Value P-Value 

Spindle speed range 2.40 0.091 1.61 0.202 1.42 0.242 0.29 0.750 

Feed rate 7321.40 0.000 3219.99 0.000 2782.34 0.000 1804.19 0.000 

Depth of cut 0.15 0.864 1.23 0.294 0.52 0.593 1.64 0.196 

Chip-breaker 18.65 0.000 9.24 0.003 7.70 0.006 0.59 0.444 

Inclination angle 42.90 0.000 4.46 0.036 20.42 0.000 19.89 0.000 

Scale 2.50 0.083                
 R² R²adj R² R²adj R² R²adj R² R²adj 
 94.50% 94.44% 95.41% 95.29% 94.34% 94.21% 94.30% 94.09% 

 

The ANOVA for the Rz surface roughness is shown in the Table 7.10. The factor “scale” 

was significant only in the micro-cutting for same the cutting speed. The feed rate has 

stronger significance for all spindle speed and same cutting speed. The chip-breaker and 

inclination angle were not significant only in the spindle speed range of 2,000-3,000. The 

Tukey and Fisher tests are show in the Figure 7.25. The transition and meso scales showed 

significant difference among themselves.  

Table 7.10 – ANOVA for the Rz surface roughness for spindle speed range and cutting speed 

Source 

vc n n n 

30 m/min 0-1,000 rpm 1,000-2,000 rpm 2,000-3,000 rpm 

F-Value P-Value F-Value P-Value F-Value P-Value F-Value P-Value 

Feed rate 2468.57 0.000 2545.85 0.000 3229.35 0.000 2377.50 0.000 

Depth of cut 0.48 0.622 1.24 0.292 1.48 0.228 1.61 0.201 

Chip-breaker 7.76 0.006 21.54 0.000 8.85 0.003 0.02 0.901 

Inclination angel 15.86 0.000 33.88 0.000 22.59 0.000 2.15 0.143 

Scale 3.55 0.030 0.90 0.406 1.83 0.162 0.40 0.672          
 R² R²adj R² R²adj R² R²adj R² R²adj 
 94.52% 94.37% 94.80% 94.65% 95.92% 95.80% 93.90% 93.75% 
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a) Tukey test. 

 

 

b) Fisher test. 

Figure 7.25 – Comparison tests of the Rz surface roughness for cutting speed of 30 m/min. 

 

7.3. Deflection  

In the Figure 7.26 is shown the minimum deflection of the workpiece for the flat insert in 

the micro-cutting of titanium alloy. The increase of the feed rate and the depth of cut caused 

an increase, on average, in macro (15.3% and 46.8%), transition (34.0% and 106.2%), an 

meso (104.5% and 266.0%) scales, respectively. However, the rise of the spindle speed range 

caused a reduction of the deflection, on average, in macro (20.6%) and transition (48.2%). 

For the meso scale, the rise from 0-1,000 to 1,000-2,000 caused an increase and the rise from 

1,000-2,000 to 2,000-3,000 cause a reduction in the deflection.  
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a) Spindle speed range of 0 to 1,000 rpm. 

 

b) Spindle speed range of 1,000 to 2,000 rpm. 

 

c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.26 – Deflection of workpiece for the flat inserts. 
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The Figure 7.27 shows the minimum deflection of the workpiece during the micro-cutting. 

The increase of the depth of cut rose steeply the deflection in 63.0%, macro, 104.4%, 

transition, and 244.2%, meso scales. The deflection increase 21.8%, 35.7%, and 68.5%, on 

average, when the feed rate was increased, for the macro, transition, and meso scales 

respectively. The rise of the spindle speed range reduced the deflection in macro, 16.8%, 

transition, 49.2%, and meso, 49,0%, scales.  

 

 

a) Spindle speed range of 0 to 1,000 rpm. 

 

 

b) Spindle speed range of 1,000 to 2,000 rpm. 
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c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.27 – Deflection of workpiece for the chip-breaker inserts. 

 

The results of minimum deflection of the workpiece are shown in the Figure 7.28 when used 

the dual negative inserts. The rise of the spindle speed range presented a similar reduction 

of the deflection, on average, for transition (48.2%) and meso (48.6%). For the macro scale, 

the reduction, on average, had less impact, 18.6%. The increase of the feed rate went up the 

deflection in 26.0%, 36.8%, and 64.4%, on average, for the macro, transition, and meso 

scales, respectively. 

 

 

a) Spindle speed range of 0 to 1,000 rpm. 



Study of micro-cutting in the finishing of a difficult-to-cut biomaterial 

167 

 

 

b) Spindle speed range of 1,000 to 2,000 rpm. 

 

c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.28 – Deflection of workpiece for the dual negative inserts. 

 

The reduction of the scale caused a reduction in the minimum deflection, from macro to 

transition scale, in 87.5%, 86.9% and 87.2%, or a rise steeply, from transition to meso scale, 

in 3574.3%, 1722.5%, and 1817.0%, on average, for flat, chip-breaker and dual-negative 

inserts, respectively. Among the scales, the meso scale was more affected by the deflection, 

which, although the Fx force were lower for the meso scale than the macro and transition, 

the reduction of the diameter was about 74.3%, while the Fx force reduced in about 9.0%, 

on average. In the Table 7.11 is exhibited the ANOVA for the minimum deflection, all and 

individual scales. The scale was significant factor for the deflection during the micro-cutting.  
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Table 7.11 – ANOVA of vibration in the tangential direction for all and individual scales 

Source 
All scales Macro Transition Meso 

F-Value P-Value F-Value P-Value F-Value P-Value F-Value P-Value 

Spindle speed range (n) 13.50 0.000 37.57 0.000 107.17 0.000 20.94 0.000 

Feed rate (f) 9.50 0.000 14.02 0.000 32.87 0.000 15.11 0.000 

Depth of cut (ap) 32.36 0.000 62.69 0.000 137.26 0.000 44.80 0.000 

Chip-breaker (CB) 10.70 0.001 103.95 0.000 83.19 0.000 5.78 0.021 

Inclination angle (λs) 7.17 0.008 78.27 0.000 55.19 0.000 9.65 0.004 

Scale 35.85 0.000     
  

n*f 1.92 0.108 1.74 0.156 5.46 0.001 3.06 0.028 

n* ap 6.76 0.000 7.21 0.000 22.89 0.000 11.63 0.000 

n*CB 1.34 0.265 9.40 0.000 12.67 0.000 1.65 0.206 

n* λs 1.11 0.332 1.70 0.193 8.08 0.001 2.11 0.135 

n*Scale 9.85 0.000     
  

f* ap 5.44 0.000 1.61 0.187 12.75 0.000 11.91 0.000 

f*CB 1.22 0.298 0.94 0.399 3.44 0.040 2.75 0.076 

f* λs 0.54 0.581 2.02 0.143 2.99 0.060 0.90 0.413 

f*Scale 6.87 0.000     
  

ap*CB 4.06 0.019 4.22 0.021 15.90 0.000 6.58 0.003 

ap* λs 2.58 0.078 6.54 0.003 11.54 0.000 4.52 0.017 

ap*Scale 21.70 0.000       
CB*Scale 4.89 0.009       
λs *Scale 3.34 0.038                

 R² R²adj R² R²adj R² R²adj R² R²adj 
 69.68% 61.39% 89.72% 82.86% 94.68% 91.13% 89.99% 81.78% 

 

In the Figure 7.29 is shown the comparison tests, Tukey and Fisher, for the minimum 

deflection during the micro-cutting. When compared the macro and transition scales, the 

average were not differing among themselves for both tests.  

 

a) Tukey test. 
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b) Fisher test. 

Figure 7.29 – Comparison tests of the minimum deflection for all scales. 

The ANOVA for the minimum deflection during the micro-cutting with cutting speed of 30 

m/min and same spindle speed for all scales are presented Table 7.12. The scale was 

significant for the same cutting speed and spindle speed. In the Figure 7.30, Figure 7.31, 

Figure 7.32, and Figure 7.33 are shown the comparison tests for vc of 30 m/min and different 

spindle speed range, respectively. For the vc of 30 m/min and spindle speed range of 1,000-

2,000 rpm, the macro and meso scales was not differ among themselves. For the spindle 

speed range of 0-1,000 rpm, the difference between macro and transition was not significant. 

When used the spindle speed range of 1,000-2,000 rpm, all scales were differed themselves. 

Table 7.12 – ANOVA for the minimum deflection in spindle speed range and cutting speed. 

Source 

vc n n n 

30 m/min 0-1,000 rpm 1,000-2,000 rpm 2,000-3,000 rpm 

F-Value P-Value F-Value P-Value F-Value P-Value F-Value P-Value 

Feed rate (f) 10.17 0.000 6.32 0.004 8.22 0.001 4.23 0.020 

Depth of cut (ap) 43.48 0.000 22.89 0.000 26.42 0.000 18.80 0.000 

Chip-breaker (CB) 21.93 0.000 6.03 0.018 3.33 0.076 6.89 0.012 

Inclination angle (λs) 23.89 0.000 4.22 0.045 13.00 0.001 13.33 0.001 

Scale 44.09 0.000 32.43 0.000 15.35 0.000 32.92 0.000 

f*ap 4.35 0.005 4.50 0.004 3.24 0.022 1.67 0.173 

f*CB 0.33 0.722 0.63 0.537 0.43 0.651 0.00 0.996 

f*λs 1.91 0.159 0.28 0.758 1.32 0.279 1.27 0.290 

f*Scale 3.36 0.017 5.35 0.001 3.87 0.010 3.05 0.026 

ap*CB 2.87 0.067 2.27 0.114 1.56 0.223 0.24 0.785 

ap* λs 6.46 0.003 1.76 0.183 3.46 0.041 4.17 0.021 

ap*Scale 13.32 0.000 17.69 0.000 11.46 0.000 12.81 0.000 

CB*Scale 4.09 0.023 3.55 0.036 1.53 0.230 2.35 0.106 

λs *Scale 5.47 0.007 2.53 0.090 3.92 0.028 4.68 0.014          
 R² R²adj R² R²adj R² R²adj R² R²adj 
 86.29% 76.95% 83.96% 73.26% 84.92% 72.85% 80.75% 67.65% 
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a) Tukey test. 

 

b) Fisher test. 

Figure 7.30 – Comparison tests of the minimum deflection for cutting speed of 30 m/min. 

 

a) Tukey test. 
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b) Fisher test. 

Figure 7.31 – Comparison tests of the minimum deflection for spindle speed range of 0-1,000 rpm. 

 

a) Tukey test. 

 

b) Fisher test. 

Figure 7.32 – Comparison tests of the minimum deflection for spindle speed range of 1,000-2,000 rpm. 
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a) Tukey test. 

 

b) Fisher test. 

Figure 7.33 – Comparison tests of the minimum deflection for spindle speed range of 2,000-3,000 rpm. 

7.4. Vibration in the micro-cutting (Time domain) 

7.4.1. Vibration in the axial direction 

The vibration in the axial direction in the micro-cutting with flat inserts are shown in the 

Figure 7.34 for spindle speed range of 0-1,000, 1,000-2,000, and 2,000-3,000. The feed rate 

increased of the vibration, on average, in macro (33.1%), transition (16.9%), and meso 

(17.9%) scales. The increased of the depth of cut caused a similar increase in the transition 

and meso scales, 17.9% and 17.3% on average, respectively. For the macro scale, the 

increase was a slightly larger, 20.4% on average. The rise of spindle speed range from 0-

1,000 to 1,000-2,000 presented smaller increase than the rise of spindle speed range from 

1,000-2,000 to 2,000-3,000, 1.6% and 28.0%, respectively. The more variation, on average, 

was observed in the macro scale (22.2%) than in the transition (6.6%) and meso (15.4%) 

scales.  
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a) Spindle speed range of 0 to 1,000 rpm. 

 

b) Spindle speed range of 1,000 to 2,000 rpm. 

 

c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.34 – Vibration in the axial direction with flat inserts. 

The vibration for the spindle speed range of 0-1,000, 1,000-2,000, and 2,000-3,000 rpm are 

exhibited in the Figure 7.35 using the chip-breaker inserts. For the increase of the feed rate, 

it was observed that an increase in macro scale, on average, was almost twice as the transition 
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and meso scale, 16.5%, 9.9%, and 9.5%, respectively. The increase of the depth of cut caused 

a similar increase for all scales, 10.0% on average. The rise of the spindle speed range went 

up the vibration in 10.5%, 6.4%, and 3.8% for macro, transition and meso scales.  

 

a) Spindle speed range of 0 to 1,000 rpm. 

 

b) Spindle speed range of 1,000 to 2,000 rpm. 

 

c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.35 – Vibration in the axial direction with chip-breaker inserts. 
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For the dual negative inserts, the vibration is shown in the Figure 7.36 for the spindle speed 

range of 0-1,000, 1,000-2,000, and 2,000-3,000 rpm. The rise of the spindle speed range 

increased the vibration in 11.1% (macro), 13.6% (transition) and 18.8% (meso), on average. 

The increase of the feed rate and the depth of cut increased the vibration more in the macro 

(29.1% and 21.8%) than the transition (13.3% and 9.9%) and meso (10.3% and 11.2%). 

When compared the reduction of scale, the vibration trended to reduce for flat (17.3%), chip-

breaker (0.9%), and dual negative (15.8%) inserts, on average. Table 7.13 shows the 

ANOVA of the vibration in axial direction for the different scales, together and separately. 

The factor “scale” was significant for the vibration in the axial direction in the micro-cutting. 

 

 

a) Spindle speed range of 0 to 1,000 rpm. 

 

 

b) Spindle speed range of 1,000 to 2,000 rpm. 
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c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.36 – Vibration in the axial direction with dual negative inserts. 

 

Table 7.13 – ANOVA of vibration in axial direction all and individual scales. 

Source 
All scales Macro Transition Meso 

F-Value P-Value F-Value P-Value F-Value P-Value F-Value P-Value 

Spindle speed range (n) 62.46 0.000 67.31 0.000 43.81 0.000 84.85 0.000 

Feed rate (f) 145.07 0.000 169.02 0.000 95.23 0.000 51.34 0.000 

Depth of cut (ap) 98.19 0.000 87.81 0.000 83.12 0.000 52.91 0.000 

Chip-breaker (CB) 10.23 0.001 58.14 0.000 47.98 0.000 31.47 0.000 

Inclination angle (λs) 406.00 0.000 364.55 0.000 436.43 0.000 88.34 0.000 

Scale 84.50 0.000       
n*f 11.52 0.000 19.87 0.000 3.98 0.004 13.84 0.000 

n* ap 5.16 0.000 10.23 0.000 0.54 0.704 7.45 0.000 

n*CB 6.48 0.002 10.75 0.000 0.08 0.927 17.14 0.000 

n* λs 10.85 0.000 12.82 0.000 17.18 0.000 27.40 0.000 

n*Scale 9.06 0.000       
f* ap 26.48 0.000 29.66 0.000 8.36 0.000 16.96 0.000 

f*CB 12.80 0.000 13.61 0.000 6.34 0.002 3.24 0.044 

f* λs 18.13 0.000 25.95 0.000 6.79 0.001 0.46 0.635 

f*Scale 18.80 0.000       
ap*CB 6.99 0.001 3.46 0.034 12.45 0.000 3.00 0.055 

ap* λs 12.53 0.000 15.41 0.000 5.63 0.004 1.54 0.220 

ap*Scale 6.76 0.000       
CB*Scale 10.65 0.000       
λs *Scale 43.51 0.000                

 R² R²adj R² R²adj R² R²adj R² R²adj 
 80.59% 78.40% 89.33% 87.14% 86.04% 83.42% 90.21% 86.53% 

 

The Tukey and Fisher tests for the vibration in the axial direction is shown in the Figure 

7.37. In these tests, it was possible observe that the vibration for the scales differ among 

themselves. 



Study of micro-cutting in the finishing of a difficult-to-cut biomaterial 

177 

 

 

a) Tukey test. 

 

b) Fisher test. 

Figure 7.37 – Comparison tests of the vibration in axial direction for all scales. 

 

The ANOVA for same cutting speed and spindle speed range are shown in the Table 7.14. 

The factor “scale was significant for all spindle speed range and the cutting speed of 30 

m/min. In the Figure 7.38, Figure 7.39, Figure 7.40, and Figure 7.41 are exhibited the Tukey 

and Fisher tests of same cutting speed and spindle speed range for different scales. Only for 

the spindle speed range of 1,000-2,000 and 2,000-3,000 rpm, the average between “macro 

and transition” and “transition and meso”, respectively, did not present significant 

difference. 
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Table 7.14 – ANOVA for the vibration in axial direction for spindle speed range and cutting speed. 

Source 

vc n n n 

30 m/min 0-1,000 rpm 1,000-2,000 rpm 2,000-3,000 rpm 

F-Value P-Value F-Value P-Value F-Value P-Value F-Value P-Value 

Feed rate (f) 271.49 0.000 38.16 0.000 166.68 0.000 119.49 0.000 

Depth of cut (ap) 180.63 0.000 39.09 0.000 101.64 0.000 73.31 0.000 

Chip-breaker (CB) 42.08 0.000 5.24 0.024 0.25 0.617 30.57 0.000 

Inclination angle (λs) 1097.04 0.000 219.23 0.000 388.38 0.000 209.78 0.000 

Scale 22.49 0.000 95.00 0.000 129.30 0.000 75.98 0.000 

f*ap 41.68 0.000 6.80 0.000 32.50 0.000 19.61 0.000 

f*CB 15.68 0.000 1.05 0.353 15.78 0.000 13.07 0.000 

f*λs 36.87 0.000 2.25 0.109 13.95 0.000 20.28 0.000 

f*Scale 2.21 0.071 13.00 0.000 1.61 0.176 22.61 0.000 

ap*CB 7.52 0.001 2.89 0.059 8.87 0.000 5.33 0.006 

ap* λs 30.09 0.000 1.52 0.223 6.55 0.002 15.74 0.000 

ap*Scale 0.22 0.926 3.07 0.018 0.87 0.485 11.40 0.000 

CB*Scale 3.58 0.030 10.17 0.000 39.45 0.000 12.08 0.000 

λs *Scale 34.12 0.000 69.40 0.000 48.45 0.000 13.78 0.000          
 R² R²adj R² R²adj R² R²adj R² R²adj 
 94.81% 93.59% 86.69% 83.56% 92.90% 91.18% 84.49% 80.49% 

 

 

a) Tukey test. 

 

b) Fisher test. 

Figure 7.38 – Comparison tests of the vibration in axial direction for same cutting speed. 
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a) Tukey test. 

 

b) Fisher test. 

Figure 7.39 – Comparison tests of the vibration in axial direction for spindle speed range of 0-1,000 rpm. 

 

 

a) Tukey test. 
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b) Fisher test. 

Figure 7.40 – Comparison tests of the vibration in axial direction for spindle speed range of 1,000-2,000 rpm. 

 

a) Tukey test. 

 

b) Fisher test. 

Figure 7.41 – Comparison tests of the vibration in axial direction for spindle speed range of 2,000-3,000 rpm. 
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7.4.2. Vibration in the tangential direction 

The Figure 7.42 shows the vibration in the tangential direction for the micro-cutting of Ti-

6Al-7Nb with flat inserts for the spindle speed range of 0-1,000, 1,000-2,000, and 2,000-

3,000 rpm. The increase of the feed rate and the depth of cut increased, respectively, the 

vibration in tangential direction in macro (64.0% and 46.6%), transition (32.5% and 27.0%), 

and meso (44.6% and 43.9%) scales, on average. For the rise of the spindle speed range 

caused increase of 36.5% (macro), 27.7% (transition), and 43.7% (meso), on average.  

 

 

a) Spindle speed range of 0 to 1,000 rpm. 

 

 

b) Spindle speed range of 1,000 to 2,000 rpm. 
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c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.42 – Vibration in the tangential direction with flat inserts. 

 

For the chip-breaker inserts, the surface for the vibration in the tangential direction for the 

spindle speed range of 1,000, 2,000, and 3,000 rpm are shown in the Figure 7.43. For the 

tangential direction, the increase of the feed rate and depth of cut increased, on average, the 

vibration in the macro (47.6% and 25.3%), transition (25.4% and 15.3%) and meso-scale 

(28.8% and 28.8%) scales, respectively. The rise in the spindle speed range increased in 

macro and transition, on average, 25.6% and 18.3%, respectively.  

 

 

a) Spindle speed range of 0 to 1,000 rpm. 
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b) Spindle speed range of 1,000 to 2,000 rpm. 

 

c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.43 – Vibration in the tangential direction with chip-breaker inserts. 

Figure 7.44 shows the vibration in the tangential direction for the spindle speed range of 

1,000, 2,000, and 3,000 rpm employing the dual negative inserts. The increase of the feed 

rate and depth of cut caused a similar increase of the vibration, on average, in the tangential 

direction in transition (19.6% and 15.6%) meso (13.25 and 14.5%) scales, respectively. For 

the macro scale, it was observed a rose steeply of the vibration in the cutting for the increase 

of the feed rate and depth of cut, on average, 50.1% and 45.9%, respectively. For the rise of 

the spindle speed range, the rise from 1,000-2,000 to 2,000-3,000 caused an increase almost 

twice the rise from 0-1,000 to 1,000-2,000 in transition (11.6% and 6.3%) and meso (0.6% 

and 1.4%), on average. For the macro scale, the increase observed was greater than three 

times for the rise from 1,000-2,000 to 2,000-3,000 than the rise from 0-1,000 to 1,000-2,000, 

111.1% and 33.0%, respectively, on average.  
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a) Spindle speed range of 0 to 1,000 rpm. 

 

b) Spindle speed range of 1,000 to 2,000 rpm. 

 

c) Spindle speed range of 2,000 to 3,000 rpm. 

Figure 7.44 – Vibration in the tangential direction with dual negative inserts. 
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For the comparison of the reduction of the scale, the decrease from macro to transition scale 

caused a reduction, on average, in the vibration in the tangential direction for flat (11.1%), 

chip-breaker (16.0%), and dual negative (16.9%) inserts. However, the reduction from 

transition to meso scale, it was observed, on average, a reduction for the use of the flat insert, 

23.1%, and an increase for the use of the chip-breaker (24.8%) and dual negative (6.7%) 

inserts. In the Table 7.15 is exhibited the ANOVA for all and individual scales. The factor 

“scale” was significant for the vibration in the tangential direction. The Tukey and Fisher 

tests are shown in the Figure 7.45. The transition and meso did not present significant 

difference among themselves.  

 

Table 7.15 – ANOVA of vibration in the tangential direction for all and individual scales. 

Source 
All scales Macro Transition Meso 

F-Value P-Value F-Value P-Value F-Value P-Value F-Value P-Value 

Spindle speed range (n) 78.89 0.000 144.28 0.000 132.13 0.000 6.80 0.002 

Feed rate (f) 114.43 0.000 173.64 0.000 222.94 0.000 11.57 0.000 

Depth of cut (ap) 84.50 0.000 127.73 0.000 155.45 0.000 10.91 0.000 

Chip-breaker (CB) 24.13 0.000 44.81 0.000 355.98 0.000 0.63 0.428 

Inclination angle (λs) 3.35 0.068 3.80 0.053 24.13 0.000 9.49 0.003 

Scale 49.43 0.000     
  

n*f 39.20 0.000 58.06 0.000 41.70 0.000 2.65 0.038 

n* ap 24.11 0.000 37.78 0.000 20.60 0.000 1.38 0.246 

n*CB 11.03 0.000 6.42 0.002 57.55 0.000 6.41 0.003 

n* λs 3.71 0.025 17.72 0.000 8.33 0.000 0.01 0.994 

n*Scale 21.21 0.000     
  

f* ap 32.97 0.000 44.25 0.000 34.96 0.000 3.43 0.012 

f*CB 11.61 0.000 12.67 0.000 25.71 0.000 2.23 0.113 

f* λs 0.14 0.866 1.53 0.219 2.88 0.059 1.41 0.249 

f*Scale 22.78 0.000     
  

ap*CB 8.37 0.000 9.17 0.000 19.64 0.000 1.43 0.244 

ap* λs 0.10 0.904 2.54 0.081 1.64 0.197 1.32 0.272 

ap*Scale 14.33 0.000       
CB*Scale 9.51 0.000       
λs *Scale 5.79 0.003                

 R² R²adj R² R²adj R² R²adj R² R²adj 
 77.15% 74.92% 89.19% 87.46% 94.50% 93.51% 61.67% 47.88% 
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a) Tukey test. 

 

b) Fisher test. 

Figure 7.45 – Comparison tests of the vibration in tangential direction for all scales. 

 

The ANOVA of the same cutting speed and spindle speed range for all scales is exhibited in 

the Table 7.16. The factor “scale” was significant for all spindle speed range and the same 

cutting speed. The Figure 7.46, Figure 7.47, Figure 7.48, and Figure 7.49 are shown the 

Tukey and Fisher test for cutting speed of 30 m/min and spindle speed of 0-1,000, 1,000-

2,000, and 2,000-3,000, respectively. For cutting speed of 30 m/min, the macro and 

transition was not differing among themselves. In the spindle speed range of 1,000-2,000, 

and 2,000-3,000, the meso and transition was not differing among themselves. 
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Table 7.16 – ANOVA for the vibration in tangential direction for spindle speed range and cutting speed. 

Source 

vc n n n 

30 m/min 0-1,000 rpm 1,000-2,000 rpm 2,000-3,000 rpm 

F-Value P-Value F-Value P-Value F-Value P-Value F-Value P-Value 

Feed rate (f) 33.47 0.000 73.72 0.000 144.57 0.000 111.68 0.000 

Depth of cut (ap) 28.57 0.000 67.87 0.000 103.78 0.000 76.25 0.000 

Chip-breaker (CB) 14.87 0.000 0.78 0.380 16.50 0.000 33.23 0.000 

Inclination angle (λs) 11.53 0.001 49.76 0.000 23.29 0.000 0.46 0.500 

Scale 9.71 0.000 18.82 0.000 82.53 0.000 57.51 0.000 

f*ap 6.60 0.000 9.77 0.000 45.03 0.000 35.62 0.000 

f*CB 3.66 0.028 8.81 0.000 11.25 0.000 12.28 0.000 

f*λs 1.61 0.203 2.13 0.123 2.78 0.065 0.78 0.458 

f*Scale 4.65 0.001 4.00 0.004 34.38 0.000 27.88 0.000 

ap*CB 3.59 0.030 2.69 0.071 6.22 0.003 10.98 0.000 

ap* λs 1.02 0.363 2.18 0.117 1.36 0.259 0.75 0.476 

ap*Scale 4.65 0.001 0.09 0.986 19.93 0.000 19.99 0.000 

CB*Scale 1.80 0.169 96.58 0.000 33.46 0.000 1.52 0.222 

λs *Scale 1.03 0.361 11.39 0.000 2.24 0.110 13.82 0.000          
 R² R²adj R² R²adj R² R²adj R² R²adj 
 65.63% 58.88% 85.07% 82.10% 92.35% 90.74% 87.98% 85.45% 

 

 

a) Tukey test. 

 

b) Fisher test. 

Figure 7.46 – Comparison tests of the vibration in tangential direction for cutting speed of 30 m/min. 
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a) Tukey test. 

 

b) Fisher test. 

Figure 7.47 – Comparison tests of the vibration in tangential direction for spindle speed range of 0 to 1,000. 

 

 

a) Tukey test. 
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b) Fisher test. 

Figure 7.48 – Comparison tests of the vibration in tangential direction for spindle speed range of 1,000 to 

2,000. 

 

a) Tukey test. 

 

b) Fisher test. 

Figure 7.49 – Comparison tests of the vibration in tangential direction for spindle speed range of 2,000 to 

3,000. 
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7.5. Vibration in the micro-cutting (Frequency Domain)  

When observed the spectrum of vibration, the higher peaks were between 0 and 25 Hz for 

all conditions. However, the behaviour for each condition presented a specific curve for each 

scale. In the Figure 7.50 and Figure 7.51 are shown the condition with lower variation 

between the scales for axial and tangential directions, respectively. It is obvious that the 

scales affected the magnitude of the vibration in the frequency domain. 

 

Figure 7.50 – Condition with lower variation of vibration in frequency domain for axial direction. 

 

Figure 7.51 – Condition with lower variation of vibration in frequency domain for tangential direction. 
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7.6. Discussion 

In this study, the influence of the tool wear was disregarded, although it was monitored. It is 

because the tool wear observed for one repetition was so small that did not affect the process, 

although some evidences that can be observed, Figure 7.52. Analysing the wear for V-insert, 

Ezugwu and Okeke (2001) observed that the wear along the nose region with adhering flake-

like oxide debris was the dominant tool failure mode while micro/macro-adhesion and 

abrasion wear as well as plastic deformation of the sharp cutting edge are the wear 

mechanisms affecting tool performance, particularly at higher cutting conditions. 

 

Figure 7.52 – Tool condition after one repetition. 

 

The reduction of the cutting forces can be based on Jagadesh and Samuel (2014), which 

observed that the increase of the cutting speed, in the micro-turning of the Ti-6Al-4V 

titanium alloy, caused a reduction in the cutting forces when the uncut chip thickness was 

higher than the cutting edge radius because the temperature in the tool chip interface 

increased. The values of the Fx more than Fz can be justified based on Ducobu et al. (2016). 

These authors, in the analysis of the micro-cutting in Ti-6Al-4V titanium alloy with an uncut 
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chip thickness of 1 μm, observed that the thrust force is larger than the cutting force, which 

go against the conventional cutting theory.  

The values of the surface roughness for the dual negative inserts can be influenced by the 

rake angle. Schneider et al. (2016) used the orthogonal micro-cutting to study the influence 

of the rake angle in micro-cutting of titanium commercial pure. They observed that an 

increase of the rake angle can improve the quality of the surface due to it reduce the plastic 

deformation in chip formation, independent of the uncut chip thickness. The dimension of 

texture in cutting direction was influenced by the rake angle and can be reduced with 

increasing rake angle. 

When compared with Nogueira (2015), that analysed the finishing using the conventional 

parameters and MQL system, the use of micro-cutting in the finishing of Ti-6Al-7Nb 

titanium alloy, although the Ra values did not show perceivable difference, the cutting forces 

fell steeply for the Fx, between 68.7% and 71.3%, Fy, between 93.3% and 94.5%, and Fx, 

between 71.5% and 83.0%.  

In the Table 7.17 is shown the Spearman’s ρ correlation for responses. The Fx force presented 

a correlation with the vibration in feed direction, which can be justified because the 

deflection in the workpiece caused by the Fx force. For the inclination angle, the correlation 

can be justified due to more length of the dual negative cutting edge in contact with the 

workpiece. 

Hessainia et al. (2013) analysed the vibration in hard turning, observed a strong relation 

between surface roughness and cutting parameters, mainly feed rate, was found, while 

vibrations were found to be non-significant in the Analysis of Variance performed. 

According to Carou et al. (2016)5, the relation between surface roughness and the vibrations 

measured is clear in the dry machining tests, i.e., when higher vibrations are observed also 

higher surface roughness is measured. 

 

                                                           
5 Self-citation 
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Table 7.17 – Spearman’s ρ correlation for the responses of the micro-cutting in titanium alloy. 

 Spindle 

speed 
Feed rate 

Depth of 

cut 

Chip-

breaker 

Inclination 

angle 
Diameter  

Ra 0.029 0.943 0.015 0.083 -0.101 -0.002  

Rz 0.030 0.916 0.024 -0.044 -0.097 -0.023  

Fx -0.013 0.196 0.482 -0.538 -0.270 0.099  

Fy -0.021 0.077 0.794 -0.307 -0.221 0.013  

Fz -0.104 0.314 0.522 -0.178 -0.475 -0.222  

Deflection -0.270 0.132 0.339 -0.191 -0.115 -0.196  

Vibration (tang) 0.331 0.543 0.466 -0.160 0.243 0.150  

Vibration (axial) 0.266 0.381 0.319 0.189 -0.555 0.361  

 Ra Rz Fx Fy Fz Deflection 
Vibration 

(tang) 

Ra        

Rz 0.938       

Fx 0.190 0.295      

Fy 0.092 0.182 0.858     

Fz 0.341 0.418 0.810 0.822    

Deflection 0.102 0.194 0.440 0.486 0.541   

Vibration (tang) 0.497 0.505 0.302 0.417 0.326 0.142  

Vibration (axial) 0.425 0.421 0.487 0.486 0.550 0.053 0.426 

 

7.7. Conclusion of the chapter 

Based on the results of the experiments, main conclusions for the use of the micro-cutting in 

the finishing operation in the biomaterial are the following: 

 Among the cutting forces components in micro-cutting, the Fx was more significant 

by the diameter scale. However, the Fy was not influenced by the diameter scale. 

 For the both surface roughness profile, Ra and Rz, the scale was not significant.  

 For the vibration in time domain in axial and tangential direction, generally, the 

reduction of the scale reduced the amplitudes, which can be justified due to the reduction of 

workpiece mass. The vibration in frequency domain indicated that each scale, the micro-

cutting presents a specific behaviour.  

 This process offers great results for the cutting forces, until one-fifteenth compared to 

conventional, and the tool life. The values of surface roughness in dry micro-cutting provides 

similar values to the conventional parameters using MQL. Thus, this process can be 
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classified as sustainable, reducing cost, time, and environment impact, because it presents a 

reduction in the consumption of oil, energy, complementary proceedings, and other. 
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CHAPTER 8 – CORROSION BEHAVIOUR OF MICRO-MACHINED 

SURFACE IN THE DENTAL APPLICATIONS 

In this chapter, the quality of the micro-cutting as finished operation for the implants was 

analysed in vitro tests. The influence of finishing operation was analysed in body 

environment, through the corrosion using simulated of body fluid (SBF), for workpiece 

applied the optimum and worse condition of micro-cutting.  

 

8.1. Machining modelling  

The results of tests for the cutting forces (Fx, Fy, and Fz) and surface roughness (Ra and Rz) 

obtained for the diameter at meso-scale, lower than 5 mm, were modelled employed the 

Response Surface Method aided by the MinitabTM 17. The models obtained are presented in 

the Equation 8.1, 8.2, 8.3, 8.4, and 8.5 for the Fx, Fy, Fz, Ra, and Rz responses, respectively.  
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              Equation 8.1 

R2 = 86.51%; R2
adj = 85.28% 
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        Equation 8.2 

R2 = 95.99%, R2
adj = 95.63% 
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         Equation 8.3 

R2 = 95.32%; R2
adj = 94.90% 
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        Equation 8.4 

R2 = 97.27%; R2
adj = 97.08% 
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Equation 8.5 

R2 = 97.27%; R2
adj = 97.08% 

Where,  

vc ↔ cutting speed (7 to 30 m/min) 

f ↔ feed rate (25 to 100 μm/rev) 

ap ↔ depth of cut (25 to 100 μm) 

CB  chip-breaker (0 to flat and 1 to chip-breaker) 

λs  cutting edge inclination angle (-13 or 0) 

 

After the modelling of response, the LSM was employed to find the optimum and worse 

condition. In the Figure 8.1 is shown an example of the population generated to find the 

optimum and worse condition. The optimum and worse condition found by LSM are 

exhibited in the Table 8.1.  
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Figure 8.1 – Generation population to find the optimum condition for the Rz surface roughness. 

 

Table 8.1 – Micro-cutting parameters for the finishing of dental implants. 

Condition 
Cutting speed 

(m/min) 

Feed rate 

(μm/rev) 

Depth of cut 

(μm) 
Type of insert 

Optimum 30 25 25 VBMT 16 04 04-UM H13A 

Worse 7 100 100 VNMG 16 04 04-QM H13A 

 

8.2. Corrosion behaviour 

 

Figure 8.2 – Comparison between reference workpieces in the polarization tests. 

The Figure 8.2 shows the results of the polarization to compare the reference workpieces 

geometry. The G1 geometry presented an initial passivation region being polarized about 
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0.40 V and can be observed a re-passivation of pits and the formation of the passive film, 

stabling a passive region about 0.50 V. The G2 and G3 geometries presented similar 

behaviour, passivation region being polarized about 0.00 V and did not occur the re-

passivation of pits and the formation of the passive film. It can be justified because the G1 

is a simple geometry, which is easier to machine.  

According to Choe et al. (2009), in the bode analysis, a high impedance values (of 106 Ω 

cm2) for the low and medium frequencies, indicates a high corrosion resistance. In the phase 

analysis, an approximating the 90º for middle and high frequency, indicating single and 

compact passive layer at the interface. The typical of passive materials occurs when the 

phase angles approaching 90º, indicating a high stable film formation (Al-Mobarak, Al-

Swayih and Al-Rashoud, 2011). The Figure 8.3 and Figure 8.4 show the impedance spectra, 

bode (OCP) and phase (0.75 V) modulus respectively. In the bode modulus, a high 

impedance (> 105 Ω cm2) was observed at low and medium frequencies that indicate a high 

corrosion resistance. In the phase modulus, the G1 curve closed to 90º at middle and high 

frequency, while the G2 and G3 curve approached 70º at low frequency.  

 

Figure 8.3 – Bode modulus for the references workpieces. 
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Figure 8.4 – Phase modulus for the references workpieces. 

 

The results for the polarization, bode (OCP), and phase (0.75 V) tests for the G1 geometry 

are showed in the Figure 8.5, Figure 8.6, and Figure 8.7, respectively. In the impedance tests, 

all conditions, finished and unfinished, presented similar behaviour. In the polarization tests, 

the optimum finishing condition presented the worse corrosion behaviour. The worse 

finishing condition presented a corrosion potential higher than unfinished workpiece, after 

0.7 V.  

 

 

Figure 8.5 – Comparison of polarization tests for the G1 geometry. 

 



M.Sc. Carlos Henrique Lauro 

200 
 

 

Figure 8.6 – Comparison of bode tests for the G1 geometry. 

 

 

Figure 8.7 – Comparison of phase tests for the G1 geometry. 

 

The Figure 8.8, Figure 8.9, and Figure 8.10 show the results of polarization, bode (OCP) and 

phase (0.75 V) tests for the G2 geometry, respectively. In the polarization tests, the finished 

workpieces presented re-passivation of pits and the formation of the passive film. The 

optimum finishing condition improved the corrosion behaviour. For the worse finishing 

condition, the results were better than unfinished workpiece before 0.7 V. In the bode tests, 

the conditions had similar corrosion behaviour. In the phase tests, an increase of the angle, 

about 70º, at high frequency was observed for the worse finishing condition. 
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Figure 8.8 – Comparison of the polarization tests for the G2 geometry. 

 

Figure 8.9 – Comparison of bode tests for the G2 geometry. 

 

Figure 8.10 – Comparison of phase tests for the G2 geometry. 
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The results for the polarization, bode (OCP), and phase (0.75 V) tests for the G3 geometry 

are showed in the Figure 8.11, Figure 8.12, and Figure 8.13, respectively. In all tests, the 

worse finishing condition improved the corrosion aspects, significantly. In the bode tests can 

be observed a high corrosion resistance for both finished workpiece. In the phase modulus, 

an increase of the angle could be observed at high frequency.  

 

Figure 8.11 – Comparison between G3 geometry in the polarization tests. 

 

Figure 8.12 – Comparison of bode tests for the G3 geometry. 
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Figure 8.13 – Comparison of phase tests for the G3 geometry. 

8.3. Discussion 

Firstly, it is important emphasize that surface did not receive any preparation after micro-

cutting. Although Basiaga et al. (2015) recommend the special surface preparation and low 

surface roughness (Ra < 0.16 μm), this study focused, only, in the influence of the micro-

cutting in the Ti-6Al-7Nb titanium alloy.  

For the G1 geometry, the results can be justified based on cutting forces in the section 7.3, 

Asad et al. (Asad et al., 2007) and Lu and Yoneyama (1999). Because of G1 geometry has 

a small diameter and larger length that cause a high deflection and vibration at the furthest 

extremity of the chuck jaw, which affected the surface quality. Thus, the use of sharp edge 

tool can improve the corrosion behaviour due to it reduces the vibration and deflection in 

the workpiece. 

The titanium and its alloys are characterized by the poor machinability, for instance, the Ti-

6Al-4V has machinability of 22% (Froes, 2015). During the titanium cutting, the low area 

of contact produced chips very thin, stresses very high, and a very high cutting temperature 

(Sharma, Singh and Sørby, 2014), which can cause micro-cracks in the machined surface. 

When employed the optimum finishing condition, the small depth of cut may not be 

sufficient to remove the micro-cracks produced um the roughness machining in one pass. 

Based in the section 6.3, the justification for the optimum condition present a worse 

corrosion behaviour can be the residual stress. The feed rate of 25 µm/rev can present a 
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tractive residual stress in the surface. The polishing of the workpiece can improve the 

corrosion behaviour for this condition. 

 

8.4. Conclusion of the chapter 

The results of the experiments for the usage of the micro-cutting as finishing operation in 

dental applications drawn from the study are the following: 

 The results for the simple geometry, G1, the use of the micro-cutting did not present 

great efficiency, however, the use of sharp edge tool can improve the results.  

 For the geometry “no cylindrical”, G2 and G3, the use of the micro-cutting as finishing 

operation presented great results.  

 The worse condition improved the corrosion behaviour in the biocomponents. The 

results for worse condition were better than optimum condition. It can be justified due to the 

depth of cut of optimum condition was so small that did not the crack and damage caused in 

the rough operation. The results can be improved employing the polishing and more pass in 

the manufacture of biocomponents.  
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CHAPTER 9 – CONCLUSIONS 

In this chapter it is shown the conclusion and debated future work about the use of the micro-

cutting as finishing operation. 

9.1. Conclusions 

This study provides a contribution to understanding the micro-cutting process, mainly for 

biocomponents that is usual components in small size. When analysed and compared all 

chapters, the following conclusions can be drawn: 

 Although the high spindle speed is used in the micro-machining, the use of tools with 

smaller dimension result in lower values of cutting speed. Thus, in the literature, the use of 

the “rpm” as cutting speed is commonly found. However, these factors cause a discussion 

about the high speed cutting in the micromachining. The comparison in the orthogonal 

micro-cutting showed that, for same cutting speed, the increase of the spindle speed 

improved the cutting phenomena, such as specific cutting energy, shear plane angle, friction 

coefficient, temperature. For the oblique micro-cutting in different size scales, the surface 

roughness (Ra and Rz) presented the same values for same spindle speed range. The cutting 

force, except the Fy force, and vibration varied for different size scales, but, it is related to 

deflection of the workpiece. 

 The use of the micro-cutting in the finishing operation can be classified as 

environmentally friendly machining technique. It is because the better results were obtained 

in dry condition. The use of the MQL system, although it reduced the burr formation, caused 

adherence of micro-chip and slip of the tool damaging the micro-machined surface. 

Furthermore, the micro-cutting caused lower deflection of the workpiece than the finishing 

operation using conventional conditions, besides, the cutting forces were lower than the 

conventional conditions. The values of surface roughness were much lower than the 

conventional, which would result in low polishing costs and time.  
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 The titanium and its alloy are widely used in several applications due to they provided 

a high mechanical property with low density. In the biomedical sector, the titanium and its 

alloy are widely used because the high compatibility with the body environment, however, 

in this sector, the components require fullest possible surface quality, smallest burr and 

surface roughness. However, the titanium and its alloy are poor machinability material, in 

other words, the cutting in the titanium and its alloy requires high cutting power and can 

occur metallurgic alterations in the machined surface.  

 The micro-cutting used for finishing operation in bioapplications can prolong the life 

of the components and ensure patient health. The analysis developed in this study, the 

finishing operation with one pass and without polishing, caused a great improvement in the 

corrosion behaviour of the workpieces. 

9.2. Future works 

Although this study tried to develop all analysis to understand the influence of the micro-

cutting in the finishing of the Ti-6Al-7Nb titanium alloy, others analysis will able to improve 

this understanding.  

 The characterization of the wear and the influence of the worn tool. 

 The corrosion behaviour for the implants machined with the sharp edge tool due to it 

reduces the vibration, surface roughness, and deflection in the micro-cutting.  

 The analysis of the corrosion behaviour using simulated of salivary, normal and 

smoker, as “in vivo” analysis. 

 The improvement of the material modelling to development of this micro-cutting 

using the 3D model FEM to analyse the residual stresses and the temperatures, for example. 

 The analysis of the adherence of biomedical coating in the micro-machined surface, 

such as tantalum oxide. 

 Furthermore, the study of this technique employed in hardness material, like AISI H13 

and D2, to prolong the life of the mould and die. 
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ANNEX A 

 

Figure B.1 - Quality certificate of the Ti-6Al-7Nb titanium alloy used in the micro-cutting (chemical and 

mechanical properties). 
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Figure B.2 - Quality certificate of the Ti-6Al-7Nb titanium alloy used in the micro-cutting (metallography 

analysis). 
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ANNEX B 

In this section is shown the results of the experimental tests. 

 

B.1. Development of measurements techniques and analysis 

B.1.1. Cutting Forces 

Table B.1 - Thrust force in the orthogonal micro cutting. 

Cutting speed 

(m/min) 

Feed rate 

(µm/rev) 

Spindle 

speed (rev) 

Thrust force (N) 

Maximum Minimum 

Average 
Standard 

deviation 
Average 

Standard 

deviation 

30 10 1,500 20.03 0.31 19.82 0.28 

30 10 735 26.09 0.02 25.83 0.03 

30 50 735 44.06 3.24 43.51 3.23 

60 10 3,000 18.73 0.58 18.57 0.58 

60 10 1,500 23.18 0.16 22.82 0.18 

120 10 3,000 25.35 1.24 25.13 1.21 

120 25 3,000 33.05 0.16 32.75 0.18 

120 50 3,000 37.50 0.15 37.19 0.02 

 

Table B.2 - Cutting force in the orthogonal micro cutting. 

Cutting speed 

(m/min) 

Feed rate 

(µm/rev) 

Spindle 

speed (rev) 

Cutting force (N) 

Maximum Minimum 

Average 
Standard 

deviation 
Average 

Standard 

deviation 

30 10 1,500 23.18 0.52 22.49 0.53 

30 10 735 27.68 0.09 26.64 0.07 

30 50 735 83.16 1.33 82.23 1.27 

60 10 3,000 20.36 0.57 19.88 0.62 

60 10 1,500 25.46 0.05 24.27 0.20 

120 10 3,000 25.62 1.19 24.95 1.15 

120 25 3,000 49.12 0.51 48.05 0.46 

120 50 3,000 81.07 0.24 80.30 0.17 
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B.1.2. Specific cutting energy 

Table B.3 – Specific cutting energy in the orthogonal micro cutting. 

Cutting speed 

(m/min) 

Feed rate 

(µm/rev) 

Spindle 

speed (rev) 

Specific cutting energy (J/mm3) 

Average Standard deviation 

30 10 1,500 4.29 0.08 

30 10 735 5.00 0.00 

30 50 735 2.49 0.07 

60 10 3,000 3.89 0.12 

60 10 1,500 4.66 0.17 

120 10 3,000 4.76 0.23 

120 25 3,000 3.12 0.02 

120 50 3,000 2.37 0.01 

 

B.1.3. Friction coefficient 

Table B.4 – Friction coefficient in the orthogonal micro cutting. 

Cutting speed 

(m/min) 

Feed rate 

(µm/rev) 

Spindle 

speed (rev) 

Friction coefficient 

Average Standard deviation 

30 10 1,500 0.90 0.01 

30 10 735 0.96 0.00 

30 50 735 0.60 0.03 

60 10 3,000 0.94 0.00 

60 10 1,500 0.94 0.00 

120 10 3,000 1.00 0.00 

120 25 3,000 0.73 0.01 

120 50 3,000 0.54 0.00 

 

B.1.4. Temperature 

Table B.5 – Temperature in the insert during the orthogonal micro cutting. 

Cutting speed 

(m/min) 

Feed rate 

(µm/rev) 

Spindle 

speed (rev) 

Temperature (ºC) 

Average Standard deviation 

30 10 1,500 88.91 2.83 

30 10 735 104.75 1.86 

30 50 735 84.17 0.25 

60 10 3,000 85.02 2.16 

60 10 1,500 94.75 2.43 

120 10 3,000 78.31 12.97 

120 25 3,000 58.75 9.25 

120 50 3,000 61.29 2.94 
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B.1.5. Chip 

Table B.6 – Chip compression ratio and chip deformation in the orthogonal micro cutting. 

Cutting speed 

(m/min) 

Feed rate 

(µm/rev) 

Spindle 

speed (rev) 

Chip compression ratio Chip deformation 

Average Standard deviation Average Standard deviation 

30 10 1,500 2.34 0.03 2.57 0.02 

30 10 735 2.47 0.08 2.68 0.07 

30 50 735 1.71 0.03 2.10 0.02 

60 10 3,000 2.25 0.11 2.50 0.09 

60 10 1,500 2.26 0.04 2.50 0.03 

120 10 3,000 2.10 0.03 2.38 0.02 

120 25 3,000 1.67 0.03 2.07 0.02 

120 50 3,000 1.58 0.02 2.01 0.01 

 

B.1.6. Shear plane angle 

Table B.7 – Shear plane angle in the orthogonal micro cutting. 

Cutting 

speed 

(m/min) 

Feed rate 

(µm/rev) 

Spindle 

speed 

(rev) 

Experimental shear 

plane angle (º) 

Merchant shear 

plane angle (º) 

Lee-Shaffer shear 

plane angle (º) 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

30 10 1,500 23.98 0.27 27.08 0.09 9.16 0.19 

30 10 735 22.81 0.73 26.02 0.00 7.04 0.00 

30 50 735 31.76 0.43 32.50 0.56 19.99 1.12 

60 10 3,000 24.94 1.09 26.38 0.03 7.75 0.06 

60 10 1,500 24.82 0.36 26.40 0.02 7.81 0.04 

120 10 3,000 26.49 0.32 25.52 0.03 6.04 0.05 

120 25 3,000 32.46 0.47 29.94 0.15 14.89 0.29 

120 50 3,000 34.02 0.41 33.78 0.00 22.56 0.01 

 

B.2. Influence of the HSM and MQL in the micro-cutting 

B.2.1. Cutting Forces 

Table B.8 – Shear plane angle in the orthogonal micro cutting. 

Cutting 

speed 

(m/min) 

Feed rate 

(µm/rev) 
Colling 

Thrust force (N) Cutting force (N) 

Average 
Standard 

deviation 
Average 

Standard 

deviation 

30 10 Dry 40.81 0.83 41.55 0.48 

30 50 Dry 71.36 1.34 124.30 2.52 

120 10 Dry 33.51 0.28 34.38 0.21 

120 50 Dry 52.86 3.21 121.16 0.88 

30 10 MQL 30.60 1.81 33.47 0.79 

30 50 MQL 62.22 1.20 124.45 0.28 

120 10 MQL 34.10 1.51 32.35 0.51 

120 50 MQL 55.36 9.30 118.48 4.15 
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B.2.2. Specific cutting energy and Friction coefficient 

Table B.9 – Specific cutting energy and Friction coefficient in the orthogonal micro cutting. 

Cutting 

speed 

(m/min) 

Feed rate 

(µm/rev) 
Colling 

Specific cutting energy 

(J/mm3) 
Friction coefficient 

Average 
Standard 

deviation 
Average 

Standard 

deviation 

30 10 Dry 5.75 0.04 0.99 0.03 

30 50 Dry 2.84 0.05 0.64 0.00 

120 10 Dry 4.74 0.04 0.98 0.00 

120 50 Dry 2.60 0.03 0.52 0.02 

30 10 MQL 4.47 0.19 0.93 0.02 

30 50 MQL 2.74 0.00 0.57 0.01 

120 10 MQL 4.57 0.09 1.03 0.02 

120 50 MQL 2.57 0.15 0.55 0.06 

 

B.2.3. Shear plane angle 

Table B.10 – Specific cutting energy and Friction coefficient in the orthogonal micro cutting. 

Cutting 

speed 

(m/min) 

Feed rate 

(µm/rev) 
Colling 

Lee-Shaffer shear plane angle (º) 

Average Standard deviation 

30 10 Dry 6.39 0.80 

30 50 Dry 18.39 0.05 

120 10 Dry 6.66 0.09 

120 50 Dry 23.63 1.10 

30 10 MQL 8.05 0.65 

30 50 MQL 21.25 0.40 

120 10 MQL 5.04 0.48 

120 50 MQL 22.40 2.64 

 

B.2.4. Chips 

Table B.11 – Chip compression in the orthogonal micro cutting. 

Cutting 

speed 

(m/min) 

Feed rate 

(µm/rev) 
Colling 

Chip compression 

Average Standard deviation 

30 10 Dry 2.66 0.00 

30 50 Dry 1.71 0.07 

120 10 Dry 2.09 0.05 

120 50 Dry 1.44 0.00 

30 10 MQL 2.45 0.02 

30 50 MQL 1.74 0.01 

120 10 MQL 2.17 0.06 

120 50 MQL 1.60 0.04 
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B.2.5. Surface roughness 

Table B.12 – Surface roughness in the orthogonal micro cutting. 

Cutting 

speed 

(m/min) 

Feed rate 

(µm/rev) 
Colling 

Ra (µm) Rt (µm) Rz (µm) 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

30 10 Dry 0.176 0.018 0.863 0.254 1.282 0.443 

30 50 Dry 0.115 0.001 0.725 0.046 1.306 0.338 

120 10 Dry 0.078 0.006 0.569 0.107 1.179 0.564 

120 50 Dry 0.048 0.007 0.374 0.093 0.576 0.232 

30 10 MQL 0.162 0.074 0.975 0.148 1.529 0.249 

30 50 MQL 0.158 0.011 0.929 0.049 1.475 0.356 

120 10 MQL 0.305 0.233 1.522 0.300 3.396 0.651 

120 50 MQL 0.096 0.000 0.750 0.102 0.828 0.262 

 

B.2.6. Burr 

Table B.11 – Burr in the orthogonal micro cutting. 

Cutting 

speed 

(m/min) 

Feed rate 

(µm/rev) 
Colling 

Burr (µm) 

Average Standard deviation 

30 10 Dry 100.57 3.83 

30 50 Dry 127.46 12.40 

120 10 Dry 29.18 0.70 

120 50 Dry 94.26 12.75 

30 10 MQL 17.21 1.16 

30 50 MQL 53.28 3.48 

120 10 MQL 9.10 1.04 

120 50 MQL 8.28 2.20 
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B.3. The micro-cutting in the finishing operation of biomaterial 

B.3.1. Fx force 

Table B.12 – Fx force in the micro cutting for flat insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0
 

Macro 

25 16.86 2.76 24.13 2.08 30.09 4.13 

50 18.36 1.73 25.88 2.43 33.44 4.58 

100 21.62 3.08 29.15 3.95 40.69 5.31 

Transition 

25 18.65 1.23 23.67 1.95 31.55 2.56 

50 21.16 3.25 25.48 2.20 34.21 2.50 

100 21.93 1.70 29.58 2.49 39.79 2.98 

Meso 

25 22.29 0.60 25.17 0.71 32.49 0.93 

50 21.32 0.57 26.83 0.78 34.39 1.02 

100 23.22 0.67 29.69 0.95 41.77 1.30 

1
.0

0
0
 -

 2
,0

0
0
 

Macro 

25 16.52 2.37 24.97 2.45 34.74 3.65 

50 18.26 2.73 25.00 3.73 39.21 4.21 

100 21.36 2.24 31.57 4.76 45.89 7.20 

Transition 

25 17.30 1.89 22.32 1.68 29.28 2.02 

50 17.56 1.16 24.02 2.05 32.88 2.57 

100 20.96 1.73 28.92 2.52 39.99 3.50 

Meso 

25 17.81 0.50 23.09 0.71 30.43 0.91 

50 18.68 0.55 24.54 0.76 33.05 1.04 

100 21.46 0.67 28.48 0.95 39.31 1.31 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 18.27 2.60 28.80 3.11 36.52 5.65 

50 17.71 1.52 29.08 5.19 42.78 4.63 

100 25.61 3.24 36.68 3.47 47.79 6.97 

Transition 

25 13.55 1.63 21.90 1.77 29.01 1.53 

50 16.46 1.61 24.47 1.89 34.38 2.53 

100 20.86 1.63 30.26 2.78 42.86 3.43 

Meso 

25 21.33 0.49 22.20 0.67 30.21 0.90 

50 18.04 0.64 24.25 0.75 32.81 1.03 

100 20.73 0.66 28.65 0.95 39.09 1.31 
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Table B.13 – Fx force in the micro cutting for chip-breaker insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0
 

Macro 

25 6.77 1.27 8.69 1.36 11.48 1.51 

50 6.98 1.22 9.19 1.37 12.48 1.51 

100 8.21 1.06 10.93 1.47 15.01 1.76 

Transition 

25 7.25 1.19 9.12 1.58 11.72 1.72 

50 7.17 1.22 9.57 1.59 12.56 1.78 

100 8.24 1.06 11.08 1.65 14.91 1.98 

Meso 

25 5.98 0.10 7.14 0.04 9.26 0.00 

50 5.69 0.07 7.83 0.31 10.20 0.11 

100 6.66 0.02 9.49 0.10 12.96 0.16 

1
.0

0
0
 -

 2
,0

0
0
 

Macro 

25 6.43 1.09 8.98 1.46 11.90 1.62 

50 7.13 1.18 9.59 1.38 13.25 1.72 

100 8.19 1.20 11.66 1.76 16.50 2.04 

Transition 

25 6.15 0.88 8.27 1.29 10.74 1.53 

50 6.68 1.03 8.70 1.43 11.92 1.60 

100 7.76 1.05 10.45 1.43 14.38 1.84 

Meso 

25 5.03 0.18 7.06 0.01 9.09 0.01 

50 5.50 0.07 7.64 0.08 10.45 0.30 

100 6.72 0.03 9.54 0.04 13.06 0.17 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 5.88 0.82 8.75 1.47 12.87 2.03 

50 6.28 0.75 9.96 1.52 14.38 2.26 

100 8.21 0.95 12.18 1.97 16.32 2.39 

Transition 

25 5.46 1.29 8.43 1.26 10.57 1.46 

50 6.23 1.10 8.84 1.27 11.81 1.62 

100 7.78 1.08 10.43 1.44 14.76 2.03 

Meso 

25 4.89 0.37 6.73 0.01 8.97 0.03 

50 6.36 1.77 7.50 0.15 10.28 0.15 

100 6.63 0.31 9.48 0.03 13.08 0.03 
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Table B.14 – Fx force in the micro cutting for dual negative insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0
 

Macro 

25 15.93 0.46 21.31 0.30 27.68 1.06 

50 16.98 0.02 23.40 0.42 31.28 1.29 

100 20.67 0.13 28.43 0.40 39.24 1.42 

Transition 

25 15.86 1.47 19.85 1.58 26.43 2.08 

50 15.77 1.15 21.64 1.58 29.35 2.01 

100 18.92 1.41 26.37 1.84 36.48 2.36 

Meso 

25 17.37 1.39 18.58 1.20 23.39 1.13 

50 16.14 1.19 19.76 1.14 24.72 1.09 

100 17.57 1.10 22.98 1.30 31.49 1.80 

1
.0

0
0
 -

 2
,0

0
0
 

Macro 

25 15.84 0.70 20.60 0.17 27.93 1.42 

50 16.90 0.13 24.07 1.81 32.39 1.81 

100 20.85 0.45 29.73 0.50 41.65 1.93 

Transition 

25 15.79 0.63 18.91 1.60 26.02 1.62 

50 15.05 1.72 20.77 1.66 28.88 2.29 

100 18.33 1.45 25.63 1.93 36.35 2.58 

Meso 

25 14.21 1.08 17.89 2.00 23.29 2.25 

50 14.34 1.43 19.01 1.82 25.46 1.79 

100 16.59 1.17 22.73 1.90 32.93 2.26 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 14.38 0.72 22.45 0.54 30.19 1.65 

50 17.05 0.09 25.37 0.40 34.68 1.57 

100 22.39 0.35 30.88 0.25 41.49 1.41 

Transition 

25 13.01 2.01 18.28 1.65 25.09 2.13 

50 14.40 1.30 20.72 1.73 29.43 2.52 

100 18.02 1.82 26.19 2.27 38.20 3.03 

Meso 

25 14.53 1.37 17.55 1.61 23.30 1.27 

50 13.72 1.42 18.97 1.43 25.78 1.56 

100 16.55 0.95 23.36 1.11 33.99 1.49 
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B.3.2. Fy force 

Table B.15 – Fy force in the micro cutting for flat insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0
 

Macro 

25 2.75 0.48 5.49 0.74 11.05 1.38 

50 2.44 0.43 5.53 0.73 11.87 1.49 

100 2.31 0.37 5.66 0.73 13.18 1.80 

Transition 

25 2.76 0.22 5.58 0.71 11.54 1.49 

50 2.62 0.37 5.55 0.75 11.75 1.17 

100 2.30 0.33 5.63 0.72 12.36 1.16 

Meso 

25 4.01 0.16 5.59 0.26 10.94 0.51 

50 2.91 0.13 5.33 0.28 10.54 0.55 

100 2.32 0.13 5.10 0.29 10.01 0.61 

1
.0

0
0
 -

 2
,0

0
0
 

Macro 

25 2.61 0.39 5.91 1.01 12.62 2.22 

50 2.51 0.33 5.95 0.95 13.35 2.23 

100 2.21 0.39 6.35 1.02 14.77 2.40 

Transition 

25 2.63 0.53 5.38 0.58 10.83 0.96 

50 2.36 0.27 5.29 0.65 11.65 1.07 

100 2.20 0.38 5.55 0.63 12.72 1.42 

Meso 

25 2.95 0.13 5.50 0.23 10.91 0.46 

50 2.58 0.12 5.38 0.25 11.27 0.52 

100 1.99 0.12 5.27 0.28 12.14 0.59 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 2.50 0.43 6.36 0.85 13.48 2.18 

50 2.42 0.47 6.77 0.86 14.00 2.34 

100 2.52 0.35 6.90 0.72 14.76 2.08 

Transition 

25 1.73 0.53 5.41 0.63 8.14 1.50 

50 2.29 0.42 5.44 0.55 12.27 1.13 

100 2.30 0.42 5.75 0.75 13.86 1.07 

Meso 

25 4.79 0.10 5.36 0.23 11.41 0.45 

50 2.48 0.11 5.31 0.25 11.49 0.52 

100 2.05 0.12 5.19 0.28 12.65 0.64 
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Table B.16 – Fy force in the micro cutting for chip-breaker insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0
 

Macro 

25 1.02 0.21 1.96 0.27 4.25 0.57 

50 0.96 0.19 2.08 0.37 4.59 0.60 

100 0.96 0.16 2.34 0.37 5.22 0.69 

Transition 

25 1.07 0.16 2.07 0.42 4.12 0.56 

50 0.98 0.17 2.18 0.45 4.46 0.60 

100 0.96 0.12 2.27 0.48 5.02 0.68 

Meso 

25 1.59 0.28 2.59 0.46 5.11 0.75 

50 1.32 0.22 2.76 0.39 5.50 0.67 

100 1.33 0.23 2.87 0.21 6.09 0.14 

1
.0

0
0
 -

 2
,0

0
0
 

Macro 

25 1.05 0.25 2.17 0.40 4.48 0.64 

50 0.97 0.20 2.13 0.41 4.93 0.67 

100 1.00 0.20 2.39 0.46 5.74 0.75 

Transition 

25 0.96 0.17 1.90 0.34 3.85 0.54 

50 0.93 0.15 1.93 0.36 4.37 0.54 

100 0.92 0.13 2.20 0.36 5.39 0.77 

Meso 

25 1.30 0.37 2.31 0.32 4.61 0.63 

50 1.17 0.21 2.45 0.32 5.15 0.36 

100 1.23 0.20 2.77 0.23 5.90 0.13 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 0.88 0.12 2.18 0.45 4.90 0.80 

50 0.87 0.12 2.34 0.42 5.33 0.88 

100 0.95 0.17 2.60 0.48 6.01 0.90 

Transition 

25 0.79 0.09 1.91 0.34 3.89 0.52 

50 0.79 0.12 2.03 0.37 4.37 0.60 

100 0.89 0.14 2.21 0.32 5.69 0.44 

Meso 

25 0.96 0.22 2.29 0.34 4.48 0.63 

50 1.12 0.23 2.47 0.31 5.23 0.63 

100 1.18 0.18 2.85 0.31 6.40 0.52 
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Table B.17 – Fy force in the micro cutting for dual negative insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0
 

Macro 

25 2.47 0.13 5.24 0.56 10.19 1.03 

50 2.50 0.27 5.37 0.48 11.12 1.08 

100 2.59 0.21 5.91 0.56 12.98 1.28 

Transition 

25 2.91 0.43 5.04 0.36 10.57 0.99 

50 2.52 0.16 5.37 0.44 11.39 0.95 

100 2.56 0.16 6.05 0.34 13.29 1.04 

Meso 

25 3.98 0.33 4.88 0.20 9.58 0.22 

50 2.98 0.20 5.09 0.21 9.69 0.17 

100 2.68 0.17 5.27 0.14 10.47 0.37 

1
.0

0
0
 -

 2
,0

0
0
 

Macro 

25 2.52 0.44 4.95 0.43 10.34 1.17 

50 2.43 0.28 5.54 1.08 11.40 1.28 

100 2.41 0.42 5.91 0.58 13.63 1.87 

Transition 

25 2.91 0.31 4.92 0.45 10.25 1.09 

50 2.32 0.23 5.12 0.40 11.13 1.04 

100 2.51 0.13 5.87 0.35 13.03 1.06 

Meso 

25 2.55 0.00 4.68 0.26 9.67 0.61 

50 2.36 0.11 4.85 0.36 10.02 0.54 

100 2.37 0.18 5.24 0.42 11.72 0.54 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 2.11 0.21 5.43 0.60 10.96 1.16 

50 2.11 0.14 5.46 0.61 11.58 1.32 

100 2.41 0.46 5.88 0.84 12.80 1.88 

Transition 

25 2.19 0.59 4.79 0.51 10.07 1.08 

50 2.21 0.30 5.03 0.43 11.18 1.12 

100 2.44 0.17 5.78 0.44 14.18 1.17 

Meso 

25 2.41 0.58 4.79 0.33 9.93 0.26 

50 2.36 0.28 4.90 0.25 10.30 0.41 

100 2.33 0.20 5.37 0.12 13.35 0.34 
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B.3.3. Fz force 

Table B.18 – Fz force in the micro cutting for flat insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0

 

Macro 

25 9.13 0.39 12.56 0.23 18.39 0.19 

50 9.93 0.36 15.02 0.25 23.29 0.04 

100 13.35 0.24 20.49 0.38 33.81 0.71 

Transition 

25 9.53 0.21 13.03 0.46 19.53 1.09 

50 10.58 0.19 15.85 0.54 24.53 0.72 

100 13.70 0.30 21.40 0.71 34.24 0.54 

Meso 

25 11.92 0.69 13.83 0.89 19.96 1.37 

50 12.19 0.78 16.31 1.19 23.78 1.84 

100 14.49 1.01 21.11 1.65 31.36 2.72 

1
,0

0
0
 -

 2
,0

0
0
 

Macro 

25 8.57 1.48 11.47 0.43 17.49 0.60 

50 9.07 0.40 14.16 0.67 22.78 1.08 

100 11.88 0.29 20.38 0.54 32.43 2.16 

Transition 

25 8.77 0.27 11.79 0.39 17.26 0.43 

50 9.50 0.11 14.22 0.63 22.23 0.29 

100 12.48 0.03 20.03 0.35 32.55 0.99 

Meso 

25 4.94 0.53 9.52 0.80 17.57 1.26 

50 6.82 0.67 12.60 1.06 23.05 1.76 

100 11.17 0.95 19.35 1.58 34.62 2.68 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 7.46 0.43 11.77 0.39 17.24 0.96 

50 9.43 1.31 14.49 0.56 23.64 0.62 

100 12.60 0.23 20.45 0.50 33.46 0.68 

Transition 

25 7.01 1.28 10.63 0.38 15.75 0.01 

50 8.52 0.33 13.17 0.33 19.57 2.63 

100 10.51 1.44 19.00 0.48 30.48 2.61 

Meso 

25 2.14 0.46 11.21 0.72 16.90 1.15 

50 9.32 0.61 13.69 0.96 21.38 1.58 

100 11.77 0.87 18.52 1.46 31.97 2.51 
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Table B.19 – Fz force in the micro cutting for chip-breaker insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0
 

Macro 

25 1.96 0.21 2.85 0.20 4.44 0.24 

50 2.33 0.21 3.61 0.23 6.03 0.20 

100 3.33 0.17 5.45 0.20 9.44 0.24 

Transition 

25 2.07 0.18 2.92 0.17 4.51 0.18 

50 2.44 0.21 3.85 0.14 6.28 0.20 

100 3.47 0.15 5.65 0.13 9.72 0.22 

Meso 

25 6.94 0.19 8.88 0.39 13.66 1.14 

50 7.82 0.53 11.94 1.19 18.40 1.57 

100 10.13 0.61 16.52 1.62 27.23 3.85 

1
,0

0
0
 -

 2
,0

0
0
 

Macro 

25 1.77 0.23 2.59 0.19 4.07 0.23 

50 2.15 0.17 3.27 0.21 5.76 0.25 

100 3.14 0.15 5.17 0.32 9.37 0.20 

Transition 

25 1.82 0.15 2.62 0.16 4.10 0.11 

50 2.27 0.13 3.32 0.46 5.93 0.14 

100 3.21 0.07 5.35 0.08 9.22 0.71 

Meso 

25 5.30 0.33 8.02 0.54 12.62 1.05 

50 6.69 0.27 10.60 0.80 17.56 2.05 

100 9.46 0.61 15.77 1.54 26.77 3.61 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 1.53 0.10 2.39 0.18 3.95 0.25 

50 1.89 0.11 3.35 0.17 5.92 0.26 

100 3.00 0.12 5.37 0.21 9.69 0.30 

Transition 

25 1.56 0.08 2.43 0.11 3.81 0.08 

50 1.96 0.11 3.28 0.07 5.52 0.08 

100 2.93 0.07 5.10 0.04 9.52 0.23 

Meso 

25 4.64 0.11 7.16 0.48 11.46 0.98 

50 6.14 0.25 9.60 0.73 15.83 1.32 

100 8.66 0.58 14.58 1.19 25.14 2.73 
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Table B.20 – Fz force in the micro cutting for dual negative insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0
 

Macro 

25 9.57 0.56 13.55 0.01 19.64 0.33 

50 10.83 0.14 16.41 0.04 25.24 0.45 

100 14.61 0.14 22.83 0.06 37.29 0.46 

Transition 

25 12.60 1.01 16.63 1.12 25.02 1.16 

50 13.33 0.73 20.11 1.07 31.34 1.39 

100 17.49 0.83 27.70 1.28 45.14 1.81 

Meso 

25 19.14 1.75 21.63 1.83 31.59 2.27 

50 18.81 1.64 25.14 1.75 37.85 2.45 

100 21.83 1.62 32.18 1.83 55.53 3.50 

1
,0

0
0
 -

 2
,0

0
0
 

Macro 

25 8.72 0.23 11.91 0.08 17.94 0.51 

50 9.81 0.06 15.41 1.05 23.80 0.70 

100 13.34 0.35 21.82 0.10 37.24 1.50 

Transition 

25 11.61 0.60 14.58 0.94 22.08 0.94 

50 11.80 1.13 17.73 0.97 28.09 1.36 

100 15.73 0.72 24.93 0.98 41.11 1.38 

Meso 

25 13.36 0.87 18.19 1.81 27.13 2.42 

50 14.57 1.19 21.35 1.73 33.59 1.89 

100 18.24 1.00 28.85 1.70 50.69 2.20 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 7.03 0.07 11.94 0.18 18.03 0.80 

50 8.96 0.23 15.06 0.11 24.25 0.90 

100 13.23 0.36 21.62 0.44 35.78 1.26 

Transition 

25 8.62 1.49 12.79 0.84 19.28 1.13 

50 10.14 0.69 15.93 0.84 25.61 1.27 

100 13.85 1.04 22.92 0.98 40.39 1.74 

Meso 

25 12.96 1.81 16.56 1.45 24.70 1.33 

50 12.96 1.24 19.54 1.36 30.79 1.72 

100 17.11 0.75 26.85 0.98 47.77 1.66 
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B.3.4. Ra surface roughness 

Table B.21 – Ra surface roughness in the micro cutting for flat insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0

 

Macro 

25 0.21 0.01 0.21 0.00 0.21 0.01 

50 0.30 0.05 0.31 0.05 0.31 0.06 

100 0.87 0.08 0.84 0.03 0.79 0.02 

Transition 

25 0.20 0.01 0.21 0.02 0.22 0.03 

50 0.39 0.01 0.35 0.01 0.32 0.02 

100 0.79 0.10 0.96 0.01 0.81 0.10 

Meso 

25 0.20 0.02 0.21 0.02 0.23 0.02 

50 0.29 0.03 0.30 0.03 0.32 0.03 

100 0.81 0.09 0.81 0.08 0.83 0.07 

1
,0

0
0
 -

 2
,0

0
0
 

Macro 

25 0.22 0.01 0.21 0.01 0.21 0.01 

50 0.31 0.04 0.32 0.05 0.36 0.04 

100 0.81 0.04 0.82 0.06 0.82 0.04 

Transition 

25 0.20 0.02 0.21 0.02 0.23 0.04 

50 0.30 0.06 0.34 0.10 0.34 0.00 

100 0.78 0.11 0.77 0.12 0.87 0.07 

Meso 

25 0.20 0.02 0.21 0.02 0.23 0.02 

50 0.29 0.03 0.29 0.03 0.31 0.03 

100 0.81 0.08 0.81 0.07 0.82 0.09 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 0.22 0.02 0.21 0.01 0.22 0.02 

50 0.30 0.04 0.34 0.03 0.31 0.04 

100 0.79 0.04 0.73 0.10 0.75 0.05 

Transition 

25 0.22 0.02 0.21 0.02 0.20 0.03 

50 0.30 0.04 0.30 0.06 0.31 0.08 

100 0.81 0.09 0.77 0.09 0.76 0.08 

Meso 

25 0.20 0.02 0.20 0.02 0.22 0.02 

50 0.29 0.03 0.29 0.03 0.30 0.03 

100 0.80 0.07 0.80 0.09 0.81 0.08 
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Table B.22 – Ra surface roughness in the micro cutting for chip-breaker insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0
 

Macro 

25 0.18 0.02 0.19 0.03 0.19 0.02 

50 0.32 0.04 0.29 0.03 0.32 0.03 

100 0.82 0.07 0.82 0.07 0.89 0.08 

Transition 

25 0.19 0.02 0.21 0.03 0.21 0.04 

50 0.29 0.07 0.38 0.13 0.28 0.03 

100 0.90 0.07 0.88 0.06 0.94 0.08 

Meso 

25 0.20 0.02 0.18 0.01 0.19 0.02 

50 0.31 0.01 0.31 0.01 0.29 0.03 

100 0.87 0.06 0.85 0.06 0.86 0.04 

1
,0

0
0
 -

 2
,0

0
0
 

Macro 

25 0.19 0.02 0.21 0.01 0.20 0.02 

50 0.32 0.03 0.31 0.03 0.30 0.03 

100 0.83 0.08 0.85 0.09 0.83 0.07 

Transition 

25 0.21 0.03 0.20 0.02 0.21 0.02 

50 0.28 0.03 0.38 0.04 0.31 0.03 

100 0.82 0.08 0.83 0.07 0.84 0.08 

Meso 

25 0.20 0.01 0.24 0.02 0.22 0.01 

50 0.32 0.01 0.29 0.04 0.30 0.03 

100 0.88 0.07 0.84 0.08 0.85 0.06 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 0.27 0.03 0.21 0.03 0.23 0.02 

50 0.32 0.04 0.33 0.04 0.33 0.02 

100 0.84 0.07 0.82 0.10 0.80 0.08 

Transition 

25 0.25 0.02 0.23 0.03 0.23 0.03 

50 0.31 0.04 0.27 0.02 0.31 0.04 

100 0.83 0.08 0.82 0.08 0.81 0.08 

Meso 

25 0.27 0.03 0.24 0.02 0.26 0.03 

50 0.33 0.04 0.33 0.04 0.30 0.03 

100 0.85 0.05 0.87 0.03 0.86 0.08 
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Table B.23 – Ra surface roughness in the micro cutting for dual negative insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0
 

Macro 

25 0.19 0.00 0.20 0.01 0.19 0.01 

50 0.33 0.01 0.34 0.02 0.31 0.02 

100 0.87 0.12 0.93 0.03 0.91 0.13 

Transition 

25 0.20 0.03 0.19 0.02 0.20 0.02 

50 0.32 0.03 0.30 0.04 0.31 0.03 

100 0.93 0.10 0.91 0.08 0.93 0.07 

Meso 

25 0.26 0.02 0.24 0.01 0.25 0.02 

50 0.33 0.04 0.34 0.02 0.39 0.04 

100 0.85 0.09 0.84 0.09 0.77 0.11 

1
,0

0
0
 -

 2
,0

0
0
 

Macro 

25 0.20 0.01 0.20 0.00 0.19 0.00 

50 0.32 0.04 0.35 0.03 0.31 0.04 

100 0.90 0.07 0.92 0.09 0.87 0.09 

Transition 

25 0.21 0.02 0.23 0.02 0.21 0.03 

50 0.34 0.02 0.35 0.00 0.37 0.01 

100 0.99 0.02 0.92 0.11 0.94 0.09 

Meso 

25 0.20 0.03 0.21 0.00 0.25 0.02 

50 0.30 0.02 0.31 0.01 0.34 0.03 

100 0.87 0.14 0.87 0.12 0.82 0.01 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 0.24 0.05 0.22 0.01 0.18 0.02 

50 0.36 0.05 0.30 0.04 0.30 0.06 

100 0.88 0.11 0.90 0.07 0.89 0.10 

Transition 

25 0.24 0.01 0.25 0.03 0.21 0.02 

50 0.33 0.02 0.32 0.04 0.33 0.05 

100 0.95 0.10 0.93 0.10 0.93 0.10 

Meso 

25 0.26 0.05 0.22 0.02 0.25 0.04 

50 0.32 0.05 0.31 0.05 0.31 0.06 

100 0.90 0.10 0.85 0.12 0.87 0.11 
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B.3.5. Rz surface roughness 

Table B.24 – Rz surface roughness in the micro cutting for flat insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0

 

Macro 

25 1.67 0.11 1.67 0.12 1.81 0.23 

50 1.91 0.26 2.06 0.23 1.90 0.28 

100 4.18 0.30 4.16 0.26 3.96 0.12 

Transition 

25 1.59 0.09 1.62 0.17 1.68 0.13 

50 1.99 0.33 2.27 0.01 2.14 0.11 

100 3.68 0.47 4.53 0.07 4.40 0.61 

Meso 

25 1.66 0.10 1.69 0.15 1.79 0.18 

50 1.95 0.10 1.99 0.14 2.10 0.23 

100 3.88 0.16 3.93 0.31 4.05 0.40 

1
,0

0
0
 -

 2
,0

0
0
 

Macro 

25 1.65 0.18 1.67 0.17 1.66 0.19 

50 1.97 0.25 2.01 0.21 2.16 0.24 

100 3.98 0.27 4.01 0.09 4.06 0.16 

Transition 

25 1.60 0.06 1.59 0.18 1.87 0.16 

50 1.74 0.40 2.19 0.43 2.04 0.01 

100 3.79 0.49 3.66 0.72 4.18 0.23 

Meso 

25 1.67 0.10 1.68 0.15 1.75 0.18 

50 1.95 0.10 1.97 0.14 2.04 0.22 

100 3.85 0.15 3.88 0.31 3.96 0.40 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 1.82 0.21 1.57 0.12 1.83 0.18 

50 2.54 0.39 2.27 0.28 2.07 0.18 

100 3.93 0.15 3.80 0.30 3.65 0.27 

Transition 

25 1.77 0.20 1.66 0.18 1.58 0.25 

50 1.83 0.24 2.06 0.31 2.20 0.40 

100 3.88 0.39 3.93 0.51 3.87 0.30 

Meso 

25 1.73 0.10 1.73 0.16 1.74 0.17 

50 1.99 0.10 1.99 0.14 2.01 0.22 

100 3.84 0.15 3.84 0.31 3.87 0.39 
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Table B.25 – Rz surface roughness in the micro cutting for chip-breaker insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0
 

Macro 

25 1.30 0.18 1.22 0.12 1.36 0.14 

50 2.04 0.30 1.75 0.25 1.85 0.24 

100 4.04 0.19 3.99 0.24 4.08 0.22 

Transition 

25 1.39 0.11 1.49 0.17 1.38 0.23 

50 1.62 0.13 1.64 0.15 1.85 0.23 

100 4.10 0.30 3.99 0.21 4.48 0.63 

Meso 

25 1.39 0.10 1.39 0.18 1.47 0.06 

50 1.68 0.18 1.79 0.09 1.80 0.22 

100 4.04 0.50 3.91 0.32 4.12 0.25 

1
,0

0
0
 -

 2
,0

0
0
 

Macro 

25 1.40 0.15 1.65 0.27 1.40 0.17 

50 1.94 0.22 1.79 0.33 1.85 0.17 

100 3.98 0.21 4.08 0.28 4.11 0.18 

Transition 

25 1.42 0.15 1.42 0.20 1.48 0.22 

50 1.80 0.24 1.85 0.32 1.71 0.22 

100 3.95 0.17 3.92 0.23 3.93 0.32 

Meso 

25 1.43 0.21 1.62 0.13 1.55 0.12 

50 1.92 0.08 1.75 0.17 1.91 0.15 

100 4.16 0.17 4.02 0.30 4.14 0.25 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 1.77 0.21 1.50 0.18 1.56 0.16 

50 1.92 0.28 1.93 0.29 1.97 0.22 

100 4.21 0.28 4.22 0.20 3.96 0.25 

Transition 

25 1.62 0.24 1.57 0.14 1.52 0.23 

50 1.96 0.28 1.92 0.40 1.88 0.29 

100 4.03 0.28 3.98 0.17 4.05 0.33 

Meso 

25 1.77 0.19 1.68 0.10 1.74 0.21 

50 1.86 0.41 1.97 0.35 1.83 0.24 

100 4.01 0.38 4.27 0.31 4.13 0.41 
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Table B.26 – Rz surface roughness in the micro cutting for dual negative insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0
 

Macro 

25 1.44 0.03 1.51 0.02 1.43 0.09 

50 1.98 0.08 2.37 0.23 2.04 0.09 

100 3.96 0.30 4.27 0.09 4.22 0.39 

Transition 

25 1.65 0.23 1.72 0.18 1.49 0.21 

50 1.97 0.19 2.11 0.11 1.65 0.17 

100 4.17 0.26 4.17 0.20 4.12 0.17 

Meso 

25 1.75 0.34 1.94 0.45 1.71 0.18 

50 2.30 0.20 2.17 0.12 2.55 0.20 

100 4.27 0.31 4.06 0.19 4.06 0.35 

1
,0

0
0
 -

 2
,0

0
0
 

Macro 

25 1.59 0.10 1.47 0.14 1.58 0.03 

50 1.86 0.00 2.05 0.06 1.90 0.06 

100 4.47 0.10 4.18 0.21 4.12 0.06 

Transition 

25 1.71 0.15 1.60 0.15 1.59 0.11 

50 2.01 0.16 1.91 0.12 2.29 0.07 

100 4.20 0.30 4.11 0.23 4.13 0.16 

Meso 

25 1.50 0.27 1.56 0.02 1.99 0.11 

50 2.16 0.08 1.97 0.10 2.31 0.22 

100 4.05 0.17 3.91 0.23 3.90 0.13 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 1.60 0.14 1.49 0.05 1.33 0.12 

50 2.13 0.25 2.05 0.05 1.78 0.21 

100 3.94 0.31 4.34 0.05 4.09 0.47 

Transition 

25 1.81 0.07 1.74 0.15 1.56 0.14 

50 2.07 0.17 1.96 0.13 1.96 0.21 

100 4.27 0.21 4.21 0.18 4.13 0.14 

Meso 

25 1.90 0.22 1.67 0.08 2.10 0.33 

50 1.98 0.27 2.01 0.15 1.95 0.34 

100 3.91 0.52 4.04 0.38 4.06 0.21 
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B.3.6. Deflection 

Table B.27 – Minimum deflection of workpiece during the micro cutting with flat insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0

 

Macro 

25 0.53 0.03 0.75 0.03 1.18 0.05 

50 0.55 0.02 0.79 0.10 1.46 0.05 

100 0.68 0.03 1.06 0.03 1.99 0.07 

Transition 

25 0.08 0.00 0.13 0.01 0.26 0.02 

50 0.09 0.00 0.15 0.01 0.39 0.04 

100 0.11 0.00 0.21 0.01 0.65 0.04 

Meso 

25 1.03 0.10 1.90 0.11 5.86 0.32 

50 1.15 0.04 2.67 0.14 12.15 0.38 

100 1.54 0.08 3.97 0.10 30.71 0.87 

1
,0

0
0
 -

 2
,0

0
0
 

Macro 

25 0.55 0.09 0.78 0.03 1.30 0.04 

50 0.55 0.04 0.88 0.02 1.63 0.04 

100 0.64 0.02 1.22 0.06 2.29 0.05 

Transition 

25 0.04 0.00 0.06 0.00 0.12 0.01 

50 0.04 0.00 0.07 0.00 0.17 0.01 

100 0.05 0.00 0.10 0.01 0.28 0.02 

Meso 

25 0.75 0.07 3.10 0.16 7.80 0.94 

50 2.43 0.12 5.40 0.65 11.35 1.02 

100 5.78 0.69 10.00 0.90 18.45 0.92 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 0.32 0.02 0.52 0.03 0.83 0.03 

50 0.38 0.04 0.60 0.03 0.00 0.00 

100 0.47 0.03 0.75 0.03 0.01 0.00 

Transition 

25 0.02 0.00 0.03 0.00 0.07 0.01 

50 0.02 0.00 0.04 0.00 0.10 0.01 

100 0.03 0.00 0.06 0.00 0.15 0.01 

Meso 

25 0.38 0.01 0.52 0.02 1.30 0.02 

50 0.35 0.01 0.69 0.02 2.20 0.04 

100 0.44 0.02 0.97 0.01 17.45 1.57 
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Table B.28 – Minimum deflection of workpiece during the micro cutting with chip-breaker insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0
 

Macro 

25 0.17 0.02 0.25 0.04 0.41 0.05 

50 0.20 0.03 0.29 0.04 0.50 0.06 

100 0.24 0.03 0.36 0.05 0.65 0.03 

Transition 

25 0.03 0.00 0.05 0.01 0.09 0.01 

50 0.04 0.01 0.06 0.01 0.14 0.01 

100 0.04 0.01 0.07 0.01 0.23 0.02 

Meso 

25 0.28 0.02 0.54 0.05 1.80 0.33 

50 0.32 0.02 0.77 0.08 4.16 0.97 

100 0.45 0.02 1.31 0.15 12.85 3.61 

1
,0

0
0
 -

 2
,0

0
0
 

Macro 

25 0.18 0.03 0.27 0.04 0.43 0.05 

50 0.21 0.03 0.31 0.04 0.53 0.06 

100 0.24 0.03 0.40 0.05 0.75 0.08 

Transition 

25 0.01 0.00 0.02 0.00 0.04 0.00 

50 0.02 0.00 0.03 0.00 0.06 0.01 

100 0.02 0.00 0.03 0.00 0.11 0.02 

Meso 

25 0.13 0.01 0.28 0.02 0.78 0.12 

50 0.18 0.01 0.38 0.03 1.60 0.30 

100 0.25 0.01 0.62 0.06 3.27 0.09 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 0.11 0.01 0.16 0.02 0.27 0.04 

50 0.12 0.01 0.19 0.03 0.33 0.05 

100 0.14 0.02 0.23 0.03 0.41 0.04 

Transition 

25 0.01 0.00 0.01 0.00 0.02 0.00 

50 0.01 0.00 0.01 0.00 0.03 0.00 

100 0.01 0.00 0.02 0.00 0.05 0.00 

Meso 

25 0.09 0.01 0.16 0.01 0.41 0.06 

50 0.11 0.01 0.21 0.01 0.77 0.12 

100 0.14 0.01 0.34 0.02 1.64 0.23 
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Table B.29 – Minimum deflection of workpiece during the micro cutting with dual negative insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0
 

Macro 

25 0.43 0.02 0.64 0.02 0.99 0.03 

50 0.48 0.02 0.74 0.01 1.26 0.04 

100 0.60 0.02 0.95 0.01 1.78 0.04 

Transition 

25 0.07 0.01 0.11 0.01 0.22 0.03 

50 0.07 0.01 0.13 0.01 0.34 0.04 

100 0.09 0.01 0.19 0.02 0.59 0.08 

Meso 

25 0.75 0.07 1.49 0.20 5.62 0.77 

50 0.89 0.10 2.18 0.24 13.95 0.65 

100 1.25 0.12 3.55 0.46 25.17 1.52 

1
,0

0
0
 -

 2
,0

0
0
 

Macro 

25 0.44 0.02 0.62 0.01 1.00 0.04 

50 0.46 0.01 0.77 0.05 1.30 0.04 

100 0.60 0.02 0.99 0.01 1.88 0.06 

Transition 

25 0.04 0.00 0.05 0.01 0.11 0.01 

50 0.04 0.00 0.06 0.01 0.15 0.02 

100 0.05 0.00 0.09 0.01 0.25 0.03 

Meso 

25 0.33 0.02 0.70 0.08 1.75 0.16 

50 0.45 0.05 0.93 0.10 3.45 0.26 

100 0.60 0.04 1.47 0.16 8.18 0.64 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 0.25 0.00 0.40 0.01 0.63 0.02 

50 0.29 0.00 0.47 0.01 0.80 0.02 

100 0.39 0.01 0.61 0.01 1.07 0.03 

Transition 

25 0.02 0.00 0.03 0.00 0.06 0.01 

50 0.02 0.00 0.04 0.00 0.08 0.01 

100 0.03 0.00 0.05 0.00 0.14 0.02 

Meso 

25 0.21 0.02 0.42 0.05 1.21 0.12 

50 0.26 0.02 0.57 0.06 2.34 0.08 

100 0.37 0.03 0.86 0.10 5.19 0.17 
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B.3.7. Vibration in the time domain for the axial direction 

Table B.30 – Vibration in the axial direction in the micro cutting for flat insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0

 

Macro 

25 8.35 0.84 8.79 0.02 9.11 0.06 

50 9.26 0.31 10.06 0.33 11.06 0.71 

100 11.15 1.12 12.81 1.22 16.04 1.01 

Transition 

25 7.68 0.17 8.18 0.15 13.34 1.23 

50 8.04 0.22 9.21 0.08 10.52 0.46 

100 9.41 0.20 11.04 0.55 13.81 0.17 

Meso 

25 8.13 0.73 7.71 0.85 6.82 0.68 

50 7.17 0.72 7.40 0.67 7.80 0.86 

100 6.44 0.71 7.95 0.80 10.93 0.98 

1
,0

0
0
 -

 2
,0

0
0
 

Macro 

25 8.82 0.03 9.37 0.16 10.46 0.32 

50 9.54 0.28 10.32 0.30 11.55 0.01 

100 11.20 0.29 12.84 0.10 21.11 5.11 

Transition 

25 8.46 0.20 8.61 0.15 9.25 0.10 

50 9.04 0.21 9.53 0.11 11.55 0.28 

100 10.41 0.19 12.13 0.18 17.27 0.39 

Meso 

25 6.07 0.67 6.07 0.61 6.04 0.54 

50 5.74 0.52 6.39 0.70 7.64 0.76 

100 6.25 0.63 8.19 0.74 12.03 1.32 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 10.06 0.36 10.52 0.49 12.39 0.63 

50 11.54 0.78 12.81 1.28 16.65 0.05 

100 13.69 0.42 29.29 1.75 30.84 3.60 

Transition 

25 9.03 0.39 9.45 0.20 10.40 0.21 

50 9.87 0.46 10.43 0.41 12.62 1.64 

100 11.17 0.30 12.54 0.21 16.58 1.05 

Meso 

25 7.16 0.72 8.01 0.72 8.78 0.97 

50 8.15 0.90 9.08 0.91 10.64 0.96 

100 9.41 0.85 10.43 1.15 19.80 1.98 
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Table B.31 – Vibration in the axial direction in the micro cutting for chip-breaker insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0
 

Macro 

25 7.64 0.19 7.93 0.24 8.23 0.00 

50 8.16 0.11 8.47 0.35 9.17 0.48 

100 8.89 0.45 9.72 0.34 12.53 0.90 

Transition 

25 7.39 0.17 7.46 0.10 7.90 0.08 

50 7.78 0.09 7.84 0.07 10.07 0.85 

100 8.60 0.31 9.46 0.39 12.93 1.13 

Meso 

25 8.59 0.08 8.33 0.83 8.88 0.24 

50 8.52 0.18 8.76 0.54 9.77 0.87 

100 8.70 0.02 9.50 0.21 9.96 0.04 

1
,0

0
0
 -

 2
,0

0
0
 

Macro 

25 8.85 0.98 9.16 0.92 9.91 0.81 

50 9.03 0.75 9.99 0.62 11.06 0.14 

100 10.10 0.72 11.14 0.89 12.76 1.11 

Transition 

25 8.04 0.37 8.30 0.32 8.76 0.44 

50 8.46 0.36 8.87 0.32 9.74 0.68 

100 8.78 0.79 10.77 0.64 12.31 0.77 

Meso 

25 8.50 0.03 9.35 0.61 9.10 0.63 

50 8.83 0.15 8.55 0.71 10.04 0.93 

100 9.30 0.39 10.67 1.26 14.01 1.54 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 8.22 0.35 9.22 0.94 9.74 1.05 

50 8.59 0.36 9.71 0.68 11.30 0.31 

100 9.93 0.60 12.69 0.64 20.22 1.59 

Transition 

25 9.20 0.23 9.30 0.56 10.02 0.62 

50 9.50 0.57 10.03 0.52 10.60 0.37 

100 10.16 0.47 11.35 0.35 7.26 0.04 

Meso 

25 8.35 0.02 8.66 0.18 8.96 0.32 

50 8.88 0.13 9.10 0.16 10.56 0.95 

100 9.49 0.05 10.55 0.15 12.38 1.24 
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Table B.32 – Vibration in the axial direction in the micro cutting for dual negative insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0
 

Macro 

25 12.33 0.96 12.69 0.84 13.71 0.93 

50 13.28 0.40 14.67 0.65 18.24 0.62 

100 15.44 0.26 19.47 0.06 28.31 0.96 

Transition 

25 11.13 0.43 11.16 0.48 11.17 0.23 

50 11.60 0.78 11.64 1.16 11.66 0.67 

100 11.40 0.42 12.86 1.07 12.65 0.10 

Meso 

25 10.79 1.19 9.05 0.91 10.02 0.18 

50 9.47 0.85 9.34 1.03 10.04 0.02 

100 8.60 0.49 9.32 0.14 10.44 0.58 

1
,0

0
0
 -

 2
,0

0
0
 

Macro 

25 12.24 0.34 12.77 0.36 13.32 0.30 

50 13.05 0.65 13.77 0.50 14.89 0.65 

100 14.39 0.93 16.17 1.11 21.90 0.43 

Transition 

25 12.95 0.27 11.85 2.33 13.82 0.05 

50 13.50 0.14 14.54 0.36 17.34 1.61 

100 14.84 0.21 16.76 0.80 22.31 2.10 

Meso 

25 9.21 0.92 9.76 0.88 9.76 1.07 

50 9.17 1.01 10.32 1.03 10.27 0.92 

100 9.19 0.83 14.10 1.55 15.45 1.54 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 13.73 1.75 13.60 0.26 15.37 0.20 

50 12.98 0.25 15.31 0.66 21.17 0.42 

100 16.54 0.47 25.82 0.16 46.82 1.65 

Transition 

25 12.53 0.20 12.75 0.38 13.59 0.09 

50 12.65 0.25 13.42 0.91 15.22 0.09 

100 14.30 0.25 15.88 0.47 23.35 2.84 

Meso 

25 10.66 1.00 11.04 0.02 12.68 0.27 

50 11.54 0.26 13.00 0.56 15.40 1.08 

100 12.58 1.26 15.30 1.53 19.61 1.77 
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B.3.8. Vibration in the time domain for the tangential direction 

Table B.33 – Vibration in the tangential direction in the micro cutting for flat insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0

 

Macro 

25 10.76 0.45 11.92 0.14 14.53 0.49 

50 11.81 0.37 14.66 0.46 19.14 1.04 

100 16.29 1.61 20.56 1.20 27.22 2.54 

Transition 

25 13.16 1.78 12.97 1.44 14.68 1.57 

50 12.64 1.54 15.31 2.08 22.03 2.08 

100 15.86 1.95 21.86 3.28 30.97 5.24 

Meso 

25 9.67 1.06 9.97 1.00 8.88 0.71 

50 9.92 0.79 12.45 1.37 9.72 0.97 

100 9.59 0.96 10.80 0.86 9.69 1.07 

1
,0

0
0
 -

 2
,0

0
0
 

Macro 

25 12.65 0.46 14.00 0.78 18.37 0.64 

50 15.03 0.65 17.89 2.91 28.08 0.79 

100 22.38 1.57 35.07 2.19 60.01 3.54 

Transition 

25 10.92 0.27 12.17 0.16 14.53 0.38 

50 11.81 0.23 14.04 0.06 17.59 0.30 

100 14.91 0.09 18.84 0.58 23.22 2.21 

Meso 

25 8.67 0.87 9.09 0.73 10.91 1.20 

50 8.79 0.97 11.47 1.15 17.81 1.42 

100 11.96 0.96 19.16 2.11 34.54 3.45 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 12.03 0.22 14.53 0.70 19.62 0.77 

50 14.75 0.85 22.55 0.49 44.20 2.35 

100 25.67 1.58 56.14 0.96 125.16 7.64 

Transition 

25 13.86 1.03 17.25 0.51 21.86 1.33 

50 17.35 1.10 23.37 1.43 31.43 1.64 

100 25.42 1.29 37.40 1.42 51.72 0.52 

Meso 

25 11.73 0.94 11.78 1.30 14.25 1.42 

50 12.03 1.20 14.22 1.14 19.83 2.18 

100 14.26 1.57 18.06 1.81 96.75 7.74 
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Table B.34 – Vibration in the tangential direction in the micro cutting for chip-breaker insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 
Feed rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0
 

Macro 

25 10.19 0.17 11.22 0.16 12.96 0.16 

50 11.35 0.11 12.80 0.28 15.08 0.37 

100 13.48 0.96 15.54 0.36 21.42 0.26 

Transition 

25 9.68 0.23 10.06 0.13 11.24 0.19 

50 9.85 0.12 11.52 0.21 12.95 0.21 

100 12.05 0.26 13.59 0.41 15.67 0.16 

Meso 

25 11.21 0.02 13.39 0.19 18.54 1.85 

50 14.50 0.21 16.35 1.07 27.19 1.57 

100 17.05 1.14 17.84 0.37 21.88 1.01 

1
,0

0
0
 -

 2
,0

0
0
 

Macro 

25 10.35 0.26 11.42 0.33 13.61 0.84 

50 11.73 0.47 14.62 0.93 20.41 0.32 

100 16.80 0.71 21.77 0.28 37.14 1.64 

Transition 

25 10.23 0.17 11.02 0.08 12.68 0.20 

50 11.30 0.31 12.29 1.13 14.86 0.15 

100 13.17 0.23 15.98 0.80 21.87 0.55 

Meso 

25 10.58 0.06 12.61 0.19 15.57 0.08 

50 12.30 1.35 15.35 0.06 20.29 0.04 

100 16.26 0.54 21.01 0.45 31.35 1.35 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 11.07 0.19 12.54 0.21 14.64 0.24 

50 13.49 0.19 17.74 0.21 25.73 0.94 

100 20.56 0.78 32.66 1.48 75.02 9.27 

Transition 

25 10.59 0.77 12.12 0.31 14.06 0.18 

50 12.58 0.41 14.93 0.37 18.94 0.49 

100 16.33 0.44 21.50 0.56 34.21 0.91 

Meso 

25 10.42 0.83 12.39 0.14 15.05 0.01 

50 12.83 0.20 16.01 0.19 21.19 0.84 

100 16.83 0.36 22.90 0.66 32.70 1.25 
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Table B.35 – Vibration in the tangential direction in the micro cutting for dual negative insert. 

Spindle 

Speed 

range 

(rpm) 

Scale 

Feed 

rate 

(µm/rev) 

Depth of cut (μm) 

25 50 100 

Average 
Standard 

deviation 
Average 

Standard 

deviation 
Average 

Standard 

deviation 

0
 -

 1
,0

0
0
 

Macro 

25 8.99 0.53 9.51 0.55 10.37 0.94 

50 9.48 0.50 10.37 0.89 11.91 1.13 

100 9.86 1.35 12.70 1.30 15.89 1.79 

Transition 

25 9.85 1.28 10.23 0.82 10.91 0.47 

50 9.99 1.16 11.09 1.17 12.39 0.86 

100 10.68 1.30 13.01 1.12 16.48 1.81 

Meso 

25 11.32 0.59 11.46 0.38 13.12 0.99 

50 11.38 0.58 13.19 1.37 14.21 0.14 

100 12.23 0.60 13.56 0.25 18.38 0.96 

1
,0

0
0
 -

 2
,0

0
0
 

Macro 

25 10.33 0.45 10.30 0.30 11.70 0.56 

50 10.48 0.58 12.03 0.99 16.62 1.87 

100 11.95 1.02 17.73 2.50 37.24 5.18 

Transition 

25 10.39 0.59 10.42 0.72 11.13 0.97 

50 10.55 0.83 11.52 0.56 13.07 0.15 

100 11.89 0.42 13.84 0.18 18.90 0.50 

Meso 

25 11.71 0.94 11.94 1.31 12.32 1.23 

50 11.68 1.17 12.32 0.99 14.57 1.60 

100 11.73 1.29 14.60 1.46 18.75 1.50 

2
,0

0
0
 -

 3
,0

0
0
 

Macro 

25 11.30 0.90 15.69 2.02 20.12 2.64 

50 14.51 1.52 23.54 3.32 49.10 0.14 

100 21.91 3.31 59.30 0.15 118.93 3.38 

Transition 

25 10.50 1.05 11.08 1.34 12.17 1.97 

50 11.25 0.90 11.83 1.36 14.72 2.26 

100 12.76 0.44 18.54 1.85 23.51 3.31 

Meso 

25 10.49 0.26 11.52 0.17 12.57 1.01 

50 11.15 0.24 12.43 1.37 15.40 0.31 

100 13.53 1.71 15.19 0.19 19.32 2.98 
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ANNEX C 

 

Figure C.1 – Details of workpiece used in the biocorrosion tests (Geometry 1). 
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Figure C.2 – Details of workpiece used in the biocorrosion tests (Geometry 2). 
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Figure C.3 – Details of workpiece used in the biocorrosion tests (Geometry 3). 
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ANNEX D 

In this Annex is showed the list of publication developed during the doctoral course in 

scientific journals, book, and conference. 

 

D.1. Articles in Scientific Journals 

 

D.1.1. Monitoring and processing signal applied in machining processes – A review  

Authors: C.H. Lauro; L.C. Brandão; D. Baldo; R.A. Reis; J.P. Davim 

Journal: Measurement, V.58, 2014, p. 73 – 86. 

Abstract: In machining processes several phenomena occur during material cutting. These 

phenomena can affect the production through the reduction of quality or accuracy, or by 

increasing costs (tools, materials, time). Thus, an understanding of machining phenomena is 

needed not only to define the cutting parameters for maximizing production, but also to 

ensure worker safety. An easy way to identify these phenomena is by monitoring machining 

processes, such as the measurement of cutting force, temperature and vibration. The acquired 

signal can have information about tool life, quality of cutting and defects in the workpiece. 

This review paper discusses the first steps involved in choosing and defining various 

techniques that may be used to monitor machining processes. Furthermore, this paper also 

outlines the techniques to acquire and process the signals of the monitoring processes. 

Hence, the objective of this paper is to help the reader understand the procedures for 

monitoring machining processes, and define methods, parameters, targets and other factors 

involved in doing so. 
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D.1.2. Surface integrity in the micromachining: a review 

Authors: C. H. Lauro; L. C. Brandão; T.H. Panzera; J.P. Davim 

Journal: Review on Advanced Material Science. Vol. 40, 2015, p. 227 - 234 

Abstract: Increasingly, the manufacturing industry is concerned to produce the components 

with the great quality. This quality is correlated with desired surface integrity, accuracy of 

dimensions, burrs, and other defects in machining. Among these aspects, the surface 

integrity of the machined components can be complex to manage because it shows a 

stochastic behaviour or requires special equipment for measuring. Thus, the studies on 

surface integrity are necessary to understand the surface integrity phenomena and ensure the 

desired quality. However, if lower values for surface integrity are desired, the 

micromachining can be a solution because it exhibits closest matches the desired range. This 

paper shows a review about the surface integrity in conventional machining, but its main 

purpose is to discuss the results of the literature and the advantage of the surface integrity 

when the micromachining process is used.  

 

D.1.3. Analysis of behaviour biocompatible titanium alloy (Ti-6Al-7Nb) in the micro-

cutting 

Authors: C. H. Lauro; S.L.M. Ribeiro Filho, L.C. Brandão; J.P. Davim 

Journal: Measurement. Vol. 96, 2016, p. 529-540 

Abstract: Among the several processes employed to manufacture components with reduced 

dimensions, the cutting in micro-scale is one of the most used in modern industries. Although 

the micro-cutting has been studied, there are still gaps about the process to be analysed. The 

comprehension of micro-cutting has great importance mainly in the biomedical industry, for 

instance, for the manufacturing of dental implants. In order to ensure patient safety, it was 

researched the behaviour of the Ti-6Al-7Nb titanium alloy during micro-cutting used for 

biomedical applications. For that, it was developed an orthogonal micro-cutting with the 

variation of the cutting speed, feed rate, and spindle speed. The monitoring and signals 

processing technique employed in this study, allowed observe the influence of the ploughing 
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effect in the chip, cutting forces, specific cutting energy, friction coefficient, temperature, 

and shear plane angle. 

 

D.2. Chapter in Scientific Books 

D.2.1. Quality in the Machining Characteristics and Techniques to Obtain Good 

Results 

Authors: C.H. Lauro; L.C. Brandão; S.M. Ribeiro Filho; J.P. Davim 

Book: Manufacturing Engineering: New Research                        ISBN: 978-1-63463-396-3 

Abstract: To obtain great results in the machining of new materials, the manufacture industry 

required development of tools and techniques. Enhanced knowledge of these tools and 

techniques can offer a decreasing of cost, time, and risk to operator. This chapter debates the 

quality of the machined surface, the aspects and characteristics to analyse the desired quality. 

Furthermore, it presents some developments (tool and techniques) applied in the machining 

process to obtain the quality of surface. 

D.2.2. Finite Element Method in Machining Processes: A Review 

Authors: C.H. Lauro; L.C. Brandão; S.M. Ribeiro Filho; R.A.F. Valente; J.P. Davim 

Book: Modern Manufacturing Engineering                                   ISBN: 978-3-319-20151-1 

Abstract: An ecological production and low cost is the target of several industries. 

Increasingly, the product development is critical stage to obtain a great quality and fair price. 

This stage will define shapes and parameters that will able to reduce wastes and improve the 

product. However, the expense of prototypes also should be reduced, because, in general, 

the prototypes are more expensive that final product. The use of finite element method 

(FEM) can avoid much tests that reduce number of prototypes, and consequently the project 

cost. In the machining processes simulation, several cutting conditions can be reproduced to 

define the best tool and parameters in function of analyzed forces, stress, damages and 

others. This paper debates the use of FEM in the machining processes, shows some 
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researches and indicates the main attributes to develop simulation studies for conventional 

machining and micromachining. 

D.2.3. Design of Experiments - Statistical and Artificial Intelligence Analysis for the 

Improvement of Machining Processes: A Review 

Authors: C.H. Lauro; R.B.D. Pereira; L.C. Brandão; J.P. Davim 

Book: Design of Experiments in Production Engineering             ISBN: 978-3-319-23837-1 

Abstract: The modern industry needs that its manufacture process to be fast, efficient, low 

cost, ecologic, and other. It occurs because many consumers require that the products have 

great quality and a fair price. Furthermore, in sometimes, the industry has the sale price 

imposes by client. Thus, the industry develops news techniques, process, tools, and other to 

attain this goal. However, these new developments require great studies to obtain the best 

condition and avoid that become more a waste. The Statistical or Artificial Intelligence (AI) 

Analysis are great ways to understand the new developments and obtain the best conditions. 

This review chapter presents the techniques (Statistical and AI) that were applied to plan and 

analyse the machining processes. Aim of this chapter is to argue the planning and analysis 

importance in researches, as well as help researchers to choose a technique and define their 

machining experiments, optimising the time, material and other means. 

D.3. Article in Conference 

D.3.1. Analysis of the tool wear influence in the micro-cutting in the Ti-6Al-7Nb 

titanium alloy 

Authors: C. H. Lauro, S. L. M. Ribeiro Filho, D. Baldo, D. Carou, L. C. Brandão, J. P. Davim 

Conference: IX National Congress of Mechanical Engineering, Fortaleza - Brazil 

Abstract: Several studies have been developed for the micro-cutting processes; however, 

many gaps still should be filled, mainly in the manufacturing of components that required 

great accuracy, like the dental implants. These studies gained importance due to the new 

materials that are developed to satisfy or improve the characteristics of their applications, 

for example, the density or the biocompatibility. This study analysed the behaviour of the 
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Ti-6Al-7Nb titanium alloy when employed the micro-cutting process using a tool with the 

flank wear of end tool live. A simplified way was employed to study this influence, the 

analysis of chip. A tool wear influence was observed, which caused a worsening in the 

analysed parameters. 

 

 

 

 

 


