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Abstract In this paper, we introduce the notion of verifiably
encrypted cascade-instantiable blank signatures (CBS) in a
multi-user setting. In CBS, there is a delegation chain that
starts with an originator and is followed by a sequence of
proxies. The originator creates and signs a template, which
may comprise fixed fields and exchangeable fields. There-
after, each proxy along the delegation chain is able to make
an instantiation of the template from the choices passed down
from her direct predecessor, before generating a signature
for her instantiation. First, we present a non-interactive basic
CBS construction that does not rely on any shared secret
parameters among the users. In verifying an instantiation
signature, all the preceding instantiation signatures leading
back to the template signature are also verified concurrently.
It is formally proved to be secure against collusion attacks by
the originator and proxies. Second, we investigate verifiably
encryptedCBS to provide fairness between the originator and
proxies, where the security model is stricter than basic CBS
in that the adversarymay also colludewith the arbitrator. Effi-
ciency analysis shows that the proposed CBS schemes enjoy
linear computation costs. Finally, we extend our scheme to
CBSsupporting designated instantiations, free instantiations,
privately verifiable template signature, identity-based CBS,
as well as CBS secure against proxy-key exposure.
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1 Introduction

Many real-world applications require signatures to be
sequentially generated by users in a way that the subset rela-
tionship amongmessages should be preserved and verifiable.
For example, in some XML applications, the XML data need
to pass through many entities with security guarantees of
integrity and authenticity [9,31,42]. Each entity in the pro-
cess is able to change the data without interacting with any
predecessor, while enabling all the changes to be verified by
the successors. In particular, there may be privacy-sensitive
components in the XML data that cannot be accessed by
lower level entities. In enforcing access control, these com-
ponents should be excluded from the data at some stage but
still be verifiable by the successors without recovering the
contents.

In another example, a public electronic ordering or pro-
curement system lets users process purchase orders in turn,
thus improving procurement efficiency while saving finan-
cial and time costs. Public verifiability of the orders would
make the procurement procedure transparent and deter cor-
ruption. In the system, the supplier first prepares a structured
template according to the buyers’ purchasing needs, which
contains all the available items alongwith types, performance
parameters, prices, etc. The supplier signs this template and
gives the (template, signature) pair to the purchasing man-
ager. The manager makes his choices on some key items,
signs his decision and forwards the table to an administra-
tor. If the administrator is convinced that the manager has
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signed on a subset of the original template, he issues an elec-
tronic order by setting the remaining fields in the template
and signs the final decision. This final electronic order can be
publicly verified on whether it is a subset of the one passed
down through the workflow. In case of a dispute among the
parties, an arbitrator who is normally offline may intervene
to provide a resolution based on the verification information.

In the literature, optimistic fair exchange protocols (OFE)
[2,4] and verifiably encrypted signatures (VES) [8,28] allow
users to exchange digital items in a fair manner with the help
of a trusted adjudicator. Although many OFE/VES schemes
have been proposed in multi-user settings [20,40,45,46],
none of them fits our requirement to support a series of
modifications as an item passes from a supplier to a list
of buyers. Additionally, we need the subset relationship
between instances of the item to be verifiable, which is
beyond the capability of existing OFE/VES.

Blank digital signature scheme, introduced by Hanser and
Slamanig [19], meets our requirements partially. The scheme
allows an originator to sign a template, comprising fixed
fields as well as exchangeable fields with multiple choices.
Subsequently, a proxy can set the choices for the exchange-
able fields to derive an instantiation of the template, before
affixing to it a signature. The scheme requires the origina-
tor and proxy to share a secret parameter, that is, a template
dependent private key, which is chosen randomly by the orig-
inator. The validity of the template signature can only be
verified by the proxy,while the instantiation signaturemay be
publicly verified. Applied to the aforementioned electronic
procurement example, the scheme would require the pur-
chasing manager to make all the decisions in producing the
electronic order, since only one proxy can derive an instan-
tiation from a template. Thus, the original blank signature
scheme is not sufficient to support real-world applications,
like the those described above, that involve a hierarchy of
buyers.

In this paper, we focus on a setting where a template
given by an originator may be instantiated by a succession
of proxies. Formally, a template is a set T of fields Ti for
1 ≤ i ≤ �, with each Ti allowing choices mi,1, . . . ,mi,si ;
hence T = {Ti = {mi,1, . . . ,mi,si } : 1 ≤ i ≤ �}. The num-
ber of fields � = |T| is the template length, while the total
number of choices across all fields is the template size s, i.e.,
s = ∑�

i=1 si where si = |Ti |. If si = 1, then Ti is a fixed
field in the template; otherwise, Ti is an exchangeable field.

For example, suppose that the originator has a template
T = {{a}, {b1, b2, b3, b4}, {c}, {d1, d2, d3}}; here, � = 4,
s1 = s3 = 1, s2 = 4, s4 = 3 and s = 9. Thus, T1 = {a} and
T3 = {c} are fixed fields in T, while T2 and T4 are exchange-
able fields. The first proxy P1 may partially instantiate T as
M1 = {{a}, {b2}, {c}, {d1, d2, d3}}, making a choice for T2
among {b1, b2, b3, b4}while leaving T4 = {d1, d2, d3} avail-
able to proxy P2. Alternatively, P1 may exclude {b2, b3, d1}

from the template after which P2 further selects {b4, d2} to
P2.

Similar to [19], we encode a template T as a polynomial
on variable x :

E(T) =
�∏

i=1

∏

m∈Ti
(x + H(idT ‖m‖i)), (1)

where idT is an unique identifier ofT, and H : {0, 1}∗ → Z∗
p

is a collision-resistant hash function. Instantiations of the
template are encoded in the same way.

1.1 Our contributions

In this paper, we present a suite of cascade-instantiable blank
signature schemes (CBS). Basic CBS supports multi-level
delegations from an originator P0 to a chain of n proxies
P1, . . . , Pn . The scheme provides strong security guarantee,
in that the originator cannot collude with proxies to forge an
instantiation of another proxy, and the proxies cannot forge
a template signature even when all of them collude. We also
introduce an enhanced, verifiably encrypted CBS guaran-
teeing fairness between an originator P0, multiple proxies
{P1, . . . , Pn}, and an arbitrator. The verifiably encrypted
CBS additionally provides security against more powerful
attacks involving collusion with the arbitrator. CBS is public
verifiable, eliminating the need for any shared secret param-
eter among the users. Our CBS formulation is strictly more
general than the original blank signature scheme of [19]. We
obtain the following results.

Framework and security model We formalize the frame-
works of basic CBS and verifiably encrypted CBS. In basic
CBS, an originator prepares a structured template with fixed
fields as well as exchangeable fields consisting of multiple
choices, signs it and delegates instantiation rights to a proxy.
The proxy makes choices on any exchangeable fields in the
template, signs the instantiation, and delegates to the next-
level proxy the capability to further instantiate the remaining
exchangeable fields. In validating an instantiation signature,
all instantiation signatures in higher levels tracing back to the
template signature are verified in a batch and the verifier is
not required to know the content in the original template. In
the formal security model, security against originator and
security against proxies capture collusion attacks by mali-
cious originator and proxies.

Verifiably encrypted CBS introduces an arbitrator who
only intervenes in case there are disputes between the origi-
nator and proxies. In addition to the provisions in basic CBS,
the security model of verifiably encrypted CBS considers
more severe collusion attacks involving the arbitrator.

Non-interactive constructionsWe present non-interactive
and general constructions for the basic and verifiable encr-
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ypted CBS. From a technical standpoint, a polynomial
commitment scheme is employed to guarantee the relation-
ship between a template, its instantiations and excluded
choices. A challenge in CBS construction is that the subset
relationship between instantiations requires the underlying
polynomial commitment to be multiplicatively homomor-
phic, whereas the existing scheme in [27] is only additively
homomorphic. We circumvent this problem by introduc-
ing an accumulating power ω̄i of evaluations of excluded
polynomials for every proxy. TheCBS constructions are non-
interactive in the sense that every proxy operates without
interacting with the originator, its predecessors or succes-
sors. We employ sequential aggregate signature as a building
block, which not only reduces the signature size by combin-
ing the template signature and instantiation signatures, but
also ensures the correct ordering of these signatures. Our
constructions are general and may combine with any avail-
able sequential aggregate signature scheme, although one
with linear complexity would be desirable.

ExtensionsWeadapt our basicCBS scheme to support five
other practical application scenarios. In the first extension,
the originator is empowered to designate the exchangeable
fields to be instantiated by every proxy in the chain. The
secondvariation is cascade-and-freely-instantiable blank sig-
natures, where the originator and proxies are not required to
delegate to specific successors. Instead, at every step, any-
one can be a proxy to further instantiate the template obtained
from his predecessor. The third adaptation, which makes the
template signature privately verifiable by the highest level
proxy, offers all the security properties and functionalities of
the original blank signature scheme of [19] while being more
general and more efficient. The fourth variation employs the
multi-level proxy signature scheme of [41] to generate del-
egations, resulting in a CBS scheme that is secure against
key exposure but sacrifices non-interactivity. The fifth exten-
sion is CBS employing identity-based sequential aggregate
signature that eliminates the burden of managing public key
certificates.

1.2 Related work

Optimistic fair exchange (OFE) and verifiably encrypted
signatures (VES) OFE allows two users to exchange their
digital items in a fair way such that either both of them suc-
ceed in obtaining the other’s itemor both fail [1,2,4].Usually,
fairness is achieved through a trusted third party, e.g., an arbi-
trator/adjudicator. Similarly, in VES [8,38], a party encrypts
her signature for some message using the public key of some
trusted adjudicator, and sends the encrypted signature to the
receiver. Subsequently, if the sender refuses to reveal her
signature, the adjudicator may intervene to recover the sig-
nature. One notable way OFE/VES differs from our problem
is that, in the former, the signatures of the exchanging parties

are on different items, and there is no verifiability of subset
relationship between messages.

Huang et al. [23] introduced ambiguous OFE which pre-
vents the verifier from abusing the sender’s partial signature.
Zhang et al. [49,50] studied OFE and VES in an identity-
based setting. Huang et al. [25] investigated the relationship
of OFE security between single-user and multi-user settings.
From time capsule signatures, Huang et al. [24] presented
a generic OFE construction in the standard model. Huang
et al. [21] introduced an ambiguous OFE protocol without
random oracles, where the sender interacts with the receiver
in generating a partial signature. Draper-Gil et al. [16] inves-
tigated OFE in a setting with active intermediaries. Huang
et al. [22] enhanced OFE security so that the third party can-
not learn the resolved signatures. Recently, Hanser et al. [18]
introduced a block-box construction of VES from structure-
preserving signatures on equivalence classes.

Blank digital signatures Hanser and Slamanig [19] intro-
duced blank digital signatures in a single proxy setting.
Given a template and the template signature generated by
an originator, only the designated proxy can create a signa-
ture on an instantiation of the template. The proxy’s behavior
is restricted to choices for exchangeable fields, which are
explicitly specified in the message template. In their con-
struction, fixed fields and exchangeable fields are encoded in
the same manner. Derler et al. [15] noted that all fixed fields
can be aggregated together without compromising security;
that is, the fixed fields can be concatenated into one string.
This optimizes the original scheme of [19] by reducing the
degree of the encoded polynomial.

Sanitizable signatures In sanitizable signature, introduced
by Ateniese et al. [3], a signer produces a signature on a
message with some mutable portions. A designated proxy is
able to replace the mutable portions by any elements in the
message space, without invalidating the signature. Although
sanitizable signature bears some similarities with blank sig-
nature in that both involve designated proxy and mutable
portions/exchangeable fields, there are obvious differences.
First, sanitizable signature emphasizes the replaceability of
mutable portions and the proxy’s choices can be arbitrary
over the entire message space. Second, the proxy in sanitiz-
able signature has only rights on data replacement and is not
required to sign the modified message. Note that Klonowski
and Lauks [29] improved sanitizable signatures by limiting
the proxy’s behavior, where the available choices of mutable
portions are predefined strings.

Yuen et al. [47] outlined the properties of existing sanitiz-
able signatures, such as different types of state controllability,
sanitized message, designated sanitizer and transparency,
and showed the relationships between some of these proper-
ties. Brzuska et al. [10] investigated accountability toward
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signer and proxy in sanitizable signature schemes, which
was further refined by Canard and Jambert [12] with the
aim of limiting the proxy’s capability. The notion of trap-
door sanitizable signature introduced by Canard et al. [13]
allows a signer to specify multiple proxies at any time, and
a generic construction was given by Yum et al. [48]. Bao
et al. [5] introduced hierarchical trapdoor sanitizable signa-
ture and presented a generic construction from hierarchical
identity-based chameleon hash function. Lai et al. [32] uni-
fied accountability and trapdoor properties in sanitizable
signature. Brzuska et al. [11] introduced unlinkability in san-
itizable signature which prevents outsiders from associating
sanitized message-signature pairs to the original message. A
typical application of sanitizable signatures in web-service-
enabled business processes was investigated in [42].

Redactable signatures Johnson et al. [26] first investigated
redactable signature which focuses on the removability of
a signed message. Informally, anyone who holds a valid
message-signature pair is able to generate a signature on
a substring of the original signed message by replacing
certain parts of the message with a special symbol. There-
fore, a redactable signature would not leak the removed
parts except for their length. Chang et al. [14] improved
redactable signature also hides the length of the removed
parts. Brzuska et al. [9] studied redactable signatures specifi-
cally for tree-structured data. Kundu et al. [30] investigated a
general casewhich captures redactability over regular strings,
trees, graphs and forests. Their scheme possesses leakage-
free property so that the redacted parts cannot be inferred by
others. Lim et al. [34] presented a more efficient redactable
signature construction compared to existing ones based on
pairings, where the signature size is not dependent on the
number of blocks of a given message. Recently, Pohls and
Samelin [39] further enhanced redactable signatures to make
them updatable, i.e., the signer can add new blocks to signed
messages.

Proxy signatures Mambo et al. [37] introduced proxy sig-
natures and classified delegations in proxy signatures into
three types, i.e., full delegation, partial delegation and dele-
gation bywarrant. Since then, delegation bywarrant has been
commonly adopted in proxy-related schemes, where a signer
specifies a proxy’s legal behavior, which usually contains
security policy descriptions, in a warrant. Many studies have
been conducted on this topic to support different properties
and applications, such as delegation delivery without using
a secure channel [33], one-time proxy signatures [44], fully
hierarchical proxy signatures [36], security against proxy-
key exposure [41], delegator anonymity [17] and security
analyses of existing schemes [7,43]. Proxy signature differs
fromblank signature in three aspects. First, awarrant in proxy
signature is usually an abstract description, while a template

in blank signature is very specific and has a strict structure.
Second, the delegator in a proxy signature scheme is only
required to produce a valid delegation, while the originator
in a blank signature scheme signs on a template in addition to
producing a delegation. Third, a warrant should be known by
a verifier for validating proxy signature, whereas the original
template should be hidden when verifying an instantiation
signature.

1.3 Paper organization

The remainder of this paper is organized as follows. Section 2
briefly recalls somepreliminaries thatwill be used as building
blocks in our CBS constructions.We introduce the basic CBS
and formalize the corresponding security model in Sect. 3,
as well as propose a construction along with security proofs.
Section 4 introduces our verifiably encrypted CBS scheme,
formalizes the security model, presents a construction and
proves its security. Section 5 then discusses some possible
extensions of our basic CBS. Finally, Sect. 6 concludes the
paper.

2 Preliminaries

2.1 Sequential aggregate signature

A sequential aggregate signature scheme [35] consists of the
following four algorithms, where all the given messages and
public keys are ordered.

– Setup(κ) → pp: On input a security parameter κ ∈ N,
the setup algorithm outputs public parameters pp.

– KeyGen(κ,pp) → (pk, sk): On input security parame-
ter κ ∈ N and public parameters pp, the key generation
algorithm, which is carried out by each user, outputs a pair
of public/private keys (pk, sk).

– SASign((m1, . . . ,mi−1), (pk1, . . . , pki−1), σi−1,mi ,

ski ,pp) → σi : On input a sequential aggregate signature
σi−1 over messages (m1, . . . ,mi−1) under distinct public
keys (pk1, . . . , pki−1), a message mi , a private key ski
andpublic parameterspp, the sequential aggregate signing
algorithm, which is carried out by user Pi , outputs signa-
ture σi for messages (m1, . . . ,mi ) under (pk1, . . . , pki ).
Note that σ0 is set as empty.

– SAVrfy((m1, . . . ,mi ), (pk1, . . . , pki ), σi ,pp) → 0/1:
On input a set of messages (m1, . . . ,mi ), public keys
(pk1, . . . , pki ), a sequential aggregate signature σi and
public parameters pp, the sequential aggregate signature
verification algorithm, which is carried out by a verifier,
outputs “1” if σi is valid for the given messages under the
given public keys, or “0” otherwise.
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A sequential aggregate signature scheme is secure against
existential forgery [35] if no probabilistic polynomial-time
(PPT) adversaryA can win the following security game with
non-negligible probability.

SetupChallenger C invokesSetup(κ)with security param-
eter κ to obtain public parameters pp. Next, the chal-
lenger runs KeyGen(κ,pp) to create a pair of pub-
lic/private keys (pk, sk), and gives public information
pp and pk to A.

Queries Adversary A adaptively issues sequential aggre-
gate signature queries for messages of his choice under
public keys including pk. In each query, the adver-
sary submits a sequential aggregate signature σi−1 over
messages (m1, . . . ,mi−1) under distinct public keys
(pk1, . . . , pki−1), and another message m. Here, i is at
most n, the maximum number of users. Challenger C
responds with a sequential aggregate signature σi over
(m1, . . . ,mi−1,m) under (pk1, . . . , pki−1, pk).

Output Adversary A outputs a sequential aggregate sig-
nature σ ′

j over (m′
1, . . . ,m

′
j ) under distinct public keys

(pk′
1, . . . , pk

′
j ), where some public key, say pk′

j∗ , must
be equal to pk. Also, j is at most n. Adversary A wins
the game if both the following conditions hold:

– SAVrfy((m′
1, . . . ,m

′
j ), (pk

′
1, . . . , pk

′
j ), σ

′
j ,pp) =

1;
– (m′

1, . . . ,m
′
j∗) has not been queried for a sequential

aggregate signature under (pk′
1, . . . , pk

′
j∗).

2.2 Polynomial commitment

Kate et al. [27] proposed an efficient polynomial scheme over
bilinear groups such that, for a given polynomial f (x) ∈
Z p[x], a committer can produce a polynomial commitment
C , along with a witness wi with respect to the polynomial
evaluation f (i) at some random point i . With wi and C , a
verifier can check whether f (i) is indeed the evaluation of
f (x) at point i . Their scheme works as follows.
Suppose G1 = 〈g〉 is a cyclic group with prime order

p and efficient group operations. The group G1 is bilin-
ear if there exists a cyclic group G2 with order p and an
efficient bilinear map ê : G1 × G1 → G2 with the fol-
lowing properties: (a) bilinearity: ∀μ, ν ∈ G1 and ∀a, b ∈
Z∗
p, ê(μ

a, νb) = ê(μ, ν)ab; (b) non-degeneracy: ê(g, g)
�= 1.

– KeyGen(1κ , d): Randomly pick a value α ∈R Z∗
p and

set the private key sk = α. Compute u j = gα j
for each

1 ≤ j ≤ d where d is the maximum polynomial degree.
Set the public key as pk = (ê,G1,G2, p, g, u1, . . . , ud).

– Commit(pk, f (x)): Given a polynomial

f (x) =
deg[ f ]∑

j=0

f j x
j mod p

with degree deg[ f ] at most d, generate the commitment
as:

C =
deg[ f ]∏

j=0

u
f j
j

– WitGen(pk, f (x), i): Compute the polynomial

h(x) =
deg[h]∑

j=0

h j x
j = f (x) − f (i)

x − i
mod p

whichhas degreedeg[h] atmostd−1. Produce thewitness
as:

wi =
deg[h]∏

j=0

u
h j
j

– VrfyEval(pk,C, i, f (i), wi ): Check whether the fol-
lowing equality holds:

ê(C, g)
?= ê(wi , g

α/gi )ê(g, g) f (i)

If so, output “1” which means that f (i) is indeed the eval-
uation of f (x) at point i ; otherwise, output “0”.

3 Cascade-instantiable blank signature

In this section, we formulate the basic cascade-instantiable
blank signature and its security model. We then present a
basic CBS construction based on sequential aggregate signa-
tures and provide the security proofs.

3.1 Definitions and security model

Let the user set be P = {P0, P1, . . . , Pn} and let PKi denote
the public keys of originator P0 and proxies P1, . . . , Pi , i.e.,
PKi = (pk0, pk1, . . . , pki ); the subscript i denotes the hier-
archical position of proxy Pi . A chain of instantiations of a
template is valid only if each instantiation preserves the fixed
fields in its predecessor, while maintaining or narrowing the
choices in each exchangeable field. In this paper, we do not
explicitly carry out semantic/sanity checks on the choices
in all fixed and exchangeable fields, since their validity and
the above mentioned relationship among template, instantia-
tions and excluded choices can be verified in the verification
procedures.
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Formally, a basic cascade-instantiable blank signature
scheme consists of the following algorithms:

– Setup(κ, d) → pp: On input a security parameter
κ ∈ N and the maximum template size d ∈ N, the setup
algorithm, which is carried out by the system manager,
generates public parameters pp.

– KeyGen(κ,pp) → (pk, sk): On input security parame-
ter κ ∈ N and public parameters pp, the key generation
algorithm, which is carried out by each user in P, outputs
a pair of public/private keys (pk, sk).

– TSign(T,pp, sk0, pk1) → (σT , δ1): On input a tem-
plateT, public parameterspp, the originator’s private key
sk0 and proxy P1’s public key pk1, the template signing
algorithm, which is carried out by the originator, outputs
a signature σT for the template and a delegation δ1 for
P1. A unique identifier idT of template T is generated
and embedded in σT .

– TVrfy(T, σT ,pp,PK1) → 0/1: On input a templateT,
template signature σT , public parameters pp, the origina-
tor’s public key pk0 and proxy P1’s public key pk1, the
template signature verification algorithm, which is car-
ried out by any verifier (particularly P1), outputs “1” if
σT is valid for T under pk0 or “0” otherwise.

– Instn(Mi−1, Mi , σi−1, δi ,pp, ski ,PKi+1) → (σi ,

δi+1): On input proxy Pi−1’s instantiation Mi−1, proxy
Pi ’s instantiation Mi , instantiation signature σi−1 pro-
duced by Pi−1, delegation δi for Pi , public parameters
pp, proxy Pi ’s private key ski and a set of public keys
{pk0, . . . , pki+1}, the instantiation algorithm, which is
carried out by Pi , outputs an instantiation signature σi
for Mi and a delegation δi+1 for Pi+1 if both σi−1 and δi
are valid. Here, Mi is a subset of Mi−1 for 1 ≤ i ≤ n,
M0 = T, and σ0 = σT . Where Pi is the last proxy Pn ,
pki+1 and δi+1 are set to a special symbol ⊥. Both σi
and δi+1 should contain the current delegation δi .

– IVrfy(Mi , σi ,pp,PKi+1) → 0/1: On input instantia-
tion Mi , instantiation signature σi , public parameters pp,
and the public keys PKi+1 of originator P0 and prox-
ies P1, . . . , Pi+1, the instantiation signature verification
algorithm, which is carried out by any verifier (partic-
ularly Pi+1), outputs “1” if σi is valid for Mi under
PKi , which also means that the template and instanti-
ation signatures σ0, . . . , σi−1 are all verified, or outputs
“0” otherwise.

The identifier idT should be passed on from σT to every
instantiation signature σi (1 ≤ i ≤ n), so as to bind the
instantiations to the template. We proceed to define formal
security model for basic CBS.

A basic CBS scheme is correct in the sense that the
template signature, all the instantiation signatures and all

delegations can be validated to be true if no user’s behav-
ior deviates from the scheme.

Definition 1 (Correctness) A basic CBS scheme is correct
if, for a given κ ∈ N, any maximum template size d ∈ N,
any pp ← Setup(κ, d), any (pki , ski ) ← KeyGen(κ,pp)

of originator P0 and proxies P1, . . . , Pn , and any template
T, the following conditions hold:

– TVrfy(T, σT ,pp,PK1) = 1, where σT is generated as
(σT , δ1) ← TSign(T,pp, sk0, pk1).

– IVrfy(Mi , σi ,pp,PKi+1) = 1 for every i ∈ [1, n],
where σi is generated as (σi , δi+1) ← Instn(Mi−1,

Mi , σi−1, δi ,pp, ski ,PKi+1). This property not only
ensures that Mi is a valid i-level instantiation of tem-
plate T, but also all the preceding instantiations leading
back to template T are valid.

– Every delegation δi (i ∈ [1, n]) generated by TSign(T,

pp, sk0, pk1) and Instn(Mi−1, Mi , σi−1, δi ,pp, ski ,
PKi+1) is validated to be true in the following instantia-
tion.

A secure basic CBS scheme should ensure that even when
originator P0 colludeswith all but one proxy Pπ , they can nei-
ther create an instantiationwith a valid instantiation signature
for Pπ nor forge a delegation to Pπ+1. To capture this col-
lusion attack, in the following formal definition, we assume
that a PPT adversaryA controls a corrupted setP′ = P\{Pπ }.
The template identifier idT is included in all the signatures
and is not explicitly stated in the following security games.

Definition 2 (Security Against Originator) A basic CBS
scheme is secure against the originator if no PPT adversary
A, controlling the originator P0 and all but one proxy Pπ , can
win the following game by interacting with a challenger C.

Setup Challenger C invokes Setup(κ, d) with security
parameter κ and maximum template size d to obtain
public parameters pp. Next, the challenger initializes an
empty list L, runs KeyGen(κ,pp) to create user Pπ ’s
public/private keys (pkπ , skπ ), and gives public infor-
mation pp and pkπ to A.

QueriesAdversaryA adaptively submits instantiation sign-
ing queries to C. In response to each query (Mπ−1,

Mπ , σπ−1, δπ ), the challenger validates σπ−1 and δπ ,
then produces a pair (σπ , δπ+1), returns (σπ , δπ+1)

to adversary A and appends the tuple (Mπ−1, Mπ ,

σπ−1, δπ , σπ , δπ+1) to L.
Since delegations are produced along with instantiation
signatures, delegation queries need not to be posed sep-
arately.

Output Adversary A outputs a tuple (M∗
π , σ ∗

π , δ∗
π+1) and

wins the game if any of the following cases occurs.
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– Case 1: The pair (M∗
π , σ ∗

π ) satisfies the conditions:
– M∗

π has not been requested in instantiation sign-
ing queries with (Mπ−1, M∗

π , σπ−1, δπ ) such
that IVrfy(Mπ−1, σπ−1,pp,PKπ ) = 1 and
δπ is valid for Pπ ;

– IVrfy(M∗
π , σ ∗

π ,pp,PKπ+1) = 1.
– Case 2: The delegation (M∗

π , δ∗
π+1) (when π �= n)

satisfies the conditions:
– The same as Case 1, i.e., M∗

π has not been
requested in instantiation signing queries;

– δ∗
π+1 can be validated to be true in Pπ+1’s instan-
tiation Instn.

A secure basic CBS scheme should ensure that even when
all the proxies collude, they cannot forge a valid template
signature or a delegation to P1. To capture this collusion
attack, in the following formal definition, we allow a PPT
adversary A to control all the proxies, that is, the controlled
user set is P′ = P\{P0}.

Definition 3 (SecurityAgainstProxies)AbasicCBSscheme
is secure against proxies if no PPT adversary A, controlling
all the proxies, can win the following game by interacting
with a challenger C.

Setup Challenger C invokes Setup(κ, d) with security
parameter κ and maximum template size d to obtain
public parameters pp. Next, the challenger initializes an
empty list L, runs KeyGen(κ,pp) to create originator
P0’s public/private keys (pk0, sk0), and sends the public
information pp and pk0 to A.

Queries Adversary A adaptively submits template sign-
ing queries to C. Upon receiving a template T along
with some parameters from A, challenger C produce a
pair (σT , δ1) which embeds the received parameters in
σT . Then C returns (σT , δ1) to A and appends the tuple
(T, σT , δ1) to L. As in Definition 2, delegation queries
need not be posed separately here.

Output AdversaryA outputs a tuple (T∗, σT ∗ , δ∗
1) and wins

the game if any of the following cases occurs.

– Case 1: The pair (T∗, σT ∗) satisfies
– T

∗ has not been requested in template signing
queries;

– TVrfy(T∗, σT ∗ ,pp,PK1) = 1.
– Case 2: The pair (T∗, δ∗

1) satisfies
– T

∗ has not been requested in template signing
queries;

– The delegation δ∗
1 can be validated to be true in

P1’s instantiation Instn.

3.2 Basic CBS construction

In this section, we present a construction of basic CBS.
Suppose SAS = (Setup,KeyGen,SASign,SAVrfy)

denotes a secure sequential aggregate signature scheme. In
the construction, E(·) denotes the expanded expression of
the encoding polynomial (Formula 1) on the template and
instantiations.

– Setup(κ, d): On input κ and d, choose a bilinear pairing
ê : G1 × G1 → G2 where G1 = 〈g〉 and G2 are cyclic
groups with prime order p. Randomly pick a value α ∈R

Z∗
p and compute ui = gαi

for each i ∈ [1, d]. Choose
a collision-resistant hash function H : {0, 1}∗ → Z∗

p.
Invoke pp′ ← SAS.Setup(κ). The public parameters
are pp = (ê,G1,G2, p, u0 = g, u1, . . . , ud , H, pp′).

– KeyGen(κ,pp): Invoke (pk, sk) ← SAS.KeyGen(κ,

pp′).
– TSign(T,pp, sk0, pk1): Randomly picking a unique

identifier idT ∈R {0, 1}κ , carry out the following steps.

– ComputeψT (x) = E(T) ∈ Z p[x] and a commitment

C =
s∏

j=0

u
ψ

( j)
T

j (2)

where ψ
( j)
T denotes the j-th coefficient of ψT (x).

– Pick a random value a ∈R Z∗
p, compute ϕ(x) =

ψT (x)−ψT (a)
x−a and a witness

ω =
s−1∏

j=0

uϕ( j)

j (3)

where ϕ( j) denotes the j-th coefficient of ϕ(x).
– Invoke

τT ← SAS.SASign(idT ‖�‖C‖a‖ω‖pk1, ∅, sk0)

Let PT = (idT , �,C, a, ω) be the public parameters
associated with template T. Thus, σT = (PT, τT ) and
δ1 = (τT ). Here, s = ∑�

i=1 si ≤ d.
– TVrfy(T, σT ,pp,PK1): Compute ψT (x) = E(T) ∈

Z p[x] and check the following equations:

ê(C, g)
?= ê(ω, u1/g

a) · ê(g, g)ψT (a) (4)

and

SAS.SAVrfy(idT ‖�‖C‖a‖ω‖pk1, τT , pk0)
?= 1 (5)

If both equations hold, output “1”; otherwise, output “0”.
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– Instn(Mi−1, Mi , σi−1, δi ,pp, ski ,PKi+1): Compute
ψ̄i (x) = E(Mi−1\Mi ) ∈ Z p[x], where Mi−1\Mi

denotes the set of choices excluded by Pi . Then calculate
h̄i = ψ̄i (a) and ω̄i = ω̄

h̄i
i−1, where ω̄0 = g. Invoke τi ←

SAS.SASign(idT ‖h̄i‖ω̄i‖pki+1, τi−1, ski ). Append
(h̄i , ω̄i ) to PT . Thus, σi = (PT, τi ) and δi+1 = (τi ).
Notice that if an exchangeable field is delegated to proxy
Pi+1, then all the corresponding choices should be con-
tained inMi , the instantiation of Pi . Note that σi contains
a delegation chain from originator P0 to proxy Pi .

– IVrfy(Mi , σi ,pp,PKi+1): Compute ψi (x) = E(Mi )

∈ Z p[x] and hi = ψi (a). Construct

m0 = idT ‖�‖C‖a‖ω‖pk1

and for every j ∈ [1, i] construct

m j = idT ‖h̄ j‖ω̄ j‖pk j+1

LetMi = (m0,m1, . . . ,mi ). Check the following equali-
ties:

ê(C, g)i
?= ê(ω, u1/g

a)i · ê
⎛

⎝g,
i∏

j=1

ω̄

(∏i
k= j+1 h̄k

)
hi

j

⎞

⎠

(6)

and

SAS.SAVrfy(Mi , τi ,PKi )
?= 1 (7)

If both equalities hold, output “1”; otherwise, output “0”.

Theorem 1 The basic CBS scheme proposed above is cor-
rect.

Proof We first consider the correctness of the template sig-
nature σT . For any given templateT, its template signature is
associated with the commitment C and witness ω of an eval-
uation at some point a ∈R Z∗

p of the corresponding encoded
polynomial E(T), as well as a sequential signature τT . Equal-
ity (4) holds as shown in [27], which ensures both C and ω

are generated on template T. The correctness of equality (5)
is directly determined by the underlying sequential aggregate
signature scheme SAS.

To prove the correctness of the instantiations and their
signatures, we need only to show that Equality (6) holds
since Equality (7) holds in the same way as Equality (5). In
fact, if all the proxies are honest, the following equality holds
for the i-th instantiation Mi :

ê(ω, u1/g
a) · ê(g, ω̄hi

i )

= ê(ω, u1/g
a) · ê

(

g, g

(∏i
k=1 h̄k

)
hi

)

= ê(ω, u1/g
a) · ê(g, g)ψT (a)

= ê(C, g)

Similarly, for the j-th (1 ≤ j < i) instantiation, the follow-
ing equality holds:

ê(ω, u1/g
a) · ê

(

g, ω̄

(∏i
k= j+1 h̄k

)
hi

j

)

= ê(ω, u1/g
a) · ê

(

g, g

(∏ j
k=1 h̄k

)(∏i
k= j+1 h̄k

)
hi

)

= ê(ω, u1/g
a) · ê(g, g)ψT (a) = ê(C, g)

Multiplying respective sides of all these i equalities yields
Equality (7).

Since all delegations are in fact the sequential aggregate
signatures τi , their correctness are ensured by Equalities (5)
and (7). ��

3.3 Security

Theorem 2 Suppose H is a collision-resistant hash func-
tion. The above proposed basic CBS scheme is secure against
originator, assuming the underlying sequential aggregate
signature scheme SAS and polynomial commitment scheme
are secure.

Proof Suppose there is an adversary A that, having control
of originator P0 and all proxies except Pπ , breaks the basic
CBS scheme. We show thatA can also break the underlying
sequential aggregate signature scheme.

Setup Challenger C initializes an empty query list L, and
proceeds as described in Definition 2.

QueriesAdversaryA adaptively issues instantiation signing
queries. Upon receiving a tuple (Mπ−1, Mπ , σπ−1, δπ )

from A, challenger C validates σπ−1 by running proce-
dure IVrfy(Mπ−1, σπ−1,pp,PKπ ). Since delegation
δπ is an element of σπ−1, it does not need to be validated
separately. If σπ−1 is valid, the challenger invokes:

(σπ , δπ+1) ← Instn(Mπ−1, Mπ , σπ−1,

δπ ,pp, skπ ,PKπ+1)

returns (σπ , δπ+1) to adversaryA, and appends the tuple
(Mπ−1, Mπ , σπ−1, δπ , σπ , δπ+1) toL. Ifσπ−1 is invalid,
C returns nothing.
In each query,A is allowed to choose an identifier idT and
a value a for the queried template T, but the challenger
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will check the uniqueness of idT . Thus, all the parameters
in PTπ−1 ∈ σπ−1, e.g.,C , ω, h̄i and ω̄i (1 ≤ i < π ), can
be computed by A using parameters pp. This captures
a strong case of attacks, where two queries on the same
template will be taken as different if distinct identifiers
are chosen by the adversary.

Output Adversary A wins the game by outputting a tuple
(M∗

π , σ ∗
π , δ∗

π+1). In the proposed scheme, delegation
δ∗
π+1 = τ ∗

π is an element of σ ∗
π = (PT ∗

π−1, h̄
∗
π ,

ω̄∗
π , τ ∗

π ). Thus, we only need to consider Case 1 of Def-
inition 2, that is, in the tuple (M∗

π , σ ∗
π ), M∗

π has not
been requested in the form of (Mπ−1, M∗

π , σπ−1, δπ )

such that both IVrfy(Mπ−1, σπ−1,pp,PKπ ) = 1 and
IVrfy(M∗

π , σ ∗
π ,pp,PKπ+1) = 1 hold. There should be

a random value a∗ ∈ Z∗
p which is chosen by A. There

are two cases to consider.

– Case 1: IVrfy(M∗
π , σ̃π ,pp,PKπ+1) = 1 holds,

where (M̃π , σ̃π ) is an already queried pair and M∗
π �=

M̃π . This covers the case where A can create a new
instantiation of some queried template. Since all of
C∗, ω∗, h̄∗

i and ω̄∗
i (1 ≤ i ≤ π ) can be pub-

licly computed by A, we further distinguish between
two situations according to whether ψ∗

π (x) = ψ̃π (x)
holds, where ψ∗

π (x) = E(M∗
π ) and ψ̃π (x) = E(M̃π ).

Situation one: ψ∗
π (x) = ψ̃π (x).

In this situation, M∗
π and M̃π should have the same

size, and their templates have the same length. Recall
that both ψ∗

π (x) and ψ̃π (x) are constructed using a
hash function H . In fact, ψ∗

π (x) = ψ̃π (x) can be
rewritten as the following equality:

∏

T ∗
i∗∈M∗

π

∏

m∗
i j

∈T ∗
i∗

(x + H( ˜idT ‖m∗
i j ‖i∗))

=
∏

T̃ĩ∈M̃π

∏

m̃i j ∈T̃ĩ
(x + H( ˜idT ‖m̃i j ‖ĩ))

To satisfy the equality, A needs to break the second-
preimage resistanceproperty ofH withnon-negligible
probability. Specifically,Amust find distinct m∗

i j
and

m̃i j such that H( ˜idT ‖m∗
i j
‖i∗) = H( ˜idT ‖m̃i j ‖ĩ). As

H is collision-resistant, this situation cannot happen.
Situation two: ψ∗

π (x) �= ψ̃π (x).
In this situation,M∗

π and M̃π may have different sizes,
while their templates should have the same length.
Since both (M∗

π , σ̃π ) and (M̃π , σ̃π ) satisfy Equality
(6), the following equality must hold:

h∗
π = ψ∗

π (ã) = ψ̃π (ã) = h̃π (8)

Equality (8) means that A is able to manipulate the
equation ψ∗

π (x)− ψ̃π (x) = 0 such that ã is a root. To

achieve that, A must manipulate at least one input of
H in respect to M∗

π ; that is, A has to find at least one
preimage of H containing mi j ∈ M∗

π such that:

∏

T ∗
i∗∈M∗

π

∏

m∗
i j

∈T ∗
i∗

(ã + H( ˜idT ‖m∗
i j ‖i∗))

−
∏

T̃ĩ∈M̃π

∏

m̃i j ∈T̃ĩ
(ã + H( ˜idT ‖m̃i j ‖ĩ)) = 0

Thus, A breaks the preimage resistance property of
hash function H .

– Case 2: Both M∗
π and σ ∗

π are fresh. This case implies
thatA successfully forges a valid sequential aggregate
signature with depth π +1, since all ofC∗,ω∗, h̄∗

i and
ω̄∗
i (1 ≤ i ≤ π ) can be computed by A using only

public parameters.

Combining the cases, adversary A can only output a valid
forgery with probability ε = ε′ + 1

p , where ε′ denotes the
success probability of attacking the underlying sequential
aggregate signature scheme. ��
Theorem 3 Suppose H is a collision-resistant hash func-
tion. Our proposed basic CBS scheme is secure against
proxies, assuming the underlying sequential aggregate sig-
nature schemeSAS and polynomial commitment scheme are
secure.

Proof Suppose there is an adversary A that, having control
of all the proxies, breaks the basic CBS scheme. We show
that A can also break the underlying sequential aggregate
signature scheme.

SetupChallenger C initializes an empty query listL, and
proceeds as described in Definition 3.
Queries AdversaryA adaptively submits template sign-
ing queries. Upon receiving a template T as well as
parameters (idT , a) from adversary A, challenger C
invokes (σT , δ1) ← TSign(T,pp, sk0, pk1) using the
received parameters (idT , a). Then, C returns (σT , δ1) to
A and appends the tuple (T, σT , δ1) to L.
In each query,A is allowed to choose an identifier idT and
a value a for the queried template T, but the challenger
will check the uniqueness of idT . Thus, the parameters
C and ω can be computed by A using parameters pp.
This captures a strong case of attacks, where two queries
on the same template will be taken as different if distinct
identifiers are chosen by the adversary.
OutputAdversaryAwins the game by outputting a tuple
(T∗, σT ∗ , δ∗

1). Since the delegation δ∗
1 = τT ∗ is an ele-

ment of σT ∗ = (PT ∗, τT ∗) in the proposed scheme, we
only need to consider Case 1 of Definition 3, i.e., in the
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tuple (T∗, σT ∗), T∗ has not been requested in the form of
(T∗, idT ∗ , a∗) such that TVrfy(T∗, σT ∗ ,pp,PK1) = 1
holds. There are two cases to consider.

– Case 1: TVrfy(T∗, σT̃ ,pp,PK1) = 1 holds, where
(T̃, σT̃ ) is an already queried pair and idT ∗ �= idT̃ .
This covers the casewhereA can produce a forgery for
some queried template but with a different identifier.
Since C∗ and ω∗ can be publicly computed by A, we
further distinguish between two situations according
to whether ψ∗(x) = ψ̃(x) holds, where ψ∗(x) =
E(T∗) and ψ̃(x) = E(T̃).
Situation one: ψ∗(x) = ψ̃(x). In this situation, T

∗
and T̃ should have the same length and size. Recall
that bothψ∗(x) and ψ̃(x) are constructed using a hash
function H . In fact, ψ∗(x) = ψ̃(x) can be rewritten
as the following equality:

∏

T ∗
i∗∈T∗

∏

m∗
i j

∈T ∗
i∗

(x + H(idT̃ ‖m∗
i j ‖i∗))

=
∏

T̃ĩ∈T̃

∏

m̃i j ∈T̃ĩ
(x + H(idT̃ ‖m̃i j ‖ĩ))

To satisfy the equality, A needs to break the second-
preimage resistanceproperty ofH withnon-negligible
probability. Specifically,Amust find distinct m∗

i j
and

m̃i j such that H(idT̃ ‖m∗
i j
‖i∗) = H(idT̃ ‖m̃i j ‖ĩ). As

H is collision-resistant, this situation cannot happen.
Situation two: ψ∗(x) �= ψ̃(x).
In this situation, T

∗ and T̃ may have different sizes
but the same length. Since both (T∗, σT̃ ) and (T̃, σT̃ )

satisfy Equality (4), the following equality must hold:

ψ∗(ã) = ψ̃(ã) (9)

Equality (9) means that A is able to manipulate the
equation ψ∗(x) − ψ̃(x) = 0 such that ã is a root. To
achieve that, A must manipulate at least one input of
H in respect to T

∗; that is, A has to find at least one
preimage of H containing mi j ∈ T

∗ such that:

∏

T ∗
i∗∈T∗

∏

m∗
i j

∈T ∗
i∗

(ã + H(idT̃ ‖m∗
i j ‖i∗))

−
∏

T̃ĩ∈T̃

∏

m̃i j ∈T̃ĩ
(ã + H(idT̃ ‖m̃i j ‖ĩ)) = 0

Thus, A breaks the preimage resistance property of
hash function H .

– Case 2: Both T
∗ and σT ∗ are fresh. This case implies

that A successfully forges a valid sequential aggre-

gate signature with depth 1, since C∗ and ω∗ can be
computed by A using only public parameters.

Overall, adversary A can only output a valid forgery with
probability ε = ε′+ 1

p , where ε′ denotes the success probabil-
ity of attacking the underlying sequential aggregate signature
scheme. ��

4 Verifiably encrypted cascade-instantiable blank
signature

This section extends the basic CBS scheme of Section 3 to
verifiably encrypted cascade-instantiable blank signatures.
In verifiably encrypted CBS, there is an arbitrator in addition
to a set P of originator and proxies. The originator encrypts
her signed commitment on the encoded template using the
public key of the arbitrator. This encryption not only pre-
serves verifiability of subset relationship between template
and instantiations, as in basic CBS, but also allows the arbi-
trator to intervene to recover the signed commitment of the
originator in case of dispute. If the originator does not cheat,
then the resolution of signed commitment by the arbitrator
should pass the verification using the originator’s parameters.

We define the framework and the security model of veri-
fiably encrypted CBS and then provide a construction along
with security proofs.

4.1 Definitions and security model

Formally, a verifiably encrypted CBS scheme comprises the
following algorithms:

– Setup(κ, d) → (skA,pp): On input a security param-
eter κ ∈ N and the maximum template size d ∈ N, the
setup algorithm, which is carried out by the arbitrator,
outputs a private key skA and public parameters pp.

– UKeyGen(κ,pp) → (pki , ski ): On input security
parameter κ ∈ N and public parameters pp, the user key
generation algorithm, which is carried out individually by
the originator P0 and proxies P1, . . . , Pn , outputs a pair
of public/private keys (pki , ski ).

– TSign(T,pp, sk0, pk1) → (σT , δ1): The same as in
Sect. 3.1, where σT contains an encrypted commitment
Π on the encoded template T.

– TVrfy(T, σT ,pp,PK1) → 0/1: The same as in
Sect. 3.1.

– Instn(Mi−1, Mi , σi−1, δi ,pp, ski ,PKi+1) →
(σi , δi+1): The same as in Sect. 3.1.

– IVrfy(Mi , σi ,pp,PKi+1) → 0/1: The same as in
Sect. 3.1.

– Resolve(skA,pp,PK1, T, σT ) → C/ ⊥: On input the
arbitrator’s private key skA, public parameters pp, the
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originator’s public key pk0 andproxy P1’s public key pk1,
a template T and template signature σT , the resolution
algorithm, which is carried out by the arbitrator, outputs
the randomized commitment C for T if σT is valid for T

under pk0 or ⊥ otherwise.

A verifiably encrypted CBS scheme is correct in the sense
that the template signature, all the instantiation signatures, all
delegations and the resolved commitment can be validated
to be true if no user’s behavior deviates from the scheme.

Definition 4 (Correctness) A verifiably encrypted CBS
scheme is correct if, for a given κ ∈ N, any maximum
template size d ∈ N, any (skA,pp) ← Setup(κ, d), any
(pki , ski ) ← UKeyGen(κ,pp) of originator P0 and prox-
ies P1, . . . , Pn , and any templateT, the following conditions
hold:

– The first three conditions are the same as in Definition 1;
– The resolved commitment C ← Resolve(skA,pp,

PK1, T, σT ) is valid for the encoded polynomial of tem-
plate T.

A secure verifiably encrypted CBS scheme should ensure
that even when originator P0 colludes with the arbitrator and
all but one proxy Pπ , they can neither create an instantia-
tion with a valid instantiation signature for Pπ nor forge a
delegation to Pπ+1.

Definition 5 (Security Against ColludingOriginator) A ver-
ifiably encrypted CBS scheme is secure against the colluding
originator if no PPT adversary A, controlling the originator
P0, the arbitrator and all but one proxy Pπ , can win the fol-
lowing game by interacting with a challenger C.

Setup With the public parameters pp outputted by A, chal-
lenger C creates user Pπ ’s public/private keys (pkπ , skπ )

and gives pkπ to A.
Queries As in Definition 2, adversaryA adaptively submits

instantiation signing queries to challenger C.
Output Adversary A outputs a tuple (M∗

π , σ ∗
π , δ∗

π+1) and
wins the game under the same conditions as in Defini-
tion 2.

A secure verifiably encrypted CBS scheme should ensure
that even when all the proxies collude with the arbitrator,
they cannot forge a valid template signature or a delegation
to P1.

Definition 6 (Security Against Colluding Proxies) A veri-
fiably encrypted CBS scheme is secure against colluding
proxies if no PPT adversary A, controlling all the proxies
and the arbitrator, can win the following game by interacting
with a challenger C.

Setup With the public parameters pp outputted by A,
challenger C creates originator P0’s public/private keys
(pk0, sk0) and gives pk0 to A.

Queries As in Definition 3, adversaryA adaptively submits
template signing queries to C.

Output AdversaryA outputs a tuple (T∗, σT ∗ , δ∗
1) and wins

the game under the same conditions as in Definition 3.

4.2 A verifiably encrypted CBS construction

We present a verifiably encrypted CBS construction based
on the basic CBS scheme, where SAS = (Setup,

KeyGen,SASign,SAVrfy) also denotes a secure sequen-
tial aggregate signature scheme.

– Setup(κ, d): On input κ and d, choose a bilinear pair-
ing ê : G1 × G1 → G2 where G1 = 〈g〉 and G2

are cyclic groups with prime order p. Randomly pick
a value α ∈R Z∗

p and compute ui = gαi
for each i ∈

[1, d]. Randomly pick a value xA ∈R Z∗
p and compute

yA = gxA . Choose a collision-resistant hash function
H : {0, 1}∗ → Z∗

p. Invoke pp
′ ← SAS.Setup(κ). The

private key is skA = xA while the public parameters are
pp = (ê,G1,G2, p, u0 = g, u1, . . . , ud , yA, H, pp′).

– UKeyGen(κ,pp): Invoke SAS.KeyGen(κ, pp′) to
obtain (pki , ski ).

– TSign(T,pp, sk0, pk1): Randomly picking a unique
identifier idT ∈R {0, 1}κ and two values β, γ ∈R Z∗

p,
carry out the following steps.

– Compute ψT (x) = E(T) ∈ Z p[x] and an encrypted
commitment C = (C1,C2,C3),

C1 =
⎛

⎝
s∏

j=0

u
ψ

( j)
T

j

⎞

⎠

β

· yγ

A, C2 = gβ, C3 = gγ

(10)

where ψ
( j)
T denotes the j-th coefficient of ψT (x).

– Pick a random value a ∈R Z∗
p, compute ϕ(x) =

ψT (x)−ψT (a)
x−a and a signed witness

ω =
⎛

⎝
s−1∏

j=0

uϕ( j)

j

⎞

⎠

β

(11)

where ϕ( j) denotes the j-th coefficient of ϕ(x).
– Invoke

τT ← SAS.SASign(idT ‖�‖C‖a‖ω‖pk1, ∅, sk0).

Let PT = (idT , �,C, a, ω) be the public parameters
associated with template T. Thus, σT = (PT, τT ) and
δ1 = (τT ). Here, s = ∑�

i=1 si ≤ d.
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– TVrfy(T, σT ,pp,PK1): Compute ψT (x) = E(T) ∈
Z p[x] and check the following equation as well as equa-
tion (5):

ê(C1, g)
?= ê(ω, u1/g

a) · ê(C2, g)
ψT (a) · ê(C3, yA)

(12)

If both equations hold, output “1”; otherwise, output “0”.
– Instn(Mi−1, Mi , σi−1, δi ,pp, ski ,PKi+1): The same
as in the basic CBS construction in Sect. 3.2.

– IVrfy(Mi , σi ,pp,PKi+1): Compute ψi (x) = E(Mi )

∈ Z p[x] and hi = ψi (a). Construct

m0 = idT ‖�‖C‖a‖ω‖pk1

and for every j ∈ [1, i] construct

m j = idT ‖h̄ j‖ω̄ j‖pk j+1

LetMi = (m0,m1, . . . ,mi ). Check the following equality
as well as Eq. (7):

ê(C1, g)
i ?=(ê(ω, u1/g

a) · ê(C3, yA))i

· ê
⎛

⎝C2,

i∏

j=1

ω̄

(∏i
k= j+1 h̄k

)
hi

j

⎞

⎠
(13)

If both equalities hold, output “1”; otherwise, output “0”.
– Resolve(skA,pp,PK1, T, σT ): If both equalities (12)
and (5) hold, output the signed commitment C =
C1/C

xA
2 ; otherwise, output ⊥.

Theorem 4 The verifiably encrypted CBS scheme proposed
above is correct.

Proof Building on Theorem 1, we need only to prove the
correctness of Equalities (12) and (13) and the resolution of
algorithm Resolve.

If the originator is honest, the following equality holds for
template T:

ê(C1, g) = ê

⎛

⎜
⎝

⎛

⎝
s∏

j=0

u
ψ

( j)
T

j

⎞

⎠

β

, g

⎞

⎟
⎠ · ê(yγ

A, g)

= ê(ω, gα−a) · ê(gβ, gψT (a)) · ê(yA, gγ )

= ê(ω, u1/g
a) · ê(C2, g)

ψT (a) · ê(C3, yA)

Also, if all the proxies are honest, the following equality
holds for the i-th instantiation Mi :

ê(ω, u1/g
a) · ê(C3, yA) · ê(C2, ω̄

hi
i )

= ê(ω, u1/g
a) · ê(C2, g

(
∏i

k=1 h̄k )hi ) · ê(C3, yA)

= ê(ω, u1/g
a) · ê(C2, g)

ψT (a) · ê(C3, yA)

= ê(C1, g)

Similarly, for the j-th (1 ≤ j < i) instantiation, the follow-
ing equality holds:

ê(ω, u1/g
a) · ê(C3, yA) · ê

(

C2, ω̄

(∏i
k= j+1 h̄k

)
hi

j

)

= ê(ω, u1/g
a) · ê

(

C2, g

(∏ j
k=1 h̄k

)(∏i
k= j+1 h̄k

)
hi

)

· ê(C3, yA)

= ê(ω, u1/g
a) · ê(C2, g)

ψT (a) · ê(C3, yA)

= ê(C1, g)

Multiplying respective sides of all these i equalities yields
Equality (13).

By algorithm Resolve, we have

C = C1/C
xA
2 =

⎛

⎝
s∏

j=0

u
ψ

( j)
T

j

⎞

⎠

β

which satisfies

ê(C, g) = ê

⎛

⎜
⎝

⎛

⎝
s∏

j=0

u
ψ

( j)
T

j

⎞

⎠

β

, g

⎞

⎟
⎠

= ê(ω, u1/g
a) · ê(C2, g)

ψT (a)

It indicates that C is a signed commitment for encoded tem-
plate T by the originator. ��

4.3 Security

Theorem 5 Suppose H is a collision-resistant hash func-
tion. The proposed verifiably encrypted CBS scheme is
secure against colluding originator, assuming the underlying
sequential aggregate signature schemeSAS and polynomial
commitment scheme are secure.

Theorem 6 Suppose H is a collision-resistant hash func-
tion. Our proposed verifiably encrypted CBS scheme is
secure against colluding proxies, assuming the underlying
sequential aggregate signature schemeSAS and polynomial
commitment scheme are secure.

We omit the proofs of the two theorems here as they are
similar to Theorems 2 and 3, respectively.
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Table 1 Computation costs of
the CBS schemes

Algorithm Computation costs

Basic CBS scheme Verifiably encrypted CBS scheme

Setup dEG (d + 1)EG

KeyGen EK EK

TSign (2s − 1)EG1 + ES (2s + 4)EG1 + ES

TVrfy 1EG1 + 1EG2 + 3Epr + EV 1EG1 + 1EG2 + 4Epr + EV

Instn 1EG1 + ES 1EG1 + ES

IVrfy (i + 1)EG1 + 2EG2 + 3Epr + EV (i + 1)EG1 + 2EG2 + 4Epr + EV

Table 2 Element size of the CBS schemes

Element Size

Basic CBS scheme Verifiably encrypted CBS scheme

Template signature σT κ + 2|G1| + 2|Z p| + SSAS κ + 4|G1| + 2|Z p| + SSAS

Instantiation signature σi κ + (i + 2)|G1| + (i + 2)|Z p| + SSAS κ + (i + 4)|G1| + (i + 2)|Z p| + SSAS

Delegation δi SSAS SSAS

4.4 Efficiency analysis

The computation costs of the basic CBS and verifiably
encrypted CBS schemes are summarized and compared in
Table 1 in terms of exponentiation and pairing, the two
types of time-consuming computation. In the table, EG1 ,
EG2 and Epr denote the evaluation cost of exponentiation
over group G1 and G2, and pairing e, respectively. We use
EK , ES and EV to represent the cost of SAS.KeyGen,
SAS.SASign and SAS.SAVrfy, respectively. The effi-
ciency of the setup algorithm depends on the maximum
template size d, that is, it takes d exponentiations over group
G1 in the basic CBS scheme since ui = uα

i−1, while the
verifiably encrypted CBS scheme incurs one more exponen-
tiation in computing yA. Both the template signing algorithm
and instantiation signature verification algorithm require a
linear number of exponentiations, with the multiple being
the template size s and the proxy number i of {P1, . . . , Pi },
respectively.

As shown in Table 2, in both the basic and verifi-
ably encrypted CBS schemes, the template signature σT
has constant size, which consists of one κ-bit identifier
idT , two/four group elements of G1, two values in Z∗

p
and one signature from the underlying sequential aggre-
gate signature scheme. Here, the template length � is treated
as an element of Z∗

p. Two additional elements of G1 are
introduced by C in the verifiably encrypted CBS scheme.
Compared to σT , the instantiation signature σi contains
additional elements {h̄ j , ω̄ j : 1 ≤ j ≤ i} that are
accumulated from P1 to Pi . Finally, every delegation is
effected with only one sequential aggregate signature in both
schemes.

5 Extensions

In this section, we extend the basic CBS scheme to sup-
port other practical application scenarios. To avoid repeating
the formal models and corresponding constructions, we only
present brief discussions focusing on the differences from
basicCBS.Note that these extensions can be further extended
into verifiably encrypted counterpart schemes.

5.1 Cascade-and-designated-instantiable blank
signature

In basic CBS, each proxy in the delegation chain has total
freedom to not only create an instantiation, but also nar-
row his successor’s choices. For example, he may choose
nothing and pass the received instantiation intact to his suc-
cessor, or exclude some choices and send down the remain
ones. In certain applications, each proxy should possess only
limited instantiation capability; in particular, the originator
should be able to designate which proxy along the chain
is to instantiate specific fields in the template. The desig-
nated fields associated with different proxies are disjoint.
To support such applications, we extend the basic CBS to
cascade-and-designated-instantiable blank signature as for-
malized below.

– Setup(κ, d) → pp: The same as in Sect. 3.1.
– KeyGen(κ,pp) → (pk, sk): The same as in Sect. 3.1.
– TSign(T,pp, sk0,PKn) → (σT , δ): On input a tem-
plate T, public parameters pp, the originator’s private
key sk0 and public keys PKn , the template signing algo-
rithm, which is carried out by the originator, outputs a
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signature σT for the template and a delegation δ for all
proxies. A unique identifier idT for template T is gener-
ated and embedded in σT .

– TVrfy(T, σT ,pp,PKn) → 0/1: On input a templateT,
template signature σT , public parameters pp and public
keys PKn , the template signature verification algorithm,
which is carried out by any verifier (particularly P1), out-
puts “1” if σT is valid for T under pk0 or “0” otherwise.

– Instn(Mi−1, Mi , σi−1, δ,pp, ski ,PKn) → σi : On
input proxy Pi−1’s instantiation Mi−1, proxy Pi ’s instan-
tiationMi , instantiation signatureσi−1 producedby Pi−1,
delegation δ, public parameters pp, Pi ’s private key ski
and public keys PKn , the instantiation algorithm, which
is carried out by Pi , outputs an instantiation signature σi
for Mi if both σi−1 and δ are valid. Here, for 1 ≤ i ≤ n,
Mi is a subset ofMi−1,M0 = T, and σ0 = σT .Mi−1\Mi

contains all the choices that are excluded by proxy Pi .
– IVrfy(Mi , σi ,pp,PKn) → 0/1: On input instantia-
tion Mi , instantiation signature σi , public parameters pp,
and the public keys PKn , the instantiation signature ver-
ification algorithm, which is carried out by any verifier
(particularly Pi+1), outputs “1” if σi is valid forMi under
PKi , which alsomeans that the template and instantiation
signatures σ0, . . . , σi−1 are all verified, or “0” otherwise.

The security model of cascade-and-designated-instan-
tiable blank signatures is similar to that of basic CBS, with
the following revision to the correctness requirement. The
security against originator requirement is as in Definition
2, except there is no Case 2 in the adversary’s output. The
security against proxies property follows Definition 3.

Definition 7 (Correctness) A cascade-and-designated-inst-
antiable blank signature scheme is correct if, for a given
κ ∈ N, any maximum template size d ∈ N, any pp ←
Setup(κ, d), any (pki , ski ) ← KeyGen(κ,pp) of origi-
nator P0 and proxies P1, . . . , Pn , and any template T, the
following conditions hold:

– TVrfy(T, σT ,pp,PKn) = 1, where σT is generated as
(σT , δ) ← TSign(T,pp, sk0,PKn).

– IVrfy(Mi , σi ,pp,PKn) = 1 for every i ∈ [1, n],
where σi ← Instn(Mi−1, Mi , σi−1, δ,pp, ski ,PKn).

– The delegation δ generated by TSign(T,pp, sk0,PKn)

is validated to be true by all proxies.
– Every proxy has only instantiation rights on the desig-
nated exchangeable fields.

We proceed to present a construction. For a given template
T = {Ti = {mi,1, . . . ,mi,si } : 1 ≤ i ≤ �}, each exchange-
able field Ti has an associated proxy Piu . To simplify the
notation, we associate the fixed fields with originator P0.
The template is encoded in the form:

E ′(T) =
�∏

i=1

∏

m∈Ti
(x + H(idT ‖m‖i‖Piu )), (14)

where idT is an unique identifier of T, and H : {0, 1}∗ →
Z∗
p is a collision-resistant hash function. In the system, the

template should be transmitted in the form T = {(Ti , Piu ) :
1 ≤ i ≤ �}, where Piu can be either an identity or a public
key. Instantiations are encoded and transmitted in a similar
way as the template.

– Setup(κ, d): The same as in Sect. 3.2.
– KeyGen(κ,pp): The same as in Sect. 3.2.
– TSign(T,pp, sk0,PKn): Randomly choosing a unique

identifier idT ∈R {0, 1}κ , carry out the following steps.

– Compute ψT (x) = E ′(T) ∈ Z p[x] and a commit-
ment C as in Eq. (2).

– Pick a randomvalue a ∈R Z∗
p, and compute awitness

ω as in Eq. (3).
– Invoke

τT ← SAS.SASign(idT ‖�‖s1‖ . . .

‖s�‖C‖a‖ω‖pk1, ∅, sk0)

Let PT = (idT , �, s1, . . . , s�,C, a, ω) be the public
parameters associated with template T. Thus, σT =
(PT, τT ) and δ = (τT ). Here, s = ∑�

i=1 si ≤ d.
– TVrfy(T, σT ,pp,PKn): Compute ψT (x) = E ′(T) ∈

Z p[x]. Check Eq. (4) and the following condition:

SAS.SAVrfy(idT ‖�‖s1‖ . . .

‖s�‖C‖a‖ω‖pk1, τT , pk0)
?= 1

(15)

If both equations hold, output “1”; otherwise, output “0”.
– Instn(Mi−1, Mi , σi−1, δ,pp, ski ,PKn): Construct a
pattern vector si = (si,1, . . . , si,�), where si, j = |Tj |
for each field Tj in Mi . Specifically, si, j = 1 for all
fixed fields, si, j equals to the number of choices in
instantiated exchangeable fields Tj presented to proxies
{P1, . . . , Pi }, and si, j = s j otherwise. Compute ψ̄i (x) =
E ′(Mi−1\Mi ) ∈ Z p[x]. Then calculate h̄i = ψ̄i (a) and

ω̄i = ω̄
h̄i
i−1, where ω̄0 = g. Invoke

τi ← SAS.SASign(idT ‖h̄i‖ω̄i‖si‖pki+1, τi−1, ski )

Append (h̄i , ω̄i ) to PT . Thus, σi = (PT, τi ). It is not
necessary to includevector si in PT , since it canbe recov-
ered from Mi and {s1, . . . , s�} by a verifier (including
proxy Pi+1).
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– IVrfy(Mi , σi ,pp,PKn): Compute ψi (x) = E ′(Mi ) ∈
Z p[x] and hi = ψi (a). Construct

m0 = idT ‖�‖s1‖ . . . ‖s�‖C‖a‖ω‖pk1

and for every j ∈ [1, i] construct

m j = idT ‖h̄ j‖ω̄ j‖s j‖pk j+1

LetMi = (m0,m1, . . . ,mi ). Check Equalities (6) and (7).
If both equalities hold, output “1”; otherwise, output “0”.

The security results below follow the derivations in
Sect. 3.3.

Corollary 1 The cascade-and-designated-instantiable blank
signature scheme proposed above is correct.

The fourth correctness requirement, i.e., each proxy
can only instantiate the designated exchangeable fields, is
achieved by introducing pattern vector si . If some proxy
Pi makes choices beyond his designated fields, the resul-
tant pattern vector would differ from the one constructed by
the verifier according to the originator’s specification. Thus,
the proxy’s dishonest behavior can be detected by validating
the sequential aggregate signature σi .

Corollary 2 Suppose H is a collision-resistant hash func-
tion. The cascade-and-designated-instantiable blank signa-
ture scheme proposed above is secure against originator,
assuming the underlying sequential aggregate signature
scheme SAS and polynomial commitment scheme are
secure.

Corollary 3 Suppose H is a collision-resistant hash func-
tion. The cascade-and-designated-instantiable blank signa-
ture schemeproposed above is secure against proxies, assum-
ing the underlying sequential aggregate signature scheme
SAS and polynomial commitment scheme are secure.

5.2 Cascade-and-freely-instantiable blank signature

Consider a scenario where the originator and proxies do
not specify their successors. This allows anyone to generate
an instantiation from an existing instantiation. The solu-
tion, which may be seen as a relaxed version of basic CBS,
involves removing pk1 and pki+1 from Algorithms TSign
and Instn, respectively. We note that in the construction,
SAS cannot be substituted by an aggregate signature scheme
AS . The reason is not only that the instantiation order needs
to be preserved, which is realized by SAS , but also because
AS has a different aggregate mechanism that requires all
the instantiation signatures to be produced and combined
together.

5.3 Cascade-instantiable blank signature with template
privacy

In the original blank signature scheme of Hanser and Sla-
manig [19], the template satisfies indistinguishability prop-
erty against an external adversary. That is, in the challenge
phase of the security game for template privacy, the chal-
lenger randomly chooses two distinct templates sharing some
common fields, signs and gives the templates and signa-
tures to the adversary. The adversary is then allowed to
issue instantiation queries on the common fields. The scheme
ensures that the adversary cannot distinguish between the two
challenge template signatures at the end of the game.

It is easy to adapt our basic CBS scheme to provide such
template indistinguishability, as follows. InTSign, the orig-
inator P0 picks a random value ρ ∈R Z∗

p for each template,
raises bothC andω to the power of ρ, and inserts gρ into PT .
In this sense, ρ is a template-dependant private key, which
should be known to the highest level proxy P1. Similar to
[19], the template signature in the resultant scheme is pri-
vately verifiable by proxy P1. When the scheme is applied
with just the originator and one proxy, it achieves exactly
the same functionality of the original scheme in [19]; hence,
our scheme is strictly the more general between the two. At
the same time, our scheme allows the signatures of template
and instantiation(s) to be sequentially aggregated and veri-
fied concurrently, which ismore efficient than verifying them
separately as in [19].

5.4 Cascade-instantiable blank signature secure against
key exposure

Schuldt et al. [41] investigated multi-level proxy signatures
with security against proxy-key exposure. Applying their
scheme to generate the delegation chain leads to a CBS
scheme that enjoys the same security property. However,
this strong security property also brings with it some disad-
vantages. For example, the delegation procedure necessitates
interactions among the users.Moreover, since the delegations
are separately generated, the template/instantiation signature
sizes increase correspondingly.

5.5 Identity-based cascade-instantiable blank signature

In identity-based (ID) crypto-systems, a user’s identity is
his public key. These schemes could alleviate the burden
of maintaining public key certificates. Many cryptographic
primitives in identity-based setting have been proposed to
date. In an ID-based CBS model, algorithm KeyGen would
be replaced by a key extraction algorithm KeyExt which
takes a user’s identity and produces a private key. All the pub-
lic keys in algorithms TSign, TVrfy, Instn and IVrfy
would then be replaced by the corresponding user identi-
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ties. Together with an identity-based sequential aggregate
signature scheme such as the one in [6], we can derive an
identity-based CBS construction.

6 Conclusion

Blank signature schemes possess the notable feature that a
proxy has total freedom to create an instantiation of a tem-
plate of exchangeable fields under the originators’s explicit
regulation, with the originator and proxy signing the tem-
plate and instantiation respectively. This paper proposed a
basic cascade-instantiable blank signature (CBS) to cater to
more complex application scenarios involving a sequence
of proxies. Here, each proxy in a delegation chain creates
from her direct predecessor’s template/instantiation a new
instantiation that narrows the successors’ choices for the
exchangeable fields. We also formalize a new notion of ver-
ifiably encrypted CBS that provides for an arbitrator in case
of dispute with the originator. Both CBS constructions are
built on polynomial commitment and sequential aggregate
signature. The constructions are formally proved to be secure
against collusion attacks, and enjoy linear computation costs.
We also describe several extensions of the basic CBS to cater
to additional real-world applications.

In creating an instantiation, the proxymakes choices in the
exchangeable fields in her direct predecessor’s template or
instantiation. Thus, each instantiation is in fact a “subset” of
the template or previous instantiations. This paper, following
[19], encodes the template and instantiations as polynomials
in such a way that the subset relationship is transformed into
a multiplicative sub-polynomial. Accordingly, the polyno-
mial commitment scheme [27] is employed to ensure that
the relationship is preserved. It would be interesting to find
other secure and more efficient ways to capture the subset
relationship, which may require different template encoding
approaches. Another avenue for future work is to remove
the underlying polynomial commitment scheme which is
designed specifically on symmetric bilinear groups, and real-
ize CBS over common cyclic groups or asymmetric bilinear
groups.
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