View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Institutional Knowledge at Singapore Management University

Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

6-2018

Verifiably encrypted cascade-instantiable blank
signatures to secure progressive decision
management

Yujue WANG
Singapore Management University, yjwang@smu.edu.sg

Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

Robert H. DENG

Singapore Management University, robertdeng@smu.edu.sg

DOI: https://doi.org/10.1007/s10207-017-0372-2

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Databases and Information Systems Commons, and the Information Security

Commons

Citation

WANG, Yujue; PANG, Hwee Hwa; and DENG, Robert H.. Verifiably encrypted cascade-instantiable blank signatures to secure
progressive decision management. (2018). International Journal of Information Security. 17, (3), 347-363. Research Collection School
Of Information Systems.

Available at: https://ink.library.smu.edu.sg/sis_research/3861

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of

Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

https://core.ac.uk/display/145236728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/s10207-017-0372-2
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3861&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3861&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3861&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3861&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Published in International Journal of Information Security, 2017 April, Advance Online, pp 1-17.

http://doi.org/10.1007/s10207-017-0372-2

Verifiably encrypted cascade-instantiable blank signatures
to secure progressive decision management

Yujue Wang! - HweeHwa Pang! - Robert H. Deng!

Abstract In this paper, we introduce the notion of verifiably
encrypted cascade-instantiable blank signatures (CBS) in a
multi-user setting. In CBS, there is a delegation chain that
starts with an originator and is followed by a sequence of
proxies. The originator creates and signs a template, which
may comprise fixed fields and exchangeable fields. There-
after, each proxy along the delegation chain is able to make
an instantiation of the template from the choices passed down
from her direct predecessor, before generating a signature
for her instantiation. First, we present a non-interactive basic
CBS construction that does not rely on any shared secret
parameters among the users. In verifying an instantiation
signature, all the preceding instantiation signatures leading
back to the template signature are also verified concurrently.
It is formally proved to be secure against collusion attacks by
the originator and proxies. Second, we investigate verifiably
encrypted CBS to provide fairness between the originator and
proxies, where the security model is stricter than basic CBS
in that the adversary may also collude with the arbitrator. Effi-
ciency analysis shows that the proposed CBS schemes enjoy
linear computation costs. Finally, we extend our scheme to
CBS supporting designated instantiations, free instantiations,
privately verifiable template signature, identity-based CBS,
as well as CBS secure against proxy-key exposure.

B Yujue Wang
yjwang @smu.edu.sg

HweeHwa Pang
hhpang @smu.edu.sg

Robert H. Deng
robertdeng @smu.edu.sg

School of Information Systems, Singapore Management
University, 80 Stamford Road, Singapore 178902, Singapore

Keywords Digital signature - Blank signature - Proxy
signature - Sanitizable signature - Redactable signature -
Verifiably encrypted signature - Optimistic fair exchange -
Delegation chain

1 Introduction

Many real-world applications require signatures to be
sequentially generated by users in a way that the subset rela-
tionship among messages should be preserved and verifiable.
For example, in some XML applications, the XML data need
to pass through many entities with security guarantees of
integrity and authenticity [9,31,42]. Each entity in the pro-
cess is able to change the data without interacting with any
predecessor, while enabling all the changes to be verified by
the successors. In particular, there may be privacy-sensitive
components in the XML data that cannot be accessed by
lower level entities. In enforcing access control, these com-
ponents should be excluded from the data at some stage but
still be verifiable by the successors without recovering the
contents.

In another example, a public electronic ordering or pro-
curement system lets users process purchase orders in turn,
thus improving procurement efficiency while saving finan-
cial and time costs. Public verifiability of the orders would
make the procurement procedure transparent and deter cor-
ruption. In the system, the supplier first prepares a structured
template according to the buyers’ purchasing needs, which
contains all the available items along with types, performance
parameters, prices, etc. The supplier signs this template and
gives the (template, signature) pair to the purchasing man-
ager. The manager makes his choices on some key items,
signs his decision and forwards the table to an administra-
tor. If the administrator is convinced that the manager has

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-017-0372-2&domain=pdf

signed on a subset of the original template, he issues an elec-
tronic order by setting the remaining fields in the template
and signs the final decision. This final electronic order can be
publicly verified on whether it is a subset of the one passed
down through the workflow. In case of a dispute among the
parties, an arbitrator who is normally offline may intervene
to provide a resolution based on the verification information.

In the literature, optimistic fair exchange protocols (OFE)
[2,4] and verifiably encrypted signatures (VES) [8,28] allow
users to exchange digital items in a fair manner with the help
of a trusted adjudicator. Although many OFE/VES schemes
have been proposed in multi-user settings [20,40,45,46],
none of them fits our requirement to support a series of
modifications as an item passes from a supplier to a list
of buyers. Additionally, we need the subset relationship
between instances of the item to be verifiable, which is
beyond the capability of existing OFE/VES.

Blank digital signature scheme, introduced by Hanser and
Slamanig [19], meets our requirements partially. The scheme
allows an originator to sign a template, comprising fixed
fields as well as exchangeable fields with multiple choices.
Subsequently, a proxy can set the choices for the exchange-
able fields to derive an instantiation of the template, before
affixing to it a signature. The scheme requires the origina-
tor and proxy to share a secret parameter, that is, a template
dependent private key, which is chosen randomly by the orig-
inator. The validity of the template signature can only be
verified by the proxy, while the instantiation signature may be
publicly verified. Applied to the aforementioned electronic
procurement example, the scheme would require the pur-
chasing manager to make all the decisions in producing the
electronic order, since only one proxy can derive an instan-
tiation from a template. Thus, the original blank signature
scheme is not sufficient to support real-world applications,
like the those described above, that involve a hierarchy of
buyers.

In this paper, we focus on a setting where a template
given by an originator may be instantiated by a succession
of proxies. Formally, a template is a set T of fields 7; for
1 < i < ¢, with each T; allowing choices m; 1, ..., m;;
hence T = {T; = {m;1,...,mig} 1 <i < £}. The num-
ber of fields £ = |T| is the template length, while the total
number of choices across all fields is the template size s, i.e.,
s = Zle s; where s; = |T;|. If s; = 1, then T; is a fixed
field in the template; otherwise, 7; is an exchangeable field.

For example, suppose that the originator has a template
T = {{a}, {b1, b2, b3, bs}, {c}, {di, d2, d3}}; here, £ = 4,
s1=s3=1,5 =4,s4 =3 and s = 9. Thus, 7] = {a} and
T3 = {c} are fixed fields in T, while 7> and 74 are exchange-
able fields. The first proxy P; may partially instantiate T as
M, = {{a}, {b2}, {c}, {d1, d>, d3}}, making a choice for T
among {b1, b>, b3, ba} while leaving Ty = {dy, d», d3} avail-
able to proxy P,. Alternatively, P may exclude {b,, b3, d;}

from the template after which P, further selects {bs4, d2} to
p;.

Similar to [19], we encode a template T as a polynomial
on variable x:

4
e =[] [] &+ Hédrlmliy, M

i=1meT;

where idr is an unique identifier of T, and H : {0, 1}* — Z;‘,
is a collision-resistant hash function. Instantiations of the
template are encoded in the same way.

1.1 Our contributions

In this paper, we present a suite of cascade-instantiable blank
signature schemes (CBS). Basic CBS supports multi-level
delegations from an originator Py to a chain of n proxies
Py, ..., P,. The scheme provides strong security guarantee,
in that the originator cannot collude with proxies to forge an
instantiation of another proxy, and the proxies cannot forge
a template signature even when all of them collude. We also
introduce an enhanced, verifiably encrypted CBS guaran-
teeing fairness between an originator Py, multiple proxies
{P1,..., P,}, and an arbitrator. The verifiably encrypted
CBS additionally provides security against more powerful
attacks involving collusion with the arbitrator. CBS is public
verifiable, eliminating the need for any shared secret param-
eter among the users. Our CBS formulation is strictly more
general than the original blank signature scheme of [19]. We
obtain the following results.

Framework and security model We formalize the frame-
works of basic CBS and verifiably encrypted CBS. In basic
CBS, an originator prepares a structured template with fixed
fields as well as exchangeable fields consisting of multiple
choices, signs it and delegates instantiation rights to a proxy.
The proxy makes choices on any exchangeable fields in the
template, signs the instantiation, and delegates to the next-
level proxy the capability to further instantiate the remaining
exchangeable fields. In validating an instantiation signature,
all instantiation signatures in higher levels tracing back to the
template signature are verified in a batch and the verifier is
not required to know the content in the original template. In
the formal security model, security against originator and
security against proxies capture collusion attacks by mali-
cious originator and proxies.

Verifiably encrypted CBS introduces an arbitrator who
only intervenes in case there are disputes between the origi-
nator and proxies. In addition to the provisions in basic CBS,
the security model of verifiably encrypted CBS considers
more severe collusion attacks involving the arbitrator.

Non-interactive constructions We present non-interactive
and general constructions for the basic and verifiable encr-

ypted CBS. From a technical standpoint, a polynomial
commitment scheme is employed to guarantee the relation-
ship between a template, its instantiations and excluded
choices. A challenge in CBS construction is that the subset
relationship between instantiations requires the underlying
polynomial commitment to be multiplicatively homomor-
phic, whereas the existing scheme in [27] is only additively
homomorphic. We circumvent this problem by introduc-
ing an accumulating power ®; of evaluations of excluded
polynomials for every proxy. The CBS constructions are non-
interactive in the sense that every proxy operates without
interacting with the originator, its predecessors or succes-
sors. We employ sequential aggregate signature as a building
block, which not only reduces the signature size by combin-
ing the template signature and instantiation signatures, but
also ensures the correct ordering of these signatures. Our
constructions are general and may combine with any avail-
able sequential aggregate signature scheme, although one
with linear complexity would be desirable.

Extensions We adapt our basic CBS scheme to support five
other practical application scenarios. In the first extension,
the originator is empowered to designate the exchangeable
fields to be instantiated by every proxy in the chain. The
second variation is cascade-and-freely-instantiable blank sig-
natures, where the originator and proxies are not required to
delegate to specific successors. Instead, at every step, any-
one can be a proxy to further instantiate the template obtained
from his predecessor. The third adaptation, which makes the
template signature privately verifiable by the highest level
proxy, offers all the security properties and functionalities of
the original blank signature scheme of [19] while being more
general and more efficient. The fourth variation employs the
multi-level proxy signature scheme of [41] to generate del-
egations, resulting in a CBS scheme that is secure against
key exposure but sacrifices non-interactivity. The fifth exten-
sion is CBS employing identity-based sequential aggregate
signature that eliminates the burden of managing public key
certificates.

1.2 Related work

Optimistic fair exchange (OFE) and verifiably encrypted
signatures (VES) OFE allows two users to exchange their
digital items in a fair way such that either both of them suc-
ceed in obtaining the other’s item or both fail [1,2,4]. Usually,
fairness is achieved through a trusted third party, e.g., an arbi-
trator/adjudicator. Similarly, in VES [8,38], a party encrypts
her signature for some message using the public key of some
trusted adjudicator, and sends the encrypted signature to the
receiver. Subsequently, if the sender refuses to reveal her
signature, the adjudicator may intervene to recover the sig-
nature. One notable way OFE/VES differs from our problem
is that, in the former, the signatures of the exchanging parties

are on different items, and there is no verifiability of subset
relationship between messages.

Huang et al. [23] introduced ambiguous OFE which pre-
vents the verifier from abusing the sender’s partial signature.
Zhang et al. [49,50] studied OFE and VES in an identity-
based setting. Huang et al. [25] investigated the relationship
of OFE security between single-user and multi-user settings.
From time capsule signatures, Huang et al. [24] presented
a generic OFE construction in the standard model. Huang
et al. [21] introduced an ambiguous OFE protocol without
random oracles, where the sender interacts with the receiver
in generating a partial signature. Draper-Gil et al. [16] inves-
tigated OFE in a setting with active intermediaries. Huang
et al. [22] enhanced OFE security so that the third party can-
not learn the resolved signatures. Recently, Hanser et al. [18]
introduced a block-box construction of VES from structure-
preserving signatures on equivalence classes.

Blank digital signatures Hanser and Slamanig [19] intro-
duced blank digital signatures in a single proxy setting.
Given a template and the template signature generated by
an originator, only the designated proxy can create a signa-
ture on an instantiation of the template. The proxy’s behavior
is restricted to choices for exchangeable fields, which are
explicitly specified in the message template. In their con-
struction, fixed fields and exchangeable fields are encoded in
the same manner. Derler et al. [15] noted that all fixed fields
can be aggregated together without compromising security;
that is, the fixed fields can be concatenated into one string.
This optimizes the original scheme of [19] by reducing the
degree of the encoded polynomial.

Sanitizable signatures In sanitizable signature, introduced
by Ateniese et al. [3], a signer produces a signature on a
message with some mutable portions. A designated proxy is
able to replace the mutable portions by any elements in the
message space, without invalidating the signature. Although
sanitizable signature bears some similarities with blank sig-
nature in that both involve designated proxy and mutable
portions/exchangeable fields, there are obvious differences.
First, sanitizable signature emphasizes the replaceability of
mutable portions and the proxy’s choices can be arbitrary
over the entire message space. Second, the proxy in sanitiz-
able signature has only rights on data replacement and is not
required to sign the modified message. Note that Klonowski
and Lauks [29] improved sanitizable signatures by limiting
the proxy’s behavior, where the available choices of mutable
portions are predefined strings.

Yuen et al. [47] outlined the properties of existing sanitiz-
able signatures, such as different types of state controllability,
sanitized message, designated sanitizer and transparency,
and showed the relationships between some of these proper-
ties. Brzuska et al. [10] investigated accountability toward

signer and proxy in sanitizable signature schemes, which
was further refined by Canard and Jambert [12] with the
aim of limiting the proxy’s capability. The notion of trap-
door sanitizable signature introduced by Canard et al. [13]
allows a signer to specify multiple proxies at any time, and
a generic construction was given by Yum et al. [48]. Bao
et al. [5] introduced hierarchical trapdoor sanitizable signa-
ture and presented a generic construction from hierarchical
identity-based chameleon hash function. Lai et al. [32] uni-
fied accountability and trapdoor properties in sanitizable
signature. Brzuska et al. [11] introduced unlinkability in san-
itizable signature which prevents outsiders from associating
sanitized message-signature pairs to the original message. A
typical application of sanitizable signatures in web-service-
enabled business processes was investigated in [42].

Redactable signatures Johnson et al. [26] first investigated
redactable signature which focuses on the removability of
a signed message. Informally, anyone who holds a valid
message-signature pair is able to generate a signature on
a substring of the original signed message by replacing
certain parts of the message with a special symbol. There-
fore, a redactable signature would not leak the removed
parts except for their length. Chang et al. [14] improved
redactable signature also hides the length of the removed
parts. Brzuska et al. [9] studied redactable signatures specifi-
cally for tree-structured data. Kundu et al. [30] investigated a
general case which captures redactability over regular strings,
trees, graphs and forests. Their scheme possesses leakage-
free property so that the redacted parts cannot be inferred by
others. Lim et al. [34] presented a more efficient redactable
signature construction compared to existing ones based on
pairings, where the signature size is not dependent on the
number of blocks of a given message. Recently, Pohls and
Samelin [39] further enhanced redactable signatures to make
them updatable, i.e., the signer can add new blocks to signed
messages.

Proxy signatures Mambo et al. [37] introduced proxy sig-
natures and classified delegations in proxy signatures into
three types, i.e., full delegation, partial delegation and dele-
gation by warrant. Since then, delegation by warrant has been
commonly adopted in proxy-related schemes, where a signer
specifies a proxy’s legal behavior, which usually contains
security policy descriptions, in a warrant. Many studies have
been conducted on this topic to support different properties
and applications, such as delegation delivery without using
a secure channel [33], one-time proxy signatures [44], fully
hierarchical proxy signatures [36], security against proxy-
key exposure [41], delegator anonymity [17] and security
analyses of existing schemes [7,43]. Proxy signature differs
from blank signature in three aspects. First, a warrant in proxy
signature is usually an abstract description, while a template

in blank signature is very specific and has a strict structure.
Second, the delegator in a proxy signature scheme is only
required to produce a valid delegation, while the originator
in a blank signature scheme signs on a template in addition to
producing a delegation. Third, a warrant should be known by
a verifier for validating proxy signature, whereas the original
template should be hidden when verifying an instantiation
signature.

1.3 Paper organization

The remainder of this paper is organized as follows. Section 2
briefly recalls some preliminaries that will be used as building
blocks in our CBS constructions. We introduce the basic CBS
and formalize the corresponding security model in Sect. 3,
as well as propose a construction along with security proofs.
Section 4 introduces our verifiably encrypted CBS scheme,
formalizes the security model, presents a construction and
proves its security. Section 5 then discusses some possible
extensions of our basic CBS. Finally, Sect. 6 concludes the

paper.

2 Preliminaries
2.1 Sequential aggregate signature

A sequential aggregate signature scheme [35] consists of the
following four algorithms, where all the given messages and
public keys are ordered.

— Setup(x) — pp: On input a security parameter k € N,
the setup algorithm outputs public parameters pp.

— KeyGen(k, pp) — (pk, sk): On input security parame-
ter k € N and public parameters pp, the key generation
algorithm, which is carried out by each user, outputs a pair
of public/private keys (pk, sk).

- SASign((mi,...,mi—1), (pki, ..., pki—1),0i—1, m;,
ski, pp) — o;: On input a sequential aggregate signature
o;j_1 over messages (mjy, ..., m;_1) under distinct public
keys (pki, ..., pki—1), a message m;, a private key sk;
and public parameters pp, the sequential aggregate signing
algorithm, which is carried out by user P;, outputs signa-
ture o; for messages (my, ..., m;) under (pky, ..., pki).
Note that oy is set as empty.

- SAvVrty((my,...,m;), (pky, ..., pki),oi,pp) — 0/1:
On input a set of messages (my, ..., m;), public keys
(pk1, ..., pki), a sequential aggregate signature o; and
public parameters pp, the sequential aggregate signature
verification algorithm, which is carried out by a verifier,
outputs “1” if o; is valid for the given messages under the
given public keys, or “0” otherwise.

A sequential aggregate signature scheme is secure against
existential forgery [35] if no probabilistic polynomial-time
(PPT) adversary A can win the following security game with
non-negligible probability.

Setup Challenger C invokes Setup(k) with security param-
eter k to obtain public parameters pp. Next, the chal-
lenger runs KeyGen(k, pp) to create a pair of pub-
lic/private keys (pk, sk), and gives public information
pp and pk to A.

Queries Adversary A adaptively issues sequential aggre-
gate signature queries for messages of his choice under
public keys including pk. In each query, the adver-
sary submits a sequential aggregate signature o;_1 over
messages (m1,...,m;—1) under distinct public keys
(pki, ..., pki—1), and another message m. Here, i is at
most n, the maximum number of users. Challenger C
responds with a sequential aggregate signature o; over
(my,...,mj—1,m)under (pky, ..., pki_1, pk).

Output Adversary 4 outputs a sequential aggregate sig-
nature o]’ over (m, ..., m’j) under distinct public keys
(pki, ..., pk}), where some public key, say pk}*, must
be equal to pk. Also, j is at most n. Adversary A wins
the game if both the following conditions hold:

- SAVrfy((m},..
1;
- (mf, ...

, m’j*) has not been queried for a sequential

aggregate signature under (pk, ..., pk}*).

2.2 Polynomial commitment

Kate etal. [27] proposed an efficient polynomial scheme over
bilinear groups such that, for a given polynomial f(x) €
Zp[x], a committer can produce a polynomial commitment
C, along with a witness w; with respect to the polynomial
evaluation f(i) at some random point ;. With w; and C, a
verifier can check whether f (i) is indeed the evaluation of
f(x) at point i. Their scheme works as follows.

Suppose G1 = (g) is a cyclic group with prime order
p and efficient group operations. The group G is bilin-
ear if there exists a cyclic group G, with order p and an
efficient bilinear map ¢ : Gy x G; — G, with the fol-
lowing properties: (a) bilinearity: Yu, v € G1 and Va, b €
Z;, e(u,vb) = é(u, v)®; (b) non-degeneracy: é(g, g)
1.

— KeyGen(1*, d): Randomly pick a value « € Zj and

set the private key sk = «. Compute u; = g*’ for each

1 < j < d where d is the maximum polynomial degree.

Set the public key as pk = (¢, G, G2, p, &, U1, ..., Ug).
— Commit(pk, f(x)): Given a polynomial

deglf] '
fy=) fix/ mod p

j=0

with degree deg|[f] at most d, generate the commitment
as:

deg|f]

C = l_[ujf’
j=0

— WitGen(pk, f(x),i): Compute the polynomial

deglh]

h(x) = hjx!
j=0

_ S -ra

X —1

od p

which has degree deg[h] at mostd — 1. Produce the witness
as:

- VrfyEval(pk, C,i, f(i), w;): Check whether the fol-
lowing equality holds:

A~ ? a i A (i
é(C,g) = é(wi, g%/ghHeg, o)V

If so, output “1” which means that f (i) is indeed the eval-
uation of f(x) at point i; otherwise, output “0”.

3 Cascade-instantiable blank signature

In this section, we formulate the basic cascade-instantiable
blank signature and its security model. We then present a
basic CBS construction based on sequential aggregate signa-
tures and provide the security proofs.

3.1 Definitions and security model

Let the user setbe P = { Py, Py, ..., P,} and let PK; denote
the public keys of originator Py and proxies Py, ..., P;, i.e.,
PK; = (pko, pki1, ..., pki);the subscript i denotes the hier-
archical position of proxy P;. A chain of instantiations of a
template is valid only if each instantiation preserves the fixed
fields in its predecessor, while maintaining or narrowing the
choices in each exchangeable field. In this paper, we do not
explicitly carry out semantic/sanity checks on the choices
in all fixed and exchangeable fields, since their validity and
the above mentioned relationship among template, instantia-
tions and excluded choices can be verified in the verification
procedures.

Formally, a basic cascade-instantiable blank signature
scheme consists of the following algorithms:

— Setup(k,d) — pp: On input a security parameter
k € N and the maximum template size d € N, the setup
algorithm, which is carried out by the system manager,
generates public parameters pp.

— KeyGenl(k, pp) — (pk, sk): On input security parame-
ter k € N and public parameters pp, the key generation
algorithm, which is carried out by each user in P, outputs
a pair of public/private keys (pk, sk).

— TSign(T, pp, sko, pk1) — (or,81): On input a tem-
plate T, public parameters pp, the originator’s private key
sko and proxy P;’s public key pki, the template signing
algorithm, which is carried out by the originator, outputs
a signature or for the template and a delegation &; for
P;. A unique identifier idr of template T is generated
and embedded in o7.

- ™vrty(T, or, pp, PK;) — 0/1: Oninput a template T,
template signature o, public parameters pp, the origina-
tor’s public key pko and proxy P;’s public key pki, the
template signature verification algorithm, which is car-
ried out by any verifier (particularly P;), outputs “1” if
or is valid for T under pko or “0” otherwise.

- Instn(M;-1, M;, 0i—1, i, PP, ski, PK;+1) — (oi,
8i+1): On input proxy P;_1’s instantiation M;_1, proxy
P;’s instantiation M;, instantiation signature o;_; pro-
duced by P;_1, delegation §; for P;, public parameters
pp, proxy P;’s private key sk; and a set of public keys
{pko, ..., pkit+1}, the instantiation algorithm, which is
carried out by P;, outputs an instantiation signature o;
for M; and a delegation §; 41 for P,y if both o;_1 and §;
are valid. Here, M; is a subset of M;_{ for1 <i < n,
My = T, and o9 = or. Where P; is the last proxy P,,
pkit1 and §; 4 are set to a special symbol L. Both o;
and §;4 should contain the current delegation §;.

— Ivrfy(M;, o;, pp, PK;+1) — 0/1: On input instantia-
tion M;, instantiation signature o;, public parameters pp,
and the public keys PK;; of originator Py and prox-
ies Py, ..., P41, the instantiation signature verification
algorithm, which is carried out by any verifier (partic-
ularly P;41), outputs “1” if o; is valid for M; under
PK;, which also means that the template and instanti-
ation signatures oy, . .., o;_1 are all verified, or outputs
“0” otherwise.

The identifier idr should be passed on from o7 to every
instantiation signature o; (1 < i < n), so as to bind the
instantiations to the template. We proceed to define formal
security model for basic CBS.

A basic CBS scheme is correct in the sense that the
template signature, all the instantiation signatures and all

delegations can be validated to be true if no user’s behav-
ior deviates from the scheme.

Definition 1 (Correctness) A basic CBS scheme is correct
if, for a given k¥ € N, any maximum template size d € N,
any pp < Setup(k, d), any (pk;, sk;) < KeyGen(k, pp)
of originator Py and proxies P, ..., P,, and any template
T, the following conditions hold:

- ™rfy(T, or, pp, PK|) = 1, where o7 is generated as
(or,61) < TSign(T, PP, sko, Pkl)

— Ivrfy(M;, o;, pp, PK;+1) = 1 for every i € [1,n],
where o; is generated as (o}, §j+1) <« Instn(M;_1,
M;, oi_1,6i, PP, ski, PK;11). This property not only
ensures that M; is a valid i-level instantiation of tem-
plate T, but also all the preceding instantiations leading
back to template T are valid.

— Every delegation §; (i € [1, n]) generated by TSign(T,
pp. sko, pk1) and Instn(M; 1, M;, 0; 1, 8;, PP, ski,
PK,) is validated to be true in the following instantia-
tion.

A secure basic CBS scheme should ensure that even when
originator Py colludes with all but one proxy Py, they can nei-
ther create an instantiation with a valid instantiation signature
for P, nor forge a delegation to P, ;. To capture this col-
lusion attack, in the following formal definition, we assume
that a PPT adversary A controls a corrupted set P’ = P\{ P, }.
The template identifier idr is included in all the signatures
and is not explicitly stated in the following security games.

Definition 2 (Security Against Originator) A basic CBS
scheme is secure against the originator if no PPT adversary
A, controlling the originator Py and all but one proxy Py, can
win the following game by interacting with a challenger C.

Setup Challenger C invokes Setup(k, d) with security
parameter ¥ and maximum template size d to obtain
public parameters pp. Next, the challenger initializes an
empty list £, runs KeyGen(k, pp) to create user Py’s
public/private keys (pky, sky), and gives public infor-
mation pp and pk; to A.

Queries Adversary A adaptively submits instantiation sign-
ing queries to C. In response to each query (M,_i,
My, 0x-1,87), the challenger validates o,_1 and 8,
then produces a pair (oy,07+1), returns (0y, 8741)
to adversary A and appends the tuple (M,_1, My,
On—1,0x,07,07+1) to L.

Since delegations are produced along with instantiation
signatures, delegation queries need not to be posed sep-
arately.

Output Adversary A outputs a tuple (M, 0, 8%) and
wins the game if any of the following cases occurs.

— Case 1: The pair (M}, o)) satisfies the conditions:
— M has not been requested in instantiation sign-
ing queries with (Mz_1, M}, 07_1,87) such
that ITVrfy(My_1, 0,—1, PP, PK;) = 1 and
8, is valid for Py ;
- Ivrfy(M}, ok, pp, PKyy1) = L.
— Case 2: The delegation (M7, 87 () (When m # n)
satisfies the conditions:
— The same as Case 1, i.e., M} has not been
requested in instantiation signing queries;
— 87, canbe validated to be true in Py 41 ’s instan-

tiation Instn.

A secure basic CBS scheme should ensure that even when
all the proxies collude, they cannot forge a valid template
signature or a delegation to P;. To capture this collusion
attack, in the following formal definition, we allow a PPT
adversary A to control all the proxies, that is, the controlled
user set is P’ = P\{Py}.

Definition 3 (Security Against Proxies) Abasic CBS scheme
is secure against proxies if no PPT adversary 4, controlling
all the proxies, can win the following game by interacting
with a challenger C.

Setup Challenger C invokes Setup(k,d) with security
parameter ¥ and maximum template size d to obtain
public parameters pp. Next, the challenger initializes an
empty list £, runs KeyGen(k, pp) to create originator
Py’s public/private keys (pko, sko), and sends the public
information pp and pkg to A.

Queries Adversary A adaptively submits template sign-
ing queries to C. Upon receiving a template T along
with some parameters from .4, challenger C produce a
pair (or, §1) which embeds the received parameters in
or. Then C returns (or, 81) to A and appends the tuple
(T, o7, 81) to L. As in Definition 2, delegation queries
need not be posed separately here.

Output Adversary A outputs a tuple (T*, o7+, §7) and wins
the game if any of the following cases occurs.

— Case 1: The pair (T*, o7x) satisfies
— T* has not been requested in template signing
queries;
- ™rfy(T*, or=, pp, PK;) = 1.
— Case 2: The pair (T*, 67) satisfies
— T* has not been requested in template signing
queries;
— The delegation 87 can be validated to be true in
Py’s instantiation Instn.

3.2 Basic CBS construction

In this section, we present a construction of basic CBS.
Suppose SAS = (Setup, KeyGen, SASign, SAVrfy)
denotes a secure sequential aggregate signature scheme. In
the construction, £(-) denotes the expanded expression of
the encoding polynomial (Formula 1) on the template and
instantiations.

— Setup(k, d): Oninput x and d, choose a bilinear pairing
¢: G| x G; - Gy where G| = (g) and G are cyclic
groups with prime order p. Randomly pick a value o €g
Z; and compute u; = g”" for each i € [1, d]. Choose
a collision-resistant hash function H : {0, 1}* — Z;.
Invoke pp’ < SAS.Setup(k). The public parameters
are pp = (¢, G1, Gy, p,ug = g, uy,...,uq, H, pp).

— KeyGenl(k, pp): Invoke (pk, sk) < SAS.KeyGen(k,
pp").

— TSign(T, pp, sko, pk1): Randomly picking a unique
identifier idr €g {0, 1}*, carry out the following steps.

— Compute y7(x) = £(T) € Z,[x] and acommitment
s)
c=[]u")
=0

where 1//?) denotes the Jj-th coefficient of {7 (x).

— Pick a random value a €g Z%, compute ¢(x) =

W and a witness

s—1
)
=]_[u?’ 3)

j=0

where ¢ denotes the j-th coefficient of ¢ (x).
— Invoke

7 < SAS.SASign(idr ||L||Cllallw| pki, &, sko)
Let PT = (idr, ¢, C,a, w) be the public parameters
associated with template T. Thus, o7 = (PT, t7) and
81 = (tr). Here, s = Zle si <d.

- T™vrty(T, or, pp, PK;): Compute ¢r(x) = E(T) €
Zp[x] and check the following equations:

~ ? A .
e(C’ g) =€(a),u1/ga) -e(g’g)‘/f'r(a) (4)
and

,
SAS.savrEy(idr || Cllallwl pki. tr, pko) =1 (5)

If both equations hold, output “1”’; otherwise, output “0”.

- Instn(M;_1, M;, 0i_1,d;, PP, ski, PK;;1): Compute
Yi(x) = EM;1\M;) € Zp[x], where M; 1\M;
denotes the set of choices excluded by P;. Then calculate
h; = ¥ (a) and @; = @?i], where @y = g. Invoke 1; <
SAS.sasign(idr||h;l|@;ll pki+1, Ti—1, ski). Append
(A, w;) to PT. Thus, o; = (PT, 1) and §;4+1 = (7;).
Notice that if an exchangeable field is delegated to proxy
P; 1, then all the corresponding choices should be con-
tained in M;, the instantiation of P;. Note that o; contains
a delegation chain from originator Py to proxy P;.

- IVrfy(M;, o;, pp, PK;41): Compute ;(x) = E(M;)
€ Zp[x] and h; = ¥ (a). Construct

mo = idr||£||Clallwll pki
and for every j € [1, i] construct
m; = idr|hjllo;llpkj+1

LetM; = (mg, my, ..
ties:

., m;). Check the following equali-

n N S i_l_[i=- Ay)hi
oC.e) L anse®y -2 [o a0
j=1
(6)

and

[[->

SAS.savrty(M;, 1, PK;)

—

(7
If both equalities hold, output “1”’; otherwise, output “0”.

Theorem 1 The basic CBS scheme proposed above is cor-
rect.

Proof We first consider the correctness of the template sig-
nature o7. For any given template T, its template signature is
associated with the commitment C and witness w of an eval-
uation at some point a €g Z; of the corresponding encoded
polynomial £(T), as well as a sequential signature 77. Equal-
ity (4) holds as shown in [27], which ensures both C and w
are generated on template T. The correctness of equality (5)
is directly determined by the underlying sequential aggregate
signature scheme SAS.

To prove the correctness of the instantiations and their
signatures, we need only to show that Equality (6) holds
since Equality (7) holds in the same way as Equality (5). In
fact, if all the proxies are honest, the following equality holds
for the i-th instantiation M;:

é(w, u1/g%) - é(g, J)lhi)
=eé(w,u1/g") e (g, g(m‘=1 h")hi)
=é(w, u1/g%) - é(g,)T @
=e(C.g)

Similarly, for the j-th (1 < j < i) instantiation, the follow-
ing equality holds:

Bk)hi
é(w,u1/g") e <g,5’1<'nk_1+1 k>)

= é((l), ul/ga) . é (g7 g(nIZ:l hk)(l_[;;:j+1 hk)hi)
=é(w,u1/g") - é(g, 9)V" W =e(C, g)

Multiplying respective sides of all these i equalities yields
Equality (7).

Since all delegations are in fact the sequential aggregate
signatures T;, their correctness are ensured by Equalities (5)
and (7). O

3.3 Security

Theorem 2 Suppose H is a collision-resistant hash func-
tion. The above proposed basic CBS scheme is secure against
originator, assuming the underlying sequential aggregate
signature scheme S AS and polynomial commitment scheme
are secure.

Proof Suppose there is an adversary A that, having control
of originator Py and all proxies except Py, breaks the basic
CBS scheme. We show that .4 can also break the underlying
sequential aggregate signature scheme.

Setup Challenger C initializes an empty query list £, and
proceeds as described in Definition 2.

Queries Adversary .4 adaptively issues instantiation signing
queries. Upon receiving a tuple (M;_1, My, 07—_1, 87)
from A, challenger C validates o,_; by running proce-
dure ITVrfy(My_1, 0x—1, PP, PKy). Since delegation
S 1s an element of o, _1, it does not need to be validated
separately. If o, is valid, the challenger invokes:

(O'n, 8TT+1) <~ InStn(MJ'[fla M]Tv 0—7'[719
87‘[1 pp’ Sk7T7PK7T+1)

returns (o, 87+1) to adversary .4, and appends the tuple
(My—1, My, 051,87, 0%, 87+1)to L. If o1 isinvalid,
C returns nothing.

In each query, .4 is allowed to choose an identifier idr and
a value a for the queried template T, but the challenger

will check the uniqueness of id7 . Thus, all the parameters
in PT;_1 € 0x_1,e.8,C,w,h; and w; (1 <i <), can
be computed by A using parameters pp. This captures
a strong case of attacks, where two queries on the same
template will be taken as different if distinct identifiers
are chosen by the adversary.

Output Adversary .4 wins the game by outputting a tuple
(M2, of, 8; +)- In the proposed scheme, delegation
8541 = 7t is an element of of = (PT}_|, h},

@}, 7). Thus, we only need to consider Case 1 of Def-

inition 2, that is, in the tuple (M}, o), M} has not

been requested in the form of (My_1, M}, 071, 687)

such that both ITVrfy(My_1, 0,—1, PP, PK;) = 1 and

Ivrfy (M}, o, pp, PK;41) = 1 hold. There should be

a random value a* € Zj which is chosen by .A. There

are two cases to consider.

— Case 1: IVrfy(M, 6x,pp, PK;4+1) = 1 holds,

where (M, 6;) is an already queried pair and M} #
M, . This covers the case where A can create a new
instantiation of some queried template. Since all of
C*, o*, h} and @] (1 < i < m) can be pub-
licly computed by A, we further distinguish between
two situations according to whether ¥ (x) = 1;], (x)
holds, where ¥} (x) = £(M}) and U (x) = E(My).
Situation one: ¥} (x) = U (x).
In this situation, M} and M,T should have the same
size, and their templates have the same length. Recall
that both v/ (x) and 1}7, (x) are constructed using a
hash function H. In fact, ¢ (x) = Y (x) can be
rewritten as the following equality:

[T TI &+HGarIm; %)

TieM; m} €Ty

= [T T1 &+ HdG@rm;b

f‘l-EMn l’h,‘j Gfl'v

To satisfy the equality, .A needs to break the second-
preimage resistance property of H with non-negligible
probability. Specifically, A must find distinct m;‘/ and
i, such that H (idy|lm} ||i*) = H(idr |, |17). As
H is collision-resistant, this situation cannot happen.
Situation two: ¥ (x) # ¥y (x).

In this situation, M and M = may have different sizes,
while their templates should have the same length.
Since both (M3, 6,) and (My, &,) satisfy Equality
(6), the following equality must hold:

hE = @) = Vr (@) = hy ®)

Equality (8) means that A is able to manipulate the
equation ¥y (x) — ¥r (x) = 0 such that a is aroot. To

achieve that, A must manipulate at least one input of
H in respect to M; that is, A has to find at least one
preimage of H containing m;; € M such that:

[T TI @+#Garim; %)
TheM: m* €T
1 I] 1
- I TI @+ #dGdrm; i) =0

f";eMﬂ rh,-j Ef'[?

Thus, A breaks the preimage resistance property of
hash function H.

— Case 2: Both M and o} are fresh. This case implies
that A successfully forges a valid sequential aggregate
signature with depth r 4 1, since all of C*, w*, hl* and
o? (1 < i =< m) can be computed by A using only
public parameters.

Combining the cases, adversary .4 can only output a valid
forgery with probability ¢ = &’ + %, where ¢" denotes the
success probability of attacking the underlying sequential
aggregate signature scheme. O

Theorem 3 Suppose H is a collision-resistant hash func-
tion. Our proposed basic CBS scheme is secure against
proxies, assuming the underlying sequential aggregate sig-
nature scheme SAS and polynomial commitment scheme are
secure.

Proof Suppose there is an adversary A that, having control
of all the proxies, breaks the basic CBS scheme. We show
that A can also break the underlying sequential aggregate
signature scheme.

Setup Challenger C initializes an empty query list £, and
proceeds as described in Definition 3.

Queries Adversary A adaptively submits template sign-
ing queries. Upon receiving a template T as well as
parameters (idy,a) from adversary A, challenger C
invokes (o7, 1) < TSign(T, pp, sko, pk1) using the
received parameters (idr, a). Then, C returns (o7, 81) to
A and appends the tuple (T, o7, ;) to L.

Ineach query, A is allowed to choose an identifier id7 and
a value a for the queried template T, but the challenger
will check the uniqueness of idr. Thus, the parameters
C and w can be computed by A using parameters pp.
This captures a strong case of attacks, where two queries
on the same template will be taken as different if distinct
identifiers are chosen by the adversary.

Output Adversary .4 wins the game by outputting a tuple
(T*, o+, 67). Since the delegation 87 = t7+ is an ele-
ment of o7+ = (PT™*, tr*) in the proposed scheme, we
only need to consider Case 1 of Definition 3, i.e., in the

tuple (T*, o), T* has not been requested in the form of
(T*, idy=, a*) such that TVr £y (T*, o7+, pp, PKj) = 1
holds. There are two cases to consider.

— Case 1: TVrfy(T*, 0, pp, PK;) = 1 holds, where

(T, o) is an already queried pair and idy+ # idj.
This covers the case where .4 can produce a forgery for
some queried template but with a different identifier.
Since C* and w* can be publicly computed by A, we
further distinguish between two situations according
to whether ¥*(x) = ¥ (x) holds, where ¥*(x) =
E(T*) and ¥ (x) = E(T).
Situation one: ¥*(x) = v (x). In this situation, T*
and T should have the same length and size. Recall
that both ¢*(x) and 1Z (x) are constructed using a hash
function H. In fact, y*(x) = &(x) can be rewritten
as the following equality:

[T II &+H#HGaImE ")
T eT* m* eTk
1 I] 1
= [T T &+ HGdzlmi, i)

TfET I’h,j GT[’.

To satisfy the equality, A needs to break the second-
preimage resistance property of H with non-negligible
probability. Specifically, A must find distinct m;‘i and
m;; such that H(idg||m7 [i*) = H(idj|m, 7). As
H is collision-resistant, this situation cannot happen.
Situation two: *(x) # ¥ (x).

In this situation, T* and T may have different sizes
but the same length. Since both (T*, 07) and (’]~I‘, o)
satisfy Equality (4), the following equality must hold:

V(@) = ¥ (@))

Equality (9) means that A is able to manipulate the
equation ¥*(x) — Il}(x) = 0 such that a is a root. To
achieve that, .4 must manipulate at least one input of
H in respect to T*; that is, A has to find at least one
preimage of H containing m;; € T* such that:

[T II @+H#HGdzm; 1)
ThieT* m} eTk
J
1 I1 @+ =HGdzmi;10) =0

TATGPE‘ rh,nt;
J 1

Thus, A breaks the preimage resistance property of
hash function H.

— Case 2: Both T* and o7+ are fresh. This case implies
that A successfully forges a valid sequential aggre-

gate signature with depth 1, since C* and w* can be
computed by A using only public parameters.

Overall, adversary .4 can only output a valid forgery with
probability ¢ = &'+ %, where ¢’ denotes the success probabil-
ity of attacking the underlying sequential aggregate signature
scheme. O

4 Verifiably encrypted cascade-instantiable blank
signature

This section extends the basic CBS scheme of Section 3 to
verifiably encrypted cascade-instantiable blank signatures.
In verifiably encrypted CBS, there is an arbitrator in addition
to a set P of originator and proxies. The originator encrypts
her signed commitment on the encoded template using the
public key of the arbitrator. This encryption not only pre-
serves verifiability of subset relationship between template
and instantiations, as in basic CBS, but also allows the arbi-
trator to intervene to recover the signed commitment of the
originator in case of dispute. If the originator does not cheat,
then the resolution of signed commitment by the arbitrator
should pass the verification using the originator’s parameters.

We define the framework and the security model of veri-
fiably encrypted CBS and then provide a construction along
with security proofs.

4.1 Definitions and security model

Formally, a verifiably encrypted CBS scheme comprises the
following algorithms:

— Setup(kx,d) — (ska, pp): On input a security param-
eter k € N and the maximum template size d € N, the
setup algorithm, which is carried out by the arbitrator,
outputs a private key sk4 and public parameters pp.

— UKReyGen(k,pp) — (pki,ski): On input security
parameter k € N and public parameters pp, the user key
generation algorithm, which is carried out individually by
the originator Py and proxies Py, ..., P,, outputs a pair
of public/private keys (pk;, sk;).

— TSign(T, pp, sko, pk1) — (o7, 81): The same as in
Sect. 3.1, where o7 contains an encrypted commitment
IT on the encoded template T.

- Tvrfy(T,or, pp,PK;) — 0/1: The same as in
Sect. 3.1.

— Instn(M;_1, M;, 0i_1, 8, PP, ski, PK;y1) —
(0i, 8i4+1): The same as in Sect. 3.1.

— Ivrfy(M;, i, pp, PK;+1) — 0/1: The same as in
Sect. 3.1.

— Resolve(ska, pp, PK{, T, o7) — C/ L: On input the
arbitrator’s private key sk4, public parameters pp, the

originator’s public key pko and proxy P;’s public key pki,
a template T and template signature o7, the resolution
algorithm, which is carried out by the arbitrator, outputs
the randomized commitment C for T if o7 is valid for T
under pkg or L otherwise.

A verifiably encrypted CBS scheme is correct in the sense
that the template signature, all the instantiation signatures, all
delegations and the resolved commitment can be validated
to be true if no user’s behavior deviates from the scheme.

Definition 4 (Correctness) A verifiably encrypted CBS
scheme is correct if, for a given ¥k € N, any maximum
template size d € N, any (sk4, pp) < Setup(k, d), any
(pki, ski) < UKeyGen(k, pp) of originator Py and prox-
ies Py, ..., P,, and any template T, the following conditions
hold:

— The first three conditions are the same as in Definition 1;

— The resolved commitment C <« Resolve(skga, Pp,
PK,, T, or) is valid for the encoded polynomial of tem-
plate T.

A secure verifiably encrypted CBS scheme should ensure
that even when originator Py colludes with the arbitrator and
all but one proxy Py, they can neither create an instantia-
tion with a valid instantiation signature for P, nor forge a
delegation to P4 1.

Definition 5 (Security Against Colluding Originator) A ver-
ifiably encrypted CBS scheme is secure against the colluding
originator if no PPT adversary A, controlling the originator
Po, the arbitrator and all but one proxy Py, can win the fol-
lowing game by interacting with a challenger C.

Setup With the public parameters pp outputted by .A, chal-
lenger C creates user Py ’s public/private keys (pky, sky)
and gives pky to A.

Queries As in Definition 2, adversary A adaptively submits
instantiation signing queries to challenger C.

Output Adversary A outputs a tuple (M, 0,57) and
wins the game under the same conditions as in Defini-
tion 2.

A secure verifiably encrypted CBS scheme should ensure
that even when all the proxies collude with the arbitrator,
they cannot forge a valid template signature or a delegation
to Pj.

Definition 6 (Security Against Colluding Proxies) A veri-
fiably encrypted CBS scheme is secure against colluding
proxies if no PPT adversary A, controlling all the proxies
and the arbitrator, can win the following game by interacting
with a challenger C.

Setup With the public parameters pp outputted by A,
challenger C creates originator Py’s public/private keys
(pko, sko) and gives pko to A.

Queries As in Definition 3, adversary A adaptively submits
template signing queries to C.

Output Adversary A outputs a tuple (T*, o7+, 8]) and wins
the game under the same conditions as in Definition 3.

4.2 A verifiably encrypted CBS construction

We present a verifiably encrypted CBS construction based
on the basic CBS scheme, where SAS = (Setup,
KeyGen, SASign, SAVrfy) also denotes a secure sequen-
tial aggregate signature scheme.

— Setup(k, d): On input « and d, choose a bilinear pair-
inge : Gy x G — Gy where G; = (g) and G,
are cyclic groups with prime order p. Randomly pick
a value o €p Z;’; and compute u; = go‘[for each i €
[1, d]. Randomly pick a value x4 €g Z;‘, and compute
va = g*A. Choose a collision-resistant hash function
H:{0, 1} —> Z;.Invokepp’ <~ SAS.Ssetup(k). The
private key is sk4 = x4 while the public parameters are
pp = (¢, Gy, Ga, p,ug =g, ui,...,uq, ya, H, pp’).

— UKeyGen(k, pp): Invoke SAS.KeyGen(k, pp’) to
obtain (pk;, sk;).

— TSign(T, pp, sko, pki): Randomly picking a unique
identifier idy €g {0, 1} and two values B,y €r Z%,
carry out the following steps.

— Compute ¥7(x) = £(T) € Z,[x] and an encrypted
commitment C = (Cy, C», C3),

B

0
v 'y£7C2=g’3,C3=gy

— T
Ci=(]Tx
j=0

(10)

where w;j) denotes the Jj-th coefficient of {7 (x).
— Pick a random value a €g Z%, compute ¢(x) =

W and a signed witness

s—1 0 p
J
o= (T4 an

Jj=0
where ¢/) denotes the j-th coefficient of ¢(x).

— Invoke

7 < SAS.SASign(idr ||| Cllallwl pki, D, sko).

Let PT = (idr, ¢, C,a,w) be the public parameters
associated with template T. Thus, o = (PT, t7) and
81 = (t7). Here, s = Zle s;i <d.

- ™vrfy(T, o7, pp, PK{): Compute ¥7(x) = E(T) €
Z p[x] and check the following equation as well as equa-
tion (5):

8(C1. g) = é(w. u1/g%) - 8(Ca. 9)VT@ - 6(C3. ya)
(12)

If both equations hold, output “1”’; otherwise, output “0”.
— Instn(M;_1, M;,0i_1,6;, pp, sk;, PKi+])Z The same
as in the basic CBS construction in Sect. 3.2.
— IVrfy(M;, oi, pp, PK;1): Compute v;(x) = E(M;)
€ Zplx] and h; = ¥ (a). Construct
my = idr ||[€]|Cllal|w]|| pki
and for every j € [1, i] construct

m; =idr||hjllo;llpkj

LetM; = (mg, my, ..
as well as Eq. (7):

., m;). Check the following equality

8(C1. g) Z(@(w. u1/g") - 6(Ca. ya))’
(M) 03)

el]

j=1

If both equalities hold, output “1”’; otherwise, output “0”.

— Resolve(ska, pp, PK1, T, or): If both equalities (12)
and (5) hold, output the signed commitment C =
C1/Cy"; otherwise, output L.

Theorem 4 The verifiably encrypted CBS scheme proposed
above is correct.

Proof Building on Theorem 1, we need only to prove the
correctness of Equalities (12) and (13) and the resolution of
algorithm Resolve.

If the originator is honest, the following equality holds for
template T:

e(Crg)=¢ e BRI

j=0
=é(w, g% - e(gP, gV W) - e(ya, g7)
= é(w, u1/g") - é(Ca, &)V - 6(C3, ya)

Also, if all the proxies are honest, the following equality
holds for the i-th instantiation M;:

~ A ~ _hj

é(w,u1/g") - é(C3, ya) - €(Ca, ")
= é(w,u1/g%) - 6(Ca, g T MOhiy [5(C5,)
= é(w, u1/g%) - é(Ca, ©)VT@W . &6(C3, ya)
=e(Cy, 8)

Similarly, for the j-th (1 < j < i) instantiation, the follow-

ing equality holds:

TTee iy 7k)i
é(w,ur/g") -e(Cz,ya) - & (Cz,d)g e L))

=e(w,u1/g") e <C2, g(m:‘) (M hk)hi)

-é(C3, ya)
= &(w,u1/g%) - ¢(Ca, ©)VT@ - 6(C3, ya)
=¢(Cy, 9)

Multiplying respective sides of all these i equalities yields
Equality (13).
By algorithm Resolve, we have

B
§ "ol

C=C/C* = []u}"

j=0
which satisfies

S () g
A o vy
e(C,g)=¢e HMjT » &

J=0

=é(w,u1/g%) - é(Cy, g)VT@

It indicates that C is a signed commitment for encoded tem-
plate T by the originator. O

4.3 Security

Theorem 5 Suppose H is a collision-resistant hash func-
tion. The proposed verifiably encrypted CBS scheme is
secure against colluding originator, assuming the underlying
sequential aggregate signature scheme S AS and polynomial
commitment scheme are secure.

Theorem 6 Suppose H is a collision-resistant hash func-
tion. Our proposed verifiably encrypted CBS scheme is
secure against colluding proxies, assuming the underlying
sequential aggregate signature scheme S AS and polynomial
commitment scheme are secure.

We omit the proofs of the two theorems here as they are
similar to Theorems 2 and 3, respectively.

Table 1 Computation costs of

the CBS schemes Algorithm

Computation costs

Basic CBS scheme

Verifiably encrypted CBS scheme

Setup dEg
KeyGen Ex
TSign
TVrfy
Instn

IVrfy

(2s —)Eg, + Eg

1EG, +1Eg, +3E, + Ey
1EG, + Es

(i +1)Eg, +2EG, +3Ep + Ey

(d+1)Eg

Eg

(2s +4)Eg, + Eg

1EG, + 1EGg, +4E, + Ey

1EG, + Es

(i+1)Eg, +2EG, +4Ep, + Ey

Table 2 Element size of the CBS schemes

Element Size

Basic CBS scheme

Verifiably encrypted CBS scheme

Template signature o7
Instantiation signature o;

Delegation §; Ssas

K +2|G1| +2|ZP| +SSAS
K+ (0 +2)|Gi|+ (@ +2)|Zp| + SsAs

K +4|G1| +2|Zp| + SSAS
k+(0@+4|G|+ +2)|Zp| + Ssas

Ssas

4.4 Efficiency analysis

The computation costs of the basic CBS and verifiably
encrypted CBS schemes are summarized and compared in
Table 1 in terms of exponentiation and pairing, the two
types of time-consuming computation. In the table, Eg,,
Eg, and Ep, denote the evaluation cost of exponentiation
over group G| and G, and pairing e, respectively. We use
Ek, Es and Ey to represent the cost of SAS.KeyGen,
SAS.sAsign and SAS.SAVrfy, respectively. The effi-
ciency of the setup algorithm depends on the maximum
template size d, that is, it takes d exponentiations over group
G in the basic CBS scheme since u; = uj_;, while the
verifiably encrypted CBS scheme incurs one more exponen-
tiation in computing y,4. Both the template signing algorithm
and instantiation signature verification algorithm require a
linear number of exponentiations, with the multiple being
the template size s and the proxy number i of {Py, ..., P;},
respectively.

As shown in Table 2, in both the basic and verifi-
ably encrypted CBS schemes, the template signature or
has constant size, which consists of one x-bit identifier
idr, two/four group elements of G, two values in Z;‘,
and one signature from the underlying sequential aggre-
gate signature scheme. Here, the template length ¢ is treated
as an element of Z;‘,. Two additional elements of G are
introduced by C in the verifiably encrypted CBS scheme.
Compared to o, the instantiation signature o; contains
additional elements {A;,w; : 1 < j < i} that are
accumulated from P; to P;. Finally, every delegation is
effected with only one sequential aggregate signature in both
schemes.

5 Extensions

In this section, we extend the basic CBS scheme to sup-
port other practical application scenarios. To avoid repeating
the formal models and corresponding constructions, we only
present brief discussions focusing on the differences from
basic CBS. Note that these extensions can be further extended
into verifiably encrypted counterpart schemes.

5.1 Cascade-and-designated-instantiable blank
signature

In basic CBS, each proxy in the delegation chain has total
freedom to not only create an instantiation, but also nar-
row his successor’s choices. For example, he may choose
nothing and pass the received instantiation intact to his suc-
cessor, or exclude some choices and send down the remain
ones. In certain applications, each proxy should possess only
limited instantiation capability; in particular, the originator
should be able to designate which proxy along the chain
is to instantiate specific fields in the template. The desig-
nated fields associated with different proxies are disjoint.
To support such applications, we extend the basic CBS to
cascade-and-designated-instantiable blank signature as for-
malized below.

— Setup(k,d) — pp: The same as in Sect. 3.1.

— KeyGen(k, pp) — (pk, sk): The same as in Sect. 3.1.

— Tsign(T, pp, sko, PK,) — (or,d): On input a tem-
plate T, public parameters pp, the originator’s private
key sko and public keys PK,,, the template signing algo-
rithm, which is carried out by the originator, outputs a

signature o for the template and a delegation § for all
proxies. A unique identifier idr for template T is gener-
ated and embedded in o7.

- Tvriy(T, or, pp, PK,;) — 0/1: Oninputa template T,
template signature o, public parameters pp and public
keys PK,,, the template signature verification algorithm,
which is carried out by any verifier (particularly P;), out-
puts “1” if o7 is valid for T under pko or “0” otherwise.

— Instn(M;_1, M;, ci_1, 8, pp, ski, PK,)) — o;: On
input proxy P;_1’s instantiation M;_1, proxy P;’s instan-
tiation M;, instantiation signature o; _ produced by P;_1,
delegation §, public parameters pp, P;’s private key sk;
and public keys PK,,, the instantiation algorithm, which
is carried out by P;, outputs an instantiation signature o;
for M; if both o;_; and § are valid. Here, for 1 <i <n,
M; isasubsetof M;_1, Mo = T,and oy = o7. M;_1\M;
contains all the choices that are excluded by proxy P;.

- Ivrfy(M;,oi, pp, PK,) — 0/1: On input instantia-
tion M;, instantiation signature o;, public parameters pp,
and the public keys PK,,, the instantiation signature ver-
ification algorithm, which is carried out by any verifier
(particularly P;1), outputs “1” if o; is valid for M; under
PK;, which also means that the template and instantiation
signatures oy, . . ., 0;_1 are all verified, or “0” otherwise.

The security model of cascade-and-designated-instan-
tiable blank signatures is similar to that of basic CBS, with
the following revision to the correctness requirement. The
security against originator requirement is as in Definition
2, except there is no Case 2 in the adversary’s output. The
security against proxies property follows Definition 3.

Definition 7 (Correctness) A cascade-and-designated-inst-
antiable blank signature scheme is correct if, for a given
k € N, any maximum template size d € N, any pp <«
Setup(k, d), any (pk;, ski) < KeyGen(k, pp) of origi-
nator Py and proxies Py, ..., P,, and any template T, the
following conditions hold:

- Tvrfy(T, or, pp, PK,) = 1, where o7 is generated as
(o7, 8) < TSign(T, pp, sko, PK,).

- Ivrfy(M;, oi, pp, PK,) = 1 for every i € [1,n],
where 0; < Instn(M,;_1, M;, oi_1, 8, PP, ski, PK,,).

— The delegation § generated by TSign(T, pp, sko, PK},)
is validated to be true by all proxies.

— Every proxy has only instantiation rights on the desig-
nated exchangeable fields.

We proceed to present a construction. For a given template
T ={T; = {mi1,....,m;5}:1 <i < £}, each exchange-
able field 7; has an associated proxy P;,. To simplify the
notation, we associate the fixed fields with originator Py.
The template is encoded in the form:

14

M =[]]]&+HudrImlilP,), (14)

i=1meT;

where idy is an unique identifier of T, and H : {0, 1}* —
Z; is a collision-resistant hash function. In the system, the
template should be transmitted in the form T = {(7;, P;,) :
1 <i < ¢}, where P;, can be either an identity or a public
key. Instantiations are encoded and transmitted in a similar

way as the template.

— Setup(k, d): The same as in Sect. 3.2.

— KeyGen(k, pp): The same as in Sect. 3.2.

— TSign(T, pp, sko, PK,): Randomly choosing a unique
identifier idr €g {0, 1}, carry out the following steps.

— Compute Y7 (x) = £'(T) € Z,[x] and a commit-
ment C as in Eq. (2).

— Pickarandom valuea €g Z*, and compute a witness
w as in Eq. (3).

— Invoke

17 < SAS.saSign(idr|€|si] ...
IsellCllallwll pki, 2, sko)

Let PT = (idr,?¢,s1,...,8¢, C,a,») be the public
parameters associated with template T. Thus, o7 =
(PT, t7) and § = (7). Here, s = Zf=1 si <d.

- TVrfy(T, o7, pp, PK,): Compute ¥y (x) = £(T) €
Zp[x]. Check Eq. (4) and the following condition:

SAS.SAVrEy(idr||L|lsi]] . . .

?
IsellCllallwll pky, T, pko) =1
(15)

If both equations hold, output “1”’; otherwise, output “0”.

— Instn(M;_1, M;, ci_1, 8, pp, ski, PK,): Construct a
pattern vector s; = (s;1,...,5;¢), where 5; ; = |T}|
for each field T; in M;. Specifically, s; ; = 1 for all
fixed fields, s;; equals to the number of choices in
instantiated exchangeable fields T'; presented to proxies
{P1,..., P;},ands; ; = s, otherwise. Compute ; (x) =
E'(M;—1\M;) € Z,lx]. Then calculate /i; = ¥;(a) and
w; = d)?il, where @y = g. Invoke

T < SAS.SAsign(idr ||hillw;lisi | pkit1, Ti-1, ski)

Append (7;, @;) to PT. Thus, 0; = (PT, t;). It is not
necessary toinclude vectors; in P T, since it can be recov-
ered from M; and {s1, ..., s¢} by a verifier (including
proxy Pit1).

- Ivrfy(M;, oi, pp, PK;): Compute ¥; (x) = £'(M;) €
Zpl[x] and h; = ¥;(a). Construct

mo = idr ||[€llsi] - .. [selICllallwl pk
and for every j € [1, i] construct
m; =idr||hijllojls;llpkjii

LetM; = (mg, mp, ..., m;). Check Equalities (6) and (7).
If both equalities hold, output “1”’; otherwise, output “0”.

The security results below follow the derivations in
Sect. 3.3.

Corollary 1 The cascade-and-designated-instantiable blank
signature scheme proposed above is correct.

The fourth correctness requirement, i.e., each proxy
can only instantiate the designated exchangeable fields, is
achieved by introducing pattern vector s;. If some proxy
P; makes choices beyond his designated fields, the resul-
tant pattern vector would differ from the one constructed by
the verifier according to the originator’s specification. Thus,
the proxy’s dishonest behavior can be detected by validating
the sequential aggregate signature oj.

Corollary 2 Suppose H is a collision-resistant hash func-
tion. The cascade-and-designated-instantiable blank signa-
ture scheme proposed above is secure against originator,
assuming the underlying sequential aggregate signature
scheme SAS and polynomial commitment scheme are
secure.

Corollary 3 Suppose H is a collision-resistant hash func-
tion. The cascade-and-designated-instantiable blank signa-
ture scheme proposed above is secure against proxies, assum-
ing the underlying sequential aggregate signature scheme
SAS and polynomial commitment scheme are secure.

5.2 Cascade-and-freely-instantiable blank signature

Consider a scenario where the originator and proxies do
not specify their successors. This allows anyone to generate
an instantiation from an existing instantiation. The solu-
tion, which may be seen as a relaxed version of basic CBS,
involves removing pk; and pk;; from Algorithms TSign
and Instn, respectively. We note that in the construction,
S AS cannot be substituted by an aggregate signature scheme
AS. The reason is not only that the instantiation order needs
to be preserved, which is realized by S.AS, but also because
AS has a different aggregate mechanism that requires all
the instantiation signatures to be produced and combined
together.

5.3 Cascade-instantiable blank signature with template
privacy

In the original blank signature scheme of Hanser and Sla-
manig [19], the template satisfies indistinguishability prop-
erty against an external adversary. That is, in the challenge
phase of the security game for template privacy, the chal-
lenger randomly chooses two distinct templates sharing some
common fields, signs and gives the templates and signa-
tures to the adversary. The adversary is then allowed to
issue instantiation queries on the common fields. The scheme
ensures that the adversary cannot distinguish between the two
challenge template signatures at the end of the game.

It is easy to adapt our basic CBS scheme to provide such
template indistinguishability, as follows. In TSign, the orig-
inator Py picks a random value p €g Zj, for each template,
raises both C and w to the power of p, and inserts g” into PT .
In this sense, p is a template-dependant private key, which
should be known to the highest level proxy P;. Similar to
[19], the template signature in the resultant scheme is pri-
vately verifiable by proxy P;. When the scheme is applied
with just the originator and one proxy, it achieves exactly
the same functionality of the original scheme in [19]; hence,
our scheme is strictly the more general between the two. At
the same time, our scheme allows the signatures of template
and instantiation(s) to be sequentially aggregated and veri-
fied concurrently, which is more efficient than verifying them
separately as in [19].

5.4 Cascade-instantiable blank signature secure against
key exposure

Schuldt et al. [41] investigated multi-level proxy signatures
with security against proxy-key exposure. Applying their
scheme to generate the delegation chain leads to a CBS
scheme that enjoys the same security property. However,
this strong security property also brings with it some disad-
vantages. For example, the delegation procedure necessitates
interactions among the users. Moreover, since the delegations
are separately generated, the template/instantiation signature
sizes increase correspondingly.

5.5 Identity-based cascade-instantiable blank signature

In identity-based (ID) crypto-systems, a user’s identity is
his public key. These schemes could alleviate the burden
of maintaining public key certificates. Many cryptographic
primitives in identity-based setting have been proposed to
date. In an ID-based CBS model, algorithm KeyGen would
be replaced by a key extraction algorithm KeyExt which
takes a user’s identity and produces a private key. All the pub-
lic keys in algorithms TSign, TVrfy, Instn and IVrfy
would then be replaced by the corresponding user identi-

ties. Together with an identity-based sequential aggregate
signature scheme such as the one in [6], we can derive an
identity-based CBS construction.

6 Conclusion

Blank signature schemes possess the notable feature that a
proxy has total freedom to create an instantiation of a tem-
plate of exchangeable fields under the originators’s explicit
regulation, with the originator and proxy signing the tem-
plate and instantiation respectively. This paper proposed a
basic cascade-instantiable blank signature (CBS) to cater to
more complex application scenarios involving a sequence
of proxies. Here, each proxy in a delegation chain creates
from her direct predecessor’s template/instantiation a new
instantiation that narrows the successors’ choices for the
exchangeable fields. We also formalize a new notion of ver-
ifiably encrypted CBS that provides for an arbitrator in case
of dispute with the originator. Both CBS constructions are
built on polynomial commitment and sequential aggregate
signature. The constructions are formally proved to be secure
against collusion attacks, and enjoy linear computation costs.
We also describe several extensions of the basic CBS to cater
to additional real-world applications.

In creating an instantiation, the proxy makes choices in the
exchangeable fields in her direct predecessor’s template or
instantiation. Thus, each instantiation is in fact a “subset” of
the template or previous instantiations. This paper, following
[19], encodes the template and instantiations as polynomials
in such a way that the subset relationship is transformed into
a multiplicative sub-polynomial. Accordingly, the polyno-
mial commitment scheme [27] is employed to ensure that
the relationship is preserved. It would be interesting to find
other secure and more efficient ways to capture the subset
relationship, which may require different template encoding
approaches. Another avenue for future work is to remove
the underlying polynomial commitment scheme which is
designed specifically on symmetric bilinear groups, and real-
ize CBS over common cyclic groups or asymmetric bilinear
groups.

Acknowledgements This work is supported by Singapore National
Research Foundation under the NCR Award Number NRF2014NCR-
NCRO001-012.

References

1. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for
fair exchange. In: Proceedings of the 4th ACM Conference on
Computer and Communications Security, pp. 7-17. CCS’97, ACM,
New York, NY, USA (1997)

10.

11.

12.

13.

14.

15.

16.

17.

. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of

digital signatures. In: Nyberg, K. (ed.) Advances in Cryptology-
EUROCRYPT’98. LNCS, vol. 1403. Springer, Heidelberg (1998)

. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Anitizable

signatures. In: di Vimercati, S., Syverson, P., Gollmann, D. (eds.)
Computer Security-ESORICS 2005, LNCS, vol. 3679, pp. 159-
177. Springer, Heidelberg (2005)

. Bao, F, Deng, R.H., Mao, W.: Efficient and practical fair exchange

protocols with off-line TTP. In: 1998 IEEE Symposium on Security
and Privacy, 1998, Proceedings, pp. 77-85 (1998)

. Bao, F, Deng, R.H., Ding, X., Lai, J., Zhao, Y.: Hierarchical

identity-based chameleon hash and its applications. In: Lopez, J.,
Tsudik, G. (eds.) Applied Cryptography and Network Security,
LNCS, vol. 6715, pp. 201-219. Springer, Heidelberg (2011)

. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered mul-

tisignatures and identity-based sequential aggregate signatures,
with applications to secure routing. In: Proceedings of the 14th
ACM Conference on Computer and Communications Security, pp.
276-285. CCS’07, ACM, New York, NY, USA (2007)

. Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature

schemes for delegation of signing rights. J. Cryptol. 25(1), 57-115
(2012)

. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and veri-

fiably encrypted signatures from bilinear maps. In: Biham, E. (ed.)
Advances in Cryptology-EUROCRYPT 2003. LNCS, vol. 2656.
Springer, Heidelberg (2003)

. Brzuska, C., Busch, H., Dagdelen, O., Fischlin, M., Franz, M.,

Katzenbeisser, S., Manulis, M., Onete, C., Peter, A., Poettering,
B., Schrioder, D.: Redactable signatures for tree-structured data:
definitions and constructions. In: Zhou, J., Yung, M. (eds.) Applied
Cryptography and Network Security, LNCS, vol. 6123, pp. 87-104.
Springer, Heidelberg (2010)

Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page,
M., Schelbert, J., Schroder, D., Volk, F.: Security of sanitizable
signatures revisited. In: Jarecki, S., Tsudik, G. (eds.) Public Key
Cryptography-PKC 2009, LNCS, vol. 5443, pp. 317-336. Springer,
Heidelberg (2009)

Brzuska, C., Fischlin, M., Lehmann, A., Schroder, D.: Unlinka-
bility of sanitizable signatures. In: Nguyen, P.Q., Pointcheval, D.
(eds.) Public Key Cryptography-PKC 2010, LNCS, vol. 6056, pp.
444-461. Springer, Heidelberg (2010)

Canard, S., Jambert, A.: On extended sanitizable signature
schemes. In: Pieprzyk, J. (ed.) Topics in Cryptology-CT-RSA 2010,
LNCS, vol. 5985, pp. 179-194. Springer, Heidelberg (2010)
Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable sig-
natures and their application to content protection. In: Bellovin,
S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) Applied Cryp-
tography and Network Security, LNCS, vol. 5037, pp. 258-276.
Springer, Heidelberg (2008)

Chang, E.C., Lim, C.L., Xu, J.: Short redactable signatures using
random trees. In: Fischlin, M. (ed.) Topics in Cryptology-CT-RSA
2009, LNCS, vol. 5473, pp. 133-147. Springer, Heidelberg (2009)
Derler, D., Hanser, C., Slamanig, D.: Blank digital signatures:
optimization and practical experiences. In: Camenisch, J., Fischer-
Hiibner, S., Hansen, M. (eds.) Privacy and Identity Management
for the Future Internet in the Age of Globalisation, IFIP Advances
in Information and Communication Technology, vol. 457, pp. 201-
215. Springer, Berlin (2015)

Draper-Gil, G., Zhou, J., Ferrer-Gomila, J.L., Hinarejos, M.F.: An
optimistic fair exchange protocol with active intermediaries. Int. J.
Inf. Secur. 12(4), 299-318 (2013)

Fuchsbauer, G., Pointcheval, D.: Anonymous proxy signatures. In:
Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) Security and Cryp-
tography for Networks, LNCS, vol. 5229. Springer, Heidelberg
(2008)

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

. Hanser, C., Rabkin, M., Schroder, D.: Verifiably encrypted sig-

natures: security revisited and a new construction. In: Pernul, G.,
Yaryan, P., Weippl, E. (eds.) Computer Security-ESORICS 2015,
Part I. LNCS, vol. 9326, pp. 146—164. Springer International Pub-
lishing, Cham (2015)

Hanser, C., Slamanig, D.: Blank digital signatures. In: Proceedings
of the 8th ACM SIGSAC Symposium on Information, Computer
and Communications Security, pp. 95-106. ASIA CCS’13, ACM,
New York, NY, USA (2013)

Huang, Q., Wong, D.S., Susilo, W.: Group-oriented fair exchange
of signatures. Inf. Sci. 181(16), 3267-3283 (2011)

Huang, Q., Wong, D.S., Susilo, W.: The construction of ambigu-
ous optimistic fair exchange from designated confirmer signature
without random oracles. Inf. Sci. 228, 222-238 (2013)

Huang, Q., Wong, D.S., Susilo, W.: P2OFE: privacy-preserving
optimistic fair exchange of digital signatures. In: Benaloh, J. (ed.)
CT-RSA 2014, LNCS, vol. 8366, pp. 367-384. Springer, Heidel-
berg (2014)

Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Ambiguous opti-
mistic fair exchange. In: Pieprzyk, J. (ed.) Advances in Cryptology-
ASTACRYPT 2008. LNCS, vol. 5350, pp. 74-89. Springer, Hei-
delberg (2008)

Huang, Q., Yang, G., Wong, D.S., Susilo, W.: A new efficient opti-
mistic fair exchange protocol without random oracles. Int. J. Inf.
Secur. 11(1), 53-63 (2011)

Huang, X., Mu, Y., Susilo, W., Wu, W., Xiang, Y.: Further observa-
tions on optimistic fair exchange protocols in the multi-user setting.
In: Nguyen, P., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 124-141. Springer, Heidelberg (2010)

Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic sig-
nature schemes. In: Preneel, B. (ed.) Topics in Cryptology-CT-RSA
2002, LNCS, vol. 2271, pp. 244-262. Springer, Heidelberg (2002)
Kate, A., Zaverucha, G.M., Goldberg, 1.: Constant-size commit-
ments to polynomials and their applications. In: Abe, M. (ed.)
Advances in Cryptology-ASIACRYPT 2010, LNCS, vol. 6477,
pp. 177-194. Springer, Heidelberg (2010)

Kim, K.S., Jeong, L.R.: Efficient verifiably encrypted signatures
from lattices. Int. J. Inf. Secur. 13(4), 305-314 (2014)
Klonowski, M., Lauks, A.: Extended sanitizable signatures. In:
Rhee, M.S., Lee, B. (eds.) Information Security and Cryptology-
ICISC 2006, LNCS, vol. 4296, pp. 343-355. Springer, Heidelberg
(2006)

Kundu, A., Atallah, M.J., Bertino, E.: Leakage-free redactable
signatures. In: Proceedings of the Second ACM Conference
on Data and Application Security and Privacy, pp. 307-316.
CODASPY’12, ACM, New York, NY, USA (2012)

Kundu, A., Bertino, E.: Structural signatures for tree data struc-
tures. Proc. VLDB Endow. 1(1), 138-150 (2008)

Lai, J., Ding, X., Wu, Y.: Accountable trapdoor sanitizable signa-
tures. In: Deng, R.H., Feng, T. (eds.) Information Security Practice
and Experience, LNCS, vol. 7863, pp. 117-131. Springer, Heidel-
berg (2013)

Lee, J.Y., Cheon, J.H., Kim, S.: An analysis of proxy signatures: is a
secure channel necessary? In: Joye, M. (ed.) Topics in Cryptology-
CT-RSA 2003, LNCS, vol. 2612, pp. 68—79. Springer, Heidelberg
(2003)

Lim, S., Lee, E., Park, C.M.: A short redactable signature scheme
using pairing. Secur. Commun. Netw. 5(5), 523-534 (2012)
Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequen-
tial aggregate signatures from trapdoor permutations. In: Cachin,
C., Camenisch, J.L. (eds.) Advances in Cryptology-EUROCRYPT
2004, LNCS, vol. 3027, pp. 74-90. Springer, Heidelberg (2004)

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Malkin, T., Obana, S., Yung, M.: The hierarchy of key evolving
signatures and a characterization of proxy signatures. In: Cachin,
C., Camenisch, J. (eds.) Advances in Cryptology-EUROCRYPT
2004, LNCS, vol. 3027, pp. 306-322. Springer, Heidelberg (2004)
Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegat-
ing signing operation. In: Proceedings of the 3rd ACM Conference
on Computer and Communications Security, pp. 48-57. CCS’96,
ACM, New York, NY, USA (1996)

Nishimaki, R., Xagawa, K.: Verifiably encrypted signatures with
short keys based on the decisional linear problem and obfuscation
for encrypted ves. In: Kurosawa, K., Hanaoka, G. (eds.) Public-Key
Cryptography-PKC2013.LNCS, vol. 7778, pp. 405-422. Springer,
Heidelberg (2013)

Pohls, H.C., Samelin, K.: On updatable redactable signatures. In:
Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) Applied Cryp-
tography and Network Security. LNCS, vol. 8479, pp. 457-475.
Springer International Publishing, Berlin (2014)

Qu, L., Wang, G., Mu, Y.: Optimistic fair exchange of ring sig-
natures. In: Rajarajan, M., Piper, F., Wang, H., Kesidis, G. (eds.)
Security and Privacy in Communication Networks, pp. 227-242.
Springer, Heidelberg (2012)

Schuldt, J.C.N., Matsuura, K., Paterson, K.G.: Proxy signatures
secure against proxy key exposure. In: Cramer, R. (ed.) Public Key
Cryptography-PKC 2008, LNCS, vol. 4939, pp. 141-161. Springer,
Heidelberg (2008)

Tan, K.W., Deng, R.H.: Applying sanitizable signature to web-
service-enabled business processes: going beyond integrity pro-
tection. In: IEEE International Conference on Web Services, 2009.
ICWS 2009, pp. 67-74 (2009)

Wang, G., Bao, F., Zhou, J., Deng, R.H.: Security analysis of some
proxy signatures. In: Lim, J.I., Lee, D.H. (eds.) Information Secu-
rity and Cryptology-ICISC 2003, LNCS, vol. 2971, pp. 305-319.
Springer, Heidelberg (2004)

Wang, H., Pieprzyk, J.: Efficient one-time proxy signatures. In:
Laih, C.S. (ed.) Advances in Cryptology-ASIACRYPT 2003,
LNCS, vol. 2894, pp. 507-522. Springer, Heidelberg (2003)
Wang, Y., Au, M., Liu, J., Yuen, T., Susilo, W.: Threshold-oriented
optimistic fair exchange. In: Lopez, J., Huang, X., Sandhu, R. (eds.)
Network and System Security, pp. 424—438. Springer, Heidelberg
(2013)

Wang, Y., Wu, Q., Wong, D.S., Qin, B., Liu, J., Mao, J.: Optimistic
fair exchange of distributed signatures. In: CSC 2014, pp. 85-90.
IET (2014)

Yuen, T.H., Susilo, W., Liu, J.K., Mu, Y.: Sanitizable signatures
revisited. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.)
Cryptology and Network Security, LNCS, vol. 5339, pp. 80-97.
Springer, Heidelberg (2008)

Yum, D.H., Seo, J.W., Lee, P.J.: Trapdoor sanitizable signatures
made easy. In: Zhou, J., Yung, M. (eds.) Applied Cryptography
and Network Security, LNCS, vol. 6123, pp. 53-68. Springer, Hei-
delberg (2010)

Zhang, L., Wu, Q., Qin, B.: Identity-based verifiably encrypted sig-
natures without random oracles. In: Pieprzyk, J., Zhang, F. (eds.)
Provable Security, LNCS, vol. 5848, pp. 76—89. Springer, Heidel-
berg (2009)

Zhang, L., Wu, Q., Qin, B.: Identity-based optimistic fair exchange
in the standard model. Secur. Commun. Netw. 6(8), 1010-1020
(2013)

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	6-2018

	Verifiably encrypted cascade-instantiable blank signatures to secure progressive decision management
	Yujue WANG
	Hwee Hwa PANG
	Robert H. DENG
	Citation

	Verifiably encrypted cascade-instantiable blank signatures to secure progressive decision management
	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Related work
	1.3 Paper organization

	2 Preliminaries
	2.1 Sequential aggregate signature
	2.2 Polynomial commitment

	3 Cascade-instantiable blank signature
	3.1 Definitions and security model
	3.2 Basic CBS construction
	3.3 Security

	4 Verifiably encrypted cascade-instantiable blank signature
	4.1 Definitions and security model
	4.2 A verifiably encrypted CBS construction
	4.3 Security
	4.4 Efficiency analysis

	5 Extensions
	5.1 Cascade-and-designated-instantiable blank signature
	5.2 Cascade-and-freely-instantiable blank signature
	5.3 Cascade-instantiable blank signature with template privacy
	5.4 Cascade-instantiable blank signature secure against key exposure
	5.5 Identity-based cascade-instantiable blank signature

	6 Conclusion
	Acknowledgements
	References

