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Abstract 26 

This study evaluated the myxozoan infection and histopathology of the kidney of the 27 

freshwater fish Piaractus mesopotamicus from intensive fish farming  in Brazil. A total of 28 

fifty-five fish were examined and the organs processed according to usual histological 29 

methods by staining with haematoxylin-eosin and Ziehl-Neelsen. In renal tissue free 30 

myxospores of Myxobolus sp. (85.5% prevalence) and Henneguya sp. (56.4% prevalence) 31 

were observed. The presence of myxospores was associated with histological alterations in 32 

both stromal and renal parenchyma. Myxospores were found mostly in the peritubular 33 

interstitial tissue and in low intensity in the glomerulus which caused nuclear hypertrophy and 34 

loss of Bowman space. An increase in the glomerular tuft and a reduction in the lumen of the 35 

collector tubules was also observed, besides high number of melanomacrophage cells in the 36 

glomerulus. This study reports for the first time detection of mixed infection by myxozoans in 37 

just one organ of pacu and discuss on the possible transport of myxospores in the circulating 38 

blood. 39 

 40 
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 42 

1. Introduction 43 

Piaractus mesopotamicus Holmberg, 1887, popularly known in Brazil as “pacu”, belongs 44 

to the Family Serrasalmidae, is a teleost fish native to the Paraná-Paraguay Basin. It is an 45 

emergent species in the world aquaculture, and presents great economic importance in the 46 

South America (Belo et al., 2014; Valladão et al., 2016), China (Lin et al., 2015) and United 47 

States (Witmer and Fuller, 2011). This species has proven to be a good bioindicator of water 48 

quality (Farias et al., 2016), and in accordance with Castro et al. (2014) the pacu has been 49 

used in ecotoxicity studies for registration of chemicals in Brazil. 50 
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High stocking density and inadequate handling are responsible for increased stress that 51 

affect negatively the pacu health causing increased disease susceptibility (Belo et al., 2005; 52 

2012; Manrique et al., 2015a). On the other hand, members of the class Myxosporea use not 53 

only wild and cultured fish (Capodifoglio et al., 2016) but also amphibians, reptiles (Eiras, 54 

2005), aquatic birds (Bartholomew et al., 2008) and terrestrial mammals (Friedrich et al., 55 

2000) as hosts. These parasites have been recognized as a key limiting factor in the 56 

development of aquaculture because they infect a large variety of commercially important 57 

fishes, and these parasites may develop intra- and intercellularly (histozoic) or may be located 58 

in the organs and body cavity (celozoic) (Lom and Dyková, 2006).  59 

Myxosporean parasites are known to be responsible for several forms of damage, including 60 

myoliquefaction of the host (Eiras et al., 2007), reduction of the capacity of respiration 61 

(Molnár and Székely, 1999), damage to the ovaries (Mansour et al., 2013) changes in meat 62 

quality (Manrique et al., 2015b) and changes in the renal tissue (Molnár, 2007; Manrique et 63 

al., 2012; Abdel-Baki et al., 2015).  64 

So far, the occurrence of two Myxobolus species in pacu, M. cuneus infecting the 65 

connective tissue (Adriano et al., 2006) and the skeletal muscle (Manrique at al., 2016), and 66 

M. colossomatis in branchial arches and gill (Müller et al., 2013), and two Henneguya species 67 

H. pellucida in swim bladder (Adriano et al., 2005a) and H. piaractus in gill lamellae 68 

(Adriano et al., 2005b; Azevedo et al., 2010; Müller et al., 2013). . 69 

In this paper, we report on a mixed infection with myxospores of a Myxobolus sp. and a 70 

Henneguya sp. in the posterior kidney of P. mesopotamicus and on histopathological changes 71 

in the renal tissue caused by these parasites. 72 

2. Materials and methods 73 

2.1. Fish samples 74 
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Fifty-five live young fish of P. mesopotamicus with 124.0 ± 3.7 g mean weight and 75 

standard length 19.9 ± 2.7 cm were captured during August 2014 from a pond of intensive 76 

fish farming in Southeast Brazil, São Paulo State.  77 

2.2. Experimental procedures 78 

The living fish were euthanized by fish immersion in an alcoholic solution of benzocaine 79 

1:500 v/v anesthesia/water (0.1 g benzocaine per mL of ethanol) according to the ethical 80 

procedures approved by Ethics Committee (CEUA-UNESP protocol nº 020092/09) for 81 

posterior blood collection from the caudal vein using syringes containing 10% EDTA to make 82 

the blood smears, that were stained with Giemsa to evaluation of structures examined in 83 

optical microscope. Then necropsy was performed for collection of the posterior kidney for 84 

histopathology and a small fragment for analysis in fresh mounts. 85 

2.3. Morphological analyses of myxospores 86 

The samples of organs were placed in a petri dish, moistened with saline solution (0.65%) 87 

and macerated with scalpel blades and placed between a glass and a coverslip for myxospore 88 

measurements in fresh (Burger and Adlard, 2010), only in the caudal kidney were observed 89 

myxospores. A total of 173 myxospores were measured from the histological sections (107 90 

Myxobolus sp. and 66 Henneguya sp.). All analyses were performed in an Olympus BX51 91 

light microscope with image capture in a DP73 camera and morphometry using the cellSens 92 

v.1.5 Software (Olympus).  93 

2.3. Histopathology analyses 94 

The posterior kidney was fixed in Bouin solution for 6 h and submitted to routine 95 

procedures in order to obtain cross sections of 5 µm thickness in paraffin and stained with 96 

hematoxylin-eosin (H&E) and Ziehl-Neelsen (ZN) for microscopical examination.  97 

3. Results 98 

3.1. Myxobolus sp. and Henneguya sp. myxospores  99 
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In fresh mounts of the kidney, myxospores of Myxobolus sp. (Fig. 1) and Henneguya sp. 100 

(Fig. 2) were identified. The myxospores were measured from the histological sections 101 

stained with ZN and compared with others Myxobolus and Henneguya species of Brazilian 102 

native Characiformes fish (Table 1), and showed characteristics similar to those reported in 103 

the literature. However, no myxospores were recorded in blood smears or in other organs.  104 

3.2. Histopathology 105 

The analysis of histological sections stained with ZN showed that neither plasmodial nor 106 

sporogonic stages of the above species were found in the kidney. Nevertheless, disseminated 107 

mature myxospores were located in the renal interstitium, in the wall and the lumen of the 108 

glomeruli, and in the tubules. The prevalence of Myxobolus sp. was 85.5% (47/55) and 109 

Henneguya sp. was 56.4% (31/55). 110 

Most of the myxospores seemed to be intact, and their sporoplasm, polar capsules and the 111 

spore wall stained intensely (Fig. 3 and 4), some other damaged myxospores, however, were 112 

surrounded and incorporated into melanomacrophage cells. Melanomacrophage cells were 113 

regularly found inside the malpighian corpuscle, in the lumen and among epithelial cells of 114 

the convoluted channels or free in the renal interstitium. In some of the slides stained with 115 

hematoxylin and eosin, the debris of the decayed myxospores was also observed (Fig. 5 and 116 

6). A special feature of the infection was that melanomacrophage centers were not found in 117 

the renal interstitium, but agglomerated melanomacrophage cells were located inside the 118 

Bowman capsules and tubules (Fig. 5 and 6). The cellular infiltration in the renal parenchyma 119 

(Fig. 5 and 6) was in the form of aggregation of mononuclear cells.  120 

4. Discussion 121 

The kidney of freshwater fishes is a complex organ with two different functions. The trunk 122 

kidney and the hind kidney have excretory function, while the head kidney has a 123 

haematopoietic function. The structure of the hind kidney is similar to those of mammals and 124 
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birds, having glomeruli in Bowman capsule, convoluted tubules and urinary ducts surrounded 125 

by the renal interstitium (Harder, 1975). The large number of myxosporean parasites located 126 

in different parts of the kidney, mainly in the trunk kidney, and they can develop in several 127 

ways (Molnár, 2007). Some species, like M. erythrophthalmi of Scardinius erythrophthalmus 128 

form large plasmodia in the renal interstitium (Molnár et al., 2009), while others develop in 129 

the epithelium and the lumen of the urinary channels or in the renal glomeruli (Molnár and 130 

Eszterbauer, 2015).  131 

Csaba et al. (1984) described that Sphaerospora renicola, a sphaerosporid type 132 

myxosporean completes its presporogonic development circulating in the blood and arrives at 133 

the lumen of renal tubules for finishing its sporogonic development, where it performs spore 134 

production. The pathogenic effect of myxosporeans shows also a great variation. 135 

Capodifoglio et al. (2016) have observed that the infection by M. hilarii in the kidney of 136 

Brycon hilarii caused compression, deformation and destruction of the tubular cells and 137 

adjacent tissue. Myxospores of several species develop in organs (muscles, liver, connective 138 

tissue, abdominal cavity) from where their mature myxospores have been carried by the blood 139 

stream to the organs (gills, skin, kidney) (Molnár and Eszterbauer, 2015). Apart from these, 140 

spores are stuck, engulfed by macrophages and destroyed. We suppose that both, Myxobolus 141 

and Henneguya myxospores, found by us free in the kidney tissues or engulfed by 142 

macrophages, belong this type of species.  143 

Myxosporean species infecting the pacu have different site and tissue affinities. From the 144 

two Henneguya species, H. piaractus is a parasite of the gills, while H. pellucida infects 145 

serous membranes in the abdominal cavity (Adriano et al., 2005a). Of the two Myxobolus spp. 146 

found in pacu, both M. cuneus and M. cf. colossomatis are found to be parasites of the 147 

connective tissue and develop in the internal organs (Adriano et al., 2006; Müller et al., 2013). 148 

However, a third Myxobolus species mentioned by Manrique et al. (2015b; 2016) seems to 149 
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infect the skeletal muscle. Of the above species, Henneguya sp. releases its spores directly to 150 

the outside from its gill cysts, spores of some other species among them those developing in 151 

the muscle, however, could leave the living host via blood stream, a part of which enter the 152 

kidney (Molnár and Székely, 2014).  153 

We agree with authors (McGeorge et al., 1996; Belem and Pote, 2001; Molnár et al., 2009; 154 

Bjork and Bartholomew, 2010) that myxospores of most Myxobolus spp. developing in 155 

internal organs, and first of all in the skeletal muscle can reach the kidney via the circulating 156 

blood, and myxospores found by us free in the renal tissues and captured by 157 

melanomacrophage cells belong to these species. By the shape and measurements spores 158 

found in the kidney we cannot exclude that myxospores of the muscle species were also 159 

among them.  160 

At a similar way we think that Henneguya sp. myxospores found in the kidney belong to 161 

H. pellucida. It is well known (Molnár and Kovács-Gayer, 1985; Holzer and Schachner, 162 

2001; Molnár, 2007) that melanomacrophage centers of the kidney and some other organs are 163 

the major place for destroying spore stages, larvae and eggs of parasites and through innate 164 

and non-specific immune responses, as well as by cellular host activity they eliminate 165 

pathogens (Manrique et al., 2014; Sitja-bobadilla et al., 2015). It is rather curious that in our 166 

case instead macrophage centers myxospores were damaged and eliminated in solitary 167 

macrophages or groups of macrophages accumulated in the Bowman capsule or in the 168 

convoluted tubules.  169 

Besides macrophage activity around myxospores, cellular infiltration in the renal 170 

parenchyma (Fig. 5 and 6) with mononuclear cells were recorded; we could not, however 171 

relate this infiltration with cellular host answer against myxospores. In our study the 172 

myxosporean infection in the kidney cannot be regarded as fatal, but histological changes 173 

found show that due to these disseminated myxospores remarkable local damages can develop 174 
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in the kidney. Studies made on Myxobolus cyprini by Molnár and Kovács-Gayer (1985) call 175 

attention that myxospores of some myxosporean species developing in inner organs and in the 176 

muscle, leave the host body through the kidney but a part of these myxospores are captured 177 

and eliminated by macrophages.  178 

The findings of this investigation demonstrated that further studies should focus their 179 

attention to find the exact place of plasmodial development, and how myxospores were 180 

carried to the kidney, leading as a consequence to changes in fish health, as well in order to 181 

eliminate the pathogen. 182 
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 348 

 349 

 350 

 351 

 352 

Figure legends 353 

 354 

Fig. 1. Photomicrography of the isolated fresh myxospores of the myxosporean Myxobolus 355 

sp. infecting the kidney of Piaractus mesopotamicus. Scale bar = 5 µm. (B).  356 

 357 

Fig. 2. Photomicrography of the isolated fresh myxospores of the myxosporean Henneguya 358 

sp. infecting the kidney of P. mesopotamicus. Scale bar = 5 µm.  359 

 360 

Fig. 3. Photomicrography of the posterior kidney of Piaractus mesopotamicus. In one of the 361 

renal tubules (star) relatively intact myxospores of Myxobolus sp. (arrowhead) and 362 

Henneguya sp. (arrow) are seen. Some free myxospores in the renal parenchyma around 363 

tubules are also seen. ZN staining. Scale bar = 20 µm. 364 

 365 

Fig. 4. Enlarged picture of the posterior kidney of Piaractus mesopotamicus. Note the mature 366 

myxospores of Myxobolus sp. (arrowhead), mature spore of Henneguya sp. (arrow) free, 367 

melanomacrophages (MM) and macrophages (MØ). ZN staining. Scale bar = 10 µm. 368 

 369 

Fig. 5. Inflammatory infiltrate (I), predominantly with mononuclear cells, in the renal 370 

parenchyma around a damaged tubule and glomerulus. In the lumen and the damaged 371 
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epithelium of the tubule melanomacrophage (arrowheads) cells are seen. Glomeruli (G) and 372 

the Bowman capsule are also damaged (dashed line, arrow). Inside the blood vessel (star) red 373 

blood cells and a mononucleate cell is seen. H & E staining. Scale bar = 20 µm. 374 

 375 

Fig. 6. A part of the kidney with renal tubules (star) and glomerulus. Renal interstitium 376 

surrounding an intact glomerulus is infiltrated by inflammatory, predominantly mononuclear 377 

(I) cells. An infected, damaged glomerulus (G) is filled by melanomacrophage centers 378 

(MMC). The wall of the Bowman capsule (dashed line, arrow) is also damaged. Some free 379 

melanomacrophages (arrowhead) are located. H & E staining. Scale bar = 20 µm. 380 


