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Abstract 

Mercury adsorption on the cell surface and intracellular uptake by bacteria represent the key 

first step in the production and accumulation of highly toxic mercury in living organisms. In 

this work, the biophysical characteristics of the mercury bioaccumulation are studied in intact 

cells of photosynthetic bacteria by use of analytical (dithizone) assay and physiological 

photosynthetic markers (pigment content, fluorescence induction and membrane potential) to 

determine the amount of mercury ions bound to the cell surface and taken up by the cell. It is 

shown that the Hg(II) uptake mechanism 1) has two kinetically distinguishable components, 2) 

includes co-opted influx through heavy metal transporters since the slow component is inhibited 

by Ca2+ channel blockers, 3) shows complex pH-dependence demonstrating the competition of 

ligand binding of Hg(II) ions with H+ ions (low pH) and high tendency of complex formation 

of Hg(II) with hydroxyl ions (high pH) and 4) is not a passive but an energy-dependent process 

as evidenced by light-activation and inhibition by protonophore. Photosynthetic bacteria can 

accumulate Hg(II) in amounts much (about 105) greater than their own masses by well defined 

strong and weak binding sites with equilibrium binding constants in the range of 1 (μM)-1 and 

1 (mM)-1, respectively. The strong binding sites are attributed to sulfhydryl groups as the uptake 

is blocked by use of sulfhydryl modifying agents and their number is much (two orders of 

magnitude) smaller than the number of weak binding sites. Biofilms developed by some 

bacteria (e.g. Rvx. gelatinosus) increase the mercury binding capacity further by a factor of 

about five. Photosynthetic bacteria in the light act as sponge of Hg(II) and can be potentially 

used for biomonitoring and bioremediation of mercury contaminated aqueous cultures.  
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Introduction 

After recognition of transformation of metal compounds in the environment by non-

phototrophic bacteria, bacterial processing of inorganic compounds became a topic of interest 

in the past decades (Kane et al. 2016). Several groups have demonstrated that photosynthetic 

bacteria are also able to metabolize metals and metalloids and became additional possible 

candidates in bioprotection and bioremediation of the environment (Mehta and Gaur 2005; 

Singh et al. 2009; Glick 2010). Trace metals essential (manganese, iron, cobalt, copper, zinc, 

etc.) or non-essential (e.g. mercury) for life can be either adsorbed on the cellular surface or 

taken up by passive/facilitated uptake through porins/channels or by active transport through 

the membrane. The adsorption occurs by several chemical/functional groups (Italiano et al. 

2009) that attract and sequester pollutants (Abdi and Kazemi 2015). It is nonspecific, fast and 

independent on the metabolism (Sloof et al. 1995; Chang et al. 1997; Bakkaloglu et al. 1998; 

Torres et al. 1998; Ahluwalia and Goyal 2007). On the other hand, the facilitated and active 

modes of uptake are slower and are closely connected to metabolic, enzymatic and energetic 

processes of the cell (Malik 2004; Munoz and Guieysse 2006). The transport systems are driven 

either by the hydrolysis of ATP (e.g. ATP-binding cassette (ABC) transporters (Ma et al. 2009)) 

or by coupling to an energetically favorable transfer of protons (e.g. Nramp proteins (Nevo and 

Nelson 2006)).  

To reveal the metal-binding mechanism, the pathways of metal adsorption and uptake 

should be studied separately. Although there have been many studies over the last decades 

describing metal homeostasis in numerous bacteria and many common patterns and 

homologous transporters/metallochaperones across diverse phyla (Youssef et al. 2015), there is 

no consensus on several essential points. Some investigators have shown that metabolic activity 

reduces the extent of bound metal ion due to competition with protons produced by living cells 

(Moore and Kaplan 1994; Gabr et al. 2008), while in other cases intact cells have shown higher 

affinity for heavy-metal binding (Puranik and Paknikar 1999; Asztalos et al. 2010). 

Among the heavy metals, mercury has a distinguished role due to its prevalence as a 

pollutant in aqueous systems and its very high toxicity to living organisms. Deeper 

understanding of Hg dynamics in anoxic environments with respect to methylation (resulting 

an outmost toxic form of mercury) may involve ecological and environmental context. The 

mercury uptake by anoxygenic phototrophs as the primary step has severe influence on the 

cycling of inorganic Hg and methylmercury in the food web of anoxic environments. Field and 

laboratory experiments have shown that phototrophs can directly interact with Hg and abet its 

speciation and fate (Gregoire and Poulain 2014). Once mercury accumulates in aquatic food 

webs, it is biomagnified from bacteria, to plankton, through macroinvertebrates, to herbivorous 

fish and to piscivorous (fish-eating) fish (Wiener et. al. 2003). 

The mercuric ions seem to serve no biologically relevant function. Instead, they cause 

damage on different levels of the organism. By translocation of the mercury ions through the 

cell membranes, the intracellular metal-binding sites are exposed (Gourdon et al. 1990) that 

ultimately can result in death of sensitive organisms unless a means of detoxification is induced 

or already possessed (Vijayadeep and Sastry 2014). The damage is mostly due to the avidity of 

the mercuric ions for the sulfhydryl groups of proteins, which they block and inactivate and to 

high affinity for phosphate groups and active groups of ADP or ATP, and for replacement of 

Fe from some iron-sulfur clusters (Patra and Sharma 2000; Nabi 2014). Organic and inorganic 

mercurials have distinct effects on disruption of protein-iron centers: inorganic mercury was 

found much more efficient at removing iron from iron-dependent proteins than organic mercury 

compounds in E. coli bacteria (LaVoie et al. 2015). 

Photosynthetic organisms are vulnerable to mercury exposure: in photosynthetic 

bacteria of Rba. sphaeroides 2.4.1, the half lethal dose (concentration) is two or three orders of 

magnitude smaller than those of any other metal ions (Giotta et al. 2006; Asztalos et al. 2010). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Youssef%20NH%5BAuthor%5D&cauthor=true&cauthor_uid=26257925
https://en.wikipedia.org/wiki/Biomagnification
https://en.wikipedia.org/wiki/Bacteria
https://en.wikipedia.org/wiki/Plankton
https://en.wikipedia.org/wiki/Macroinvertebrate
https://en.wikipedia.org/wiki/Herbivore
https://en.wikipedia.org/wiki/Fish
https://www.researchgate.net/researcher/55944167_Manomita_Patra
https://www.researchgate.net/researcher/10066523_Archana_Sharma
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Mercury affects both light and dark reactions of bacterial photosynthesis and strongly inhibits 

the photosynthetic electron transport chain in which the reaction center (RC) protein is the most 

sensitive target (Asztalos et al. 2012; Kis et al. 2015). On the acceptor side, the Hg-induced 

inhibition is attributed to the damage of the interquinone electron transfer from QA to QB and/or 

to the increase of the fraction of closed RCs (QA
−). The donor side is much more resistant to 

Hg than the acceptor side. Although these data support that Hg(II) has no physiological 

function, it has been shown recently that Hg(II) might act in the presence of intracellular redox 

imbalance as sink of electrons to maintain redox homeostasis in purple bacteria (Gregoire and 

Poulain 2016). 

Very little is known regarding the mechanism of uptake of inorganic Hg(II) by 

photosynthetic organisms, in part because of the inherent difficulty in measuring the 

intracellular mercury concentration. It has been revealed that Hg(II) uptake in anaerobic 

bacteria is an active transport process requiring energy and not a passive process as commonly 

perceived (Schaefer et al. 2011). The question can be asked whether cellular Hg uptake is 

specific for Hg(II), or accidental, occurring via some essential metal importer. Hg(II) uptake is 

highly dependent on the characteristics of the thiols that bind Hg(II) in the external medium. 

Some Hg(II) complexations by thiols promote the uptake and others inhibit the uptake. The 

evaluation of mercury binding mechanism of highly resistant marine bacteria (Deng and Wang 

2012) and genetically engineered photosynthetic bacteria (Deng and Jia 2011) revealed that 

about 70% of Hg2+ was bound on the cell surface, and carboxyl groups played an important role 

in Hg2+ binding. The main resistance mechanisms are attributed either to accumulation of metal 

scavenging internal polypeptides or to membrane-potential dependent efflux of metals through 

different membrane transporters. Naturally occurring metal-binding peptides, such as 

metallothioneins and phytochelatins (Winklemann and Winge 1994; Sigel and Sigel, 2009), are 

the main metal-sequestering molecules used by cells to immobilize metal ions, offering 

selective, high-affinity binding sites. Several genetically engineered organisms were 

constructed that expressed several metal-binding peptides attached to the Hg2+ transport system 

both at the cell surface and in the intracellular medium (Bae et al. 2001). The limited uptake 

across the cell membrane is often the rate-limiting factor for the intracellular bioaccumulation 

of heavy metals. 

The interest of this paper was the establishment of stoichiometry and kinetic and 

energetic separation of different modes of mercury uptake in the frame of a molecular model 

of bioaccumulation of mercury by intact photosynthetic cells. Furthermore, the Hg2+ uptake 

was measured and compared quantitatively in different photosynthetic bacteria with special 

regards to their planktonic or biofilm mode of lives (Rvx. gelatinosus). Our research is aiming 

at 1) filling knowledge gaps in our understanding of the interplay between Hg cycle and 

photosynthesis and 2) facilitating the application of photosynthetic bacteria for mercury (metal) 

bioremediation and further renders continuous treatment more feasible for industrial use. 

 

Materials and Methods 

Bacterial strains and growth conditions. The photosynthetic purple bacterium Rubrivivax 

(Rvx.) gelatinous (wt), Rhodospirillum (Rsp.) rubrum (wt) and Rhodobacter (Rba.) sphaeroides 

2.4.1 were grown in Siström’s medium (Siström 1962) in completely filled screw top vessels 

without oxygen (anaerobic growth). The medium was inoculated from a dense batch culture 

(1:100) and was illuminated by tungsten lamps that assured 13 W∙m-2 irradiance on the surface 

of the vessel as described earlier (Asztalos et al. 2010). Planktonic cells of Rvx. gelatinosus 

were harvested at early exponential phase; biofilm cells were harvested at late stationary phase 

of the growth where the cells were strongly connected by biofilms. The sample was bubbled 

with nitrogen for 15 min before measurements to preserve the anoxic conditions. The cell 

http://aem.asm.org/content/67/11/5335.full#ref-17
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density (concentration) of the culture was estimated by counting the number of individual cells 

with calibrated Bürker chamber under light microscope. 

Chemicals. For Hg2+-ion treatment of the bacteria, the mercuric ion was added to the culture in 

form of HgCl2 (Giotta et al. 2006). 1 mM and 10 mM HgCl2 stock solutions were used which 

were freshly prepared before the experiment. HgCl2 is highly soluble in aqueous solution under 

physiological conditions and stable for the duration (< 1 hour) of the treatment. The bacterial 

samples were kept illuminated or in the dark under anoxic condition during the mercury 

treatment. 

For pH dependence measurements, a coctail of buffers (2-2 mM) were used: 2-(N-

morpholino)-ethanesulfonic acid (MES; Sigma) between pH 5.5 and pH 6.5; 1,3-

bis[tris(hydroxymethyl) methylamino]propane] (Bis-Tris propane; Sigma) between pH 6.3 and 

pH 9.5; Tris–HCl (Sigma) between pH 7.5 and pH 9.0; 3-(cyclohexylamino) propanesulfonic 

acid (CAPS; Calbiochem) above pH 9.5. The pH was adjusted by stock solutions (1-1 M) of 

HCl or KOH. 

Ficoll 400 is a highly branched polymer formed by the copolymerization of sucrose and 

epichlorohydrin. It is completely non-ionic, very hydrophilic and extremely water-soluble. 

Separations in Ficoll normally result in better preservation of cell function and morphology. 

We used different concentrations of Ficoll (1-10%) to planktonic cells (Georgalis et al. 2012). 

FCCP, carbonyl cyanide-4-(trifluoromethoxy)-phenylhydrazone is a widely used protonophore 

responsible for the collapse of the chemiosmotic membrane potential (Armitage 2001; Kelly 

and Thomas 2001). 20 M was added to the bacterial culture. 

Nimodipine is a potent L-type Ca2+ channel antagonist (Ren et al. 2001). 10-100 M was added 

to the samples. 

Nitrendipine: Ca2+ channel blocker used in 50 M concentration here. The Ca2+ channel 

blockers had no effect on the growth of bacteria even when their concentrations were higher 

than those sufficient for the complete inhibition of Ca2+ uptake (Matsushita et al. 1988).  

N-Ethylmaleimide (N-Em) is a general sulfhydryl modifying agent used in 20 mM 

concentration as previously (Gao and Wraight 1990). It is an organic compound derived from 

maleic acid and contains the imide functional group. More importantly, N-Em is an alkene that 

is reactive toward thiols and is able to modify cysteine residues in proteins and peptides. 

Determination of Hg(II) with dithizone. Dithizone (Diphenylthiocarbazone) as chelating agent 

for metals was used to quantify the Hg2+ content of the bacterial culture. Similar method is 

applied to screen natural waters (lakes and rivers). The amount of Hg(II) in aqueous solution of 

bacteria was determined by use of indirect spectrophotometric measurements of the Hg(II)-

dithizone complex that has high stability constant (Théraulaz and Thomas 1994). The dithizone 

was solubilized in absolute ethanol (10-4 M) using an ultrasonic bath. All solutions were 

prepared freshly before the experiment. In order to prevent oxidizing decomposition, the 

dithizone solution was kept in the dark at < 10°C. Reagent solutions were added as 20 v/v% 

dithizone solution and 80 v/v% sample in distilled water (pH 3.1). The pH of the solutions was 

measured by a digital pH-meter. The bacterial sample was prepared in the following way: the 

cells were centrifuged (8000 rpm, 5 min) and then re-suspended in 10 mM NaCl. All metals 

were removed from the medium otherwise they would form complex with the dithizone and 

disturb the mercury assay. After addition of HgCl2 to the bacterial culture, the cells were 

centrifuged. The supernatant contained the free (unbound) Hg(II) and the sedimented cells 

included the bound mercury (Hgbound = Hgtotal – Hgfree). The steady-state absorption spectra were 

recorded by a single beam spectrophotometer (Thermo Spectronic Helios) in a 1x1 cm quartz 

cuvette. Mercury(II)-dithizonate has an absorption band centered around 480 nm and dithizone 

in acidic medium (pH 3.1) shows absorption maximum at 585 nm. The mercury concentrations 

were determined from the difference of the absorbances (A) measured at 480 nm (Hg(II)-

dithizonate) and 585 (dithizone) nm. The R=(A585–A480)/A585 value measures the peak-valley 

http://www.sciencedirect.com/science/article/pii/0014579388800723
https://en.wikipedia.org/wiki/Organic_compound
https://en.wikipedia.org/wiki/Maleic_acid
https://en.wikipedia.org/wiki/Imide
https://en.wikipedia.org/wiki/Functional_group
https://en.wikipedia.org/wiki/Alkene
https://en.wikipedia.org/wiki/Thiol
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difference to the maximum absorbance, is highly sensitive to the complexation of the mercury 

and is calibrated by use of standard curves of HgCl2 solutions carried out before each 

measurement (Greenberg et al. 1992). The sensitivity and working range of the assay are 

0.4/(g Hg· L-1) and 2–100 g Hg· L-1, respectively. 

Steady-state absorption spectroscopy. The steady-state near infrared absorption spectra of the 

cells were recorded during the growth at room temperature by a single beam spectrophotometer 

(Thermo Spectronic Helios). The baselines were corrected for light scattering.  

Flash-induced absorption kinetics. The kinetics of absorption changes of the whole cells 

induced by Xe flash were detected by a home-constructed spectrophotometer (Maróti and 

Wraight 1988). The electrochromic band shift of the carotenoid pigments in the photosynthetic 

membrane was monitored at 530 nm with reference to 510 nm (Kis et al. 2014, 2015). 

Induction of BChl fluorescence. The induction kinetics of the bacteriochlorophyll (BChl) a 

fluorescence of intact cells were measured by a home built fluorometer (Kocsis et al. 2010). 

The light source was a laser diode (808 nm wavelength and 2 W light power) that produced 

rectangular shape of illumination and matched the 800 nm absorption band of the LH2 

peripheral antenna of the cells. The BChl fluorescence (centered at 900 nm) was detected in the 

direction perpendicular to the actinic light beam with a near infrared sensitive, large area 

(diameter 10 mm) and high gain Si-avalanche photodiode (APD; model 394-70-72-581; 

Advanced Photonix, Inc., USA) protected from the scattered light of the laser by an 850-nm 

high-pass filter (RG-850). 

 

Results 

Kinetics and activation energy of mercury uptake 

Photosynthetic bacteria take up mercury ions in two well separated kinetic steps as revealed by 

direct mercury determination assay (Fig. 1). The prompt (fast) uptake is very fast and the rise 

time cannot be resolved under our experimental conditions. This phase may reflect the 

adsorption of Hg(II) ions to the cell surface groups and a passive and nonspecific diffusion 

through the cell membrane (leakage) driven primarily by the mercury concentration gradient. 

Additionally, we can observe a second and much slower kinetic phase that takes place in the 

minute time range and may be responsible for up to 2/3 of the total mercury uptake. Both the 

magnitude and the rise time of the slow phase depends on the mercury concentration (Fig. 1a). 

The fast phase of the uptake is [Hg] dependent, since the vertical-intercept of the graph 

increases with increasing [Hg]. The larger is the Hg(II) concentration outside, the smaller are 

the partition (amplitude) and rise time (t½) of the slow component in mercury uptake. Upon 

increase of the external mercury concentration from 5 μM to 50 μM, t½ decreases from 20 min 

to 3 min. The internal markers sensitive to photosynthetic activity give simultaneous signal 

about the invasion of Hg(II) ions into the cell and their subsequent destruction of the 

photosynthetic apparatus. In accordance with the slow entry of mercury ions detected by 

mercury assay, both the variable part of the induction of BChl fluorescence (Fig. 1b) and the 

electrochromic bandshift of the carotenoids in the membrane (Fig. 1c) demonstrate decreasing 

kinetics from the level of the untreated (0 μM Hg2+) sample. The decay times of the internal 

photosynthetic reporters are commeasurable with the half-rise times of the slow phase of 

mercury uptake.  

 



6 

 

 
Figure 1. Fast and slow phases of Hg(II) uptake ([Hg]bound) by photosynthetic bacterium Rvx. 

gelatinosus (panel a) and its kinetic correlation with internal photosynthetic markers of variable 

part (Fv) of BChl fluorescence induction (panel b) and flash-induced absortion change (ΔA530 

vs ΔA510) of the carotenoids in the photosynthetic membrane (panel c). After prompt addition 

of Hg(II) ions in form of HgCl2, the amount of bound Hg(II) ions was determined by 

spectrophotometric dithizone assay at different time intervals. The cells of concentrations 1·106 

(a, b) and 1·108 cell/ml (c) were kept in the light during mercury treatment. (a) The rise time 

(t1/2) of the slow phase depends on the mercury concentration (■ 50 M Hg2+, t1/2 = 3 min; ● 10 

M Hg2+, t1/2 = 11 min; ▲ 5 M Hg2+, t1/2 = 23 min). (b) The variable part of the induction of 

BChl fluorescence is referred to the untreated case (0 M Hg2+) and monitors the destruction 

of the photosynthetic apparatus due to 10 M Hg2+. The halftimes are 7 min (Fv, ●) and 10 min 

([Hg]bound, ■). (c) Flash-induced energetization of the membrane reflects the drop of 

photosynthetic activity caused by 50 M Hg2+. The halftimes are 17 min ([Hg]bound, ■) and 20 

min (A530/510, ★).  

 

The slow kinetic phase represents an energy consuming transport mechanism because 

the magnitude of the uptake increases upon energetization of the membrane evoked by 

illumination (Fig. 2). If the photosynthetic bacterium is exposed to continuous light excitation, 

the amount of bound mercury ions enhances significantly compared to that when the bacteria 

are kept in the dark (Fig. 2a). The photochemical gradient assures additional energy supply for 
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the active transport through the photosynthetic membrane.  If, however, the illuminated cells 

are treated with FCCP, a well known protonophore, the amplitude of the mercury saturation 

kinetics will drop to the level corresponding to the dark situation. As FCCP makes the 

membrane transparent for H+ ions, the establishment of the photochemical (proton) gradient is 

blocked and the membrane cannot be energized. 

 

 

Figure 2. Correlation of the slow mercury 

uptake with energetization of the membrane 

(panel a) and Ca2+ transport system in the 

light (panel b) in Rvx. gelatinosus. (a) Cells 

treated with 10 M Hg2+ bind more mercury 

ions in the light (■) than in the dark (▲) but 

not in the presence of 20  FCCP in the 

dark (∆) and light (□). (b) Ca2+ channels 

may participate in mercury transport: the 

mercury uptake is diminished and 

deaccelerated relative to control (ctrl) upon 

addition of nitrendipine, a Ca2+ channels 

blocker (50 M, ★, nitr), nimodipine, a 

potent L-type Ca2+ channel antagonist (50 

M, , nitr) or Ca2+ ions from dissociation 

of CaCl2 (50 M, ●, Ca2+) in the light. 

 

Divalent cation transporters seem to contribute in side transport of mercury ions with 

low yield. Indeed, figure 2b shows that Ca2+ channels may participate in mercury transport 

because the uptake of Hg(II) decreases significantly upon addition of nimodipine (a potent L-

type Ca2+ channel antagonist) and nitrendipine (a powerful Ca2+ channel blocker). In addition, 

the kinetics of slow saturation of the active uptake becomes substantially slower due to 

inhibition of the Ca2+ channels. The blockers did not affect the proton gradient and viability of 

the bacteria in the time- and concentration ranges of treatment which affected the active uptake 

of Hg (see Figs 2 and 3; Matsushita et al. 1988). Similar inhibition of the active Hg2+ uptake 

can be induced by the presence of elevated Ca2+ ion concentration in the suspension. These 

results demonstrate that a considerable portion of mercuric transport through photosynthetic 

membrane should occur via Ca2+ channels.  

 

http://www.sciencedirect.com/science/article/pii/0014579388800723
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Figure 3. Comparison of the mercury uptake kinetics in planktonic cells of Rvx. gelatinosus 

(●) and cells with natural biofilm (■) or with variable concentrations of Ficoll ( 1%, ◊ 5 % 

and  10 %). The cell concentrations were kept the same in all cases (1·108 cell/mL) and 50 

M Hg2+ were added. The cells with polysaccharide Ficoll show similar mercury uptake 

kinetics as those with biofilm.  

 

The mode of action appears to differ with the two Ca-uptake inhibitors tested, despite 

their target to similar Ca-voltage gated channels. Nimodipine stabilizes voltage-gated calcium 

channel in its inactive conformation and therefore inhibits the influx of calcium in the cells 

(Goyer and Cherian, 2012). Nimodipine appears to reduce Hg uptake but not affect binding to 

the surface. Nitrendipine, however, appears to have a more dramatic effect on Hg binding to 

the cell surface than uptake into the cell. Similarly, differences of modes of actions between the 

two Ca antagonists were observed in single cardiac transmembrane Ca channels (Hess et al. 

1984).  

 The distinction between the diffusion and active steps of the mercury uptake is 

demonstrated not only kinetically but also by observed differences in activation energies. As 

the diffusion and active components of the mercury uptake from the bulk to the cell surface and 

from here to the interior of the cell are connected in series, the inverse of the observed rate (kobs) 

of uptake is the sum of the inverses of the diffusion (kd) and active (ka) rates: (kobs)-1 = (kd)-1 + 

(ka)-1. By measuring the observed rate, the activation energy of the rate limiting step can be 

determined since this step must be responsible for the overall rate. Two extreme cases were 

sampled in our experiments of Hg(II) binding affinity of intact cells of Rvx. gelatinosus 

(Steunou et al, 2013). In the planktonic mode of living, the diffusion step is much faster than 

that through the membrane (kd >> ka). In biofilm mode, however, the cell is surrounded by an 

extensive network of dense extracellular polymeric matrix (consisting mainly of 

polysaccharides) where the diffusion of mercury ions to the cell surface becomes slower than 

the transport through the membrane.  

The increase in the amount of the uptake by diffusion and the significant deceleration 

of the slow phase of the mercury ions by biofilm can be modelled if the planktonic cells are 

connected to artificial network made of Ficoll 400 (Fig. 3). Ficoll does not have any adverse 

effects on viability of the bacteria and increases moreover the reproducibility of the biological 

sample by forming neutrally buoyant suspension (Turksen 2015). The network of 

polysaccharides (both of biofilm and Ficoll) decelerates the active and slow mercury uptake 

characteristic of planktonic bacteria so effectively that only the passive/fast phase is observable. 

Based on mercury saturation measurements, about 10% Ficoll is equivalent to biofilm of Rvx. 

gelatinosus i.e. their mercury uptakes show similar kinetics. It should be emphasized that the 
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chemical nature of the network, not the (about two-times) increased viscosity is responsible for 

the decreased mercury uptake.  

The logarithm of the observed rate vs. the inverse of the temperature (Arrhenius plot) 

gives two different straight lines for the planktonic and biofilm modes of the bacterium (Fig. 

4). As expected, the planktonic cells show relatively large observed rate and steep slope that 

corresponds to 520 meV activation energy. That energy is needed to transport the Hg(II) ions 

into the cell. This is a relatively large activation energy that can be covered by active 

metabolism of the cells in the early exponential phase of growth. While large, this energy can 

be achieved by the cell because it can manage this energy of activation in the bacterial RC 

where similarly large activation energy is required for the interquinone (QA
–QB) electron 

transfer (Milano et al. 2007). In biofilm mode of growth of the cell, however, the observed rate 

reduces substantially and the slope of the straight line becomes also small. An activation energy 

of 100 meV can be derived that is characteristic of the diffusion controlled processes whose 

small activation energy (80–200 meV) is ascribed to the temperature dependence of the 

viscosity. Our experiment is able to make clear distinction between the activation energies of 

passive (diffusion) and active transport mechanisms. 

 

 
Figure 4. Determination of the activation energies of the mercury uptake of the planktonic (●) 

and biofilm (■) modes of the bacterium Rvx. gelatinosus. The logarithm of the rate limiting step 

(observed rate, kobs) as a function of the inverse of the absolute temperature (Arrhenius-plot) is 

approximated by straight line whose slope is the activation energy: 520 meV (planktonic cells) 

and 100 meV (cells in biofilm). The conditions are the same as above. 

 

The slow kinetic phase of Hg(II) uptake saturation depends not only on the 

energetization of the membrane (Fig. 2) but on the pH of the solution, as well. After corrections 

for the effect of pH on viability of the bacteria, the dependence of the mercury uptake on pH 

and time is demonstrated in the quasi 3D representation (Fig. 5). All pH profiles obtained from 

the plane sections parallel with the pH and time axes are highly similar: the mercury uptake has 

maximum at neutral pH and drops towards both the acidic and alkaline pH ranges. However, 

the decline is more pronounced at low pH than at high pH values. The shaded two planes 

represent the mercury uptake in dark and light states of the photosynthetic bacteria. The light 

state is characterized by light-generated protonmotive force i.e. the photosynthetic membrane 

is energized (~ 100 meV) compared to that of the dark state. Because the two planes do not 

show much (if any) differences, the light-induced energetization of the photosynthetic 

membrane should not affect the pH-dependence of the mercury uptake. Instead, the competition 

of Hg2+-ions with H+- (low pH) or OH–- (high pH) ions will determine the shape of the pH-
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dependence. The drops at pH values far from pH 7 are attributed to these competitions and not 

to (possible) changes of the light-generated protonmotive force.  

 

 
Figure 5. Quasi 3D representation of the mercury uptake of Rvx. gelatinosus in the dark (lower 

surface) and under illumination (upper surface) as funtions of the duration of the mercury 

treatment and pH of the culture. At all times and independently on the dark/light conditions, the 

mercury uptake has maximum at neutral pH and drops in the acidic and alkaline pH ranges. The 

view from this angle shows clearly the asymmetric pH behavior: the uptake is highly sensitive 

on the low (acidic) pH but less sensitive on the high (alkaline) pH. The data sets are corrected 

for the pH-dependence of the vitality (survival) of the bacteria and for the loss of Hg2+ due to 

HgO production in the alkaline pH range. 

 

The formation of mercuric oxide, a toxic yellow precipitate via HgCl2 + 2·OH–  HgO 

+ H2O + 2·Cl– should have been taken also into account as loss of HgCl2 and toxic agent for 

bacteria in the culture at the alkaline pH range. HgO can bioaccumulate in the food chain, 

specifically in aquatic organisms (Greenwood and Earnshaw, 1997). As mercuric oxide appears 

as yellow precipitate in the culture, it increases the light scattering on a pH-dependent manner. 

The larger is the amount of mercuric oxide, the higher is the turbidity of the suspension. By 

combination of the light scattering measurement with the dithizone Hg2+ assay, the amount of 

produced HgO and loss of Hg2+ in the culture could be derived. At pH 10, about 20% of 

dissolved mercury is converted to HgO precipitate.  

 

Multiple binding equilibria of mercury ions by cell. 

As the intact cell (C) has a very large number of binding sites for interaction with small mercury 

ions (Hg), a relatively large mercury concentration ([Hg]~1 mM) is needed to saturate the Hg 

binding in a dilute suspension of cells ([C]~1·105 cell/mL) (Fig. 6).  
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Figure 6. Saturation curves of mercury uptake for different bacterial strains under dark (a) and 

light (b) conditions. (a) Rsp. rubrum (), Rvx. gelatinosus (▲), Rvx. gelatinosus + 20 mM N-

Em () and Rba. sphaeroides (★). (b) Rvx. gelatinosus illuminated for 0 min (, dark grey), 

5 min (, grey) and 20 min (, light grey and + 20 M FCCP (●, dark grey)). The concentration 

of mercury is given as the number of mercury atoms per liter. The solid lines through the 

measured data are the least square best fits of Eq. (4) (see Table I for the parameters).  

 

At significantly higher cell concentrations, the cells tend to aggregate and the analysis becomes 

more difficult as the linearity is lost. For short exposure of the cell to ~1 mM Hg concentration, 

saturation can be reached without destruction of the cell. After proper analysis, the binding 

constants of mercury ion to the cell (K), the numbers of binding sites (n) and occupied binding 

sites (ν) in a single cell and cooperativity of the binding sites can be derived from the shape of 

the measured saturation curve. The number of occupied binding sites on the cell can be 

expressed as 

 

 
   

 C

HgHg freetotal  , (1) 

where [Hg]total and [Hg]free denote the concentrations of total and free (= total–bound) Hg ions, 

respectively. In the simplest case of identical and independent binding sites,   
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 
 free
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1 HgK

HgKn




 . (2) 

If the cell possess groups of two different (weak and strong) binding sites of binding constants 

Kw (weak) and Ks (strong) and nw and ns number of sites, respectively, and the cooperativity 

among the binding sites may be neglected, then the occupation numbers can be added: 
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Combining Eqs. (1) and (3), one can express the experimentally measured [Hg]free/[Hg]total ratio 

as a function of the free Hg concentration: 
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







  (4) 

 

Table I. Number of binding sites (n) and binding constants (K) for weak and strong binding of 

mercury to different bacterial strains under various conditions (treatment with chemicals, 

illumination and time delay after mercury addition). The parameters were derived by least 

square fitting of the mercury saturation curves (see e.g. Fig. 6) by Eq. (4). 

n s n w K s K w

 10
9 

 10
12 

(M)
-1

(mM)
-1

Rsp.rubrum 7.6 0.16 0.13 1

Rba.sphaeroides 0.06 0.03 2.8 30

Rvx.gelatinosus 0.4 0.4 1.25 2

Nimodipine 0.7 0.3 0.4 2.7

n-Em 0 0.03 0 26

Nimodipine 1 0.4 0.4 1.6

FCCP 0.03 0.07 9 13

0 min 3.5 0.9 0.12 0.8

5 min 0.6 1 0.34 1

20 min 0.7 2 0.24 0.5

Dark

Time

Fitting parameters

Light

Species

Chemicals

 
 

As the binding constants differ greatly (by two orders of magnitude, at least), the analysis of 

the binding situation is not so difficult in our case. The results of decomposition of the 

experimentally obtained saturation curves into two components according to Eq. (4) for 

different bacteria strains and conditions are summarized in Table I. From the large number of 

binding sites, one can see that photosynthetic bacteria serve as sponge of mercury ions as they 

can accumulate Hg(II) in amounts much (at least 105 times) greater than their own masses.  
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 If the concentration of the cells is too large ([C]>>1·106 cells/mL), the actual mercury 

concentration will far not saturate the bacteria, therefore the parameters of Hg(II) binding 

cannot be obtained in that way. Instead of the analysis of the whole saturation curve, the 

determination of the initial value can be used to compare the mercury binding capacities of 

different bacteria. The limiting value is 

  

 
 

 
   CKnHg

Hg

Hg 


 1

1
lim

total

free

0total

, (5) 

 

 where n and K refer to the number of binding sites and the equilibrium binding constant of the 

strongest binding, respectively. The product n·K·[C] measures the mercury binding capacity of 

the bacterial culture. Adjusting the same cell concentration ([C] = 1·1013 cell/L) for different 

highly concentrated samples, their mercury binding capacities can be compared (Table II). Rba. 

sphaeroides has twice less capacity than Rvx. gelatinosus in planktonic mode that has five times 

less capacity than in biofilm mode. The increase in the latter case may be attributed to the 

mercury binding of the biofilm. 

 

 Table II. Comparison of the mercury binding capacities (n·K·[C]) of highly concentrated 

cultures of photosynthetic bacteria ([C] = 1·1013 cell/L) based on measurement of the initial 

limiting value of the mercury saturation curves (see Eq. (5)). Notations abs and rel mean the 

absolute and relative values of n·K·[C], respectively.  

 

 

strain  

 
 total

free

0total

lim
Hg

Hg

Hg 
 

n·K·[C] 

abs rel 

Rba. sphaeroides 2.4.1 0.18 4.5 1.0 

Rvx. gelatinosus  

planktonic 0.10 9.0 2.0 

biofilm 0.02 49 11 

   

  

Discussion 

The discussion will focus on four aspects of mercury accumulation in intact photosynthetic 

bacteria. 

Kinetics and mechanisms of mercury binding/uptake  

Based on Hg assay, we could clearly decompose the kinetics of mercury uptake into two (fast 

and slow) components. The fast phase includes a) biosorption of mercury ions to extracellular 

cell surface associated polysaccharides and proteins and b) passive diffusion through the 

membrane. The passive uptake is rapid, reversible, relatively nonspecific with respect to the 

metal species and independent of cellular metabolisms (enzymatic processes) and physical 

conditions such as pH and ionic strength. It is defined as an attribute of the inactive or dead 

microbial biomass to bind and concentrate mercury ions even from highly dilute solutions. The 

comparatively slow kinetic phase, however, reflects active processes and depends on the 

cellular metabolism as seen from decreased rate observed with protonophore (Fig. 2). The 

mercury(II) ions may utilize various energy-dependent transport systems including ion pumps, 

ion channels and carrier mediated transport. 

Potentially toxic metals could be transported across the membrane via the channel 

(pump) of essential ions (Langston and Bebianno 1998). Calcium provides the most common 

divalent cationic channel and is the most likely route for entry of a number of metal pollutants 

including mercury. We demonstrated that Hg(II) ion influx across the bacterial membranes was 
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affected by Ca-channel blockers nimodipine (Hinkle et al. 1987) and nitrendipine (Barton 2005) 

which indicates the involvement of Ca-channels in the mercury transport process: it is 

associated with and competed by the transport of Ca2+ ions (Fig. 2). This finding is in 

accordance with observation of decreased Hg2+ accumulation by gram-negative bioreporter 

upon increasing divalent cation (Ca2+) concentrations (Daguené et al. 2012). The authors 

proposed that divalent cations contributed to hamper net Hg2+ accumulation by decreasing outer 

membrane permeability and, therefore, the passive diffusion of Hg2+ species to the periplasmic 

space.  

We were able to separate the passive and active modes of mercury uptake based not 

only on kinetics but on activation energy, as well. While the passive uptake has low activation 

energy (~100 meV) in accordance with our hypothesized diffusion mechanism, the active 

transport requires much (about 5 times) larger activation energy (~500 meV). We could model 

this switch between the rate limiting steps by changing the condition of cultivation for 

bacterium Rvx. gelatinosus. In the early exponential phase of growth, the cells of this strain are 

planktonic. The dissolved mercury is readily available to the cells therefore its rate of diffusion 

will not limit the kinetics of the Hg uptake. In the late stationary phase of growth, however, the 

cells become incorporated in biofilm and the diffusion of mercury to the cell surface through 

the biofilm becomes the bottle neck of the rate of Hg uptake.  

  

The mercury uptake is pH-dependent 

The pH-dependence of mercury accumulation is a diverse field of research with many particular 

observations and results that are difficult to treat comprehensively (Kelly et al. 2003; Le 

Faucheur et al. 2011; Italiano et al. 2009). Here, we observed pH-dependent bioaccumulation 

of mercury with the largest value at the neutral pH range and decreased substantially upon 

acidification and alkalization of the solution. Kelly et al. (2003) reported an opposite pH-

tendency by an aquatic bacterium in a narrow (6.3<pH<7.3) range. Le Faucheur et al. (2011) 

have examined the influence of pH on Hg(II) uptake (mainly in the form of the lipophilic 

complex HgCl2) by the green, unicellular alga, Chlamydomonas reinhardtii and observed that 

the uptake of the dichloro complex increased by a factor of 1.6 to 2 when the pH was lowered 

from 6.5 to 5.5. Several mechanisms were explored to explain the enhanced uptake at pH 5.5, 

including pH-induced changes in cell surface binding of Hg or in Hg loss rates from cells, but 

none of them gave completely satisfactory explanations. Their findings imply that inorganic 

Hg(II) in aqueous solution behaves, in terms of uptake, neither as a lipophilic complex (the 

uptake of which would be expected to decrease with acidification because of algal membrane 

packing), nor as a cationic metal (the transport of which by facilitated transport would be 

expected to diminish with increasing proton concentration because of metal–proton competition 

at the transporter binding sites). In their experiment, mercury uptake by algae seems rather to 

be stimulated than inhibited by proton addition. 

In this work, we demonstrated an inverse relationship of the mercury uptake to the 

concentration of H+ in the acidic pH range that cannot be explained by assumption of simple 

diffusion of neutrally charged species HgCl2 to the bacterium but rather of a pH-dependent 

facilitated mechanism by which Hg(II) is taken up by the cells in competition with H+ ions or 

by H+/Hg2+ antiport. The simplest explanation is based on the competitive binding of Hg2+ ions 

to the diverse protonatable sites of the surface groups. The lower is the pH the larger is the 

fraction of the protonated residues (see Maróti and Wraight, 1988 for RC) and the smaller is 

the amount of bound mercury ions to the protonatable sites. According to our view, 

deprotonated forms of protonatable residues covering the acidic pH range can be made 

responsible for mercury immobilization (Italiano et al. 2009).  

The similar pH-behavior observed at the alkaline pH range needs different explanation 

than Hg2+ competition with H+ ions. Mercury hydroxo-complexes available to cells, seem to be 
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important for the accumulation on cell surface and for permeabilization of the cell membrane 

and can play determining role in pH-dependence of the mercury uptake. As our light scattering 

experiments demonstrated, hydroxyl complexes tend to precipitate in the aqueous solution with 

two consequences, at least. 1) More and more alkaline solution will contain less and less active 

mercuric(II) ion for uptake. 2) The produced toxic forms of mercuric compounds (e.g. HgO) 

will start to destroy the cell. These processes will contribute to the observed drop of the mercury 

uptake in the alkaline pH range.  

The view of pH-induced changes in bacterial mercury uptake is further supported by the 

experimental observation that the pH-profile established by the initial equilibrium of 

binding/unbinding at the cell surface is not modified essentially upon energetization of the cell 

membrane (see Fig. 5). Only the magnitude of the mercury uptake and not the shape of the pH-

dependence changed significantly, when the membrane was energetized by light excitation. 

Discussing the pH-dependence of mercury uptake by photosynthetic bacteria, the 

suboptimal metabolic rate for different pH values should not be glossed over because the 

importance of metabolism on Hg uptake was shown in this work. Most enzymes typically have 

optimal pH range between pH 3 and 8 that leads to a very complicated pH-dependence of the 

bacterial metabolism. In attempt to full description of the observed pH-dependence of the 

mercury uptake, the possible change of the metabolic rate should be also considered. 

  

Hill plot of mercury uptake 

After introducing the degree of saturation of the binding sites (
n
νΘ  ), the Hill plot can be 

constructed by graphing 
Θ

Θ

1
log  versus log [Hg]free on base of Eq. (2) (Fig. 7). This 

representation can demonstrate the difference between independent and cooperative binding 

sites at the cost of losing information for nw and ns, the numbers of binding sites of different 

affinities of the cell. On a wide range of mercury concentration, two straight lines with slopes 

of 1 were found indicating no cooperation of the binding sites. It is a remarkable experimental 

conclusion that despite of the large number of binding sites and their large affinity of mercury 

ions, the binding sites are independent, i.e. their binding status does not influence the binding 

properties of the neighbors. The binding constants of the weak and strong binding sites can be 

obtained from the inverse values of the interceptions of the straight lines with the horizontal 

line through the half saturation value ( Θ ½,
Θ

Θ

1
log = 0). The strong binding sites of the cell 

can be associated with sulfhydryl groups as the use of N-ethylmaleimide, a general sulfhydryl 

modifying agent, eliminates the straight line representing the sites of high mercury affinity. One 

could expect cooperativity among the strong binding sites but it is also unimportant as relatively 

few strong binding sites are available (two-three orders of magnitude less, than that of the weak 

binding sites, see Table I) and their interaction can be neglected.  
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Figure 7. Hill-plots of the mercury uptake of three different strains of photosynthetic bacteria 

Rsp. rubrum (●), Rba. sphaeroides (■) and Rvx. gelatinosus (with 20 mM sulfhydryl modifying 

agent N-ethylmaleimide (n-Em), ▲). Note the unity slopes (no cooperativity among the binding 

sites) and the two (weak and strong) binding sites except of the presence of sulfhydryl modifier.  

 

Biofilm protects the cell against mercury toxicity 

Many bacteria are embedded in an extracellular polymeric substance matrix composed of 

polysaccharides, proteins, and nucleic acids (Flemming and Wingender, 2001). The surface-

attached communities (biofilms) increase resistance to antimicrobial agents compared to the 

resistance of free-swimming organisms (Hentzer et al., 2001) probably due to decreased 

metabolic activity within the depths of a biofilm (Spoering and Lewis, 2001) and to binding 

and sequestration of antimicrobial agents by biofilm components, such as negatively charged 

phosphate, sulfate, and carboxylic acid groups (Hunt, 1986). As biofilms facilitate sorption of 

heavy metals, they are capable of removing heavy metal ions from bulk liquid (Liehr et al. 

1994; Labrenz et al., 2000). 

We observed that photosynthetic bacteria Rvx. gelatinosus with biofilms were more 

resistant to Hg2+ than planktonic cells (without biofilms). The effect can be attributed to the 

decrease of the dissolved mercury concentration because of the adsorption of the mercury 

species to the biofilms. The upload of the mercury pools of the cells and the biofilm are 

competitive processes. Another possible explanation for increased resistance to mercury in 

biofilms is that the negatively charged extracellular polysaccharides can effectively bind Hg2+ 

from the bulk solution (Teitzel and Parsek 2003). This view is further supported by our 

experiment where the natural biofilm is replaced by a similar artificial polysaccharide network 

produced by Ficoll. Because of the abundance of hydroxyl groups, Ficoll 400 is very 

hydrophilic and extremely water-soluble. Addition of Ficoll to the planktonic cells increases 

the passive mercury uptake to a similar level as observed in cells in biofilm mode. This finding 

is in contrast to Gram-negative bacterium Escherichia coli 055 where Najera et al. (2005) 

observed that the presence of the biofilm did not drastically change the relative availability of 

the dominant mercury species including the neutral HgCl2 species dominating under our 

conditions. 

The mercury uptake measurements have been conducted mainly with batch planktonic 

cultures, for which the uptake of mercury species involves diffusion across an aqueous unstirred 

layer to the cell surface and further through the lipid bilayer cell membrane into the cell interior. 

However, it is now well-established that the majority of bacteria in the environment live in 

attached communities or biofilms. Our model photosynthetic bacterium Rvx. gelatinosus is able 

to evolve biofilm during the growth and is expected to affect mercury availability (and its more 

harmful methylation) in several ways, including 1) changes in mercury speciation with steep 

chemical gradients within the biofilm, 2) the formation of an additional diffusive layer 
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surrounding cells and 3) adsorption of mercury by the biofilm. Although the photosynthetic 

bacterium Rvx. gelatinosus is unable to methylate mercury, the evolved network can colonize 

numerous other organisms (primarily sulphate and iron reducing bacteria and methanogens in 

anaerobic sediments of aquatic systems) with the capacity of methylation of Hg2+. In this way, 

the biofilm offers stage for link between the anoxygenic phototrophs and methylators and the 

understanding of mercury uptake by anoxygenic phototrophs is critical from the perspective of 

the methylators. These organisms thrive at similar redox interfaces in the environment so there 

needs to be some context for what Hg uptake by phototrophs means for Hg availability to 

methylators and how this affects the substrate available for methylation. 

Our findings shed some light on the importance of Hg availability in anoxic 

environments and on several potential implications for mercury cycling, including effects on 

elemental mercury production, mercury sedimentation, and microbial methylation of Hg(II). In 

a more global perspective, the present study could be part of the explanation for many 

environmental hazards, among others the observed connection between lake acidity and 

increased (methyl) mercury levels in fish (Mailman et al. 2006; Hongve et al. 2012) and the 

effects of primary physical-chemical factors on the harmful Hg uptake and methylation in the 

food webs. 
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