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1. INTRODUCTION

In this paper we define Nahm transformation for some singular Higgs bundles on the
complex projective line with finitely many first-order poles and one second-order pole.
Let C C P! denote the complex affine and projective lines, endowed with the Euclidean
metric, and with standard holomorphic coordinate denoted by z € C. We consider a
parabolic harmonic bundle (V, FZJ ,0%.6, h) on P! with logarithmic singularities at some
fixed points 21, ..., 2, € C and a second-order pole with semi-simple leading order term
at infinity. Let C be a different copy of the complex affine line with coordinate ¢, and p!
the associated projective line. The aim of this paper is to construct a transformed Higgs

bundle (V, F7, 5%, 6) on P! and study the properties of the mapping
1) N (V,Fi,8¢,0)— (V,F/,5%,0),

called Nahm transformation, on moduli spaces. In the case where the residues of 6 at the
singular points are semisimple, the transform was defined in [7], and its properties were
further studied in [1I], [8]. Therefore, in this note we will focus on the case where the
residues of # at the singular points are not necessarily semisimple.

During the preparation of this paper, the author was supported by the Lendiilet LDT
grant of the Hungarian Academy of Sciences.

2. CONSTRUCTION OF NAHM TRANSFORM

In this section we define the parabolic Higgs bundle underlying the Nahm transform
of a harmonic bundle on P!, without going into the technical details of the constructions.
In the later sections, we develop the technical tools necessary to make the construction
rigorous, and sketch the proof of the results stated in this section.

Let C be a complex analytic curve. We denote by O¢ and K¢ its structure sheaf and its
canonical sheaf respectively, and by QF the sheaf of locally L? differential k-forms on C.

Let V' be a smooth vector bundle over C' of rank > 2 and € be a holomorphic vector
bundle with underlying smooth vector bundle V. The space of local sections of & may be
conveniently described as the kernel of a partial differential operator 9 of type (0,1) on
V. Let

0:&—¢& XKoo K C

be a (possibly singular) morphism of O¢-modules, called a Higgs field. The couple (&, 6)
is then called a Higgs bundle. Let h be a smooth fibrewise Hermitian metric on V. Denote
1
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by D¢, the Chern connection associated to 0% and h and by 6* the h-adjoint of 6. Then
(V,0%,0, h) is called a harmonic bundle if and only if the connection

2 D=Dcp+0+06"

is flat, i.e. its curvature F'p vanishes. If this is the case, we let

3) vV =Dp"

denote the meromorphic integrable connection on the holomorphic vector bundle £ given
by DO1.

From now on, we let (V, 0¢.0, h) denote a harmonic bundle over P! with some sin-
gularities. We will now spell out explicitly our assumptions on its singularities, as well as
the definition of a compatible parabolic structure F;. Fix finitely many distinct points
21,...,2n € C. We consider the compactification P! of C by the point at infinity
2o = [0 : 1]. Let & be given the structure of a quasi-parabolic bundle on P! with par-
abolic points zg, 21, . . ., zn, i.6. we assume that for every ¢ € {0,...,n} we are given a
decreasing filtration of C-vector subspaces of the fiber of V" at z;

4) {y=FicFitc...cF'cF =V,

of some length 1 < [; < r. Fori € {0,...,n},j € {0,...,l; — 1} consider the graded
vector spaces associated to @I)

(5) Gr] = Gr}, = F/ /F/ ™.

We fix parabolic weights {a} fori € {0,...,n},j € {0,...,1; — 1} satisfying

(6) 1>ali > a2 >0.

. . S:1
compatible with the filtration 77 in the sense that F/ is spanned by the evaluations at z; of
the vectors

For every 0 < ¢ < n we will take a local holomorphic trivialisation {ef}r of & near z;

i J
1 dim F;
FINN 2 .

e

With respect to such a compatible basis, we will use the diagonal matrix
: j li—l
diag(e7);,
consisting of the parabolic weights, each af repeated with multiplicity equal to dim Grg .
We assume that

6 c T(P',End(&) ® Kpi(log(z1) + - 4+ log(2,) + 2 - 20))

is a Higgs field on € with logarithmic singularities at 21, . .., 2, and a second-order pole
with semi-simple leading order term at infinity, compatible with the parabolic structure.
We will call such a Higgs field singular. By compatibility in the logarithmic case we mean
that the residue

@) res,, (0) = 0((z — 2;)0z)
of 0 at z; preserves the filtration F}*:
8) res,, (0) : F? — F/

foreveryi € {1,...,n},j € {0,...,l; — 1} . For the second-order pole z at infinity, we
require an equality

A d
) 0= gdz + B—Z + lower order terms,
z
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in some local trivialisation of £, where A is a semi-simple » X r matrix and B any r X r
matrix, both preserving the image of the filtration (4) under the isomorphism &|,, = C”"
given by the trivialisation. We denote by P C C the eigenvalues of A. Moreover, let us
denote by H the centraliser of A in Gl,.(C) and by b its Lie-algebra. Then up to applying
a holomorphic gauge transformation near oo we can arrange that B € b; in what follows
we will therefore assume B € b.

Claim 2.1. A preserves the filtration (E]) if and only if for any | the piece F} in (E]) is the
direct sum of its intersections with the various eigenspaces of A.

Proof. The direction < is trivial. For the converse, if for instance
A1U1 + Agug € Fé
for some \; # 0 and v; in the (;-eigenspace of A with (; # (2 then
A(A o1 + Aav2) = G(A1v1 + Aav2) + (G — (1) Aava.

Now as by assumption the left-hand side and the first term on the right-hand side belong
to F[l), the same thing follows for the second term on the right-hand side, and thus (as
(o — (1 # 0) for Ayvs too, which in turn implies the same thing for A;v; as well. The same
kind of argument applies for a vector with components in more than just two different
eigenspaces. (|

By compatibility, res., () acts on the spaces (5). Let us denote by res., (#)7 this action
and let

res,, (0)7 = S{ + Ng
be its decomposition into its semi-simple and nilpotent components respectively. We
may (and henceforth will) assume that the compatible trivialisations {ef}%_, are chosen
so that S are diagonal for each i,j. The generalized eigenspaces of S; then define a

block-decomposition of Gr;. To each such block there corresponds a single eigenvalue of
res,, (0)7, and the eigenvalues are different on different blocks.

Claim 2.2. The sections € can be chosen so that for each j the restriction of 0 to the
subbundle of € spanned by the vectors €] with j (s) = j is block-diagonal with respect to
the block-decomposition defined by S;.

Proof. The bundle € splits holomorphically as a direct sum of vector subbundles corre-
sponding to various eigenvalues of §. By compatibility of res., (6) with F®, each such
direct summand is a direct sum of its graded pieces for Flj , see Claim The union
of a local holomorphic trivialisation for the graded pieces of the direct summands for all
possible choices fulfills the desired property. (I

By the Jordan-Holder theorem there is an increasing filtration WZJ o Of Grfpi associated
to Nij satisfying
(1) forall k € Z, N/ maps WZk into Wi];kf2
(2) forall k € N the map (N7)¥ is an isomorphism GrZViJ Gr%i — Gr‘ivkj Gr%i (in
the notation (N7)* the index j refers to restriction of N; to Gr%i, whereas the
upper index k stands for k-fold composition of NV, f with itself).
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The filtration WZ] . 1s called a weight filtration; it is not unique, however its length and the
dimensions of its graded pieces

i o ap
Gr; ,, = Gr; ' Gry,
are unique. Observe that in the case ¢ = 0, the assumption B € b implies Ny ; € b for

every j.
A Hermitian metric k in € in some neighborhood of z; (i € {1,...,n}) is said to be
compatible with 6 if and only if it is mutually bounded with the diagonal metric

) 3(s) S\
(10) ho = diag(|z — 2 [** (= log |z — z)*™)L_,

with respect to some (or equivalently, any) holomorphic trivialisation {e$}"_, compatible
with the filtrations F. Here j(s) refers to the largest j € {0,...,l; — 1} such that ef € Ff
and k(s) refers to the smallest & € Z such that e € Wf gf). For i = 0, we require an
analogous behaviour, with z~! replacing the local coordinate z — 2z

(11) ho = diag(]z|72°0() (log |2[)*))1_,.

For a compatible harmonic metric, for all 0 < ¢ < n the diagonal matrix consisting of the
parabolic weights of E = ker(D%!) is given by

(12) diag(7)1-y = diag(a] — 2R(S7))j=},

where the arguments of diag on the right-hand side are diagonal matrices of dimension
dim Gr] each. Observe that 3§ does not depend on s on any eigenspace of S7. The
singularity of V = D19 at z; for all 1 < i < n is logarithmic, and at infinity V has a
singularity with Katz-invariant 1. The second-order term of V at infinity is simply A by
the results of [2]], that is to say twice the second-order term of 6:

(13) D =d+ Adz + O(z 1)dz,

with respect to some holomorphic trivialization of E. Finally, the relationship between the
graded pieces of the residue of the Higgs filed and that of the integrable connection for the
filtration F; is

res., (V) — diag(5;)5-

(14) res,, (0) = 5 )

c.f. the table in the Synopsis of [6].

From now on we let (V, F/, 0%, 6, h) denote a harmonic bundle on P! with parabolic
structure and admissible harmonic metric, and singularity behaviour fixed as above. We
now make important assumptions necessary to carry out our construction.

Assumption 2.3. Forany1,j,

(1) fori =0, 0 is not an eigenvalue of res,, (0)7;

(2) fori > 0ifa? = 0 then the nilpotent part N? of the endomorphism res., (0)° acts
trivially on the 0-eigenspace of res., (0)°;

3) fori>0 ifocg > 0 then 0 is not an eigenvalue of res,, (0).

Let us note a straightforward consequence.

Claim 2.4. If the condition (1) above holds then (€, 0) has no Higgs subbundle of the form
(Op1(m),(dz) for any ¢ € C.
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Remark 2.5. This property is an analogue of an instanton being without flat factors, c.f.
Definition 3.2.2 of [3]. Notice that by (9) such a flat factor could only exist for ¢ an
eigenvalue of A/2.

Proof. This is immediate, as the eigenvalue of the residue of (dz at infinity is 0. (]

Now, given ¢ € C \ P we define a twisted flat connection on P by
(15) D¢ =D — (d=.

We consider the twisted elliptic complex

(16) 05V 2% vea 25 vea? o

It easily follows from the form that for any (; € P the flat sections of V for D¢ have
exponential behaviour

exp(—(¢j — ¢)z + P(log |z[))
on the (;-eigenspace of A for some function P of at most polynomial growth. In particular,
this complex has trivial L2-cohomology in degree 0. By a duality argument, the same then
follows for its L2-cohomology in degree 2 too. In particular, it follows from continuity of
the index that the dimension of its first L?-cohomology space i is independent of ¢ € C \P
We then deﬁne the fiber V; of the transformed vector bundle V as the first L2- -cohomology
space of . In Section 3| we will show that VC has an equivalent description as the kernel
of the twisted Laplace-operator

A¢ = D¢D¢ + DEDe
on its L?-domain. By Kodaira and Spencer’s Fundamental Theorem [4]], there exists a
smooth vector bundle ¥ over C \ P with fiber over ¢ given by ‘7( In Section 4{ we show
that ‘A/C is isomorphic to the first hypercohomology space of a twisted Dolbeault complex.
Asa consequence, we obtain a holomorphic bundle € over C \ P with underlying smooth
vector bundle V and a meromorphic Higgs field 9 on €. Furthermore as we explain in
Section |5 I this identification provides us with a natural extension of € to P! and even a
transformed parabolic structure F] The main result of the paper is Theorem [6.2] stating
that the transformed Higgs field is meromorphic, it is compatible with the parabohc struc-

ture F' and that the transform (1)) respects the Dolbeault complex structures of the moduli
spaces.

3. FREDHOLM THEORY

Much of the analysis has been carried out in Chapter 2 of [7], so here we will only
indicate the differences in the argument that one needs in order to take into account non-
zero nilpotent parts of the residues. In particular, as we assume that the leading-order term
at infinity is semi-simple, the local analysis near infinity is exactly the same as in [7]]. The
same holds for the global Hodge-theoretic arguments. Therefore, we only need to work
locally near a logarithmic point z; for a fixed 1 <17 < n.

Let € > 0 be a small real number and consider the disc B = B, (z;) of radius ¢ centered
at z;. Let us define the local norm

HY(Q) = {feﬂ’“( yov] [ 1P +1Den(DF + 100 <oo},

where we use the Euclidean metric on B and the metric h on V' to compute the norms
involved. Then we have the following analog of Claim 2.4 of [7]].
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Claim 3.1. The space H' (%) does not depend on the specific harmonic bundle with fixed
singularity behaviour.

Proof. Fix a unitary frame o7 (1 < s < r) of V near z; compatible with the parabolic
filtration. The statement clearly holds on the regular part of V' spanned by the vectors
o; where § and D are both regular and the parabolic weights vanish: indeed, on this
component of V' the space H'! is simply the usual Sobolev space L*!. Let now (r, ) be
the polar coordinates on B. According to Theorem 1 of [6], the matrix forms of D¢y, 6
with respect to this trivialisation differ from some model by an endomorphism-valued one-
form 7 of growth order O(r~!|log r|~1). The model reads as

Dcpi = d+ vV—1R(res,, (V))dy

g _ 1o (V) — ding ()L,
2(2 - Zz)
(See e.g. [[7]] (1.18)~(1.19).) Furthermore, we may assume that res_, (V) is upper triangular.
Denote by p? the eigenvalue of res,, (V) corresponding to the basis element o and by A{
the corresponding eigenvalue of res,, (6).

We need to prove that the norm H' defined above is equivalent to the analogous norm
H}(QF) obtained from this model. For this it is sufficient to show that for any f € Q*(B)
the norm of the image 7(fo}) under the perturbation term is bounded above by a suitable
constant multiple of | D¢y, ;(fo7)| or by a suitable constant multiple of |0;(fo?)|.

By our first observation, it is sufficient to focus on vectors o such that either 3; # 0 or
o7 is not contained in the kernel of at least one of the two endomorphisms res,, (V), res,, (9).
Now, the key point is that by Assumption[2.3|(2) if ;2§ = 0 = /3] then the nilpotent part acts
trivially on o and we are back to the regular case, already discussed above. Therefore, we
have the following three cases.

First, if S(pf) # 0 then there exists some ¢ > 0 only depending on € and y? such that
for any f € QF(B) we have

10:(foi)? > clr™! [logr|~* |7
over B. Hence, in this case some fixed multiple of |0;(fc)| bounds the norm of the
perturbation term.

Second, if S(uf) = 0 but R(uf) # 0, then by standard Fourier theory on the cylinder
there exists some ¢ > 0 only depending on € and . such that

|Don,i(fo})? > clr™ logr| ™" f|?

over B. Hence, in this case some fixed multiple of |D¢y, ;(fo?)| bounds the norm of the
perturbation term.

Third, if 47 = 0but 37 # 0 then just as in the first case, some fixed multiple of |0;(fo7)
bounds the norm of the perturbation term from above. This finishes the proof. (]

Now define the Dirac operator
Qq=Dc—D;: (o) V -0 0V
where D stands for the h-adjoint of D¢. Then we have the analog of Theorem 2.6 of [7].
Proposition 3.2. The operator § is Fredholm from H' to L.

Proof. Just as in Section 2.2 [[7]], it is possible to glue a parametrix of § over the comple-
ment of a neighborhood of the parabolic points and exact inverses of the local model Dirac
operators ®;. The key point is that 0 is not a critical weight for the translation-invariant



NAHM TRANSFORMATION 7

model operator 7;&;, where r; = |z — z;|. This follows exactly as in Subsection 2.2.1 loc.
cit.: 0 is a critical weight for the action of &; on o7 if and only if ;1] = 0 = 37. However,
by Assumption this implies that &; is the Dirac operator corresponding to a regular
connection and non-singular metric. In this latter case, by Claimthe function space H'!
is usual Sobolev space L?! and the statement is classical. (I

We define the Dirac—Laplace operator
Ac=—-DDf—=DiDc: Q' oV - Q' o V.
The proof of Theorems 2.16 and 2.21 of [[7]] then imply the following.

Proposition 3.3. The first L2-cohomology of the elliptic complex @ is canonically iso-
morphic to the cokernel of the Dirac-operator 8§ defined on H' and to the kernel of the
Dirac—Laplace operator defined on its L* domain.

4. DOLBEAULT INTERPRETATION

In this section we write down and analyze an explicit Dolbeault complex admitting
an L?-resolution for a model Hermitian metric on the fibers and Euclidean metric on the
base. Our analysis is very similar to that of Mochizuki (c.f. Section 5.1 of [5]) for irregu-
lar A-connections for the Poincaré metric. The results in this section also hold for smooth
projective curves of any genus, but for the sake of simplicity of the exposition we limit our-
selves to the case of the projective line. In this section we again work with the compatible
local holomorphic trivialisations €] of € near z; as in Section 2}

As a preliminary observation, let us give a slightly different description of the bundle
V. Namely, the unitary gauge transformation

(17) exp (;(Eé - CZ)>

transforms D¢ into the deformation

(18) D - gdz — gdé.

In particular, this is a self-adjoint deformation, hence it corresponds to
56 _ 5¢
o =0
HC =0- gdz.

The upshot is that the holomorphic bundle € is preserved under this deformation. Now, as
is unitary, it preserves the spaces of L2-sections of ¥, and therefore induces isomor-
phisms on the L2-cohomology spaces of the two deformations and . We infer

Ve = H}s <D - %dz - gdz) :
In this section, we will work with this latter deformation, as it is more convenient to study
the transform of the underlying Higgs bundle of the harmonic bundles.
Now, let us start the analysis of the L?-cohomology. First, one can easily check that
in the case i > 0 we have e € L%(&, h,|dz|?) for all s € {1,...,r}; moreover (z —
z;)"tes € L*(&, h,|dz|?) holds if and only if either

(M ol > 0o0r
@) ol = 0and k(s) < —1
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is fulfilled; finally, (z — z;)~2ef ¢ L2(&,h,|dz|?) holds for all s € {1,...,r}. On the
other hand, for i = 0 we have e ¢ L2(&,h,|dz|?) for all s € {1,...,r}; moreover
z71le € L%(&, h,|dz|?) holds if and only if either
(1) ag(s) > 0or
@) ol = 0and k(s) < -1
is fulfilled; finally, z~2e§ € L?(€, h, |dz|?) holds forall s € {1,...,r}.
We now proceed to identify the Dolbeault complex

(19) FL GO Kpi(2 20+ 21+ -+ 2n)
that admits an L? Dolbeault resolution for the Euclidean metric. The sheaves F, G are char-
acterised as certain elementary transforms of the sheaf of local sections of € at zg, 21, . .., 2n

along some subspaces of the fiber €., so that they are equal to & away from the punctures
z; for all 4 > 0. Let us start by defining a local frame {g?}"_, of G near z; for i > 0:

(1) Case o™ =0
(a) sub-case k(s) < —1: setg; = e}
(b) sub-case k(s) > —1:setg! = (z — z;)e]
(2) Case ag(s) > 0: set g7 = ef.
For 7 = 0 the frame is
(1) Case o!® =0
(a) sub-case k(s) < —1: setgj =z '€}
(b) sub-case k(s) > —1: set g§ = 2~ %€}
(2) Case o’ > 0: set g§ = 2 Tej.

Let us denote by A; the eigenvalue of Sf ) corresponding to the vector ef. For¢ > 0
we construct an explicit frame {f7}"_, of F starting out of {€7}’_,, depending on k(s)
and whether /) and A? vanish or not. Here is the definition of the local frame of ¥ in

the case 7 > 0:
(1) Case af(s) =0
(a) sub-case A\ = 0 (and as a consequence necessarily resigs)(ef (z)) = 0 by
Assumption 23| @2)): set f = e}
(b) sub-case \f # 0,k(s) < —1: setff = e}
(c) sub-case A\{ # 0, k(s) > —1:setff = (z — z;)ef
(2) Case o) > 0: set f5 = e?.
For ¢ = 0 the sheaf of local sections of F doesn’t depend on the eigenvalues of the polar
part of 0, as for the Euclidean metric we have |fe|;, 4.2 < K|e|p, 4> for any section e
of € near oo and a constant K > 0 only depending on the leading order term A in (9).
Therefore, a local frame of J in the case ¢ = 0 is given by fj = g for1 < s <r.

One can check that the definitions of F and of G above are independent of the choice
of a compatible local frame {e}. In addition, ¥ is the lower elementary transformation of
G(z14+ - +2,) =9®0(z1 + - - - + 2z,) at the points z; along a subspace W C 9|Zi for
ie{l,...,n}k

0>F =G+ +2,) > W —0;
in particular, F is naturally a subsheaf of G(z1 + - - - + zy).

Now, let us set D" = 9% + 6. Consider the twisted Higgs bundle

(20) O =0 — gldg dz
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and the twisted D" -operator
DZ = 65 + 94.
Notice that as F < G(z1 + - - - + 2,,), the morphism 0 maps the sheaf J to
Gz1+ +2) XGQKp1(2- 20+ 21+ + 2p)-

Just as in Proposition 4.13 [[7], we have the following.

Proposition 4.1. Forevery ¢ € 6\13, the fiber VC is isomorphic to the first L?-cohomology
space of the complex

DY . DY )
0=V —=->Ve0 — VO =0,
and to the first hypercohomology space of the twisted holomorphic Dolbeault complex

0
1) FG@Kpi(2-20+ 21+ +2n).

Proof. The first statement follows as both L2-cohomology spaces are isomorphic to spaces
of harmonic sections for the Laplace-operators associated to and to DIC/ respectively;
however, by the Weitzenbock formula, these Laplace-operators agree up to a constant.
Let us come to the identification in terms of the first hypercohomology space. By con-
struction, near the parabolic points the sections of J are the local meromorphic sections
e of & such that (e) is also L2, or equivalently, the local L? sections v of V such that
d¢(v) = 0 and 6(v) € L2. Notice that for any given ¢ € C and v € L? we clearly also
have %v € L?, so the same statement holds for 6 replaced by 6. too. By the above analysis,
0 induces a morphism of L?-resolutions of the sheaves of the complex. In particular, the
resolutions involved are acyclic, and this then proves the statement. (I

5. EXTENSION AND TRANSFORMED PARABOLIC STRUCTURE

The analytic construction of Vis only defined over é\ﬁ In this section, we will use the
results of Section to extend it over P. Actually, we will extend the holomorphic vector
bundle & holomorphically to Pl Furthermore, we will also define a parabolic structure on
this extension.

We start by defining the transformed holomorphic vector bundle € on C: this is a simple
consequence of the identification of ‘A/C as a first hypercohomology space (Proposition ,
because the morphism 6 depends holomorphically (actually even algebraically) on .

Now we turn to the extension of & over co € P!. For this purpose, we let s, Soo €
Op1 (1) denote the sections such that on the affine chart C c P! we have

s0(C) =¢, sx(¢) =1
We now modify (21)) into

1
(22) 6, = 0®soo—§ Idg dz®sg : M T = 7GR Kp1(2-20+ 21+ +2,) 7505, (1)

with ; the projection from P! x P! to its 4’th factor and Id¢ the sheaf morphism induced
by the identity of €. This is clearly a holomorphic deformation of # parametrized by P,
in particular its index is constant over P*.

Proposition 5.1. The hypercohomology groups of degree 0 and 2 vanish for all { € Pl
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Proof. We have already seen this for ¢ € C \ P (see the discussion after 6) and Propo-
51t10n . It suffices to prove the claim for ¢ € PU {o0}. The method of the proof below
can be used to treat the case of any ¢ € PL.

For ( = o0, degeneration at level 2 of the hypercohomology spectral sequence shows
that a class in hypercohomology of degree 0 would be a global holomorphic section of
& annihilated by —Idg /2dz. Now as F agrees with G near oo, such a class may not
exist. Similarly, for ( = oo the hypercohomology space of degree 2 is isomorphic to the
cohomology of degree 1 of the cokernel sheaf of —Ide /2dz. Now as F agrees with G near
00, this cokernel sheaf vanishes near oo, hence is a skyscraper sheaf, and its cohomology
of degree 1 is 0.

For ¢ € P, the hypercohomology in degree 0 is isomorphic to the cohomology of degree
0 of the kernel sheaf of § — ¢ /21d¢ dz. However, this latter kernel sheaf is 0 by Claim
Similarly, the hypercohomology in degree 2 is isomorphic to the cohomology of degree 1
of the cokernel sheaf of 8 — (/2 1de dz. However, this latter cokernel sheaf is a skyscraper
sheaf by Claim[2.4] so its first cohomology vanishes. (]

It follows from the claim and continuity of the index that the dimension of the first
hypercohomology spaces of § are constant for all { € Pl Therefore, this construction
gives an extension of the holomorphic vector bundle € over PL.

Now this extension allows us in particular to compute the rank of V. Indeed, for this
purpose it is sufficient to compute the dimension of the first hypercohomology space of
for ( = oo, when the morphism specializes to —Idg /2dz. By a simple spectral
sequence argument, this latter is the cohomology of degree 0 of the cokernel sheaf

GRKpi(2-20+21+ -+ 2,)/F.

A contemplation of the definitions of J and G yields that this is a skyscraper sheaf sup-
ported at the singular points z; for 1 < ¢ < n. Moreover at such a point z; it is generated
by the classes of

dz
3

zZ— Z;

e’

for all values of s such that either

(1) i > 0or

) ol = 0and A # 0.
Indeed, it is easier to see the contrapositive: the only case when g7 = (z — z;)e and
f? = e corresponds to having ozg(s) = 0,A] = 0 and k(s) > —1; however this latter
inequality follows from the two equalities and Assumption [2.3] (2)), so it can be lifted. In
particular, introducing the notation (Gr?), for the kernel of res., (6)° on Gr?, the rank of
Vis
(23) F=rk(V) =Y (r — 6 a0 dim(Gr?)O) :

i=1

where 6 is Kronecker’s function.

We now turn our attention to transforming the parabolic structure. For this purpose, let
us first recall the notion of an R-parabolic sheaf on a complex manifold X with divisor
Dyeq, a reduced effective Weil divisor on X: this is a decreasing family S, of coherent
sheaves on X indexed by R so that for all « € R

(1) left-continuity: there exists some € > 0 with S, = S4;
(2) wehave Sp41 =50 ® Ox(—Dyeq).
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Then we have the following result (Section 1, [9]):

Claim 5.2. The categories of R-parabolic locally free sheaves on X with divisor D,eq
and of parabolic bundles on X with divisor Deq are isomorphic.

For convenience, let us spell out the correspondence in the case X = C a smooth
projective curve. To a parabolic bundle € with filtration (@) of V,, = &,, associate the R-
parabolic sheaf £, defined as follows. Near the generic point z ¢ D,.q forevery o € R we
letE, =& Forie{1,...,n}and aé_l < a < ol we define €, in a small neighborhood
of p; € D not containing any other p;s as the kernel of the composition map

evaly,

ale —2

7 epi:Fi()%Fz'[)/Fil'

By definition, &, is then a subsheaf of £, which is locally free, hence torsion-free. It then
follows that &, is torsion-free, and since C' is smooth, &,, is locally free. For o ¢ [0, 1] we
extend the definition by property (2) above.

Conversely, to an R-parabolic sheaf we associate the vector bundle whose local sections
are given by the sheaf £y, with filtration (4)) defined as follows: for any vector v € &,,, we
let v € F! if and only if any local section of €, extending v (i.e., whose specialization at
p; is v) is actually a section of € ;. This is clearly the inverse of the construction of the
previous paragraph. '

After this preliminary correspondence, let us set

(24) Dred:ZO+Zl+"'+zn

and construct the parabolic structure of e. First, let us modify the definition of  and
from Section E] to take into account a parameter « € [0, 1). This goes as follows: for any
1<i<n

(1) first, for the values 1 < s < r such that a{“’ = 0= A} and any o € R we set
f7(a) =17, g(a) =g
(2) for the values 1 < s < r such that at least one of ag(s), A9

J(s)

i

is non-zero and
a< we set

(o) =17, gila) =g;
(3) for the values 1 < s < r such that at least one of af (S), A?J is non-zero and

o < o we set

i) = (z —2)f}, gila) = (z— 28]

In the case ¢ = 0 the definitions are the same, up to replacing the local coordinate z — z;

appearing in the third case by z~*.

Remark 5.3. By virtue of Assumption ({). case (1) above does not apply to i = 0.
Furthermore, case above corresponds to the operation of Deletion of a subscheme
from the parabolic divisor of the spectral sheaf in Section 6 of |1]. Specifically, denote
by 75 Dyeq the restriction to the spectral curve of the pull-back of the parabolic divisor
by m : Pt x P! — PL. Then we delete the subscheme of 7§ Dyeq supported away
from the section at infinity P! x {oco}. Without this deletion, the parabolic divisor of the
transformed holomorphic bundle would acquire unwanted additional points of support,
placed somewhat arbitrarily on C \ ?, corresponding to the eigenvalues of the restriction

of 0 to the space of vectors with a?(s) =0= A
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Cases , may be rephrased as follows: for the unique m € {0, 1} satisfying
(25) ag(s)+m—l<a§ag(s)+m
we set
fi(a) = (z —z)"f7,  gila) =(z—z)"gl.
Define F,, and G,, as the locally free sheaves of Op:-modules isomorphic to € away from
the points z; and locally generated by the sections ff(«) and g () respectively, for all

1 < s < r. With these definitions J,, G, clearly form a left-continuous, decreasing
sequence of locally free sheaves parametrized by [0, 1).

Proposition 5.4. With the above definitions 0 induces for all o € [0, 1) a sheaf morphism
Oa 13:(1 —>9a®KP1(21+"'+Z7L+2'ZO).

Proof. The question is local near the points z;. Let us first treat the case ¢ # 0. Using the
trivialization defined in the proof of Claim [2.2] we may write

(26) f(e3) = Ajdz e+ ) Vou(2)e

Z— Z

where the sum ranges over 1 < s’ < r such that ef/ is an eigenvector of res., (6) for the
same eigenvalue \; as e and Y54 are meromorphic 1-forms with at most simple poles.
Let us distinguish four cases, and use the notation (23).

First, if ag () — 0 = AJ, then f7 = e} and by Assumption n all the indices s’

in the sum in also satisfy ag (Sl) = 0. In particular, for all such indices s’ we have
g; = e and

0(f; () = O(£7)
= 0(e?)

Adz
:z—z +Zz99g

/\Sdz
= 1955 )
P Z g
which is clearly in G, ® K(z;).
Second, if a]*) = 0  A? and k(s) < —1 then again £f = e? and
Add
O£ (0) = (2 — 2)" “ef + (2 — =) Z e
Now there are two possibilities: either ef/ = gf or ef = (2 — )"} gf . In the first
case the (z — z;)-adic valuation of the coefficient of gf, on the right-hand side is at least
m — 1, hence the (z — z;)-adic valuation of the coefficient of g¢'(«) is at least —1. The
other possibility occurs if and only if af(s ) =0, k(s") > —1. Then we necessarily have
j(s) = 0 = j(s'). On the other hand, as k(s) < —1 and N? lowers the index of the
weight-filtration, the coefficient ¥4 (2) actually has no pole at z;, and it again follows that
the (z — z;)-adic valuation of the coefficient of gfl on the right-hand side is at least m — 1.
Third, if o) = 0 # A3 and k(s) > —1 then £f = (z — z;)e? so

Aidz
o(f? =(z—z;)"H1 22 g8 — 7)™t Vg
(£ () = (2 — 21) et (2 —2) § (z)e
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and the coefficient of gf, () in each term on the right-hand side has valuation at least —1.
Finally, if o) > 0 then by Assumption all the indices s’ in the sum in also

satisfy )\f () # 0, and we conclude as in the first three cases.
The case ¢ = 0 can be treated similarly with respect to a local trivialization e; satisfying
(in addition to the property of Claim [2.2) that every e is an eigenvector of A. O

Now, in the same way as for 6, we may consider the twisted Dolbeault complex
27
Oa,c =00 ®500— % Ide dz2®sg : M T = T Ga @ Kp1(2-20+21 4+ +2,) @75 05, (1)
where Id¢ is the morphism induced by the identity of €. For all a € [0, 1) let us define
(28) Cac = H' (0a)-
This will be the fiber over ( of a sheaf /S\a. It follows from the decreasing property that for
any o/ > « there exists a sequence of complexes
Oor — b4,
hence the snake lemma implies a sheaf inclusion
(29) €0 C &y
Moreover, the family g. is clearly left-continuous.

Claim 5.5. Forall o € [0, 1) the sheaf ga is a locally free subsheaf of EO of full rank .

Proof. The sheaves Ea are clearly Op,-coherent. Left-continuity of E. follows imme-
diately from left-continuity of ¥, and of G,. The dimension count of the fiber of ga at
oo € P! can be carried out similarly to the case of €, and since we modify g?(«) in the
same way as we do for f7 (), the computation gives the same value . Furthermore,
the same argument as in Proposition shows that the dimension of the fiber over ( is
1ndependent of ( € C \ P. For o > 0 the sheaves 8 are subsheaves of the locally free
sheaf 8 in particular they are torsion-free. Since P! is non- singular, this implies that 8

is locally free too. (]

Next, let us set
(30) Dieq = div(P) + o0,

where div stands to denote the simple effective divisor associated to a set of distinct points.
Let us extend the definition of €, to all & € R by the requirement

8a+1 - 8 ( red)
Proposition 5.6. Then, the family {SQ}aeR is an R-parabolic sheaf with divisor Dred.

Remark 5.7. It would seem appealing to define the transformed R-parabolic bundle by
for all « € R; however, this definition would not lead to a parabolic sheaf for the
following reason. Some branches of 3 near the points of P do not intersect T 1 (00), and
the local subbundle of e corresponding to hypercohomology classes supported on such
branches do not get twisted by 2z~ as we increase o by 1. In the above definition we
added manually the twist on this subbundle too. This is the same procedure as Addition of
a subscheme to the parabolic divisor in Section 6 of |1, an inverse operation of Deletion

of Remark[5.3]
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Proof. We merely need to show the decreasing property (29). It is sufficient to prove it for
o’ =1 > a > 0. The proof follows the ideas of Theorem 8.5 [1]]. Define the spectral sheaf
M, on P! x P as the cokernel sheaf of (27) with ¢ € P! varying and the spectral curve
Y C P! x P! as the support of M, (it is easy to see that the support does not depend on
«). Then, by the spectral sequence argument of Proposition 4.22 [7], ga can be defined as
the direct image
€ = (m2) M,

of M, by my. It follows from Assumption [2.3|(3) and a simple local computation near z;
9(s) = 0 = A? are precisely
the ones passing through the point (z;,00) € P! x P. In addition, as in Claim 4.24 [71,
up to higher order terms along these branches of ¥ we have

277
€1y (=——.
zZ— Z;
i(s)

i

that the branches of X corresponding to vectors not satifying o

Thus, multiplying £?, g7 by (z — z;) for @ > «
them by ¢ !, which is a local defining equation for the point at infinity co € P*. Therefore,
the hypercohomology classes in €, defined by representatives locally expressible by some

holomorphic linear combination of vectors of the form (z — z;)g? not satifying af )

amounts (up to a scalar) to multiplying

0 = A{ are basically hypercohomology classes in £ defined by representatives locally
expressible by some holomorphic linear combination of vectors of the form g; of the same
type, multiplied by ¢ 1. Said differently, the subbundle of &, near co € P! generated by
such classes is a subbundle of g(foo). On the other hand, the subbundle of &, generated
by hypercohomology classes represented by a linear combination of vectors gf(«) with

ozz ) == Aj is clearly the same as the corresponding subbundle of €. Inboth cases, the

corresponding subbundle of Ea contains (or is possibly equal to) that of E(foo).
A similar argument works for the points z; with ¢ # 0. ]

Example 1. We would like to point out that Proposition only holds under Assumption
Indeed, let us consider a rank 2 Higgs bundle with a logarithmic singularity at z = 0
such that with respect to a local holomorphic trivialization ey, e of € near z = 0 the
Higgs field is of the form

0

Let us furthermore assume that e1 spans F' and the parabolic weights corresponding to
ep and ey are ag = 0 and 0 < oy < 1 respectively. Thus, this example does not fulfill
Assumption Replacing (/2 by ( to spare factors of % we have the formula for
spectral curve

0= (291 1) dz+ O(z)dz.

det(0 +¢) = ¢* — %

up to higher-order terms in z, with cokernel space at a root  given by

C <(e0 — ie1> .

As the spectral curve establishes a single-valued expression of z in terms of (, we imme-
diately see that the rank of the transformed Higgs bundle is 1, and the weight O piece of
the transformed filtration will be spanned by the vector (eq — %el. Now, the sheaf €, is
equal to

&, = 2CJz]eg ® C|z]ey,
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and the morphism induced by the Higgs field on the generators of €, is given by
O, : €0 — €1
1
el — ;(zeo),

so that the matrix of 0, + ( with respect to this trivialization reads as

<§ ZCI) dz + O(z)dz

The spectral curve of 0, is of course the same as that of 6:

det(f,, +¢) = ¢% - % +0(1)

and, as it can be easily checked, this time the cokernel is spanned by the vector

%(zeo) —(e; = ey — (e

¢ (ceo _ 1e1) |
z

It follows from this that the graded weight ov1 part of the transformed filtration is spanned
by the vector (71 (Ceq — %el). Now let us recall that ey — %el was a generator of the
weight O piece, so if we wanted the transformed parabolic structure to satisfy the require-
ments for a parabolic structure at the point ( = 0o, then the parabolic weight of the vector
¢ (Cep — %el) should be equal to 1. However, these two weight conditions contradict
as ay < 1. This shows us that the procedure of this section may only produce a parabolic
structure on the transformed holomorphic bundle under Assumption[2.3]3]

An obvious modification of the argument with ag = 0 = « also shows the necessity of
Assumption 2.3|2] and the necessity of Assumption 2.3|2] may be seen by a similar rank 2
example with vanishing second-order term and a non-zero nilpotent residue at z = oo.

6. TRANSFORMED HIGGS FIELD

In this section, we define the transformed Higgs field 9 and show that it preserves the
parabolic structure. Recall the definition made in l) and use the convention € = &.

Definition 6.1. The transformed Higgs field 0 is the morphism
‘7 — ‘7 X Kf’l (*ﬁred)

induced by multiplication by —z/2d(. (Here *ﬁred means that the morphism may have
poles of some unspecified order at the support of Dy .eq.)

Theorem 6.2. (1) The transformed Higgs field 0 is meromorphzc has a first-order
pole at the points of P and a second-order pole at o0 € P! with semi- -simple
leading-order term, and no other poles.

(2) The residues of 9 at the parabolic points are compatible with the parabolic struc-
ture correspondmg to the R-parabolic structure 8., and the leading-order term of
0 at oo € P1 preserves the parabolic filtration.

(3) The map () is holomorphic for the Dolbeault complex structures of the moduli
spaces.
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Proof. The argument of the proof of Theorem 4.9 [[7] shows that multiplication by
—2z/2d(¢ induces a holomorphic map

8—>8®KC\P

over C \ P. The argument of the proofs of Theorems 4.30 and 4.31 loc. cit. shows
that it has a first-order pole at P and a second-order pole at co € P!, with semi- simple
leading-order term.

For statement (2),, it is easy to see that compatibility with the parabolic structure associ-
ated to the R-parabolic structure &, by Claimmeans precisely that gpreserves Ea for
all o € R. Near ¢ = oo this can be proved as follows. Recall that the branches of the
spectral curve pass through the points (z;,00) € P! x 131, and according to the formula
|| these are all the branches intersecting 7o !(00). A local section of Ea near { = oo is
thus represented in hypercohomology by a linear combination

(32) Z Z hi(z,O)gs(a)dz

i=1 s=1

for some holomorphic functions &}, and its image by fis by definition represented by

S A B g g

i=1 s=1
Now, as G, is an Op:-module, the expression in parentheses in this latter formula also
defines a section of G,,. Therefore, by the definition of Ea the image by 5 of the class
represents a section of Ea ® Kp.. A similar argument works in the case ¢ € P.
Statement (3)) is immediate: the constructions of Sections ] and [5] are algebraic with
respect to the Dolbeault complex structure of the moduli spaces corresponding to Higgs
bundles (€, 6). O
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