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1. INTRODUCTION

In this paper we define Nahm transformation for some singular Higgs bundles on the
complex projective line with finitely many first-order poles and one second-order pole.
Let C ⊂ P1 denote the complex affine and projective lines, endowed with the Euclidean
metric, and with standard holomorphic coordinate denoted by z ∈ C. We consider a
parabolic harmonic bundle (V, F ji , ∂̄

E, θ, h) on P1 with logarithmic singularities at some
fixed points z1, . . . , zn ∈ C and a second-order pole with semi-simple leading order term
at infinity. Let Ĉ be a different copy of the complex affine line with coordinate ζ, and P̂1

the associated projective line. The aim of this paper is to construct a transformed Higgs
bundle (V̂ , F̂ ji , ∂̄

Ê, θ̂) on P̂1 and study the properties of the mapping

(1) N : (V, F ji , ∂̄
E, θ) 7→ (V̂ , F̂ ji , ∂̄

Ê, θ̂),

called Nahm transformation, on moduli spaces. In the case where the residues of θ at the
singular points are semisimple, the transform was defined in [7], and its properties were
further studied in [1], [8]. Therefore, in this note we will focus on the case where the
residues of θ at the singular points are not necessarily semisimple.

During the preparation of this paper, the author was supported by the Lendület LDT
grant of the Hungarian Academy of Sciences.

2. CONSTRUCTION OF NAHM TRANSFORM

In this section we define the parabolic Higgs bundle underlying the Nahm transform
of a harmonic bundle on P1, without going into the technical details of the constructions.
In the later sections, we develop the technical tools necessary to make the construction
rigorous, and sketch the proof of the results stated in this section.

Let C be a complex analytic curve. We denote by OC and KC its structure sheaf and its
canonical sheaf respectively, and by Ωk the sheaf of locally L2 differential k-forms on C.

Let V be a smooth vector bundle over C of rank r ≥ 2 and E be a holomorphic vector
bundle with underlying smooth vector bundle V . The space of local sections of E may be
conveniently described as the kernel of a partial differential operator ∂̄E of type (0, 1) on
V . Let

θ : E→ E⊗OC KC

be a (possibly singular) morphism of OC-modules, called a Higgs field. The couple (E, θ)
is then called a Higgs bundle. Let h be a smooth fibrewise Hermitian metric on V . Denote
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by DCh the Chern connection associated to ∂̄E and h and by θ∗ the h-adjoint of θ. Then
(V, ∂̄E, θ, h) is called a harmonic bundle if and only if the connection

(2) D = DCh + θ + θ∗

is flat, i.e. its curvature FD vanishes. If this is the case, we let

(3) ∇ = D1,0

denote the meromorphic integrable connection on the holomorphic vector bundle E given
by D0,1.

From now on, we let (V, ∂̄E, θ, h) denote a harmonic bundle over P1 with some sin-
gularities. We will now spell out explicitly our assumptions on its singularities, as well as
the definition of a compatible parabolic structure F ji . Fix finitely many distinct points
z1, . . . , zn ∈ C. We consider the compactification P1 of C by the point at infinity
z0 = [0 : 1]. Let E be given the structure of a quasi-parabolic bundle on P1 with par-
abolic points z0, z1, . . . , zn, i.e. we assume that for every i ∈ {0, . . . , n} we are given a
decreasing filtration of C-vector subspaces of the fiber of V at zi

(4) {0} = F lii ⊂ F
li−1
i ⊂ · · · ⊂ F 1

i ⊂ F 0
i = Vzi

of some length 1 ≤ li ≤ r. For i ∈ {0, . . . , n}, j ∈ {0, . . . , li − 1} consider the graded
vector spaces associated to (4)

(5) Grji = GrjFi = F ji /F
j+1
i .

We fix parabolic weights {αji} for i ∈ {0, . . . , n}, j ∈ {0, . . . , li − 1} satisfying

(6) 1 > αli−1i > · · · > α0
i ≥ 0.

For every 0 ≤ i ≤ n we will take a local holomorphic trivialisation {esi}rs=1 of E near zi
compatible with the filtration F ji in the sense that F ji is spanned by the evaluations at zi of
the vectors

e1i , . . . , e
dimF ji
i .

With respect to such a compatible basis, we will use the diagonal matrix

diag(αji )
li−1
j=0

consisting of the parabolic weights, each αji repeated with multiplicity equal to dim Grji .
We assume that

θ ∈ Γ(P1,End(E)⊗KP1(log(z1) + · · ·+ log(zn) + 2 · z0))

is a Higgs field on E with logarithmic singularities at z1, . . . , zn and a second-order pole
with semi-simple leading order term at infinity, compatible with the parabolic structure.
We will call such a Higgs field singular. By compatibility in the logarithmic case we mean
that the residue

(7) reszi(θ) = θ((z − zi)∂z)
of θ at zi preserves the filtration F •i :

(8) reszi(θ) : F ji → F ji

for every i ∈ {1, . . . , n}, j ∈ {0, . . . , li − 1} . For the second-order pole z0 at infinity, we
require an equality

(9) θ =
A

2
dz +B

dz
z

+ lower order terms,
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in some local trivialisation of E, where A is a semi-simple r × r matrix and B any r × r
matrix, both preserving the image of the filtration (4) under the isomorphism E|∞ ∼= Cr

given by the trivialisation. We denote by P̂ ⊂ Ĉ the eigenvalues of A. Moreover, let us
denote by H the centraliser of A in Glr(C) and by h its Lie-algebra. Then up to applying
a holomorphic gauge transformation near∞ we can arrange that B ∈ h; in what follows
we will therefore assume B ∈ h.

Claim 2.1. A preserves the filtration (4) if and only if for any l the piece F l0 in (4) is the
direct sum of its intersections with the various eigenspaces of A.

Proof. The direction⇐ is trivial. For the converse, if for instance

λ1v1 + λ2v2 ∈ F l0

for some λj 6= 0 and vj in the ζj-eigenspace of A with ζ1 6= ζ2 then

A(λ1v1 + λ2v2) = ζ1(λ1v1 + λ2v2) + (ζ2 − ζ1)λ2v2.

Now as by assumption the left-hand side and the first term on the right-hand side belong
to F l0, the same thing follows for the second term on the right-hand side, and thus (as
ζ2− ζ1 6= 0) for λ2v2 too, which in turn implies the same thing for λ1v1 as well. The same
kind of argument applies for a vector with components in more than just two different
eigenspaces. �

By compatibility, reszi(θ) acts on the spaces (5). Let us denote by reszi(θ)
j this action

and let

reszi(θ)
j = Sji +N j

i

be its decomposition into its semi-simple and nilpotent components respectively. We
may (and henceforth will) assume that the compatible trivialisations {esi}rs=1 are chosen
so that Sji are diagonal for each i, j. The generalized eigenspaces of Sji then define a
block-decomposition of Grji . To each such block there corresponds a single eigenvalue of
reszi(θ)

j , and the eigenvalues are different on different blocks.

Claim 2.2. The sections esi can be chosen so that for each j the restriction of θ to the
subbundle of E spanned by the vectors esi with j(s) = j is block-diagonal with respect to
the block-decomposition defined by Sji .

Proof. The bundle E splits holomorphically as a direct sum of vector subbundles corre-
sponding to various eigenvalues of θ. By compatibility of reszi(θ) with F •i , each such
direct summand is a direct sum of its graded pieces for F ji , see Claim 2.1. The union
of a local holomorphic trivialisation for the graded pieces of the direct summands for all
possible choices fulfills the desired property. �

By the Jordan-Hölder theorem there is an increasing filtration W j
i,• of GrjFi associated

to N j
i satisfying

(1) for all k ∈ Z, N j
i maps W j

i,k into W j
i,k−2

(2) for all k ∈ N the map (N j
i )k is an isomorphism Gr

W j
i

k GrjFi → Gr
W j
i

−k GrjFi (in
the notation (N j

i )k the index j refers to restriction of Ni to GrjFi , whereas the
upper index k stands for k-fold composition of N j

i with itself).
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The filtration W j
i,• is called a weight filtration; it is not unique, however its length and the

dimensions of its graded pieces

Grji,k = Gr
W j
i

k GrjFi

are unique. Observe that in the case i = 0, the assumption B ∈ h implies N0,j ∈ h for
every j.

A Hermitian metric h in E in some neighborhood of zi (i ∈ {1, . . . , n}) is said to be
compatible with θ if and only if it is mutually bounded with the diagonal metric

(10) h0 = diag(|z − zi|2α
j(s)
i (− log |z − zi|)k(s))rs=1

with respect to some (or equivalently, any) holomorphic trivialisation {esi}rs=1 compatible
with the filtrations F . Here j(s) refers to the largest j ∈ {0, . . . , li− 1} such that esi ∈ F

j
i

and k(s) refers to the smallest k ∈ Z such that esi ∈ W
j(s)
i,k . For i = 0, we require an

analogous behaviour, with z−1 replacing the local coordinate z − zi:

(11) h0 = diag(|z|−2α
j
0(s)(log |z|)k(s))rs=1.

For a compatible harmonic metric, for all 0 ≤ i ≤ n the diagonal matrix consisting of the
parabolic weights of E = ker(D0,1) is given by

(12) diag(βsi )rs=1 = diag(αji − 2<(Sji ))
li−1
j=1 ,

where the arguments of diag on the right-hand side are diagonal matrices of dimension
dim Grji each. Observe that βsi does not depend on s on any eigenspace of Sji . The
singularity of ∇ = D1,0 at zi for all 1 ≤ i ≤ n is logarithmic, and at infinity ∇ has a
singularity with Katz-invariant 1. The second-order term of ∇ at infinity is simply A by
the results of [2], that is to say twice the second-order term of θ:

(13) D = d +Adz +O(z−1)dz,

with respect to some holomorphic trivialization of E. Finally, the relationship between the
graded pieces of the residue of the Higgs filed and that of the integrable connection for the
filtration Fi is

(14) reszi(θ) =
reszi(∇)− diag(βsi )rs=1

2
,

c.f. the table in the Synopsis of [6].
From now on we let (V, F ji , ∂̄

E, θ, h) denote a harmonic bundle on P1 with parabolic
structure and admissible harmonic metric, and singularity behaviour fixed as above. We
now make important assumptions necessary to carry out our construction.

Assumption 2.3. For any i, j,

(1) for i = 0, 0 is not an eigenvalue of resz0(θ)j;
(2) for i > 0 if α0

i = 0 then the nilpotent part N0
i of the endomorphism reszi(θ)

0 acts
trivially on the 0-eigenspace of reszi(θ)

0;
(3) for i > 0 if αji > 0 then 0 is not an eigenvalue of reszi(θ)

j .

Let us note a straightforward consequence.

Claim 2.4. If the condition (1) above holds then (E, θ) has no Higgs subbundle of the form
(OP1(m), ζdz) for any ζ ∈ C.
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Remark 2.5. This property is an analogue of an instanton being without flat factors, c.f.
Definition 3.2.2 of [3]. Notice that by (9) such a flat factor could only exist for ζ an
eigenvalue of A/2.

Proof. This is immediate, as the eigenvalue of the residue of ζdz at infinity is 0. �

Now, given ζ ∈ Ĉ \ P̂ we define a twisted flat connection on P1 by

(15) Dζ = D − ζdz.

We consider the twisted elliptic complex

(16) 0→ V
Dζ−−→ V ⊗ Ω1 Dζ−−→ V ⊗ Ω2 → 0.

It easily follows from the form (13) that for any ζj ∈ P̂ the flat sections of V for Dζ have
exponential behaviour

exp(−(ζj − ζ)z + P (log |z|))
on the ζj-eigenspace ofA for some function P of at most polynomial growth. In particular,
this complex has trivial L2-cohomology in degree 0. By a duality argument, the same then
follows for its L2-cohomology in degree 2 too. In particular, it follows from continuity of
the index that the dimension of its first L2-cohomology space is independent of ζ ∈ Ĉ\ P̂ .
We then define the fiber V̂ζ of the transformed vector bundle V̂ as the first L2-cohomology
space of (16). In Section 3 we will show that V̂ζ has an equivalent description as the kernel
of the twisted Laplace-operator

∆ζ = DζD
∗
ζ +D∗ζDζ

on its L2-domain. By Kodaira and Spencer’s Fundamental Theorem [4], there exists a
smooth vector bundle V̂ over Ĉ \ P̂ with fiber over ζ given by V̂ζ . In Section 4 we show
that V̂ζ is isomorphic to the first hypercohomology space of a twisted Dolbeault complex.
As a consequence, we obtain a holomorphic bundle Ê over Ĉ \ P̂ with underlying smooth
vector bundle V̂ and a meromorphic Higgs field θ̂ on Ê. Furthermore, as we explain in
Section 5, this identification provides us with a natural extension of Ê to P̂1 and even a
transformed parabolic structure F̂ ji . The main result of the paper is Theorem 6.2, stating
that the transformed Higgs field is meromorphic, it is compatible with the parabolic struc-
ture F̂ •i , and that the transform (1) respects the Dolbeault complex structures of the moduli
spaces.

3. FREDHOLM THEORY

Much of the analysis has been carried out in Chapter 2 of [7], so here we will only
indicate the differences in the argument that one needs in order to take into account non-
zero nilpotent parts of the residues. In particular, as we assume that the leading-order term
at infinity is semi-simple, the local analysis near infinity is exactly the same as in [7]. The
same holds for the global Hodge-theoretic arguments. Therefore, we only need to work
locally near a logarithmic point zi for a fixed 1 ≤ i ≤ n.

Let ε > 0 be a small real number and consider the discB = Bε(zi) of radius ε centered
at zi. Let us define the local norm

H1(Ωk) =

{
f ∈ Ωk(B)⊗ V |

∫
B

|f |2 + |DCh(f)|2 + |θ(f)|2 <∞
}
,

where we use the Euclidean metric on B and the metric h on V to compute the norms
involved. Then we have the following analog of Claim 2.4 of [7].
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Claim 3.1. The spaceH1(Ωk) does not depend on the specific harmonic bundle with fixed
singularity behaviour.

Proof. Fix a unitary frame σsi (1 ≤ s ≤ r) of V near zi compatible with the parabolic
filtration. The statement clearly holds on the regular part of V spanned by the vectors
σsi where θ and D are both regular and the parabolic weights vanish: indeed, on this
component of V the space H1 is simply the usual Sobolev space L2,1. Let now (r, ϕ) be
the polar coordinates on B. According to Theorem 1 of [6], the matrix forms of DCh, θ
with respect to this trivialisation differ from some model by an endomorphism-valued one-
form τ of growth order O(r−1| log r|−1). The model reads as

DCh,i = d +
√
−1<(reszi(∇))dϕ

θi =
reszi(∇)− diag(βsi )rs=1

2(z − zi)
dz.

(See e.g. [7] (1.18)-(1.19).) Furthermore, we may assume that reszi(∇) is upper triangular.
Denote by µsi the eigenvalue of reszi(∇) corresponding to the basis element σsi and by λsi
the corresponding eigenvalue of reszi(θ).

We need to prove that the norm H1 defined above is equivalent to the analogous norm
H1
i (Ωk) obtained from this model. For this it is sufficient to show that for any f ∈ Ωk(B)

the norm of the image τ(fσsi ) under the perturbation term is bounded above by a suitable
constant multiple of |DCh,i(fσ

s
i )| or by a suitable constant multiple of |θi(fσsi )|.

By our first observation, it is sufficient to focus on vectors σsi such that either βsi 6= 0 or
σsi is not contained in the kernel of at least one of the two endomorphisms reszi(∇), reszi(θ).
Now, the key point is that by Assumption 2.3 (2) if µsi = 0 = βsi then the nilpotent part acts
trivially on σsi and we are back to the regular case, already discussed above. Therefore, we
have the following three cases.

First, if =(µsi ) 6= 0 then there exists some c > 0 only depending on ε and µsi such that
for any f ∈ Ωk(B) we have

|θi(fσsi )|2 ≥ c|r−1| log r|−1f |2

over B. Hence, in this case some fixed multiple of |θi(fσsi )| bounds the norm of the
perturbation term.

Second, if =(µsi ) = 0 but <(µsi ) 6= 0, then by standard Fourier theory on the cylinder
there exists some c > 0 only depending on ε and µsi such that

|DCh,i(fσ
s
i )|2 > c|r−1| log r|−1f |2

over B. Hence, in this case some fixed multiple of |DCh,i(fσ
s
i )| bounds the norm of the

perturbation term.
Third, if µsi = 0 but βsi 6= 0 then just as in the first case, some fixed multiple of |θi(fσsi )|

bounds the norm of the perturbation term from above. This finishes the proof. �

Now define the Dirac operator

∂\ζ = Dζ −D∗ζ : (Ω0 ⊕ Ω2)⊗ V → Ω1 ⊗ V
where D∗ζ stands for the h-adjoint of Dζ . Then we have the analog of Theorem 2.6 of [7].

Proposition 3.2. The operator ∂\ is Fredholm from H1 to L2.

Proof. Just as in Section 2.2 [7], it is possible to glue a parametrix of ∂\ over the comple-
ment of a neighborhood of the parabolic points and exact inverses of the local model Dirac
operators ∂\i. The key point is that 0 is not a critical weight for the translation-invariant
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model operator ri∂\i, where ri = |z − zi|. This follows exactly as in Subsection 2.2.1 loc.
cit.: 0 is a critical weight for the action of ∂\i on σsi if and only if µsi = 0 = βsi . However,
by Assumption 2.3 (2) this implies that ∂\i is the Dirac operator corresponding to a regular
connection and non-singular metric. In this latter case, by Claim 3.1 the function spaceH1

is usual Sobolev space L2,1 and the statement is classical. �

We define the Dirac–Laplace operator

∆ζ = −DζD
∗
ζ −D∗ζDζ : Ω1 ⊗ V → Ω1 ⊗ V.

The proof of Theorems 2.16 and 2.21 of [7] then imply the following.

Proposition 3.3. The first L2-cohomology of the elliptic complex (16) is canonically iso-
morphic to the cokernel of the Dirac-operator ∂\ζ defined on H1 and to the kernel of the
Dirac–Laplace operator defined on its L2 domain.

4. DOLBEAULT INTERPRETATION

In this section we write down and analyze an explicit Dolbeault complex admitting
an L2-resolution for a model Hermitian metric on the fibers and Euclidean metric on the
base. Our analysis is very similar to that of Mochizuki (c.f. Section 5.1 of [5]) for irregu-
lar λ-connections for the Poincaré metric. The results in this section also hold for smooth
projective curves of any genus, but for the sake of simplicity of the exposition we limit our-
selves to the case of the projective line. In this section we again work with the compatible
local holomorphic trivialisations esi of E near zi as in Section 2.

As a preliminary observation, let us give a slightly different description of the bundle
V̂ . Namely, the unitary gauge transformation

(17) exp

(
1

2
(ζ̄ z̄ − ζz)

)
transforms Dζ into the deformation

(18) D − ζ

2
dz − ζ̄

2
dz̄.

In particular, this is a self-adjoint deformation, hence it corresponds to

∂̄Eζ = ∂̄E

θζ = θ − ζ

2
dz.

The upshot is that the holomorphic bundle E is preserved under this deformation. Now, as
(17) is unitary, it preserves the spaces of L2-sections of Ωk, and therefore induces isomor-
phisms on the L2-cohomology spaces of the two deformations (15) and (18). We infer

V̂ζ = H1
L2

(
D − ζ

2
dz − ζ̄

2
dz̄
)
.

In this section, we will work with this latter deformation, as it is more convenient to study
the transform of the underlying Higgs bundle of the harmonic bundles.

Now, let us start the analysis of the L2-cohomology. First, one can easily check that
in the case i > 0 we have esi ∈ L2(E, h, |dz|2) for all s ∈ {1, . . . , r}; moreover (z −
zi)
−1esi ∈ L2(E, h, |dz|2) holds if and only if either

(1) αj(s)i > 0 or
(2) αj(s)i = 0 and k(s) < −1
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is fulfilled; finally, (z − zi)−2esi /∈ L2(E, h, |dz|2) holds for all s ∈ {1, . . . , r}. On the
other hand, for i = 0 we have es0 /∈ L2(E, h, |dz|2) for all s ∈ {1, . . . , r}; moreover
z−1es0 ∈ L2(E, h, |dz|2) holds if and only if either

(1) αj(s)0 > 0 or
(2) αj(s)i = 0 and k(s) < −1

is fulfilled; finally, z−2es0 ∈ L2(E, h, |dz|2) holds for all s ∈ {1, . . . , r}.
We now proceed to identify the Dolbeault complex

(19) F
θ−→ G⊗KP1(2 · z0 + z1 + · · ·+ zn)

that admits an L2 Dolbeault resolution for the Euclidean metric. The sheaves F,G are char-
acterised as certain elementary transforms of the sheaf of local sections of E at z0, z1, . . . , zn
along some subspaces of the fiber Ezi , so that they are equal to E away from the punctures
zi for all i ≥ 0. Let us start by defining a local frame {gsi }rs=1 of G near zi for i > 0:

(1) Case αj(s)i = 0
(a) sub-case k(s) < −1: set gsi = esi
(b) sub-case k(s) ≥ −1: set gsi = (z − zi)esi

(2) Case αj(s)i > 0: set gsi = esi .
For i = 0 the frame is

(1) Case αj(s)0 = 0
(a) sub-case k(s) < −1: set gs0 = z−1es0
(b) sub-case k(s) ≥ −1: set gs0 = z−2es0

(2) Case αj(s)i > 0: set gs0 = z−1es0.

Let us denote by λsi the eigenvalue of Sj(s)i corresponding to the vector esi . For i > 0
we construct an explicit frame {fsi }rs=1 of F starting out of {esi}rs=1, depending on k(s)

and whether αj(s)i and λsi vanish or not. Here is the definition of the local frame of F in
the case i > 0:

(1) Case αj(s)i = 0

(a) sub-case λsi = 0 (and as a consequence necessarily res
j(s)
zi (esi (zi)) = 0 by

Assumption 2.3 (2)): set fsi = esi
(b) sub-case λsi 6= 0, k(s) < −1: set fsi = esi
(c) sub-case λsi 6= 0, k(s) ≥ −1: set fsi = (z − zi)esi

(2) Case αj(s)i > 0: set fsi = esi .
For i = 0 the sheaf of local sections of F doesn’t depend on the eigenvalues of the polar
part of θ, as for the Euclidean metric we have |θe|h,|dz|2 ≤ K|e|h,|dz|2 for any section e
of E near ∞ and a constant K > 0 only depending on the leading order term A in (9).
Therefore, a local frame of F in the case i = 0 is given by fs0 = gs0 for 1 ≤ s ≤ r.

One can check that the definitions of F and of G above are independent of the choice
of a compatible local frame {esi}. In addition, F is the lower elementary transformation of
G(z1 + · · ·+ zn) = G⊗ O(z1 + · · ·+ zn) at the points zi along a subspace W ⊂ G|zi for
i ∈ {1, . . . , n}:

0→ F → G(z1 + · · ·+ zn)→W → 0;

in particular, F is naturally a subsheaf of G(z1 + · · ·+ zn).
Now, let us set D′′ = ∂̄E + θ. Consider the twisted Higgs bundle

(20) θζ = θ − ζ

2
IdE dz
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and the twisted D′′-operator
D′′ζ = ∂̄E + θζ .

Notice that as F ↪→ G(z1 + · · ·+ zn), the morphism θζ maps the sheaf F to

G(z1 + · · ·+ zn) ∼= G⊗KP1(2 · z0 + z1 + · · ·+ zn).

Just as in Proposition 4.13 [7], we have the following.

Proposition 4.1. For every ζ ∈ Ĉ\P̂ , the fiber V̂ζ is isomorphic to the firstL2-cohomology
space of the complex

0→ V
D′′
ζ−−→ V ⊗ Ω1

D′′
ζ−−→ V ⊗ Ω2 → 0,

and to the first hypercohomology space of the twisted holomorphic Dolbeault complex

(21) F
θζ−→ G⊗KP1(2 · z0 + z1 + · · ·+ zn).

Proof. The first statement follows as both L2-cohomology spaces are isomorphic to spaces
of harmonic sections for the Laplace-operators associated to (18) and to D′′ζ respectively;
however, by the Weitzenböck formula, these Laplace-operators agree up to a constant.

Let us come to the identification in terms of the first hypercohomology space. By con-
struction, near the parabolic points the sections of F are the local meromorphic sections
e of E such that θ(e) is also L2, or equivalently, the local L2 sections v of V such that
∂̄E(v) = 0 and θ(v) ∈ L2. Notice that for any given ζ ∈ Ĉ and v ∈ L2 we clearly also
have ζ

2v ∈ L
2, so the same statement holds for θ replaced by θζ too. By the above analysis,

θζ induces a morphism of L2-resolutions of the sheaves of the complex. In particular, the
resolutions involved are acyclic, and this then proves the statement. �

5. EXTENSION AND TRANSFORMED PARABOLIC STRUCTURE

The analytic construction of V̂ is only defined over Ĉ\P̂ . In this section, we will use the
results of Section 4 to extend it over P̂1. Actually, we will extend the holomorphic vector
bundle Ê holomorphically to P̂1. Furthermore, we will also define a parabolic structure on
this extension.

We start by defining the transformed holomorphic vector bundle Ê on Ĉ: this is a simple
consequence of the identification of V̂ζ as a first hypercohomology space (Proposition 4.1),
because the morphism θζ depends holomorphically (actually even algebraically) on ζ.

Now we turn to the extension of E over ∞ ∈ P̂1. For this purpose, we let s0, s∞ ∈
OP̂1(1) denote the sections such that on the affine chart Ĉ ⊂ P̂1 we have

s0(ζ) = ζ, s∞(ζ) = 1.

We now modify (21) into

(22) θζ = θ⊗s∞−
1

2
IdE dz⊗s0 : π∗1F → π∗1G⊗KP1(2·z0+z1+· · ·+zn)⊗π∗2OP̂1(1)

with πi the projection from P1× P̂1 to its i’th factor and IdE the sheaf morphism induced
by the identity of E. This is clearly a holomorphic deformation of θ parametrized by P̂1,
in particular its index is constant over P̂1.

Proposition 5.1. The hypercohomology groups of degree 0 and 2 vanish for all ζ ∈ P̂1.
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Proof. We have already seen this for ζ ∈ Ĉ \ P̂ (see the discussion after (16) and Propo-
sition 4.1). It suffices to prove the claim for ζ ∈ P̂ ∪{∞}. The method of the proof below
can be used to treat the case of any ζ ∈ P̂1.

For ζ = ∞, degeneration at level 2 of the hypercohomology spectral sequence shows
that a class in hypercohomology of degree 0 would be a global holomorphic section of
E annihilated by − IdE /2dz. Now as F agrees with G near ∞, such a class may not
exist. Similarly, for ζ = ∞ the hypercohomology space of degree 2 is isomorphic to the
cohomology of degree 1 of the cokernel sheaf of− IdE /2dz. Now as F agrees with G near
∞, this cokernel sheaf vanishes near∞, hence is a skyscraper sheaf, and its cohomology
of degree 1 is 0.

For ζ ∈ P̂ , the hypercohomology in degree 0 is isomorphic to the cohomology of degree
0 of the kernel sheaf of θ− ζ/2 IdE dz. However, this latter kernel sheaf is 0 by Claim 2.4.
Similarly, the hypercohomology in degree 2 is isomorphic to the cohomology of degree 1
of the cokernel sheaf of θ− ζ/2 IdE dz. However, this latter cokernel sheaf is a skyscraper
sheaf by Claim 2.4, so its first cohomology vanishes. �

It follows from the claim and continuity of the index that the dimension of the first
hypercohomology spaces of θζ are constant for all ζ ∈ P̂1. Therefore, this construction
gives an extension of the holomorphic vector bundle Ê over P̂1.

Now this extension allows us in particular to compute the rank of V̂ . Indeed, for this
purpose it is sufficient to compute the dimension of the first hypercohomology space of
(22) for ζ = ∞, when the morphism specializes to − IdE /2dz. By a simple spectral
sequence argument, this latter is the cohomology of degree 0 of the cokernel sheaf

G⊗KP1(2 · z0 + z1 + · · ·+ zn)/F.

A contemplation of the definitions of F and G yields that this is a skyscraper sheaf sup-
ported at the singular points zi for 1 ≤ i ≤ n. Moreover at such a point zi it is generated
by the classes of

esi
dz

z − zi
for all values of s such that either

(1) αj(s)i > 0 or
(2) αj(s)i = 0 and λsi 6= 0.

Indeed, it is easier to see the contrapositive: the only case when gsi = (z − zi)e
s
i and

fsi = esi corresponds to having αj(s)i = 0, λsi = 0 and k(s) ≥ −1; however this latter
inequality follows from the two equalities and Assumption 2.3 (2), so it can be lifted. In
particular, introducing the notation (Gr0i )0 for the kernel of reszi(θ)

0 on Gr0i , the rank of
V̂ is

(23) r̂ = rk(V̂ ) =

n∑
i=1

(
r − δ0,α0

i
dim(Gr0i )0

)
,

where δ is Kronecker’s function.
We now turn our attention to transforming the parabolic structure. For this purpose, let

us first recall the notion of an R-parabolic sheaf on a complex manifold X with divisor
Dred, a reduced effective Weil divisor on X: this is a decreasing family S• of coherent
sheaves on X indexed by R so that for all α ∈ R

(1) left-continuity: there exists some ε > 0 with Sα−ε = Sα;
(2) we have Sα+1 = Sα ⊗ OX(−Dred).
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Then we have the following result (Section 1, [9]):

Claim 5.2. The categories of R-parabolic locally free sheaves on X with divisor Dred

and of parabolic bundles on X with divisor Dred are isomorphic.

For convenience, let us spell out the correspondence in the case X = C a smooth
projective curve. To a parabolic bundle E with filtration (4) of Vzi = Ezi associate the R-
parabolic sheaf E• defined as follows. Near the generic point z /∈ Dred for every α ∈ R we
let Eα = E. For i ∈ {1, . . . , n} and αl−1i < α ≤ αli we define Eα in a small neighborhood
of pi ∈ D not containing any other pi′ as the kernel of the composition map

πli : E
evalpi−−−−→ Epi = F 0

i → F 0
i /F

l
i .

By definition, Eα is then a subsheaf of E0, which is locally free, hence torsion-free. It then
follows that Eα is torsion-free, and since C is smooth, Eα is locally free. For α /∈ [0, 1] we
extend the definition by property (2) above.

Conversely, to an R-parabolic sheaf we associate the vector bundle whose local sections
are given by the sheaf E0, with filtration (4) defined as follows: for any vector v ∈ Epi we
let v ∈ F li if and only if any local section of E0 extending v (i.e., whose specialization at
pi is v) is actually a section of Eαli . This is clearly the inverse of the construction of the
previous paragraph.

After this preliminary correspondence, let us set

(24) Dred = z0 + z1 + · · ·+ zn

and construct the parabolic structure of Ê. First, let us modify the definition of F and G

from Section 4 to take into account a parameter α ∈ [0, 1). This goes as follows: for any
1 ≤ i ≤ n

(1) first, for the values 1 ≤ s ≤ r such that αj(s)i = 0 = λsi and any α ∈ R we set

fsi (α) = fsi , gsi (α) = gsi ;

(2) for the values 1 ≤ s ≤ r such that at least one of αj(s)i , λsi is non-zero and
α ≤ αj(s)i we set

fsi (α) = fsi , gsi (α) = gsi ;

(3) for the values 1 ≤ s ≤ r such that at least one of αj(s)i , λsi is non-zero and
α
j(s)
i < α we set

fsi (α) = (z − zi)fsi , gsi (α) = (z − zi)gsi .

In the case i = 0 the definitions are the same, up to replacing the local coordinate z − zi
appearing in the third case by z−1.

Remark 5.3. By virtue of Assumption 2.3 (1), case (1) above does not apply to i = 0.
Furthermore, case (1) above corresponds to the operation of Deletion of a subscheme
from the parabolic divisor of the spectral sheaf in Section 6 of [1]. Specifically, denote
by π∗1Dred the restriction to the spectral curve of the pull-back of the parabolic divisor
(24) by π1 : P1 × P̂1 → P1. Then we delete the subscheme of π∗1Dred supported away
from the section at infinity P1 × {∞}. Without this deletion, the parabolic divisor of the
transformed holomorphic bundle would acquire unwanted additional points of support,
placed somewhat arbitrarily on Ĉ \ P̂ , corresponding to the eigenvalues of the restriction
of θ to the space of vectors with αj(s)i = 0 = λsi .



12SZILÁRD SZABÓ BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF GEOMETRY EGRY J. U. 1. H ÉP. 1111 BUDAPEST, HUNGARY

Cases (2), (3) may be rephrased as follows: for the unique m ∈ {0, 1} satisfying

(25) α
j(s)
i +m− 1 < α ≤ αj(s)i +m

we set
fsi (α) = (z − zi)mfsi , gsi (α) = (z − zi)mgsi .

Define Fα and Gα as the locally free sheaves of OP1 -modules isomorphic to E away from
the points zi and locally generated by the sections fsi (α) and gsi (α) respectively, for all
1 ≤ s ≤ r. With these definitions Fα,Gα clearly form a left-continuous, decreasing
sequence of locally free sheaves parametrized by [0, 1).

Proposition 5.4. With the above definitions θ induces for all α ∈ [0, 1) a sheaf morphism

θα : Fα → Gα ⊗KP1(z1 + · · ·+ zn + 2 · z0).

Proof. The question is local near the points zi. Let us first treat the case i 6= 0. Using the
trivialization defined in the proof of Claim 2.2 we may write

(26) θ(esi ) =
λsidz
z − zi

esi +
∑
s′

ϑss′(z)e
s′

i

where the sum ranges over 1 ≤ s′ ≤ r such that es
′

i is an eigenvector of reszi(θ) for the
same eigenvalue λsi as esi and ϑss′ are meromorphic 1-forms with at most simple poles.
Let us distinguish four cases, and use the notation (25).

First, if αj(s)i = 0 = λsi , then fsi = esi and by Assumption 2.3 (3) all the indices s′

in the sum in (26) also satisfy αj(s
′)

i = 0. In particular, for all such indices s′ we have
gsi = esi and

θ(fsi (α)) = θ(fsi )

= θ(esi )

=
λsidz
z − zi

esi +
∑
s′

ϑss′(z)e
s′

i

=
λsidz
z − zi

gsi +
∑
s′

ϑss′(z)g
s′

i ,

which is clearly in Gα ⊗K(zi).
Second, if αj(s)i = 0 6= λsi and k(s) < −1 then again fsi = esi and

θ(fsi (α)) = (z − zi)m
λsidz
z − zi

esi + (z − zi)m
∑
s′

ϑss′(z)e
s′

i .

Now there are two possibilities: either es
′

i = gs
′

i or es
′

i = (z − zi)
−1gs

′

i . In the first
case the (z − zi)-adic valuation of the coefficient of gs

′

i on the right-hand side is at least
m − 1, hence the (z − zi)-adic valuation of the coefficient of gs

′

i (α) is at least −1. The
other possibility occurs if and only if αj(s

′)
i = 0, k(s′) ≥ −1. Then we necessarily have

j(s) = 0 = j(s′). On the other hand, as k(s) < −1 and N0
i lowers the index of the

weight-filtration, the coefficient ϑss′(z) actually has no pole at zi, and it again follows that
the (z− zi)-adic valuation of the coefficient of gs

′

i on the right-hand side is at least m− 1.
Third, if αj(s)i = 0 6= λsi and k(s) ≥ −1 then fsi = (z − zi)esi so

θ(fsi (α)) = (z − zi)m+1 λ
s
idz

z − zi
esi + (z − zi)m+1

∑
s′

ϑss′(z)e
s′

i
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and the coefficient of gs
′

i (α) in each term on the right-hand side has valuation at least −1.
Finally, if αj(s)i > 0 then by Assumption 2.3 (3) all the indices s′ in the sum in (26) also

satisfy λj(s
′)

i 6= 0, and we conclude as in the first three cases.
The case i = 0 can be treated similarly with respect to a local trivialization esi satisfying

(in addition to the property of Claim 2.2) that every esi is an eigenvector of A. �

Now, in the same way as for θ, we may consider the twisted Dolbeault complex
(27)

θα,ζ = θα⊗s∞−
1

2
IdE dz⊗s0 : π∗1Fα → π∗1Gα⊗KP1(2·z0+z1+· · ·+zn)⊗π∗2OP̂1(1)

where IdE is the morphism induced by the identity of E. For all α ∈ [0, 1) let us define

(28) Êα,ζ = H1(θα,ζ).

This will be the fiber over ζ of a sheaf Êα. It follows from the decreasing property that for
any α′ ≥ α there exists a sequence of complexes

θα′ → θα,

hence the snake lemma implies a sheaf inclusion

(29) Êα′ ⊂ Êα.

Moreover, the family Ê• is clearly left-continuous.

Claim 5.5. For all α ∈ [0, 1) the sheaf Êα is a locally free subsheaf of Ê0 of full rank (23).

Proof. The sheaves Êα are clearly OP̂1 -coherent. Left-continuity of Ê• follows imme-
diately from left-continuity of F• and of G•. The dimension count of the fiber of Êα at
∞ ∈ P̂1 can be carried out similarly to the case of Ê, and since we modify gsi (α) in the
same way as we do for fsi (α), the computation gives the same value (23). Furthermore,
the same argument as in Proposition 5.1 shows that the dimension of the fiber over ζ is
independent of ζ ∈ Ĉ \ P̂ . For α > 0, the sheaves Êα are subsheaves of the locally free
sheaf Ê, in particular they are torsion-free. Since P̂1 is non-singular, this implies that Êα
is locally free too. �

Next, let us set

(30) D̂red = div(P̂ ) +∞,
where div stands to denote the simple effective divisor associated to a set of distinct points.
Let us extend the definition of Êα to all α ∈ R by the requirement

Êα+1 = Êα(−D̂red).

Proposition 5.6. Then, the family {Êα}α∈R is an R-parabolic sheaf with divisor D̂red.

Remark 5.7. It would seem appealing to define the transformed R-parabolic bundle by
(28) for all α ∈ R; however, this definition would not lead to a parabolic sheaf for the
following reason. Some branches of Σ near the points of P̂ do not intersect π−11 (∞), and
the local subbundle of Ê corresponding to hypercohomology classes supported on such
branches do not get twisted by z−1 as we increase α by 1. In the above definition we
added manually the twist on this subbundle too. This is the same procedure as Addition of
a subscheme to the parabolic divisor in Section 6 of [1], an inverse operation of Deletion
of Remark 5.3.



14SZILÁRD SZABÓ BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DEPARTMENT OF GEOMETRY EGRY J. U. 1. H ÉP. 1111 BUDAPEST, HUNGARY

Proof. We merely need to show the decreasing property (29). It is sufficient to prove it for
α′ = 1 > α ≥ 0. The proof follows the ideas of Theorem 8.5 [1]. Define the spectral sheaf
Mα on P1 × P̂1 as the cokernel sheaf of (27) with ζ ∈ P̂1 varying and the spectral curve
Σ ⊂ P1 × P̂1 as the support of Mα (it is easy to see that the support does not depend on
α). Then, by the spectral sequence argument of Proposition 4.22 [7], Êα can be defined as
the direct image

Êα = (π2)∗Mα

of Mα by π2. It follows from Assumption 2.3 (3) and a simple local computation near zi
that the branches of Σ corresponding to vectors not satifying αj(s)i = 0 = λsi are precisely
the ones passing through the point (zi,∞) ∈ P1 × P̂1. In addition, as in Claim 4.24 [7],
up to higher order terms along these branches of Σ we have

(31) ζ =
2λsi
z − zi

.

Thus, multiplying fsi ,g
s
i by (z − zi) for α > α

j(s)
i amounts (up to a scalar) to multiplying

them by ζ−1, which is a local defining equation for the point at infinity∞ ∈ P̂1. Therefore,
the hypercohomology classes in Êα defined by representatives locally expressible by some
holomorphic linear combination of vectors of the form (z − zi)gsi not satifying αj(s)i =

0 = λsi are basically hypercohomology classes in Ê defined by representatives locally
expressible by some holomorphic linear combination of vectors of the form gsi of the same
type, multiplied by ζ−1. Said differently, the subbundle of Êα near∞ ∈ P̂1 generated by
such classes is a subbundle of Ê(−∞). On the other hand, the subbundle of Êα generated
by hypercohomology classes represented by a linear combination of vectors gsi (α) with
α
j(s)
i = 0 = λsi is clearly the same as the corresponding subbundle of Ê. In both cases, the

corresponding subbundle of Êα contains (or is possibly equal to) that of Ê(−∞).
A similar argument works for the points zi with i 6= 0. �

Example 1. We would like to point out that Proposition 5.6 only holds under Assumption
2.3. Indeed, let us consider a rank 2 Higgs bundle with a logarithmic singularity at z = 0
such that with respect to a local holomorphic trivialization e0, e1 of E near z = 0 the
Higgs field is of the form

θ =

(
0 1
z−1 0

)
dz +O(z)dz.

Let us furthermore assume that e1 spans F 1 and the parabolic weights corresponding to
e0 and e1 are α0 = 0 and 0 < α1 < 1 respectively. Thus, this example does not fulfill
Assumption 2.3 3. Replacing ζ/2 by ζ to spare factors of 1

2 , we have the formula for
spectral curve

det(θ + ζ) = ζ2 − 1

z
up to higher-order terms in z, with cokernel space at a root ζ given by

C

〈
ζe0 −

1

z
e1

〉
.

As the spectral curve establishes a single-valued expression of z in terms of ζ, we imme-
diately see that the rank of the transformed Higgs bundle is 1, and the weight 0 piece of
the transformed filtration will be spanned by the vector ζe0 − 1

ze1. Now, the sheaf Eα1
is

equal to
Eα1

= zC[z]e0 ⊕C[z]e1,
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and the morphism induced by the Higgs field on the generators of Eα1
is given by

θα1
: ze0 7→ e1

e1 7→
1

z
(ze0),

so that the matrix of θα1
+ ζ with respect to this trivialization reads as(

ζ z−1

1 ζ

)
dz +O(z)dz.

The spectral curve of θα1
is of course the same as that of θ:

det(θα1
+ ζ) = ζ2 − 1

z
+O(1)

and, as it can be easily checked, this time the cokernel is spanned by the vector

1

z
(ze0)− ζe1 = e0 − ζe1

= ζ−1
(
ζe0 −

1

z
e1

)
.

It follows from this that the graded weight α1 part of the transformed filtration is spanned
by the vector ζ−1(ζe0 − 1

ze1). Now let us recall that ζe0 − 1
ze1 was a generator of the

weight 0 piece, so if we wanted the transformed parabolic structure to satisfy the require-
ments for a parabolic structure at the point ζ =∞, then the parabolic weight of the vector
ζ−1(ζe0 − 1

ze1) should be equal to 1. However, these two weight conditions contradict
as α1 < 1. This shows us that the procedure of this section may only produce a parabolic
structure on the transformed holomorphic bundle under Assumption 2.3 3.

An obvious modification of the argument with α0 = 0 = α1 also shows the necessity of
Assumption 2.3 2, and the necessity of Assumption 2.3 2 may be seen by a similar rank 2
example with vanishing second-order term and a non-zero nilpotent residue at z =∞.

6. TRANSFORMED HIGGS FIELD

In this section, we define the transformed Higgs field θ̂ and show that it preserves the
parabolic structure. Recall the definition made in (28) and use the convention Ê = Ê0.

Definition 6.1. The transformed Higgs field θ̂ is the morphism

V̂ → V̂ ⊗KP̂1(∗D̂red)

induced by multiplication by −z/2dζ. (Here ∗D̂red means that the morphism may have
poles of some unspecified order at the support of D̂red.)

Theorem 6.2. (1) The transformed Higgs field θ̂ is meromorphic, has a first-order
pole at the points of P̂ and a second-order pole at ∞ ∈ P̂1 with semi-simple
leading-order term, and no other poles.

(2) The residues of θ̂ at the parabolic points are compatible with the parabolic struc-
ture corresponding to the R-parabolic structure Ê•, and the leading-order term of
θ̂ at∞ ∈ P̂1 preserves the parabolic filtration.

(3) The map (1) is holomorphic for the Dolbeault complex structures of the moduli
spaces.
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Proof. (1) The argument of the proof of Theorem 4.9 [7] shows that multiplication by
−z/2dζ induces a holomorphic map

Ê→ Ê⊗KĈ\P̂

over Ĉ \ P̂ . The argument of the proofs of Theorems 4.30 and 4.31 loc. cit. shows
that it has a first-order pole at P̂ and a second-order pole at ∞ ∈ P̂1, with semi-simple
leading-order term.

For statement (2), it is easy to see that compatibility with the parabolic structure associ-
ated to the R-parabolic structure Ê• by Claim 5.2 means precisely that θ̂ preserves Êα for
all α ∈ R. Near ζ =∞ this can be proved as follows. Recall (31) that the branches of the
spectral curve pass through the points (zi,∞) ∈ P1 × P̂1, and according to the formula
(23) these are all the branches intersecting π−12 (∞). A local section of Êα near ζ = ∞ is
thus represented in hypercohomology by a linear combination

(32)
n∑
i=1

r∑
s=1

hsi (z, ζ)gsi (α)dz

for some holomorphic functions hsi , and its image by θ̂ is by definition represented by(
n∑
i=1

r∑
s=1

hsi (z, ζ)
−zgsi (α)dz

2

)
⊗ dζ.

Now, as Gα is an OP1 -module, the expression in parentheses in this latter formula also
defines a section of Gα. Therefore, by the definition of Êα, the image by θ̂ of the class (32)
represents a section of Êα ⊗KP̂1 . A similar argument works in the case ζ ∈ P̂ .

Statement (3) is immediate: the constructions of Sections 4 and 5 are algebraic with
respect to the Dolbeault complex structure of the moduli spaces corresponding to Higgs
bundles (E, θ). �
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[9] Kôji Yokogawa. Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs sheaves. J.

Math. Kyoto Univ., 33(2):451–504, 1993.
E-mail address: szabosz@math.bme.hu


	1. Introduction
	2. Construction of Nahm transform
	3. Fredholm theory
	4. Dolbeault interpretation
	5. Extension and transformed parabolic structure
	6. Transformed Higgs field
	References

