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ABSTRACT. We give a variant of the Beauville–Narasimhan–Ramanan
correspondence for irregular parabolic Higgs bundles on smooth projec-
tive curves with fixed semi-simple irregular part and show that it de-
fines a Poisson isomorphism between certain irregular Dolbeault moduli
spaces and relative Picard bundles of families of ruled surfaces over the
curve.

1. INTRODUCTION

The Beauville–Narasimhan–Ramanan (BNR) correspondence [4] pro-
vides an equivalence of categories between (an open subset of) the category
of twisted Higgs bundles (E , θ) over a smooth projective curve and torsion-
free sheaves S of rank 1 on integral finite covers of the curve contained in
a ruled surface Z and intersecting the infinity-divisor trivially. The functor
simply turns the action of the Higgs field into the action of multiplication
by a variable algebraically independent from the function field of the curve;
regularity of the Higgs field amounts to saying that we obtain the action
of a commutative algebra. This correspondence is also closely related to
Hitchin’s integrable system [12], namely the description of an open subset
of the moduli space of stabe Higgs bundles over a curve in terms of its spec-
tral cover and spectral sheaf. The Hitchin map associates to a given Higgs
bundle the characteristic coefficients of the Higgs field and the generic fiber
is the Jacobi-variety of the corresponding smooth curve. The setup of the
original BNR correspondence has been generalized to the case of arbitrary
(not necessarily integral) spectral schemes by D. Schaub [21].

Mehta and Seshadri [19] generalized the notion of holomorphic vector
bundle over a curve to the notion of parabolic vector bundle over a curve
with marked points. Higgs bundles with tame (or regular) singularities
compatible with a parabolic structure at the marked points have first been
studied by C. Simpson [22]. In [26] K. Yokogawa and in [9] H. Boden
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and K. Yokogawa constructed a moduli space of parabolic Higgs bundles
with regular singularities using Geometric Invariant Theory; parallelly, a
gauge-theoretic construction was provided by H. Konno [15]. Later, Higgs
bundles with wild (or irregular) singularities endowed with compatible par-
abolic structures have also been extensively studied from various perspec-
tives in the mathematical literature (see e.g. O. Biquard and P. Boalch [5],
P. Boalch [8], T. Mochizuki [20]). They equally showed up in the physics
literature c.f. E. Witten [25], due to their role in electric-magnetic duality.
The moduli spaces of stable Higgs bundles with (tame or wild) singularities
at prescribed marked points on a fixed smooth projective curve were proven
to be holomorphic Poisson varieties in case one allows the singular parts of
the Higgs field vary by E. Markman [18], and holomorphic symplectic (ac-
tually, complete hyperKähler) manifolds in case one requires the singular
parts to be equivalent to given semi-simple local forms [5].

As the original BNR-correpondence holds for twisted Higgs bundles, it
is valid in particular for Higgs bundles with arbitrary singularities. It allows
one to determine explicitly some holomorphic Poisson moduli spaces of
stable parabolic Higgs bundles. However, for explicit computation of sym-
plectic leaves of these holomorphic Poisson spaces, namely moduli spaces
of stable parabolic Higgs bundles with fixed semi-simple singular parts, it
would be useful to have a refined correspondence that takes into account the
fixing of the singular parts too. Such a refined version in the case of reg-
ular (or logarithmic) singularities has been provided by M. Logares and J.
Martens [17]. However, to our knowledge such a refined BNR-construction
in the irregular singular case has not yet been worked out; the purpose of
this paper is to give such a refinement. The route we take is slightly different
from Logares and Martens even in the logarithmic case, in that we encode
the parabolic structure of the bundle in a (R-)parabolic structure of the spec-
tral sheaf. Furthermore, as it was pointed out in Section 4 of [1] by K. Aker
and the author, for such a correspondence in the irregular parabolic case one
needs to perform iterated blow-ups along non-reduced 0-dimensional sub-
schemes of the fibres of Z over the irregular singular points. In addition,
the spectral sheaves transform by a so-called proper transform functor for
coherent sheaves, whose definition and main properties are given in Section
5. loc. cit. Our approach here will be parallel to (but more direct than) the
one developed in [1].

Motivated by Mirror Symmetry, M. Kontsevich and Y. Soibelman sketch
the idea of multiple blow-ups according to some configurations prescribed
by the local singular types in Section 8.3 of [16] (without however under-
lining the role of the parabolic structure on the spectral data). Their analysis
is reminiscent to the work of R. Donagi and E. Markman [10], where the
symplectic leaves of the holomorphic Poisson manifold of certain rank 1
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sheaves supported purely in dimension 1 over a Poisson surface are deter-
mined to be given by fixing the intersection of the support curves with the
degeneracy divisor of the Poisson structure. Our aim in this paper is to fill
out the details of this correspondence. In particular, our results imply part
1) of Conjecture 8.6.1 of [16] in the semi-simple case. Specifically, we will
show the following.

Theorem 1.1. Given a smooth complex projective curve C, a finite set
p1, . . . , pn ∈ C and multiplicities mi ∈ N for 1 ≤ i ≤ n, there exists a family
of ruled surfaces

Z̃ →Cr∑i(mi+1)

over C such that there exists a Poisson isomorphism between dense open
subsets of the moduli space of stable irregular Higgs bundles on C with
semi-simple irregular parts at pi with pole of order mi +1 and no other sin-
gularity on the one hand, and on the other hand the relative Picard bundle
of certain torsion-free sheaves of rank 1 over a relative Hilbert scheme of
curves in Z̃ .

In concrete terms, the open subset of the moduli space of stable Higgs
bundles appearing in the Theorem is characterised by the condition that the
spectral curve be smooth. For a more precise statement of the result see
Theorem 5.4.

The key ingredient in the proof of the above theorem is an equivalence
of categories in the same spirit proven in Theorem 4.3 for objects endowed
with a compatible parabolic structure. Theorem 4.3 holds under a milder as-
sumption on the spectral curve than Theorem 5.4, namely integrality. Once
this categorical correspondence is established, it is a relatively routine mat-
ter to deduce Theorem 5.4. Actually, as the Poisson spaces of sheaves con-
sidered in Theorem 5.4 are birational to the Poisson spaces considered by
Markman [18], Theorem 5.4 directly follows from Theorem 4.3 coupled
with Corollary 7.15 of [18]. See also [13] and [11] where similar Poisson
isomorphism statements are proven at various levels of generality. Never-
theless, we include a derivation of Theorem 5.4 in the spirit of [24] for the
sake of completeness.

Let us also point out that there exists a different characterization of an
open subset of moduli spaces of stable Higgs bundles with irregular singu-
larities using quiver varieties. The advantage of our approach as opposed to
the one using quivers is that our description is not limited to Higgs bundles
on holomorphically trivial line bundles.

The paper is organized as follows. In Section 2 we set some notation
concerning irregular Higgs bundles and parabolic sheaves. In Section 3 we
give the correspondence in the case of Higgs bundles with regular singular-
ities (Proposition 3.2). Then we turn to the irregular case in Section 4 and
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extend the correspondence to this case in Theorem 4.3. Finally, in Section 5
we spell out the natural Poisson structures on the relative Dolbeault moduli
space and the relative Picard bundle and show that the correspondence is a
Poisson isomorphism between dense open subsets (Theorem 5.4).

2. IRREGULAR PARABOLIC HIGGS BUNDLES AND PARABOLIC
SHEAVES

In this section we will introduce some basic terminology on the one hand
concerning irregular Higgs bundles on curves along the lines of P. Boalch’s
paper [7] and on the other hand concerning parabolic sheaves, and establish
some elementary results about these objects. We end the section with a brief
description of a ruled surface.

2.1. Irregular parabolic Higgs bundles. Let C be a smooth complex pro-
jective curve over C and E a holomorphic vector bundle of rank r ≥ 2 over
C. We denote by OC ,KC the regular and canonical sheaves of C respec-
tively and by d the differential of meromorphic forms on C. Let us fix
finitely many points p1, . . . , pn ∈ C and non-negative integers m1, . . . ,mn ∈
N. For each i we also fix a local coordinate zi of C near pi and an irregular
part

(1) Qi = Amii z−mii +⋯ +A1
i z

−1
i

where Aji ∈ glr(C) are semi-simple endomorphisms satisfying

[Aji ,A
j′
i ] = 0.

In (1) the exponents of zi are meant to increase from left to right; in the
particular case mi = 0 the irregular part is Qi = 0, and in this case we say
that θ has regular or logarithmic singularities. We set

D = (m1 + 1) ⋅ p1 +⋯ + (mn + 1) ⋅ pn
as an effective divisor on C with associated reduced divisor

Dred = p1 +⋯ + pn.
Moreover we set

(2) L =KC(D).
By (untwisted) irregular Higgs field with local form (1) we mean a section

θ ∈H0(C,End(E) ⊗OC L)
such that for any i ∈ {1, . . . , n} there exists a local trivialisation of E near pi
with respect to which we have an expansion

(3) θ = dQi + (Λiz
−1
i + holomorphic terms)dzi
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for some Λi ∈ glr(C). A quasi-parabolic structure compatible with θ at pi
is a filtration

(4) {0} ⊂ F li−1
i ⊂ ⋯ ⊂ F 1

i ⊂ F 0
i = E∣pi

of some length 1 ≤ li ≤ r preserved by the matrix Λi and the irregular part
Qi (i.e. by all the matrices A1

i , . . . ,A
mi
i ).

Claim 2.1. Qi preserves the filtration (4) if and only if for any l the piece
F l
i in (4) is the direct sum of its intersections with the various simultaneous

eigenspaces of A1
i , . . . ,A

mi
i .

Proof. The direction⇐ is trivial. For the converse, we merely need to show
it for a single Aji that we denote by A for ease of notation. If for instance

λ1v1 + λ2v2 ∈ F l
i

for some λj ≠ 0 and vj in the ζj-eigenspace of A with ζ1 ≠ ζ2 then

A(λ1v1 + λ2v2) = ζ1(λ1v1 + λ2v2) + (ζ2 − ζ1)λ2v2.

Now as by assumption the left-hand side and the first term on the right-hand
side belong to F l

i , the same thing follows for the second term on the right-
hand side, and thus (as ζ2 − ζ1 ≠ 0) for λ2v2 too, which in turn implies the
same thing for λ1v1 as well. The same kind of argument applies for a vector
with components in more than just two different eigenspaces. �

A compatible parabolic structure at pi is the datum of a compatible quasi-
parabolic structure at pi and parabolic weights

(5) 1 > αli−1
i > ⋯ > α0

i ≥ 0.

2.2. Parabolic sheaves. It is convenient to recall the notion of an R-parabolic
sheaf on a complex manifold X (or more generally, a non-singular projec-
tive variety over an algebraically closed field) with divisor Dred, a reduced
effective Weil divisor on X: this is a coherent sheaf S with a decreasing
filtration S● indexed by R so that for all α ∈R

(1) there exists some ε > 0 with Sα−ε = Sα;
(2) we have Sα+1 = Sα ⊗OX(−Dred);
(3) S0 = S.

Then we have the following result (Section 1, [26]):

Claim 2.2. The categories of R-parabolic locally free sheaves on X with
divisor Dred and of parabolic bundles on X with divisor Dred are isomor-
phic.

For convenience, let us spell out the correspondence in the case X =
C a smooth projective curve. To a parabolic bundle E with filtration (4)
associate the R-parabolic sheaf E● defined as follows. Near the generic
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point z ∉ Dred for every α ∈ R we let Eα = E . For i ∈ {1, . . . , n} and
αl−1
i < α ≤ αli we define Eα in a small neighborhood of pi ∈D not containing

any other pi′ as the kernel of the composition map

πli ∶ E
evalpiÐÐÐ→ E∣pi = F 0

i → F 0
i /F l

i .

For α ∉ [0,1] we extend the definition by property (2) above.
Conversely, to an R-parabolic sheaf we associate the vector bundle whose

local sections are given by the sheaf E0, with filtration (4) defined as follows:
for any vector v ∈ E∣pi we let v ∈ F l

i if and only if any local section of E0

extending v (i.e., whose specialization at pi is v) is actually a section of Eαli .
These two constructions are clearly inverse to each other.
Based on this correspondence, it is natural to extend the defintion of an

R-parabolic sheaf to a more general setup, that we will use throughout the
article. Let X now stand for a (not necessarily smooth) complex curve and
L denote a (not necessarily reduced) effective Cartier divisor on X .

Definition 2.3. An R-parabolic sheaf over X with parabolic divisor L is a
decreasing family S● of coherent sheaves over X indexed by R satisfying
the left-continuity property (1) above, and moreover such that we have

Sα+1 = Sα ⊗L∨.
2.3. A ruled surface. Finally, let us introduce some notation concerning
ruled surfaces. Let us denote by Z the surface

Z = PC(OC ⊕L∨),
the fiberwise projectivisation of the total space of the line bundle L∨ dual to
L. There exist a natural projection

p ∶ Z → C,

a relative hyperplane bundle OZ(1) and canonical sections

(6) ξ ∈H0(Z,OZ(1)), ζ ∈H0(Z, p∗L⊗OZ(1)).
The divisors

(ξ = 0), (ζ = 0)
are called the divisor at infinity and the 0-divisor respectively. The line
bundle OZ(1) is trivial on the complement of the divisor at infinity, and the
same holds for the 0-divisor.

3. THE CORRESPONDENCE IN THE LOGARITHMIC CASE

In this section we will briefly outline the refined correspondence in the
parabolic logarithmic (regular singular) case. The upshot is that it is pos-
sible to encode the compatible parabolic structure of the Higgs bundle in
terms of a parabolic structure of the spectral sheaf. This is related to the
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treatment of [17] Proposition 2.2 except that we take a slightly different
point of view as them: instead of partitioning the eigenvalues of the Higgs
field into the graded pieces of a given filtration, we take the direct sum of
the eigenspaces (the fibers of the spectral sheaf over the points lying above
a parabolic point of C) and exhaust this space by an increasing filtration.

Let us first recall the extension by D. Schaub of the BNR-correspondence
to the case of arbitrary spectral curves [21]. Fix an arbitrary element

s⃗ = {sk}rk=1 ∈ ⊕rk=1H
0(C,Lk)

and let Σs⃗ be the corresponding spectral scheme of degree r over C, i.e. Σs⃗

is the subscheme of Z defined by the polynomial

Ps⃗(ζ, ξ) = ζr + p∗(s1)ζr−1ξ +⋯ + p∗(sn)ξr.
For convenience, we sometimes denote Σs⃗ merely by Σ, when this may
cause no confusion. Let RΣ be the sheaf of rational functions on Σ and
let us be given a coherent sheaf of OΣ-modules S. Then S is said to be
torsion-free if the natural morphism

S → S ⊗OΣ
RΣ

is injective. Let SchC and Set stand for the categories of schemes over C
and of sets respectively. Let ≅ stand for the equivalence relation given by
isomorphisms in the categories of sheaves and Higgs bundles. Consider the
contravariant functors

● Fs⃗ ∶ SchC → Set defined by

Fs⃗(T ) = {ST a coherent OΣs⃗×T −module, flat over T and
inducing torsion-free rank 1 OΣs⃗×{t} −modules on the

geometric fibers of the projection Σs⃗ × T → T}/ ≅
● and Gs⃗ ∶ SchC → Set defined by

Gs⃗(T ) = {(ET , θT ) where ET is a locally free OC×T −module of rank r
and θT ∶ ET → ET ⊗ p∗CL a morphism of OC×T −modules

with characteristic polynomial given by Ps⃗}/ ≅
on objects, and associating the pull-back morphism on such objects to a
morphism of schemes T ′ → T . With this notation, the functors Fs⃗ and
Gs⃗ are proved to be isomorphic in Proposition 5.1 [21]. In the rest of this
section, we upgrade this correspondence to a correspondence between par-
abolic torsion-free sheaves and logarithmic Higgs bundles endowed with a
compatible parabolic structure.

Let (E , θ) be a Higgs bundle on a smooth projective curve C and let us
assume that all the singularities of θ are logarithmic (i.e. Qi = 0 in (1)).
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Then for all i, l the restriction of θ induces a map

Eαli → E ⊗L,

and since θ is assumed to be compatible with the parabolic structure, the
composition

Eαli → E ⊗L
πli⊗IdLÐÐÐÐ→ F 0

i /F l
i ⊗L∣pi

vanishes. We infer that the restriction of θ to Eαli factors through Eαli ⊗ L,
and hence gives rise to maps

θα ∶ Eα → Eα ⊗L
for every α. To emphasize that we are dealing with the logarithmic case set

Zred = PC(OC ⊕KC(Dred)∨)
and for ease of notation let us denote by p, ζ, ξ the corresponding projec-
tion from Zred to C and canonical sections. It follows from what we have
said above that we can define the spectral sheaves corresponding to the sub-
sheaves Eα:

(7) SEα = coker(p∗Eα
ξ⊗p∗θ+ζÐÐÐÐ→ p∗(Eα ⊗KC(Dred)) ⊗OZred

(1)).
This is a coherent sheaf whose support is denoted

(8) Σ = (det(ξ ⊗ p∗θ + ζ))
and called spectral curve. (In principle, Σ could depend on α, but the proof
of the proposition below shows in particular that this is not the case.)

Proposition 3.1. (1) If (E , θ) is a logarithmic Higgs bundle with com-
patible parabolic structure at Dred on a curve C then the sheaves
SEα are pure of dimension 1 and form an R-parabolic sheaf on Zred

with divisor p−1(Dred).
(2) Conversely, given any R-parabolic sheaf Sα with divisor p−1(Dred)

and sheaves pure of dimension 1 on Zred with support disjoint from
ξ = 0, then the sheaves Eα = p∗Sα⊗KC(Dred)∨ form an R-parabolic
bundle on C and θ given by

(9) θ = p∗(−ζ ⋅ ∶ Sα ⊗KC(Dred)∨ → Sα)
defines a Higgs field with regular singularities and compatible with
the parabolic structure.

The two constructions are quasi-inverse to each other.

Proof. By [4], we have
p∗SEα = Eα ⊗L.
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If the schematic support of SEα had a 0-dimensional embedded component,
then the same would hold for Eα ⊗ L; this however is impossible as Eα is
locally free, in particular torsion-free.

For any α < β the quotient Eα/Eβ is a skyscaper sheaf supported at Dred;
let us denote this sheaf by Cα,β . Now since p∗Cα,β is pure of dimension 1
supported on p−1(Dred) and the map p∗θ+ζ is non-zero on this sheaf (unless
it is itself the 0-sheaf), its kernel must vanish and we have the diagram

0 0 0

0 // p∗Cα,β //

OO

p∗(Cα,β ⊗L) ⊗OZred
(1) //

OO

cKα,β //

OO

0

0 // p∗Eα
ξ⊗p∗θ+ζ//

OO

p∗(Eα ⊗L) ⊗OZred
(1) //

OO

SEα //

OO

0

0 // p∗Eβ
ξ⊗p∗θ+ζ//

OO

p∗(Eβ ⊗L) ⊗OZred
(1) //

OO

SEβ
//

OO

0

0

OO

0

OO

0

OO

which defines the cokernel sheaf cKα,β . The top row shows that cKα,β is a
torsion sheaf supported in dimension 0 over

Σ ∩ p−1(Dred)

so SEα is an upper elementary modification of SEβ at these points. This
shows that the sequence of sheaves SE● is decreasing. Now for any α there
exists ε > 0 such that we have Eα−ε = Eα; it then follows that SEα−ε = SEα
too. Finally, as Eα+1 = Eα(−(z0 +⋯ + zn)) the projection formula

(10) p∗(OC(Dred)) = OZred
(p−1(Dred)),

implies

SEα+1 = SEα(−p−1(Dred)).
For the converse direction, all the sheaves Eα are locally free as torsion-

free sheaves on smooth curves are locally free. As multiplication by (−ζ)
preserves Sα it follows that θ preserves Eα, which in turn means that θ
is compatible with the parabolic filtration. Finally, the fact that Eα is R-
parabolic follows again from (10).

The fact that the two constructions are inverse to each other is straightfor-
ward [4]: a p∗OΣ-module structure on E is the same thing as an OC-linear
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endomorphism θ, and over the locus where the eigenvalues of θ are all dis-
tinct the p∗OΣ-module structure simply gives the decomposition of E into
its eigenspaces for θ. �

Example 1. Let us illustrate how this result works when Σ is ramified over
C. Specifically, let us consider C = SpecC[z]; we will identify coherent
modules over C[z] with their associated coherent sheaves on C. We let the
divisor Dred be given by (z) ◁C[z] and assume E0 is a free C[z]-module
of rank 2

E0 =C[z]e0 ⊕C[z]e1

with

θ(e0) = e1
dz
z
, θ(e1) = e0dz.

Then, trivializing KC(D) by the section dz/z, we get Σ = SpecC[z, ζ]/(z−
ζ2). This ring is isomorphic to C[ζ] and the map p is then ζ ↦ ζ2. Further-
more, SE0 is isomorphic to (the sheaf induced by) a free rank 1 module over
C[ζ]. Identifying this module to C[ζ] itself, the push-forward morphism is

p∗(1) = e0, p∗(ζ) = e1.

The Galois-group of p ∶ Σ → C is Z/(2), and the line subbundles spanned
by the two trivializing sections e0,e1 are naturally isomorphic to the equi-
variant sections of this action corresponding to the trivial multiplicative
character and the unique non-trivial multiplicative character acting by ζ ↦
−ζ , respectively. The pull-back of the Cartier divisor (z) to Σ is (ζ2) ◁
C[ζ], corresponding to a non-reduced divisor. Now, for a compatible par-
abolic structure there are two possibilities.

First, we may consider the trivial filtration

{0} ⊂Ce0 ⊕Ce1

associated to a weight 0 ≤ α0 < 1. For α ∈ [0,1) the associated R-parabolic
sheaf is given by

Eα = E0 for α ≤ α0

and
Eα = E0 ⊗C[z] zC[z] for α0 < α.

The C[ζ]-modules associated to these C[z]-modules are

SEα =C[ζ] for α ≤ α0

and
SEα = ζ2C[ζ] for α0 < α.

We see that these modules satisfy the requirements of Definition 2.3 for the
reduced divisor (ζ2)◁C[ζ], with just one jump α0 for values of α between
0 and 1.
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As the image of resz=0 θ is spanned by e1, the only other compatible fil-
tration is

(11) {0} ⊂Ce1 ⊂Ce0 ⊕Ce1,

with the two inclusions corresponding to some weights 0 ≤ α− < α+ < 1.
The corresponding R-parabolic bundle is characterized by

Eα = E0 for 0 ≤ α ≤ α−
= zC[z]e0 ⊕C[z]e1 for α− < α ≤ α+
= E0 ⊗C[z] zC[z] for α+ < α < 1,

extended using the periodicity property (2) above. The corresponding R-
parabolic sheaf on Σ is

SEα =C[ζ] for α ≤ α−
= ζC[ζ] for α− < α ≤ α+
= ζ2C[ζ] for α+ < α.

This again satisfies Definition 2.3 for the reduced divisor (ζ2), this time
with two jumps 0 ≤ α− < α+ < 1.

Example 2. Let us study the simplest situation in which the map p ∶ Σ→ C
is singular over Dred, namely that of a transversal double point. Up to
isomorphism there are two kinds of torsion-free sheaves of OΣ-modules of
rank 1: line bundles and sheaves that are direct images of line bundles on
the normalization Σ̃ of Σ. As Σ̃ is smooth over C, the latter case can easily
be understood, hence we restrict ourselves to the case of a line bundle over
Σ. The analysis is quite similar to Example 1, so we will not give all the
details. Let us again set C = SpecC[z], Dred = (z) and

E0 =C[z]e0 ⊕C[z]e1.

Let the logarithmic Higgs field be given by

θ(e0) = e1
dz
z
, θ(e1) = e0zdz.

Trivializing KC(D) by dz/z we now get

Σ = Spec (C[z, ζ]/(z2 − ζ2))
and SE0 = OΣ. We again have

p∗(1) = e0, p∗(ζ) = e1,

and the same two possible types of compatible parabolic structures can
occur as in Example 1.

In the case of a trivial filtration, just as in the ramified case we get

SEα = OΣ for α ≤ α0
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and

SEα = zOΣ for α0 < α.
Indeed, the vector space OΣ/(z) is spanned by the elements 1 and ζ of OΣ,
and these correspond to the vectors e0,e1 respectively.

In the full flag case (11), the formulae for Eα are the same as in the
ramified situation, and for the associated R-parabolic sheaf SEα just as
above we get

SEα = OΣ for α ≤ α−
and

SEα = zOΣ for α+ < α.
For α− < α ≤ α+ the module SEα is given as the subalgebra ofOΣ generated
by z and ζ . Clearly, the quotient of OΣ with this algebra is spanned by
1 ∈ OΣ, whose image by p∗ is e0. As e0 is a generator of

ker(Ce0 ⊕Ce1 →Ce1),

the quasi-parabolic filtration associated to p∗SEα for these values of α is
indeed (11).

Proposition 3.2. There exists an isomorphism of categories between the
functors

● F par
s⃗ ∶ SchC → Set defined by

F par
s⃗ (T ) = {ST a coherent OΣs⃗×T −module, flat over T

and inducing torsion-free rank 1 parabolic OΣs⃗×{t} −modules
on the geometric fibers of the projection Σs⃗ × T → T

with parabolic divisor (pΣ ○ p)∗(Dred)}/ ≅

● and Gpar
s⃗ ∶ SchC → Set defined by

Gpar
s⃗ (T ) = {(ET , θT ) where ET is a locally free parabolic OC×T −module of rank r

with parabolic divisor p∗C(Dred)
and θT ∶ ET → ET ⊗ p∗CL a morphism of OC×T −modules
with characteristic polynomial given by Ps⃗
and action on the geometric fibers of the projection C × T → T

compatible with the parabolic structure of Et}/ ≅

Proof. Follows from the previous proposition along the same lines as Propo-
sition 5.1 [21] from Proposition 2.1 [21]. �
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4. THE CORRESPONDENCE IN THE IRREGULAR CASE

Proposition 3.2 gives a satisfactory result at the regular singularities;
however, at the irregular singularities the sheaves must possess a finer struc-
ture in order for such a correspondence to hold. This structure may be con-
veniently expressed using the technique of proper transform of R-parabolic
sheaves defined in Section 5 of [1]. Let us now describe this construction.
To fix our ideas, let us first treat the case mi = 1, and set Ai = A1

i . Fix a
local chart zi vanishing at pi; this then gives rise to a local trivialization

(12) λi = z−2
i dzi

of the line bundle (2). The assumption mi = 1 means that θ has local form

(13) θ = (−Ai + ziΛi +⋯)λi
where the dots stand for higher order terms in zi. Let us introduce the local
holomorphic function ζi on Z ∖ (ξ) by

(14) ζ = ζip∗λi;
as the left hand side is a section of p∗L and p∗λi is a local section of L, ζi
is then a local function. In what follows, we will drop p∗ from the notation.
Let us denote the distinct eigenvalues of −Ai by ζi,1, . . . , ζi,Li , each repeated
with a certain multiplicity di,1, . . . , di,Li . It is known that the residue Λi may
be assumed up to a gauge transformation to be block diagonal with respect
to the eigenspace-decomposition of Ai (actually, the same thing holds for
any prescribed number of the lower order terms). Let us denote the block
of Λi corresponding to the eigenvalue ζi,l of −Ai by Λi,l. The spectral curve
Σ passes through the points (pi, ζi,1), . . . , (pi, ζi,Li) (where in the second
coordinate ζi,l means the point (ζi,l ∶ 1) in the projective chart of the fiber
E∣pi given by the sections ζ, ξ). Let us consider the formal splitting of E into
the generalised eigenspaces for θ near pi:

(15) E = E i,1 ⊕⋯⊕ E i,r;
this splitting holds over the field of formal Puiseux-series in zi. It can be
shown (c.f. Claim 4.27 [23]) using Rouché’s root counting formula that the
eigenvalues ζi,j of θ are of the form

(16) (ζi,j
z2
i

+O (z−2+ 1
r

i ))dzi

where for 1 ≤ j ≤ r we denote by ζi,j the j’th eigenvalue of −Ai in the com-
patible basis of (13). Let us gather the generalised eigenspaces appearing in
(15) corresponding to equal values of ζi,j to define a coarser decomposition

(17) E = Ẽ i,1 ⊕⋯⊕ Ẽ i,Li ;
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for example,
Ẽ i,1 =⊕

j

E i,j

the summation ranging for all values of j such that ζi,j is equal to a fixed
complex number, etc.

Claim 4.1. The decomposition (17) is defined over the field C{zi}[z−1
i ] of

convergent Laurent series in the variable zi, and the summands are locally
free C{zi}-modules. Furthermore, it is preserved by θ.

Proof. Let L be the splitting field of the characteristic polynomial

χθ(∂zi)(ζ, zi) = det(θ(∂zi) + ζ)
of θ(∂zi) over the ring of formal power series C[[zi]]. Then the action
of Gal(L∣C[[zi]]) maps a generalised eigenvector with Puiseux-expansion
having highest-order term ζi,j to a generalised eigenvector with equal highest-
order term. Therefore, the direct sum of such generalised eigenspaces is
Gal(L∣C[[zi]])-invariant. On the other hand, the solution curve of χθ(∂zi)
is the graph of a multi-valued analytic function in zi, hence the generalised
eigenvectors are given by convergent Puiseux-series. As E is torsion-free,
it may only have torsion-free submodules. This proves the first two state-
ments.

As for the third statement, notice that as the factors E i,l are direct sums of
generalised θ-eigenspaces, they are preserved by θ over the generic point.
So for any l ≠ l′ the map

E i,l → E i,l′

induced by θ is generically 0. We conclude by the second statement. �

To simplify notation, from now on we will write E i,l for Ẽ i,l. Let θi,l stand
for the restriction of θ to E i,l. The claim implies that we have a local direct
sum decomposition

(E , θ) = (E i,1, θi,1) ⊕⋯⊕ (E i,Li , θi,Li)
with E i,l∣pi equal to the ζi,l-eigenspace of A. Furthermore, by Claim 2.1, the
above splitting is also compatible with the parabolic structure in the sense
that for any α we also have

Eα = E i,1α ⊕⋯⊕ E i,Liα ,

where
E i,lα = Eα ∩ E i,l.

Define the affine curves Σi,l by the vanishing of the sections

det(ζI
Ei,l + ξθi,l)
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where I
Ei,l stands for the identity transformation of E i,l. Let us now blow up

Z at the points (pi, ζi,l) for l ∈ {1, . . . , Li}:

(18) σi ∶ Zi Ð→ Z.

The exceptional divisor of σi corresponding to (pi, ζi,l) is denoted Ei,l.
Specifically, introduce homogeneous coordinates

(19) (z′i,l ∶ ζ ′i,l) ∈ Ei,l = P1;

and let Ui,l denote a neighborhood of (pi, ζi,l) containing no other point
(pi′ , ζi′,l′) for i′ ≠ i, l′ ≠ l. Then the preimage by σi of Ui,l is given by

(20) σ−1
i (Ui,l) = {ziζ ′i,l = z′i,l(ζi − ζi,l)} ⊂ Ui,l ×P1.

Let us denote by

(21) U ′

i,l ⊂ σ−1
i (Ui,l)

the affine subset defined by z′i,l ≠ 0. On U ′

i,l we then have

ζi − ζi,l = zi
ζ ′i,l
z′i,l

;

in particular, on U ′

i,l the equality zi = 0 implies ζi = ζi,l. Here ζ ′i,l, z
′

i,l are to
be understood as sections of OZi(−Ei,l), since

OZi(−Ei,l)∣Ei,l ≅ OEi,l(1).
The equation of the total transform σ−1

i (Σ) of the spectral curve in the above
affine chart therefore writes

det(ζI
Ei,l − θi,l) = det(zi

ζ ′i,l
z′i,l
λiIEi,l − θ̃i,l)

with

(22) θ̃i,l = θi,l − ζi,lλiIEi,l = (Bi,l +O(zi))
dzi
zi

= (Bi,l +O(zi))ziλi

as zi → 0. We now resolve the quotient in the determinant above by writing

(23) det(ζI
Ei,l − θi,l) = ( 1

z′i,l
)
di,l

det (ziζ ′i,lλiIEi,l − z′i,lθ̃i,l) .

This is therefore the defining relation of the total transform σ−1
i (Σ); observe

now that if
zi = 0 = ζi − ζi,l

then the matrix in the argument of the right hand side of (23) vanishes for
any (z′i,l ∶ ζ ′i,l). Said differently, Ei,l is a component of multiplicity di,l in
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σ−1
i (Σ). The proper transform Σi of Σ with respect to σi is therefore given

in the chart U ′

i,l by the formula
(24)
det(ζ ′i,lλiIEi,l −z′i,lz−1

i θ̃
i,l) ∈H0(U ′

i,l, (p○σi)∗(L⊗End(E i,l))⊗OZi(−Ei,l))
(compare with (6)). Notice that here

z−1
i θ̃

i,l = (Bi,l +O(zi))λi
is a regular section of (p ○ σi)∗(L ⊗ End(E i,l)). In particular, we see that
(24) has precisely the same form as the characteristic equation (8) of a log-
arithmic Higgs field with residue Bi,l with respect to the auxiliary variable
(ζ ′i,lλi ∶ z′i,l) instead of (ζ ∶ ξ). Just as in the regular case, from the as-
sumption that Bi,l preserves the parabolic filtration we deduce that z−1

i θ̃
i,l

restricts to maps

z−1
i θ̃

i,l
α ∶ (p ○ σi)∗E i,lα → (p ○ σi)∗(E i,lα ⊗L)

of locally free sheaves over U ′

i,l; or equivalently, maps

(25) z−1
i θ̃

i,l
α ∶ (p ○ σi)∗(E i,lα ⊗L∨) → (p ○ σi)∗E i,lα .

Now the proper transform Σi given by equation (24) has an obvious refine-
ment in terms of the spectral sheaves SEα too. Namely, analogously to (7)
we may define coherent sheaves on Zi by the formulae

(26) Si
Eα

= coker(ζ ′i,lλiI(Ei,lα ⊗L∨) − z′i,lz−1
i θ̃

i,l
α )

locally on the affine charts U ′

i,l and as SEα away from these charts. The
support of Si

Eα
is then obviously equal to Σi.

Claim 4.2. Let zi ∈ U ⊂ C be an open set such that zi′ ∉ U for i′ ≠ i. Then
on the open subset (p ○ σi)−1U ⊂ Zi we have

(p ○ σi)∗SiEα = Eα.
The sheaves Si

E● are pure and define an R-parabolic sheaf with divisor

(27) (p ○ σi)−1(pi).

Proof. Let us first show purity: this is a simple consequence of the Auslander–
Buchsbaum formula [14] pp. 4–5: using that Zi is regular of dimension 2
at any point x ∈ Σi and the projective dimension of (Si

Eα
)x is by definition

equal to 1 we get that depth((Si
Eα

)x) = 1, so its schematic support does not
have a 0-dimensional embedded component.

By definition for any V ⊆ U we have

(p ○ σi)∗SiEα(V ) = Si
Eα

((p ○ σi)−1(V )).
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As the support of Si
Eα

is contained in the disjoint union of the open sets (21)
for l ∈ {1, . . . , Li}, the right-hand side is a direct sum of the Abelian groups

Si
Eα

((p ○ σi)−1(V ) ∩U ′

i,l).
This latter is in turn obtained by the sheafification of the pre-sheaf

((p ○ σi)∗E i,lα / im(ζ ′i,lλiI(Ei,lα ⊗L∨) − z′i,lz−1
i θ̃

i,l
α ))((p ○ σi)−1(V ) ∩U ′

i,l).

Mapping a section of E i,lα on V to the class of its pull-back thus gives us a
canonical epimorphism of sheaves of vector-spaces

ι ∶ ⊕Lil=1E i,lα → (p ○ σi)∗SiEα .
We now show that it is a monomorphism. Notice that both the source and
target of ι are torsion-free sheaves on C: for E i,lα this holds as it is a subsheaf
of the locally free sheaf E , and for (p○σi)∗SiEα it follows from purity of Si

Eα

since the support Σi of this latter sheaf is finite over C. Therefore, it is
sufficient to show that ι is generically a monomorphism. The support of
Si
Eα

is equal to Σi ∩ (p ○ σi)−1(U); in particular by the assumption that Σi

is reduced, it is r to 1 over U . On the open subset U0 ⊆ U over which the r
branches of Σi are distinct the map ι corresponds to writing sections of E i,lα
as OU -linear combinations of elements of a basis given by eigensections of
θ. As such a linear combination determines the section uniquely, we get the
injectivity of ι over U0.

The statement that Si
Eα

form an R-parabolic sheaf follows easily from
the projection formula

O(p○σi)−1(U)((p ○ σi)−1(pi)) = (p ○ σi)∗(OU(pi)).
�

We are now going to extend the above construction recursively to the
case of arbitrarily high order poles pi. Denote by −ζmi,j/m the j’th eigen-
value of the matrix Ami appearing in (1). Again by Rouché’s formula, the
eigenvalues ζi,j of θ are of the form

(28) (
ζmii,j

zmi+1
i

+⋯ +
ζ1
i,j

z2
i

+O (z−2+ 1
r

i ))dzi

near pi. Correspondingly, there exists a local splitting (17) of E where each
direct summand consists of the direct sum of all eigenspaces of θ having the
same expansion up to order z−2

i . Just as in Claim 4.1, this decomposition is
actually defined over C({zi}). We now construct a birational map

(29) σ̃ ∶ Z̃ → Z

recursively. If mi > 1 then apply a blow-up

σi,j ∶ Zi,j Ð→ Z
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at each point (pi, ζmii,j ) ∈ Z with respect to the local trivialisation

(30) λi = z−mi−1
i dzi

of L near pi. For each eigenvalue ζmii,j the point (pi, ζmii,j ) ∈ Z is only taken
once, independently of its multiplicity as an eigenvalue. In concrete terms,
using the holomorphic coordinate (14) introduce new homogeneous coor-
dinates

(31) (z′i,j ∶ ζ ′i,j) ∈ Ei,j = P1;

and let Ui,j denote a neighborhood of (pi, ζmii,j ) containing no other point
(pi′ , ζmi′i′,j′) for i′ ≠ i, j′ ≠ j. Then the preimage by σi,j of Ui,j is given by

(32) σ−1
i,j(Ui,j) = {ziζ ′i,j = z′i,j(ζi − ζmii,j )} ⊂ Ui,j ×P1.

Let us define an affine open chart of Zi,j by

U ′

i,j = (z′i,j ≠ 0).
Now just as in (23) if we denote by θi,j the restriction of θ to the −ζmii,j /mi-
eigenspace E i,j of Amii , then the equation of the total transform of Σ with
respect to σi,j in U ′

i,j writes

(33) ( 1

z′i,j
)
di,j

det (ziζ ′i,jλiIEi,j − z′i,j θ̃i,j)

where di,j stands for the multiplicity of ζmii,j as an eigenvalue of −miA
mi
i

and

θ̃i,j ∈ (p ○ σi,j)∗(L(−pi) ⊗ End(E i,j))
θ̃i,j = (dQ̃i,j +Λi,j(zi)−1 + holomorphic terms)dzi(34)

for some
Q̃i,j = Ãmi−1

i,j z−mi−1
i +⋯ + Ã1

i,jz
−1
i .

Specifically, Ãmi,j is the restriction of Ami,j to the ζmii,j -eigenspace of −miA
mi
i,j .

Again, Ei,j is a component of multiplicity di,j of the total transform of Σ by
the transformation σi,j , and the proper transform is given by

det(ζ ′i,jλiIEi,j−z′i,jz−1
i θ̃

i,j) ∈H0(U ′

i,j, (p○σi,j)∗(L⊗End(E i,j))⊗OZi,j(−Ei,j)).
The leading-order term of the matrix in the argument of this determinant as
zi → 0 is

(ζ ′i,jIEi,j + z′i,j(mi − 1)Ãmi−1
i,j )λi;

in particular, if for any j′ such that ζmii,j′ = ζ
mi
i,j we let

(35) (z′i,j ∶ ζ ′i,j) = (1 ∶ ζmi−1
i,j′ )
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then the above matrix is singular. Let us introduce a further subscript to
ζmi−1
i,j′ in order to remember the information that ζmii,j′ = ζ

mi
i,j : set

ζmi−1
i,j,j′ = ζmi−1

i,j′ .

Said differently, the proper transform of Σ by σi,j intersects Ei,j precisely
in the points

(1 ∶ ζmi−1
i,j,j′ )

Therefore, we may recursively define a sequence of blow-ups of Z by the
following

Construction 1. (1) we define

σ1 ∶ Z1 Ð→ Z

as the fibre product of the monodial transformations σi,j for all 1 ≤
i ≤ n with mi ≥ 1 and eigenvalues ζmii,j of −miA

mi
i,j ;

(2) next we blow up Z1 at the points on Ei,j corresponding to the points
(35) of intersection with the proper transform of Σ along σ1 (these
are therefore indexed by joint eigenvalues of Amii ,Ami−1

i ) for all i
such that mi ≥ 2, denote the blow-up by

σ2 ∶ Z2 Ð→ Z1;

(3) in the (m + 1)’th step for all i with mi ≥m and all eigenvalue

ζmi−m
i,j,j′,...,j(m) = ζ

mi−m

i,j(m)

of (m −mi)Ami−mi we blow up Zm at the intersection point

(36) (z′
i,j,j′...,j(m−1) ∶ ζ ′i,j,j′...,j(m−1)) = (1 ∶ ζmi−m

i,j,j′,...,j(m)) ∈ Ei,j,j′...,j(m−1)

of the proper transform of Σ along σm−1 with the exceptional divi-
sors of σm−1 projecting to the point pi, call the resulting exceptional
divisor

Ei,j,j′...,j(m)

with homogeneous coordinates

(z′
i,j,j′...,j(m) ∶ ζ

′

i,j,j′...,j(m)),

and set

U ′

i,j,j′...,j(m) = (z′
i,j,j′...,j(m) ≠ 0) ⊂ Zm;

(4) finally we define (29) as ZM for the value M = max1≤i≤n(mi) with

σ̃ = σ1 ○ ⋯ ○ σM .
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Notice that the degree of Q̃i,j appearing in (34) is one less than that of
Qi; similarly, in the (m + 1)’th step of the recursive procedure the proper
transform of Σ in a local chart is defined by a section

(37) det (ζ ′
i,j,j′,...,j(m)λiIEi,j,j′,...,j(m) − z

′

i,j,j′,...,j(m)z
−m
i θ̃i,j,j

′,...,j(m))
for some

θ̃i,j,j
′,...,j(m) = dQ̃i,j,j′,...,j(m) + (Λi,j,j′,...,j(m)(zi)−1 + holomorphic terms)dzi

(38)

Q̃i,j,j′,...,j(m) = Ami−m−1

i,j,j′,...,j(m)z
−mi+m+1
i +⋯ +A1

i,j,j′,...,j(m)z
−1
i

where the matrices on the right hand side of the latter equation are restric-
tions of Ami−m−1

i , . . . ,A1
i ,Λi to joint eigenspaces of

−miA
mi
i , . . . , (m −mi)Ami−mi

for the eigenvalues
ζmii,j , ζ

mi−1
i,j,j′ , . . . , ζ

mi−m

i,j,j′,...,j(m)

respectively. We will denote the dimension of this joint eigenspace by

(39) di,j,j′,...,j(m) .

Now just as in (25), the map θ̃i,j,j′,...,j(mi−1) is of the form

(40) z−mii θ̃i,j,j
′,...,j(mi−1) = (Λi,j,j′,...,j(mi−1) +O(zi))λi,

hence it gives rise to maps

z−mii θ̃i,j,j
′,...,j(mi−1)

α ∶ (p ○ σ̃)∗E i,j,j′,...,j(mi−1)
α ⊗L∨ Ð→ (p ○ σ̃)∗E i,j,j′,...,j(mi−1)

α

for every α ∈ R and i, j, j′, . . . , j(mi−1), where E i,j,j′,...,j(m)α stands for the
filtration on the corresponding simultaneous eigenspace obtained from the
parabolic structure by virtue of Claim 2.1. Now just as we refined the for-
mula (24) defining the proper transform of the spectral curve to define a
parabolic sheaf (26) we may again refine (37) to define coherent sheaves on
Z̃ by the formula (7) away from the charts U ′

i,j,j′...,j(mi−1) and by
(41)

SEα = coker(ζ ′
i,j,j′,...,j(mi−1)λiI

E
i,j,j′,...,j(mi−1)
α

− z′
i,j,j′,...,j(mi−1)z

−mi
i θ̃i,j,j

′,...,j(mi−1)
α )

on U ′

i,j,j′...,j(mi−1) , the argument being a section of the bundle

(p ○ σ̃)∗ (End(E i,j,j′,...,j(mi−1)
α ) ⊗L) ⊗ σ̃∗OZ(1)

⊗OZ̃(−Ei,j,j′,...,j(mi−1)).
Now, consider the groupoid

Higgs(C, r,{pi},{mi},{Ami })
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whose objects are parabolic Higgs bundles of rank r onC with for all 1 ≤ i ≤
n an irregular singularity with pole of order mi at pi locally of the form (3)
with Qi of the form (1) for some semi-simple matrices Ami , endowed with a
compatible parabolic structure, and whose morphismsHomHiggs((E , θ), (E ′, θ′))
are isomorphisms of such parabolic Higgs bundles, i.e. isomorphisms of
parabolic vector bundles

φα ∶ Eα ∼Ð→ E ′α
for every α ∈R such that

φα∣Eα′ = φα′
for all α′ > α and

(φα ⊗ IdL) ○ θ = θ′ ○ φα.
On the other hand, consider the groupoid

Sheaf(Z̃, r, (p ○ σ̃)−1(Dred))
whose objects are R-parabolic pure sheaves Sα of dimension 1 and rank 1
with parabolic divisor

(p ○ σ̃)−1(Dred) = (p ○ σ̃)−1 (∑
i

pi)

on Z̃, with support Σ̃ satisfying the following properties:

(1) Σ̃ is generically r to 1 over C,
(2) Σ̃ ∩ (ξ = 0) = ∅,
(3) for all 1 ≤ i ≤ n we have Σ̃ ∩Ei,j,j′,...,j(mi−1) ⊂ U ′

i,j,j′,...,j(mi−1) , i.e. the
support does not pass through the point at infinity of the exceptional
divisor Ei,j,j′,...,j(mi−1) ,

(4) for all 1 ≤ i ≤ n the intersection Σ̃ ∩ Ei,j,j′,...,j(mi−1) consists of
di,j,j′,...,j(mi−1) points counted with multiplicity,

(5) for all 1 ≤ i ≤ n and allm <mi the proper transform ofEi,j,j′,...,j(m−1)

in Z̃ does not intersect Σ̃.
The morphisms HomSheaf(S●, S′●) are defined to be the isomorphisms of
parabolic sheaves, i.e. for each α ∈R an isomorphism

ψα ∶ Sα ∼Ð→ S′α

such that for all α′ > α we have

ψα∣Sα′ = ψα′ .
Notice that this category depends on the choice of semi-simple linear endo-
morphisms Ami through the surface Z̃.

The results of this section can be summarized as follows.
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Theorem 4.3. The functor

Higgs(C, r,{pi},{mi},{Ami }) → Sheaf(Z̃, r, (p ○ σ̃)−1(Dred))
(E●, θ) ↦ SE●

given by (41) establishes an isomorphism of categories.

Proof. The sheaves SE● satisfy property (1) because E is of rank r. Further-
more as Σ̃ is the spectral curve of a regular map

E → E ⊗KC(D),

it stays in the affine subset ξ ≠ 0 of Z. By (40) Σ̃ intersects the exceptional
divisor Ei,j,j′,...,j(mi−1) in the points

(42) (z′
i,j,j′...,j(mi−1) ∶ ζ ′i,j,j′...,j(mi−1)) = (1 ∶ λi,j,j′,...,j(mi−1),jmi)

where the λ⋯ on the right hand side stand for the eigenvalues of Λi restricted
to the joint eigenspaces of Amii , . . . ,A1

i , and this shows (3) and (4). Next,
(5) holds because to define Z̃ in Construction 1 we blew up all points (36) of
intersection of the proper transform of Σ with Ei,j,j′,...,j(m−1) and the support
of the sheaves SE● is the proper transform Σ̃. Purity of SE● follows the
exact same argument as in the case mi = 1 (c.f. Claim 4.2) based on the
Auslander–Buchsbaum formula. Finally, again as in the case mi = 1 the
identity

(p ○ σ̃)∗OC(Dred) = OZ̃((p ○ σ̃)−1(Dred))
immediately shows that the sheaves SE● are R-parabolic with divisor (p ○
σ̃)−1(Dred).

The inverse is the direct image functor

(43) Eα = (p ○ σ)∗SEα , θα = π∗(ζ ⋅)

by a straightforward generalisation of Claim 4.2 to the case of order mi ≥ 2.
There remains to check that

● the irregular part of θ is of the form (3), (1) and
● that the residue Λi of θ at zi = 0 respects the parabolic filtration of
E● at pi.

For the proof of these statements observe that by the construction of Eα it
has a local splitting

Eα = ⊕j,j′,...,j(mi−1)E i,j,j′,...,j(mi−1)
α

according to the support of sections of SEα: local sections of E i,j,j′,...,j(mi−1)
α

are defined as the push-forward of local sections of SEα supported on the
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branches of Σ̃ intersecting a given exceptional divisor Ei,j,j′,...,j(mi−1) . From
(32), on U ′

i,j we deduce the identity

(44) ζi = ζmii,j + zi
ζ ′i,j
z′i,j

.

Here by the definition of U ′

i,j we may normalize z′i,j = 1. In the case mi > 1
Construction 1 proceeds by applying a blow-up σi,j,j′ at the point ζ ′i,j =
ζmi−1
i,j,j′ of Ei,j given by the formula

ziζ
′

i,j,j′ = z′i,j,j′(ζ ′i,j − ζmi−1
i,j,j′ ).

We may again set z′i,j,j′ = 1 on U ′

i,j,j′ and solve this expression for ζ ′i,j:

ζ ′i,j = ζmi−1
i,j,j′ + ziζ ′i,j,j′ .

Plugging this into (44) yields

ζi = ζmii,j + ziζmi−1
i,j,j′ + z2

i ζ
′

i,j,j′ .

By induction on mi, this argument shows on U ′

i,j,j′...,j(mi−1) (using the nor-
malization z′

i,j,j′...,j(mi−1) = 1) the identity

ζi = ζmii,j + ziζmi−1
i,j,j′ +⋯ + zmi−1

i ζ1
i,j,j′...,j(mi−1) + zmii ζ ′

i,j,j′...,j(mi−1)

Here ζmii,j , . . . , ζ
1
i,j,j′...,j(mi−1) are constants, therefore the restriction to E i,j,j′,...,j(mi−1)

α

of the direct image of the multiplication map by ζ = ζiλi has the expansion

(
ζmii,j

zmi+1
i

+⋯ +
ζ1
i,j

z2
i

) Id
E
i,j,j′,...,j(mi−1)
α

dz +O (z−2+ 1
r

i )dz,

which is precisely the first assertion. Furthermore, the residue of θ at pi is
obtained as the direct image of the multiplication map by

ζ ′
i,j,j′...,j(mi−1)

which is a local coordinate of the surface Z̃. As SEα is a sheaf of OZ̃-
modules, it is clearly preserved by multiplication by ζ ′

i,j,j′...,j(mi−1) . There-
fore respi(θ) preserves Eα, which is the second assertion.

�

5. POISSON ISOMORPHISM

In this section we prove that the natural holomorphic Poisson structures
on the moduli spaces associated to the groupoids appearing in Theorem 4.3
are preserved by the correspondence of the Theorem. The proof closely
follows that of Proposition 5.1 [24]. We start by defining these Poisson
structures.
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5.1. Irregular Dolbeault moduli space. Let us first treat the moduli space
of stable irregular parabolic Higgs bundles on C with fixed semi-simple ir-
regular part (3), (1) and residue in a fixed regular orbit: by [5] it carries
an Atiyah–Bott hyper-Kähler structure, in particular for the Dolbeault holo-
morphic structure I it admits a holomorphic symplectic structure. These
irregular Dolbeault moduli spaces M irr

Dol may then be put into a family

(45) Mirr
Dol →Cr∑i(mi+1)

by varying the eigenvalues of the matrices Ami and of Λi arbitrarily. In
concrete terms,Mirr

Dol represents the functor from Artinian schemes over C
to sets mapping

● a scheme T to the set of isomorphism classes of parabolically stable
pairs (Ē , θ̄) where Ē is a regular vector bundle over T ×C and

θ̄ ∈H0(T ×C,End(Ē) ⊗OT×C p∗CL),
with pC ∶ T ×C → C the projection map;

● and a morphism S → T of such schemes to the set of maps of Higgs
bundles parameterized by S and T respectively.

The condition of parabolic stability is a parabolic version of slope-stability:
one first introduces the notion of parabolic degree as the sum of the usual
degree and all the parabolic weights, and then induces parabolic weights
and parabolic degree on sub-objects; for further details see [7]. The map in
(45) associates to (E , θ) the eigenvalues of the polar part of θ considered as
a meromorphic section of End(E) ⊗OC KC .

Remark 5.1. (1) To the knowledge of the author, this irregular Dol-
beault moduli functor has not yet been studied algebraically. Notice
nonetheless that E. Markman studied in [18] a related moduli prob-
lem, which is essentially the same as our functor above except that
there the parabolic structure is not present and the irregular type
may be twisted (non-semi-simple).

(2) An analogous de Rham moduli space is constructed algebraically in
[2]; however, as it is explained in Remark 1.2 op. cit., the data they
fix at the singularities is somewhat different from the usual irregular
type, and this latter cannot be determined from it. On the other
hand, Inaba and Saito consider more general families of puctured
curves

C → T

instead of just a product.
(3) Depending on the eigenvalues of the singular parts, the moduli

space M irr
Dol might be empty. For instance, as it readily follows

from the residue theorem, this will be the case unless the sum of
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the traces of all the residues is an integer −δ. In this case, we have
deg(E) = δ. However, the above consequence of the residue the-
orem is just a first easy condition in deciding whether or not the
moduli space is empty — in general, this problem, called irregular
Deligne–Simpson problem is hard. The correspondence of Theo-
rem 4.3 holds (but is vacuous) even if the irregular moduli space is
empty.

Elements of Cr∑i(mi+1) will be denoted as nested sequeces of eigenvalues

(ζmii,j , . . . , ζ
1
i,j,j′...,j(mi−1) , λi,j,j′...,j(mi))i,j,j′...,j(mi)

where the ζm
i,j,j′...,j(m) denote eigenvalues of −mAmi for 0 ≤ m < mi and

λi,j,j′...,j(mi) is an eigenvalue of Λi,j,j′,...,j(mi−1) (42). One could equally let
the parabolic weights αli vary and this would give further deformation pa-
rameters, but we will ignore this point here. The smooth part ofMirr

Dol is a
holomorphic Poisson manifold with Poisson bivector field denoted by ΠDol.
Let us be more specific concerning this holomorphic Poisson structure, fol-
lowing [6] where the non-singular case is treated. It is easy to see that the
deformation theory of an irregular Higgs bundle (E , θ) inMirr

Dol is governed
by the hypercohomology spaces H● of the complex

(46) End(E) adθÐÐ→ End(E) ⊗L

with L = KC(D). Infinitesimal deformations are given by the first hyper-
cohomology space H1 and H2 is the obstruction space. By Grothendieck
duality, the cotangent space of (45) is then given by the first hypercohomol-
ogy of the complex

End(E) ⊗OC(−D) adθÐÐ→ End(E) ⊗KC .

Given two cotangent vectors

[T ], [X] ∈H1(End(E) ⊗OC(−D) → End(E) ⊗KC)

represented by endomorphism-valued 1-forms T,X their cup product

[T ] ∪ [X] = [T ∧X]

belongs to the second hypercohomology group of the complex

(47) C0 (adθ ⊗ Id,Id⊗adθ)ÐÐÐÐÐÐÐÐÐ→ C1 Id⊗adθ −adθ ⊗ IdÐÐÐÐÐÐÐÐÐ→ C2
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with

C0 =(End(E) ⊗OC(−D)) ⊗ (End(E) ⊗OC(−D))
C1 =[(End(E) ⊗KC) ⊗ (End(E) ⊗OC(−D))]

⊕ [(End(E) ⊗OC(−D)) ⊗ (End(E) ⊗KC)]
C2 =(End(E) ⊗KC) ⊗ (End(E) ⊗KC).

The ad-invariant symmetric bilinear form on Glr

(48) B ∶ ϕ,ψ ↦ tr(ϕψ)
induces a chain map Φ from (47) to

(49) 0→KC(−D) → 0.

In concrete terms, to a cocycle

(ϕ1 ⊗ ψ1, ψ2 ⊗ ϕ2) ∈ C1

the map Φ associates the section

B(ϕ1, ψ1) +B(ψ2, ϕ2).
Plainly Φ is a chain map because the bilinear form B is ad-invariant

B(adθ(η), ζ) +B(η,adθ(ζ)) = 0.

It then follows that the image of [T ] ∪ [X] by Φ defines a degree 2 hyper-
cohomology class in (49), i.e. a class in

(50) H1(C,KC(−D)) ≅ (H0(C,O(D)))∨.
The dual of the vector space on the right hand side fits into a short exact
sequence

(51) 0→H0(C,O) →H0(C,O(D)) → ⊕ni=1C
mi+1
pi

→ 0,

where Cp stands for the skyscraper sheaf supported at the point p ∈ C. In
particular, H0(C,O(D)) contains the element 1 ∈ H0(C,O), hence any
element in (50) can be evaluated on this class. We may therefore define an
alternating bilinear map by

ΠDol ∶ T ∗Mirr
Dol × T ∗Mirr

Dol →C

([T ], [X]) ↦ ⟨Φ([T ] ∪ [X]),1⟩
where ⟨., .⟩ stands for Serre duality (50). As usual, this formula is the re-
duction of an infinite-dimensional flat pairing on an L2-space of 1-forms
with values in the endomorphisms of the smooth vector bundle underlying
E , so the Schouten-bracket [ΠDol,ΠDol] of ΠDol with itself is 0. Since us-
ing the Dolbeault resolution of KC Serre duality is defined by integration
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of 2-forms on C and Φ is given by (48) we infer that the restriction of this
pairing to the symplectic leaves reads

∫
C

tr(T ∧X)

which is the usual Atiyah–Bott holomorphic symplectic form. Therefore,
ΠDol defines the holomorphic Poisson structure we were looking for. Let us
point out that the vector spaces in (51) localised at the points pi correspond
to the infinitesimal modifications of some Casimir operators, i.e. to tangent
vectors of the parameter space Cr∑i(mi+1).

Remark 5.2. The Poisson structure ΠDol essentially matches up with that
of the Main Theorem of [18] corresponding to the section

1 ∈H0(C,OC(D)) ≅H0(C,L⊗K−1).

5.2. Relative Picard bundles. We now turn our attention to the category
of sheaves on Z̃ satisfying the properties (1)–(5) of Theorem 4.3. Observe
first that Z is a Poisson surface for the canonical Liouville 2-form on the
total space of the canonical line bundle KC . The degeneracy divisor of this
Poisson structure on Z is given by

π−1D + 2(ξ)

Therefore, the pull-back of this 2-form to Z̃ by σ̃ also defines a Poisson
structure. Let us determine its degeneracy divisor: by differentiating (32)
twice (and as usual setting z′i,j = 1 on U ′

i,j) one easily derives the formula

zidzi ∧ dζ ′i,j = dzi ∧ dζi.

As we have already noticed after (21), on U ′

i,j the equation zi = 0 defines
precisely the exceptional divisor Ei,j . By an abuse of notation let F ∣pi and
Ei,j,j′,...,j(m−1) denote the proper transforms of the fibre F ∣pi and of the ex-
ceptional divisor Ei,j,j′,...,j(m−1) with respect to the various iterated blow-ups
of Construction 1. (For the exceptional divisors this is obviously only ap-
plicable for σm′ with m′ > m.) We infer that the pull-back by σi,j of the
canonical 2-form has a pole of order one less on Ei,j than on F ∣pi . Now by
an easy induction argument we can show that the pull-back by σ1 ○σ2 of the
canonical 2-form has a pole of order 2 less on Ei,j,j′ than on F ∣pi , and so on,
the pull-back by σ1 ○⋯○σmi of the canonical 2-form has a pole of order mi

less on Ei,j,j′,...,j(mi−1) than on F ∣pi . It follows that the degeneracy divisor of
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the pull-back of the canonical Poisson structure of Z to Z̃ is given by

D∞ = π−1D + 2(ξ) −
⎛
⎝∑i,j

Ei,j + (∑
j′

2Ei,j,j′ + (⋯ + ∑
j(mi−1)

miEi,j,j′,...,j(mi−1))⋯)
⎞
⎠
,

= 2(ξ) +∑
i

(mi + 1)F ∣pi + (∑
j

miEi,j + (∑
j′
(mi − 1)Ei,j,j′ + (⋯ + ∑

j(mi−1)
Ei,j,j′,...,j(mi−1))⋯))

(52)

Consider first the Hilbert scheme

(53) Hilb(Z̃,H)

of curves on Z̃ with a given Hilbert polynomial H . Specifically, the Picard
group of Z̃ is generated by the fibre class F , the class of the infinity section
C∞ and the classes of the exceptional divisors Ei,j,j′,...,j(m−1) of the blowups
σ1, . . . , σM . An ample line bundle on Z̃ is given by

L = OZ̃
⎛
⎝
− ∑
m,i,j,j′,...,j(m−1)

Ei,j,j′,...,j(m−1)
⎞
⎠
⊗ σ̃∗OZ(1) ⊗ (p ○ σ̃)∗OC(1).

The intersection form on the second homology of Z̃ is non-degenerate and
we may consider the homology class dual to the class of the divisor

rF + ∑
i,j,j′,...,j(mi−1)

di,j,j′,...,j(mi−1)Ei,j,j′,...,j(mi−1)

where we recall that di,j,j′,...,j(mi−1) was defined in (39) as the dimension
of the simultaneous eigenspace of the matrices −miA

mi
i , . . . ,−A1

i for the
eigenvalues

ζmii,j , ζ
mi−1
i,j,j′ , . . . , ζ

1
i,j

respectively. The generic curve in this class will then intersect the generic
fiber of Z̃ in r points, the exceptional divisorEi,j,j′,...,j(mi−1) in di,j,j′,...,j(mi−1)

points counted with multiplicity, and will be disjoint from C∞ and the ex-
ceptional divisors Ei,j,j′,...,j(m−1) with m < mi. In different terms, such a
curve satisfies the conditions (1)–(5) of Theorem 4.3. We then pick H to be
the Hilbert polynomial with respect to L of a curve in this class. Notice that
the generic curve in this family intersects Ei,j,j′,...,j(mi−1) in di,j,j′,...,j(mi−1)

distinct points, and is smooth. Let us denote by B the subscheme of (53)
parameterizing smooth curves. Notice however that the curves having nodal
singularities at some points of Ei,j,j′,...,j(mi−1) are also of interest, for they
correspond via Theorem 4.3 to non-regular residues Λi,j,j′,...,j(mi−1) of the
Higgs field.
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Next, let us consider the compactified Picard variety [3] corresponding
to the family (53)

(54) Picrel(Z̃,H, d) → Hilb(Z̃,H)
parameterizing torsion-free coherent sheaves of rank 1 and degree d on the
fibers of (53). It follows from [10] that the restriction

Pic0
rel(Z̃,H, d) → B

of (54) to the space B parameterizing smooth connected curves carries a
canonical holomorphic Poisson structure with Poisson bivector field de-
noted by ΠPic0 . Let us describe explicitly ΠPic0: for this purpose, notice
that the Zariski tangent space of Pic0

rel(Z̃, d,H) at a given sheaf S is given
by Ext1

OZ̃
(S,S). By Grothendieck-duality, the Zariski cotangent space is

then isomorphic to

Ext1
OZ̃

(S,KZ̃ ⊗ S) ≅ Ext1
OZ̃

(K∨

Z̃
⊗ S,S).

Thus the Yoneda product

Ext1
OZ̃

(K∨

Z̃
⊗ S,S) ×Ext1

OZ̃
(S,KZ̃ ⊗ S) → Ext2

OZ̃
(K∨

Z̃
⊗ S,KZ̃ ⊗ S)

induces by duality an alternating map

(55) Ext2
OZ̃

(K∨

Z̃
⊗ S,KZ̃ ⊗ S)∨ → Ext1

OZ̃
(S,S) ×Ext1

OZ̃
(S,S).

Denote the support of S by Σ̃; by assumption, this is a smooth connected
curve.

Claim 5.3. The space

Ext2
OZ̃

(K∨

Z̃
⊗ S,KZ̃ ⊗ S)∨

admits a subspace isomorphic to H0(Σ̃,C).

Proof. This is a standard application of the spectral sequence abutting to
Ext2

OZ̃
and of Serre duality on Σ̃, making use of the identification

NΣ̃∣Z̃ ≅KΣ̃(−Σ̃ ∩D∞)

provided by the Poisson structure of Z̃. For details see Lemma 5.3 [24]. �

The Poisson bivector field ΠPic0 on (54) is then defined as the image
under (55) of the canonical generator

1 ∈H0(Σ̃,C) ⊂ Ext2
OZ̃

(K∨

Z̃
⊗ S,KZ̃ ⊗ S)∨.

As it is shown in [10], its symplectic leaves are obtained by fixing the inter-
section of the support of the sheaf with the degeneracy divisor (52). Given
that the curves in the Hilbert scheme satisfy conditions (1)–(5) of Theorem



30 SZILÁRD SZABÓ

4.3, the symplectic leaves are thus obtained by fixing the intersection of the
support curve with the exceptional divisors Ei,j,j′,...,j(mi−1) .

We will need a generalization of the setup of the previous paragraph to a
relative situation. Namely, for the parameter space Cr∑i(mi+1) of (45) the
product

(56) Cr∑i(mi+1) ×Z
contains a tautological flat reduced subscheme C of relative dimension 0
over Cr∑i(mi+1) given by

C = ((ζi,j, . . . , ζi,j,j′...,j(mi) , λi,j,j′...,j(mi))i,j,j′...,j(mi) ,∪iC[[zi]]/Iζi,j ,...,ζ
i,j,j′...,j(mi−1) ,λi,j,j′...,j(mi)

)

where

Iζi,j ,...,ζ
i,j,j′...,j(mi−1) = (zi, ζi−(ζi,j+ziζi,j,j′+⋯+zmi−1

i ζi,j,j′...,j(mi−1)+zmii λi,j,j′...,j(mi)))

in the local chart of Z over a neighborhood of pi with coordinates zi, ζi (14).
Let us denote by

Z̃ →Cr∑i(mi+1) ×Z
the blow-up of C in (56). We are interested in the relative Hilbert scheme

(57) Hilbrel(Z̃,Cr∑i(mi+1),H)
of Z̃ with respect to Cr∑i(mi+1), with Hilbert polynomial on the fibres equal
to H given in the previous paragraph. It admits a dense open subscheme

(58) Hilb0
rel(Z̃,Cr∑i(mi+1),H)

parameterizing smooth connected curves over Cr∑i(mi+1). Indeed, let A ⊂
Cr∑i(mi+1) be the constructible subset consisting of nested sequences of
eigenvalues for which the eigenvalues λi,j,j′...,j(mi) of the residue at pi re-
stricted to common eigenspaces of the irregular part are of multiplicity 1.
Then, away from A the curves in (57) are smooth over Dred, and in the
fibers of (57) over points of Cr∑i(mi+1) ∖ A further Zariski open subsets
parametrize curves that are everywhere smooth. Notice also that the dimen-
sions di,j,j′,...,j(mi−1) may change in a discrete way giving different Hilbert
polynomials, and this splits up the relative Hilbert scheme into several com-
ponents. In the Dolbeault setup, this corresponds to letting the dimensions
of the joint eigenspaces of the matrices in the irregular part vary.

Finally, we are interested in

(59) Picrel(Z̃,Cr∑i(mi+1),H, d)
parameterizing torsion-free sheaves of given degree d on the curves in (57).
It admits a dense open subscheme

(60) Pic0
rel(Z̃,Cr∑i(mi+1),H, d) → Hilb0

rel(Z̃,Cr∑i(mi+1),H)
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parameterizing line bundles supported on a family of smooth connected
curves over Cr∑i(mi+1).

The Poisson bivector field ΠPic0 on (54) described after Claim 5.3 admits
a straightforward extension to (60) for which the natural map to Cr∑i(mi+1)

consists of Casimir operators, simply by pushing forward bivectors. Namely,
the inclusion

Z̃ ↪ Z̃
gives rise to a map of cotangent bundles

T ∗ Pic0
rel(Z̃,Cr∑i(mi+1),H, d) → T ∗ Pic0

rel(Z̃,H, d)
and the Poisson structure on (60) is then defined as the composition

T ∗ Pic0
rel(Z̃,Cr∑i(mi+1),H, d) ∧ T ∗ Pic0

rel(Z̃,Cr∑i(mi+1),H, d) →

→ T ∗ Pic0
rel(Z̃,H, d) ∧ T ∗ Pic0

rel(Z̃,H, d)
ΠPic0ÐÐÐ→C.

Let us define
Mirr,0

Dol ⊆Mirr
Dol

to consist of equivalence classes of Higgs bundles with smooth connected
spectral curve Σ̃, unramified over Dred. With this notation the following
result holds.

Theorem 5.4. The equivalence of categories of Theorem 4.3 induces a Pois-
son isomorphism between dense open subets of the spaces (45) and (59):

(Mirr,0
Dol ,ΠDol) ≅ (Pic0

rel(Z̃,Cr∑i(mi+1),H, d),ΠPic),

d = δ + r(r − 1)
2

deg(L)

with δ defined in Remark 5.1.

Proof. First let us observe that by definition for (E , θ) ∈ Mirr,0
Dol the eigenspaces

of the residue of θ are 1-dimensional. Therefore, the choice of a parabolic
filtration on the eigenspaces is vacuous, so Theorem 4.3 indeed identifies
Mirr,0

Dol with (60).
It is now sufficient to show that the symplectic structures on the symplec-

tic leaves get identified. This is precisely the content of the key observation
(24) of Proposition 5.1 of [24] (c.f. also [11] Proposition 2.30 in the case of
the holomorphically trivial vector bundle over the projective line). The for-
mula for d follows directly from the well-known fact that the direct image
of OΣ is equal to

OC ⊕L−1 ⊕⋯⊕L1−r.

�
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