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GROUPOIDS CORRESPONDING TO RELATIONAL SYSTEMS
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Abstract. Groupoids corresponding to certain relational systems, i. e. sets with one binary rela-
tion, are considered. To each directed relational system there exists at least one such groupoid. It
is shown how properties of the relational system can be characterized by properties of a corres-
ponding groupoid. Further, for a given groupoid a sufficient condition is provided that guarantees
the existence of a relational system to which this groupoid corresponds. This approach enables
us to introduce the concept of congruence on a relational system and hence to produce quotient
relational systems.
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It was aleady shown in [3] that to every directed relational system with one binary
relation there can be assigned a groupoid reflecting its relational properties. However,
the definition given in [3] does not fit well to certain relational systems, in particular
to quasiordered or even ordered sets in a way similar to semilattices which are treated
(under the name directoids) e. g. in [2] and [6]. Hence, we modify this definition here
in order to be in accordance with that of a directoid in a directed ordered set. It turns
out that we obtain a different characterization of relational properties by means of
properties of the corresponding groupoid. In particular, several important properties
(as quasiordered or ordered set) can be expressed by identities in the corresponding
groupoid.

Our next task is to apply the method of a corresponding groupoid in order to intro-
duce the concept of a congruence of a relational system which enables us to produce
quotient relational systems having the same relational properties as the original ones.

In the following we agree to write ab instead of a �b.
We start with the definition of a (directed) relational system.

Definition 1. By a relational system we mean an ordered pair AD .A;R/ where
A is a set and R is a binary relation on A. If a;b 2 A then we define the upper cone
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UR.a;b/ of a and b with respect toR by UR.a;b/ WD fx 2A j.a;x/; .b;x/2Rg. The
relational system A is called directed if UR.a;b/¤¿ for all a;b 2 A.

Now we define a groupoid corresponding to a relational system in a way different
from that in [3].

Definition 2. A groupoid G D .A; �/ is said to correspond to a relational system
AD .A;R/ if for all x;y 2 A the following hold:

(i) If .x;y/ 2R then xy D y.
(ii) If .x;y/ …R and .y;x/ 2R then xy D x.

(iii) If .x;y/; .y;x/ …R then xy D yx 2 UR.x;y/.

Remark 1. In the case .x;y/; .y;x/ … R in (iii) above, the element xy D yx is
picked from UR.x;y/ arbitrarily. Of course, if R is e. g. a directed ordering on A
such that sup.x;y/ exists for each x;y 2 A, we can take xy D sup.x;y/ in order to
obtain the corresponding groupoid as a join semilattice. However, other choices can
also be possible.

Remark 2. If A is directed then there exists at least one groupoid corresponding
to A. The converse is not true as can be seen from Example 1. The groupoid corres-
ponding to a relational system need not be unique as can be seen from Example 2.

Example 1. If AD fa;bg, R D f.a;b/; .b;a/g and � denotes the binary operation
on A defined by ax WD b and bx WD a for all x 2 A then G D .A; �/ corresponds to
AD .A;R/ though A is not directed.

Example 2. If AD fa;b;cg andRD f.a;a/; .a;b/; .b;a/; .b;c/; .c;a/; .c;c/g then
G D .A; �/ corresponds to A D .A;R/ if and only if there exists an x 2 fa;cg such
that the operation table of � looks as follows:

� a b c

a a b a

b a x c

c a c c

Now we prove some lemmata which will be used later on.

Lemma 1. Let AD .A;R/ be a relational system, G D .A; �/ a groupoid corres-
ponding to A and a;b 2 A. Then .a;b/ 2R if and only if ab D b.

Proof. If .a;b/ 2 R then ab D b. If .a;b/ … R and .b;a/ 2 R then ab D a ¤ b.
If, finally, .a;b/; .b;a/ …R then ab ¤ b since .a;ab/ 2R and .a;b/ …R. �

Lemma 2. Let AD .A;R/ be a relational system, G D .A; �/ a groupoid corres-
ponding to A and a;b 2 A. Then the following hold:

(i) If .a;b/; .b;a/ 2R then ab D b and baD a.
(ii) If .a;b/ 2R and .b;a/ …R then ab D baD b.
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(iii) If .a;b/ …R and .b;a/ 2R then ab D baD a.

Proof. Clear. �

To every groupoid we now assign a relational system.

Definition 3. For every groupoid G D .A; �/ let A.G / denote the relational system
.A;R.G //, where R.G / WD f.x;xy/ jx;y 2 Ag.

Lemma 3. Let A D .A;R/ be a relational system and G D .A; �/ a groupoid
corresponding to A. Then R �R.G /. If R is reflexive then ADA.G /.

Proof. Let a;b 2 A. If .a;b/ 2 R then .a;b/D .a;ab/ 2 R.G /. Now assume R
to be reflexive. If .a;b/ 2 R then .a;ab/D .a;b/ 2 R. If .a;b/ … R and .b;a/ 2 R
then .a;ab/D .a;a/2R. If, finally, .a;b/; .b;a/…R then ab 2UR.a;b/, and hence,
.a;ab/ 2R. This shows R.G /�R completing the proof of the lemma. �

Remark 3. The example below shows that R need not to coincide with R.G /.

Example 3. Let A D fa;b;cg, R WD f.a;a/; .a;b/; .a;c/; .b;c/; .c;c/g and A D

.A;R/ and define a binary operation � on A by

� a b c

a a b c

b b c c

c c c c

Then G D .A; �/ corresponds to A, but

R.G /D f.a;a/; .a;b/; .a;c/; .b;b/; .b;c/; .c;c/g ¤R:

Definition 4. A binary relation R on a set A is called strictly connex if for all
x;y 2 A either .x;y/ 2R or .y;x/ 2R.

Remark 4. If R is strictly connex then it is reflexive. If R is strictly connex and
symmetric then RD A2.

Now we show how properties of a relational system are reflected by properties of
a corresponding groupoid.

Theorem 1. Let A D .A;R/ be a relational system and G D .A; �/ a groupoid
corresponding to A. Then the following hold:

(i) R is reflexive if and only if xx D x for all x 2 A.
(ii) R is symmetric if and only if .xy/x D x for all x;y 2 A.

(iii) If R is symmetric then x.xy/D xy for all x;y 2 A.
(iv) R is antisymmetric if and only if xy D yx for all x;y 2 A.
(v) If .xy/´D x.y´/ for all x;y;´ 2 A then R is transitive.

(vi) If x..xy/´/D .xy/´ for all x;y;´ 2 A then R is transitive.
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(vii) R is a quasiorder if and only if xxD x and x..xy/´/D .xy/´ for all x;y;´2
A.

(viii) R is a tolerance if and only if .xy/x D x and x..xy/´/ D .xy/´ for all
x;y;´ 2 A.

(ix) R is a partial order if and only if xx D x, xy D yx and x..xy/´/D x.y´/
for all x;y;´ 2 A.

(x) R is an equivalence relation if and only if xx D .xy/x D x and x..xy/´/D
.xy/´ for all x;y;´ 2 A.

(xi) R is asymmetric if and only if .xy/x ¤ x for all x;y 2 A.
(xii) If for all x;y 2 A either xy ¤ yx or x.xy/¤ xy or y.xy/¤ xy then R is

strictly connex.

Proof.
(i) follows from Lemma 1.

Let a;b 2 A.
(ii) First assume R to be symmetric. If .a;b/ 2 R then .b;a/ 2 R and hence

.ab;a/D .b;a/2R. If .a;b/…R then .b;a/…R and therefore ab 2UR.a;b/,
whence .a;ab/2R which shows .ab;a/2R. Hence in any case .ab;a/2R,
i. e. .ab/aD a. Conversely, assume .xy/x D x for all x;y 2A. If .a;b/ 2R
then ab D b, whence baD .ab/aD a, i. e. .b;a/ 2R.

(iii) If .a;b/2R then .a;ab/D .a;b/2R, i. e. a.ab/D ab. Otherwise .a;b/; .b;a/…
R and hence ab 2 UR.a;b/, i. e. .a;ab/ 2R which means a.ab/D ab.

(iv) First assume R to be antisymmetric. If .a;b/; .b;a/ 2 R then ab D b D
a D ba. In all the other cases ab D ba according to Lemma 2. Conversely,
assume xy D yx for all x;y 2A. If .a;b/; .b;a/ 2R then aD baD abD b.

Let c 2 A.
(v) If .a;b/; .b;c/ 2R then ab D b and bc D c and hence

ac D a.bc/D .ab/c D bc D c;

i. e. .a;c/ 2R.
(vi) If .a;b/; .b;c/ 2R then ab D b and bc D c and hence

ac D a.bc/D a..ab/c/D .ab/c D bc D c;

i. e. .a;c/ 2R.
(vii) If R is reflexive and transitive then .a;ab/; .ab;.ab/c/ 2 R according to

Lemma 3 and hence .a;.ab/c/ 2 R, i. e. a..ab/c/ D .ab/c. The converse
implication follows from (i) and (vi).

(viii) First assume R to be symmetric and transitive. Then .ab/aD a according to
(ii). Because of (iii) we have .a;ab/; .ab;.ab/c/ 2R and hence .a;.ab/c/ 2
R, i. e. a..ab/c/ D .ab/c. The converse implication follows from (ii) and
(vi).

(ix) follows from (iv) and (vii).
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(x) follows from (i) and (viii) or from (ii) and (vii).
(xi) First, assume R to be asymmetric. If .a;b/ 2R then .ab;a/D .b;a/ …R. If

.a;b/ …R and .b;a/ 2R then .ab;a/D .a;a/ …R. If, finally, .a;b/; .b;a/ …
R then .ab;a/ … R since otherwise we would have .a;ab/ … R which is a
contradiction. Therefore also in this case .ab;a/ … R. Hence in all the cases
.ab;a/ … R which yields .ab/a ¤ a. Conversely, assume .xy/x ¤ x for all
x;y 2 A. If .a;b/; .b;a/ 2 R then we would have a ¤ .ab/a D ba D a, a
contradiction. Hence R is asymmetric.

(xii) This follows from Definition 2.
�

Remark 5. Example 2 shows that in (iii) of Theorem 1 the converse implication
does not hold. The following example shows that in (v) of Theorem 1 the converse
implication does not hold:

Example 4. Let A D fa;b;cg, R WD f.a;b/; .a;c/; .b;c/; .c;c/g and A D .A;R/

and define a binary operation � on A by

� a b c

a c b c

b b c c

c c c c

Then G D .A; �/ corresponds to A, but

.aa/b D cb D c ¤ b D ab D a.ab/:

Example 3 shows that in (vi) of Theorem 1 the converse implication does not hold,
since G D .A; �/ corresponds to A and R is transitive, but

b..ba/a/D b.ba/D bb D c ¤ b D baD .ba/a:

The following example shows that in (xii) of Theorem 1 the converse implication
does not hold:

Example 5. Put A D fa;b;cg, R WD f.a;a/; .a;b/; .b;b/; .b;c/; .c;a/; .c;c/g and
AD .A;R/ and define a binary operation � on A by

� a b c

a a b a

b b b c

c a c c

Then G D .A; �/ corresponds to A, but

ab D ba;a.ab/D ab and b.ab/D bb D b D ab:

Now, we provide sufficient conditions for a groupoid in order to correspond to a
relational system:
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Theorem 2. Let G D .A; �/ be a groupoid. Then the following are equivalent:
(i) R.G / is reflexive, A.G / is directed and G corresponds to A.G /.

(ii) R.G / is reflexive and G corresponds to A.G /.
(iii) For all x;y 2 A the following hold:

xx D x

x.xy/D xy

either xy D y or xy D yx.

Proof.
(i))(ii):
This is trivial.
Let a;b 2 A.
(ii))(iii):
Since G corresponds to A.G / andR.G / is reflexive we have aaD a. If .a;b/2R.G /
then a.ab/D ab. If .a;b/ …R.G / and .b;a/ 2R.G / then a.ab/D aaD aD ab. If,
finally, .a;b/; .b;a/ …R.G / then a.ab/D ab since ab 2UR.G /.a;b/. If ab¤ b then
.a;b/ …R.G / and hence ab D ba, according to Lemma 2.
(iii))(i):
We have .a;a/D .a;aa/ 2 R.G /. This shows that R.G / is reflexive. By definition
of R.G / we have .a;ab/ 2R.G /. If ab D b then .b;ab/D .b;b/ 2R.G /. If ab ¤ b
then .b;ab/ D .b;ba/ 2 R.G /. This shows that A.G / is directed. If .a;b/ 2 R.G /
then there exists an element c of A with b D ac and hence ab D a.ac/D ac D b. If
.a;b/ … R.G / then ab ¤ b and hence ab D ba. If .a;b/ … R.G / and .b;a/ 2 R.G /
then abD baD a. If, finally, .a;b/; .b;a/ …R.G / then abD ba 2UR.G /.a;b/. This
shows that G corresponds to A.G /. �

The concept of a groupoid corresponding to a relational system enables us to
construct quotient relational systems. The quotient system of a relational system
is defined as follows:

Definition 5 (cf. [9]). For a relational system A D .A;R/ and an equivalence
relation � on A define A=� WD .A=�;R=�/ where

R=� WD f.Œx��; Œy��/ j.x;y/ 2Rg:

We are now able to prove that a quotient of a groupoid corresponding to a relational
system corresponds to the corresponding quotient of the relational system.

Lemma 4. Let A D .A;R/ be a relational system, G D .A; �/ a corresponding
groupoid and � 2 ConG . Then G=� corresponds to A=�.

Proof. Let a;b 2A=�. If .a;b/ 2R=� then there exists .c;d/ 2R with .a;b/D
.Œc��; Œd ��/ and hence,

ab D Œc�� � Œd �� D Œcd �� D Œd �� D b:
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If .a;b/ … R=� and .b;a/ 2 R=� then there exists .e;f / 2 R with .b;a/D .Œe��,
Œf ��/. Now .f;e/ 2 R would imply .a;b/D .Œf ��; Œe��/ 2 R=�, a contradiction.
Therefore .f;e/ …R and hence

ab D Œf �� � Œe�� D Œfe�� D Œf �� D a:

Finally, assume .a;b/; .b;a/ … R=�. Since a;b 2 A=� there exist g;h 2 A with
.a;b/ D .Œg��; Œh��/. Because of .a;b/; .b;a/ … R=� we have .g;h/; .h;g/ … R.
Since G corresponds to A we have ghD hg 2 UR.g;h/. Now

ab D Œg�� � Œh�� D Œgh�� D Œhg�� D Œh�� � Œg�� D ba;

.a;ab/D .Œg��; Œgh��/ 2R=� since .g;gh/ 2R and

.b;ab/D .Œh��; Œgh��/ 2R=� since .h;gh/ 2R:

This shows ab D ba 2 UR=�.a;b/ completing the proof of the lemma. �

It was shown e. g. in [1] that the quotient of a poset .A;�/ by an equivalence
relation � as given in Definition 5 need not be a poset since transitivity need not be
satisfied by the relation � =�. (For literature concerning congruences on posets cf.
e. g. [4], [5], [7] and [8]). However, as shown in Theorem 1, if R is a quasiorder
or even a partial order, this can be expressed in a corresponding groupoid by certain
identities. If we factor a groupoid by a congruence, the identities of the groupoid are
preserved. This motivates us to introduce the following concept:

Definition 6. Let AD .A;R/ be a relational system and� an equivalence relation
onA. The relation� is called a congruence on A if there exists a groupoid G D .A; �/

corresponding to A such that� 2ConG . Let ConA denote the set of all congruences
on A.

Now we can prove that under a certain assumption certain properties of relational
systems remain valid when these systems are factorized.

Theorem 3. Let AD .A;R/ be a relational system satisfying one of the following
properties:

(i) R is reflexive.
(ii) R is symmetric.

(iii) R is antisymmetric.
(iv) R is a quasiorder.
(v) R is a tolerance.

(vi) R is a partial order.
(vii) R is an equivalence relation.

If � 2 ConA then A=� has the same property.

Proof. Assume� 2ConA. Then there exists a groupoid G D .A; �/ corresponding
to A such that� 2 ConG . According to Lemma 4, G=� corresponds to A=�. Since
each one of the properties (i) – (vii) for A can be characterized by identities holding
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in G , we have that these identities also hold in G=�. This means that A=� has the
corresponding property. �
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[8] P. Körtesi, S. Radeleczki, and S. Szilágyi, “Congruences and isotone maps on partially ordered
sets,” Math. Pannonica, vol. 16, no. 1, pp. 39–55, 2005.

[9] A. Mal’tsev, Algebraic systems. Translated from the Russian by B. D. Seckler and A. P. Doohovskoy.
Berlin-Heidelberg-New York: Springer-Verlag, 1973.

Authors’ addresses

Ivan Chajda
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