

HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2015.817

g(x)-FULL CLEAN RINGS

N. ASHRAFI AND Z. AHMADI

Received 24 September, 2013

Abstract. Let C(R) denote the center of a ring R and g(x) be a polynomial of ring C(R)[x]. An element $r \in R$ is called "g(x)-clean" if r = s + u where g(s) = 0 and u is a unit of R and R is g(x)-clean if every element is g(x)-clean. In this paper, we introduce the concept of g(x)-full clean rings and study various properties of them.

2010 Mathematics Subject Classification: 16U60; 16U99; 13A99

Keywords: clean ring, g(x)-clean ring, g(x)-full clean ring.

1. Introduction

Clean rings were introduced by Nicholson [4]. A ring R is called clean if for every element $a \in R$, there exist an idempotent e and a unit u in R such that a = e + u. Let C(R) denote the center of a ring R and g(x) be a polynomial in C(R)[x]. Following Camillo and Simon [2], an element $r \in R$ is called g(x)-clean if r = u + s where g(s) = 0 and u is a unit of R, and R is g(x)-clean if every element is g(x)-clean. Moreover, Fan and Yang have studied g(x)-clean rings and their generalizations in [3]. Ashrafi and Ahmadi also studied weakly g(x)-clean rings [1].

In this paper, we extend g(x)-clean rings and introduce the concept of g(x)-full clean rings and study various properties of them. Also we prove that $M_n(R)$ is g(x)-full clean rings for any g(x)-full clean rings R and get a condition under which the definitions of g(x)-cleanness and g(x)-full cleanness are equivalent.

Throughout this paper all rings are assumed to be associative with identity and modules are unitary. J(R) always stands for the Jacobson radical of a ring R, U(R) is the set of all invertible elements of a ring R, $M_n(R)$ denotes the $n \times n$ matrix ring over the ring R and $\mathbb{T}_n(R)$ stands for $n \times n$ upper triangular matrix ring. Recall that:

Definition 1. Let I be an ideal of a ring R, we say that:

- (1) Idempotents can be lifted modulo I if, whenever $a^2-a\in I$, there exists $e^2=e\in R$ such that $e-a\in I$.
- (2) The root \bar{s} of the polynomial $\bar{g}(x) \in (R/I)[X]$ can be lifted modulo I, if there exists $a \in R$ such that g(a) = 0 and $s a \in I$.

© 2015 Miskolc University Press

Definition 2. An element $x \in R$ is said to be a full element if there exist $s,t \in R$ such that sxt = 1. The set of all full elements of a ring R will be denoted by K(R). Obviously, invertible elements and one-sided invertible elements are all in K(R).

Definition 3. A ring R is called full-clean if every element of R is a sum of a full element and an idempotent.

Definition 4. Let C(R) denote the center of a ring R and g(x) be a polynomial of ring C(R)[x]. An element in R is said to be g(x)-full clean if it can be written as the sum a root of g(x) and a full element. A ring R is called a g(x)-full clean ring if each element in R is a g(x)-full clean element.

2.
$$g(x)$$
-FULL CLEAN RINGS

Firstly, we get some basic properties of g(x)-full clean rings.

Let R and S be rings and $\theta: C(R) \longrightarrow C(S)$ be a ring homomorphism with $\theta(1) =$

1. Then θ induces a map θ' from C(R)[x] to C(S)[x] such that for $g(x) = \sum_{i=0}^{n} a_i x^i \in$

 $C(R)[x], \ \theta'(g(x)) := \sum_{i=0}^{n} \theta(a_i) x^i \in C(S)[x].$ We should note that if $n \in \mathbb{Z}$, then $\theta(n) = \theta(1 + \dots + 1) = n\theta(1) = n$. So if g(x) is a polynomial with coefficients in \mathbb{Z} , then clearly $\theta'(g(x)) = g(x)$.

Here we give some properties of g(x)-full clean rings which are similar to those of g(x)-clean rings.

Proposition 1. Let $\theta : R \longrightarrow S$ be a ring epimorphism. If R is g(x)-full clean, then S is $\theta'(g(x))$ -full clean.

Proof. Let $g(x) = a_0 + a_1x + \dots + a_nx^n \in C(R)[x]$. Then $\theta'(g(x)) = \theta(a_0) + \theta(a_1)x + \dots + \theta(a_n)x^n \in C(S)[x]$. As θ is a ring epimorphism so for any $s \in S$, there exist $r \in R$ such that $\theta(r) = s$. Since R is g(x)-full clean, there exist $w \in K(R)$ and $s_0 \in R$ such that $r = w + s_0$ where $g(s_0) = 0$ and swt = 1 for some $s, t \in R$. Then $s = \theta(r) = \theta(w + s_0) = \theta(w) + \theta(s_0)$. But as swt = 1 we have $\theta(s)\theta(w)\theta(t) = \theta(swt) = \theta(1) = 1$. Therefore $\theta(w) \in K(S)$. But $\theta'(g(\theta(s_0))) = \theta(a_0) + \theta(a_1)\theta(s_0) + \dots + \theta(a_n)\theta(s_0^n) = \theta(a_0 + a_1s_0 + \dots + a_ns_0^n) = \theta(g(s_0)) = \theta(0) = 0$, so s is $\theta'(g(x))$ -full clean. Therefore S is $\theta'(g(x))$ -full clean.

Corollary 1. If R is g(x)-full clean, then for any ideal I of R, R/I is $\bar{g}(x)$ -full clean where $\bar{g}(x) \in C(R/I)[x]$.

Proof. Let $\theta: R \longrightarrow R/I$ be the canonical epimorphism. Note that if $a \in C(R)$ then $\bar{a} \in C(R/I)$, so the result follows from previous proposition.

Proposition 2. Let $I \leq J(R)$ be an ideal of R, $\eta: R \longrightarrow R/I$ with $\eta(r) = r + I =$ \bar{r} , and $g(x) = \sum_{i=0}^{n} a_i x^i \in C(R)[x]$ with $\bar{g}(x) = \sum_{i=0}^{n} \bar{a}_i x^i \in C(R/I)[x]$. If R/I is

Proof. For any $r \in R$, Let $r + I = \bar{r} = \bar{s} + \bar{w}$ be the $\bar{g}(x)$ -full clean expression, i.e., $\bar{g}(\bar{s}) = 0$, $\bar{w} \in K(R/I)$ and $\bar{s'}\bar{w}\bar{t} = \bar{1}$ for some $s', t \in R$. Since roots of $\bar{g}(x)$ lift modulo I, there exist $e \in R$ such that g(e) = 0 and $\bar{e} = \bar{s}$. So, r - e - w = i for some $i \in I$ and r = e + (w + i). Hence $\bar{s'}\bar{w}\bar{t} = \bar{1}$, we have $s'wt = 1 + h \in 1 + I \subseteq I$ $1 + J(R) \subseteq U(R)$ for some $h \in I$. Therefore, there exist $a \in R$ where (s'wt)a = 1and $s_1, t_1 \in R$ such that $s_1 w t_1 = 1$. Hence $s_1(w+i)t_1 = 1 + s_1 i t_1 \in 1 + J(R) \subseteq$ U(R). We have $s_1(w+i)t_1u=1$ for some $u\in U(R)$, hence w+i is a full element. Therefore, r is g(x)-full clean, as asserted.

Proposition 3. Let $g(x) \in \mathbb{Z}[x]$ and $\{R_i\}_{i \in I}$ be a family of rings. Then $\prod R_i$ is g(x)-full clean if and only if for all $i \in I$, R_i is g(x)-full clean.

Proof. Let $\prod_{i \in I} R_i$ is g(x)-full clean. Define $\pi_j : \prod_{i \in I} R_i \longrightarrow R_j$ by $\pi_j(\{a_i\}_{i \in I}) = a_j$. Since for all $j \in I$, π_j is a ring epimorphism, so by Proposition 1, for every $i \in I$, each R_i is g(x)-full clean ring.

For the contrary, suppose that for every $i \in I$, Ri is a g(x)-full clean ring. For any $x = \{x_i\}_{i \in I} \in \prod_{i \in I} R_i$, we write $x_i = s_i + w_i$ with $g(s_i) = 0$ and $s_i w_i t_i = 1$ for some $s_i, t_i \in R$. Then x = s + w, where

$$g(s = \{s_i\}_{i \in I}) = a_0 \{1_{R_i}\}_{i \in I} + a_1 \{s_i\}_{i \in I} + \dots + a_n \{s_i^n\}_{i \in I}$$

$$= \{a_0\}_{i \in I} + \{a_1 s_i\}_{i \in I} + \dots + \{a_n s_i^n\}_{i \in I}$$

$$= \{a_0 + a_1 s_i + \dots + a_n s_i^n\}_{i \in I}$$

$$= \{g(s_i)\}_{i \in I} = \{0\}_{i \in I}$$

and $w = \{wi\}_{i \in I} \in K(\prod_i R_i)$ with $\{s_i\}_{i \in I} \{wi\}_{i \in I} \{ti\}_{i \in I} = \{1\}_{i \in I}$. Hence x is g(x)-full clean, as required.

Recall that for a ring R with a ring endomorphism $\alpha: R \longrightarrow R$, the skew power series ring $R[[x;\alpha]]$ of R is the ring obtained by giving the formal power series ring over R with this property that $xr = \alpha(r)x$ for all $r \in R$. In particular, R[[x]] = $R[[x,id_R]].$

Proposition 4. Let α be an endomorphism of R and $g(x) \in C(R)[x]$. Then the following statements are equivalent.

(1) R is a g(x)-full clean ring.

- (2) The formal power series ring R[[x]] of R is a g(x)-full clean ring.
- (3) The skew power series ring $R[[x;\alpha]]$ of R is a g(x)-full clean ring.

Proof. Being homomorphic image of R[[x]] and $R[[x;\alpha]]$, R is g(x)-full clean when R[[x]] or $R[[x;\alpha]]$ is g(x)-full clean.

Now, suppose R is a g(x)-full clean ring. For any $h=a_0+a_1x+\ldots\in R[[x,\alpha]]$, write $a_0=e_0+u_0$ such that $g(e_0)=0$ and $u_0\in K(R)$. Assume that $s_0u_0t_0=1$ for some $s_0,t_0\in R$ and let $h'=h-e_0=u_0+a_1x+\ldots$. The equation $u=(s_0+0+\ldots)h'(t_0+0+\ldots)=1+s_0a_1\alpha(t_0)x+\ldots$ shows that $u\in U(R[[x,\alpha]])$, since $U(R[[x;\alpha]])=\{a_0+a_1x+\ldots:a_0\in U(R)\}$ without any assumption on the endomorphism α . Hence $h'\in K(R[[x,\alpha]])$ and $h=e_0+h'$ where $e_0\in R[[x,\alpha]]$ and $g(e_0)=0$. so, $R[[x;\alpha]]$ is a g(x)-full clean ring.

Since $R[[x]] = R[[x, id_R]]$, the proof is similar to that of $((1) \Rightarrow (3))$, as desired.

Remark 1. Generally, the polynomial ring R[t] is not g(x)-clean for an arbitrary nonzero polynomial $g(x) \in C(R)[x]$. For example let R be a commutative ring, then the polynomial ring R[t] is not g(x)-clean ring [3]. Full elements and invertible elements are the same when the ring R is commutative, so the concept of g(x)-clean and g(x)-full clean are equivalent for commutative rings. Now, let g(x) = x, we show that t is not g(x)-full clean. If t = w + s then it must be that s = 0, so t = w. As, w is a full element then f(t) = 1 for f(t) = 1 for f(t) = 1. Since f(t) = 1 is not f(t) = 1 for f(t) = 1 for

Next we will investigate some cases in which the concept of g(x)-full cleanness and g(x)-cleanness are equivalence. Yu [5] called a ring R to be a left quasi-duo ring if every maximal left ideal of R is a two-sided ideal. Commutative rings, local rings, rings in which every nonunit has a power that is central are all belong to this class of rings [5].

Theorem 1. For a left quasi-duo ring R and $g(x) \in C(R)[x]$, the followings are equivalent:

- (1) R is a g(x)-clean ring;
- (2) R is a g(x)-full clean ring.

Proof. If R is g(x)-clean, then this is trivial that R is g(x)-full clean.

Now, let R be a g(x)-full clean ring and $r \in R$. So r = w + s such that g(s) = 0 and $w \in K(R)$. It suffices to show that $w \in K(R)$ implies that $w \in U(R)$. Let swt = 1 for some $s, t \in R$, so s is right invertible. Assume that s is not left invertible. Then $Rs \subsetneq R$, and there exists a maximal left ideal M of R such that $Rs \subseteq M \subsetneq R$. But since R is a left quasi-duo ring, so M is a two sided ideal and $s \in M$. Therefore $sR \subseteq M$. But as s is right invertible, so s is not a proper ideal and this is a contradiction. So s should have left inverse as well and therefore s is invertible. Thus s is a similar way, we get that s is s in the result follows.

In Fan and Yang [3], proved that if R is g(x)-clean, then so is $M_n(R)$ for all $n \ge 1$. Here we have a similar result for g(x)-full clean. Define $\pi_n : C(R) \longrightarrow M_n(R)$ by $a \longmapsto a I_n$ where I_n is the identity matrix of $M_n(R)$ and $a \in C(R)$. Then $M_n(R)$ is a C(R)-algebra for all $n \ge 1$.

Theorem 2. Let R be a ring and $g(x) \in C(R)[x]$. If R is g(x)-full clean, then $M_n(R)$ is also g(x)-full clean ring for all $n \ge 1$.

Proof. Suppose that R is g(x)-full clean. Given any $x \in R$, there exist $e \in R$ and $w \in K(R)$ such that x = e + w and g(e) = 0. We write swt = 1 for some $s, t \in R$. Assume that theorem holds for the matrix ring $M_k(R)$, $k \ge 1$. Let

$$A = \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right) \in M_{k+1}(R)$$

with $A_{11} \in R$, $A_{12} \in R^{1 \times k}$, $A_{21} \in R^{k \times 1}$ and $A_{22} \in M_k(R)$.

We have $A_{11}=e+w$ where g(e)=0 and swt=1 for some $s,t\in R$. There also exist matrix E and a full matrix W such that $A_{22}-A_{21}tsA_{12}=E+W$ where g(E)=0 by induction. We write $SWT=I_k$ for some $S,T\in M_k(R)$. Therefore, we have

by induction. We write
$$SWT = I_k$$
 for some $S, T \in M_k(R)$. Therefore, we have $A = diag(e, E) + \begin{pmatrix} w & A_{12} \\ A_{21} & W + A_{21}tsA_{12} \end{pmatrix}$. Let $g(x) = a_0 + a_1x + \dots + a_mx^m$, then we have:

$$\begin{split} g(\left(\begin{array}{cc} e & 0 \\ 0 & E \end{array}\right)) &= a_0 I_{k+1} + a_1 (\left(\begin{array}{cc} e & 0 \\ 0 & E \end{array}\right)) + \dots + a_m (\left(\begin{array}{cc} e & 0 \\ 0 & E \end{array}\right))^m \\ &= \left(\begin{array}{cc} a_0 1_R & 0 \\ 0 & a_0 I_k \end{array}\right) + \left(\begin{array}{cc} a_1 e & 0 \\ 0 & a_1 E \end{array}\right) + \dots + \left(\begin{array}{cc} a_m e^m & 0 \\ 0 & a_m E^m \end{array}\right) \\ &= \left(\begin{array}{cc} g(e) & 0 \\ 0 & g(E) \end{array}\right) = 0 \end{split}$$

Also, let $P = \begin{pmatrix} s & 0 \\ -SA_{21}ts & S \end{pmatrix}$, $Q = \begin{pmatrix} t & -tsA_{12}T \\ 0 & T \end{pmatrix} \in M_{k+1}(R)$ and the equation

$$P\left(\begin{array}{cc} w & A_{12} \\ A_{21} & W + A_{21}tsA_{12} \end{array}\right)Q = \left(\begin{array}{cc} 1 & 0 \\ 0 & I_n \end{array}\right) = I_{k+1}$$

shows that $\begin{pmatrix} w & A_{12} \\ A_{21} & W + A_{21}tsA_{12} \end{pmatrix}$ is a full matrix, hence A is g(x)-full clean, as desired.

Proposition 5. Let $a \in R$ be a g(x)-full clean element and $g(x) \in C(R)[x]$ where g(1) = 0, then $A = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$ is always g(x)-full clean in $M_2(R)$ for any $b \in R$.

Proof. If a = e + w where g(e) = 0 and swt = 1 for some $s, t \in R$, then we can write A as

$$A = \begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} w & b \\ 0 & -1 \end{pmatrix}$$
We also have $\begin{pmatrix} s & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} w & b \\ 0 & -1 \end{pmatrix} \begin{pmatrix} t & -tsb \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Now if $g(x) = \sum_{i=0}^{n} a_i x^i$ we have,

$$g\begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix}) = a_0 I_2 + a_1 \begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix}) + \dots + a_m \begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix})^m$$

$$= \begin{pmatrix} a_0 1_R & 0 \\ 0 & a_0 1_R \end{pmatrix} + \begin{pmatrix} a_1 e & 0 \\ 0 & a_1 \end{pmatrix} + \dots + \begin{pmatrix} a_m e^m & 0 \\ 0 & a_m \end{pmatrix}$$

$$= \begin{pmatrix} g(e) & 0 \\ 0 & g(1) \end{pmatrix} = 0$$

Therefore, A is a g(x)-full clean element.

Theorem 3. Let $C = \begin{pmatrix} A & V \\ W & B \end{pmatrix}$ where A, B and $AV_{B,B}$ W_A are respectively two rings and bimodules. Also let $g(x) \in \mathbb{Z}[x]$. Then C is g(x)-full clean if and only if A and B are g(x)-full clean.

Proof. Assume that C is f-(g(x)-clean). Let $I = \begin{pmatrix} 0 & V \\ W & B \end{pmatrix}$ and $J = \begin{pmatrix} A & V \\ W & 0 \end{pmatrix}$. One can check that I,J are ideals of C and $C/I \simeq A$, $C/J \simeq B$ (it is enough to consider the epimorphism $\varphi:C \longrightarrow A$ by $\varphi(\begin{pmatrix} a & v \\ w & b \end{pmatrix}) = a$ and the epimorphism $\psi:C \longrightarrow B$ by $\varphi(\begin{pmatrix} a & v \\ w & b \end{pmatrix}) = b$, respectively with kernel I and J). Clearly g(x)-full cleanness of A,B follows from Corollary 1.

Conversely, let A and B be both g(x)-full clean rings. For any $r = \begin{pmatrix} a & v \\ w & b \end{pmatrix} \in C$, we have $a = e_1 + u_1$ and $b = e_2 + u_2$ for some $e_1, e_2 \in R$ where $g(e_1) = g(e_2) = 0$ and $u_1, u_2 \in K(R)$. Assume that $s_1u_1t_1 = 1$, $s_2u_2t_2 = 1$ for some $s_1, t_1, s_2, t_2 \in R$. So we have $r = \begin{pmatrix} e_1 & 0 \\ 0 & e_2 \end{pmatrix} + \begin{pmatrix} u_1 & v \\ w & u_2 \end{pmatrix} = E + U$. Now $g(x) = \sum_{i=0}^n a_i x^i$. Hence

$$g(E) = a_0 I_0 + a_1 E + \dots + a_n E^n$$

$$= \begin{pmatrix} a_0 & 0 \\ 0 & a_0 \end{pmatrix} + \begin{pmatrix} a_1 e_1 & 0 \\ 0 & a_1 e_2 \end{pmatrix} + \dots + \begin{pmatrix} a_n e_1^n & 0 \\ 0 & a_n e_2^n \end{pmatrix}$$

$$= \left(\begin{array}{cc} g(e_1) & 0\\ 0 & g(e_2) \end{array}\right) = 0$$

and the equation

$$\left(\begin{array}{cc} s_1 & 0 \\ -s_2wt_1s_1 & s_2 \end{array}\right) \left(\begin{array}{cc} u_1 & v \\ w & u_2 \end{array}\right) \left(\begin{array}{cc} t_1 & -t_1s_1vt_2 \\ 0 & t_2 \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

implies that U is a full matrix. Hence r is g(x)-full clean, as required.

Proposition 6. Let R and S be two rings, M be an (R, S)-bimodule and $g(x) \in \mathbb{Z}[x]$.

- (1) Let $E = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ be the formal triangular matrix ring. Then E is g(x)-full clean ring if and only if R and S are g(x)-full clean rings.
- (2) For any $n \ge 1$, R is g(x)-full clean if and only if the $n \times n$ upper triangular matrix ring $T_n(R)$ are g(x)-full clean.

Proof. Formal triangular matrix rings are special cases of C in Theorem 3.

Let R be g(x)-full clean and $A = (a_{ij}) \in \mathbb{T}_n(R)$ with $a_{ij} = 0$ for $1 \le j < i \le n$. Since R is g(x)-full clean, for any $1 \le i \le n$, there exist $e_{ii} \in R$ and $w_{ii} \in K(R)$ such that $a_{ii} = w_{ii} + e_{ii}$ with $g(e_{ii}) = 0$. Also assume that $s_{ii}w_{ii}t_{ii} = 1$ for some $s_{ii}, t_{ii} \in R$. So we have

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix} = \begin{pmatrix} w_{11} + e_{11} & a_{12} & \dots & a_{1n} \\ 0 & w_{22} + e_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & w_{nn} + e_{nn} \end{pmatrix}$$

$$= \begin{pmatrix} w_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & w_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & w_{nn} \end{pmatrix} + \begin{pmatrix} e_{11} & 0 & \dots & 0 \\ 0 & e_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & e_{nn} \end{pmatrix}.$$

Suppose $g(x) = \sum_{i=0}^{m} a_i x^i \in C(R)[x]$, so we have

$$g(E) = a_0 I_n + a_1 E + \dots + a_n E^n$$

$$= \begin{pmatrix} a_0 & 0 & \dots & 0 \\ 0 & a_0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_0 \end{pmatrix} + \begin{pmatrix} a_1 e_{11} & 0 & \dots & 0 \\ 0 & a_1 e_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_1 e_{nn} \end{pmatrix} + \dots$$

$$+ \begin{pmatrix} a_{m}e_{11}^{m} & 0 & \dots & 0 \\ 0 & a_{m}e_{22}^{m} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{m}e_{nn}^{m} \end{pmatrix}$$

$$= \begin{pmatrix} g(e_{11}) & 0 & \dots & 0 \\ 0 & g(e_{22}) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & g(e_{nn}) \end{pmatrix} = 0.$$

Also, it is straightforward with induction on n, to prove calculate that $W \in K(\mathbb{T}_n(R))$. So $\mathbb{T}_n(R)$ is g(x)-full clean.

Now let $\mathbb{T}_n(R)$ is g(x)-full clean. Define $\theta : \mathbb{T}_n(R) \longrightarrow R$ by $\theta(A) = a_{11}$ where

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix},$$

then it is clear that θ is a ring epimorphism. For any $a \in R$, let B be the diagonal matrix diog(a,...a). Then $a = \theta(B) = \theta(W+S) = \theta(W) + \theta(S)$ where $\theta(W) = w_{11} \in K(R)$ and

$$g(\theta(S)) = a_0 + a_1 \theta(S) + \dots + a_n \theta(S^n)$$

$$= \theta(B_0) + \theta(B_1)\theta(S) + \dots + \theta(B_n)\theta(S^n)$$

$$= \theta(B_0 + B_1 S + \dots + B_n S^n)$$

$$= \theta(a_0 I_n + (a_1 I_n) S + \dots + (a_n I_n) S^n)$$

$$= \theta(g(S)) = 0.$$

Thus a is g(x)-full clean, i.e., R is g(x)-full clean ring.

Proposition 7. Let R be a ring, $n \in \mathbb{N}$ and $2 \in U(R)$. Then the followings are equivalent:

- (1) R is full-clean;
- (2) R is (x^2-2^nx) -full clean;
- (3) R is $(x^2 + 2^n x)$ -full clean;
- (4) R is (x^2-2x) -full clean;
- (5) R is $(x^2 + 2x)$ -full clean;
- (6) R is (x^2-1) -full clean;
- (7) every element of R is the sum of a full element and a square root of 1.

Proof. (1) \Rightarrow (7) Suppose R is full-clean and $x \in R$. Then (x+1)/2 = e + u for some $e^2 = e$ and $u \in K(R)$. So x = (2e-1) + 2u with $(2e-1)^2 = 1$ and $2u \in K(R)$.

- $(7) \Rightarrow (1)$ Let every element of R is the sum of a full element and a square root of 1. Then given $x \in R$, we have 2x 1 = t + w with $t^2 = 1$ and w a full element in R. So x = (t+1)/2 + w/2 with $((t+1)/2)^2 = (t+1)/2$ and w/2 is a full element in R, as asserted.
- (1) \Rightarrow (2) Since $2 \in U(R)$, $2^n \in U(R)$. Let $a \in R$, then $a/2^n = e + u$ such that $e^2 = e$ and $u \in K(R)$. So, $a = 2^n e + 2^n u$ where $(2^n e)^2 2^n (2^n e) = 0$ and $2^n u \in K(R)$. Therefore, R is $(x^2 2^n x)$ -full clean.
- (2) \Rightarrow (1) Let $r \in R$. Since R is f-($(x^2 2^n x)$ -clean), $r2^n = s + w$ such that s is a root of $(x^2 2^n x)$ and $w \in K(R)$. Thus, $r = s/2^n + w/2^n$ where $w/2^n \in K(R)$ and $(s/2^n)^2 = s(s-2^n+2^n)/(2^n)^2 = s2^n/(2^n)^2 = s/2^n$. So R is f-clean.

Similarly, we can prove
$$(1) \Leftrightarrow (3)$$
, $(1) \Leftrightarrow (4)$ and $(1) \Leftrightarrow (5)$.

Let R be a ring and ${}_RV_R$ be an R-R-bimodule which is a ring possibly without a unity in which (vw)r = v(wr), (vr)w = v(rw) and (rv)w = r(vw) hold for all $v,w \in V$ and $r \in R$. The ideal extension of R by V is defined to be the additive abelian group $I(R,V) = R \bigoplus V$ with multiplication (r,v)(s,w) = (rs,rw+vs+vw).

Proposition 8. Let R be a ring and ${}_RV_R$ be an R-R-bimodule, $g(x) \in \mathbb{Z}[x]$. An ideal-extension E = I(R, V) of R by V is g(x)-full clean if R is g(x)-full clean and for any $v \in R$, there exists $w \in R$ such that v + w + wv = 0.

Proof. Let $t = (r, v) \in E$. Then r = s + u where g(s) = 0 and $u \in K(R)$. Therefore t = (s, 0) + (u, v). Let $g(x) = \sum_{i=0}^{n} a_i x^i$, we have $g((s, 0)) = a_0(1, 0) + a_1(s, 0) + \dots + a_n(s, 0)^n$ $= a_0(1, 0) + a_1(s, 0) + \dots + a_n(s^n, 0)$ $= (a_0, 0) + (a_1 s, 0) + \dots + (a_n s^n, 0)$

and we will show that $(u, v) \in K(E)$. Assume that sut = 1. For $svt \in V$, there exists $w \in V$ such that svt + w + wsvt = 0 by assumption. Also, one can check that (s, ws)(u, v)(t, 0) = (1, 0). Hence $(u, v) \in K(E)$ and E is a g(x)-full clean ring. \square

 $= (a_0 + a_1 s + \dots + a_n s^n, 0) = (g(s), 0) = (0, 0)$

REFERENCES

- [1] N. Ashrafi and Z. Ahmadi, "Weakly g(x)-clean rings," *Iran. J. Math. Sci. Inform.*, vol. 7, no. 2, pp. 83–91, 111, 2012.
- [2] V. Camillo and J. J. Simón, "The Nicholson-Varadarajan theorem on clean linear transformations," *Glasg. Math. J.*, vol. 44, no. 3, pp. 365–369, 2002, doi: 10.1017/S0017089502030021.
- [3] L. Fan and X. Yang, "On rings whose elements are the sum of a unit and a root of a fixed polynomial," *Comm. Algebra*, vol. 36, no. 1, pp. 269–278, 2008, doi: 10.1080/00927870701665461.
- [4] W. K. Nicholson, "Lifting idempotents and exchange rings," *Trans. Amer. Math. Soc.*, vol. 229, pp. 269–278, 1977, doi: 10.1090/S0002-9947-1977-0439876-2.

[5] H.-P. Yu, "On quasi-duo rings," $Glasgow\ Math.\ J.,\ vol.\ 37,\ no.\ 1,\ pp.\ 21-31,\ 1995,\ doi: 10.1017/S0017089500030342.$

Authors' addresses

N. Ashrafi

Semnan University, Faculty of Mathematics, Statistics and Computer Science, Semnan, Iran $E\text{-}mail\ address:$ nashrafi@semnan.ac.ir & ashrafi49@yahoo.com

Z. Ahmadi

Semnan University, Faculty of Mathematics, Statistics and Computer Science, Semnan, Iran E-mail address: zahmadiv@yahoo.com