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Abstract. The paper is about calculating multiple fractional part integrals of the form

1,1 i 1 pdd 1 1 p1 1 mddd
X+ X and[// %7§ X Z,
/0/0( ») %X‘H’} Y o Jo Jo (x+y+z Y

where {x} denotes the fractional part of x and k,m and p are nonnegative integers. We show
that these integrals can be expressed as series involving products of Riemann zeta function val-
ues and some binomial coefficients. We obtain, as particular cases of our results, new integral
representations of Euler’s constant as double and triple symmetric fractional part integrals.
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1. INTRODUCTION

Let m, p and k be nonnegative integers and let Dy , and I, denote the double
and triple symmetric integrals

Dy , = 11 ) 1 pdd 1.1
k,p—/(;/()(x+y) {m} xdy (L.1)

1 p1 1 1 m
I = — 1 dxdydz, 12
A Fer 12

where {x} denotes the fractional part of x and is therefore related to the floor function
by {x} = x — | x|. The integral I,, can be viewed as a three dimensional version of

Havil’s integral fol {1/x}dx = 1—y ([3, pp. 109-111]), while the integral Dy,
generalizes the double symmetric integral

1 1 1
/ / { }a’xdy
o Jo (x+Yy

and
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proposed by Furdui as a problem in [1] and solved by Qin in [4]. We also consider
the multiple integral

1 1
1

M”=/ f X14+X2 4 +x ’"{—}dx ceodxp,

m | ; (x1+x2 n) PR, 1 n

where n > 2 and m > 0 are integers, and we show that this integral can be calculated
via a recurrence formula.

The goal of this paper is to calculate, in closed form, the three classes of in-
tegrals given above and to prove that these integrals can be expressed in terms of
series involving products of Riemann zeta function values and some binomial coef-
ficients. We obtain, as particular cases of our results, new integral representations of
the Euler—Mascheroni constant in terms of double symmetric fractional part integ-
rals. The organization of the paper is as follows: in the next section we calculate the
double integrals Dy ,, in section 3 we concentrate on the evaluation of the integral
I, and in section 4 we evaluate the integral M, via a recurrence formula.

Before we give the main results of this paper we need to collect a result from [2],
Theorem 1 below, which is about calculating the special class of single fractional part
integrals Vi ,, defined by

where k and m are nonnegative integers.
Theorem 1. Let m > 0 and let k > 1 be integers. Then
1 1% k' & (m+))!
en =[x {5 T G i G £

In particular, one has as a consequence of Theorem 1, the following corollary.

Corollary 1. a) Let m > 1 be an integer. Then

t%mf=/l{lyfwwx:I_CQ)+H$4~~+§my+n‘
o (X m+1

b) Let m > 1 be an integer. Then
m+1

1 m+1 .
1
Vm+1,m:/ xm{;} dx:Hm+1_V_ § ¥’
0 N
Jj=2

where Hy, 41 denotes the (m + 1)th harmonic number.
c) Let m > 0 be an integer. Then

m+1

v, —/1xm+1 Nty v (@)— 3 it +1)
(R A x T2 m+DH(m+2) '

i=1
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Proof. The first two parts of the corollary are proved in [2], so we need to prove
only part c) of the corollary. We have, in view of Theorem 1, that

. m! S (mA+1+j)! . B
Vm,m+1—(m+2)!j; Pt Cm+j+2)—1)

1 e ‘ ‘
zm;(’n"‘_/ +1D)(Cm+j+2)—1),

and the result follows since > ;=i (@i +1)—1) =£(2). O

2. A DOUBLE SYMMETRIC FRACTIONAL PART INTEGRAL

In this section we calculate the double integral Dy ,. We prove that the evaluation
of the double integral Dy, reduces to the calculation of the single integral V. ,,. The
main result of this section is the following theorem.

Theorem 2. a) Let Dy, be as in (1.1) and let k be a nonnegative integer. Then

Dicksn = / f (x+ y)"{ }Hldxdy

(2)+C(3)+ Hik+2)

=2In2—
k+2

b) A new integral formula for Euler’s constant. Let k be a nonnegative integer. Then

1,1
1

Dy k 2=//(X+y)k{—
* o Jo x+y

c)If p#k+1and p #k+2then

2k—p+2_2 2k—p+2_1

Di.p= - Vi kt1-
L e e S R

k42 k+2 ;_(l)
dxdy =1—1In2+ Hyqp—y Z

Proof. We have, based on the substitution x + y = ¢ in the inner integral, that

s [ ([seor s e [ o)

We integrate by parts with

x+1 17 1 P )7
f(x)=/ t"{;} dt, f’(x)=(x+1)k{x_+1} _xk{_} ’
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g'(x) =1, g(x) = x, and we get that

x+1 n?
Dy , = k)
o= ([ )
1 lk 1 p x 1 p J
(et )
2 1)? 1 1 1?2
— k) _ k—p k+1) *
—/lt {t} dt /Ox(x—i—l) dx+/0x {x} dx

2 1
:/ tk_pdt—/ x(x+1)k_pdx+Vp,k+1.
1 0

x=1

2.1)

We used the fact that, for x > 0, one has that {1/(1 + x)} = 1/(1+ x). We distinguish
here the following cases.
Case p = k + 1. We have, based on (2.1) and part a) of Corollary 1, that

2 dt L x
D = —— dx+V,
kk+1 /1 ; /0 P k+1,k+1

=2In2—14+Viy1,6+1

1
=202 ) +EG) 4o+ Lk +2).

Case p = k + 2. We have, in view of (2.1) and part b) of Corollary 1, that

b /2 x /l—x dx+V,
= —_— x
kkt2= | E T e k+2,k+1
=1-In2+ Vii2 k41
k+2

=1-In2+ Heypp—y =) ~L0).
=2

Case p # k + 1 and p # k + 2. Equality (2.1) implies that

tk—p-‘rl =2 (x+1)k—P+2 x=1

T k—p+ll,, k-p+2
2k—p+2_2 2k—p+2_1
- k—p+1 B k—p+2

Dy
P x=0 k—p+1

+Vpk+1

x=0

+Vpk+1

and the theorem is proved. g
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Corollary 2. Let k > 0 be an integer. Then

1 ,1 1 k
Dy = / / (x+y)* { —§ dxdy
o Jo x+y

k+1

(@)=Y it +1)

i=1

|
I Dk

Proof. We have, based on Theorem 2 with p =k, that Dy y = 1/2+ Vj x41. and
the result follows from part c) of Corollary 1. g

In particular one has that

1 1 1 _ _@
/()/()(x+y){—x+y}dxdy— 3

Ll 1) t(3) (4
2 — 127 _ 2N 7
/()/O(x—l-y) {—x-i—y} dxdy =1 c T

and

Corollary 3. The following equality holds

1 1 k 1 P 1
x(x + ——% dxdy=-=D .
/Ofo (x+y) {x+y} Y =7Dit1,p

Proof. We have, by symmetry reasons, that

1 1 X 1 V4 1 1 X 1 D
/ / x(x+y) {—} dxdy:/ / yix+y) {—} dxdy,
o Jo x+y o Jo x+y

and it follows that

‘[1/” ( ﬁ{ 1 }Pd . 1./1/4( ﬁ+1{ 1 }Pd .

x(x + —_— X = — X+ —_— X

o Jo Y x+y =2 o Jo Y x+y Y
1

=_D )
5 Pkt1p

and the corollary is proved. O

We have that, for any nonnegative integer k, the following equality holds

1t L 1)k 1@ -Yf i+
k—1 _ i=1
A A'“x+y) {x+y}‘”dy_z+' 2k + Dk +2)
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3. A TRIPLE HAVIL INTEGRAL

In this section we calculate the integral /,,, , which we call the triple Havil integral,
and we prove that the evaluation of this class of integrals reduces to the calculation
of the double integral D ;. The main result of this section is the following theorem.

Theorem 3. Let I, be as in (1.2). a) Then

M3 62— and 1 =62-3m3- 2T

I =
1= 6 6

b) A cubic integral. We have

ln3 31n2 5 vy &2 ¢33
= //f{x+y+ } drdyds === =—+373"4 ¢

c) Let m > 4 be an integer. Then

7—m)22 ™M fm—4-33""m |
Im:( ) +_D1’m.

(m—-1)(m—-2)(m—3) 2

Proof. We have, based on the substitution x + y +z = ¢, that

e L e
SO o)

We calculate the double inner integral by parts with
xty+1l ()™ , 1 m 1 m
x) = —¢ dt, x) = — ,
70 /x+y {t} 7 {1+X+y} {X+y}
g'(x) =1, g(x) = x, and we get that
1 x+ty+1 ()™M x+y+1l(1)m
WU B o=, )
0 x+y ! x+y t x=0
1 m m
1 1
(st )
0 I+x+y xX+y
2+y 1 1
=/ —d[—/ —x dx
1+y " o (I+x+y)m

1 1 m
+/ x{ } dx.
0 x+y

x=1
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1 2+y
I"’:f (/ t_dt)dy /fo(1+X+y)’”
// { } dxdy (3.1
x+y
24y 1 1 X 1
= —dt |dy— ———dxdy+ =D1m.
/0 (/1+y z ) g /0/0 (x0T Taon

We distinguish the following cases.
Case m = 1. We have, based on (3.1) and Corollary 2, that

1 2 1 1 1
11=/ ln( +y)dy—/ / — Y dxdy+-Di,
0 1+y o I+x+y 2
91
L e 1C))
2 6

Case m = 2. A calculation, based on (3.1) and part a) of Theorem 2, shows that

4 1 X 1
Ih=In-— —  dxdy+-=D
2 3 /0 /o (1+x—|—y)2 Yy ) 1,2

£(2)+¢0)
—

Case m = 3. We have, based on (3.1) and part b) of Theorem 2, that

1 1 X 1
— —  dxdy+-=-D
/0/0 (I+xty3 @ T2003
C 3 32 5 y (@ Q)

2 2 '3 2 4 6
Case m > 4. A calculation, based on (3.1), shows that

=6In2—-3In3—

T—m)- 22" p—4-_33m |
Im=( ) +_D1,m,

m—-1)(m—-2)(m—3) 2

and the theorem is proved. g

Remark 1. It is worth mentioning that this integral is recorded in [5] as the second
part of Theorem 8. However, Qin and Lu have skipped the calculations of /,, and
instead they calculated a double integral and explained how the triple integral can be
calculated by analogy. It turns out that the values of I, when m = 1,2 and 3, as
given by Qin and Lu, are incorrect and by our method, which is different than the one
mentioned in [5], these values are corrected.
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4. A SPECIAL CLASS OF INTEGRALS AND A RECURRENCE FORMULA
In this section we consider the multiple integral
1 1 1
M}’l =/ .../ (x1+xZ+...+xn)m - dx1"'an,
" 0 0 X1+t Xxp

where n > 2 and m > 0 are integers, and we show that this integral can be calculated
via a recurrence formula. The main result of the section is the following theorem.

Theorem 4. Let n > 2 and m > 0 be integers. The following recurrence formulas
hold

1
n—1

_/ .../ ln(l_l’_xl+...+xn_2)dx1...dxn_2
0 0

Mg =

My / /ln(l+x1+ + Xp_1)dxy - dxn_1

and, form > 1,

1 1 1
M) = — lM”+1+ /0"'/(; (I +x1 44 xp-1)"dxy - dxp—

1 1
__/ ...[ (1+x1+...+xn_2)mdx1...dxn_2.
mJo 0

Proof. We discuss only the case when m > 1 since the case when m = 0 is handled
similarly. We have, in view of the substitution x; +---+ x, = y, that

1 1 1
m
/0 /0 (x1+x2+-+x) {x1+---+xn}dx1 dxp
1 1 1+x1++xn—1 1
:/ .../ (/ ym{_}dy)dxl...dxn_l
0 0 X1+ txn—1 y
1 1 1 1+x1++xn—1 1
LT o))
0 0 0 X1+ +xn—1 Yy

I+x1++xn—1 1 I+x1++xp—1 _ pX1+-+xp—1
Since [, 1ty =fo + /i 0 , we have

1+x1++xn—1 1
RSP
X1+ +XxXn—1 y
1 1 1+x1++xn—1 X1+ +Xn—1 1
B e e A
0 y 1 y

1 m_ X1k x
1 1 ey 1 n—1 1
:/ ym{—§dy+( +x1 44 Xp-1) / m{—}dy,
0 y m y
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and it follows that

1 14+x1 4 +xn—1 1 1 1
‘/ (/ﬁ .Vn{_§dy)dxn—1:1/ ym{-—}dy
0 X1+t xpn—1 y 0 Yy

dxp—1

+/10+xr%~+%hﬂm—1
0 m

1 X1+t xn—1 1
—/ (/ ym{—% dy)dxn_l.
0 0 y

We calculate the integral

by parts with

1 X1+t Xp—1 1
L oo
0 0 y

X1+ +xn—1 1
f(xn—1) = /0 y" {

ke
1
! —_— e m —_—_—m
S Gen—1) = (1 + +””){m+m+mﬂ}

g (xn—1) =1, g(xp—1) = xn—1, and we get that

1 X1+ X1 1
VA R
0 0 y

Xp—1=1

X1+ F+Xn—1 1
o [
0 y

1
—/ Xp—1(x1 +"‘+Xn—l)m{
0

1+x1++xp—2 1
[
0 y
1 1
— Xp1(x1+Fxp )™ —-ooo
/0 n—1(x1 n—1) {x1+--~—|—xn_1
1 1 14+x1++x,—2 1
= f st e
0 y 1 Yy

1
— | X1 X)) ——————
/(; n 1( 1 n 1) {X1+"'+xn—1

1 m
1 1 _ -1
_—/ ym%—}dy—i-( +x1+ X2+ + Xp—2)
0 m

Xp—1=0

X1 +---+xn_1}

1

1
— Xpn—1(x1+--4+Xx4y— m)__ -
/(; n—1(x1 n—1) {X1+"'+Xn—1

dxp—1
} dxp—1
} dxp—1

} d.Xn—l .

263
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Thus,
1 I4+x1+-+xn—1 1
/ / ym{_} dy) dxp—1
0 \Jxi++xp—1 y
/1 (1+x1 4+ xp-1)"
= dxp—1
0 m
U 4xi+txp)”
m
! 1
+ Xpn1(x1+-+xp- )" ——————————F dxy 1.
/0 n 1( 1 n 1) {X1+"'+Xn—1} n—1
Integrating with respect to variables x1,...,x,—2, we get that
1 1 m
I+x1 4+ x,—
MrZ=/ ¢ 1 n—1) dxy - dxp_1
m
/ (1—|—x1+ Xy 2)’”
_ Loordxn—n
m

1
/ / Xp—1(x1 + '+Xn—1)m{m} dxy--dxp—1.

By symmetry, for all i, j = 1,...,n—1, one has that

1 1
1

v o xiGep e xpm )™ ———————— Y dxq e dxp—

/0 /1(1 n1){1+ +xn1} 1 n—1

dxi--dxp_1.
/ /x](x1+ o xp—)™" { P 1} X1 Xn—1

and hence

dxy - dxy—
/ / Xn— 1(x1+ -+ Xp— 1) { X1t ot Xy 1} X1 Xn—1

1
= N m+l) - U dxa .
. 1 / / (xl Xpn— 1) % X1 - Xn_1 % X1 Xn—1

It follows that

1
n—1

M}’l

m

MM+ — / /(1+X1+ A xp—1)"dxy - dxp—

1
——/ / (I4+x1 4+ +xp—2)"dx1--dxp—s.
mJo 0

Integrals of the form fol ---fol (1+x1 4+ x)™dx1 -+ dxy are calculated by using
the multinomial formula. The case when m = 0 follows by a similar argument. The
theorem is proved. O
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Now we show how this recurrence formulas can be used for establishing the integ-
ral equalities

MO—/ / / {x+y+ }dxdydz——ln3 61n Z_Z(_63)

1 p1 pl 1
M3=/// ++{—}a’dd
! o Jo o(x y+3) X+y+z vayaz
5

S NG A1),
j=1

and

We have, based on Theorem 4 with m = 0 and n = 3, that

1 1,1 1
M03=§M12+/(; /0 ln(1+x+y)dxdy—/0 In(1+ x)dx

1 1
=5 D11+5(In3-8In2-3)~ (22~ 1)

2
9 3
= _-In3—6In 2—&
2
On the other hand,
1 1 1 1
M} =~ 22+f [ (l—l—x—l—y)dxdy—/ (14 x)dx
2 o Jo 0
_1 1_1+1V
y P2ty =345
5 1
== 4—Zz+/>(3+1>(z<1+4)—1>

where the last equality follows from Theorem 1 with k = 1 and m = 3.
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