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Abstract. We have introduced and studied in [2] the class of Globalized multiplicatively pinched-
Dedekind domains .GMPD domains/. This class of domains could be characterized by a certain
factorization property of the non-invertible ideals, (see [2, Theorem 4]). In this note a simplific-
ation of the characterization theorem [2, Theorem 4] is provided in more general form.
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Let D be an integral domain. By an MNI ideal of D we mean an ideal of D which
is maximal among the nonzero noninvertible ideals of D. By [6, Exercise 36, page
44], every MNI ideal is a prime ideal. Moreover, using standard Zorn’s Lemma ar-
guments, one can show that every nonzero non-invertible ideal is contained in some
MNI ideal. D is said to be h-local provided every nonzero ideal of D is contained
in at most finitely many maximal ideals of D and each nonzero prime ideal of D is
contained in a unique maximal ideal of D. D is called a pseudo-valuation domain
(PVD) if D is quasi-local with maximal ideal M and M WM is a valuation domain
with maximal ideal M , cf. [5] and [1, Proposition 2.5]. A two-generated domain
is a domain whose ideals are two-generated. Let D be a quasi-local domain with
maximal ideal M . By [5, Theorems 2.7 and 3.5], D is a two-generated PVD if and
only if D is a field, a DVR, or a Noetherian domain such that its integral closure D0

is a DVR with maximal ideal M and D0=M is a quadratic field extension of D=M .

In [2], we introduced and study the class of Globalized multiplicatively pinched-
Dedekind domains .GMPD domains/. A domain D is called a globalized multi-
plicatively pinched-Dedekind domain .GMPD domain/ if D is h-local and for each
maximal ideal M , DM is a two-generated PVD, or a valuation domain with value
group Z�Z or R, cf. [2, Definition 2]. A Dedekind domain is a GMPD domain and
the integrally closed Noetherian GMPD domain are exactly the Dedekind domains.
This class of domains could be characterized by a certain factorization property of
the non-invertible ideals. An h-local domain D is a GMPD domain if and only if
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every two MNI ideals are comaximal and every nonzero non-invertible ideal I of D

can be written as I D JP1 � � �Pk for some invertible ideal J and distinct MNI ideals
P1; :::;Pk uniquely determined by I ([2, Theorem 4, Remark 5]). In this note a more
general simplification of this characterization theorem in provided (Theorem 2).

Throughout this note all rings are (commutative unitary) integral domains. For a
domain D, D0 (resp. ND) denotes the integral closure (resp. complete integral closure)
of D. Any unexplained material is standard like in [4] or [6].

Lemma 1. Every two distinct MNI ideals of a domain D are comaximal.

Proof. Deny. Let P1 ¤ P2 be the MNI ideals of D both contained in the maximal
ideal M . Then M is invertible and so Pi ¨ M implies that Pi ¨ \n�1M n D Q.
The ideal Q is invertible and prime. Indeed, if ab 2 Q with both a;b 62 Q, then
there exist integers k; l and the ideals U;V such that .a/DM kU with U ª M and
.b/DM lV with V ª M . Since ab 2M kClC1, so .ab/DM kClC1N for some ideal
N . Combining, we get that M kClU V DM kClC1N . This implies that U V DMN

which is not possible because U;V are not contained in M . Hence Q is prime. As
Pi ¨ Q, so Q is invertible. Since any two invertible prime ideals are not comparable,
so QDM . This implies that M DM 2 and hence M DD, a contradiction. �

Recall [3, Section 5.1] that a domain D has pseudo-Dedekind factorization if for
each nonzero non-invertible ideal I , there is an invertible ideal B (which might
be D) and finitely many pairwise comaximal primes P1;P2; :::;Pn such that I D

BP1P2 � � �Pn (the requirement that n > 0 comes for free).

Theorem 1. Let D be a domain such that every nonzero non-invertible ideal I

of D can be written as I D JP1 � � �Pk for some invertible ideal J and distinct MNI
ideals P1; :::;Pk . Then D is h-local.

Proof. By [6, Exercise 36, page 44], every MNI ideal is a prime ideal and by
Lemma 1, P1; :::;Pk are pairwise comaximal. Hence D has pseudo-Dedekind fac-
torization, cf. [3, Section 5.1]. Now Apply [3, Corollary 5.2.14]. �

Theorem 2. A domain D is a GMPD domain if and only if every nonzero non-
invertible ideal I of D can be written as I D JP1 � � �Pk for some invertible ideal J

and distinct MNI ideals P1; :::;Pk .

Proof. Apply Theorem 1 and [2, Theorem 4]. �
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