
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 18 (2017), No. 1, pp. 83–94 DOI: 10.18514/MMN.2017.2086

AN EXTENSION OF DARBO’S THEOREM AND ITS
APPLICATION TO SYSTEM OF NEUTRAL DIFFERENTIAL

EQUATIONS WITH DEVIATING ARGUMENT

SH. BANAEI, M. B. GHAEMI, AND R. SAADATI

Received 12 September, 2016

Abstract. In this paper we extend Darbo’s fixed point theorem in Banach spaces and obtain a
tripled fixed point theorem. The technique of measure of noncompactness is the main tool in
carrying out our proof. Finally, as an application of our results, we analyze the existence of
solutions for a system of neutral differential equations.
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1. INTRODUCTION AND PRELIMINARIES

The notion of a measure of non compactness (MNC) was introduced by Kur-
atowski [9] in 1930. Darbo’s fixed point theorem [7] which ensures the existence
of fixed point is an important application of this measure, since it generalizes both
Schauder fixed point and Banach contraction principle. Thereafter, many investiga-
tions and papers have been appeared in the MNC and it’s application, see for example
[1, 2, 5, 8, 10]. The aim of this paper is to generalize the Darbo’s fixed point theorem
via the concept of the class of operatorsO.f I :/ and extend the results of the theorem
presented by Samadi and Ghaemi in [10]. Further, we apply our extension to obtain
a tripled fixed point and study the existence of solutions for the system8̂̂̂<̂

ˆ̂:
x0.t/D f

�
t;x.�.t//;y.�.t//;´.�.t//;x0.ˇ.t//;y0.ˇ.t//;´0.ˇ.t//

�
y0.t/D f

�
t;y.�.t//;x.�.t//;´.�.t//;y0.ˇ.t//;x0.ˇ.t//;´0.ˇ.t//

�
´0.t/D f

�
t;´.�.t//;y.�.t//;x.�.t//;´0.ˇ.t//;y0.ˇ.t//;x0.ˇ.t//

� (1.1)

where t 2 Œ0;T � with the initial condition

x.0/D x0; y.0/D y0; ´.0/D ´0:

c
 2017 Miskolc University Press

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/145235735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


84 SH. BANAEI, M. B. GHAEMI, AND R. SAADATI

First, we introduce some notations and definitions which are used throughout this
paper. Let R be the set of real numbers, RC D Œ0;1/ and .E;k:k/ be a real Banach
space with the zero element 0. We write B.x;r/ to denote the closed ball centered at
x with radius r . If X be a nonempty subset of E then the symbols X and ConvX
stand for the closure and closed convex hull of X , respectively. Moreover, ME is the
family of nonempty bounded subset of E and NE denote its subfamily consisting of
all relatively compact sets.

Definition 1 ([6]). A mapping � WME �! RC is said to be a measure of non-
compactness in E if it satisfies the following conditions:

1ı The family ker�D fX 2ME W �.X/D 0g is nonempty and ker��NE ;
2ı X � Y H) �.X/� �.Y /;
3ı �.X/D �.X/;
4ı �.ConvX/D �.X/;
5ı �.�XC .1��/Y /� ��.X/C .1��/�.Y / for � 2 Œ0;1�;
6ı If fXng is a sequence of closed sets from ME such that XnC1 � Xn for
nD 1;2; � � � , and if lim

n!1
�.Xn/D 0, then X1 D\1nD1Xn ¤¿.

The following concept of O.f I :/ was given by Altun and Turkoglu [4].
Let F.Œ0;1// be the class of all functions f W Œ0;1/! Œ0;1/ and let � be the

class of all operators
O.�I �/ W F.Œ0;1//! F.Œ0;1//; f !O.f I �/

satisfying the following conditions:
.1/ O.f I t / > 0 for t > 0 and O.f I0/D 0.
.2/ O.f I t /�O.f Is/ for t � s.
.3/ limn!1O.f I tn/DO.f I limn!1 tn/.
.4/ O.f Imaxft; sg/DmaxfO.f I t /;O.f Is/g for some f 2 F.Œ0;1//.

Example 1. ([4] ) If f W Œ0;1/! Œ0;1/ is a nondecreasing, continuous function
such that f .0/D 0 and f .t/ > 0 for t > 0, then the operator defined by

O.f I t /D
f .t/

1Cf .t/

satisfies the above conditions.

Definition 2 ([8]). A triple .x;y;´/ is called a triple fixed point of a mapping T W
X �X �X ! X if

T .x;y;´/D x; T .y;x;´/D y; T .´;y;x/D ´:

The following theorems are basic for our main results.

Theorem 1 (Schauder [3]). Let C be a nonempty, bounded, closed and convex
subset of a Banach space E. Then every compact and continuous map T W C ! C

has at least one fixed point.
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Theorem 2 (Darbo [7]). Let C be a nonempty, bounded, closed and convex subset
of a Banach space E and T W C ! C be a continuous mapping. Assume that there
exists a constant K 2 Œ0;1/ such that �.TX/ �K�.X/ for any nonempty subset X
of C , where � is a MNC defined in E. Then T has at least a fixed point in C .

Theorem 3 ([10]). Suppose �1;�2; : : : ;�n are measures of noncompactness in
Banach spaces E1;E2; : : : ;En respectively. Moreover assume that the function F W
Rn
C
�!RC is convex and F.x1; : : : ;xn/D 0 if and only if xi D 0 for i D 1;2; : : : ;n.

Then
Q�.X/D F.�1.X1/;�2.X2/; : : : ;�n.Xn//;

defines a measure of noncompactness in E1 �E2 � : : :�En where Xi denotes the
natural projection of X into Ei , for i D 1;2; : : : ;n.

Remark 1. Aghajani et al. [1] illustrated the Theorem 3 by the following example.
Let F be as follows:

F.x;y;´/Dmaxfx;y;´g; or F.x;y;´/D xCyC´; for any .x;y;´/ 2 Œ0;1/3:

They showed thate�.X/Dmax.�1.X1/;�2.X2/;�3.X3//; or e�.X/D�1.X1/C�2.X2/C�3.X3/;
defines an MNC in the space E1 �E2 �E3 where Xi , .i D 1;2;3/ are the natural
projection of X into Ei .

Samadi and Ghaemi [10] generalized Darbo’s fixed point theorem as fallow.

Theorem 4. Let U be a nonempty, bounded, closed and convex subset of a Banach
space E. Assume F W U ! U be a continuous operator such that satisfying

 .�.F.X///� �. .�.X/// .�.X//

for all nonempty subsetX of U , where � is an arbitrary MNC inE,  : RC!RC is
nondecreasing function such that  .t/D 0 if and only if t=0 and � W Œ0;1/! Œ0;1/

is a continuous function such that limsupt!r �.t/ < 1 for all r � 0. Then F has a
fixed point in U.

The Darbo’s fixed point theorem is followed if  D I (identity map) and � D K
in the Theorem 4.

2. MAIN RESULTS

Now we state one of the main results in this paper which extends and generalizes
Darbo’s fixed point theorem by using concept of O.f I :/.

Theorem 5. Let C be a nonempty, bounded, closed and convex subset of a Banach
space E and T W C ! C be a continuous operator such that

 ŒO.f I�.TX//�� ˚Œ .O.f I�.X///� .�.X//;
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for X of C , O.�I �/ 2� and let  : RC!RC be a nondecreasing function such that
 .t/ D 0 if and only if t=0. Let ˚ W Œ0;1/! Œ0;1/ is a continuous function such
that limn!1˚n.t/D 0 for each t � 0, where � is an arbitrary MNC. Then T has at
least one fixed point in C .

Proof. By induction, we construct a sequence fCng such that C0DC and CnC1D
Conv.TCn/ for n� 1. We have
TC0 D TC � C D C0, C1 D Conv.TC0/ � C D C0; therefore by continuing this
process deduce that

C0 � C1 � :::� Cn � CnC1 � ::::

If there exists an integer N � 0 such that �.CN /D 0; then CN is relatively com-
pact. In this case Theorem 1 implies that T has a fixed point. Now we suppose that
�.Cn/¤ 0 for n� 0: We have

 ŒO.f I�.CnC1//�D  ŒO.f I�.Conv.TCn///�

D  ŒO.f I�.TCn//�

� ˚Œ .O.f I�.Cn///� .�.Cn//

� ˚2Œ .O.f I�.Cn�1///� .�.Cn�1//

:::

� ˚nŒ .O.f I�.C0///� .�.C0//

D ˚nŒ .O.f I�.C//� .�.C //

(2.1)

By letting n!1 in (1.2) we infer that limn!1 ŒO.f I�.CnC1//�D 0. Therefore,

lim
n!1

 ŒO.f I�.CnC1//�D  ŒO.f I lim
n!1

�.CnC1//�D 0;

we know that O.f I0/D 0. Thus,
limn!1�.CnC1/D 0. SinceCn�CnC1 and TCn�Cn for all nD 1;2;3; ::: then

from 6ı of definition MNC, X1 D \1nD1Xn is a nonempty, closed and convex set,
invariant under T and belongs to Ker�. Consequently, from Theorem 1 we deduce
that T has at least a fixed point. �

Remark 2. The Theorem 4 is followed if O.f I t /D t and f D I in Theorem 5.

The following Corollary is immediate of Theorem 5.

Corollary 1. LetC be a nonempty, bounded, closed and convex subset of a Banach
spaceE, T W C ! C and : RC!RC are continuous functions. Suppose that there
exists a constant 0 < � < 1 such that for all X � C ,

 ŒO.f I�.TX//�� �Œ .O.f I�.X///� .�.X/;

where � is an arbitrary measure of noncompactness and O.�I �/ 2�. Then T has at
least one fixed point in C .
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Remark 3. The Darbo’s fixed point theorem is followed ifO.f I t /D t , f D I and
 D I in Corollary 1 .

Theorem 6. Let C be a nonempty, bounded, closed and convex subset of a Banach
space E and T W C �C �C ! C be a continuous function such that

 ŒO.f I�.T .x1�x2�x3///��
1

3
˚Œ .O.f I�.x1/C�.x2/C�.x3//�

� Œ�.x1/C�.x2/C�.x3/�
(2.2)

for any subset x1;x2;x3 of C , where � is an arbitrary MNC, ˚ W Œ0;1/! Œ0;1/ is
nondecreasing function such that limn!1˚n.t/D 0 for t � 0 and  : RC!RC is
a continuous function such that  .t/ D 0 if and only if t=0. Also, O.�I �/ 2 � and
O.f I t C r C s/ � O.f I t /CO.f Is/CO.f Ir/ for all t; s; r � 0. Then T has at
least a tripled fixed point.

Proof. From Remark 1, we havee�.x/D �.x1/C�.x2/C�.x3/. Now we define
a mapping eT W C �C �C ! C �C �C byeT .x;y;´/D .T .x;y;´/;T .y;x;´/;T .´;y;x//:
It is clear thateT is continuous. We prove thateT satisfies all the conditions of Theorem
5. Let X � C �C �C be any nonempty subset by in (2.2) and 2ı we obtain

 ŒO.f Ie�.eT .x//��  ŒO.f Ie�.T .x1�x2�x3//�T .x2�x1�x3/
�T .x3�x2�x1/�

D  ŒO.f I�.T .x1�x2�x3/C�.T .x2�x1�x3/

C�.T .x3�x2�x1/�

D  ŒO.f I�.T .x1�x2�x3///�C ŒO.f I�.T .x2�x1�x3///�

C ŒO.f I�.T .x3�x2�x1///�

�
1

3
˚Œ .O.f I�.x1/C�.x2/C�.x3//� Œ�.x1/C�.x2/C�.x3/�

C
1

3
˚Œ .O.f I�.x2/C�.x1/C�.x3//� Œ�.x2/C�.x1/C�.x3/�

C
1

3
˚Œ .O.f I�.x3/C�.x2/C�.x1//� Œ�.x3/C�.x2/C�.x1/�

D ˚Œ .O.f I�.x1/C�.x2/C�.x3//� Œ�.x1/C�.x2/C�.x3/�:

From Theorem 5 deduce that eT has at least a fixed point in C �C �C and T has at
least a tripled fixed point. �

As application of Theorem 6 we can get the following corollary.
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Corollary 2. LetC be a nonempty, bounded, closed and convex subset of a Banach
space E and T W C �C �C ! C be a continuous function such that

�.T .x1�x2�x3//�
1

3
˚.�.x1/C�.x2/C�.x3//;

for any subset x1;x2;x3 ofC , where� is an arbitrary MNC. Also,˚ W Œ0;1/! Œ0;1/

is a nondecreasing function such that limn!1˚n.t/D 0 for t � 0. Then T has at
least a tripled fixed point.

3. APPLICATION

In this section as an application of Theorem 6 and Corollary 2 we study the exist-
ence of solutions for the system of equations (1.1). Let the space C Œ0;T � consisting
of all real functions defined, bounded and continuous on the interval Œ0;T � equipped
with the standard norm

kxk D supfjx.t/j W t 2 Œ0;T �g:

Recall that the modulus of continuity of a function x 2 C Œ0;T � is defined by

!.x;�/D supfjx.t/�x.s/j W t; s 2 Œ0;T �; jt � sj � �g:

Since x is uniformly continuous on Œ0;T � then !.x;�/! 0 as �! 0 and the Haus-
dorff measure of noncompactness for all bounded sets ˝ of C Œ0;T � is equivalent
to

�.˝/D lim
�!0

n
sup
x2X

!.x;�/
o
:

See more detail [3].

Now we consider the following assumptions:

.A1/ �;ˇ W Œ0;T �! Œ0;T � are continuous functions.

.A2/ The function f W Œ0;T ��R6 ! R is continuous and there exist continuous
and nondecreasing functions ';� W RC �! RC such that limn!1˚n.t/D 0
for t � 0 and

jf .t;x1;x2; : : : ;x6/�f .t;y1;y2; : : : ;y6/j � �. max
1�i�3

jxi �yi j/C (3.1)

1

3
'.jx4�y4jC jx5�y5jC jx6�y6j/

.A3/ There exists a positive solution r0 of the inequality

M C�.T r/C
1

3
'.3r/� r (3.2)

where

M D supfjf .t;x0;y0;´0;0;0;0/j W t 2 Œ0;T �g:
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Now, let us put x0.t/DX.t/, y0.t/D Y.t/ and ´0.t/DZ.t/. Then the problem (1.1)
can be replaced equivalently by the following functional-integral equation8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

X.t/D f
�
t;x0C

Z �.t/

0

X.s/ds;y0

C

Z �.t/

0

Y.s/ds;´0C

Z �.t/

0

Z.s/ds;X.ˇ.t/;Y.ˇ.t/;Z.ˇ.t/
�

Y.t/D f
�
t;y0C

Z �.t/

0

Y.s/ds;x0

C

Z �.t/

0

X.s/ds;´0C

Z �.t/

0

Z.s/ds;Y.ˇ.t/;X.ˇ.t/;Z.ˇ.t/
�

Z.t/D f
�
t;´0C

Z �.t/

0

Z.s/ds;y0

C

Z �.t/

0

Y.s/ds;x0C

Z �.t/

0

X.s/ds;X.ˇ.t/;Y.ˇ.t/;Z.ˇ.t/
�

(3.3)

where t 2 Œ0;T �. In the sequel we will examine the equation (3.3).

Theorem 7. Under the assumptions .A1/� .A3/ the equation .3:3/ has at least
one solution x 2 fC Œ0;T �g3

Proof. Let us consider the operator T defined on the space C Œ0;T � by the formula

T .x;y;´/.t/D f
�
t;x0C

Z �.t/

0

X.s/ds;y0C

Z �.t/

0

Y.s/ds;´0

C

Z �.t/

0

Z.s/ds;X.ˇ.t/;Y.ˇ.t/;Z.ˇ.t/
� (3.4)

for all t 2 Œ0;T �. Observe that in view of assumptions .A1/ and .A2/, the function
T x is continuous on Œ0;T � for any x 2 C Œ0;T �, i.e. T transforms the space C Œ0;T �
into itself. For arbitrarily fixed t 2 Œ0;T �, we have

jT .x;y;´/.t/j �jf
�
t;x0C

Z �.t/

0

x.s/ds;y0C

Z �.t/

0

y.s/ds;´0

C

Z �.t/

0

´.s/ds;x.ˇ.t//;y.ˇ.t//;´.ˇ.t//
�

�f .t;x0;y0;´0;0;0;0/jC jf .t;x0;y0;´0;0;0;0/j

��
�

max
˚
j

Z �.t/

0

x.s/dsj; j

Z �.t/

0

y.s/dsj; j

Z �.t/

0

´.s/dsj
	�

C
1

3
'.jx.ˇ.t//jC jy.ˇ.t//jC j´.ˇ.t//j/

Cjf .t;x0;y0;´0;0;0;0/j

��
�
T max

˚
kxk;kyk;k´k

	�
C
1

3
'.kxkCkykCk´k/CM
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Thus,

kT .x;y;´/k � �
�
T max

˚
kxk;kyk;k´k

	�
C
1

3
'.kxkCkykCk´k/CM (3.5)

and T .x;y;´/ 2 C Œ0;T � for any .x;y;´/ 2 .C Œ0;T �/3 . Due to Inequality (3.2) the
function T maps . NBr0/

3 into NBr0 . Now we show that T is a continuous function on
. NBr0/

3. To do this, let us fix " > 0 and take arbitrary .x;y;´/; .u;v;w/ 2 . NBr0/
3 such

that max
˚
kx�uk;ky�vk;k´�wk

	
< ". Then, for t 2 Œ0;T �, we haveˇ̌̌

T .x;y;´/.t/�T .u;v;w/.t/
ˇ̌̌
�

ˇ̌̌
f
�
t;x0C

Z �.t/

0

x.s/ds;y0C

Z �.t/

0

y.s/ds;´0

C

Z �.t/

0

´.s/ds;x.ˇ.t//;y.ˇ.t//;´.ˇ.t//
�

�f
�
t;x0C

Z �.t/

0

u.s/ds;y0C

Z �.t/

0

v.s/ds;´0

C

Z �.t/

0

w.s/ds;u.ˇ.t//;v.ˇ.t//;w.ˇ.t//
�ˇ̌̌

� �
�

max
˚Z �.t/

0

jx.s/�u.s/jds;

Z �.t/

0

jy.s/�v.s/jds;Z �.t/

0

j´.s/�w.s/jds
	�

C
1

3
'
�
jx.ˇ.t//�u.ˇ.t//jC jy.ˇ.t//�v.ˇ.t//j

C j´.ˇ.t//�w.ˇ.t//j
�

� �.T "/C
1

3
'.3"/

So we have �.T "/C 1
3
'.3"/ �! 0 as " �! 0. Thus T is a continuous function on

. NBr0/
3. Now we show that T satisfies all the conditions of Corollary 2. Let X1, X2

and X3 be nonempty and bounded subsets of NBr0 . Assume that " > 0 is arbitrary
constant. Also we take t1; t2 2 Œ0;T �, with jt2 � t1j � " and x 2 X1, y 2 X2 and
´ 2X3. Then we have
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ˇ̌̌
T.x;y;´/.t1/�T.x;y;´/.t2/

ˇ̌̌
�

ˇ̌̌
f
�
t1;x0C

Z �.t1/
0

x.s/ds;y0C

Z �.t1/
0

y.s/ds;´0

C

Z �.t1/
0

´.s/ds;x.ˇ.t1//;y.ˇ.t1//;´.ˇ.t1//
�

�f
�
t1;x0C

Z �.t1/
0

x.s/ds;y0C

Z �.t1/
0

y.s/ds;´0

C

Z �.t1/
0

´.s/ds;x.ˇ.t2//;y.ˇ.t2//;´.ˇ.t2//
�ˇ̌̌

C

ˇ̌̌
f
�
t1;x0C

Z �.t1/
0

x.s/ds;y0C

Z �.t1/
0

y.s/ds;´0

C

Z �.t1/
0

´.s/ds;x.ˇ.t2//;y.ˇ.t2//;´.ˇ.t2//
�

�f
�
t2;x0C

Z �.t1/
0

x.s/ds;y0C

Z �.t1/
0

y.s/ds;´0

C

Z �.t1/
0

´.s/ds;x.ˇ.t2//;y.ˇ.t2//;´.ˇ.t2//
�ˇ̌̌

C

ˇ̌̌
f
�
t2;x0C

Z �.t1/
0

x.s/ds;y0C

Z �.t1/
0

y.s/ds;´0

C

Z �.t1/
0

´.s/ds;x.ˇ.t2//;y.ˇ.t2//;´.ˇ.t2//
�

�f
�
t2;x0C

Z �.t1/
0

x.s/ds;y0C

Z �.t1/
0

y.s/ds;´0

C

Z �.t1/
0

´.s/ds;x.ˇ.t2//;y.ˇ.t2//;´.ˇ.t2//
�ˇ̌̌

C

ˇ̌̌
f
�
t2;x0C

Z �.t1/
0

x.s/ds;y0C

Z �.t1/
0

y.s/ds;´0

C

Z �.t1/
0

´.s/ds;x.ˇ.t2//;y.ˇ.t2//;´.ˇ.t2//
�

�f
�
t2;x0C

Z �.t1/
0

x.s/ds;y0C

Z �.t1/
0

y.s/ds;´0

C

Z �.t1/
0

´.s/ds;x.ˇ.t2//;y.ˇ.t2//;´.ˇ.t2//
�ˇ̌̌

�
1

3
'
�
jx.ˇ.t1//�x.ˇ.t2//jC jy.ˇ.t1//�y.ˇ.t2//j

C j´.ˇ.t1//�´.ˇ.t2//j
�
C!.f;"/

C�
�

max
˚Z �.t1/
�.t2/

jx.s/jds;

Z �.t1/
�.t2/

jy.s//jds;Z �.t1/
�.t2/

j´.s/jds
	�

�
1

3
'
�
!.x;!.ˇ;"//C!.y;!.ˇ;"//C!.´;!.ˇ;"//

�
C!.f;"/C�

�
max

˚
r0!.�;"/

	�
;
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where

!.ˇ;"/D sup
n
jˇ.t2/�ˇ.t1/j W jt1� t2j � "; t1; t2 2 Œ0;T �

o
!.�;"/D sup

n
j�.t2/� �.t1/j W t1; t2 2 Œ0;T �; jt1� t2j � "

o
!.x;!.ˇ;"//D sup

n
jx.t2/�x.t1/j W jt1� t2j � !.ˇ;"/; t1; t2 2 Œ0;ˇ.T /�

o
;

!.f;"/D sup
n
jf .t1;x1;x2; :::x6/�f .t2;x1;x2; :::x6/j W jt1� t2j � ";

t1; t2 2 Œ0;T �;x4;x5;x6 2 Œ�r0; r0�;x1;x2;x3 2 Œ�ˇ.T /r0;ˇ.T /r0�
o
:

We obtainedˇ̌̌
T .x;y;´/.t1/�T .x;y;´/.t2/

ˇ̌̌
�
1

3
'
�
!.x;!.ˇ;"//C!.y;!.ˇ;"//C!.´;!.ˇ;"//

�
C!.f;"/C�

�
max

˚
r0!.�;"/

	�
Therefore, we have

!
�
T .X1�X2�X3/;"

�
�
1

3
'
�
!.X1;!.ˇ;"//C!.X2;!.ˇ;"//C!.X3;!.ˇ;"//

�
C!.f;"//C�

�
max

˚
r0!.�;"/

	
:

On the other hand by the uniform continuity of f , ˇ and � on Œ0;T ��Œ�ˇ.T /r0;ˇ.T /r0�3�
Œ�r0; r0�

3, Œ0;T � and Œ0;T � respectively, we have
!.f;"/ �! 0, !.ˇ;"/ and !.�;"/ �! 0 as " �! 0. Therefore we obtain

�
�
T .X1�X2�X3

�
�
1

3
'
�
�.X1/C�.X2/C�.X3/

�
:

By applying Corollary 2, T has a fixed point.
�

Example 2. Consider the following system of functional differential equations8<:
x0.t/D t2C 3

p
x.t/C 5

p
y.t/C 7

p
´.t/C 1

3
ln.1Cjx0.t/Cy0.t/C´0.t/j/

y0.t/D t2C 3
p
y.t/C 5

p
x.t/C 7

p
´.t/C 1

3
ln.1Cjx0.t/Cy0.t/C´0.t/j/

´0.t/D t2C 3
p
´.t/C 5

p
y.t/C 7

p
x.t/C 1

3
ln.1Cjx0.t/Cy0.t/C´0.t/j/

(3.6)
where t 2 Œ0;3� with the initial condition

x.0/D 3; y.0/D 1; ´.0/D 2:

Eq. (3.6) is a special case of Eq. (1.1) where

ˇ.t/D �.t/D t;
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f .t;x1; : : : ;x6/D t
2
C 3
p
x1C

5
p
x2C

7
p
x3C

1

3
ln.1Cjx4Cx5Cx6j/:

From the definitions of ˇ and �, hypothesis .A1/ are obviously satisfied. Suppose
that t 2 Œ0;3�. Now, by taking '.t/D ln.1C t /, �.t/DmaxiD3;5;7f i

p
tg we have

jf .t;x1; : : : ;x6/�f .t;y1; : : : ;y6/j � j
3
p
x1�

3
p
y1jC j

5
p
x2�

5
p
y2jC j

7
p
x3�

7
p
y3j

C
1

3
j ln.1Cjx4Cx5Cx6j/

� ln.1Cjy4Cy5Cy6j/

� j
3
p
x1�

3
p
y1jC j

5
p
x2�

5
p
y2jC j

7
p
x3�

7
p
y3j

C
1

3
ln.1C

jx4Cx5Cx6j� jy4Cy5Cy6j

1Cjy4Cy5Cy6j
/

�
3
p
jx1�y1jC

5
p
jx2�y2jC

7
p
jx3�y3j

C
1

3
ln.1Cjx4Cx5Cx6� .y4Cy5Cy6/j/

�
3
p
jx1�y1jC

5
p
jx2�y2jC

7
p
jx3�y3j

C
1

3
ln.1Cjx4�y4jC jx5�y5jC jx6�y6j/

D
1

3
'.jx4�y4jC jx5�y5jC jx6�y6j/

C�. max
iD1;2;3

fjxi �yi jg/:

(3.7)
Thus, from (3.7) we infer that condition .A2/ holds. Furthermore,

M D supfjf .t;x0;y0;´0;0;0;0/j W t 2 Œ0;T �g

D supft2C 3
p
3C

5
p
1C

7
p
2 W t 2 Œ0;3�g

� 12:

It is easy to see that each number r � 20 satisfies the inequality in condition .A3/,
i.e.,

12C�.3r/C
1

3
'.3r/� r:

Thus, as the number r0 we can take r0 D 20. Consequently, all the conditions of
Theorem 7 are satisfied. Hence the system equations 3.6 has at least one solution
which belong to the space fC Œ0;T �g3.
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