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ON THE DECOMPOSABILITY OF LINEAR COMBINATIONS OF
EULER POLYNOMIALS

ÁKOS PINTÉR AND CSABA RAKACZKI

Received 01 July, 2016

Abstract. Considering the effect of addition to the polynomial decomposition, we present some
results on the decomposability of linear combinations of Euler polynomials.
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1. INTRODUCTION

Let K be a field. If f .x/ 2 KŒx� has degree at least 2, we say that f .x/ is de-
composable over the field K if we can write f .x/ D f1.f2.x// for some nonlinear
polynomial f1.x/, f2.x/ 2 KŒx�. Otherwise, we say that f .x/ is indecomposable
over K. Two decompositions f .x/D f1.f2.x// and f .x/D F1.F2.x// are said to
be equivalent over the field K, written f1 ı f2 �K F1 ıF2, if there exists a linear
polynomial l.x/ 2 KŒx� such that

f1.x/D F1.l.x// and F2.x/D l.f2.x//:

For a given f .x/ 2 KŒx� with degree at least 2, a complete decomposition of f .x/
over K is a decomposition f D f1 ı � � � ıfk , where the polynomials fi 2 KŒx� are in-
decomposable over K for i D 1; : : : ;k. A polynomial of degree greater than 1 always
has a complete decomposition. However, it is not unique even up to equivalence.

Euler polynomials are defined by the following generating function
1X

nD0

En.x/
tn

nŠ
D

2

et C1
etx :

Euler polynomials appear in statistical physics as well as in semi-classical approx-
imations to quantum probability distributions (see [2]), in various approximation and
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expansion formulas in discrete mathematics and in number theory (see for instance
[1], [4]), in p-adic analysis (see [8], Chapter 2).

In their paper, Kreso and Rakaczki [9] proved that every Euler polynomial with
odd degree is indecomposable, while if the degree is even, they characterized all the
possible decompositions. For further results for the decomposability of an infinite
family of polynomials we refer to [3], [6] and [5].

The purpose of this note is to investigate the decomposability of the family of
polynomials Pn.x/ generated by the following function

1X
nD0

Pn.x/
tn

nŠ
D g.t/etx; (1.1)

where

g.t/D
p.t/

et C1
D
akt

kC�� �Ca1tCa0

et C1
; ak; : : : ;a0 2Q:

If p.t/D 2 we get back the Euler polynomials. From the above generating function
(1.1) one can deduce that

Pn.x/ (1.2)

D

8<:
a0

2
, if nD 0;

a0

2
En.x/C

Pn
jD1

aj

2
n.n�1/ � � �.n� .j �1//En�j .x/, if 1� n < k;

a0

2
En.x/C

Pk
jD1

aj

2
n.n�1/ � � �.n� .j �1//En�j .x/, if n� k.

Actually, the polynomials Pn.x/ are linear combinations of Euler polynomials
with rational coefficients.

One can begin with the simple case when the polynomial p.t/D a2t
2Ca0. We

obtain that

P0.x/D
a0

2
;P1.x/D

a0

2
E1.x/ and Pn.x/D

a0

2
En.x/C

a2

2
n.n�1/En�2.x/

for n� 2. In this paper we prove that the polynomial

Pn.x/DEn.x/C cEn�2.x/; n 2N

is always indecomposable provided that n is odd. If n is even then we give a possible
decomposition of Pn.x/ and formulate a conjecture about the complete decomposi-
tion of Pn.x/. Our results and the conjecture will be presented in the next Section.
In Section 3 we collect the auxiliary results and lemmas. The proofs of our theorems
are in Section 4.

2. NEW RESULTS

Theorem 1. Let Pn.x/ D En.x/C cEn�2.x/, where c is an arbitrary rational
number, n � 2 is an integer. Then the polynomials Pn.x/ are indecomposable for
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all odd n. In the case when the degree n is even then the polynomial Pn.x/ has the
following decomposition:

Pn.x/D F.x
2
�x/; (2.1)

where F.x/ 2QŒx�.

We note that this theorem is a generalization of the result of Kreso and Rakaczki
[9] when n is odd since we get back their result taking c D 0 in our theorem. The
proof of the second part of Theorem 1 is trivial, because for even n, we haveEn.x/D
QEn.x

2�x/ with QEn.x/ 2ZŒx�.
Let

SC D ff .x/ 2CŒx� j f .x/D f .1�x/g

and
S� D ff .x/ 2CŒx� j f .x/D�f .1�x/g :

Theorem 2. Let P.x/ 2QŒx� be a monic polynomial. If P.x/ 2 SC then P.x/ is
always decomposable and has the following decomposition

P.x/D F.x2
�x/;

where F.x/ 2QŒx�.

The following conjecture is based on a long and straightforward computation.

Conjecture 1. Let n be an even positive integer and c be an arbitrary rational
number. Then every decomposition of the polynomial Pn.x/DEn.x/CcEn�2.x/ is
equivalent to (2.1).

In [10] we proved a similar result for the linear combinations of Bernoulli polyno-
mials, however, in Bernoulli case there are some exceptional cases.

Another conjecture based on our computational experiments, Theorem 1 above
and Theorem in [10] is the next

Conjecture 2. Let m;n be odd positive integers and c be an arbitrary rational
number. Then the polynomials Em.x/C cEn.x/ and Bm.x/C cBn.x/ are indecom-
posable.

3. AUXILIARY RESULTS

Lemma 1. Let f .x/, g.x/ 2 RŒx� be monic polynomials with degf .x/, degg.x/
� 2 and a 2 R. Denote by mult.˛;f .x// the multiplicity of the root ˛ of the polyno-
mial f .x/. Suppose that

mult.a=2;g.a�x/�g.x// <mult.a=2;f .g.a�x//�f .g.x///:

Then f 0.g.a=2//D 0.
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Proof. Let f .x/D xkCbk�1x
k�1C�� �Cb1xCb0. By expanding f .g.a�x//�

f .g.x// we get

f .g.a�x//�f .g.x//D .g.a�x/�g.x//H.x/; (3.1)

where

H.x/D g.a�x/k�1
Cg.a�x/k�2g.x/C�� �Cg.a�x/g.x/k�2

Cg.x/k�1
C

bk�1

�
g.a�x/k�2

Cg.a�x/k�3g.x/C�� �Cg.a�x/g.x/k�3
Cg.x/k�2

�
C�� �Cb3

�
g.a�x/2Cg.a�x/g.x/Cg.x/2

�
Cb2.g.a�x/Cg.x//Cb1: (3.2)

We know thatH.a=2/D 0 by the condition of the Lemma. But from (3.2) we get that
H.a=2/D kg.a=2/k�1C.k�1/bk�1g.a=2/

k�2C�� �C3b3g.a=2/
2C2b2g.a=2/C

b1 D f
0.g.a=2//. �

Lemma 2. Let f .x/D bkx
kC�� �Cb1xCb0 2 S

C[S�. Then

bk�1 D�
k

2
bk and bk�3 D

k.k�1/.k�2/

24
bk �

k�2

2
bk�2: (3.3)

Further, if f .x/ 2 SC, then degf .x/ is even, while if f .x/ 2 S� then degf .x/ is
odd and f .1=2/D 0.

Proof. Compare the coefficients of xk , xk�1 and xk�3 in the equality f .x/ D
˙f .1�x/. �

Lemma 3. Let f .x/, g.x/ 2 SC be polynomials with g ¤ 0. Then there exist
unique polynomials q.x/, r.x/ 2 SC such that

f .x/D q.x/g.x/C r.x/ and degr.x/ < degg.x/: (3.4)

Proof. From the long division algorithm for polynomials we know that there exist
unique polynomials q.x/, r.x/ 2 CŒx� satisfying (3.4). Since f .x/D f .1�x/ and
g.x/D g.1�x/, (3.4) gives that

f .x/D q.1�x/g.x/C r.1�x/: (3.5)

It follows from (3.4) and (3.5) that

0D g.x/.q.1�x/�q.x//C r.1�x/� r.x/: (3.6)

If q.1�x/¤ q.x/ then

deg.g.x/.q.1�x/�q.x///� degg.x/ > deg.r.1�x/� r.x//

which contradicts (3.6). This means that q.x/ 2 SC and so r.x/ 2 SC. �

The following two results are general theorems from the theory of decomposabil-
ity.
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Lemma 4 (Kreso and Rakaczki [9]). Let F.x/ 2 KŒx� be a monic polynomial
such that degF is not divisible by the characteristic of the field K. Then for every
nontrivial decomposition F D F1 ıF2 over any field extension L of K, there exists a
decomposition F D QF1 ı QF2 such that the following conditions are satisfied

� QF1 ı QF2 and F1 ıF2 are equivalent over L,
� QF1.x/ and QF2.x/ are monic polynomials with coefficients in K;

� coeff .xdeg QF1�1; QF1.x//D 0:

Moreover, such decomposition QF1 ı QF2 is unique.

Lemma 5 (I. Gusić [7]). Let K be a field of characteristic zero. Suppose that the
nonconstant polynomials g;h;G;H 2KŒx� satisfy gıhDG ıH and deghD degH .
Then there exists a, b 2 K. such that

H.x/D ah.x/Cb; G.x/D g

�
1

a
x�b

�
:

Lemma 6. Let P.x/ 2QŒx� be a monic polynomial. Assume that P.x/ 2 S� and
P.x/D f .g.x//, where f .x/, g.x/ 2QŒx� and deg.f .x//;deg.g.x// > 1. Then we
can assume that f .x/, g.x/ are monic, g.x/ 2 S� and f .x/D�f .�x/.

Proof. From Lemma 4 we can assume that f .x/, g.x/ 2 QŒx� are monic and
coeff .xdegf .x/�1;f .x// D 0. Let f .x/ D xk C bk�2x

k�2C �� � C b1xC b0 and
g.x/D xt C ct�1x

t�1C�� �C c1xC c0. Since

f .g.x//D P.x/D�P.1�x/D�f .g.1�x//;

from Lemma 5 we obtain that there exist a, b 2Q such that

g.x/D ag.1�x/Cb; f .x/D�f

�
1

a
x�b

�
: (3.7)

It follows from degP.x/D kt and Lemma 2 that k and t are odd. Investigation of the
coefficient of xt in the equality g.x/D ag.1�x/Cb yields that 1D .�1/taD�a.
Now, comparing the coefficient of xk�1 in the equality f .x/ D �f .�x � b/ we
obtain that 0D kb, that is b D 0. This proves our assertion. �

Finally, we need the following lemma, in which we collect some well known prop-
erties of the Euler polynomials which will be used in the sequel, sometimes without
particular reference.

Lemma 7.
(a) En.x/D .�1/

nEn.1�x/;
(b) En.xC1/CEn.x/D 2x

n;
(c) E 0n.x/D nEn�1.x/;
(d) E2n�1.1=2/DE2n.0/DE2n.1/D 0 for n 2N;
(e) En.x/D

Pn
kD0

�
n
k

�
Ek.0/x

n�k;
(f) E2n�1.0/E2nC1.0/ < 0 for n 2N.
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Proof. See [4]. �

4. PROOFS OF THE THEOREMS

Proof of Theorem 2. We prove the assertion by using induction on n, the degree
of the polynomial P.x/. If n D 0, that is P.x/ is a constant polynomial then the
assertion is trivial. Now assume that the result is true for polynomial of degree less
than n. From Lemma 3 we can deduce that P.x/ D q.x/.x2 � x/C r.x/, where
q.x/, r.x/ 2 SC and degr.x/ < 2. But this means that r.x/ is a constant polynomial
and P.x/ D q.x/.x2 � x/Cp0, where p0 is a rational number. By the induction
hypothesis, q.x/DQ.x2�x/ with Q.x/ 2QŒx�, and thus our statement is proved.

Proof of Theorem 1. Let n be odd. From the part (a) of Lemma 7 we have
Pn.x/ 2 S

�. Suppose that Pn.x/ D f .g.x//. From Lemma 6 we can assume that
f .x/, g.x/ 2QŒx� are monic, g.x/ 2 S�, f .x/D�f .�x/. Let

f .x/D xk
Cbk�2x

k�2
Cbk�4x

k�4
C : : :Cb3x

3
Cb1x;

g.x/D xt
C ct�1x

t�1
C : : :C c1xC c0:

Using (b) of Lemma 7 one can deduce that

f .g.xC1//Cf .g.x//D Pn.xC1/CPn.x/D 2x
n
C2cxn�2: (4.1)

Since Pn.x/ 2 S
� thus Pn.xC1/D�Pn.�x/. From (4.1) we infer that the polyno-

mial g.x/�g.�x/ divides the polynomial Pn.x/�Pn.�x/D 2x
nC2cxn�2 and so

one of the cases

g.x/�g.�x/D

8<:
.i/ dxs;
.i i/ dxs.x� e/, where e 2

˚
˙
p
c
	
;

.i i i/ dxs.x2C c/.
(4.2)

holds. We know that

g.x/�g.�x/D 2xt
C2ct�2x

t�2
C�� �C2c3x

3
C2c1x: (4.3)

Consider the above three cases in (4.2). The case .i i/ is simple. In this case x D e
is a root of the odd polynomial g.x/�g.�x/, but then x D �e must be also a root
which only possible if c D 0. If c D 0 we get back the case .i/.

In the case .i/ we have d D 2, s D t and

ct�2 D ct�4 D �� � D c3 D c1 D 0 (4.4)

by (4.3). Since the polynomial f .x/ is odd, it is easy to see that the coefficient
of the monomial xn�4 depends only on the term g.x/k in f .g.x// D g.x/k C

bk�2g.x/
k�2C �� � C b1g.x/. By expanding g.x/k and using (4.4) and Lemma 2

we get that this coefficient is

t4

16

 
k

4

!
�
t

4

 
k

2

! 
t

3

!
:
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On the other hand the coefficient of xn�4 of Pn.x/DEn.x/C cEn�2.x/ is 0 by (d)
and (e) of Lemma 7 . Thus we get the following equation

0D
t4

16

 
k

4

!
�
t

4

 
k

2

! 
t

3

!
D
t2k.k�1/

384
.t2.k�2/.k�3/�8.t �1/.t �2//: (4.5)

From this one can deduce that t divides 8.t �1/.t �2/ which is impossible because
t � 3 is an odd integer.

Investigate now the case .i i i/. It is easy to see that d D 2 and s D t � 2. If we
assume that t > 3 then we get from (4.3) that c1 D g

0.0/ D 0 and ct�2 D c. It is
follows from

f .g.x//�f .g.�x//D 2xn
C2cxn�2 and n > t � 3

that

n�2Dmult.0;f .g.x//�f .g.�x/// >mult.0;g.x/�g.�x//D t �2:

By Lemma 1 one can obtain that f 0.g.0//D 0. From

P 0n.x/D nEn�1.x/C c.n�2/En�3.x/D f
0.g.x//g0.x/ (4.6)

we infer that x D 0 is a zero of P 00n .x/, that is

0D n.n�1/En�2.0/C c.n�2/.n�3/En�4.0/: (4.7)

After a simple rearrange we obtain from .f / of Lemma 7 that

c D�
n.n�1/En�2.0/

.n�2/.n�3/En�4.0/
> 0: (4.8)

On the other hand, if we compare the coefficient of xn�2 in the equality Pn.x/D

f .g.x// we have that

c D kct�2C

 
k

2

!
c2

t�1 D ckC

 
k

2

!
t2

4
:

But this means that

c D
1

1�k

 
k

2

!
t2

4
D�k

t2

8
< 0; (4.9)

which contradicts (4.8).
In the remaining case when t D degg.x/ D 3 one can deduce from g.x/ 2 S�,

ct�2 D c and Lemma 2 that

g.x/D x3
�
3

2
x2
C cxC

1

4
�
1

2
c: (4.10)
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Computing the coefficients of xn�4 in the equality En.x/C cEn�2.x/ D f .g.x//

we obtain that

0D
81

16

 
k

4

!
C c2

 
k

2

!
C
27

4
c

 
k

3

!
�3

 
k

2

!�
1

4
�
1

2
c

�
: (4.11)

Combining (4.11) with (4.9) we have that

0D�
27

64
k4
C
135

128
k3
C
33

128
k2
�
57

64
k;

whence

k D 0; 1;
3

4
˙

p
385

12
:

In the case when n is even the assertion follows from (a) of Lemma 7 and The-
orem 2.
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