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Sensitivity of output of a linear operator to its input can be quantified in various ways.

In Control Theory, the input is usually interpreted as disturbance and the output is to

be minimized in some sense. In stochastic worst-case design settings, the disturbance

is considered random with imprecisely known probability distribution. The prior set of

probability measures can be chosen so as to quantify how far the disturbance deviates

from the white-noise hypothesis of Linear Quadratic Gaussian control. Such deviation

can be measured by the minimal Kullback-Leibler informational divergence from the

Gaussian distributions with zero mean and scalar covariance matrices. The resulting

anisotropy functional is defined for finite power random vectors. Originally, anisotropy

was introduced for directionally generic random vectors as the relative entropy of the

normalized vector with respect to the uniform distribution on the unit sphere. The

associated a-anisotropic norm of a matrix is then its maximum root mean square or

average energy gain with respect to finite power or directionally generic inputs whose

anisotropy is bounded above by a ≥ 0. We give a systematic comparison of the anisotropy

functionals and the associated norms. These are considered for unboundedly growing

fragments of homogeneous Gaussian random fields on multidimensional integer lattice

to yield mean anisotropy. Correspondingly, the anisotropic norms of finite matrices are

extended to bounded linear translation invariant operators over such fields.

Keywords: Gaussian Random Field, Kullback-Leibler Informational Divergence, Mean

Anisotropy, Anisotropic Norm.

AMS (MOS) subject classification. 60G60, 94A17, 60B12, 47B35.

1 Introduction

The sensitivity of the output of a given linear operator to its input can be quantified
in many different ways. This issue is important in the situations, normally studied
by Control Theory, where the input plays the role of a disturbance and it is desirable
to minimize the output in some sense. In turn, this last is associated with a certain
performance criterion and depends on assumptions made on the input.

For deterministic disturbances, the largest singular value of the operator can be
used. In application to dynamic systems, this approach is employed by H∞ control
theory, e.g. [26, 8, 7, 16] to mention a few. Alternatively, if the disturbance is a random
vector with homoscedastic uncorrelated entries, then an appropriate measure of the
sensitivity is the trace norm of the operator. This “white noise” hypothesis is the
principal supposition in Wiener-Hopf-Kalman filtering and Linear Quadratic Gaussian
(LQG) control theories [11, 25, 1, 5, 13].

In more realistic situations, one is confronted by statistical uncertainty where the
disturbance can be considered random, but with imprecisely known probability distrib-
ution. The associated set of probability measures constitutes the prior information on
the disturbance. This leads to stochastic worst-case design problems which nowadays
form a wide area of research, see e.g. [21, 14] and references therein.

Among various settings which are possible within the paradigm, we choose the one
where the prior set of probability distributions serves to quantify how far the disturbance
is expected to deviate from the white-noise hypothesis of LQG control. As a measure of
such deviation we use the minimal Kullback-Leibler informational divergence [9, Chap-
ter 5] of the probability distribution of a random vector from the Gaussian distributions
with zero mean and scalar covariance matrices.

The resulting functional, called anisotropy, is well defined for absolutely continuously
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distributed square integrable (or briefly, finite power) random vectors. The so-defined
anisotropy functional was studied in [23] and is not dissimilar to the power-entropy
construct considered in [2] for scalar random variables. The sensitivity of a linear
operator can then be described by its a-anisotropic norm defined as the maximum root
mean square gain of the operator with respect to random vectors whose anisotropy
is bounded above by a given nonnegative parameter a. The corresponding worst-case
input turns out to be Gaussian distributed with zero mean. In [23] this approach was
used to develop a robust performance analysis of control systems evolving on a finite
discrete time horizon.

The anisotropy-based approach to quantitative description of the statistical uncer-
tainty in entropy theoretic terms for the purposes of robust control was proposed in
[19] and [22], where anisotropy of a random vector was defined in a different way, as
the relative entropy of the normalized vector with respect to the uniform distribution
on the unit sphere. The associated a-anisotropic norm is the maximum average energy
gain with respect to directionally generic disturbances for which the normalized vec-
tor is well-defined and absolutely continuously distributed on the sphere. In [22], the
anisotropy functional was also extended to stationary Gaussian sequences by computing
it for increasingly long fragments of the sequence and taking an appropriate limit to
obtain mean anisotropy per unit time.

The present paper is aimed at a more systematic comparison of the anisotropy
functionals and anisotropic norms and at generalization of the aforementioned con-
structs to bounded linear translation-invariant operators over vector-valued homoge-
neous Gaussian random fields on multi-dimensional integer lattices. These results can
find applications in robust recovery of multivariate functions by noise corrupted data,
e.g. in image processing, and in robust control of flexible structures.

The paper is organized as follows. Sections 2 and 3 provide definitions and basic
properties of the anisotropy functionals for the classes of directionally generic and finite
power random vectors. Complementing the results of [23, Section 2.2], the functionals
are compared in Section 4 where a class of quasigaussian random vectors is described
for which the anisotropies share the same value. In Section 5, the anisotropies are
computed for zero mean Gaussian random vectors. Section 6 gives definitions and
basic properties of the anisotropic norms of matrices induced by the aforementioned
anisotropy functionals. In Sections 7 and 8, the anisotropies are considered for fragments
of a homogeneous Gaussian random field on a multidimensional integer lattice obtained
by restricting the field to finite subsets of the lattice. In Section 8, it is shown that as the
subsets tend to infinity in the sense of van Hove, widely used in Statistical Mechanics
of lattice systems [15, 18], the properly normalized anisotropies have a common limit,
the mean anisotropy of the field. In Sections 9 and 10, the anisotropic norm is defined
for bounded linear translation invariant operators over homogeneous Gaussian random
fields, and formulas are given for computing the norm. In Section 11, an asymptotic
connection of the norm is established with those of finite dimensional projections of the
operator associated with finite subsets of the lattice. In Sections 12 and 13, proofs of
the main theorems are given along with subsidiary lemmas.
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2 Directionally Generic Random Vectors

Recall that for probability measures M and N on a common measurable space (X, E),
the Kullback-Leibler informational divergence [9, p. 89] of M with respect to (wrt) N
is defined as

D(M‖N) =
{

E ln dM
dN if M � N

+∞ otherwise .

Here, E( · ) denotes expectation in the sense of M , and dM/dN : X → R+ is the Radon-
Nikodym derivative in the case of absolute continuity of M wrt N written as M � N .
By the Divergence Inequality [9, Lemma 5.2.1 on p. 90], the quantity D(M‖N) is
always nonnegative and is only zero if M = N .

If M and N are probability distributions of random elements ξ and η or are given by
their probability density functions (pdf) f and g wrt a common dominating measure, we
shall, slightly abusing notations, occasionally replace the symbols M or N in D(M‖N)
with ξ, f or η, g, respectively.

Definition 2.1:Say that a Rm-valued random vector W , defined on an underlying
probability space (Ω,F ,P), is directionally generic if P(W = 0) = 0 and the probability
distribution of W/|W | is absolutely continuous wrt to the uniform distribution Um on
the unit sphere Sm = {s ∈ Rm : |s| = 1}.

Denote by Dm the class of m-dimensional directionally generic random vectors.
Anisotropy of W ∈ Dm was defined in [22] as the quantity

A◦(W ) = D(Q‖Um) =
∫

Sm

g(s) ln g(s)Um(ds). (2.1)

Here, g = dQ/dUm is the pdf of V = W/|W | wrt Um, and Q is the probability distrib-
ution of V expressed in terms of the distribution P of W as

Q(B) = P (R+B), B ∈ Sm, (2.2)

where R+B = {rs : r ∈ R+, s ∈ B} is a cone in Rm, and Sm denotes the σ-algebra of
Borel subsets of Sm.

By the Divergence Inequality, the anisotropy A◦(W ) is always nonnegative and is
only zero if Q = Um. Clearly, A◦(W ) is invariant under transformations W 7→ ϕRW ,
where ϕ is a positive scalar random variable and R ∈ so(m) is a nonrandom orthogonal
(m×m)-matrix. In particular, A◦(W ) is invariant wrt nonrandom permutations of the
entries of W . Therefore, A◦(W ) can also be interpreted as an information theoretic
measure of directional nonuniformity of P , i.e. noninvariance of Q under the group of
rotations.

For example, any random vector W , distributed absolutely continuously wrt the
m-dimensional Lebesgue measure mes m, is directionally generic. In this case, the pdf
g of W/|W | is expressed in terms of the pdf f of W as

g(s) =
∫ +∞

0

f(rs)Rm(dr), s ∈ Sm. (2.3)

Here, Rm is an absolutely continuous measure on R+ defined by

Rm(dr) = Smr
m−1dr, (2.4)
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where

Sm = mes m−1Sm =
2πm/2

Γ(m/2)
, (2.5)

and Γ(λ) =
∫ +∞
0

uλ−1 exp(−u)du denotes the Euler gamma function.

3 Finite Power Random Vectors

Denote by Lm
2 the class of square integrable Rm-valued random vectors distributed

absolutely continuously wrt mes m. Elements of the class will be called briefly finite
power random vectors. Clearly, any W ∈ Lm

2 is directionally generic in the sense of
Definition 2.1, i.e. Lm

2 ⊂ Dm. Although the last inclusion is strict, for any W ∈ Dm\Lm
2

there exists a positive scalar random variable ϕ such that ϕW ∈ Lm
2 .

Based on a power-entropy construct considered in [2] for scalar random variables, a
definition of anisotropy A(W ) of W ∈ Lm

2 , alternative to (2.1), was proposed in [23] as

A(W ) = min
λ>0

D(W‖pm,λ) =
m

2
ln
(

2πe
m

E|W |2
)
− h(W ), (3.1)

where
h(W ) = −

∫

Rm

f(w) ln f(w)dw (3.2)

is the differential entropy [4, p. 229] of W , and f is its pdf wrt mes m. In (3.1), pm,λ

denotes the Gaussian pdf on Rm with zero mean and scalar covariance matrix λIm,

pm,λ(w) = (2πλ)−m/2 exp
(
−|w|2

2λ

)
.

In general, denote by Gm(C) the class of Rm-valued Gaussian distributed random vec-
tors with zero mean and covariance matrix C. In the case detC 6= 0, the corresponding
pdf is

f(w) = (2π)−m/2(detC)−1/2 exp
(
−1

2
‖w‖2

C−1

)
, (3.3)

where ‖x‖Q =
√
xTQx denotes the (semi-) norm of a vector x induced by a positive

(semi-) definite symmetric matrix Q. The lemma below shows that the anisotropy
functional (3.1) is qualitatively similar to (2.1).

Lemma 3.1: [23, Lemma 1]

(a) The anisotropy A(W ) defined by (3.1) is invariant under rotation and central
dilatation of W , i.e. A(λUW ) = A(W ) for any λ ∈ R \ {0} and any U ∈ so(m);

(b) For any positive definite symmetric C ∈ Rm×m,

min
{
A(W ) : W ∈ Lm

2 , E(WWT ) = C
}

= −1
2

ln det
mC

TrC
, (3.4)

where the minimum is attained only at W ∈ Gm(C);

(c) For any W ∈ Lm
2 , A(W ) ≥ 0. Moreover, A(W ) = 0 iff W ∈ Gm(λIm) for some

λ > 0.
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By Lemma 3.1(c) which essentially replicates the definition (3.1), the anisotropy
A(W ) is an information theoretic distance of the probability distribution of W from
the Gaussian distributions with zero mean and scalar covariance matrices. At the same
time, A(W ) quantifies noninvariance of the distribution under the group of rotations.

4 Quasi-Gaussian Random Vectors

Denote by L+
2 the class of square integrable R+-valued random variables, distributed

absolutely continuously wrt mes 1. For any ξ ∈ L+
2 with pdf α wrt the measure Rm

given by (2.4)–(2.5), define the quantity

am(ξ) =
m

2
ln
(

2πe
m

Eξ2
)
− bm(ξ), (4.1)

where

bm(ξ) = −
∫ +∞

0

α(r) lnα(r)Rm(dr) (4.2)

is the differential entropy of ξ wrt Rm. A variational meaning of (4.1) is clarified
immediately below.

Lemma 4.1: [23, Lemma 2] For any ξ ∈ L+
2 , the functional am, defined by (4.1)–

(4.2), is representable as
am(ξ) = min

λ>0
D(ξ‖

√
λη). (4.3)

Here, η is a χ2
m-distributed random variable, with χ2

m denoting the χ2-law with m degrees
of freedom [24, pp. 183–184], and the minimum is attained at λ = Eξ2/m.

By the variational representation (4.3) and by the Divergence Inequality, the quan-
tity (4.1) is always nonnegative, with am(ξ) = 0 iff mξ2/Eξ2 is χ2

m-distributed as is |W |2
for W ∈ Gm(Im). The lemma below links together the two definitions of anisotropy
given in the previous sections.

Lemma 4.2: [23, Theorem 1] For any W ∈ Lm
2 , the anisotropies (2.1) and (3.1)

are related as
A(W ) = A◦(W ) + I(ρ;σ) + am(ρ) (4.4)

where am(ρ) is the functional (4.1) applied to ρ = |W |, and I(ρ;σ) is the mutual infor-
mation [4, p. 231] between ρ and σ = W/|W |.

The representations (4.3) and (4.4) imply that

A◦(W ) ≤ A(W ) for all W ∈ Lm
2 . (4.5)

Definition 4.1: A random vectorW ∈ Lm
2 is called quasigaussian if |W | and W/|W |

are independent, and m|W |2/E|W |2 is χ2
m-distributed.

Denote the class of the quasigaussian random vectors by Qm. Clearly, Gm(λIm) ⊂
Qm for any λ > 0. By Lemmas 4.1 and 4.2,

Qm = {W ∈ Lm
2 : A◦(W ) = A(W )}. (4.6)

Also note that for any W ∈ Dm, A◦(W ) = inf A(ϕW ) where the infimum is taken over
all the positive scalar random variables ϕ such that ϕW ∈ Lm

2 .
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5 Anisotropy of Gaussian Random Vectors

Lemma 5.1: For W ∈ Gm(C) with detC 6= 0, the anisotropies (2.1) and (3.1) satisfy
the relations

A◦(W ) = −1
2

ln det
C

exp (2E ln ‖ζ‖C)
≤ −1

2
ln det

mC

TrC
= A(W ), (5.1)

where ζ is a random vector distributed uniformly on the unit sphere Sm.
Proof: Plugging the Gaussian pdf (3.3) in (2.3) and using (2.5), obtain that the

pdf of V = W/|W | wrt Um takes the form

g(s) =
21−m/2

Γ(m/2)
(detC)−1/2

∫ +∞

0

rm−1 exp
(
−1

2
(r‖s‖C−1)2

)
dr

= (detC)−1/2‖s‖−m
C−1 .

Hence, (2.1) reads

A◦(W ) = −1
2

ln detC −mE ln ‖V ‖C−1 . (5.2)

Introducing the random vector Z = C−1/2W ∈ Gm(Im), where C1/2 is a matrix square
root of C, obtain that

‖V ‖C−1 =
‖W‖C−1

|W |
=

|Z|
‖Z‖C

=
∥∥∥∥
Z

|Z|

∥∥∥∥
−1

C

. (5.3)

Since ζ = Z/|Z| is uniformly distributed on the unit sphere Sm, from (5.3) it follows
that

E ln ‖V ‖C−1 = −E ln ‖ζ‖C .

This last equality and (5.2) imply the left-most equality in (5.1). The equality on the
right of (5.1) is a corollary of Lemma 3.1(b), while the inequality follows from the general
relationship (4.5), concluding the proof.

6 Anisotropic Norms of Matrices

Let F ∈ Rp×m be interpreted as a linear operator with Rm-valued random input W
and Rp-valued output Z = FW . For any a ∈ R+, consider the a-anisotropic norms of
F associated with the anisotropy functionals (2.1) and (3.1),

|||F |||a,◦ = sup {N◦(F,W ) : W ∈ Dm, A◦(W ) ≤ a} , (6.1)
|||F |||a = sup { N(F,W ) : W ∈ Lm

2 , A(W ) ≤ a} . (6.2)

Here,
N◦(F,W ) =

√
E(|FW |/|W |)2 = N◦(F, W/|W |) (6.3)

characterizes the average energy gain of F wrt W and is well-defined as soon as P(W =
0) = 0, while

N(F,W ) =
√

E|FW |2/E|W |2 (6.4)
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measures the root mean square gain of F wrt a square integrable input W . Clearly, the
norms (6.1) and (6.2) are nondecreasing in a ∈ R+ and satisfy

|||F |||0,◦ = |||F |||0 = ‖F‖2/
√
m,

lim
a→+∞

|||F |||a,◦ = lim
a→+∞

|||F |||a = ‖F‖∞,

where ‖F‖2 =
√

Tr (FTF ) and ‖F‖∞ are respectively the Frobenius norm and the
largest singular value of F .

Lemma 6.1: For any a ∈ R+ and F ∈ Rp×m, the a-anisotropic norms (6.1) and
(6.2) satisfy

|||F |||a,◦ ≤ |||F |||a.
Proof:Let W be a square integrable random vector satisfying P(W = 0) = 0 and

such that |W | and V = W/|W | are independent. Then E|FW |2 = E(|FV |2 |W |2) =
E|FV |2 E|W |2, and consequently, by (6.3) and (6.4),

N(F,W ) =
√

E|FV |2 = N◦(F,W ). (6.5)

In particular, (6.5) holds for any quasigaussian W ∈ Qm (see Definition 4.1). Combining
this last property with (4.6), obtain that

|||F |||a ≥ sup{ N(F,W ) : W ∈ Qm, A(W ) ≤ a}
= sup{N◦(F,W ) : W ∈ Qm, A◦(W ) ≤ a}
= sup{N◦(F,W ) : W ∈ Dm, A◦(W ) ≤ a} = |||F |||a,◦,

thereby concluding the proof.

7 Fragments of Random Fields

Denote by GFm,n(S) the class of Rm-valued homogeneous Gaussian random fields W =
(wx)x∈Zn on the n-dimensional integer lattice Zn with zero mean and spectral density
function (sdf) S : Ωn → Cm×m, where Ωn = [−π, π)n. Since S can be extended to Rn

(2π)-periodically in each of its n variables, Ωn is identified with n-dimensional torus.
For any ω ∈ Ωn, the matrix S(ω) is Hermitian and positive semi-definite, and satisfies
S(−ω) = (S(ω))T . The corresponding covariance function Zn 3 x 7→ cx ∈ Rm×m is

cx = E(wxw
T
0 ) = (2π)−n

∫

Ωn

exp(iωTx)S(ω)dω. (7.1)

Definition 7.1: Say thatW ∈ Gm,n(S) is strictly regular if ess infω∈Ωn
λmin(S(ω)) >

0, where λmin( · ) denotes the smallest eigenvalue of a Hermitian matrix.
Clearly, the strict regularity is a stronger property than standard regularity [17,

pp. 27–29 and Theorem 3.2.2 on p. 30]. For simplicity, we shall assume throughout that
the covariance function is absolutely summable, i.e.

∑

x∈Zn

‖cx‖∞ < +∞. (7.2)

Under this condition, the sdf S is continuous on the torus Ωn and so also are the functions
Ωn 3 ω 7→ λmin(S(ω)), λmax(S(ω)), with λmax( · ) denoting the largest eigenvalue of a
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Hermitian matrix. In this case, the strict regularity of W is equivalent to nonsingularity
of S(ω) for all ω ∈ Ωn.

Denote by Zn = {X ⊂ Zn : 0 < #X < +∞} the class of nonempty finite subsets
of Zn, where #( · ) stands for the counting measure. For any X ∈ Zn, the restriction of
W to X is identified with the Rm#X -valued Gaussian random vector

WX = (wx)x∈X . (7.3)

The order in which the random vectors wx are “stacked” one underneath the other in
(7.3) is not essential for what follows. However, to avoid ambiguity, the set X will be
assumed lexicographically ordered. The spectrum of the covariance matrix

CX = E(WXW
T
X) = block

x,y∈X
(cx−y) (7.4)

is invariant under translations of X ∈ Zn since for any z ∈ Zn there exists a permutation
matrix Π of order m#X such that CX+z = ΠCXΠT . If the random field W is strictly
regular, then detCX > 0 for any X ∈ Zn. This implication follows from the spectral
bounds

ess inf
ω∈Ωn

λmin(S(ω)) ≤ λmin(CX) ≤ λmax(CX) ≤ ess sup
ω∈Ωn

λmax(S(ω)), (7.5)

where, under the assumption (7.2), ess inf and ess sup can be replaced with min and
max. Applying Lemma 5.1 to (7.3) and using the identity TrCX = Tr c0#X, obtain
that

A◦(WX) = −1
2

ln det
CX

exp (2E ln ‖ζX‖CX
)
≤ −1

2
ln det

mCX

Tr c0
= A(WX), (7.6)

where ζX is a random vector, distributed uniformly on the unit sphere Sm#X . It turns
out that, when divided by #X, both anisotropies in (7.6) have a common limit as the
set X tends to infinity in a sense specified below.

8 Definition of Mean Anisotropy

With every X ∈ Zn, associate the function DX : Zn → [0, 1] by

DX(z) =
#((X + z)

⋂
X)

#X
. (8.1)

It is worth noting that #XDX is the geometric covariogram [12, p. 22] of the set X
wrt the counting measure #. Clearly, suppDX = {x − y : x, y ∈ X}. A probabilistic
interpretation of DX is as follows. Let ξX and ηX be independent random vectors each
distributed uniformly on X. Then the probability mass function (pmf) of θX = ξX −ηX

is expressed in terms of (8.1) as

P(θX = z) = (#X)−2#{(x, y) ∈ X2 : x− y = z} =
DX(z)
#X

. (8.2)

Recall that a sequence of sets Xk ∈ Zn, labeled by positive integers k ∈ N, is said
to tend to infinity in the sense of van Hove [18, p. 45] if limk→+∞DXk

(z) = 1 for every
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z ∈ Zn. The property induces a topological filter on the class Zn and is denoted by
↗ ∞.

By the identity #X =
∑

z∈Zn DX(z) which follows from (8.2), a necessary condition
for X ↗ ∞ is #X → +∞. A simple example of a sequence which tends to infinity in
the sense of van Hove is provided by the discrete hypercubes Xk = ([0, k)

⋂
Z)n since for

such sets, DXk
(z) =

∏n
j=1 max(0, 1 − |zj |/k) → 1 as k → +∞ for any z = (zj)1≤j≤n ∈

Zn.
Theorem 8.1: Let W ∈ GFm,n(S) be strictly regular and let its covariance function

be absolutely summable. Then the asymptotic behaviour of the anisotropies (2.1) and
(3.1) of the random vectors WX in (7.3) is described by

lim
X↗∞

A◦(WX)
#X

= lim
X↗∞

A(WX)
#X

= − 1
2(2π)n

∫

Ωn

ln det
mS(ω)
Tr c0

dω. (8.3)

The proof of the theorem is given in Section 12. The common limit on the right of
(8.3) will be referred to as mean anisotropy of the field W and denoted by A(W ).

Example 8.1: Compute the mean anisotropy of W ∈ GFm,n(S) with covariance
function

cz = c0 exp

(
−

n∑

k=1

|zk|
ρk

)
, z = (zk)1≤k≤n ∈ Zn,

where c0 ∈ Rm×m is a positive definite symmetric matrix, and ρ1, . . . , ρn are positive
reals, with ρk interpreted as a correlation radius of W along the k-th coordinate axis in
Rn. The corresponding sdf S is given by

S(ω) = c0

n∏

k=1

σk(ωk), ω = (ωk)1≤k≤n ∈ Ωn.

Here, for every 1 ≤ k ≤ n, the function σk : Ω1 → R+, defined by

σk(u) =
1 − α2

k

1 + α2
k − 2αk cosu

, αk = exp(−1/ρk),

is sdf of a stationary scalar Gaussian sequence (ξt)t∈Z with zero mean and covariance
function E(ξtξ0) = α

|t|
k . Applying the Szego-Kolmogorov formula and using the Markov

property of the sequence together with the Normal Correlation lemma, obtain

exp
(

1
2π

∫ π

−π

lnσk(ω)dω
)

= Var (ξ0 | (ξt)t<0) = Var (ξ0 | ξ−1) = 1 − α2
k, (8.4)

where Var (· | ·) denotes conditional variance. Clearly, the random field W satisfies the
assumptions of Theorem 8.1 and, by (8.4), its mean anisotropy defined in (8.3) reads

A(W ) = −1
2

ln det
mc0
Tr c0

− m

4π

n∑

k=1

∫ π

−π

lnσk(ω)dω

= −1
2

ln det
mc0
Tr c0

− m

2

n∑

k=1

ln
(
1 − α2

k

)
.

Here, the right-most sum behaves asymptotically like −
∑n

k=1 ln ρk if the correlation
radii are all large.
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9 Anisotropic Norm of LTI Operators

Denote by `r,n2 =
{
V = (vx)x∈Zn ∈ (Rr)Zn

: ‖V ‖2 =
√∑

x∈Zn |vx|2 < +∞
}

the Hilbert
space of square summable maps of Zn to Rr. Let Lp×m,n

∞ stand for the Banach space of
bounded linear translation-invariant operators F : `m,n

2 → `p,n
2 equipped with the norm

‖F‖∞ = sup
W∈`m,n

2

‖FW‖2

‖W‖2
. (9.1)

Here, the output Z = (zx)x∈Zn = FW of F ∈ Lp×m,n
∞ relates to the inputW = (wx)x∈Zn

by
zx =

∑

y∈Zn

fx−ywy, x ∈ Zn, (9.2)

where Zn 3 x 7→ fx ∈ Rp×m is the impulse response function. The operator is identified
with the transfer function F : Ωn → Cp×m defined by

F (ω) =
∑

x∈Zn

fx exp(−ixTω). (9.3)

The L∞-norm of this last, ess supω∈Ωn
‖F (ω)‖∞, coincides with (9.1) and, upon rescal-

ing, is an upper bound for the L2-norm,

‖F‖2 =

√
(2π)−n

∫

Ωn

TrH(ω)dω =
√∑

x∈Zn

‖fx‖2
2 ≤

√
m ‖F‖∞, (9.4)

where the map H : Ωn → Cm×m is defined by

H(ω) = (F (ω))∗F (ω). (9.5)

The inequality on the right of (9.4) becomes an equality iff there exists λ ∈ R+ such
that H(ω) = λIm for mes n-almost all ω ∈ Ωn.

Definition 9.1: An operator F ∈ Lp×m,n
∞ is called nonround if ‖F‖2 <

√
m‖F‖∞.

If F ∈ Lp×m,n
∞ and its input W ∈ GFm,n(S), then the convergence of the series

(9.2) is understood in mean square sense and the output satisfies Z ∈ GF p,n(FSF ∗).
In particular,

E|z0|2 = (2π)−n

∫

Ωn

Tr (H(ω)S(ω))dω.

Recalling the relations (7.1) and E|w0|2 = Tr c0, quantify the root mean square gain of
F wrt W by

N(F,W ) =

√
E|z0|2
E|w0|2

=

√∫
Ωn

Tr (H(ω)S(ω))dω∫
Ωn

TrS(ω)dω
.

For every a ≥ 0, define the a-anisotropic norm of the operator F as

|||F |||a = sup {N(F,W ) : A(W ) ≤ a} . (9.6)

Here, the supremum is taken over all the strictly regular homogeneous Gaussian random
fields W whose mean anisotropy (8.3) is bounded above by a. Denote by Wa(F ) the
corresponding set of the worst-case inputsW at which the supremum in (9.6) is attained.
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10 Computing Anisotropic Norm

Assuming the operator F ∈ Lp×m,n
∞ fixed, for notational convenience let

Q = [0, ‖F‖−2
∞ ). (10.1)

Recalling (9.5), define the functions A,N ,Φ,Ψ on Q by

A(q) =
m

2
(lnΦ(q) − Ψ(q)), (10.2)

N (q) =
(

1
q

(
1 − 1

Φ(q)

))1/2

, (10.3)

Φ(q) =
1

m(2π)n

∫

Ωn

Tr (Im − qH(ω))−1 dω, (10.4)

Ψ(q) = − 1
m(2π)n

∫

Ωn

ln det (Im − qH(ω))dω. (10.5)

Here, N is extended to 0 by continuity as N (0) = limq→0+ N (q) = ‖F‖2/
√
m. The

functions (10.2)–(10.5) are all analytic, nondecreasing in q ∈ Q and take values in R+,
[‖F‖2/

√
m, ‖F‖∞), [1,+∞) and R+, respectively.

Following the technique of a randomized singular value used in the proof of [6,
Lemma 4], one verifies that if F is nonround in the sense of Definition 9.1, then A is
strictly increasing and convex on the interval Q, with A(0) = 0 and A(q) → +∞ as
q → ‖F‖−2

∞ −. These properties imply that the function A is invertible and its inverse
A−1 : R+ → Q is strictly increasing and concave.

Theorem 10.1: Let F ∈ Lp×m,n
∞ be nonround. Then for any a ≥ 0, the a-

anisotropic norm (9.6) is expressed in terms of the functions (10.2) and (10.3) as

|||F |||a = N (A−1(a)). (10.6)

The corresponding set of worst-case inputs is

Wa(F ) =
⋃

λ>0

GFm,n
(
λ(Im −A−1(a)H)−1

)
. (10.7)

The proof of the theorem is similar to that of [6, Theorem 3] and therefore omitted.
Using the remark made after the proof of [23, Theorem 2], one verifies that the norm
|||F |||a is concave in a ∈ R+.

Example 10.1: For a given Y ∈ Zn, consider a Y -averaging operator F ∈ L1×1,n
∞

with impulse response

fx =
IY (x)
#Y

, x ∈ Zn,

where IY : Zn → {0, 1} is the indicator function of the set Y . The corresponding
transfer function is

F (ω) =
1

#Y

∑

y∈Y

exp(−iyTω), ω ∈ Ωn.

Clearly, ‖F‖2 = 1/
√

#Y and ‖F‖∞ = 1. The complex conjugate F is the characteristic
function (cf) of the uniform distribution on Y . Hence, H = |F |2 : Ωn → [0, 1] is cf of
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θ = ξ−η, where ξ and η are independent random vectors each distributed uniformly on
Y . The corresponding pmf is given by DY /#Y as in (8.2). Now let Θ = (θk)k∈N be a
sequence of independent (Y −Y )-valued random vectors, each with the cf H. Associate
with Θ a random walk Σ = (σk)k∈Z+ on Zn defined by

σk =
k∑

j=1

θj .

For every k ∈ Z+, Hk is cf of σk, and hence, (2π)−n
∫
Ωn

(H(ω))kdω = P(σk = 0).
Therefore, the function (10.4) takes the form

Φ(q) = (2π)−n

∫

Ωn

dω

1 − qH(ω)
=
∑

k∈Z+

qk P(σk = 0). (10.8)

Denote by τ = min {k ∈ N : σk = 0} the first recurrence time for the random walk
Σ. By the well-known identity for Markov chains, (10.8) is expressed in terms of the
moment generating function of τ as

Φ(q) =
1

1 − Eqτ
.

11 Connection with Anisotropic Norms of Matrices

A connection of the anisotropic norm of the operator F with those of finite matrices
(see Section 6) is established below. To formulate the statement, for every X ∈ Zn,
introduce a matrix FX ∈ Rp#X×m#X by appropriately restricting the impulse response
function of F ,

FX = block
x,y∈X

(fx−y). (11.1)

If PX and MX are the orthogonal projectors in `p,n
2 and `m,n

2 to the subspaces of signals
whose support is contained in X, then PXFMX = FXMX .

Theorem 11.1: Let F ∈ Lp×m,n
∞ be nonround and let its impulse response function

be absolutely summable, i.e.
∑

x∈Zn ‖fx‖∞ < +∞. Then for every a ≥ 0, the (a#X)-
anisotropic norms (6.1) and (6.2) of the matrices (11.1) have the a-anisotropic norm
of F in (9.6) as their common limit,

lim
X↗∞

|||FX |||a#X,◦ = lim
X↗∞

|||FX |||a#X = |||F |||a. (11.2)

The theorem is proved in Section 13.

12 Proof of Theorem 8.1

For any X ∈ Zn and r ∈ N, introduce the function EX,r : Zrn → [0, 1] which maps a
vector y = (yk)1≤k≤r, formed by y1, . . . , yr ∈ Zn, to

EX,r(y) =
#
(
X
⋂ ⋂r

j=1

(
X +

∑j
k=1 yk

))

#X
. (12.1)
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Comparison with (8.1) shows that EX,1(z) = EX,2(z,−z) = DX(z) for any z ∈ Zn. By
(12.1),

1 − EX,r(y1, . . . , yr) =
#
⋃r

j=1

(
X \

(
X +

∑j
k=1 yk

))

#X

≤
r∑

j=1

#(X \ (X +
∑j

k=1 yk))
#X

= r −
r∑

j=1

DX

(
j∑

k=1

yk

)
.

Therefore, the definition of convergence in the sense of van Hove (see Section 8) yields

lim
X↗∞

EX,r(y) = 1 for all r ∈ N, y ∈ Zrn. (12.2)

For notational convenience in the sequel, introduce the set

Or =

{
(zk)1≤k≤r ∈ Zrn : z1, . . . , zr ∈ Zn,

r∑

k=1

zk = 0

}
. (12.3)

Lemma 12.1: Let the covariance function of W ∈ GFm,n(S) in (7.1) be absolutely
summable. Then for any r ∈ N, the matrices (7.4) satisfy

lim
X↗∞

TrCr
X

#X
= (2π)−n

∫

Ωn

Tr (S(ω))rdω. (12.4)

Proof: Define the function ϕ : Ωrn → R which maps a vector ω = (ωk)1≤k≤r,
formed by ω1, . . . , ωr ∈ Ωn, to

ϕ(ω) = Tr (S(ω1) × . . .× S(ωr)) =
∑

y∈Zrn

ψy exp(−iyTω). (12.5)

Here, for any y = (yk)1≤k≤r formed by y1, . . . , yr ∈ Zn, the Fourier coefficient ψy is
given by

ψy = (2π)−rn

∫

Ωrn

ϕ(ω) exp(iyTω)dω = Tr (cy1 × . . .× cyr
) . (12.6)

In these notations, (7.1) and (7.4) imply that for any X ∈ Zn,

TrCr
X =

∑

x1,...,xr∈X

Tr (cx1−x2cx2−x3 × . . .× cxr−1−xr
cxr−x1)

=
∑

x1,...,xr∈X

ψ(x1−x2, x2−x3, ..., xr−1−xr, xr−x1).

Hence, recalling (12.1) and (12.3), obtain

TrCr
X

#X
=
∑

y∈Or

ψyEX,r(y). (12.7)

By the inequality |TrA| ≤ m‖A‖∞ which holds for any A ∈ Rm×m and by submulti-
plicativity of ‖ · ‖∞, (12.6) implies that

∑

y∈Zrn

|ψ(y)| ≤ m
∑

y1,...,yr∈Zn

r∏

k=1

‖cyk
‖∞ ≤ m

( ∑

x∈Zn

‖cx‖∞

)r

.
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Consequently, the assumption of the lemma assures that
∑

x∈Or
|ψy| < +∞, thus legit-

imating the passage to the limit under the sum in (12.7) on a basis of (12.2),

lim
X↗∞

TrCr
X

#X
=
∑

y∈Or

ψy lim
X↗∞

EX,r(y) =
∑

y∈Or

ψy. (12.8)

It now remains to note that by (12.3), (12.5) and (12.6),

∑

y∈Or

ψy = (2π)−n

∫

Ωn

ϕ(ω, . . . , ω︸ ︷︷ ︸
r times

)dω = (2π)−n

∫

Ωn

Tr (S(ω))rdω

which, in combination with (12.8), immediately yields (12.4), thereby completing the
proof.

Note that the assertion of Lemma 12.1 for the particular case r = 2 can be established
in a much simpler way. Indeed, by (7.4), (8.1) and by Parseval’s equality,

TrC2
X

#X
=

1
#X

∑

x,y∈X

‖cx−y‖2
2 =

∑

z∈Zn

DX(z)‖cz‖2
2

→
∑

z∈Zn

‖cz‖2
2 = (2π)−n

∫

Ωn

Tr (S(ω))2dω as X ↗ ∞. (12.9)

Lemma 12.2: Let W ∈ GFm,n(S) be strictly regular and let (7.2) hold. Then the
matrices (7.4) satisfy

lim
X↗∞

ln detCX

#X
= (2π)−n

∫

Ωn

ln detS(ω)dω (12.10)

Proof:By (7.5), under the assumptions of the lemma, for any X ∈ Zn, the spectrum
of CX is entirely contained in the interval

∆ =
[

min
ω∈Ωn

λmin(S(ω)), max
ω∈Ωn

λmax(S(ω))
]

(12.11)

which is separated from zero and bounded. Since the logarithm function is expandable
on the interval to a uniformly convergent power series, application of Lemma 12.1 to
the series yields (12.10).

Note that the assertion of Lemma 12.2 under weaker assumptions is well-known
in the case n = 1 for Toeplitz forms [10], and is closely related to Szego-Kolmogorov
formula for Shannon entropy rate in stationary Gaussian sequences. For the multivariate
case n > 1, it is worth pointing out the links to the mean entropy results for Gibbs-
Markov random fields [18, pp. 44–47].

Lemma 12.3: Let ζ be uniformly distributed on the unit sphere Sr, and let C ∈ Rr×r

be a positive semi-definite symmetric matrix. Then

E‖ζ‖2
C =

TrC
r

, (12.12)

Var ‖ζ‖2
C =

2
r + 2

(
TrC2

r
−
(

TrC
r

)2
)
, (12.13)
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where Var ( · ) denotes the variance of a random variable. Moreover, if detC 6= 0 and
r ≥ 3, then

E‖ζ‖−2
C ≤ r − 2

2r

(
Γ( r−2

2r )
Γ(1/2)

)r

(detC)−1/r. (12.14)

Proof: Since the uniform distribution on Sr is invariant under the group of ro-
tations, ‖ζ‖2

C has the same distribution as
∑r

k=1 λkζ
2
k , where λk are the eigenvalues

of C, and ζk are the entries of ζ. Denote τk = ζ2
k , 1 ≤ k ≤ r. By definition,∑r

k=1 τk = 1. The random variables τ1, . . . , τr−1 have the (r − 1)-variate Dirichlet
distribution D(1/2, . . . , 1/2; 1/2︸ ︷︷ ︸

r times

) [24, p. 177] with pdf

Γ(r/2)
(Γ(1/2))r

(
1 −

r−1∑

k=1

tk

)−1/2 r−1∏

k=1

t
−1/2
k

wrt mes r−1 on the simplex {(t1, . . . , tr−1) ∈ Rr−1
+ :

∑r−1
k=1 tk ≤ 1}. By a straightforward

calculation (also see [24, p. 179]), for all 1 ≤ j 6= k ≤ r,

Eτj =
Γ(r/2)

(Γ(1/2))r

Γ(3/2)(Γ(1/2))r−1

Γ(r/2 + 1)
=

1
r
, (12.15)

Eτ2
j =

Γ(r/2)
(Γ(1/2))r

Γ(5/2)(Γ(1/2))r−1

Γ(r/2 + 2)
=

3
r(r + 2)

, (12.16)

E(τjτk) =
Γ(r/2)

(Γ(1/2))r

(Γ(3/2))2(Γ(1/2))r−2

Γ(r/2 + 2)
=

1
r(r + 2)

. (12.17)

From (12.15) it follows that

E‖ζ‖2
C =

1
r

r∑

k=1

λk =
TrC
r

(12.18)

which coincides with (12.12). Furthermore, taking (12.16) and (12.17) into account,
obtain that

E‖ζ‖4
C =

r∑

k=1

λ2
kEτ

2
k +

∑

1≤j 6=k≤r

λjλkE(τjτk)

=
3

r(r + 2)

r∑

k=1

λ2
k +

1
r(r + 2)



(

r∑

k=1

λk

)2

−
r∑

k=1

λ2
k




=
1

r(r + 2)
(2TrC2 + (TrC)2). (12.19)

The equalities (12.18) and (12.19) immediately imply that

Var ‖ζ‖2
C = E‖ζ‖4

C −
(
E‖ζ‖2

C

)2
=

2
r2(r + 2)

(
rTrC2 − (TrC)2

)

which coincides with (12.13). To prove (12.14), note that, by the geometric-arithmetic
mean inequality,

r∑

k=1

λkτk ≥ r

(
r∏

k=1

λkτk

)1/r

= r(detC)1/r
r∏

k=1

τ
1/r
k .
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Therefore, for any r ≥ 3,

E‖ζ‖−2
C = E

(
r∑

k=1

λkτk

)−1

≤ 1
r(detC)1/r

E
r∏

k=1

τ
−1/r
k

=
1

r(detC)1/r

Γ(r/2)
(Γ(1/2))r

(Γ(1/2 − 1/r))r

Γ(r/2 − 1)

= (detC)−1/r

(
1
2
− 1
r

)(
Γ(1/2 − 1/r)

Γ(1/2)

)r

which yields (12.14), completing the proof.
Remark 12.1: Note that the C-independent multiplier on the right of (12.14) is

convergent,

r − 2
2r

(
Γ( r−2

2r )
Γ(1/2)

)r

→ 1
2

exp(−(ln Γ)′(1/2)) as r → +∞, (12.20)

where (ln Γ)′(λ) = Γ′(λ)/Γ(λ) is the logarithmic derivative of the Euler gamma function.
Proof of Theorem 8.1: For any X ∈ Zn, let ζX be uniformly distributed on the

unit sphere Sm#X . Then (7.6) reads

A◦(WX) = −1
2

ln detCX +
m#X

2
E ln ‖ζX‖2

CX
. (12.21)

Let us show that ‖ζX‖2
CX

is mean square convergent as X ↗ ∞. Applying (12.12) of
Lemma 12.3 and recalling (7.4), obtain

E‖ζX‖2
CX

=
TrCX

m#X
=

Tr c0
m

. (12.22)

Combining (12.13) with (12.9) yields

Var ‖ζX‖2
CX

=
2

m#X + 2

(
TrC2

X

m#X
−
(

TrCX

m#X

)2
)

≤ 2 TrC2
X

(m#X)2
∼ 2
m2#X

∑

z∈Zn

‖cz‖2
2 → 0 as X ↗ ∞.

This relation and (12.22) imply the convergence of ‖ζX‖2
CX

to Tr c0/m in mean square
sense and consequently, in probability,

‖ζX‖2
CX

p−→ Tr c0
m

as X ↗ ∞. (12.23)

Recalling that under assumptions of the theorem, the spectra of the matrices CX are
all contained in (12.11), obtain that ‖ζX‖2

CX
∈ ∆ for any X ∈ Zn, and hence, the

random variables | ln ‖ζX‖CX
| are uniformly bounded. Therefore, by the Dominated

Convergence Theorem, (12.23) implies

lim
X↗∞

E ln ‖ζX‖2
CX

= ln
Tr c0
m

. (12.24)
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Assembling (12.10) of Lemma 12.2 and (12.24), from (12.21) obtain that

A◦(WX)
#X

→ − 1
2(2π)n

∫

Ωn

ln detS(ω)dω +
m

2
ln

Tr c0
m

as X ↗ ∞

which gives (8.3), completing the proof.
Remark 12.2: If the random field W is not strictly regular, then the dominated

convergence argument that was used to derive (12.24) from (12.23) fails. In this case,
however, the condition

lim inf
X↗∞

ln detCX

#X
> −∞, (12.25)

if it holds, implies the uniform integrability of ln ‖ζX‖2
CX

as X ↗ ∞. Indeed, by the
identity exp(| lnu|) = max(u, 1/u) for any u > 0,

E exp(| ln ‖ζX‖2
CX

|) ≤ E‖ζX‖2
CX

+ E‖ζX‖−2
CX
.

Hence, applying (12.22), (12.14) and (12.20), obtain that

lim sup
X↗∞

E exp
(
| ln ‖ζX‖2

CX
|
)

≤ Tr c0
m

+
1
2

exp
(
−(ln Γ)′(1/2) − 1

m
lim inf
X↗∞

ln detCX

#X

)

< +∞.

By [20, Lemma 3 on p. 190], this last relationship implies the uniform integrability of
ln ‖ζX‖2

CX
. Therefore, by [3, Theorem 5.4 on p. 32], fulfillment of (12.25) is enough to

derive (12.24) from (12.23).

13 Proof of Theorem 11.1

Note that ‖FX‖∞ ≤ ‖FY ‖∞ for any X,Y ∈ Zn satisfying X ⊆ Y + z for some z ∈ Zn,
and

sup
X∈Zn

‖FX‖∞ = ‖F‖∞. (13.1)

Furthermore,

lim
X↗∞

‖FX‖2√
#X

= ‖F‖2. (13.2)

Indeed, using (8.1) and (9.4), obtain that

‖FX‖2
2

#X
=

1
#X

∑

x,y∈X

‖fx−y‖2
2 =

∑

z∈Zn

DX(z)‖fz‖2
2

→
∑

z∈Zn

‖fz‖2
2 = ‖F‖2

2 as X ↗ ∞.

For every X ∈ Zn, associate with (11.1) a positive semi-definite symmetric matrix
HX ∈ Rm#X×m#X as

HX = FT
XFX = block

x,y∈X

(∑

z∈X

fT
z−xfz−y

)
. (13.3)
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Lemma 13.1: Let the impulse response function of F ∈ Lp×m,n
∞ be absolutely sum-

mable, i.e.
∑

x∈Zn ‖fx‖∞ < +∞. Then for any r ∈ N, the matrices (13.3) satisfy

lim
X↗∞

TrHr
X

#X
= (2π)−n

∫

Ωn

Tr (H(ω))rdω, (13.4)

where the map H is defined by (9.5).
Proof:Introduce the function ϕ : Ω2rn → C which maps a vector ω = (ωk)1≤k≤2r,

formed by ω1, . . . , ω2r ∈ Ωn, to

ϕ(ω) = Tr ((F (ω1))∗F (ω2) × . . .× (F (ω2r−1))∗F (ω2r))

=
∑

z∈Z2rn

ψz exp(−iωT z). (13.5)

Here, F is the transfer function defined in (9.3), and for any z = (zk)1≤k≤2r formed by
z1, . . . , z2r ∈ Zn, the Fourier coefficient ψz is given by

ψz = (2π)−2rn

∫

Ω2rn

exp(iωT z)ϕ(ω)dω = Tr
(
fT
−z1

fz2 × . . .× fT
−z2r−1

fz2r

)
. (13.6)

From (13.3) and (13.6), it follows that

TrHr
X =

∑

x1,...,xr ,y1,...,yr∈X

Tr
(
fT

y1−x1
fy1−x2f

T
y2−x2

fy2−x3

× . . .× fT
yr−1−xr−1

fyr−1−xr
fT

yr−xr
fyr−x1

)

=
∑

x1,...,xr ,y1,...,yr∈X

ψ(x1−y1,y1−x2,...,xr−yr,yr−x1) (13.7)

Hence, recalling (12.1) and (12.3), obtain

TrHr
X

#X
=
∑

z∈O2r

ψzEX,2r(z). (13.8)

By the same reasoning as in the proof of Lemma 12.1, the absolute summability of the
impulse response function implies a similar property for the Fourier coefficients (13.6),

∑

z∈Z2rn

|ψz | ≤ m

( ∑

x∈Zn

‖fx‖∞

)2r

.

In particular,
∑

z∈O2r
|ψz | < +∞, thus validating the passage to the limit under the

sum in (13.8) on a basis of (12.2),

lim
X↗∞

TrHr
X

#X
=
∑

z∈O2r

ψz lim
X↗∞

EX,2r(z) =
∑

z∈O2r

ψz . (13.9)

It now remains to note that by (9.5), (12.3), (13.5) and (13.6),

∑

z∈O2r

ψz = (2π)−n

∫

Ωn

ϕ(ω, . . . , ω︸ ︷︷ ︸
2r times

)dω = (2π)−n

∫

Ωn

Tr (H(ω))rdω,
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which, in combination with (13.9), immediately implies (13.4), thereby concluding the
proof.

Under the assumptions of Lemma 13.1, for any r ∈ N,

lim
X↗∞

(
TrHr

X

m#X

)1/r

=
(

1
m(2π)n

∫

Ωn

Tr (H(ω))rdω

)1/r

. (13.10)

By the well-known properties of Hölder norms, for any positive semi-definite Hermitian
A ∈ Cd×d, the quantity (TrAr/d)1/r is nondecreasing in r ∈ N and converges to λmax(A)
as r → +∞. Applying the monotone convergence argument to both sides of (13.10),
obtain the following refinement of (13.1),

lim
X↗∞

‖FX‖∞ = ‖F‖∞. (13.11)

Proof of Theorem 11.1: Recalling (13.3), for any X ∈ Zn introduce the functions

AX(q) =
m#X

2
(lnΦX(q) − ΨX(q)), (13.12)

NX(q) =
(

1
q

(
1 − 1

ΦX(q)

))1/2

, (13.13)

ΦX(q) =
Tr (Im#X − qHX)−1

m#X
, (13.14)

ΨX(q) = − ln det (Im#X − qHX)
m#X

. (13.15)

These are similar to (10.2)–(10.5) and well-defined on the interval

QX = [0, ‖FX‖−2
∞ )

which, by (13.1), contains (10.1). Comparison of (13.2) with (13.11) shows that the
nonroundness of the operator F implies

‖FX‖2 <
√
m#X‖FX‖∞ (13.16)

for all X ∈ Zn large enough in the sense of van Hove convergence to infinity. For any
such X, the function AX : QX → R+ is strictly increasing and has a well-defined inverse
A−1

X : R+ → QX . Application of [23, Theorem 4] to the matrix (11.1) gives that for
any a ∈ R+,

|||FX |||a#X = NX(A−1
X (a#X)). (13.17)

Expanding (13.14) and (13.15) to the Taylor series

ΦX(q) =
1

m#X

∑

r∈Z+

Tr (qHX)r,

ΨX(q) =
1

m#X

∑

r∈N

Tr (qHX)r

r
,

whose convergence is uniform in X ∈ Zn for any q ∈ Q, and using Lemma 13.1, obtain
that ΦX(q) and ΨX(q) (and so also AX(q)/#X and NX(q)) converge to Φ(q) and Ψ(q)
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(respectively, to A(q) and N (q)) as X ↗ ∞. Moreover, a slightly refined reasoning
shows that the convergence holds for the derivatives of the functions as well and is
uniform in q over any compact subset of the interval (10.1). Therefore,

A−1
X (a#X) =

(
AX

#X

)−1

(a) → A−1(a) as X ↗ ∞. (13.18)

Combining the last property with (13.17) and recalling (10.6) of Theorem 10.1, obtain
that

lim
X↗∞

|||FX |||a#X = N (A−1(a)) = |||F |||a. (13.19)

This proves the right-most equality in (11.2). By Lemma 6.1, the left-most equality in
(11.2) will be proved if we show that

lim inf
X↗∞

|||FX |||a#X,◦ ≥ |||F |||a. (13.20)

For this purpose, consider a random vector WX,a ∈ Gm#X(ΣX,a) where

ΣX,a = (Im#X − qX,aHX)−1, qX,a = A−1
X (a#X). (13.21)

By [23, Theorem 4], WX,a is a worst-case input for FX in the sense of the (a#X)-
anisotropic norm (6.2) associated with the root mean square gain (6.4). That is,

|||FX |||a#X = N(FX ,WX,a), A(WX,a) = a#X.

Applying to WX,a the inequality (4.5), obtain that A◦(WX,a) ≤ a#X. Consequently,
the average energy gain of FX wrt WX,a provides a lower bound for the (a#X)-
anisotropic norm of FX defined by (6.1), i.e.

|||FX |||a#X, ◦ ≥ N◦(FX ,WX,a). (13.22)

To compute the gain, write WX,a = Σ1/2
X,aVX where VX ∈ Gm#X(Im#X). By (13.3) and

(13.21), the corresponding output ZX,a = FXWX,a satisfies

|ZX,a|2 = ‖WX,a‖2
HX

= ‖WX,a‖2
(Im#X−Σ−1

X,a)/qX,a
=

|WX,a|2 − |VX |2

qX,a
.

Hence,

N◦(FX ,WX,a) =
√

E (|ZX,a|/|WX,a|)2

=

√
1 − E (|VX |/|WX,a|)2

qX,a

=

√
1 − E‖ζX‖−2

ΣX,a

qX,a
(13.23)

where ζX = VX/|VX | is uniformly distributed on the unit sphere Sm#X . Using the
convergence

lim
X↗∞

qX,a = A−1(a) (13.24)
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which by (13.21) replicates (13.18), one verifies, similarly to the proof of Theorem 8.1,
that

‖ζX‖2
ΣX,a

−→p 1
m(2π)n

∫

Ωn

Tr
(
Im −A−1(a)H(ω)

)−1
dω

= Φ(A−1(a)) as X ↗ ∞. (13.25)

Since ΣX,a − Im#X is positive semi-definite, ‖ζX‖ΣX,a
≥ 1. By the Dominated Conver-

gence Theorem, (13.25) then implies that

lim
X↗∞

E‖ζX‖−2
ΣX,a

= 1/Φ(A−1(a)).

Plugging the last convergence and (13.24) in (13.23), obtain

lim
X↗∞

N◦(FX ,WX,a) =

√
1

A−1(a)

(
1 − 1

Φ(A−1(a))

)
= N (A−1(a)) = |||F |||a.

In combination with (13.22), this implies (13.20), thereby concluding the proof.
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