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Abstract. In the paper we prove several inequalities involving two isotonic linear functionals.
We consider inequalities for functions with variable bounds, for Lipschitz and Hölder type func-
tions etc. These results give us an elegant method for obtaining a number of inequalities for
various kinds of fractional integral operators such as for the Riemann-Liouville fractional integ-
ral operator, the Hadamard fractional integral operator, fractional hyperqeometric integral and
corresponding q-integrals.
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1. INTRODUCTION

Recently several papers involving inequalities for fractional integral operators have
been published, see [3, 4, 7, 8, 19, 21, 22] and references therein. Certain similarity of
those inequalities shows that those results have a common origin. In this paper we
give a unified treatment of several known inequalities for fractional integral operators
via theory of isotonic linear functionals. In fact, we prove general inequalities in-
volving isotonic linear functionals from which some interesting results are followed.

The paper is organized in the following way. The rest of this section contains
definitions and some examples of isotonic linear functionals connected with frac-
tional integration and integration on time scales. The Chebyshev inequality for one
and two isotonic functionals are given. Inequalities for Lipschitz functions are given
in the second section. The third section is devoted to new inequalities involving
two isotonic functionals and functions with variable upper and lower bounds. The
fourth section is devoted to results involving more than two functions. Applications
or references where we can find applications in the theory of fractional operators and
calculus on time scales are also given.

The research of the second author was partially supported by the Sofia University SRF under contract
No 146/2015.
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Isotonic linear functionals

Definition 1 (Isotonic linear functional). Let E be a non-empty set and L be a
class of real-valued functions on E having the properties:

L1. If f;g 2 L, then .af Cbg/ 2 L for all a;b 2 R;
L2. The function 1 belongs to L. (1.t/D 1 for t 2E).

A functional A W L! R is called an isotonic linear functional if
A1. A.af Cbg/D aA.f /CbA.g/ for f;g 2 L, a;b 2 R;
A2. f 2 L, f .t/� 0 on E implies A.f /� 0.

There exist a lot of interesting examples of linear functionals which play some
role in different parts of mathematics. In the following example we describe the most
mentioned functionals - discrete and integral - , and we give several functionals which
appear in the theory of fractional calculus and calculus on time scales.

Example 1. (i) Discrete functional. If E D f1;2; : : : ;ng and f W E ! R, then
A.f /D

Pn
iD1f .i/ is an isotonic linear functional.

(ii) Integral functional. If E D Œa;b� � R and L D L.a;b/, then A.f / DR b
a f .t/dt is an isotonic linear functional. If A1.f / D

1

b�a
A.f /, then A1 is a

normalized isotonic linear functional.
(iii) Fractional hypergeometric operator. If t > 0; ˛ > maxf0;�ˇ � �g;

� > �1;ˇ�1 < � < 0, then

A.f /D I
˛;ˇ;�;�
t ff .t/g

is an isotonic linear functional, ([3]), where I˛;ˇ;�;�t ff .t/g is a fractional hypergeo-
metric operator defined as

I
˛;ˇ;�;�
t ff .t/g

D
t�˛�ˇ�2�

� .˛/

Z t

0

��.t ��/˛�1 2F1.˛CˇC�;��;˛I1�
�

t
/f .�/d�

where the function 2F1.a;b;c; t/D
1X
nD0

.a/n.b/n

.c/n

tn

nŠ
is the Gaussian hypergeometric

function and .a/n is the Pochhammer symbol:
.a/n D a.aC1/ : : : .aCn�1/; .a/0 D 1.

� Putting � D 0, then the fractional hypergeometric operator reduces to the
Saigo fractional integral operator I˛;ˇ;�ff .t/g.
� The Erdélyi-Kober fractional integral operator I˛;�ff .t/g is a particular case

of I˛;ˇ;�;�t ff .t/g when ˇ D �D 0.
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� One of the earliest defined and the most investigated fractional integral oper-
ator is the so-called Riemann-Liouville operator defined as

J ˛f .t/D I
˛;�˛;0;0
t ff .t/g D

1

� .˛/

Z t

0

.t ��/˛�1f .�/d�; ˛ > 0; (1.1)

and it is a particular case of a fractional hypergeometric operator for ˇD�˛,
�D �D 0.

(iv) q-analogues. The above-mentioned operators have the so-called q-analogues.
We describe a q-analogue of Saigo’s fractional integral, [2]. Let <.˛/ > 0, ˇ;� 2 C,
0 < q < 1. A q-analogue of Saigo’s fractional integral I˛;ˇ;�q is given for j�=t j < 1
by equation

I˛;ˇ;�q ff .t/g D
t�ˇ�1

�q.˛/

Z t

0

�
q
�

t
Iq
�
˛�1

�

1X
mD0

.q˛Cˇ Iq/m.q
��Iq/m

.q˛Iq/m.qIq/m
�q.��ˇ/m.�1/mq�m.m�1/=2

��
t
�1
�m
q
f .�/dq�;

where

.aIq/˛ D

Q1
kD0.1�aq

k/Q1
kD0.1�aq

˛Ck/
and .t �a/nq D t

n.
a

t
Iq/n:

If ˛ > 0, ˇ;� 2 R with ˛Cˇ > 0 and � < 0, then I˛;ˇ;�q is isotonic, [9].
(v) The Hadamard fractional integral. The Hadamard fractional integral of

order ˛ > 0 of function f is defined as

HJ
˛f .x/D

1

� .˛/

Z x

1

�
log

x

y

�˛�1 f .y/dy
y

; 1 < x:

For further reading about fractional calculus we recommend, for example, [14].
(vi) In 1988 S. Hilger introduced the calculus on time scales, a strong tool for

unified treatment of differential and difference equations. Among different kinds of
integrals the most investigated is�� integral, see for example, [1,15]. A�� integral
was followed by r� integral, }˛ integral, ˛;ˇ-symmetric integral etc. All of them
are isotonic linear functionals.

Chebyshev-type inequalities for isotonic linear functionals

After that short text about various kinds of isotonic linear functionals, let us say
few words about some inequalities of Chebyshev type involving isotonic linear func-
tionals.

We say that functions f and g on E are similarly ordered (or synchronous) if for
each x;y 2E

.f .x/�f .y//.g.x/�g.y//� 0:
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If the reversed inequality holds, then we say that f and g are oppositely ordered
or asynchronous. The most famous inequality which involve similarly or oppositely
ordered functions is the Chebyshev inequality for integrals. It states that if p;f and
g are integrable real functions on Œa;b� � R and if f and g are similarly ordered,
thenZ b

a

p.x/dx

Z b

a

p.x/f .x/g.x/dx �

Z b

a

p.x/f .x/dx

Z b

a

p.x/g.x/dx: (1.2)

If f and g are oppositely ordered then the reverse of the inequality in (1.2) is valid.
During the last century a lot of results about the Chebyshev inequality appear.

Here, we only give the most recent results involving two isotonic linear functionals,
[16].

Theorem 1 (The Chebyshev inequality for two functionals). Let A and B be two
isotonic linear functionals on L and let p;q 2 L be non-negative functions. Let f;g
be two functions on E such that pf , pg, qf , qg;pfg, qfg 2 L.

If f and g are similarly ordered functions, then

A.pfg/B.q/CA.p/B.qfg/� A.pf /B.qg/CA.pg/B.qf /: (1.3)

If f and g are oppositely ordered functions, then the reverse inequality in (1.3) holds.

Putting AD B , p D q in (1.3) and divided by 2 we get that for similarly ordered
functions f and g such that pf;pg;pfg 2 L, the following holds

A.p/A.pfg/� A.pf /A.pg/:

If f and g are oppositely ordered functions, then the reverse inequality holds.
It is, in fact, the Chebyshev inequality for one isotonic positive functional.
One of the most investigated question related to the Chebyshev integral inequality

is the question of finding bounds for the so-called Chebyshev difference which is
defined as a difference between two sides from inequality (1.2). Results related to
that question are called Gruüss type inequalities. In [16] Grüss type inequalities for
the Chebyshev difference T .A;B;p;q;f;g/ which arise from inequality (1.3) are
given where

T .A;B;p;q;f;g/D B.q/A.pfg/CA.p/B.qfg/�A.pf /B.qg/�A.pg/B.qf /:

2. INEQUALITIES FOR M �g�LIPSCHITZ AND HÖLDER-TYPE FUNCTIONS

In this section M � g�Lipschitz functions are considered. We say that f is an
M �g�Lipschitz function if

jf .x/�f .y/j �M jg.x/�g.y/j

for all x;y 2E. If g D id , then f is simple called an M�Lipschitz function.
In the following theorem we consider two functions f and g which are h1� and

h2�Lipschitz functions with constants M1 and M2 respectively.
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Theorem 2. Let A and B be isotonic linear functionals on L and let p, q be non-
negative functions from L. Let M1, M2 be real numbers and let f , g, h1, h2 be
functions such that f is M1�h1�Lipschitz and g is M2�h2�Lipschitz, i.e. for all
x;y 2E

jf .x/�f .y/j �M1jh1.x/�h1.y/j; (2.1)

jg.x/�g.y/j �M2jh2.x/�h2.y/j: (2.2)

If all the terms in the below inequality exist and h1 and h2 are or similarly ordered,
or oppositely ordered, then

jT .A;B;p;q;f;g/j �M1M2T .A;B;p;q;h1;h2/: (2.3)

Proof. Let h1 and h2 be similarly ordered. Multiplying the inequalities (2.1) and
(2.2) we get

j.f .x/�f .y//.g.x/�g.y//j �M1M2.h1.x/�h1.y//.h2.x/�h2.y//:

It means that

.f .x/�f .y//.g.x/�g.y//�M1M2.h1.x/�h1.y//.h2.x/�h2.y// and

.f .x/�f .y//.g.x/�g.y//� �M1M2.h1.x/�h1.y//.h2.x/�h2.y//:

Since

.f .x/�f .y//.g.x/�g.y//D f .x/g.x/Cf .y/g.y/�f .x/g.y/�f .y/g.x/

multiplying with p.x/q.y/ and acting on the first inequality by functional A with
respect to x and then by functional B with respect to y we get

A.pfg/B.q/CA.p/B.qf h/�A.pf /B.qg/�A.pg/B.qf /

�M1M2.A.ph1h2/B.q/CA.p/B.qh1h2/�A.ph1/B.qh2/�A.ph2/B.qh1/;

T .A;B;p;q;f;g/�M1M2T .A;B;p;q;h1;h2/:

Similarly, from the second inequality we obtain

T .A;B;p;q;f;g/� �M1M2T .A;B;p;q;h1;h2/

and we get the claimed result. The case when h1 and h2 are oppositely ordered is
proven similary. �

Theorem 3. Let A and B be isotonic linear functionals on L and let p, q be non-
negative functions from L. Let M be real number and let f , g be functions such
that

jf .x/�f .y/j �M jg.x/�g.y/j; 8x;y:

If all the terms in the below inequality exist, thenˇ̌
A.pfg/B.q/CA.p/B.qf h/�A.pf /B.qg/�A.pg/B.qf /

ˇ̌
�M

�
A.pg2/B.q/�2A.pg/B.qg/CA.p/B.qg2/

�
:
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Proof. Since f is an M � g�Lipschitz function and g is 1� g�Lipschitz the
desired inequality is a simple consequence of Theorem 2. �

In the following table we give a list of papers where particular cases of Theorems
from this section can be found.

TABLE 1. Known applications in particular cases of fractional in-
tegral operators

Particular cases Theorem 2 Theorem 3
Riem.-Liouv. [12], [11, Thm 3.5, Thm 3.7],

oper. AD B , p 6D q, h1 D h2 D id p 6D q, AD B and A 6D B ,
Saigo oper. [23, Thm 2.20] [23, Thm 2.19]

A 6D B , p 6D q, h1 D h2 D id A 6D B , p 6D q
q-Saigo oper. [23, Thm 3.17] [23, Thm 3.16]

A 6D B , p 6D q, h1 D h2 D id A 6D B , p 6D q,
q-R-L. [6, Thm 3.4] [6, Thm 3.3]

int. operator A 6D B , p 6D q, h1 D h2 D id , A 6D B , p 6D q,
[6, Thm 3.5]

AD B , p 6D q, h1 D h2 D id
Riemann [13, Thm 2.1], h1 D h2 D id [13, Thm 4.1],

int. AD B , p D q D 1 AD B , p D q D 1
time scale [5, Thm 4.1], [5, Thm 5.1],
˘˛ integral AD B , p D q, h1 D h2 D id AD B , p D q

Let us say few words how to read the above table. In the first column we write a
list of isotonic linear functionals. In the corresponding row we give a reference where
applications of our Theorem 2 and Theorem 3 occur. For example, Theorem 2 for
two Saigo operators, but with functions h1 and h2 equal to identity id can be find in
paper [23] as Theorem 2.20 etc.

As we can see, our results enable us to give analogue results for other cases of
linear functionals such as for fractional hypergeometric operators, for the Hadamard
operators, for other kinds of integrals on time scales etc. Also, we improve existing
results by using two different, more general functions h1 and h2 instead of identity
function id . For example, here we give a result for the Hadamard integral operators.
Let p D q D 1, h1 D h2 D id , ˛;ˇ > 0. If functions f;g are M1�, M2�Lipschitz
respectively, then the following inequality holds

logˇ t
� .ˇC1/

HJ
˛.fg.t//C

log˛ t
� .˛C1/

HJ
ˇ .fg.t//

� HJ
˛.f .t// HJ

ˇ .g.t//� HJ
˛.g.t// HJ

ˇ .f .t//
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�M1M2
t2

� .˛/� .ˇ/

�

"
log˛ t �.ˇ;2 log t /

2ˇ˛
C

logˇ t �.˛;2 log t /
2˛ˇ

�2.˛; log t /.ˇ; log t /

#
where .s;x/ is incomplete Gamma function, i.e. .s;x/D

R x
0 t

s�1e�tdt .
The procedure when we firstly apply on some function F.x;y/ functional A with

respect to variable x and then apply functional B with respect to variable y occurs
very often in this paper. So, we use the following notation: if F.x;y/ is a function,
then the number which appears after the above-described procedure is written as

ByAx.F.x;y// or ByAx.F /:

It is worthless to say that if A and B are isotonic linear functionals, then a functional

F 7! ByAx.F /

is also an isotonic linear functional.

Theorem 4. Let A and B be isotonic linear functionals on L and let p, q be
non-negative functions from L. If f is of r-Hölder-type and g is of s-Hölder-type,
i.e.

jf .x/�f .y/j �H1jx�yj
r ; jg.x/�g.y/j �H2jx�yj

s

for all x;y 2E, where H1;H2 > 0, r;s 2 .0;1� fixed, then

jT .A;B;p;q;f;g/j �H1H2 �ByAx.p.x/q.y/jx�yj
rCs/:

Proof. It is proved in similar manner as Theorem 2. �

In particular case, when p D q D 1, A.f / D B.f / D
R b
a f .x/dx, a factor

ByAx.p.x/q.y/jx�yj
rCs/ was calculated in [13] and it is equal to

2.b�a/rCsC2

.rC sC1/.rC sC2/
:

3. INEQUALITIES FOR FUNCTIONS WITH VARIABLE BOUNDS

In this section we collect different results for functions with variable and constant
bounds. For example, if we look at the paper [19], their Theorem 4 can be seen as a
particular case of the following theorem.

Theorem 5. LetA andB be isotonic linear functionals onL, p, q be non-negative
functions from L. Let f , �1;�2; be functions such that

�1.t/� f .t/� �2.t/

and all terms in the below inequality exist. Then

A.p�2/B.qf /CA.pf /B.q�1/� A.p�2/B.q�1/CA.pf /B.qf /:
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Proof. We consider the inequality

.�2.x/�f .x//.f .y/��1.y//� 0:

It is equivalent to the following

�2.x/f .y/Cf .x/�1.y/� �1.y/�2.x/Cf .x/f .y/:

After multiplying with p.x/q.y/ and acting on this inequality first by functional A
with respect to x and then by B with respect to y we get the wanted inequality. �

If functions �1;�2 become constant functions, then we get the following corollary.

Corollary 1. Let A and B be isotonic linear functionals on L and let p, q be
non-negative functions from L. Letm,M be real numbers and let f be function such
that

m� f .t/�M

and all terms in the below inequality exist. Then

MA.p/B.qf /CmA.pf /B.q/�MmA.p/B.q/CA.pf /B.qf /:

Proof. Follows from Theorem 5 for �1.t/Dm, �2.t/DM . �

Corollary 2. Let A and B be isotonic linear functionals on L and let p, q be
non-negative functions from L. Let M > 0 and let ', f be function such that

jf .t/�'.t/j<M

and all terms in the below inequality exist. Then

A.p'/B.qf /CA.pf /B.q'/CMA.p/B.qf /CMA.p'/B.q/CM 2A.p/B.q/

� A.p'/B.q'/CMA.p/B.q'/CMA.pf /B.q/CA.pf /B.qf /:

Proof. Follows from Theorem 5 for �1.t/D '.t/�M , �2.t/D '.t/CM . �

Theorem 6. Let A and B be isotonic linear functionals on L and let p, q be non-
negative functions from L. Let �1;�2;  1; 2; f and g be functions such that all
terms in the below inequality exist and conditions

�1.t/� f .t/� �2.t/ and  1.t/� g.t/�  2.t/

hold. Then

A.p�1/B.q 1/CA.pf /B.qg/� A.p�1/B.qg/CA.pf /B.q 1/;

A.p�1/B.q 2/CA.pf /B.qg/� A.p�1/B.qg/CA.pf /B.q 2/;

A.p�2/B.q 1/CA.pf /B.qg/� A.p�2/B.qg/CA.pf /B.q 1/;

A.p�2/B.q 2/CA.pf /B.qg/� A.p�2/B.qg/CA.pf /B.q 2/:
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Proof. The inequality .f .x/��1.x//.g.y/� 1.y//� 0 which can be written as

�1.x/ 1.y/Cf .x/g.y/� �1.x/g.y/Cf .x/ 1.y/

is obviously true.
After multiplying it with p.x/q.y/ and acting on this inequality first by functional

A with respect to x and then by B with respect to y, we get

ByAx.p.x/q.y/.�1.x/ 1.y/Cf .x/g.y//

� ByAx.p.x/q.y/.�1.x/g.y/Cf .x/ 1.y//

and applying properties of isotonic linear functionals A and B we obtain the first
inequality. The other three inequalities are obtained in a similar way starting from

.f .x/��1.x//. 2.y/�g.y//� 0;

.�2.x/�f .x//.g.y/� 1.y//� 0;

.�2.x/�f .x//. 2.y/�g.y//� 0

respectively. �

Corollary 3. Let A and B be isotonic linear functionals on L and let p, q be
non-negative functions from L. Let m;M;n;N be real numbers and let f and g be
functions such that

m� f .t/�M and n� g.t/�N

and all terms in the below inequalities exist. Then

mnA.p/B.q/CA.pf /B.qg/�mA.p/B.qg/CnA.pf /B.q/;

mNA.p/B.q/CA.pf /B.qg/�mA.p/B.qg/CNA.pf /B.q/;

MnA.p/B.q/CA.pf /B.qg/�MA.p/B.qg/CnA.pf /B.q/;

MNA.p/B.q/CA.pf /B.qg/�MA.p/B.qg/CNA.pf /B.q/:

Proof. Follows from Theorem 6 for �1 Dm, �2 DM ,  1 D n,  2 DN . �

Theorem 7. Let A and B be isotonic linear functionals on L and let p, q be
non-negative functions from L. Let �1 and �2 be a positive real numbers satisfying
1

�1
C
1

�2
D 1. Let f , �1;�2; be functions such that

�1.t/� f .t/� �2.t/:

and all terms in the below inequality exist. Then

1

�1
B.q/A.p.�2�f /

�1/C
1

�2
A.p/B.q.f ��1/

�2/CA.p�2/B.q�1/

CA.pf /B.qf /� A.p�2/B.qf /CA.pf /B.q�1/: (3.1)
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Proof. Let us mention the Young inequality which holds for non-negative a;b and

for positive �1 and �2 with property
1

�1
C
1

�2
D 1:

1

�1
a�1C

1

�2
b�2 � ab:

Setting in the previous inequality

aD �2.x/�f .x/; b D f .y/��1.y/

we have
1

�1
.�2.x/�f .x//

�1C
1

�2
.f .y/��1.y//

�2 � .�2.x/�f .x//.f .y/��1.y//:

Applying usual procedure we get

ByAx

�
p.x/q.y/.

1

�1
.�2.x/�f .x//

�1C
1

�2
.f .y/��1.y//

�2

�
CByAx

�
p.x/q.y/.�2.x/�f .x//.f .y/��1.y/

�
and after applying properties of A and B we obtain
1

�1
B.q/A.p.�2�f /

�1/C
1

�2
A.p/B.q.f ��1/

�2/� A.p.�2�f //B.q.f ��1//:

Using result from Theorem 5 we get inequality (3.1). �

Corollary 4. Let A and B be isotonic linear functionals on L and let p, q be
non-negative functions from L. Let m;n 2 R and let f be function such that m �
f .t/�M and all terms in the below inequality exist. Then

.M Cm/2A.p/B.q/CA.pf 2/B.q/C2A.pf /B.qf /CA.p/B.qf 2/

� 2.M Cm/ŒA.p/B.qf /CA.pf /B.q/�:

Proof. Follows from Theorem 7 for �1 Dm, �2 DM and �1 D �2 D 2. �

Theorem 8. Let A and B be isotonic linear functionals on L and let p, q be
non-negative functions from L. Let �1 and �2 be a positive real numbers satisfying
1

�1
C
1

�2
D 1. Let �1;�2;  1; 2; f and g be functions such that all terms in the

below inequality exist and conditions

�1.t/� f .t/� �2.t/ and  1.t/� g.t/�  2.t/

hold. Then
1

�1
A
�
p.�2�f /

�1

�
B.q/C

1

�2
A.p/B

�
q. 2�g/

�2

�
� A.p.�2�f //B.q. 2�g//;

1

�1
A
�
p.�2�f /

�1

�
B.q/C

1

�2
A.p/B

�
q.g� 1/

�2

�
� A.p.�2�f //B.q.g� 1//;
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1

�1
A
�
p.f ��1/

�1

�
B.q/C

1

�2
A.p/B

�
q. 2�g/

�2

�
� A.p.f ��1//B.q. 2�g//;

1

�1
A
�
p.f ��1/

�1

�
B.q/C

1

�2
A.p/B

�
q.g� 1/

�2

�
� A.p.f ��1//B.q.g� 1//:

Proof. Using the Young inequality for a D �2.x/�f .x/, b D  2.y/�g.y/ we
get

1

�1
.�2.x/�f .x//

�1C
1

�2
. 2.y/�g.y//

�2 � .�2.x/�f .x//. 2.y/�g.y// :

Multiplying both sides with p.x/q.y/ and acting on the inequality by functional A
with respect to x and then by B with respect to y, we get

1

�1
A
�
p.�2�f /

�1

�
B.q/C

1

�2
A.p/B

�
q. 2�g/

�2

�
� A.p.�2�f //B .q. 2�g// :

The other three inequalities can be proved in the similar way. �

In the following table we give a list of papers where particular cases of some
Theorems from this section can be found.

TABLE 2. Known applications for particular cases of fractional in-
tegral operators

Particular cases Theorem 5 Corollary 1 Theorem 6
R-L oper. [21, Thm 2], [21, Cor 3], [21, Thm 5],

A 6D B , p D q D 1 A 6D B , p D q D 1 A 6D B , p D q D 1
E-K oper. [22, Cor 2] [22, Cor 3]

A 6D B , p D q D 1 A 6D B , p D q D 1
Saigo oper. [8, Thm 8] [8, remark 9] [8, Thm 10]

A 6D B , p D q D 1 A 6D B , p D q D 1 A 6D B , p D q D 1
[22, Thm1] [22, Cor 4] [22, Thm2]

A 6D B , p D q D 1 A 6D B , p D q D 1 A 6D B , p D q D 1
Had. oper. [19, Thm 4], [19, Cor 5], [19, Thm 18],

A 6D B , p D q D 1 A 6D B , p D q D 1 A 6D B , p D q D 1

Let us mention that the non-weighted versions of Theorems 7, 8 and Corollary 4
for two Hadamard operators ADH J ˛ and B DH J ˇ can be found in paper [19].

As we can see, we did not find similar results for hypergeometric operators in
literature. But, it is obvious that our results can be applied on two fractional hyper-
geometric operator or on q-analogues of those integral operators.
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4. INEQUALITIES FOR THREE FUNCTIONS

This section is devoted to the results involving three or more functions and in some
sense it generalize the previous section.

Theorem 9. Let A and B be isotonic linear functionals on L and let p, q be
non-negative functions from L. Let f , g be similarly ordered functions and let h be
function with positive values. If all terms in the below inequality exist, then

A.pfgh/B.q/CA.pfg/B.qh/CA.ph/B.qfg/CA.p/B.qfgh/

� A.pf h/B.qg/CA.pf /B.qgh/CA.pgh/B.qf /CA.pg/B.qf h/: (4.1)

If f and g are oppositely ordered, then the reversed inequality holds.

Proof. For similarly ordered functions f , g we have .f .x/�f .y//.g.x/�g.y//�
0, but then also

.f .x/�f .y//.g.x/�g.y//.h.x/Ch.y//� 0:

This can be written as

f .x/g.x/h.x/Cf .x/g.x/h.y/Cf .y/g.y/h.x/Cf .y/g.y/h.y/

� f .x/g.y/h.x/Cf .x/g.y/h.y/Cf .y/g.x/h.x/Cf .y/g.x/h.y/:

Multiplying both sides by p.x/q.y/ and acting on this inequality first by functional
Awith respect to x and then by B with respect to y we get the desired inequality. �

Remark 1. For p D q from previous theorem we get

A.pfgh/B.p/CA.pfg/B.ph/CA.ph/B.pfg/CA.p/B.pfgh/

� A.pf h/B.pg/CA.pf /B.pgh/CA.pgh/B.pf /CA.pg/B.pf h/:

If also AD B then

A.pfgh/A.p/CA.pfg/A.ph/� A.pf h/A.pg/CA.pf /A.pgh/

and for hD const it reduces to the Chebyshev inequality.

Remark 2. Particular cases of inequality (4.1) are appeared in several papers for
different kinds of linear functionals. For example, ifA andB are Riemann-Liouville’s
operators, then a non-weighted inequality is given in Theorem 2.1 in paper [20]. If A
and B are different fractional q-integral of the Riemann-Liouville-type, then (4.1) is
given in [18, Thm 2.1] for p D q. Inequalities involving two q-analogues of Saigo’s
fractional integral operators which are particular cases of (4.1) are given in [2] as
Theorems 5 and 6, while similar results for generalized q-Erdélyi-Kober fractional
integral operators are given in [17, Thm 1 and 2].
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Lemma 1. Let A and B be isotonic linear functionals on L and let p, q be non-
negative functions from L. Let

Hf;g;h.x;y/D .f .x/�f .y//.g.x/�g.y//.h.x/�h.y//

D f .x/g.x/h.x/Cf .x/g.y/h.y/Cf .y/g.x/h.y/Cf .y/g.y/h.x/

�f .y/g.x/h.x/�f .x/g.y/h.x/�f .x/g.x/h.y/�f .y/g.y/h.y/:

Then

AxBy.p.x/q.y/Hf;g;h.x;y//

D A.pfgh/B.q/CA.pf /B.qgh/CA.pg/B.qf h/CA.ph/B.qfg/

�A.pgh/B.qf /�A.pf h/B.qg/�A.pfg/B.qh/�A.p/B.qfgh/:

Theorem 10. Let A and B be isotonic linear functionals on L and let p, q be
non-negative functions from L. Let m;M , n;N , k;K be real numbers and let f , g,
h be functions such that

m� f .x/�M; n� g.x/�N; k � h.x/�K; 8x:

If all the terms in the below inequality exist, thenˇ̌
A.pfgh/B.q/CA.pf /B.qgh/CA.pg/B.qf h/CA.ph/B.qfg/

�A.pfg/B.qh/�A.pf h/B.qg/�A.pgh/B.qf /�A.p/B.fgh/
ˇ̌

� .M �m/.N �n/.K�k/A.p/B.q/:

Proof. From m� f .x/�M it follows jf .x/�f .y/j �M �m. Therefore

j.f .x/�f .y//.g.x/�g.y//.h.x/�h.y//j � .M �m/.N �n/.K�k/; i:e:

jHf;g;h.x;y/j � .M �m/.N �n/.K�k/:

Multiplying both sides by p.x/q.y/ and using Lemma 1 we getˇ̌̌
A.pfgh/B.q/�A.pfg/B.qh/�A.pf h/B.qg/CA.pf /B.qgh/

�A.pgh/B.qf /CA.pg/B.qf h/CA.ph/B.qfg/�A.p/B.fgh/
ˇ̌̌

� .M �m/.N �n/.K�k/A.p/B.q/;

which proves the theorem. �

Remark 3. Particular cases of Theorem 10 are appeared in [2, Thm 8 and 9] for
two q-analogues of Saigo’s fractional integral operators and in [17, Thm 3 and 4] for
generalized q-Erdélyi-Kober fractional integral operators.

Theorem 11. LetA and B be isotonic linear functionals onL and let p, q be non-
negative functions from L. Let M1;M2;M3 be real numbers and let fi , .i D 1;2;3/
be Mi �g�Lipschitz functions. If all the terms in the below inequality exist, thenˇ̌
A.pf1f2f3/B.q/CA.pf1/B.qf2f3/CA.pf2/B.qf1f3/CA.pf3/B.qf1f2/
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�A.pf1f2/B.qf3/�A.pf1f3/B.qf2/�A.pf2f3/B.qf1/�A.p/B.qf1f2f3/
ˇ̌

�M1M2M3 �ByAx.p.x/q.y/jg.x/�g.y/j
3/:

Proof. If fi , .i D 1;2;3/ are Mi �g�Lipschitz functions, then

jf1.x/�f1.y/j �M1jg.x/�g.y/j; jf2.x/�f2.y/j �M2jg.x/�g.y/j;

jf3.x/�f3.y/j �M3jg.x/�g.y/j

for all x;y. Multiplying those inequalities we get

jHf1;f2;f3
.x;y/j �M1M2M3jg.x/�g.y/j

3:

This is equivalent to

Hf1;f2;f3
.x;y/�M1M2M3jg.x/�g.y/j

3 and

�Hf1;f2;f3
.x;y/�M1M2M3jg.x/�g.y/j

3:

Multiplying both inequalities with p.x/q.y/ and acting on the resulting inequalities
by A with respect to x and then by B with respect to y, we get the desired result. �

Remark 4. In [2, Thm 11 and 12] and [17, Thm 5 and 6] the authors attempted
to give corresponding results for q-analogues of Saigo’s fractional integral operators
and for generalized q-Erdélyi-Kober fractional integral operators, respectively. But
they used assumptions jfi .x/�fi .y/j �Mi .x�y/, i D 1;2;3, x;y > 0 which leads
to conclusion that fi � 0.

Remark 5. Considering results from this and from the previous section it is clear
how Theorems 2 and 11 can be generalized for n Mi � g�Lipschitz functions fi ,
i D 2; : : : ;n. We leave it to a reader.

Results with two functions and three weights

The following result is based on the succesive using of the Chebyshev inequality
for pairs of weights.

Theorem 12. Let A and B be isotonic linear functionals on L and let p;q;r be
non-negative functions from L. If f and g are similarly ordered functions, then

A.p/Œ2A.q/B.rfg/CA.r/B.qfg/CB.r/A.qfg/�

CA.pfg/ŒA.q/B.r/CA.r/B.q/�

� A.p/ŒA.qf /B.rg/CA.qg/B.rf /�CA.q/ŒA.pf /B.rg/CA.pg/B.rf /�

CA.r/ŒA.pf /B.qg/CA.pg/B.qf /�;

under assumptions that all terms are well-defined.
If f and g are oppositely ordered functions, then the reversed inequality holds.
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Proof. Replacing in (1.3) p by q and q by r and multiplying by A.p/ we get

A.p/ŒA.q/B.rfg/CB.r/A.qfg/�� A.p/ŒA.qf /B.rg/CA.qg/B.rf /�:

Replacing in (1.3) q by r and multiplying by A.q/ we get

A.q/ŒA.p/B.rfg/CB.r/A.pfg/�� A.q/ŒA.pf /B.rg/CA.pg/B.rf /�:

Multiplying (1.3) by A.r/ we get

A.r/ŒA.p/B.qfg/CB.q/A.pfg/�� A.r/ŒA.pf /B.qg/CA.pg/B.qf /�:

Adding the above inequalities we get the statement of the theorem. �

Remark 6. Theorem 12 are proved in several papers for different kinds of linear
operators. For example, if A and B are the Riemann-Liouville operators, then it is
given in [10]. Result involving Hadamard operators is given in [7], while an analogue
result for the Saigo operators and q-analogue of Saigo’s operators are given in [9] and
[23].
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