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ON POLYNOMIAL IDENTITIES FOR RECURSIVE SEQUENCES
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Abstract. In this paper we extend the notion of Melham sum to the Pell and Pell-Lucas se-
quences. While the proofs of general statements rely on the binomial theorem, we prove some
spacial cases by the known Pell identities. We also give extensions of obtained expressions to the
other recursive sequences.
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1. INTRODUCTION

The Pell sequence .Pn/n�0 and the Pell-Lucas sequence .Qn/n�0 are defined as
the second order recurrences,

PnC2 D 2PnC1CPn; P0 D 0; P1 D 1 (1.1)
QnC2 D 2QnC1CQn; Q0 D 2; Q1 D 2: (1.2)

Equivalently, these sequences can be defined as the solutions of Diophantine equa-
tions

x2
�dy2

D˙1

for d D 2. More precisely, the pairs .Qn=2;Pn/ are all solutions of these equations.
The n-th term of the Pell sequence can also be expressed by the closed form equation.
The Pell-Lucas sequence is sometimes called companion Pell sequence and there is
also similar closed form for this sequence. We let  denote the silver ratio,  WD
1C
p
2 and we set ı WD 1�

p
2. Then the closed formula for Pell sequence can be

written as

Pn D
n� ın

 � ı
(1.3)

while for the companion Pell numbers we have Qn D 
n� ın.

Both the Pell sequence and Pell equation are the subject of numerous papers.
Among the most remarkable theoretical number properties let us mention the facts
that

� P2nC1 divides the sum
P2n

kD0P2kC1,
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� P2n divides the sum
P2n

kD1P2k�1,

and sum of the first 4nC1 Pell numbers
P4nC1

kD1 Pk is a perfect square [7]. Further-
more, in [6] Dujella found quadruples of the Pell and Pell-Lucas numbers that have
the property of Diophantus of a certain order. In particular, the quadruples

fP2n;P2nC2;2P2n;Q2nP2nC1Q2nC1g;

fP2n;P2nC2;2P2nC2;P2nC1Q2nC1Q2nC2g

have the property of Diophantus of order 1, meaning that aiaj C1, is a perfect square
where ai , aj , i ¤ j are the elements of a quadruple.

Some recent surveys on the Pell equation one can find in [1, 3].
There are also many known combinatorial properties and identities for Pell and

Pell-Lucas sequences [4, 5, 12]. This includes several identities encountering both of
the sequences,

Qn D Pn�1CPnC1 (1.4)

being the basic one. Recall that the Cassini identity [11] for Pell numbers has form

Pn�1PnC1�P
2
n D .�1/

n: (1.5)

An elegant proof is based on the fact that�
0 1

1 2

�n

D

�
Pn�1 Pn

Pn PnC1

�
;

which can be proved by induction. When applying the Cauchy-Binet theorem for
determinants, the statement follows immediately. We will also use relation

PmCn D Pm�1PnCPmPnC1; (1.6)

for the purpose to prove some polynomial identities for Pell numbers. Identity (1.6)
can be proved by induction.

This paper aims at finding Pell identities and polynomial representation for the
Pell numbers. In what follows, firstly we prove that .2mC 1/n-th Pell number is
represented as a polynomial in Pn. Then we extend the notion of Melham sum [10]
to the Pell and Pell-Lucas sequences and find related expansions into the power series
of Pn, where exponents are odd. Finally, we give extensions of the obtained identities
for a certain, more general class of recursive sequences.

2. THE .2mC1/n-TH PELL NUMBER AS A POLYNOMIAL IN Pn

Proposition 1. For the Pell sequence .Pn/n�0 we have

i/ P3n D 8P
3
n C3.�1/

nPn (2.1)

i i/ P5n D 64P
5
n C40.�1/

nP 3
n C5Pn: (2.2)
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Proof. According to relations (1.5) and (1.6) we get

P3n D P2nCn D P2n�1PnCP2nPnC1

D P 2
n�1PnCP

3
n C .Pn�1PnCPnPnC1/.2PnCPn�1/

D Pn.P
2
n�1C2PnPn�1CP

2
n C2PnPnC1CP

2
n�1CP

2
n C .�1/

n/

which finally gives

P3n D Pn.3P
2
n C2.�1/

2
C2PnPnC1CP

2
n�1/

D Pn.3P
2
n C2.�1/

2
C4P 2

n CPn�1.2PnCPn�1// D Pn.8P
2
n C3.�1/

n/:

Application of the same relations also proves identities for P5n. �

Furthermore, for the next instance when n is odd we have

P7n D 512Pn
7
�448Pn

5
C112Pn

3
�7Pn (2.3)

while all coefficients are positive when n is even.

Theorem 1. For the Pell sequence .Pn/n�0

P.2mC1/n D

mX
iD0

.�1/n.mCi/23i 2mC1

2iC1

 
mC i

2i

!
P 2iC1

n : (2.4)

Proof. We use equalities (2.5) and (2.6), which are results of D. Jennings available
in [9] and which can be proved by induction.�

x2m
C

1

x2m

�
C

�
x2m�2

C
1

x2m�2

�
C�� �C

�
x2
C
1

x2

�
C1

D

mX
iD0

2mC1

mC iC1

 
mC iC1

2iC1

!�
x�

1

x

�2i

(2.5)

�
x2m
C

1

x2m

�
�

�
x2m�2

C
1

x2m�2

�
C�� �C .�1/mC1

�
x2
C
1

x2

�
C .�1/m

D

mX
iD0

.�1/mCi 2mC1

mC iC1

 
mC iC1

2iC1

!�
xC

1

x

�2i

(2.6)

Having in mind Binet formula for the Pell numbers (1.3) and the fact that

 � ı D�1 (2.7)

 � ı D 2
p
2 (2.8)

we have
Ppn

Pn
D
pn� ıpn

n� ın
D xp�1

Cxp�2yC�� �Cxyp�2
Cyp�1; (2.9)
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where x D n and y D ın D
.�1/n

x
. When p is odd, the r.h.s. of (2.9) reduces to�

xp�1
C

1

xp�1

�
C .�1/n

�
xp�1

C
1

xp�1

�
C�� �C

�
xp�1

C
1

xp�1

�
C .�1/n

(2.10)
when p � 3 .mod 4/ or to�

xp�1
C

1

xp�1

�
C .�1/n

�
xp�1

C
1

xp�1

�
C�� �C .�1/n

�
xp�1

C
1

xp�1

�
C1

(2.11)
when p � 1 .mod 4/. Now, we have

xC
1

x
D n

C
1

n
D n

C .�1/nın

which gives

xC
1

x
D . � ı/Pn; n� 1 .mod 2/ (2.12)

x�
1

x
D . � ı/Pn; n� 0 .mod 2/ (2.13)

and furthermore �
xC

1

x

�2

D 8P 2
n ; n� 1 .mod 2/ (2.14)�

x�
1

x

�2

D 8P 2
n ; n� 0 .mod 2/ (2.15)

Since we get expression (2.10) assuming that p is odd we now substitute pD 2mC1.
Now, when n is even we obtain all positive terms in (2.10) and then r.h.s. of (2.9) is
equal to the l.h.s. of equality (2.5),

P.2mC1/n D

mX
iD0

.�1/n.mCi/23i 2mC1

mC iC1

 
mC iC1

2iC1

!
P 2iC1

n : (2.16)

Analogue reasoning when n is odd gives the same relation, thus (2.16) holds true for
any natural number n. Finally, a simple manipulation with (2.16) leads to the final
form of the theorem. �

One can easily see that relations (2.1), (2.2) and (2.3) appear from Theorem 1 for
mD1,2 and 3, respectively. When mD 4 Theorem 1 gives

P9n D 2
12Pn

9
�9 �29Pn

7
C1728Pn

5
�240Pn

3
C9Pn (2.17)

when n is odd while all coefficients are positive otherwise. Note that the leading coef-
ficient in (2.4) is always a power of 2, 23m, while the absolute value of the coefficient
in the term of the smallest degree is 2mC1.
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3. MELHAM SUM FOR THE PELL AND PELL-LUCAS SEQUENCE

Proposition 2. Twice the sum of the Pell numbers having even indexes from 2 to n
is equal to the (2n+1)-st Pell number diminished by 1,

1C2

nX
kD1

P2k D P2nC1: (3.1)

Proof. The statement follows immediately from defining properties of Pell se-
quence,

P2nC1 D 2P2nCP2n�1

D 2P2nC2P2n�2CP2n�3

D 2P2nC2P2n�2C�� �C2P2CP1:

�

Note that relation (3.1) can be seen as the expansion of the expressionQ1

Pn
kD1P2k

into polynomial in P2nC1,

Q1

nX
kD1

P2k D P2nC1�1:

In what follows we extend this idea to full generality. The expression

Q1Q2 � � �Q2mC1

nX
kD1

P 2mC1
2k

;

we shall call the Melham sum for Pell and Pell-Lucas sequences, because there is ana-
logy with established term for Fibonacci and Lucas sequences. More on the Fibon-
acci sequence one can find in the classic book by S. Vajda. Introduction to Fibonacci
polynomials one can find in [8], and some recent development in [2].

Lemma 1. For the sequences .Pn/n�0, .Qn/n�0 and m 2N

Qm

nX
kD1

P2mk D Pm.2nC1/�Pm: (3.2)

Proof. By relation (1.6) we have

PmCn D .Pm�n�PnPn�1.�1/
n/.�1/nC1

CPmPn�1

D Pm�1.�1/
nC1
CPmPn�1CPmPnC1

D Pm�1.�1/
nC1
CPm.Pn�1CPnC1/

D PmQn� .�1/
nPm�n:
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Now we prove the statement of lemma by induction where this result is used in a step
of induction. Thus, from the fact that the statement holds true for nD 1 we have to
derive equality Qn

PnC1
kD1P2mk D Pm.2nC3/�Pm. We have

Qn

nC1X
kD1

P2mk DQn

� nX
kD1

P2mkCP2m.nC1/

�
D Pm.2nC1/�PmCQnP2m.nC1/

D Pm.2nC1/CQP2m.nC1/�Pm

D P2m.nC1/Cm�Pm

D Pm.2nC3/�Pm;

which completes the statement of the lemma. �

Lemma 2. For the sequences .Pn/n�0, .Qn/n�0 and m 2N

Pn
2mC1

D
1

23m

mX
jD0

.�1/j.nC1/

 
2mC1

j

!
P.2mC1�2j /n: (3.3)

Proof. By means of binomial theorem and using (2.7) as well as (2.8) we have

Pn
2mC1

D

�n� ın

 � ı

�2mC1

D
1

. � ı/2mC1

2mC1X
jD0

.�1/jC1

 
2mC1

j

!
jnı.2mC1�j /n

D
1

8m. � ı/

mX
jD0

.�1/j

 
2mC1

j

!
. .2mC1�j /nıjn

�jnı.2mC1�j /n/

D
1

23m

mX
jD0

.�1/j

 
2mC1

j

!
jnıjn.

 .2mC1�2j /n� ı.2mC1�2j /n

 � ı
/

D
1

23m

mX
jD0

.�1/j.nCm/P.2mC1�2j /n

which completes the statement of lemma. �

Theorem 2. For m 2N and the sequences .Pn/n�0, .Qn/n�0

nX
kD1

P2k
2mC1

D
1

23m

mX
jD0

.�1/j

Q2mC1�2j

 
2mC1

j

!
.P.2mC1�2j /.2nC1/�P2mC1�2j /: (3.4)
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Proof. In Lemma 2 we substitute nD 2k and then sum both sides of equality from
k D 1 through n. It follows

P2k
2mC1

D
1

23m

mX
jD0

.�1/j

 
2mC1

j

!
nX

kD1

P.2mC1�2j /2k :

When we substitute
Pn

kD1P.2mC1�2j /2k by the expression in Lemma 1, the proof
is completed. �

Theorem 3. For m 2N and sequences .Pn/n�0, .Qn/n�0

nX
kD1

P 2mC1
2k

D

mX
iD0

P 2iC1
2nC1

m�iX
jD0

.�1/mCi23.i�m/.2m�2j C1/

Q2mC1�2j .2iC1/

 
2mC1

j

! 
m�j C i

2i

!

C

mX
jD0

.�1/jC1P2mC1�2j

23mQ2mC1�2j

 
2mC1

j

!
: (3.5)

Proof. When substitute m with m�j and n with 2nC1 in Theorem 1 one get

P.2mC1�2j /.2nC1/ D

m�jX
iD0

.�1/.2nC1/.m�jCi/23i 2m�2j C1

2iC1

 
m�j C i

2i

!
P 2iC1

2nC1:

We substitute this expression in Theorem 2 and the statement follows immediately.
�

Now we consider some particular cases of Theorem 3. When mD 1 we obtain
nX

kD1

P 3
2k D

1

14

�
P 3

2nC1�3P2nC1C2
�
:

When multiply this relation with Q1Q3 we get polynomial identity for the Melham
sum in case mD 1

Q1Q3

nX
kD1

P 3
2k D 2P

3
2nC1�6P2nC1C4: (3.6)

The next case, when mD 2 gives

Q1Q3Q5

nX
kD1

P 5
2k D 28P

5
2nC1�120P

3
2nC1C220P2nC1�128: (3.7)

4. FURTHER EXTENSIONS

Given s; t 2N and n 2N0 we define the second order recurrence with the relation

anC2 D san�1C tan (4.1)

and initial values a0 and a1. We say that a sequence .an/n�0 is a solution of (4.1) if
its terms satisfies this recurrence. Here we consider a class of (4.1) defined by t D 1
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and initial terms a0 D 0, a1 D 1. We let .An/n�0 denote the sequence defined by
this class. It is worth mentioning that two notable representatives of this class are
Fibonacci and Pell numbers.

Proposition 3. For the sequence of numbers .An/n�0 we have

i/ A3n D .s
2
C4/A3

nC3.�1/
nAn (4.2)

i i/ A5n D .s
2
C4/2A5

nC5.s
2
C4/.�1/nA3

nC5An: (4.3)

Proof. By induction we prove that

An�1AnC1�A
2
D .�1/2 (4.4)

and also

AmCn D Am�1AnCAmAnC1: (4.5)

Now we employ (4.5) to get

A3n D A2nCn D A2n�1AnCA2nAnC1

D A2
n�1AnCA

3
nC .An�1AnCAnAnC1/.A2AnCAn�1/

D An.A
2
n�1CA

2
nC sAn�1AnC sAnAnC1CA

2
n�1CAn�1AnC1/:

Having in mind that

A2
n�1C sAn�1An D A

2
nC .�1/

n

by (4.4), we obtain

A3n D An.2A
2
nC2.�1/

n
CA2

nC sAnAnC1CA
2
n�1/:

When applying again (4.4) to the terms sAnAnC1 and A2
n�1 we finally have

A3n D AnŒ4A
2
nC s

2A2
nC3.�1/

n�

D An

�
.s2
C4/A2

nC3.�1/
n
�
:

The second relation can be proved by analogue calculation. �

Clearly, further identities can be proved in the same fashion as Proposition 3 was
proved. Instead, we give a more elegant family of identities (4.6) that generalize
Proposition 3. It follows as a corollary of Theorem 1.

Corollary 1. For m 2N and the sequence of numbers .An/n�0 we have

A.2mC1/n D

mX
iD0

.�1/n.mCi/.s2
C4/i

2mC1

2iC1

 
mC i

2i

!
A2iC1

n : (4.6)
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In order to prove Corollary 1 we use the fact that the closed form relation for the
terms of sequence .An/n�0 is

An D
˛n�ˇn

˛�ˇ
;

where

˛ D
1

2
.sC

p
s2C4/; ˇ D

1

2
.s�

p
s2C4/:

Furthermore, it holds ˛ �ˇ D �1, ˛�ˇ D
p
s2C4 which generalize relations (2.7)

and (2.8) in the proof of Theorem 1. This completes the statement of Corollary 1.
Further generalizations and extensions of expressions presented in this work are

also possible.
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E-mail address: imartinjak@phy.hr

I. Vrsaljko
University of Zagreb, Faculty of Science, Bijenička 32, 10000 Zagreb, Croatia
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